
Tiago Miguel Ferreira da Costa

Licenciatura em Engenharia Informática

Access Control in Weakly Consistent Systems

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: João Leitão, Professor Auxiliar,
FCT/NOVA University of Lisbon

September, 2016

Access Control in Weakly Consistent Systems

Copyright © Tiago Miguel Ferreira da Costa, Faculdade de Ciências e Tecnologia, Uni-

versidade NOVA de Lisboa.

A Faculty of Sciences and Technology e a NOVA University of Lisbon têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer ou-

tro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de

investigação, não comerciais, desde que seja dado crédito ao autor e editor.

This document was created using the (pdf)LATEX processor, based in the “unlthesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

To my family and friends.

Acknowledgements

I would like to thank my advisor, Prof. Dr. João Leitão and also Prof. Dr. Nuno Preguiça

and Phd student Albert Linde, for the opportunity to work with them on this project.

Their support made this work possible and helped me enhancing my knowledge. I want

to mention the support from all my colleagues in the department. At least, I would like

to thank my mother, father, and sister for their support, and friends for their motivation

and being by my side in the toughest moments.

This work was partially supported by the European Union through the SyncFree

project (grant agreement n°609551) and FCT/MCTES through the NOVA LINCS strate-

gic project (UID/CEC/04516/2013).

vii

Abstract

Eventually consistent models have become popular in the last years in data storage

systems for cloud environments, allowing to give users better availability and lower

latency. In this model, it is possible for replicas to be temporarily inconsistent, having

been proposed various solutions to deal with this inconsistency and ensure the final

convergence of data. However, defining and enforcing access control policies under this

model is still an open challenge.

The implementation of access control policies for these systems raises it’s own chal-

lenges, given the information about the permissions is itself kept in a weakly consistent

form. In this dissertation, a solution for this problem is proposed, that allows to prevent

the non authorized access and modification of data.

The proposed solution allows concurrent modifications on the security policies, en-

suring their convergence when they are used to verify and enforce access control the

associated data. In this dissertation we present an evaluation of the proposed model,

showing the solution respects the correct functioning over possible challenging situa-

tions, also discussing its application on scenarios that feature peer-to-peer communica-

tion between clients and additional replicas on the clients, with the goal of providing a

lower latency and reduce the load on centralized components.

Keywords: Eventual Consistency; Access Control; Replication; Distributed Systems;

Peer-to-peer.

ix

Resumo

O modelo de consistência eventual tornou-se popular nos últimos anos em sistemas

de gestão de dados nos ambientes cloud providenciando aos utilizadores maior disponi-

bilidade e menor latência. Neste modelo, é possível as réplicas fiquem temporariamente

inconsistentes, tendo sido propostas várias soluções para lidar com esta divergência de

estado e garantir a convergência final dos dados. Contudo soluções para definir políticas

de controlo de acessos neste modelo são ainda muito limitadas.

A implementação de políticas de controlo de acessos para estes sistemas levanta de-

safios próprios, dado que a informação sobre permissões tem de ser ela própria mantida

de forma fracamente consistente. Nesta dissertação propõe-se uma solução para este

problema prevenindo o acesso e modificação não autorizada dos dados.

A solução proposta permite modificações concorrentes das políticas de controlo de

acesso, garantindo a convergência das mesmas enquanto são usadas para efetuar con-

trolo de acessos aos dados associados. Nesta dissertação apresentamos uma avaliação

inicial da solução desenvolvida demonstrando que esta permite efetuar o controlo ade-

quado sobre possíveis situações problemáticas, existindo também um estudo da sua

aplicação em ambiente que incluem comunicações par-a-par entre clientes e replicas

adicionais nos clientes, que visam oferecer uma menor latência e reduzir a carga nas

componentes centralizadas.

Palavras-chave: Consistência eventual; Controlo de acessos; Replicação; Sistemas Dis-

tribuidos; Sistemas par-a-par.

xi

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Motivation . 3

1.2 Problem Description . 4

1.3 Document Organization . 6

2 Related Work 9

2.1 Access Control . 9

2.1.1 Access Control List (ACL) . 10

2.1.2 Role-Based Access Control (RBAC) 11

2.1.3 Attribute-Based Access Control (ABAC) 12

2.1.4 Capability-Based Access Control 13

2.1.5 Divergence Issues for Weakly Consistent Replication 13

2.1.6 Access Control Model for Distributed Collaborative Editors . . . 15

2.2 Data Storage Systems . 16

2.2.1 Consistency . 16

2.2.2 Conflict Resolution techniques 17

2.2.3 Examples of Data Storage Systems 20

2.3 Peer-to-Peer . 21

2.3.1 Overlay Networks . 22

2.3.2 Example peer-to-peer overlay networks 25

2.3.3 Access Control Basic requirements on a P2P system 25

2.4 Geo-Replicated systems that use some sort of access control 26

2.4.1 Data storage systems with eventual consistency 26

2.4.2 Systems without mutual trust . 27

xiii

CONTENTS

2.4.3 Systems with causal consistency 27

2.5 Summary . 28

3 Theoretical Model 29

3.1 Convergence on a Weakly Consistent Model 30

3.1.1 System Model . 32

3.1.2 Policies and Trust Model . 34

3.2 Access Control Semantics . 37

3.3 Inconsistency Challenges . 41

3.3.1 Concurrent update on the access control policies 42

3.4 Client to Client Communication Model 43

3.5 Summary . 46

4 Implementation 47

4.1 Data Object . 48

4.1.1 Applying Access Control to the Original Data Object 50

4.2 Concurrent Updates Detection . 53

4.3 Restrictive Minimum Permissions . 54

4.4 Operation Ordering Challenge . 54

4.4.1 Without Causality . 55

4.4.2 With the Use of Causality . 55

4.4.3 Causality vs No Causality . 56

4.5 Summary . 57

5 Evaluation 59

5.1 Correctness Tests . 60

5.1.1 Sequential Operations . 62

5.1.2 Disordered Operations . 63

5.1.3 Concurrent Operations . 65

5.2 Overhead . 66

5.3 Summary . 69

6 Conclusion 71

Bibliography 73

A Appendix 77

xiv

List of Figures

1.1 Geo-Replicated system with access control 5

2.1 Access Control List example [7] . 10

2.2 Role-Based Access Control example [9] . 11

2.3 ABAC Scenario [11] . 12

2.4 Concurrent policy (P’) and data (U’) updates leading to permanent inconsis-

tency . 14

2.5 Causal consistent[19] . 17

2.6 CvRDT: integer+max [29] . 19

2.7 Structured P2P [39] . 24

2.8 Representation of a Distributed Hash Table [40] 24

2.9 Unstructured peer-to-peer [39] . 25

3.1 Geo-Replicated System Example . 30

3.2 Inconsistency of data . 30

3.3 System trust . 35

3.4 Possible data inconsistency . 35

3.5 Violation of access control policies case 1 . 41

3.6 Violation of access control policies case 2 . 42

3.7 Direct Client Communication Model . 44

3.8 Client Communication with Centralized Component Request 44

5.1 Message Size on Data Updates . 67

5.2 Message Size on Policy Updates . 68

xv

List of Tables

5.1 Operations: Sequential Operations Test . 62

5.2 Result: Sequential Operations Result . 62

5.3 Operations: Sequential Operations Test with Revocation 62

5.4 Results: Sequential Operations Test with Revocation 63

5.5 Operations: Disordered Operations . 63

5.6 Results: Disordered Operations . 63

5.7 Operations: Concurrent Modification of Policies Test 65

5.8 Results: Concurrent Modification of Policies Test 65

xvii

C
h
a
p
t
e
r

1
Introduction

In recent years there has been an increase in the popularity of web applications and

web services which became an extremely relevant industry. Taking a closer look, a large

number of those applications are centered on users. By user centered, we mean applica-

tions in which users are both the major producers and consumers of content, and where

the major role of the application is to mediate interactions between them. Facebook

and Twitter are among some of the most popular examples, while other examples can

be found in collaborative editing tools, such as Google Docs or the online Office 365,

games, and chat systems such as the Facebook chat service.

It has been demonstrated that it is essential to provide low latency for web applica-

tions, as failing to do so has a direct impact on the revenue of applications providers

[17]. When there is a large number of users using a web service, scattered across the

World, there will be latency issues for those that are further away from the centralized

component. One simple example is a user from Europe trying to access a service in the

United States.

Due to this, some of the most important factors for the success of such applications

are high availability and low latency of operations provided to the client. A common

strategy to reduce the latency is to resort to geo-replication, meaning that the service

provider has servers and its data distributed (by replicating or partitioning data) across

multiple data-centers, scattered throughout the world, so that content can be served to

all users with the lowest possible latency. This implies that data is distributed among

1

CHAPTER 1. INTRODUCTION

servers that are connected by high latency connections that might not be reliable, mean-

ing that, for instance, a service provider with clients in United States and Europe, would

have servers in the United States and in Europe, as to lower latency for all users, inde-

pendently of their locations. This ensures low latency and fault tolerance (as users can

always fail over to the other data-center if their local data-center becomes unavailable).

There is however a challenge that arises in this environment, formally captured by the

CAP Theorem [31] , which states that it is impossible for a distributed computer system

to simultaneously provide strong consistency (all nodes see the same data at the same

time) and availability (every request receives a response about whether it succeeded or

not) in an environment where network partitions can happen. Due to how the Internet

infrastructure operates, partitions due to node failures have to be considered as they

will eventually happen, so there is the question of which to choose between strong con-

sistency or availability. The common practice nowadays is to privilege availability, so

most practical systems offer only some form of weak consistency, and in this work we

tackle additional challenges that arise in this context.

A common used model of weak consistency is eventual consistency. This model

guarantees that, if no updates are made to a given item, eventually all accesses to

that item will return the last written value [36] . In this model there may be times

of inconsistency among the replicas of a data object, as replicas might be temporarily

in different states. An eventually consistent system can return any value before it

converges. This allows these systems to always, even during network partitions, perform

operations over data. Eventual consistency however, might not be enough. Consider

the following example: user A writes to a page and user B answers. Due to network

latency user C might observe B’s answer before A’s initial post. This shows that while

the consistency model is not violated, it can lead to unexpected behavior from the

standpoint of the users. On the other hand, this model provides high availability (every

request receives a response about whether it succeeded or not).

