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Abstract 

Across the Metazoa, organisms vary in terms of how they respond to injury. The two basic 

responses are regeneration or fibrotic scarring. While some groups such as axolotls, amphibians 

and fish show high regenerative capacity, mammals tend to heal wounds by fibrotic scarring. The 

African Spiny Mouse (Acomys) has been reported to have the capacity of closing 4-mm full 

thickness wounds in the ear pinna with full regeneration of the original tissue architecture, 

including dermis, epidermis, cartilage and hair follicles. In contrast, Mus musculus heals the 

border wounds by fibrotic scarring. Therefore, Acomys and Mus constitute a powerful 

comparative framework for the study of mammalian regeneration.  

The goal in this work was to answer two independent questions.  

First, we asked whether mesenchymal stem cells (MSC) were present in ear tissue of both 

species and compared their differentiation capabilities in vitro. Primary cell cultures were 

established from uninjured ears of both species, immune-phenotyped and cultured in vitro in 

adipocyte, chondrocyte and osteocyte differentiation media. Differentiation was characterized by 

staining and marker expression. We found that Mus cells tend to differentiate to adipocytes, 

while Acomys cells tend to differentiate to chondrocytes. 

Second, we asked whether telomerase was differentially upregulated in Acomys vs Mus in 

response to wounding. Both species were subjected to ear wounds and allowed to heal or 

regenerate. Tissues were harvested at different time points and analyzed for TERT expression by 

RT-qPCR. Our results were inconclusive. 

This work constitutes a further step in understanding the molecular and cellular mechanisms that 

distinguish Acomys as an emerging mammalian regeneration model. 

 

Keywords: wounding; regeneration; fibrotic scarring; mesenchymal stem cells; telomerase; 

adipogenesis; chondrogenesis. 
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Resumo 

Os organismos de todo o Metazoa diferem entre si em relação à resposta a ferimentos. As duas 

respostas base são regeneração ou fibrose. Enquanto grupos como axolotle, anfíbios e peixe 

demonstram capacidade regenerativa, mamíferos tendem a responder a ferimentos por fibrose.  

Foi demonstrado que o Rato Espinhoso Africano (Acomys) fecha ferimentos na orelha com 

diâmetro de 4 mm, com completa regeneração da arquitectura original do tecido, incluindo 

derme, epiderme, cartilagem e folículos pilosos. Em contraste, o murganho (Mus Musuculus) 

apenas é capaz de cicatrizar as fronteiras da ferida. Deste modo, o Acomys e o Mus constituem 

um bom sistema comparativo para o estudo de regeneração em mamíferos. 

O objectivo deste trabalho foi de responder a duas questões independentes. 

Primeiro, colocámos a questão se existiam células estaminais mesenquimatosas (MSC) na orelha 

de ambas as espécies, e comparamos o seu potencial de diferenciação in vitro. Culturas de 

células primárias foram estabelecidas a partir de orelhas de ambas as espécies, o fenótipo 

imunitário foi caracterizado e as células foram cultivadas em meios indutores de adipogênese, 

condrogêndese e osteogênese. O potencial de diferenciação foi caracterizado por marcação 

histológica e expressão de marcadores moleculares. Observamos que células de Mus têm 

tendência em diferenciar para adipócitos, enquanto em Acomys a tendência é diferenciar para 

condrócitos. 

Em segundo lugar, colocámos a questão se a telomerase apresentava níveis de expressão 

diferentes entre Acomys e Mus após lesão experimental na orelha. Ambas as espécies foram 

sujeitas a ferimento experimental nas orelhas, e foi permitido o processo de regeneração ou 

cicatrização. Os tecidos foram recolhidos em diferentes pontos no tempo e a expressão de TERT 

foi feita por RT-qPCR. Os nossos resultados foram inconclusivos. 

 

Este trabalho representa mais um passo na direcção de perceber os mecanismos moleculares e 

celulares que destinguem o Acomys como um potencial modelo de regeneração em mamíferos. 

 

Palavras-Chave: ferimento; regeneração; fibrose; células estaminais mesenquimais; telomerase; 

adipogênese; condrogênese. 
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Chapter 1. 

General Introduction to Regeneration and the Acomys cahirinus Model  

1.1   Regenerative Mechanisms and Animal Models of Regeneration 

In response to injury, a complex array of intracellular and intercellular pathways are activated 

and coordinated in order to re-establish tissue integrity and homeostasis. Most commonly, the 

response to injury across the Metazoa is through wound repair, which results in formation of a 

fibrotic scar. 

However, some organisms across the Metazoa display some degree of regenerative responses to 

injury or trauma. Among the most robust regenerative systems are the Urodele amphibians 

(axolotls, salamanders), which are capable of complete limb regeneration. Newts and axolotls are 

also capable of regenerating brain, spinal cord and heart tissue (Brockes, 2002; Suzuki, 2006; 

McCusker, 2014). 

Regeneration proceeds through three classical mechanisms: epimorphic regeneration, 

morphollaxis and compensatory regeneration (Brockes, 2002; Suzuki, 2006; McCusker, 2014). 

Epimorphic regeneration involves the dedifferentiation of adult cells proliferate to form a mass 

of undifferentiated cells. Subsequently, these cells differentiate, migrate and pattern themselves 

to give rise to the missing organ or tissue, without drastic rearrangement of the structures 

surrounding the wound bed. This type of regeneration is characteristic of regenerating limbs in 

species such as froglets of Xenopus laevi (Gilbert SF, 2000; Suzuki, 2006) and Ambystoma 

mexicanum (axolotl) (Seifert et al, 2012). The second mechanism (morphollaxis) is a response to 

injury consisting of the re-patterning of existing tissues (with little proliferation) to give rise to 

the missing structure. This type of regeneration is well characterized in the Hydra system, where 

it is thought to be due to the high degree of plasticity of differentiated Hydra cells (Koizumi et al, 

1991; Gilbert SF, 2000; Agata et al, 2007). The third mechanism is known as compensatory 

regeneration. The best example of this mechanism is the regeneration of adult liver, where 

differentiated cells enter the cell cycle without de-differentiating, resulting in new cells assuming 

the functions of lost cells. This process usually occurs in normal physiological conditions, where 

loss of structures is not a result of injury, but rather a process of tissue self-renewal so that tissue 

functions are maintained (Chuong et al, 2012). 
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Contrary to amphibians, mammals are more limited in their capacity for limb and organ 

regeneration, and tend to respond to injury with fibrotic scarring. However, there are instances of 

homeostatic mechanisms mediated by regeneration. Tissues such as blood, skin and bone can 

continuously regenerate due to the existence of pools of multipotent stem cells. In adult humans, 

liver has an impressive capacity or regeneration, being capable of regenerating up to 70% of its 

mass after injury, which is achieved through hepatocyte hyperplasia (Miyaoka et al 2013). 

Another instance of regeneration is observable for early fetuses of different species, namely 

human, where skin regeneration proceeds in a way that results in repaired tissue devoid of scars. 

This capacity, however, is lost at later stages of development, with wounds resulting in fibrotic 

scar tissue (Rolfe et al, 2012; Satish et al, 2010). 

In order to dissect the pathways and mechanisms underlying regeneration, there is the need for 

good model organisms that display robust and reproducible regenerative phenotypes. Current 

animal models in the field of regeneration include axolotls (Ambystoma mexicanum), the 

zebrafish (Danio rerio), African clawed frog (Xenopus laevis) and the planaria (Schmidtea 

mediterranea). However, regenerative phenotypes in mammals are uncommon and few models 

exist, such as ear closure in the MRL strain of mice (Edwards, 2008) and rabbits (Eslaminejad et 

al, 2013; Mahmoudi et al, 2011), digit tip regeneration in mice (Simkin et al, 2015) and the 

annual regrowth of deer antlers (Kierdof, 2012). One recent and remarkable addition to this list is 

the African Spiny Mouse, discussed in the following section. 

 

1.2 The African Spiny Mouse (Acomys cahirinus) 

The term ‘African Spiny Mouse’ is a collective reference to the genus Acomys, which owes its 

etymology to the spiny hairs that emerge from their dorsum. According to the International 

Union for the Conservation of Nature, there are currently 18 known Acomys species, habiting 

arid environments across Africa, the Middle East and Southern of Asia. They are larger than the 

common laboratory mouse, Mus musculus, with adults typically weighing between 40 and 50 g. 

One of their most notable characteristics is their precocial nature (Supplementary Figure 1). 

Newborn pups are born in an advanced stage of development compared to other murid rodents, 

with a full coat of soft grey hair, opened eyes and ears unfolded. Remarkably, they are capable of 
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locomotion and thermoregulation. Acomys have been used for studies of diabetes, perinatal 

research and more recently, regeneration. 

Acomys have been used as a model of nutrition induced diabetes mellitus type II. Whilst on a 

high-energy diet, Acomys respond with obesity, low insulin levels and β-cell hyperplasia 

(Shafrir, 2006). 

Due to their long gestation period (39 days) and precocity, Acomys develop most organ systems 

in utero, such as liver and kidneys (Dickinson et al, 2005), in contrast to altricial rodent pups, 

making them good models for perinatal research (Lamers, 1985; Dickinson, 2005). As such, 

spiny mice have been used to study the effect of maternal exposure to glucocorticoids, which 

have deleterious effects on placental function (Iwaniak et al, 2015). More interestingly, they have 

been used in studies to understand brain development in utero and the neural pathways of 

behavior (Brunjes et al, 1989). 

More recently, two species of spiny mice, Acomys percivali and Acomys kempi, were shown to 

have a high degree of regenerative capacity. Both species show autotomy, a phenomenon by 

which dorsal skin and tail sheath were easily lost when mice were manipulated, possibly owing 

to the weak tensile strength of the tissues involved, presumably an antipredator adaptation.  

Animals can suffer large full thickness wounds, which, remarkably, heal in 30 days. Importantly, 

histological analysis of the affected region showed that animals reconstituted the original tissue 

architecture, rather than respond with fibrotic scarring, as is the norm in mammals. Furthermore, 

4 mm full thickness wounds in ear pinna fully closed within 60 days, displaying the same level 

of robust regeneration as seen for the skin (Seifert et al, 2012). 

In our group, we have shown that the regenerative phenotype extends to a third member of the 

genus (Acomys cahirinus). Four-millimeter full thickness wound in the ear pinna showed 

complete regeneration of tissue architecture, including dermis, epidermis, sebaceous glands, 

adipose tissue hair follicles, angiogenesis and nerve fiber regeneration (Figure 1). Muscle fibers 

were also found in the regenerated region (Santos et al, 2016). A side-by-side comparison of 4-

mm full thickness ear pinna wounds in Acomys and Mus resulted in the Acomys ear wound full 

closure within 60 days, in contrast to Mus, which merely healed the borders of the wound 

through fibrotic scarring with no significant wound closure.  
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Figure 1. Ear Hole Closure Timeline for A. cahirinus vs. Mus musculus: response to 4 mm full 

thickness ear wounds at weekly intervals between day 14 and 56 (220x, scale bar 1 mm; distal-

proximal axis shown vertically with distal at top and proximal at bottom for all panels) (Santos et 

al, 2016).  

 

The work performed in this thesis sought to address two independent questions: 

1) Given the ability of MSC to differentiate to multiple cell types, are mesenchymal stem 

cells (MSC) present in the ear of Acomys cahirinus and if so, can the different responses 

of Acomys vs. Mus to ear pinna wounding be explained by difference of the behavior of 

MSC in both species?  

 

2) Given the role of telomerase in certain regenerating systems sucha as zebrafish, does the 

regenerative response to ear pinna wounding observed in Acomys cahirinus involve 

upregulation of the telomere extending machinery in regenerating tissues? 
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Chapter 2. 

In vitro Ear Cell Differentiation Capacity of Acomys cahirinus vs. Mus 

musculus  

2.1 Introduction 

Among adult stem cells, mesenchymal stem cells (MSCs) are multipotent stem cells that can 

differentiate into various cell types, such as adipocytes, osteoblasts, chondrocytes, myocytes, β-

pancreatic islets cells, and potentially, neural cells (Nombela-Arrieta, 2011, Gao, 2016). In 

addition, recent in vivo studies have demonstrated their capacity for self-renewal.  They can be 

cultured in vitro, show adherence to polystyrene surfaces, have low immunogenicity and can be 

regulators of the immune response. MSCs have been reported to be capable to suppress the 

activation and function of cells from the innate (such as macrophages, neutrophils and dendritic 

cells) and adaptive systems (T lymphocytes and B-lymphocytes). This is due to an arrest of the 

immune cells in G0/G1, thus preventing entry in the cell cycle. Furthermore, concrete 

mechanisms, such as the inhibition of proliferation of B lymphocytes by IFN-γ-treated MSCs 

have helped to understand the interactions that MSCs have with the immune system, information 

that could prove valuable in the field of regenerative medicine (Mundra et al 2013; Kolluri et al 

2013; Wang et al 2014). 

The International Society of Cellular Therapy (ISCT) has defined minimal criteria for 

mesenchymal stem cells (Horwitz et al., 2005). According to these criteria, MSCs Must: 

• Adhere and grow in a plastic substrate when cultured in vitro; 

• Be capable of multilineage differentiation to adipocytes, chondrocytes and osteoblasts 

when subjected to Differentiation Inducing Media (DIM); 

• Express a specific panel of surface markers. In humans, MSCs are positive for CD73, 

CD90 and CD105 surface antigens, while lacking CD34 and CD45 leukocyte markers. In 

mouse, MSC are positive for CD105, CD29 and Sca-1, while being negative for CD45. 

The first to isolate and describe MSC cells was Friedenstein, who described the isolation of 

spindle-shaped, clonogenic cells from bone marrow which he initially defined as colony-forming 

unit fibroblasts (Uccelli et. al. 2008). After the characterization of these cells regarding their 
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capacity of self-renewal and tri-lineage differentiation the term Mesenchymal Stem Cells started 

to be used to refer to these precursor cells.  

Although initial reports focused solely on bone marrow-derived MSCs, further reports have 

demonstrated that MSCs can be derived from other tissues such as adipose, umbilical cord, cord 

blood, dental pulp and the amniotic membrane (Rohban et al 2017). Furthermore, depending on 

the tissue of origin, MSCs have shown differential regenerative capabilities. Bone marrow 

derived MSCs possess a higher potential to give rise to chondrocytes and osteoblasts when 

compared to MSCs derived from adipose tissue, who have a higher tendency for capillary 

formation and vasculogenesis in vivo. The variability and extent in regenerative potential of 

MSC populations are still unknown, but it is believed that stem cell niche influence over cell 

fate, genetic variability and/or epigenetic factors are major contributors to the differences seen 

between MSCs derived from different tissues (Rohban et al 2017). 

Since their discovery, MSCs applications and possible translation into clinical therapies has 

steadily risen. According to Squillaro et al. 2016, the number of MSC-based clinical trials as 

nearly doubled in the past three years, pointing to the potential of MSC-based therapeutics in 

cases of injury or disease. 

Interest in MSCs was initially focused on their application on cellular therapies, but research has 

indicated that the potential of MSCs for other applications is due in great part to their 

immunosuppression capability and lack of immunogenicity (Mundra et al, 2013; Wang et al, 

2014). MSCs do not express the class II major histocompatibility complex (MHC) on their cell 

surface, nor do they present the classical co-stimulatory molecules, such as CD80, CD86, and 

CD40, thus making them prime candidates for allogenic transplantation (Mundra et al, 2013) 

The reduced immunogenicity and the tropism of MSC towards wound beds and regions of new 

stroma formation are also of interest for delivery system therapies. MSCs have used as vectors 

for delivery of therapeutic compounds, such as pro-apoptotic agents into tumor micro-

environment (Kolluri et al 2013), or in gene therapy applications (Mundra et al 2013). 

MSC have also been reported to have clinical application in the treatment of immune-mediated 

diseases, such as Type 1 Diabetes. Murine MSC delay the onset of diabetes development when 

transplanted into diabetes prone mice prone (Fiorina et al. 2009). Given their plasticity, MSCs 
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have been transdifferentiated into functional pancreatic β-cells, which could improve the current 

therapeutic approaches for type 1 diabetes. This transdifferentiation of MSC to insulin producing 

cells can be achieved by reprogramming MSCs with adenoviruses expressing pancreatic specific 

transcription factors (Mundra et al, 2013). It is also possible to induce differentiation of MSCs 

into a pancreatic endocrine phenotype by manipulating the culture conditions (Santos et al, 2010) 

In the field of regenerative medicine, MSCs have been employed in clinical trials with the goal 

of regeneration of tissues, such as bone and cartilage, the treatment of disorder such as spinal 

cord injury, Crohn’s disease and graft-versus-host disease. The coculture of MSC with 

endothelial colony forming cells resulted in the formation of stable and perfused microvessels, 

pointing out to a potential role of MSCs in neovasculogenesis (Rohban et al, 2017). In other 

reports, MSCs served as pericytes, wrapping around blood vessels and offering support to their 

structure and stability. 

In our lab, we are interested in understanding whether MSC play a role in the robust regenerative 

response of Acomys cahirinus. Ear MSCs could proliferate and migrate to the wound bed, 

undergo differentiation to one or more cell types present in the regenerated tissue, or have an 

immunoregulatory effect. Differences in the MSC compartment might partially explain the 

different responses to ear punch injury in Acomys cahirinus and Mus musculus. 

 

We therefore attempted to identify MSC in the ear tissue of Acomys and Mus. To do so, we 

harvested cells for these tissues, immunophenotyped them and analyzed their in vitro 

differentiation capacity. 

 

2.2  Materials and Methods 

2.2.1 Husbandry and handling of Acomys cahirinus 

All procedures in laboratory animals were done in accordance with the guidelines by the 

Sociedade Portuguesa de Ciência em Animais de Laboratório (SPCAL). All animals selected for 

experimentation were at approximately 2 months of age for both species.  
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Laboratory animals were kept in plastic cages. Room temperature was kept at 25ºC, with 

automated light-dark cycles of 12 hours of light and 12 hours of dark.  Animals were fed with a 

high protein and fiber diet and fresh fruit, with ad libitum access to bottled water.  

Handling of animals was done with proper hand protection. Animals to be subjected to 

experimentation were anesthetized with isofluorane (Abbott, IsoFlo). Animals were closely 

observed for signs of anesthesia, such as inaction, decrease of respiratory rate, lack of response 

to external stimuli, relaxation of tail, etc. Animals were placed on a clean warm surface, to 

prevent sources of infection and rapid decrease of body temperature leading to hypothermia. 

Before starting any procedure, tail and paw pinch were performed to confirm the animal was 

under a deep state of anesthesia and there was no pain and/or discomfort for the animal. 

All surgery material used was previously sterilized. Post experimentation, animals were placed in 

clean cages with fresh bedding in order to decrease sources of infection and to help recovery. 