Most applications usually keep sensitive information about users, which they do

not want to be obtainable by other users without their authorization. With this, the

access control over such information is a very important aspect in every application with

multiple users, which requires the existence of an access control mechanism that enables

the definition of access control policies that specify who has access to read or modify

each part of the existing information at each moment. These policies can also change

over time, requiring access control mechanisms able ensure that the policies become

active as soon as the moment when they were modified, as to disallow unauthorized

operations.

2

1.1. MOTIVATION

Access control is a well studied subject in systems that guarantee strong consistency,

where multiple models and mechanisms to restrict the access to information [8, 11, 12,

14, 27, 28] have been proposed. However the same is not true in systems that only

guarantee weak consistency. Under strong consistency models there is a total order

between operations that are executed. For example, to control the access to information

in a social network, ordering the operations that modify a list of friends and the access

to the information of a user, make it possible to easily guarantee that a user will be

unable to read information about another user after he has been removed from his list

of friends.

Unfortunately, in systems that only provide weak consistency, there is no total order

between operations executed in the system. With this, different replicas may execute

operations in different orders. This fact raises new challenges for the models of access

control as for the mechanism that implement (and enforce) such models.

In this dissertation we present a model of access control for data storage systems

that use weak consistency and proposes mechanisms to implement this model. Sim-

ilar to the solution proposed by Webber et. al. [38], our solution allows concurrent

modification of data and policies that control the access to that same data, defining

in a deterministic way the behavior of the system. However, opposite to this previous

approach, we also propose a new mechanism of implementation of the defined model

that allows its use in data storage systems that don’t provide any form of causal consis-

tency, which is common among the largest fraction of NoSQL systems - e.g. Cassandra,

Riak. Also, we discuss and implement access control mechanisms under this model

for emerging distributed architectures that enable user applications to communicate

directly between them and have themselves local replicas of the application state [20],

which allows lowering the dependency on centralized components for web applications.

Our solution allows enriching such applications with access control, without losing too

much introduced by these architectures, meaning without depending too much on the

centralized component to enforce access control.

1.1 Motivation

In classical architectures, the server component is fully responsible for many correctness

and security aspects of applications. In particular, a storage system is fully responsible

for maintaining all data and ensuring the durability of such data. Moreover, the server

component mediates operations performed over this data, controlling potential state

3

CHAPTER 1. INTRODUCTION

divergences that might arise due to concurrent operations issued by users. Access con-

trol and integrity are also fully delegated to this centralized component in centralized

architectures.

For Geo-Replication the same applies but with multiple centralized components.

The data would be replicated between nodes and those nodes still need to be responsible

for many correctness and security aspects of the applications. These correctness aspects

have to be maintained individually by each site, but also between them. Due to the

use of eventual consistency, the state that exist in each replica, including meta-data

structures used to perform access control tasks among others, will diverge. This is

something that has to be addressed in order to provide access control and integrity of

data.

Access control is what defines the permissions that something or someone has on

a given object or resource. There are multiple models and implementations of access

control, such as the access control list (ACL) in UNIX.

In a typical client-server architecture that feature access control, where each request

the access control component is verified to check the permissions and evaluate if the

request is valid. When a revocation of the writing permission of a user and subsequent

attempt to update data occur, they must be handled in a sequential way, meaning that

the update will be checked with the new access control modifications and be refused.

In a Geo-Replicated system with eventual consistency, adding the access control

layer, brings issues evaluating current access control policies. This happens because of

the possible temporary inconsistency of meta-data structures used to perform access

control, since in one server the permissions may have been revoked and in the other the

old permissions are still active allowing updates and other operations to be performed

when they should have been disallowed.

The peer-to-peer paradigm mentioned earlier will inherit the issues of the geo-

replication since it also uses the multiple centralized components, but also allows for

direct communication between clients. This communication will also need to have an

access control mechanism in place across all the clients, adding a new set of challenges

to be addressed.

1.2 Problem Description

As mentioned earlier, the geo-replication of data already leads to a break up with strong

consistency. In the classical client-server model, the updates were made on the same

place meaning that multiple users would be updating data in a ordered way, where

4

1.2. PROBLEM DESCRIPTION

the first update to reach would be the one that would win, and data would be always

consistent.

In a geo-replicated system with eventual consistency this is no longer a reality, and

with this adding a layer of access control becomes more challenging.

Figure 1.1: Geo-Replicated system with access control

Imagine the example illustrated in Figure 1.1. We have two servers with replicated

data and access control (A and B), and three clients. The two servers start with the

same file F, being in this way consistent in data and also in the access control (acA, acB).

With eventual consistency some issues may appear given the presence of access control

mechanisms.

If client 1 removes the read permission to client 3, there will be the need for that

request to arrive to B, but because of the use of eventual consistency there will be no

guarantee when that revocation will arrive, meaning that client 3 will still be able to see

file F given the fact that the access control in B is outdated. This wouldn’t happen on a

single-server system since the server would take care of the order of actions performed

by different clients ensuring a behavior consistent with that ordering.

In the previous case it wouldn’t be problematic since 3 would only be able to see

a file equal to the one that existed before when he had permissions, since no edit had

been made, but it is possible to imagine a situation where user 2 makes changes to

the document that user 3 shouldn’t be able to see, however because of the eventual

consistency on the access control he will still be able to observe the effects of such

operations, which might be an undesirable outcome for this execution.

This leaves us with a set of issues that occur when there are concurrent writes, reads

5

CHAPTER 1. INTRODUCTION

and changes on the permissions, in a geo-replicated environment with weak consistency.

We can also assume malicious behaviors, for example, client 3 already knows that his

permissions have been revoked but he submits a request with a time-stamp with a value

such that his operation is ordered by the system before the actual change in permissions

(assuming the use of time-stamp by the centralized components).

When one adds direct communication between clients, the issues from geo-replication

will be inherited and some additional challenges arise, since in such a scenario, data

can also be present in the client side and updates over the data can be issued directly

among clients. This leads to the need of having access control mechanisms to be present

in the client side. All of this needs to be maintained using eventual consistency, where

updates from a user have to be propagated for other users and centralized components

while ensuring that access control policies are enforced in a meaningful way.

The focus of this thesis is to study how to address these challenges in the context

of both geo-replicated systems and in systems that leverage an extension to the new

browser-to-browser paradigm introduced in [20].

Publications:

Part of the results in this dissertation were published in the following publications:

Controlo de Acessos em Sistemas com Consistência Fraca Tiago Costa, Albert Linde,

Nuno Preguiça e João Leitão. Actas do oitavo Simpósio de Informática, Lisboa, Portugal,

September, 2016.

1.3 Document Organization

The remainder of this dissertation is organized as follows:

Chapter 2 describes the related work. Existing access control models, covering exist-

ing access control methods where we further discuss how a weakly consistent replicated

system can affect the enforcement of access control policies. This chapter also discusses

web based data storage, where different consistency models and ways to solve some

consistency issues are discussed. Relevant existing examples are also presented. Finally,

this chapter discusses existing peer-to-peer technologies and solutions, which are rel-

evant to understand how to extend our work to hybrid architectures supporting web

applications.

Chapter 3 describes the model of the system in which the access control was inte-

grated, the semantics the access control should follow and what should a user see in

6

1.3. DOCUMENT ORGANIZATION

the system, the trust model and the existing challenges for adding access control on a

system operating under weak consistency.

Chapter 4 describes the details of the implementation and how the solutions dis-

cussed on Chapter 3 were integrated with practical examples and a more concrete de-

scription.

Chapter 5 presents the evaluation of our system and the results compared to an

approach without our security guarantees.

Chapter 6 concludes this dissertation also discussing future work.

7

C
h
a
p
t
e
r

2
Related Work

This dissertation addresses the challenges of enforcing access control to distributed

data systems that use the eventual consistency model, and extending such solutions to

distributed data storage systems that leverage on peer-to-peer communication allowing

clients to communicate directly (and have their own replicas of data). The following

sections cover the main aspects of these fields, in particular:

Section 2.1 existing access control models are discussed and compared. It also reviews

some of the existing proposals in the context of practical systems.

Section 2.2 web based service providers are discussed, in particular focusing on the

challenge of storing and accessing data, and maintaining that data given the trade-

off between consistency and availability.

Section 2.3 existing peer-to-peer technologies are presented and compared.

Section 2.4 existing geo-replicated systems that use some form of access control are

compared to the objective of this dissertation.

2.1 Access Control

Access control is a mechanism for a system to know and enforce the execution of a given

action by some entity (usually a user or a program acting on the behalf of a user) is

9

CHAPTER 2. RELATED WORK

allowed. In the context of access control usually one refers to a principal as someone

(or something) that interacts with a system through actions, and a resource, as an object

that the principal manipulates through the execution of actions.

Access control mechanisms and policies keep track of which principals can access

existing resources in the system, for example a user to access a file on a computer it is

the access control that will verify the user is able to access that file and what type of

actions can I perform over it (e.g. read, write, execute).

In the domain of access control, one can also think in terms of policies. Policies are

statements that will be evaluated to check if the user has access, those policies can vary

in complexity, they can either be small and evaluate only one attributed like "user has

role X", or more complex with more attributes, where for example "user has role X, is in

local Y, in date Z".

Access control only restricts the operations of legitimate users, meaning that it is

only a partial part of a secure system, since in most systems it needs an authentication

service to prove the legitimacy of the user.

2.1.1 Access Control List (ACL)

Figure 2.1: Access Control List example [7]

An access control list (ACL) Figure 2.1 is the most simple materialization of access

control, it fundamentally relies on a list of permissions attached to each individual

resource. This list is a data structure containing entries that specify individual users

or groups (Principals) and explicit permissions to that specific object (Resource). It is

basically a list with entries that defines the permissions that apply to an object and its

properties. This allows a fine-grained access control over the permissions of principals.

10

2.1. ACCESS CONTROL

When access control lists were first introduced, they were more effective as systems

had a low number of principals where each principal had different rights. Modern

systems evolved to have a large number of users, leading to a high amount of entries.

If there was the need to make changes in various principals one would have to change

each one of them individually. Nowadays it is possible to join users in a group and treat

that group as a principal, assigning or revoking rights to all elements (i.e. users) of the

group at once.

In an ACL implementation it is easy to find the set of all principals who may read

a file, but it might be difficult to find the set of all files that a subject may read. This is

because the access control list is stored for each resource containing the principals and

their rights to that file individually.