 

2.2.2 Tissue Harvesting and Ear Cell Culture Establishment 

Ears were excised with sterile scissors and placed in 70% Et-OH for 30 seconds, in order to clean 

the tissue surface of possible sources of contamination before proceeding for in vitro procedures. 

Ears were then submerged in cold 1X PBS + 2X P/S (Gibco) + 2X Amph β (Gibco, Cat No. 

15290018) in a 50 ml Falcon tube (Sarstedt, 62.547.254) and kept on ice for transportation to the 

Tissue Culture Unit; transportation time was under 5 minutes.  

Samples were placed on a petri dish on top of ice and sectioned into small pieces with a surgical 

blade. The resulting “pulp” was transferred into a 15 ml Falcon tube (Sarstedt, 62.554.502). 

Depending on the tissue volume, 1 to 5 mL of 0.25% Trypsin (Gibco) was added, and the sample 

incubated at 37ºC. After 15 minutes, the suspension was centrifuged at 1000 RPM for 2 minutes, 

supernatant was taken and passed by a 70 µm strainer (VWR, 21008-952) to a 50 ml Falcon tube 

and at least double the volume of warm culture media (DMEM+ 1X GlutaMAX + 20% FBS + 

2X P/S + 2X Amph) was added. After passage of the suspension through the strainer, 2 ml of 

0.25% Trypsin was added to the digested tissue pellet that remained at the bottom of the first 

Falcon tube, and again placed in a water bath for 15 minutes, after which the procedure was 

repeated until all tissue was digested. From the resulting cell suspension, an aliquot of 10 µl was 
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taken and placed on a Neubauer chamber for cell counting. Given that the flow cytometry 

protocol (detailed further down) set the minimum concentration of 1x106 cells per ml of media, if 

concentration was too low, cell suspension was centrifuged at 1000 RPM for 5 minutes, the 

supernatant removed and the cell pellet resuspended in an adequate amount of media. The 

resulting cell suspension was fractioned, with one fraction being seeded unto 10-cm polystyrene 

culture dishes (Sarstedt), and incubated at 37ºC and 5% CO2 for expansion while the second 

fraction was subjected to flow cytometry analysis. 

2.2.3 Flow Cytometry Analysis  

Flow cytometry analysis was performed on two cell populations: cells directly harvested from 

the ear tissue and not yet seeded unto a polystyrene surface (P0), and to the resulting cell 

population after in vitro expansion up to the point of confluency (P1). Flow cytometry analysis 

was performed for both Mus musculus and Acomys cahirinus cells using the same Multi-Color 

Flow cytometry kit (FCK) (R&D Systems, FMC003). Cells were washed in 5 ml of pre-warmed 

1X PBS, centrifuged at 1000 RPM during 5 minutes, and the cell pellet resuspended to a final 

concentration of 1 million cells per ml in FCK resuspension buffer. Aliquots of 1 million cells of 

the resulting cell suspension were transferred to cytometry tubes and 10 µl of an individual 

antibody (CD105, CD29, Sca1 and CD45 respectively) added. Additionally, a tube with no 

addition of antibody (negative control) and addition of all four antibodies were set up. 

Samples where then incubated for 45 minutes at room temperature protected from light. After the 

incubation period, the tubes were centrifuged at 1000 RPM for 5 minutes, supernatant was 

removed and 1X PBS was added. Tubes proceeded for flow cytometry analysis and data 

analyzed with InfinicytTM software. 

 

2.2.4 Differentiation Inducing Media 

All culture media described were prepared in sterile conditions and filtered through a 0.22 µm 

filter. The media compositions were as follows: 

Adipogenesis Induction Medium (AIM) (Baghaban-Eslaminejad, 2013) 

• DMEM + 10% FBS + 1X P/S + 1X Glutamax 
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• 100 nM dexamethasone (Sigma-Aldrich, D4902) 

• 50 µg/ml indomethacin (Sigma-Aldrich, I7378) 

• 500 µM IBMX (TORIS Bioscience, 2845) 

• 10 µg/ml insulin (Sigma-Aldrich, I2643 1001561376) 

Chondrogenesis Induction Medium (CIM) (Newman, 2001) 

• DMEM/Hams’ F12 + Glutamax (1:1) (Sigma-Aldrich, 10565-018) + 5% FBS + 1X P/S 

• 10 µg·ml-1 insulin (Sigma-Aldrich, I2643 1001561376) 

• 10 µg·ml-1 transferin (Sigma-Aldrich, T8158 101316524) 

• 30 nM sodium selenite (Sigma-Aldrich, S5261 1001543979) 

Osteogenesis Induction Medium (OIM) (Herlofsen, 2011) 

• DMEM + 20% FBS + 1X P/S + 1X Glutamax 

• 50 µg·ml-1 sodium ascorbate (Sigma Aldrich, A7631) 

• 10 nM dexamethasone 

• 10 mM β-glicerophosphate (Sigma-Aldrich, G9422) 

 

2.2.5 Cell Culture Staining Procedure 

Prior to staining, cell cultures were washed with pre-warmed 1X PBS, fixed with 1X PBS 4% 

PFA (Sigma-Aldrich, P6148) overnight at 4C, changed to cold 1X PBS and stored at 4ºC until 

staining. 

Oil Red O staining 

A stock solution was prepared by dissolving 60 mg of Oil Red O powder (Sigma-Aldrich, 

O0625), in 20 ml isopropanol, and left rocking for at least 20 minutes. This solution is stable for 

1 year. Working solution was prepared by mixing 3 volumes of the stock solution with 2 

volumes of ddH2O, and filtered through a Whatman paper to eliminate non-dissolved solids. Oil 

Red O working solution was added to the cell culture and left for 20 minutes at RT with gentle 

rocking. Samples were then washed with ddH2O two times and observed under the optical 

microscope. 
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Alcian Blue Staining 

A working solution of 0.5% (w/v) Alcian Blue 8GX (Sigma-Aldrich, A5268) in 0.1 N 

hydrochloric acid (Sigma-Aldrich, 258148) was prepared and filtered through a Whatman paper. 

Cell cultures were stained overnight at 4ºC with gentle rocking. Samples were then washed with 

ddH2O two times and observed under the microscope. 

Alizarin Red Staining 

A working solution of 40 mM Alizarin Red was prepared by dissolving 274 mg of Alizarin Red 

powder (Sigma-Aldrich A5533) in 19 mL of ddH2O. pH was adjusted to 4.2 with 1% ammonium 

hydroxide, ddH2O was then added to a final volume of 20 ml and the solution was filtered 

through a Whatman paper. Samples were stained for 5 minutes and washed two times with 

ddH2O before observation under the microscope. 

 

2.2.6 RNA Extraction 

Total RNA from frozen cell pellets was extracted using the Zymo Research Quick-RNATM 

MiniPrep kit (Zymo Research, R1054). 

 

2.2.7 RT-qPCR Assay and Procedure  

Total RNA (1 ug) was reverse transcribed (resulting in a RT+ cDNA fraction) using an iScript 

cDNA Synthesis Kit (Bio-Rad, 170-8891), following the manufacturer’s instructions. A control 

reaction was set up without reverse transcriptase (RT- cDNA fraction). Reactions were 

conducted in a C1000 Touch Thermal Cycler (Bio-Rad). 

qPCR was performed using SSoFast EvaGreen Supermix (Bio-Rad, 172-5201) in a 96 well plate 

format on a CFX96 Real-Time PCR System (Bio-Rad).   

 

2.3 Results and Discussion 

2.3.1 Establishment of Ear Cell Primary Cultures 
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The protocol that was described in Materials and Methods was the result of successive 

optimizations.  

In an initial protocol (previously developed in our lab), 2 animals were anesthetized with 

isofluorane, both ears were harvested and submerged 30 seconds in 70% ethanol and then 

transferred to cold 1X PBS supplemented with 2X Amph B, on ice. Transport of the samples to 

the tissue culture unit took less than 5 minutes. While inside the laminar flow hood, ears were cut 

into smaller pieces with the aid of a sterile scalpel, and once a pulp was obtained, the tissue was 

transferred to a 15ml Falcon tube. 1X PBS was then added to a final volume of 15 ml to wash the 

tissue. The suspension was centrifuged for 5 min at 1000 RPM, and the supernatant was 

discarded. 0.25% trypsin was added, and the tissue was incubated at 37ºC for 1h. Samples were 

mixed by inversion every 20 minutes. Pre-warmed DMEMc (DMEM + 20% FBS + 2X P/S + 1X 

Glutamax + 1X Amph B) was added to a final volume of 15 ml. The mixture was passed through 

a 70 µm strainer, and the resulting suspension was plated onto a 10 cm polystyrene culture dish 

for culture at 37ºC and 5% CO2.  

The culture dishes were left untouched for a minimal period of 48 hours, and then observed 

under the microscope. Although the cellular output for this protocol was high, there were also 

high levels of cellular debris and very low cell adherence. Surviving cells did not reach 

confluence before exhibiting a senescent phenotype. In an attempt to improve cell viability, we 

decided to optimize the time of digestion and the concentration of trypsin. 

Time of digestion 

We reasoned that during the 1 hour digestion period of the initial protocol, cells that separated 

from tissue early during the digestion would be exposed to trypsin for much longer than those 

cells being digested out of the tissue late during the digestion, perhaps explaining the low 

viability. We adjusted total time of digestion and the period between sample shaking, while 

keeping all other parameters equal. 

In a first experiment consisted in a reduction of the digestion time to 30 minutes, with shaking of 

the sample every 10 minutes. We observed a higher degree of cell adherence and cell division, 

but we obtained lower cell yield due to incomplete digestion of ear tissue.  
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In a second experiment, we extended the total time of digestion back to 1 hour, and digestion 

was done in two parts of 30 minutes. Tissue would be digested during 30 minutes with shaking 

every 10 minutes. After 30 minutes, sample was centrifuged at 1000 RPM for 2 minutes. 

Supernatant was then passed through a 70 µm strainer, and at least double the volume of 

DMEMc was added. The undigested tissue remaining was subjected to another 30 minutes of 

digestion with fresh trypsin.  Both suspensions of single cells were pooled. This procedure 

resulted in a reduction of the debris in cell cultures, but no significant improvement in cell 

adherence and proliferation. 

Concentration of Trypsin 

To optimize trypsin concentration, two experiments were performed: 

1. In a first experiment, trypsin concentration was reduced to 0.05%, while all other 

parameters were kept constant. We observed less single cells in suspension, and an 

increase in cell aggregates and cellular debris. 

2. In a second experiment, we added a 30 minute incubation period on ice after adding 

0.25% trypsin to allow for a better permeation of the tissue by the enzyme before 

transferring to the optimal temperature of digestion (37ºC). We did not observe any 

improvement compared to the standard protocol. 

We then designed and tested the procedure described in Materials and Methods (starting from a 

total of 4 animals). By using 0.25% trypsin for 4 consecutive periods of digestion at 37ºC for 

periods of 15 minutes and harvesting 4 fractions of cells (one at the end of each incubation 

period) we obtained a yield of pooled cells that, when plated on a 10 cm dish demonstrated 

reasonable plating efficiency and growth, with Acomys cells reaching confluency in between 13 

to 15 days, and Mus cells in between 2-3 weeks. 

 

2.3.2 In vitro Differentiation of Ear cell primary cultures 

Primary cultures typically yielded a heterogenous population of cells.  Although ears of both 

species were processed in the same way, we cannot affirm that the resulting cell population were 
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equivalent in identity or characteristics. In particular, we were interested in determining what 

percentage of cells isolated by our procedure were MSC. 

 

2.3.3 Identification of MSC by Flow cytometry 

We characterized the cells for their cell surface markers with a multi-color flow cytometry assay, 

to determine if the initial cell populations that were seeded on the culture dish, passage 0 (P0), 

and the cells that were split after expansion, passage 1 (P1) showed any differences in cell types 

and proportions. 

Results are summarized in Table 1. In Mus, 10.21% of the P0 population had a MSC immune-

phenotype. Further, 39.87% of the cells were CD29+ CD105- Sca1+ CD45-, i.e. had what could 

be called an MSC-like immune-phenotype (lacking only CD105). After a period of proliferation 

(at P1), the MSC population (CD29+ CD105+ Sca1+ CD45-) was reduced to 5.27% of the 

population while the MSC-like population (CD29+ CD105- Sca1+ CD45-) remained at similar 

levels (39.82%). Given that MSC in mouse ear tissue have not been previously characterized, we 

speculated that the population lacking CD105 might still behave as MSC in terms of their 

differentiation potential. 

 

Surface Markers 
Mus (Passage 

0) 
Mus Passage 1) Acomys (Passage 0) 

Other Events 16.74 20.01 6.11 

No Markers 0.87 2.08 73.48 

CD105 + only 0.01 0.01 1.9 

CD29+ only 0.55 0.83 9.23 

Sca1+ only 2.25 5.65 4.39 

CD45+ only 0.17 0.13 0.27 

CD29+  CD105+  Sca1-  CD45- 0.03 0 1.4 

CD29-  CD105+  Sca1+  CD45- 0.03 0.04 0.14 

CD29-  CD105+  Sca1-  CD45+ 0 0 0.42 
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CD29+  CD105-  Sca1+  CD45- 39.87 39.82 0.84 

CD29+  CD105-  Sca1-  CD45+ 0.5 0.66 0.17 

CD29-  CD105-  Sca1+  CD45+ 0.41 0.39 0.04 

CD29+  CD105+  Sca1-  

CD45+ 
0.21 0.19 0.22 

CD29-  CD105+  Sca1+ CD45+ 0.01 0.03 0.09 

CD29+  CD105-  Sca1+ CD45+ 17.04 16.85 0.04 

CD29+  CD105+  Sca1+ CD45- 10.21 5.27 0.96 

CD29+  CD105+  Sca1+ 

CD45+ 
11.11 8.03 0.3 

 

Table 1. Relative proportions of cell populations in percentage for all possible combinations of 

surface marker antigens. The first column displays the percentages of a surface marker or 

combination of surface markers for ear cells of Mus musculus after processing but before seeding 

on to a culture dish, and the second column the percentages for these cell populations after 

seeding and expansion. The third row displays the percentage results for ear cells Acomys 

cahirinus after processing but before seeing on to a culture dish. 

 

In Acomys, we observed strikingly low levels of cells bearing the markers tested in practically all 

possible combinations. Given that the percentage of cells showing the MSC immunophenoptype 

was 0.96%, it was not considered worthwhile to test cells at P1. There are three possible reasons 

for these low numbers.  

One possibility is that Acomys ears do not have MSC bearing the typical immune-phenotype to 

begin with. The second possibility is that the mouse specific antibodies used do not cross-react 

with Acomys and therefore do not label MSC. However, we found 9.23% and 4.39% of cells 

labeled only for CD29 or Sca1, suggesting that these antibodies do cross-react with Acomys 

epitopes (although cross-reaction with a different epitope cannot be ruled out). Even if one 

assumes that these antibodies recognize their intended epitopes, the number of cells with a 

CD29+ Sca1+ phenotype is 0.84%. A third possibility is that Acomys ears do contain cells with 



Regeneration Studies in the African Spiny Mouse  Diogo Prata 

34 
 

MSC-like differentiation capabilities, but their cell surface markers are different from those 

found in mouse MSC. 

Therefore, our results suggest that Mus ears contain relatively low numbers of MSC but were 

inconclusive for Acomys. 

 

2.3.4 Multi-Lineage Differentiation of Adult Ear Primary Cultures 

Regardless of the immunophenotyped profiles found in our cultures, we set out to test the 

differentiation potential of cells present in the ear of Acomys, in comparison to Mus. P1 cells of 

both species were passaged on to 60 cm polystyrene culture dishes (1.5x105 cells per dish) in 

DMEMc media and incubated at 37ºC and 5% CO2 for a period of 24 hours. Once cells had 

attached to the substrate, the media was carefully removed, and specific differentiation media for 

adipocyte, chondrocyte and osteocyte differentiation was added to the plates. One set of plates 

were maintained in DMEMc as a non-differentiation control.  

To test the differentiation potential of cells of a given species (Acomys vs. Mus) for a given fate 

(adipogenic, chondrogenic or osteogenic), or in DMEMc (as a non-differentiation medium 

control), cells were cultured for 5 weeks. Culture media was changed every 3 days. Cultures 

were set up in duplicate, with one complete set reserved to perform staining for adipocytes, 

chondrocytes or osteocytes. The second set was reserved for RNA extraction in order to view 

differences in the genetic expression of differentiation markers. Cultures were harvested at 7, 14, 

21, 28 and 35 days after differentiation media was added to the plates. During this time, cell 

cultures were observed daily in order to check for contamination, monitor possible pH changes 

due to media exhaustion and observe any obvious morphological change in the population. 

 

2.3.5 Analysis of Differentiation using Histological Stains 

Cell differentiation throughout the time course of culture was assessed by morphology, by 

histological staining for specific cell types (adipocytes, chondrocytes and osteocytes). 

Histological stains were quantified by counting stained cells in representative regions of the 

culture. 
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Adipogenesis 

A well established method to evaluate differentiation to adipocytes is Oil Red staining, which 

stains fat cell lipid deposits with an intense red coloring.  

Figure 2. Comparison of adipogenesis in ear cells of Acomys vs Mus, from week 1 through week 

5, cultured in AIM vs. DMEMc, (100x) and stained with Oil Red O.  

 

Results are shown in Figure 2. Oil red staining shows a significantly greater propensity towards 

the adipocyte fate for Mus cells compared to Acomys cells, confirming preliminary results 

obtained previously in our lab (I. Casanellas). The difference was particularly noticeable at 

weeks 4 and 5. Cell cultured in DMEMc did not show staining. 
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Chondrogenesis  

Cartilage is rich in polysaccharides such as glycosaminoglycans, which stain blue with Alcian 

 Blue, a dye typically used to identify cartilaginous tissue. 

 

Figure 3. Comparison of chondrogenesis in ear cells of Acomys vs Mus, from week 1 until 

through week 5, cultured with in CIM vs. DMEMc, (100x) and stained with Alcian Blue. 
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Results are shown in Figure 3. Mus cell cultured in CIM seemed to show faint cytoplasmic blue 

stain at week 1, but the stain did not increase during culture up to week 5. To the contrary, 

Acomys cells cultured in CIM showed a faint level of patchy Alcian Blue staining which 

increased progressively up to week 5. Mus or Acomys cells cultured in DMEMc did not stain 

with Alcian Blue. We conclude that Alcian Blue staining suggests that Acomys ear cultures have 

a greater propensity to differentiate to the chondrocyte fate than Mus cells. 

 

Osteogenesis 

Primary ear cultures for both Acomys and Mus were cultured under osteogenic conditions and 

stained with Alizarin Red S to determine the degree of differentiation to the osteogenic fate over 

the time course of 5 weeks. However, we did not observe Alizarin Red staining or morphological 

differences between species or culture conditions, suggesting that osteogenic cells are not present 

in either species (data not shown). 