2.1.2 Role-Based Access Control (RBAC)

Figure 2.2: Role-Based Access Control example [9]

In large scale systems, security policies are dynamic. Access rights need to change as

the responsibilities of principals change. This can make management of rights difficult,

as when a new user joins the system, the appropriate rights for that user must be estab-

lished, and when a user changes job functions, some rights should be removed, while

others have to be added. In a broad example, we can think of an hospital, where there

are multiple doctors, nurses, chief executives, patients, etc... Each doctor should have

the same access rights as the others, as well as nurses among them. If a nurse changes

functions to doctor, there is the need to change all of her permissions so that they are

the same as the remaining doctors. This increases the complexity on changing rights

11

CHAPTER 2. RELATED WORK

given a multiple number of principles where most of them are in theory in real world

function groups where all should have the same permissions.

Role-based access control, as illustrated in Figure 2.2 addresses this problem by

changing the underlying principal resource model. In Role-Based Access Control, prin-

cipals are classified into named roles (user-role assignment). A role has a set of actions

and responsibilities associated with a particular working activity. Instead of an access

control policy being a relation on principals, resources, and rights, a policy is a relation

on roles, resources, and rights. For example, the role "professor" might be assigned

the right to "supervise master thesis". Principals are now assigned to roles, where each

subject may be assigned to many roles and each role may be assigned to many principals.

Roles may also be hierarchical, for example, the role "professor" may have all the rights

that a "phd student" does, and so forth.

Figure 2.3: ABAC Scenario [11]

2.1.3 Attribute-Based Access Control (ABAC)

Attribute-Based Access Control, (Figure 2.3), is an access control technique where the

principals requests to perform an operation on given resources are granted or denied

based on assigned attributes to the principal, assigned attributes of the object, environ-

ment conditions, and a set of policies that are specified in terms of those attributes and

conditions. This might be a more logical way to perform access control, since there is

12

2.1. ACCESS CONTROL

the evaluation of rules against attributes to check the permissions. In Figure 3.3 it is

possible to see a simple ABAC scenario, where the decision to give or deny access to an

resource (object) is given by having in consideration the subject (principal) attributes

(2b), the object (resource) attributes (2c), the access control policy (2a) and environment

conditions (2d).

It is possible to look at ABAC as a broader access control technique when compared

to ACLs and RBAC, since ACLs work on the attribute of "identity" and RBAC on the

attribute "role", while ABAC is the concept of policies that express complex rules that

can be evaluated over many different attributes.

2.1.4 Capability-Based Access Control

Capability-Based Access Control [34] is an access control technique in which principals

have tokens which can be shared and that will give permission to access an entity or

object in a computer system. An intuitive example for this mechanism of access control

is a key that opens the door of an house, or an access card in an hotel that allows you to

enter your room, in both these cases it is not only possible to more people to share your

permissions, since they can also have keys or cards that also allow the access but also to

a user to transfer its capability to another user (by handing off the key).

A capability is implemented as a data structure that contains an Identifier and an

Access Right (read, write, access, etc).

A possible analogy with the real world may be the way a Bank works. With a ACL the

Bank would have a list of the clients of the bank and the persons that could access each

bank account. If a user wants to give permissions to another person there was the need

for she to go to the bank and ask to add the permissions for that new person. Meanwhile

a capability based approach, there would be a key to each safe, representing the bank

account, and the user would only need the key to have access to the safe, meaning that

if she would like to give access to another person she would only need to make a copy

of the key and give it to the other person which would then use that same key to enter

in the safe.

2.1.5 Divergence Issues for Weakly Consistent Replication

When we are using a system with replicas that relies on weakly consistent replication

some problems may arise. If the authorization policy can be temporarily inconsistent,

any given operation may be permitted at a particular node and yet denied at another,

and without a careful design, permanently divergent state can be a result of such a

13

CHAPTER 2. RELATED WORK

system. This issue is more serious when access policies are being modified, as the

probability for divergence is higher during such periods.

We can have a system where all the nodes trust each other (for instance they are

all controlled by the same entity), in this case the access control policy for allowing

an update U can be enforced independently by each node, even though there might

be transient variants of the policy in each of the nodes. Because the nodes trust each

other to enforce policies, they will never permanently disagree about which operations

have been accepted, since once an update is admitted, no further checks are required,

although it is possible that the most recent policy is not used for the access control

decision of some operations. However one can assume that such nodes will not disregard

the current policy to allow a principal to execute some operation that was not allowed.

Figure 2.4: Concurrent policy (P’) and data (U’) updates leading to permanent inconsis-
tency

In a distrustful system (i.e, a system where the individual components might be-

long to different administrative domains, and hence might deviate in the execution of a

distributed protocol), there is the need to explicitly address consistency issues, as illus-

trated in Figure 2.4. In this example we start at T0 with two replicas (A and B) with the

same Access control policy (P) and the same data (U). In T1, two concurrent updates,

one of policy (P’) in replica A and another of data (U’) in B are issued. Assuming that

the control policy P allows the update U’ and that policy P’ doesn’t allow it. In T1 it

will be possible to change the data to U’ in B since the local control policy P allows that

operation over that data item, while in A the policy changes from P to P’. In T2 there

will be an attempt to propagate data U’ to the node A, but since P’ doesn’t allow the

14

2.1. ACCESS CONTROL

update U,’ node A won’t accept the update. In T3 A will propagate its control policy

to B, meaning that A will stay with (P’,U) while B with (P’,U’). This leads to a scenario

with a permanent state of inconsistency.

2.1.6 Access Control Model for Distributed Collaborative Editors

Distributive Collaborative Editors (DCE) allow users to simultaneously modify shared

documents, one of those examples is Google Docs. To ensure availability shared doc-

uments are replicated on the site of each participant user of the group, and updates

to that file are made locally and afterwards propagated to the other members of the

group. This editors need to provide high local responsiveness: the system should be as

responsive as single-user editors, high concurrency: it should be possible for users to

modify any part of the shared document concurrently and freely, consistency: all users

should eventually see the same state, meaning that there is a need of a convergence

between all copies, decentralized coordination: there should be no single point of failure

and scalability: so that any number of users can join or leave a group.

Controlling access in such systems is a challenging problem, since they need to allow

dynamic access changes and need to provide low latency access to shared documents

without violating the properties discussed above. Adding an access control layer, the

high responsiveness is lost because every update must be granted by some authorization

coming from a distant user (as a central server). The problem consists in the latency

added by access control-based collaborative editors due to the use of one shared data-

structured containing access rights that is stored on a central server. This way the

controlling of access will consist in locking the data-structure and verify whether the

access is valid.

Work presented in [13] has been made to try and tackle this issue, consisting in

adding another copy to the user side consisting on the access data-structure. This way

all the users from a group get locally the shared document and the access data-structure.

When users want to manipulate a shared document, this manipulation will be granted

or denied by verifying only the local copy of the access data structure, meaning it will

not need to make an access to a centralized component. The main drawback in this

work is restriction on who can make modifications to the access control data-structure,

since only one user, called administrator, will be able to modify the shared access data-

structure. Those updates locally generated by the administrator are then broadcast

to other users. This solution removes the complexity relative to the occurrence and

resolution of conflict due to different ordering of concurrent modifications to the access

15

CHAPTER 2. RELATED WORK

control data, but leaves an important drawback of only one user performing access

control modifications. There are still possible security holes because of the absence of

safe coordination between document’s and access the access control data-structure’s

different updates, using an optimistic approach that tolerates momentary violation of

access rights but ensures a final valid state to the stabilized access control policy.

2.2 Data Storage Systems

As discussed previously, data storage for web services commonly resorts to geo-replication,

as web based services benefit from storing client data on geographically distributed data

centers, to provide a lower access latency, improved bandwidth, and availability.

There is however a challenge that arises in this environment, which has been cap-

tured by the CAP theorem. The CAP theorem, as mentioned in the Introduction of

this document, states that it is impossible for a distributed computer system to simulta-

neously provide strong consistency and availability in an environment where network

partitions can happen. This implies that a geo-distributed system must either sacrifice

availability or strong consistency.

2.2.1 Consistency

Strong consistency: In a strongly consistent system, if there is a write operation that

terminates, the next successful read on that key is guaranteed to show the effect of the

previous write operation, meaning that a client will never see out-of-date values. The

problem with the strong consistency is the trade-off it makes with availability, since a

distributed system providing strong consistency may come to a halt if nodes become un-

available due to a fault or a network partition as all write operations must be performed

in a coordinated fashion across all replicas. This may let the service unavailable for the

user during a long time, resulting in a bad user experience. Strong consistency however

minimizes the inherent challenges related with dealing with consistency of data, since

data will be (always) consistent across all the sites.

Eventual consistency: An eventual consistency system is used to achieve a high avail-

ability. The system guarantees that if no new updates are made to a given data item,

eventually all accesses to that item will return the value of the last update [36]. In this

case there may be times of inconsistency among the replicas of a data object, since it does

not make safety guarantees, an eventually consistent system can return any value be-

fore it converges. This enables these systems to, even during network partitions, always

16

2.2. DATA STORAGE SYSTEMS

serve read and write operations, following the CAP theorem sacrificing the consistency

and promoting availability.

Figure 2.5: Causal consistent[19]

Causal consistency: A system provides causal consistency if any execution is the same

as if all causally-related read/write operations were executed in an order that reflects

their causality. Concurrent operations that are not causally related may be seen in

different orders by different clients. When a client performs a read followed by a write,

the first operation is said to be causally ordered before the second, because the value

stored by the write may depend on the result of the (previous) read operation. Two

write operations performed by the same client are also considered causally related in

the order they were performed. In Figure 2.5, we have a representation of a causal

consistency system on the left, and on the right a system that is not causally consistent

since, w(x)b (this represents a write operation on the date object identified by key x with

the value of b) is causally-related on r(x)a (this represents a read operation on the data

object identified by key x that returns the value a) on P2, which is causally-related on

w(x)a, therefore it must be enforced w(x)a w(x)b ordering, but P3 violates that ordering.

Using eventual and causal consistency comes with the cost of state divergence, since

only strong consistency guarantees data consistency (i.e, no divergence) at all times.

Since there may be some cases of state divergence, some conflict resolution techniques

must be used, such as the ones discussed in section 2.2.2.