In conclusion, staining of differentiated Acomys and Mus cells with Oil Red and Alcian Blue 

suggested that (at least) subpopulations contained in the culture of Mus are capable of adipogenic 

differentiation while subpopulations contained in the culture of Acomys are capable of 

chondrogenic differentiation. 

 

2.3.6 Lineage Specific Marker Expression 

Our initial observations using Oil Red and Alcian Blue stains suggested a that Acomys cultures 

contained a subpopulation capable of differentiating to the chondrogenic fate (while not such 

subpopulation was apparent in Mus), while Mus cultures seemed to contain a higher proportion 

(compared to Acomys) capable of differentiating to the adipogenic fate. We sought to confirm 

these differences by measuring expression of a number of marker genes specific for adipogenesis 

or chondrogenesis during our 5 weeks differentiation protocol. Candidate marker genes are listed 

in Table 3.  

For all these genes, we designed primers that would amplify both Mus and Acomys genes. To do 

so we aligned cDNA sequences from Mus (available in Genebank) with cDNA sequences of 
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Acomys provided by a collaborator (Dr. A. Seifert, University of Kentucky, USA) and designed 

primers that met the following characteristics: a) bind to the sequence of both species (conserved 

binding sites); b) span exon-exon junctions to avoid amplifying any contaminating gDNA 

present in the reverse transcribed RNA sample; c) size between 18 and 22 nucleotides; d) 

amplify amplicons between 70 and 200 nucleotides; d) had similar annealing temperatures 

(approximately 60ºC); e) contained a G or a C in the 3’ position and less than 3 Cs or Gs in the 

last most 3’ bases; f) showed lack of significant self-complementarity to avoid hairpin formation; 

g) lacked significant complementarity between forward and reverse primers to avoid primer-

dimer formation. All primers were designed with Primer3 software and are displayed in Table 2. 

 

Reference Genes Adipogenic 

Target 

Gene 
Sequences 

Target 

Gene 
Sequences 

GADPH 

PP1 

FP: TGGCATTGTGGAAGGACTCA 

RP: CAGGGATGATGTTCTGGGCA 

LPL 

PP1 

FP: CAACCACAGCAGCAAGACC 

RP: CACCAGCTTGGTGTAGCCAG 

GADPH 

PP2 

FP: GGCATGGCCTTCCGTGTT 

RP: CAGTGGGCCCTCAGATGC 

LPL 

PP2 

FP: CTGGCTACACCAAGCTGGTG 

RP: GTTAGGCCCAGCTGGATCC 

 

Eif1α 

PP1 

FP: GTGACATGTTAACACTTTGTGCT 

RP: CAGAACTGCTGACACAAAACAC 

LPL 

PP3 

FP: CACGGAGGTGGACATCGGAG 

RP: CTTTCCCTTCTGCAGATGAG 

 

Eif1α 

PP2 

FP: TGGTGTTTAAAGAGGATGGGCA 

RP: 

AATGTCCGAGGTATTTATCCAAAC 

Pparg 

PP1 

FP: GTCAGTACTGTCGGTTTCAG 

RP: ATCAGCAGACTCTGGGTTCA 

 

β-Actin 

PP1 

FP: CCTGTGCTGCTCACCGAG 

RP: ATGGCTACGTACATGGCTGG 

Pparg 

PP2 

FP: GTCAGTACTGTCGGTTTCAG 

RP: TGGGTTCAGCTGGTCGATA 

 

β-Actin 

PP2 

FP: GGCTCCTAGCACCATGAAGA 

RP: CTGGAAGGTGGACAGTGAGG 

FABP4 

PP1 

FP: CACCATCCGGTCAGAGAGTAC 

RP: ACCACCAGCTTGTCACCATC 

 

 
FABP4 

PP2 

FP: CACCATCCGGTCAGAGAGTAC 

RP: TGGTCGACTTTCCATCCCAC 

 

Chondrogenic 

Target 

Gene 
Sequences 

Col2a1 

PP1 

FP: CTCCTGGTACTGATGGTCCC 

RP: CTCTCACCAGGCATTCCC 

 

Sox9 

PP1 

FP: CTGCAAGCCGACTCCCC 

RP: GTTTTGGGAGTGGTGGGTGG 

 

Runx3 

PP1 

FP: TCAGCAGCCAGGCCCA 

RP: CTCTGCAGCGTAGGGAAGGA 
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Adamts5 

PP1 

FP: GCAAATGGCAGCACCAA 

RP: CTGCCATTCCCAGGGTG 

 

 

Table 2. Primer pairs designed for RT-qPCR (FP: forward primer; RP: reverse primer) 

 

2.3.7 Validation of Primer Pairs 

Care was taken to validate all primer pairs designed by determining their efficiency and 

specificity. This was done by testing primers pairs on tenfold serial dilutions of cDNA produced 

by reverse transcription of RNA extracted from tissues that are known to express the marker 

genes. Three to four primer pairs per gene were tested and only primer pairs with efficiencies 

between 90% and 110%, an R2 of 0.99 and a single melting curve peak were selected for use. 

Details of primer validation can be found in Appendix I. 

The RNA used for cDNA synthesis for the validation of primer pairs had a RQI value of 7 or 

more for all instances. Primer pairs targeting reference genes were validated in both Acomys and 

Mus cDNA. Primers that target genes specific for the adipogenic lineage were tested using Mus 

cDNA, synthesized from RNA extracted from adipose tissue, and primers targeting genes 

specific for the chondrogenic lineage were tested using ATDC5 cell line Total RNA. The results 

are shown in Table 3.  

 

 

 

Target Gene 
Efficiency 

(%) 
Specific? R2 

Slope 

(Cq/Log(SQ)) 

NRT 

and 

NTC 

Usable? 

R
ef

er
en

ce
 

G
en

es
 

GADPH PP2 96.2 Yes 0.999 3.415 Clear Yes 

Eif1α PP1 97.4 Yes 0.996 3.385 Clear Yes 

Actinβ PP1 109.1 Yes 0.998 3.124 Clear Yes 
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A
d

ip
o
g
en

ic
 G

en
es

 
LPL PP2 99.7 Yes 0.965 3.329 Clear Yes 

PPARG PP1 158.1.0 Yes 0.880 2.071 Clear No 

PPARG PP2 107.7 Yes 0.955 3.151 Clear Yes 

FABP4 PP1 109.7 Yes 0.994 3.005 Clear Yes 

C
h

o
n

d
ro

g
en

ic
 

G
en

es
 

Sox9 PP1 338.5 Yes 0.626 1.558 Clear No 

Sox9 PP2 98.9 No 0.308 0.513 Clear No 

Col2α1 PP1 100,4 Yes 0.926 3.313 Clear No 

Col2α1 PP2 103.4 Yes 0.985 3.243 Clear Yes 

 

Table 3. Results after performing validation assay for primer pairs designed for reference genes, 

adipogenic genes, chondrogenic genes and osteogenic genes. Primer pairs that had an efficiency 

value superior to 110% were discard. Osteogenic gene primer pairs were not tested due to lack of 

suitable cDNA. 

 

2.3.8 Gene Expression Analysis 

Adipogenesis 

In order to measure adipogenic gene expression of cell populations undergoing differentiation in 

AIM, we selected the specific markers Peroxisome Proliferator Activated Receptor Gamma  

(PPARG) and Lipoprotein Lipase (LPL), and used Glyceraldehyde 3-phosphate dehydrogenase 

(GADPH) and Eukaryotic translation initiation factor 1A (Eif1α) as housekeeping genes and did 

a qPCR analysis. 

Results are shown in Figure 5 and Figure 6. The data for genetic expression has shown that cells 

of both Acomys and Mus when treated with AIM have upregulation of adipocyte specific genes. 

Mus displays an elevation in expression of PPARG and LPL at week 3, with these levels 

decreasing through weeks 4 to 5. The same behavior is seen in Acomys, with expression levels 
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increasing at week 3 followed by a subsequent decrease, but relatively to Mus the levels of these 

genes are lower in Acomys. These observations are in line with our histological stain results. 

 

 

 

 

Figure 4. Relative Quantity (ΔCq) analysis for LPL in Acomys and Mus Adipogenic Cell 

Cultures (W1: 7 days; W2: 14 days; W3: 21 days; W4: 28 days; W5: 35 days) 
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Figure 5. Relative Quantity (ΔCq) analysis for PPARG in Acomys and Mus Adipogenic Cell 

Cultures (W1: 7 days; W2: 14 days; W3: 21 days; W4: 28 days; W5: 35 days) 

 

Chondrogenesis 

Under the same parameters as the previous analysis, we constructed a genetic expression profile 

over time for the cells that underwent chondrogenesis, with the specific marker Collagen Type II 

alpha 1 chain (Col2α1), and used GADPH and Eif1a as housekeeping genes. 

For the chondrogenic expression profile, seen in Figure 7, we observed that Mus does not display 

upregulation of Col2α1 throughout the 5 weeks, while Acomys shows a small increase in the 

target gene marker levels at week 3, followed massive upregulation of expression levels at week 

5.  
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Figure 6. Relative Quantity (ΔCq) analysis for Col2α1 in Acomys and Mus Chondrogenic Cell 

Cultures (W1: 7 days; W2: 14 days; W3: 21 days; W4: 28 days; W5: 35 days) 

 

2.4 Conclusions 

We set out to identify whether MSC are present in the ears of Mus and Acomys, to characterize 

them, and to determine whether the behavior of these MSC compartments had any bearing on the 

different reaction to wounding in these 2 species: regeneration in Acomys vs. fibrotic scarring in 

Mus. 

MSCs were originally isolated from bone marrow by selective plating on plastic substrates; in 

bone marrow, this method results in cultures highly enriched for MSC. Plating on plastic remains 

the standard for MSC isolation. When we applied this method to cells harvested from ears of 

Mus and Acomys, we were able to obtain proliferating populations of fibroblast like cells. 

Acomys cells proliferated faster that Mus cells, and the morphology of the cells differed 

somewhat between both species. 

We sought to characterize the immunophenotype of the cell we had isolated. Using a commercial 

kit designed to detect the MSC in mice (CD29+, CD105+, Sca1+ and CD45-, we found that 

approximately 10% of the Mus cell population had a MSC immunophenotype. Therefore, by 

these criteria, Mus ear contains a subpopulation of MSCs. We assume the rest of the cells to be 

fibroblast like, with a relatively large population (approximately 40%) bearing Sca1+ and 

CD29+ markers.  
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The use of this commercial kit on Acomys cells had the uncertainty of the possibility that the 

antibodies raised against Mus markers would not react against the same markers in Acomys. 

Indeed, our FACS analysis labeled very few cells of Acomys with any combination of antibodies. 

However, we did detect Acomys cells that were marked with either Sca1 or CD29, suggesting 

that these antibodies may be recognizing their intended epitopes in Acomys. However, very few 

cells (0.84%) had both markers. It therefore follows that there is no population bearing the MSC 

immunophenotype in Acomys. However, it is possible that the Sca1 and CD29 antibodies (raised 

against and validated for Mus epitopes) are cross-reacting with other, unknown epitopes in 

Acomys. In this case, our immunophenotyping results in Acomys would be inconclusive.  

While there is a generally accepted immunophenotype for MSC, this population is operationally 

defined by their ability to differentiate into adipocytes, chondrocytes and osteocytes. Considering 

the possibility that Mus or Acomys ears could contain cells with multilineage differentiation 

potential regardless of whether their immunophenotype conforms to the accepted profile, we 

sought to test and compare the ability of Mus and Acomys ear cells to differentiate to these three 

cell fates. 

Our in vitro differentiation experiments show that Mus and Acomys ear cell populations have 

different differentiation biases. Mus cells (but not Acomys cells) tend to differentiate to the 

adipocyte lineage when cultured in AIM, while Acomys cells (but not Mus cells) tend to 

differentiate to the chondrocyte lineage when cultured in CIM. These results were suggested first 

by analyzing the differentiated culture using commonly used histological stains (Oil Red and 

Alcian Blue). No staining for osteocytes (Alizarin Red) was detected for either species when 

cultured in OIM. The level of staining observed with Oil Red and Alcian Blue after 5 weeks of 

differentiation was relatively weak, suggesting that only a fraction of the cells in the starting 

culture were differentiating.  It would be interesting to see the differentiation potential of a Mus 

populations sorted for the MSC immunophenotype in order to test and confirm whether this 

population has a strong MSC like differentiation behavior.  In any case, our results were by 

expression analysis of adipocyte (LPL and PPARG) and chondrocyte (Col2α1) markers. 

Adipocyte markers were upregulated at later time points in Mus compared to Acomys when 

cultured in AIM. There was a slight discrepancy in our staining vs. expression analysis results in 

that maximum Oil Red staining was seen at 5 weeks, while maximum expression of adipocyte 
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markers was seen at week 3 and decreased thereafter. Similarly, the chondrocyte marker 

Col2α1was upregulated in week 3 of differentiation in Acomys cells, but not in Mus cells, when 

cells were cultured in CIM. In this case, maximum staining and maximum marker expression 

coincided at 5 weeks of culture in CIM. 

Overall, we conclude that  

1) a subpopulation of cells with the canonical MSC immunophenotype exists in Mus ears. 

However, we did not test whether this population is can indeed differentiate to the 3 fates 

(adipogenic, chondrogenic and osteogenic) required to confirm that they are indeed MSC. 

2) We cannot confirm or rule out whether there is a population bearing the canonical MSC 

immunophenotype in Acomys ears. 

3) Cultures obtained from Mus ears contain cells capable of differentiating into adipocytes. 

4) Cultures obtained from Acomys ears contain cells capable of differentiating into 

chondrocytes. This observation is completely consistent with the confirmed ability of 

Acomys to regenerated cartilage in response to wounding. 
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Chapter 3. 

Is Telomerase involved in Ear Regeneration of Acomys cahirinus? 

3.1 Introduction 

In species with linear chromosomes, DNA ends are protected from genomic instability by 

telomeres. Telomeres are long complex ribonucleoprotein structures formed by extensive 

TACGGG hexameric repeats. In order to divide, a cell Must first replicate its entire genome. 

Organisms with linear chromosomes face the problem of how to replicate chromosome ends. 

During replication, DNA polymerase catalyzes the addition of a nucleotide to the 3’OH of the 

preceding nucleotide in a 5’ to 3’ direction using the complementary DNA strand as a template. 

Because DNA replication of the lagging strand uses Okazaki fragments to provide 3’OH termini, 

the replication machinery cannot replicate the 3’ end of the chromosome, leaving a 3’ single 

strand overhang at the end of the chromosome that is degraded. As a result, the chromosome is 

shortened by an average of 50 kb per cycle. This is known as the end-replication problem. The 

observation that normal, differentiated cells in culture enter replicative senescence after a 

characteristic number of cell divisions (Hayflick limit) (Calado et. al. 2013, Shay et. al. 2000), a 

phenomenon that is explained by telomeres shortening to the point that chromosome stability can 

no longer be sustained. Telomere attrition can result in chromosomal instability and aneuploidy, 

which can contribute to the development of cancer if tumor suppressor alleles are lost and/or 

generation of fusion genes with altered functions (Li et. al. 2009). 

In most adult somatic cells undergoing continuous replication, telomere shortening is 

unavoidable. However, in certain cell types, such as stem/progenitor cells and some cancer cells, 

telomere length is maintained due to upregulation of expression of the enzyme telomerase. 

Telomerase is a holoenzyme formed by two main components, the telomerase reverse 

transcriptase (TERT, encoded by the gene Tert (Blasco et al 2005), and an RNA component 

(TERC).  

Telomerase catalyzes telomere extension; TERC provides a template for hexameric repeats. 

Telomerase recognizes the 3-OH group of the G-band overhang as a binding region, and it is 

from there that it initiates de novo addition of TCAGGG repeats, thus elongating chromosome 

ends (Blasco et al 2005). Telomeres also prevent the double strand break repair machinery from 
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recognizing DNA chromosome ends as breaks (Li et al 2009, Flores et al 2006). The telomere 

maintenance system, or more accurately telomerase, have been proposed to play a major role in 

organism ageing, cancer development and, of more relevance for our line of work, in 

regeneration events (REF). 

Tert gene up-regulation is essential in proliferating cell populations, and it has been observed 

that in species with strong regenerative capability, such as in the zebrafish (Danio rerio), there is 

a constitutively abundant telomerase activity in somatic tissues from embryos to aged adults. In 

many invertebrate and vertebrate aquatic species that show increased regenerative capacity, such 

as the Japanese medaka fish (Oryzias latipes), a well characterized model for studies of the 

telomere maintenance system there is an upregulation of TERT during regeneration events 

(Anchelin et al 2010, Elmore et al 2008).  

Zebrafish regenerates many of its tissues and structures after physical injury, and the process 

results in a functional structure without evidence of fibrotic scar. This regenerative event 

proceeds through a transient blastema stage, a hallmark of epimorphic regeneration. It has been 

show in Zebrafish (danio rerio) that TERT is upregulated during tissue regeneration events 

(Anchelin et al 2010, Elmore et al 2008). 

The importance of telomerase for regeneration is not limited to skin tissue, but other vital organs, 

such as heart, where reports indicate that after heart injury, absence of telomerase activity 

drastically impairs proliferation, there is a lack of apoptosis protection and cells display a 

senescent phenotype (Flores et al 2015). Another study in mice heart regeneration determined 

that telomere shortening negatively impacts cardiomyocyte cell-cycle arrest, and results in 

impaired repair of heart lesions (Aix et al 2016). In this study, it was seen that telomere 

shortening results in up-regulation of cell-cycle inhibitor p21, and inhibition of cardiomyocyte 

proliferation. In contrast, mice with a knockout for p21 (p21-/-) displayed robust proliferation of 

cardiomyocytes, whilst mice with the RNA template knockout (Terc-/-) showed severe telomere 

shortening, shorter lifespans, upregulation of p21 and significantly lower proliferation of 

cardiomyocytes when compared to wild-type mice. These findings highlight an important role of 

the telomere maintenance system in injury response events in mammalian heart (Aix et al 2016). 
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We set out to answer a simple question: is TERT upregulated during regeneration of full 

thickness ear pina wounds in Acomys cahirinus? 

3.2 Materials and Methods 

3.2.1 Ear Wound Regeneration Assay 

In order to obtain tissue samples representative of key points in the regenerative process, animals 

we anesthetized with isofluorane, and 4 mm full thickness circular ear wounds were made 

bilaterally to Acomys or Mus individuals using a Biopsy Punch (Miltex 33-34). The resulting ear 

pinna tissue disc was flash frozen and stored at -80C, or, alternatively, processed immediately. 

This sample provided TERT expression levels in uninjured tissue. 

Animals were kept in isolated clean boxes and allowed to regenerate (Acomys) or heal (Mus) 

their wounds. After 30 days, Acomys wounds had formed a clearly visible blastema, while Mus 

wounds had healed the borders of their wounds with fibrotic scarring.  