2.2.2 Conflict Resolution techniques

As mentioned earlier, applying weaker models of consistency may leave the the system

in a state of divergence. In order to ensure replica convergence, a system needs to

exchange versions or updates of data between servers (anti-entropy) and choose the

appropriate final state when concurrent updates have occurred (reconciliation). For a

17

CHAPTER 2. RELATED WORK

system to be able to return to a point of consistency across all replicas, some conflict

resolution techniques can be employed, including:

LastWriterWins: In the last writer wins technique the idea is that the last write based

on a node’s system clock will override an older one. This is trivial using a single server,

since it only needs to check when the writes came and apply them in order, but using

multiple nodes where clocks may be out of sync may be an issue. Choosing a write

between concurrent writes in this case can lead to lost updates.

ProgrammaticMerge: Programmatic merge consists in letting the programmer decide

what to do when conflicts arise. This conflict resolution technique requires replicas with

to be instrumented with a merge procedure, or to expose diverging states to the client

application which then reconciles and writes a new value. With this technique the

final write will always be the one decided by the programmer, meaning that the most

important data for the programmer will be kept.

Commutative Operations: Commutative operations are as the name hints, operations

where changes in the order will not change the final result. If all operations are com-

mutative, conflicts can be easily solved since, independently of the order in which op-

erations are received (and applied) in each node, the final result (i.e, state) will always

become the same. Commonly used techniques based on the commutation of operations

are:

OT, Operational Transformation. OT was originally invented for consistency main-

tenance and concurrency control in collaborative editing of plain text documents. The

idea of OT is to transform parameters of executed operations so that the outcome is

always consistent. Given a text document with a string "abc" replicated at two sites

with one user on each site, and two concurrent operations where user 1 makes a request

of inserting character "x" at position "0" (O1) and user to makes makes a request for

deleting the character "c" at position "2" (O2). This request will reach first the site they

are using, and because of latency only after some time be propagated to the other server.

Because of this, in site 1 we will have first operation O1 executed, and only after O2,

while the opposite will happen on in site 2. With this the result in site 1 will be "xab",

while on site 2 the result will be "xac", staying in a state of divergence. Using OT we

will be transforming the operations to solve this problem, the delete is transformed to

18

2.2. DATA STORAGE SYSTEMS

increment one position and the insert can remain the same. Both outcomes become

"xab", independently of the order in which operations are applied.

Operational Transformation has been extensively studied, especially by the concur-

rent editing community, and many OT algorithms have been proposed. However, it was

demonstrated that most OT algorithms proposed for a decentralized OT architecture

are incorrect [24]. It is believed that designing data types for commutativity is both

cleaner and simpler [29].

CRDT, Convergent or Commutative Replicated Data Types. CRDTs are replicated data

types that follow the eventual consistency model. An example of a CRDT is a replicated

counter, which converges because the increment and decrement operations commute

naturally. In these data types, there is no need to synchronisation, an update can execute

immediatly and return the reply to the client, unaffected by network latency between

the replicas of the data object. The replicas of CRDT are guaranteed to converge to a

common state that is equivalent to some correct sequential execution by design [29].

CRDTs can typically be divided in two classes:

Figure 2.6: CvRDT: integer+max [29]

State-Based CRDT, state-based Convergent Replicated Data Type (CvRDT. In state-

based replication, an update occurs entirely at the source, and only after the local

execution, there is synchronization between replicas. This synchronization is

achieved by transmitting the full state of the CRDT (value and any internally

maintained meta-data) between replicas. It is possible to see in the example in

Figure 2.6, where we have a CvRDT integer with a max function, the update if first

made at it’s origin and then the whole resulting object (the integer) is sent to the

replicas where it will converge, giving us the same final state across all replicas.

Operation-Based CRDT, operation-based Commutative Replicated Data Type (CmRDT).

19

CHAPTER 2. RELATED WORK

CmRDT are based on operation commutation, in this case the operation is exe-

cuted at the source and after this execution, that operation is propagated to all the

remaining replicas. This is possible because in the operation-based class, concur-

rent operations commute. Operation-based replication requires reliable broadcast

communication delivery with a well-defined delivery order, such as causal order

between operations. This is important to avoid a replica to evolve to states that

shouldn’t exist.

In summary we can differentiate CvRDT and CmRDT by the information that is

propagated between their replicas. In the case of CvRDT the update is applied

and the object that results from executing that function is then sent and merged,

while on CmRDT it is the function that is propagated. A simple example could

be asking someone to raise their hand, in the CvRDT type we would apply the

function of raising someone hand and then send the entire object person (with the

hand raised) to merge in the other replicas, while in the CmRDT type we would

just send the function that contains the instruction to raise the hand.

2.2.3 Examples of Data Storage Systems

Spanner: [4] Spanner is a globally-distributed system that uses the Paxos algorithm

in order to replicate data across a large number of data centers providing strong

consistency. One of the replicas is elected as the Paxos leader for the replica group,

that leader is the entry point for all transnational activity for the data objects

managed by that group. Also the system automatically re-shards data across the

machines when the number server or amount of data changes, making it a scalable

system that can perform under high load balance and with machines failing and

going back up.

Having strong consistency means all Spanner transactions are globally ordered,

being assigned hardware assisted commit time-stamp.

With this we can verify that Spanner is a scalable (it balances the load being able

to deal with an increase of requirements), it multi-version (so it can provide strong

consistency) and is globally-distributed.

Dynamo: [6]

Dynamo consists in the opposite of Spanner, since it aims to provide an high

level of availability sacrificing consistency under certain scenarios to achieve this.

With the use of weak consistency the problems of inconsistency of data between

20

2.3. PEER-TO-PEER

replicas is introduced, being it solved by exposing the data consistency issues

and reconciliation logic to the developers. In Dynamo data is partitioned and

replicated using consistent hashing.

Dynamo also employs a gossip based distributed failure detection and member-

ship protocol.

Cassandra: [18]

Cassandra was also made in order to be able to provide high availability and no

single point of failure. It uses consistent hashing (like dynamo) to partition data

across the clusters. To achieve high availability and fault tolerance it replicates

the data across multiple data centers making it possible to continue to provide it’s

read and write operations even existing some points of failure. In relation to the

replication methods the main difference between Cassandra and Dynamo is the

fact that Cassandra receives a selectable replication factor that will define on how

many nodes each data item will be replicated.

Riak: [16] is a distributed NoSQL key-value data store that supports high availability

by giving the flexibility for applications to run under strong or eventual con-

sistency, using quorum read and write requests and multi-version concurrency

control with vector clocks. Eventual consistency in Riak uses CRDTs at its core.

Partitioning and replication is done via consistent hashing.

Antidote: [1] Antidote is a strongly, eventually consistent storage back end for extreme

scale cloud services and applications. It support Intra and Inter data center repli-

cation. It supports atomic write transactions and data partitioning across multiple

servers and Data Centers. It was written in Erlang base on Riak Core (the core

software piece of RIAK), and exposes a library of common objects based around

the Conflict-free Replicated Data Type (CRDT). It relies on strong consistency

between intra Data-center replicas and eventual consistency convergence between

inter Data-center communication.

2.3 Peer-to-Peer

A peer-to-peer system consists in a distribution of tasks among peers (nodes) where

tasks are dynamically allocated. A peer-to-peer system has a high degree of decentral-

ization where peers implement both client and server funcionality to distribute band-

width, computation, and storage across all the participants and few or none dedicated

21

CHAPTER 2. RELATED WORK

peers exist in the system that own global state [26].

Once a peer is introduced into the system, there is little or no need for manual

configuration. Peers are usually owned and operated by independent individuals who

voluntarily join the system and are not controlled by a single organization.

Peer-to-peer also requires little or no infrastructure, usually the cost to deploy a

peer-to-peer service is low compared to client-server systems. Peer-to-peer systems

also exhibit an organic growth because the resources are contributed by participating

nodes, meaning that a peer-to-peer system can grow almost arbitrarily without the need

to upgrade the infrastructure, for example, replacing a server for a better one as is

common practice when there is an increase in the number of users in a client-server

system. This is because with each new node that joins, the systems increases in the

amount of total available resources.

There is also the resilience to faults and attacks, since there are few (if any) nodes

dedicated that are critical to the system’s operation. To attack or shutdown a P2P system,

there is the need to attack a large portion of nodes simultaneously, where with each new

node joining the system an attack becomes harder to deploy.

Popular peer-to-peer applications include sharing and distributing files (like eDon-

key or BitTorrent [40]), streaming media (like PPLive [37] or Cool Streaming [42]),

telephony and volunteer computing.

2.3.1 Overlay Networks

An overlay is a logical network (typically defined at the application level) that abstracts

the application from the physical network.

The network topology of the underlying (physical) network has a high impact on the

performance of peer-to-peer services and applications. Therefore, it is essential to rely

on an adequate overlay network for supporting systems in the right way. An overlay

network is a logical network of nodes on top of the underlying physical network. It can

be thought as a directed graph G = (N,E), where N is the set of participating nodes and

E is a set of overlay links.

To achieve an efficient and robust delivery of data through a peer-to-peer system

there is the need to construct an adequate overlay network. For this, the fundamental

Architectural choices are the degree of centralization (partly decentralized vs decentral-

ized) and the topology of the network overlay (structured vs unstructured).

22

2.3. PEER-TO-PEER

Degree of centralization We can categorize Peer-to-Peer networks architectures by

their use of centralized components.

Partly centralized overlay networks resort to some dedicated node or use a central

server to perform some special control task such as indexing available resources or to

provide a set of contact for nodes to join the system. New nodes can then join the

overlay network by connecting to the controller. This overlay starts as a star-shapped

because of the commnunication to the centralized unit by the participants and aditional

overlay links are formed dinamically among participants that have been introduced to

the controller. With this approach we get some of the downsides of a (single) centralized

component, such as the existence of a single point of failure and potential bottleneck.

Having this in mind, this system is not as reliable and resistent as a fully decentralized

architecture. Still it provides organic growth and abundant resources, that are relatively

simple to be managed via the single controller. Examples include Napster [22], Skype

(an old version) [3], and BitTorrent using trackers.