A group of animals for each species were chosen randomly, anesthetized and their ears 

harvested. These samples were further microdisected into 2 compartments called ‘ring’ and 

‘rest’. A 1 mm thick circular ring of tissue encompassing the blastema (in Acomys) or the fibrotic 

scar (in Mus) was harvested by microdissection, flash frozen and stored at -80C (‘ring’), or, 

alternatively, processed immediately. These samples provided a measure of TERT levels in the 

blastema of during Acomys regeneration and in the corresponding region in Mus ears (which 

presented scarred tissue) at the 30 day after injury time-point. The remaining ear tissue (after the 

‘ring’ tissue was microdissected was also harvested (‘rest) and were used to measure TERT 

levels in tissue neighboring the wound but not itself undergoing regeneration or scarring.  

A second group of animals were allowed to continue regenerating (Acomys) until the wound was 

completely closed (approximately 60 days after injury). At this time, ears were harvested and 

further microdisected into 2 compartments called ‘regenerated disc’ and ‘rest’. The regenerated 

disc consisted in the 4-mm diameter circle of regenerated tissue corresponding to the original 

disc cut to create the initial wound. The remaining ear was called ‘rest’. Both samples were flash 

frozen and stored at -80C.  
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We did not collect a 60 day time point equivalent for Mus, as, due to the fact that Mus does not 

regenerate and healing is complete at 30 days post-injury, the resulting compartment would be 

similar to those already obtained at 30 days post-injury. 

 

3.2.2 Tissue Harvest and RNA Extraction 

Final optimized protocol is extensively described in the Results and Discussion section, under 

“Optimization of a Total RNA Extraction protocol from tissues of Acomys cahirinus” 

 

3.2.3 RT-qPCR  

Total RNA (500 µg) was reverse transcribed (resulting in a RT+ cDNA fraction) using an iScript 

cDNA Synthesis Kit (Bio-Rad, 170-8891), following the manufacturer’s instructions. A control 

reaction was set up without reverse transcriptase (RT- cDNA fraction). Reactions were 

conducted in a C1000 Touch Thermal Cycler (Bio-Rad). Quantitative PCR was performed using 

SSoFast EvaGreen Supermix (Bio-Rad, 172-5201) in a 96 well plate format on a CFX96 Real-

Time PCR System (Bio-Rad). 

 

3.3 Results and Discussion 

3.3.1 Optimization of a Total RNA Extraction from Ear Tissue 

In an initial attempt at total RNA extraction from Acomys tissue, two commercial column kits 

were used: NZYTech (NZY Total RNA Isolation kit, MB13402) and Qiagen (RNeasy Mini Kit, 

Cat. No. 74104). 

Prior to initiating the column kit extraction protocol, fresh tissue or frozen tissue was placed in a 

petri dish, on ice, and cut into a ‘pulp’ using sterile scalpel blades.  The tissue was transferred 

into a DEPC-treated Eppendorf and the lysis buffer from the column kit was added, with volume 

varying depending on protocol and volume of tissue and manufacturers instruction were 

followed exactly. An aliquot of 2 µl was taken to analyze RNA quality and quantity, and the 

remainder of the RNA extract was stored at -80ºC. These procedures resulted in 
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An average RNA concentration of 300 ng/µl and an acceptable absorbance ratio A260/A280 (1.9 

- 2.2), measured by NanoDrop (Thermo Scientific 2000c), subsequent analysis by Experion 

(Bio-Rad, #700-7000) showed that the samples were very degraded, with RQI varying between 

4.0 and 5.0. 

Given that the acceptable RQI value for genetic expression analysis by RT-qPCR is of 7.0 or 

above, we set out to optimize a protocol for the total extraction of RNA from Acomys tissue. We 

therefore varied a number of parameters of the extraction protocol. 

Initially we reasoned that because ear tissue is highly fibrous, incomplete disruption of the tissue 

prior to addition of the extraction buffer might be resulting in incomplete neutralization of 

endogenous RNAses and therefore, RNA degradation. 

Several procedures were devised and tested: 

Procedure 1: Mechanical maceration of the tissue with scalpels followed by proteinase K 

digestion during 30 minutes. 

Procedure 2: Freezing of tissue with liquid nitrogen, mechanical maceration with mortar and 

pestle, followed by proteinase K digestion for 30 minutes. 

Procedure 3: Mechanical maceration of the tissue with scalpels, followed by further maceration 

using a Mini Potter Tissue Grinder 0,1 mL (GPE Scientific 20404F), while tissue is submerged 

in the column kit’s lysis buffer. 

Procedure 4: Mechanical maceration of the tissue with scalpel blades followed by NZYol 

(nzytech, Cat No. MB18501) RNA extraction (a phenol based extraction followed by 

precipitation with isopropanol). 

Procedures 1, 2 and 3 resulted in complete digestion of the tissue but high levels of RNA 

degradation. We concluded that prolonged incubation in proteinase K, or use of a Mini Potter 

Tissue Grinder 0,1 mL (GPE Scientific 20404F), while efficiently digesting the tissue, allowed 

an ample window for RNAses to act. 

Procedure 4, a phenol based RNA extraction method, was the only method that resulted in a 

larger yield of RNA with better quality. However, Experion analysis indicated that RIN values (5 

to 6.5), while improved, were still relatively low. Furthermore, initial RT-qPCR assays using 
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these samples indicated gDNA contamination. Procedure 4 was therefore modified into 

Procedure 5. 

Procedure 5: Mechanical maceration of the tissue using scalpel blades, followed by phenol 

extraction (NZYol). However, the aqueous phase was not precipitated with isopropanol as in 

Procedure 4, but loaded onto a RNA affinity binding column (Quick-RNA MiniPrep, Cat. No. 

R1054). DNAse I solution was added to the column, after which the column was washed and 

RNA eluted. 

Procedure 5 resolved our issues with gDNA contamination, and provided RQI levels > 6 in 

Experion analysis, which was closer (although did not meet) the level of RQI = 7 recommended 

by MIQUE. 

Procedure 6: We therefore developed a final procedure based on a newly acquired equipment 

called a Bullet Blender. This procedure involves putting the sample in a tube with a phenol based 

extraction buffer and a small number of solid beads that are machine vibrates at high speed, 

resulting in quick and thorough homogenization of the samples and reducing time of extraction. 

Both metallic and ceramic beads were tested. Ceramic beads proved preferable to metallic beads 

in several ways: a) they disrupted the tissue more efficiently; b) leftover sample ‘sticked’ less to 

ceramic beads than metallic beads and c) the aqueous phase was translucent (as opposed to 

yellowish when metallic beads were used).  The aqueous phase was subject to isopropanol 

precipitation and the RNA resuspended in DEPc treated water. Finally, DNAse I was added to 

the preparation, incubated at 37C for 10 minutes and inactivated by adding 0.1 mM EDTA and 

incubating at 75C FOR 15 minutes. This procedure consistently gave good yields and RIN 

values between 6.6 and 8.7.  
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3.3.2 Validation of Primer Pairs 

Four primer pairs designed to detect TERT expression in both Mus and Acomys were designed 

using the same criteria as in Chapter 2 (see Table 4). 

 

Table 4. Primer pairs for RT-qPCR (FP: forward primer; RP: reverse primer) 

 

Primer pairs were validated following the methodology described in Chapter 2 using total RNA 

samples extracted from mouse ES cells, known to express relatively high levels of TERT. 

Results are shown on in Figure 8 and Table 5. 

Target Gene Sequences 

TERT PP1 
FP: GTCTCTGGGGTACCAGGCA 

RP: GATCCTCTCCCTCAGACGGT 

TERT PP2 
FP:  GTAAGAGTGTGTGGAGCAAGC 

RP: GCAGATGGGCATGGCTGG 

TERT PP3 
FP: GGGCCTATGATGCCATCCC 

RP: ATGGCTGGAGGTCAGAGAGG 

TERT PP4 
FP: CCACCCTCTCTGACCTCCAG 

RP: GCAGGAAGAAGTCAAACAGGC 

TERT PP5 
FP: CCTGTTTGACTTCTTCCTGCAC 

RP: GGAAGTCATCAACAAAACGTAAAAG 
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Figure 7. Red lines represent amplification signal for TERT on mESC RNA. 

 

Target Gene 
Efficiency 

(%) 
Specific? R2 

Slope 

(Cq/Log(SQ)) 

NRT/RT- 

and NTC 
Usable? 

TERT-PP1 101.5 Yes 0.993  Clean Yes 

TERT-PP2 Discarded: unacceptable level of amplification of NRT No 

TERT-PP3 179.7 Yes 0.990  Clean No 

TERT-PP4 97.3 Yes 0.980  Clean Yes 

TERT-PP5 Not Tested 

 

Table 5. Results of the validation of primer pairs for TERT on Mus mESC RNA. 

(NRT/RT-: No Reverse Transcription; NTC: No template Control) 

 

3.3.3 Gene Expression Analysis 

We set out to perform RT-qPCR to characterize TERT expression in response to wounding in 

Acomys versus Mus. We used GADPH and Eif1α as our reference genes, and mESC RNA as a 

TERT expression positive control. 

Using RNA obtained with Procedure 6, we were unable to see any amplification signal for our 

target gene (TERT). Notably, we did get signal for mouse embryonic stem cell (mESC) cDNA 
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included in the plate as a positive control, showing that the lack of signal in our samples was not 

due to a faulty qPCR technique (Figure 9). Unexpectedly, however, we did not amplify any 

signal from or our reference genes (GADPH and Eif1a) on any of the samples from either 

species. 