Decentralized overlay networks do not use any form of dedicated nodes or central-

ized components that have a critical role in the operation of the system. In this type

of overlay network, nodes that are joining the system are expected to obtain, through

an outside channel, the network address of one of an already participating node in the

system which serves as its entry point to the system. This makes the decentralized

P2P more reliable compared to the partly decentralized system, avoiding the single

point of failure and bottleneck issues, and increasing the potential for scalability and

resilience. In this type of architecture some nodes may be used as super-nodes having

increased responsibilities. A node becomes a super-node if it has a significant amount

of resources, high availability, and a publicly routable IP address. Super-nodes can

increase the efficiency of a P2P system, but may also increase its vulnerability to node

failure.

Structured vs Unstructured Overlay: There is also the need of choosing between

structured and unstructured overlays. This decision depends mostly on the usefulness

of key-based routing algorithms and amount of churn (that is, when large numbers of

peers are frequently joining and leaving the network at the same time) that the system

is expected to be exposed to during operation.

23

CHAPTER 2. RELATED WORK

Figure 2.7: Structured P2P [39]

Figure 2.8: Representation of a Distributed Hash Table [40]

Structured overlays: In a structured overlay typically (Figure 2.7), each node gets

an unique identifier in a large numeric key space, where the identifier will determine

the position of the node in the overlay structure. Identifiers are chosen in a way that

peers will be distributed uniformly at random over the key space. This allows to create

a structure called DHT (Distributed Hash Table as depicted in Figure 2.8). This results

in an easy lookup system that will work similar to an hash table, since if there is the

need to communicate with a node there is only the need to know it’s identifier (basically

a key-value store). The issue that structured overlays bring it the trade-off, since the

queries are much more efficient due to a faster lookup but it will cost in the performance

when the churn is high because there will be the need to give identifiers to each new

node that enters the system.

Unstructured overlays: In an unstructured overlay, (Figure 2.9) ,there is no partic-

ular topology formed by the network links and queries are usually done by flooding

24

2.3. PEER-TO-PEER

Figure 2.9: Unstructured peer-to-peer [39]

the network. Unstructured overlay networks are formed by establishing random links

between the participants of the peer-to-peer system. In an unstructured overlay we get

the opposite of what we get in a structured overlay, since we get less efficient queries

having to flood the network to find as many peers as possible to locate a particular data

object, resulting in the peers needing to process all the search queries, but in return we

get a more robust system when churn is high.

2.3.2 Example peer-to-peer overlay networks

Chord [32] is distributed lookup protocol that was designed to enable peer-to-peer

applications to efficiently locate the node that stores a particular data item. Chord

provides support for just one operation: given a key, return the nodes responsible for

the key. Keys are distributed over the nodes using consistent hashing and replicated

over succeeding nodes. Nodes typically store their successor nodes, forming an ordered

ring, making it easy to reason about the overlay structure. For fault-tolerance a list of

successor nodes is kept and for efficient lookup a finger table, shortcuts to nodes over

the graph, is used to perform large jumps in the ring topology.

2.3.3 Access Control Basic requirements on a P2P system

A peer-to-peer system is different from other systems where we are more used to see

access control being applied. To apply access control on a peer-to-peer system some

guarantees need to be made. In this case we will describe four main requirements that

an access control model for P2P file-sharing networks should support [33]:

25

CHAPTER 2. RELATED WORK

No centralized control or support: Traditional access control models, generally rely

on central servers for authorization operations. This allows the existence of a

single central location where the policies can be stored and evaluated. In a P2P

network this doesn’t happen, in fact, a peer has a significant level of autonomy

and is in charge of storing and managing its own access control policies.

Encourage sharing files: One of the potentially desirable characteristics of P2P net-

works is the anonymity of the peers. Unlike client-server systems, peers in P2P

systems are typically loosely coupled and provide very little information about

their real-world identities. The interactions is done by peers that are mostly un-

known. A P2P access control model must provide a mechanism for a host to

classify users and assign each user different access rights, even if the users were

previously unknown.

Limit spreading of malicious and harmful digital content: The open and unknown

characteristics of P2P make it a good environment to malicious spreading and

harmful content. A P2P access control system should support mechanisms to

limit such malicious spreading and punish the ones responsible for it.

2.4 Geo-Replicated systems that use some sort of access

control

In this section we will discuss some of the geo-replicated systems, also showing the ones

that already implement some form of access control and how do they compare to the

solution we propose in this dissertation.

It should be remembered that the goal of our solution is to provide access control

systems with only weak consistency guarantees.

2.4.1 Data storage systems with eventual consistency

Although many protocols and investigation has been performed on data storage systems

with eventual consistency, little emphasis has been given to the access control in this

kind of systems.

We must recall that in a more organizational environment the option to choose

systems with only eventual consistency is a very valid one being highly adopted because

of the high availability and low cost that comes with it.

26

2.4. GEO-REPLICATED SYSTEMS THAT USE SOME SORT OF ACCESS

CONTROL

The original version of Amazon Dynamo [6] doesn’t offer any type of authentication

(subjects having to prove who they are) or authorization (checking if those same subjects

are allowed to perform the desired operations).

Other data storage systems already offer some techniques for supporting access

control but with low granularity, insufficient to provide control at the application level.

Couchbase [5], MongoDB [23] and Riak KV [25] all support users, functions, and permis-

sions, but with high granularity, at the level of buckets and data collections. Contrarily

to these systems, our solution aims to be able to operate at the level of each object

individually, without losing the benefits that arise from the use of weak consistency.

2.4.2 Systems without mutual trust

Wobber et al. [41] presented an access control for weakly consistent systems where there

is no mutual trust between the replicas.

The scope is different since it consists in only a partial replication with different

rights at each replica. This model also presents similar problems in relation to the

causality between policies and subsequent operations that are allowed. In this model

there is the existence of a waiting process for the desired policy, meaning that even

with this the causality between changes of the policies that restrict the visibility of

effects of operation and the subsequent execution of operation is not captured, which

is something we aim at addressing. Because of this, and contrarily to our objective,

this mechanism still allows the observation of information by other users when their

observation rights were already revoked.

2.4.3 Systems with causal consistency

There are also some geo-replicated data storage systems that offer guarantees of causal

consistency (mentioned in 2.2.1) as COPS [21] or ChainReaction [2] which have part

of their motivation associated with an example similar to the one we will use on this

dissertation. However, they assume that the list of access control is itself an indepen-

dent object in the context of data storage, and consequently the propagation of causal

operations between replicas located in distinct data centers avoid anomalies in which

users can observe states to which they shouldn’t have access.

The problem is that the cost to maintain the guarantees of causal consistency is not

negligible, making it possible for the system to see it’s performance deeply degraded.

In contrast, our proposed solution doesn’t require extra guarantees from the point of

27

CHAPTER 2. RELATED WORK

view of the consistency model, avoiding in this way the additional costs that come with

causal consistency.

2.5 Summary

This chapter discussed previous work in the areas related to the development of this

dissertation.

In the peer-to-peer context the need for an overlay network has been described,

explaining that different application requirements can require different types of over-

lays. Overlays can generally be described by degree of centralization and structured vs

unstructured.

In the data-storage context we discussed about leveraging strong consistency with

high availability. Different consistency models have been explored and, in the case of

eventual consistency, several techniques for conflict resolution have been described.

In the collaborative-editing context, various commonly used approaches have been

explored, describing how concurrency is handled in real-time editing in each of them.

In the next chapter it is explained the objective of our work and the model of the

system.

28

C
h
a
p
t
e
r

3
Theoretical Model

In this chapter we present a general perspective of the proposed solution.

There will be first a definition of the model of weak consistency and how the con-

vergence is achieved (without access control) and after we give a formal model of the

system including the access control where we start by introducing to some of the neces-

sary nomenclature, the policies and the trust model, the semantics on how the model

should behave in particular scenarios, the challenges and the techniques employed to

solve these challenges.

In this Chapter there will be no discussion about implementation details, being

this only a theoretical approach to the solution of the problem, Chapter 4 covers and

discusses the implementation details with references to this chapter.

In more detail the following sections are organized as follows:

Section 3.1 presents how a model with weak consistency works and how convergence is

achieved. It is also mentioned some assumptions that are made about the policies

and trust model.

Section 3.2 presents how the model of access control should behave and what the users

should observe at each time given a set of concurrent events in the system.

Section 3.3 in this section it is presented the challenges of introducing an access control

to a system that follows the model of weak consistency. In this case it is discussed

29

CHAPTER 3. THEORETICAL MODEL

only the challenges since only in chapter 4 are provided the ways to deal with

them.

Figure 3.1: Geo-Replicated System Example

Figure 3.2: Inconsistency of data

3.1 Convergence on a Weakly Consistent Model

In this section it is presented a perspective on how a weakly consistent model works and

how convergence is achieved. It will be presented the nomenclature and the backbone

of a system that will be used to integrate the access control model.

30

3.1. CONVERGENCE ON A WEAKLY CONSISTENT MODEL

Geo-replicated systems are used to provide lower latency and an increased availabil-

ity to users. In those systems weak replication is used to deal with the CAP theorem [31]

and to provide the system with the desired properties. When we have multiple servers

the data should be replicated or partitioned between them all, in this case we will only

discuss the replication of data. This means the data will be the same on all the servers so

that users from all around the world can see the same content like shown in Figure 3.1,

where the replicas distributed over USA, Europe and Asia, all have the same content, 3

sets with the same value in each one of them (i.e. we assume total replication).

In an initial state of the replication and without updates made on the data, all the

servers will have the same state and the same representation of the objects, meaning we

start the system from a converged state. Multiple servers exist so that different users can

connect to each one of them to perform their actions, such as read or write operations.

This means that each client will be connected to the server that has the lowest latency

connection to itself, and clients will only perform the operations on that same server,

as shown also in Figure 3.1, where users are connected to the replica that is closest to

them, so that it is possible to achieve lower latency.

With each operation being made on each server independently, eventually there will

be a state of divergence between the replicas, meaning that each of them will have a

different state. This means that the updates need to be propagated between the servers,

meaning that each one of them will receive the operations originally performed on the

other replicas. The problem starts on the order by which each operation will be seen in a

replica making it possible to exist a continuously state of divergence. A simple example

using this image is an addition and removal to the set. If all replicas start with an empty

set and one particular replica first receives an operation to include A in the set (add,

A) and after this operation receives another operation to remove element A from the

set (remove, A) that replica will have the empty set state at the end of performing both

these operations. However it is possible that when those operations are propagated to

reach the other replicas they do so in the opposite order, meaning that (remove, A) is

executed first and only after (add, A) be received and executed, making the final state

of such replica to include element A in the set, causing a state of continuous divergence,

as shown in Figure 3.2.

Because of this, there is the need for resorting to mechanisms to solve this continuous

divergence. In this case and for the rest of this dissertation we will focus on the use of

CRDT’s.

CRDTs are data types specifically implemented so that there is a convergence in

31

CHAPTER 3. THEORETICAL MODEL

weakly consistent systems in the presence of concurrent operations guaranteed by de-

sign. There will be one CRDT at each replica and operations are propagated between

them to guarantee that the different data replicas reach an (eventual) state of reconcilia-

tion, while also providing high availability.

With this weak consistency between replicas and with the use of CRDTs, we know

that replicas may not return the same result at a given time, meaning that temporary

divergence between replicas is possible, however, with the guarantee of convergence at

soma unknown point in the future (i.e, eventually).

This is the system model in which our work was developed on and we have as

an additional objective to solve all existing challenges without resorting to a more

restrictive (i.e, stronger) consistency model.

3.1.1 System Model

This section discusses the system model in which the access control will be introduced.

There will still be no notion of access control policies since that will be discussed in the

next section (3.1.2).

To discuss the way a weakly consistent access control system should operate, we

need first to look at the system model. The base model consists in a data management

system that manages a set of objects, Objs = {o1, o2, . . .}. The state of the object of the

system can be modified by the execution of a set of operations, Ops = {op1, op2, . . .}. For

simplicity we will assume that an update changes the state of an object. The function

target(op) returns the object modified by the operation op.

Operations can be divided into read operations, Opsread and write operations, Opswrite.

Write operations are the only ones that may alter the state of the object, meaning that

read operations won’t change the state of the target object.

All operations are performed by a subject s. The tuple (op,s) is used to represent

the execution of an operation op by the subject s. Operations can only be performed by

subjects. The set of subjects of a system is designated by Sujs = {s1, s2, . . .}.
Just like it is common in cloud systems, there is the assumption that the data man-

agement system keeps the replicas of all objects in multiple data centers. This way, for

each distinct object, there is one (or more) replica in each data center. We assume a

system operating only with guarantees of weak consistency and final convergence of

data, as discussed in the section 3.1.

A user changes the state of an object by executing write operations in the replica to

which he’s connected by targeting an object with a given write operation, in which a

32

3.1. CONVERGENCE ON A WEAKLY CONSISTENT MODEL

new state of the object o will be achieved by applying the desired operation op to the

target object target(op) by the subject (op,s). To this operation executed in the replica

by the subject we call UpstreamOperation. Operations are asynchronously propagated

in a reliable manner to other replicas, where they are executed locally on the (local

copy) target object. This means that when a subject performs an operation on his local

replica and in the object o1, that replica will then create a new operation that will be

propagated to the other replicas so that they can execute the operation locally so that

all converge to the same state. To this operation created on the initial replica we call

DownstreamOperation. Only operations that modify the state of the objects are propa-

gated to other replicas, meaning that Opsread will not generate DownstreamOperations

on the replica where the operation was originally executed.

The state of an object at each replica, at any point in time is the result from the execu-

tion ofUpstreamOperations received directly from a user and ofDownstreamOperations

receive from other replicas at that time.

Since we are referring to weakly consistent systems, we have to remind the reader

that there is no guarantee on the order in which each operations will be executed. At

the time of execution of an UpstreamOperation, multiple DownstreamOperations are

created and sent to the remaining replicas, but at the same time that same replicas

may be also receiving UpstreamOperations which makes it so that without any type of

stronger consistency there will be no possibility of global ordering over the operations.

In this case we assume that the system guarantees the final convergence of replicas,

since all of them will execute the same set of operation and the storage resorts to the use

of CRDTs (conflict-free replicated data types) [30], which as said in the previous section

3.1 it guarantees the final convergence of replicas.

Although there is no total order between operations, since we can’t define the order

of operations between replicas, we can still define a partial order (what happened be-

fore), which establishes a potential causality between operations. This is because in one

replica we know the order by which the operations were executed. An operation opa
happened before opb, opa→ opb iff the effects of the operation opa were known in the

replica to which the user was connected when he executed the operation opb which is

exemplified in Figure ??.

We can also say that two operations, opa and opb, are concurrent, opa||opb iff opa 9

opb ∧ opb 9 opa.

33

CHAPTER 3. THEORETICAL MODEL

3.1.2 Policies and Trust Model

In this section it will be introduced the nomenclature of access control, followed by a

brief discussion concerning the trust model assumed in this dissertation.

An access control policy defines the operations that each user can perform (at a

given time). The attribution of rights to a certain subjects results in a triple (r, s,o) ∈
Rights × Subjs × Objs which indicates that the subject s has the right r over the object

o.

In this context, r represents the right to execute an operation op by r ` op. In

our system, we define three different rights: the right of executing read operation, rr
where a user has the right to perform the operation of reading the value of an object,

the right of executing a write operation, rw where a user has the right to perform the

operation of modifying the value of an object and we further introduce in our access

control model a new type of operation consisting of the Opswriteplus which defines the

the right of executing a writeplus operation, rwp where a user can modify the access

control policy of an object, with ∀op ∈Opsread , rr ` op, ∀op ∈Opswrite, rw ` op and ∀op ∈
Opswriteplus, rwp `o p.

A right (r, s,o) allows a subject s1 to execute an operation op, (r, s,o) |= (op,s1) iff
r ` op∧ target(op) = o∧ s = s1.

The information relative to the access control policies, meaning, the triples with

the attribution of rights, is maintained in the data storage system and updated in a

similarly way to the data. This way, a user attributes or removes an access control rule

by executing an operation in the replica to which he’s connected, being that operation

propagated asynchronously to all the remaining replicas so that all replicas can have

the information required to verify the any request received for that particular object.

Another important topic to discuss when we are introducing an access control model

on a distributed environment is the trust model. To define the trust model we need to

assume the degree of confidence that the replicas have between them. In a simple

geo-replicated environment we assume that all replicas belong to the same entity/com-

pany, and hence, we can assume that all replicas have a total trust between each other,

meaning a mutually trustful system.

The assumption made in this dissertation, assumes a mutually trustful system and

it is also assumed that the communication between replicas is safe and that the integrity

of the messages exchanged between replicas is maintained. The security model we

propose in this first part of the work, verifies the permissions of an update in the

moment a subject makes an operation submission. This way, when a user contacts a

34

3.1. CONVERGENCE ON A WEAKLY CONSISTENT MODEL

Figure 3.3: System trust

Figure 3.4: Possible data inconsistency

replica to execute an operation, that replica is responsible for verifying that the user has

permissions to execute that operation, this means, the execution ofUpstreamOperations

is verified but DownstreamOperations are executed without the necessity to any kind

of verification in relation to the actual policy since the verification was already made on

the original replica and all the others trust the decision of the original replica.

This approximation is appropriate to a data storage system in the cloud, since there

is the assumption that all the replicas of the system execute in a context of an organi-

zation that controls them, so it is not expected that they behave in a malicious manner.

35

CHAPTER 3. THEORETICAL MODEL

This is only valid in systems where all the replicas trust each other and know that none

of them may have malicious behavior (in a system where all the replicas belong to the

same entity). The possibility of a malicious behavior would be for example, a replica

to allow an update that is not allowed by the access control policy, which could lead

all replicas to accept an update that shouldn’t be allowed because of a single replica

malicious behavior.

Figure 3.3 illustrates our system model, in which all replicas can communicate

directly without the necessity to verify the permissions of the operations. We can assume

that all the replicas are inside a type of black box, and each one of them will control the

entry of operations in the black box by checking the locally know access control policy,

but inside the black box they trade operations without the necessity to verify the policy.

In more detail, a user authenticates itself in the system, the same will temporarily enter

in the second layer of the protected environment. When he tries to perform an operation

on the system (UpstreamOperation), that operation will be verified by the replica to

which he’s connected and if that operation is allowed it will enter the first layer of

protected environment, where the operations are propagated without the need to make

verification checks (this will only happen in Opswrite or Opswriteplus since Opsread don’t

change the state of the system, only returning the local value of the target object). In the

example of the figure, we have three different users that will try to join our system so

they can perform operations. In this case Phillip may try to enter our system, but since

he doesn’t have an account, he won’t be able to pass the authentication step, meaning he

will stay out of the second layer of protection. John and Bob are both able to authenticate

themselves, meaning that they enter in the second layer of protection. Each one of them

will now try to perform one operation, John on the Replica 2 and Bob on the Replica

3. To perform the operations the replica’s to which they are connected check their local

access control policy, and Replica 2 responds by denying the operations to John since

he has no permissions, not allowing that operation to enter in the First Layer Protection.

On the other case, the operation performed by Bob is allowed, entering in the First

Layer Protection and will be now freely propagated to all other replicas without the

need to check the local access control policy again, so even if the permissions of Bob

change, the operation will still be accepted in the other replicas because of the mutual

trust that exists between the replicas (it is only required for one replica to check and

accept the permissions). If this was not performed, a concurrent change to the access

control policy rejecting Bob could leae the system in a permanently divergent state (as

we discuss further ahead).

In summary, a unauthenticated subject will always stay out of the second layer of

36

3.2. ACCESS CONTROL SEMANTICS

the protected environment, meaning that it will be unable to perform operations on the

system. Also a user that is authenticated may try to perform operations on the replica

to which he’s connected, but if he doesn’t have the permissions to that operation they

will be rejected.

This trust model allow us to surpass one of the challenges in relation to inconsistency

of data and access control policies depicted in Figure 3.4. In this figure it is presented

what occurs when there is a concurrent revocation of policies that belong to a user,

and concurrently an operation changing the data by that user. As it is possible to see

by this picture, the operation that will restrict the permissions will first be applied at

replica R1 and will only be applied at replica R2 later. However, that data was already

modified by Bob in replica R1, since when the operation was executed he still had

permissions (locally), but when the operation reaches the replica R2 it will be rejected

since concurrently Alice removed the writing permissions of Bob. This causes the system

to continue in a constant state of divergence. With our trust model this issue disappears,

since replica R2 will trust the decision performed by R1 and instead of verifying the

local (and already modified) access control policy when the operation arrives, it will

simply trust the judgment of replica R1 and accept the modification performed by Bob.