 

 

Figure 8. RT-qPCR results for TERT amplification signal on Acomys compartment samples and 

mESc control sample. Blue line is relative to GADPH amplification signal for mESC. Purple 

amplification line is GADPH signal in our sample. Red line is the amplification signal for TERT. 

 

We hypothesized that there could be some unidentified inhibitor agent present in our samples. In 

order to test this, we set up an experiment in which we used two different samples (a and b). 

Sample a) was our hypothetic, inhibitor containing RNA sample from which we could not 

amplify signal with our reference genes. Sample b) was a previously generated ‘positive control’ 

RNA sample from which we had successfully amplified signal in the past for our reference genes 

(in particular, RNA obtained from cell line ATDC5, which amplified both GADPH and Eif1a 

efficiently). 

We set up an qPCR experiment for GADPH for three samples: 1) our ‘inhibited’ RNA, 2) the 

‘positive control’ RNA and 3) a 1:1 mixture of both samples. We reasoned that if an inhibitor 
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was present in sample 1, the result obtained in sample 3 would be informative. Amplification of 

signal in sample 3 would suggest that no inhibitor was present. On the contrary, lack of 

amplification in sample 3 would indeed suggest the presence of an inhibitor in sample 1. 

Results are shown in Figure 9. GADPH was clearly amplified in sample 3), albeit with a slightly 

higher Cq, reflecting the 1:1 dilution of sample 1 to sample 3. Therefore, we conclude that our 

samples do not contain a PCR inhibitor. 

Figure 9. A) Amplification levels of GADPH for sample 1), orange curves are relative to sample 

extracted ceramic beads, while blue are for RNA extracted with steel beads; B) Amplification 

signal for GADPH on mESC; C) Purple curves represent GADH amplification level for a 1:1 

mixture of RNA from mESC and RNA obtained with the ceramic bead maceration. Green curves 

represent amplification of TERT in a 1:1 mixture of RNA from mESC and RNA obtained with 

steel bead maceration. 
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These results led us to discard the presence of inhibiting agents in our RNA extracts since signal 

was observed for both mixtures of working cDNA with RNA from the metallic bead extract and 

the mixture of working cDNA and ceramic bead RNA extract. 

 

3.4 Conclusions 

Despite intense effort and repeated attempts, we were unable to measure expression of TERT by 

RT-qPCR in ear tissues of Mus and Acomys subject to wounds and allowed to heal for 30 days 

(Mus) or regenerate for 60 days (Acomys). Ultimately, we do not have a satisfactory explanation 

for this, but a number of points are worth highlighting.  

First, we cannot interpret our lack of signal to be due to the fact that TERT is not expressed at all 

in uninjured, regenerating, healed or regenerated tissue due to the fact that signal was not 

obtained either when using primers against housekeeping genes such as GADPH, ACTB and 

EIF1a, which can be reasonably be expected to be expressed at high levels in ear tissue. 

Therefore, the question of whether TERT is (or not) expressed in ear tissue remains unanswered. 

Second, the lack of qPCR signal is not due to faulty technical execution of the qPCR procedure, 

as all primer validation experiments and all measurements carried out in Chapter 2 were 

successful.  

Third, failure to detect TERT in ear tissue was not due to an unexpected problem in a particular 

experiment. The measurement was attempted multiple times with several RNA preparations 

performed independently. In particular, in our attempt to detect TERT in ear tissue, we added 

cDNA obtained from mouse ES cells to our qPCR plates as a positive control and obtained good 

amplification. 

Third, the results are not due to poorly designed TERT primers, as these primers were 

successfully used to detect TERT expression and validated in mouse ES cells. The same can be 

said of the primers used to detect expression of housekeeping genes, which were the same used 

successfully in Chapter 2. 

We suspect that the problem lies in the quality of the RNA extract obtained from ear tissue. As 

described above, we invested significant time and effort in fine-tunning a RNA extraction 
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procedure. Obtaining good quality RNA proved unexpectedly difficult. Procedures that work in 

many tissues, namely mechanical dissagregation followed by phenol based extraction or 

commercial column based kits resulted in low yields, poor integrity and variable reproducibility. 

Introduction of a bead basher based technique improved matters in terms of yield and integrity, 

but RIN values remained over 6 but under 7.  Attempts to determine if the problem was due to an 

unidentified PCR inhibitor present in the RNA extract were equally inconclusive. Consultation 

with a collaborating lab (Dr. A. Seifert, University of Kentucky, USA) who has successfully 

done qPCR on ear tissue did not reveal what could be the problem. Seifert’s group utilizes a bead 

bashing protocol very similar to the one we developed.  This technical problem remains 

unsolved. 

Interestingly, while this work was being executed, Dr. Seifert’s group completed an RNAseq 

transcriptional profile of regenerating ear of Acomys with healing ear of Mus at 5 day intervals 

up to 20 days post-injury. In their data set, TERT expression (see Figure 11) was found at low 

levels in uninjured tissue and moderately upregulated in both species after wounding.  
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Figure 10. Preliminary data relative to TERT Expression on Acomys ear tissue post-injury. Data 

provided to us by Ashley Seifert, University of Kentucky, USA (D5: day 5; D10: day 10; D15: 

day 15; D20: day 20). 

 

Levels were slightly higher in Acomys than Mus for all time points, particularly at day 5 post-

injury, where TERT in Acomys was increased 1.6x compared to day 0, while Mus was 

upregulated 1.03x. The low levels of expression did not allow for statistical analysis of the 

differences. This result suggests several things: 

1) TERT expression is low in uninjured tissue. This level of expression might be general 

transcriptional noise throughout the entire tissue, or, alternatively, suggest that there is 

high level of expression in a small number of cells. Given that TERT expression is a 

hallmark of high potency stem cells, this is consistent with the idea of a small population 

of stem cells residing in uninjured tissue. 

2) Compared with expression levels at day 0, TERT expression seems to be upregulated 

upon wounding in both species. At day 5, TERT levels seem to be higher in Acomys than 

Mus. The fold increase (1.6x in Acomys and 1.03x in Mus is robust enough to believe that 

the increase is significant. It is not clear that the levels are statistically different between 
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Mus and Acomys. If indeed the observed upregulation reflects a mobilization of a small 

stem cell compartment, said mobilization occurs in both species. 

3) Levels of TERT continue upregulated throughout days 10, 15 and 20. Levels between 

Mus and Acomys seem similar. Therefore, there is no correlation of the behavior of TERT 

expression with regeneration in Acomys vs fibrotic scarring in Mus. 

Overall, the transcriptomic profiling results obtained by Seifert’s group seem to suggest that the 

proliferation required to regenerate missing tissue in Acomys is not dependent on a massive 

upregulation of TERT, as observed in the zebrafish system. TERT expression is high in ES cells, 

induced pluripotent stem cells, spermatogonial stem cells (or somatic stem cells in general). If it 

is accepted that TERT is a marker of highly potent cells, then we would conclude that 

regeneration in Acomys is not based on the mobilization of an endogenous compartment of 

quiescent stem cells of high potency. If one hypothesizes that Acomys regeneration involves de-

differentiation, said de-differentiation does not result in the creation of a cell compartment with 

high potency. It would be interesting to solve our qPCR technical problems to complete our 

measurement and compare our results with Seifert’s transcriptional profile for TERT. Another 

interesting avenue would be to detect TERT by immunohistochemistry to determine the 

existence of possible ‘clusters’ of TERT positive cells in particular regions or niches of the 

tissue, and analyze their behavior in response to wounding. 
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Annexes 

Supplementary Figures 

 

Supplementary Figure 1. Postnatal development of Acomys cahirinus.  a) Two day old pup; b) 

1 week old pup; c) 4 week old juvenile; d) 3 month old adult 

 

Validation of Primer Pairs 

In order to guarantee that data relative to genetic expression is significant, that is not 

influenced by background, and specific to the genes targeted by primers, the primers were 

assayed in order to determine their efficiency and specificity. This was done by testing primers 

pairs on cDNA produced by reverse transcription of RNA extracted from tissues that are known 

to express the genes targeted. RNA extraction was meticulously done in order to obtain pure 

Total RNA, and subsequently was treated with an in-solution DNase I digestion step (Materials 

and Methods) in order to guarantee no genomic contamination. 

Primer pair validation takes into account two main parameters, primer pair efficiency and 

specificity. The efficiency parameter relates to the PCR reaction in itself. Theoretically, a PCR 

reaction would have an efficiency of 100%, with DNA template being exactly duplicated in each 
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cycle of the reaction. However, in practice, this may not be the case, and efficiency Must be 

assayed. Specificity of primer pairs is determined true melting curve (automatically given by 

CFX-96 software), the curve is a result of fluorescence readings for given points, in gradually 

higher temperature cycles. 

Primer pairs that have an efficiency within the 90-110% interval and display only one 

peak in melt curve analysis are regarded as validated and can be used for RT-qPCR assays. 

In order to analyze these parameters for a given primer pair, an RT-qPCR is done. For 

that, the cDNA resultant of reverse transcription is serially diluted by a 10-fold factor so that a 

plot may be drawn and efficiency calculated. The inputs, in 8 µl, were as follows: 

Diltutions 1º 2º 3º 4º 

cDNA input concentration (ng/µl) 1,25 0,125 0,0125 0,00125 

Total cDNA per well (ng) 10 1 0,1 0,001 

 

 The RNA used for cDNA synthesis for the validation of primer pairs had an RQI value of 

7 or more for all instances. 

 

 