3.2 Access Control Semantics

For an access control system to be correct, the policies of access control should be

followed by all replicas. In a strongly consistent system, the behavior of the system in

one replica is represented by: an operation op performed by the user s is accepted, if

when it was performed there was a right (r, s,o) that allows to execute it’s operation, this

is if (r, s,o) |= (op,s). With this we know that for a strongly consistent system and for an

operation to be accepted, there is the need to the previous execution of an operation to

give the required rights to perform the operation, meaning that we need (r, s,o)→ (op,s).

It is possible in a strongly consistent system to refer to an access control policy as

the current, since it exists a total order between operations in the system. This way to

know the current access control policy in a strongly consistent system, we only need to

apply all the operations op made in the system by (a total) order since the initial state.

In a weakly consistent system it is possible to concurrently execute operations in

different replicas. With the possibility of concurrent operations and the lack of total

order among these operations, we can’t assume the existence of a (single and global)

current state of access control policy. Although we assume that there are guarantees of

convergence of data to a final state in the presence of concurrent operations, there is the

37

CHAPTER 3. THEORETICAL MODEL

need to decide which should be the behavior of the system in the presence of concurrent

operations that modify the permissions of a subject and operations performed by that

same subject. In the following we will consider the possible alternatives, considering

separately all the relevant situations.

Read Operations: The read operations are executed only in the replica to which the

user is connected. This property is fundamental to ensure a low latency in the

execution of the operation. To maintain these properties, the only reasonable solu-

tion seems to be controlling the permissions in the replica in which the operation

is executed based on what is currently locally known at that replica.

In the case where, concurrently, in another replica, an operation has been executed

that changes the permissions of the subject, this operation will not have effects

on the reading operation. For the concurrent operations to have effect, it would

be necessary a coordination between all replicas before executing any operation,

which would deny all the advantages provided by the use of weak consistency in

particular, availability).

Besides, it is necessary to evaluate on how a system should behave when a read

operation is allowed or denied in another replica:

Allow: When a subject s1 is connected to a replica rp1 and the replica acknowl-

edges that the user doesn’t have permissions to access an object o, all opera-

tions that the subject s1 attempts to perform in that object should be denied.

If another subject s2 connected to another replica rp2 with all permissions

on the object o, wants to show him the new modifications on the object o (as

for example a new photo the s2 will introduce in it’s album collection), that

subject will perform the operation allowing the right of s1 to read the object

and make the write operation of adding the new photo. In this case the order

to which the operations arrive at rp1 will not be important since there’s no

possibility of information leakage, since the subject s1 will simply be denied

until the policy modification arrives at that replica.

Deny: In this case we have the opposite of what we discussed earlier in the Allow

Read. We have one object o two subject s1, s2 and two replicas to which the

subjects are directly connected respectively rp1, rp2. In this case we assume

that s1 has permissions to read the object o, and that s2 have permissions to

read and write on the object o. Assuming the addition of a photo in the album

(object o) by the subject s2 and that subject s2 doesn’t want s1 to be able to

38

3.2. ACCESS CONTROL SEMANTICS

read the object after he added the new photo, subject s2 will first perform the

operation of changing the permission of s1 on the object o so that he loses his

read capabilities, and after he will add the new photo.

In this case a correct access control system, should never enable the subject

s1 to see the new photos added to the album unless the read capability of

s1 is reinstated by another operation. This way subject s1 may still see the

old content until the new policies arrived at his replica rp1 but it should

never be possible to him to see the new content of the object on the replica

r2 performed after the policy revocation of his read ability.

Write Operations: A write operation is executed in the replica to which the user is con-

nected as an UpstreamOperation and in all the other replicas as a DownstreamOperation.

Contrary to reading operations, in this case, it would be possible to execute write

operations and revert it’s effects if at a later point it become know that a concur-

rent operation over the access control policy had revoked the write capability of

the subject that performed the write. However, this would lead to the possibility

of observing in the replica that processed such write the effect of that operation

which would be later reverted, making it possible for an user to see an operation

as being executed and allowed just for a few moments and later see the opposite.

Due to this, in our system, write operations are only verified in the moment of

their initial execution (this is, when they are executed as UpstreamOperation).

Besides it is necessary to evaluate how a system should behave when a write

operation is allowed or denied in another replica concurrently:

Allow: This case is similar to Read Allow, as it was discussed earlier. Having

two different replicas rp1,rp2 if an operation that permits write operations

for a subject s1 is performed in rp2 and if s1 is connected to rp1, we know

that temporarily it may be impossible for the subject s1 to perform write

operations, but eventually the update from rp2 will arrive to rp1 and it will

be possible to s1 to perform write operations.

Deny: In this case we will use again one object o which will consist in an album

with photos, two subjects s1,s2 and two replicas to which the subjects are

connected respectively rp1,rp2. In this case s1 starts in both replicas with

write permissions. We will assume that s2 just wants to remove the write

permission of s1, and that afterwards s1 will try to add a photo to o before

his replica rp1 receives the DownstreamOperation issued by s2 revoking his

39

CHAPTER 3. THEORETICAL MODEL

write permissions. For this to happen s2 performs the operation in the replica

to which he’s connected rp2. This modification will only reach rp1 (to which

s1 is connected) eventually. Due to this there is the possibility for rp1 to allow

the modification of the object o after there is an operation in rp2 that revokes

those permissions, being possible for s1 to add a new photo to o.

In this case the way the system should behave is more application centered,

since there is not a fully right and general answer. It is possible to assume

that eventually we have to know that the operation of revocation happened

earlier, and with this revoke the modification operation of s1, with the object

being an album we would see s1 adding a photo and for s1 that update would

be accepted and after some time, it would disappear because of that revoke

which can constitute an unexpected behavior to s1. The other possibility

would be always assume that if it is accepted in one replica, it should be

accepted in all other replicas. In this case the new photo that s1 added to

o would be propagated and accepted on s2. In our perspective the best way

to deal with this problem is the second option and it’s the one we will use

on this dissertation, this because adding an additional photo will not force

revocation of already accepted operations, and also because it would always

be possible for s2 to again delete this photo, since he keeps the permissions

to edit the object o and it’s policies. With this option we would have no

rollbacks and with this a more consistent state of the system, only allowing

for s2 to see a new photo added by s1 to which he had no permissions to add

according to that state that s2 sees in replica rp2.

Both situations however are plausible, and one should choose the solution it

should use according to it’s system and application requirements. In our case

we decided on the second option and propagate all operations once they are

accepted in one replica. Although, this will create a new problem described

next, enabling the opportunity for abuse by switching the replica to which

the subject is connected.

Abuse by switching replica: With the possibility introduced in the last topic

(Deny Write) of all updates accepted in one replica being propagated to

all other without the permissions being verified again, so that the subject

that introduces data doesn’t suffer a rollback of her operations, we encounter

another challenge.

It is possible for a subject to change the replica to which he’s connected so

40

3.3. INCONSISTENCY CHALLENGES

Figure 3.5: Violation of access control policies. Disordered operations.

that he can connect to a replica that still allows him to do certain operations.

As we discussed in Deny Read there will be no problem in the read operation,

but in the write it will be possible to a user to change for a replica in which he

still can perform write operations to modify object o, even with him knowing

that he should not have permissions. However, in this case we can assume the

same we did on Deny Write. The subject to whom the permissions were taken

will be able to modify the data while the propagation of operations doesn’t

arrive at his replicas, meaning that, if he is allowed to perform an operation

at any given replica, he should be able to do it without any rollbacks, and

the user that issued the operation to deny write operations can always issue

write operations afterwards to ensure the desired final state of such object.

3.3 Inconsistency Challenges

In a system with access control, it is important to ensure the causality relations between

the operations updating a access control policy and the ones updating the data to which

the policy refers.

Considering the example in Figure 3.5, Alice tries to perform an operation on the

replica to which she’s connected to prevent the user Bob from accessing her photographs

before she adds a new one. In a strongly consistent system, the order would be main-

tained and we would know that there would be a total order throughout all the system

41

CHAPTER 3. THEORETICAL MODEL

Figure 3.6: Violation of access control policies. Concurrent operations.

where (r ′ , s,o)→ (op,s), where r ′ are the new rights modified by Alice (subject s), on the

list of her photos o, and the operation op would be the posting of the new photo by Alice.

However in a weakly consistent system we don’t have total order of operations. With

this, if both operation are propagated independently and the system doesn’t guarantee

any type of causal consistency in the data access, it would be possible, in another replica,

for Bob to see the new photo of Alice, just like is shown in the figure.

With this, it is fundamental to offer properties to ensure extra security measures

so that it is not possible for information leakage when there are concurrent operations

on objects and updates on the policies that restrict access to those same objects. Our

system adds these new properties, as detailed in the next section.

3.3.1 Concurrent update on the access control policies

Besides it being possible to concurrently execute operations that read and update the

data that modify user permissions, it is equally possible to concurrently execute opera-

tions that modify the permissions of the users. In our system we privilege a conservative

approach to the most restrictive access control policies. This way, in the presence of two

concurrent modifications to the access policy, after both are received in a replica, the

one that will be active will be the most restrictive. To this restrictive property we call

RestrictiveMinimumP ermissions.

42

3.4. CLIENT TO CLIENT COMMUNICATION MODEL

This approach allows avoiding the problems of information leakage represented in

the Figure 3.6. In this example, Alice, after performing the operation to remove the read

property to Bob, adds a new photo. If concurrently there was an operation allowing

Bob to read Alice’s album, with the RestrictiveMiniumP ermissions Bob would still be

unable to perform read operations on the album. However, without it, Bob would be

able to see the photo and with this read a photo that Alice didn’t wanted him to see,

resulting in an information leakage.

This is a problem because of the knowledge the system should provide to users

about the state of the system. When Alice wishes to add a photo that she doesn’t want

Bob to see, she will remove his permissions, making him unable to see the new photo.

In a correct access control system, it should be possible for Phillip to also be able to

change the permissions of Bob but only if he has the knowledge that Alice made the

change. Without that knowledge he may not know the desire of Alice and make a wrong

decision. A simple example would be if Phillip and Alice are two friends, but Phillip

doesn’t know that Alice argued with Bob, so he gives the permissions to Bob, but Alice

argued with Bob, so she doesn’t want her information to be available to Bob, and with

this it is possible for Phillip to give the permissions and to go against the decision of

Alice without his knowledge.

In short, and in a more formal notion, the execution of an operation op by subject

s in the object o will be allowed iff ∃(r, s,o) ∈ H : r ` op ∧ @(r ′ , s,o) ∈ H : ((r, s,o) →
(r ′ , s,o)∨(r, s,o)||(r ′ , s,o))∧r ′ 0 op, with H the set of operations know on the replica where

the operation was initially executed.

3.4 Client to Client Communication Model

In the previous sections, we discussed the access control model in a system where the

communication is done between centralized components that belong to the same entity,

meaning that they have total trust between them allowing for secure communication

between each other.

With the introduction of new models that allow the direct communication between

clients (peers), taking an advantage of the increase in computational power in the client

side, we decided to study how an access control could be applied to this model where

clients communicate directly between them reducing the need for the centralized com-

ponent. An example of this system is presented in Figure 3.7, where we have our

centralized component with guarantees of secure access control, and the new direct

communication between clients. We will discuss the best options to provide access

43

CHAPTER 3. THEORETICAL MODEL

Figure 3.7: Direct Client Communication Model

Figure 3.8: Client Communication with Centralized Component Request

control minimizing its impact on performance and necessity to communicate with the

centralized component (which is the main focus of this model).

As shown in Figure 3.7 we have clients connected to the trusted centralized compo-

nent but also to other clients they are close to, which they will try to get their requests

from so there is no need to perform the request on the centralized component. This

44

3.4. CLIENT TO CLIENT COMMUNICATION MODEL

follows the logic we used in the previous section, where users authenticate themselves

in the system and the operations are verified in the centralized component node that

received the operation and propagated to the rest. The difference is that clients also

have a set of objects of the system, that they share among them.

The objective is to allow the users to share their objects but with restrictions, given

that user1 may have an object from user2 that he doesn’t wish to be shared with user3,

and this brings the necessity of access control.

A simple solution would be for clients to maintain a version of the policies, so they

can check it each time they receive a request from another client. This wouldn’t work

since each time there was an update over the access control policy, there would need to

be a propagation of the new permissions between all the clients. To surpass this chal-

lenge the receiving client can request the state of the policies of the user he’s receiving

the operation from the centralized component. This removes the need to propagate the

policies updates and it removes the possibility for a delay of an update in policies to al-

low information leakage. However this still causes the issue of doing too many requests

to the centralized component, as shown in Figure 3.8. The user that receives the request

still has to query the centralized component to check the permissions of the user that

issued the request and the centralized should return (allow, disallow, not authenticated

user), this makes that for each direct communication between clients there needs to be

also a request to the centralized component, taking the away benefits of this model.

This happens due to the lack of trust between clients, where they can’t trust each

other to freely and correctly perform operations, and only the centralized components

have knowledge of the policies, even if not in real time. Bringing the policies and the

data together for the client (each object bind with it’s policies) is as shown before, not a

good solution, since client could themselves modify and propagate their local copies of

the policy requiring clients to continually verify (reliable) policy information from the

centralized component.

A different approach is also possible, that consists in following a strategy more sim-

ilar to a capability based access control, where tokens are distributed to give access to

the data. So if a user has the correct Token, he can make the changes to the object and

propagate them, or read from another client. Also if a new user enters the system, there

is only the need to provide him with the Token relative to the permissions he needs.

This removes the necessity to keep a list of policies in the users and also removes the

need to keep querying the centralized component each time a request is received by a

client. Evidently such Token must be cryptographically protected by one central compo-

nent, for instance by employing a cryptogenic signature using asymmetric cryptography.

45

CHAPTER 3. THEORETICAL MODEL

However this approach has it’s own downside, the removal of permissions is very costly

and it may still allow for information leakage. The first problem is due to the fact that

when there is a revocation of permissions, the Token for the object needs to change and

the new Token needs to be distributed among (n-1) users, where n is the number of

total users that have permissions for that object. The second problem is the safety of the

subsequent data changes that the user performing the revocation may have, although

this can be solved by the client checking in the centralized component if its permissions

had been revoked.

In this case we didn’t found a an adequate and fully general solution that will solve

the issues related to a system enabling direct client communication, although if we

are referring to make an implementation on a system that will have a low amount

of revocation of permissions, than an approach closer to the capability-based access

control is in our opinion the best solution.

3.5 Summary

This chapter describes the theoretical model proposed in the context of this thesis,

showing what already exists and how it works and the challenges introduced by this

model.

In a weakly consistent context, it was explained how this model works and how the

state can vary. To get a basis for this work, it was also need to make some assumptions.

This assumptions consisted in the premise that all the replicas of a system belong to the

same company, meaning that arbitrary (i.e. byzantine) behavior will not exist on the

replicas, ensuring that all of them will follow the enforcement mechanism correctly.

The next step was to explain the semantics of an access control, pointing the correct

behavior of an access control system, explaining what should happen at all times given

data access and (concurrent) changes in the access control policies.

Finally, we discusses alternatives to extend our model to architectures that are en-

riched with direct communication among clients, and where clients themselves own

replicas of that objects. One example of such architecture is the legion system [20].

46

C
h
a
p
t
e
r

4
Implementation

As it was discussed in the previous chapter, there were two different main challenges.

The possibility of unauthorized access to information due to the independent propaga-

tion of updates on the access control policy and data, and also how to deal with multiple

updates to the access control policy executed in a concurrent manner.

To test and integrate our solutions, we used the system Antidote[1], a data storage

distributed system which uses the weakly consistency model with final convergence of

data. In Antidote all data management resorts to the use of CRDTs.

For Antidote to be able to cope with access control policies that we wish to add,

small implementations alterations had to be done, modifying it so that it is possible

to use special versions of CRDTs that can encode their access control policy as well as

enriching its interface so that operations are aware of the identification of the subject

executing each operation.

While, for the implementation of our solution new CRDTs were developed which

include specific information relative to the access control. This CRDTs maintain the

generic properties of CRDTs, this is, they guarantee the final convergence of the state

of replicas in the presence of concurrent updates.

In this chapter we will describe with more detail how the CRDTs on Antidote work

and the existing operations, and the implementation of the new CRDTs that enable the

use of an access control with properties that solve the challenges we discussed in the

Chapter 3.

47

CHAPTER 4. IMPLEMENTATION

The following sections cover the aspects of the solutions and implementation:

Section 4.1 data objects existing in Antidote and how they work, and the though pro-

cess behind the new structure of the CRDTs made for supporting access control.

Section 4.2 concurrent updates to our access control policies is one of the greater chal-

lenges faced in this work. In this section we will explain how the detection mech-

anism works so it is possible to detect concurrent updates and deal with them in

the best way possible.

Section 4.3 concurrent updates of the access control policies may cause information

leakage, for this we use RestrictiveMinimumP ermissions, in this chapter we will

explain in more detail how it works and it’s implementation.

Section 4.4 the order to which operations are executed is one of the most important

aspects in access control as discussed in the previous chapter. In this section

we explain the implementation of the solutions to maintain a system that works

correctly and without information leakage.

4.1 Data Object

To start developing our solution on Antidote there is the need first to know how the

objects in the system work. Antidote already provides multiple operation based CRDTs,

but for simplicity we will only focus on the pn-counter CRDT. Antidote uses operation-

based CRDTs to achieve the convergence of data, meaning that these objects need to be

able to perform the propagation of operations and be able to receive those same oper-

ations and achieve eventual consistency across all Replicas. Operation based CRDTs

propagate operations to maintain the state in all replicas. In an operation based CRDT

the operations propagated need to be commutative, while at the same time not idempo-

tent being necessary Protocols that guarantee unique delivery, needed and included in

Antidote.

A pn-counter CRDT consists of a positive-negative counter that supports both add

and subtract operations. In a pn-counter CRDT we first start with the type of the object,

which will consist of two different variables, one for the increments and other for the

decrements. We can see an example of a pn-counter working with two different replicas,

the UpstreamOperations applied are:

• R1 increments PN-counter, yielding a PN value of {1,0}

48

4.1. DATA OBJECT

• R1 increments PN-counter, yielding a PN value of {2,0}

• R2 increments PN-counter, yielding a PN value of {1,0}

• R2 decrements PN-counter, yielding a PN value of {1,1}

The DownstreamOperation are then propagated with this values:

• R2 receives an increment notification from R1 and increments its P-counter from

1 to 2, yielding {2,1}

• R2 receives an increment notification from R1 and increments its P-counter from

2 to 3, yielding {3,1}

• R1 receives an increment notification from R2 and increments its P-counter from

2 to 3, yielding {3,0}

• R1 receives a decrement notification from R2 and increments its N-counter from

0 to 1, yielding {3,1}

Both R1 and R2 are now up to date with a value of the PN-counter {3,1}. The actual

value of the PN-Counter is obtained by subtracting the N value (second element) from

the P value (first element). So 3-1 is 2, which is the actual value of the PN-Counter.

With this we get a representation on how a general pn-counter CRDT works.

First there is the need to define the type of the data that will represent the CRDT, in

this case, it consists of a representation of tuple that keeps the value of increments and

decrements. The operation based CRDTs in Antidote consist of three main methods, as

it is possible to see in other systems but with small variations on the method name. This

three methods consist in value, generate − downstream− operation and update:

• Value: It’s the operation that will return the value of the CRDT. In this type of

CRDT there is the need to return values so that read operation can be applied.

This consist in UpstreamOperations that will return the final value of the local

CRDT. With the pn-counter on Antidote, there are the positive and negative

values, meaning that when a user makes a local read operation it is called the

value method that will return the difference between the positive and negative

variables on the object.

49

CHAPTER 4. IMPLEMENTATION

• Generate-downstream-operation: The Generate − downstream− operation is the

operation called when a subject tries to perform an update in one of the repli-

cas. This operation creates the operations that are sent to all other replicas that

belong to the system. In this method the object is not modified, being only

created the operations needed to be sent for each replica including itself. This

method receives an UpstreamOperation consisting in a write operation, and cre-

ates DownstreamOperations that are then propagated.

• Update: This method is responsible to execute the operations. It receives the

needed information from the Generate − downstrem − operation, and uses that

information to apply the operation modifying the CRDT state. This is the only

operation that modifies the values of the CRDT. This operation is called whenever

a replica receives a DownstreamOperation.

4.1.1 Applying Access Control to the Original Data Object

To implement our access control model, in our system, there was the need to develop

new CRDTs. Our solution consists in adding to each CRDT it access control policies

inside the object. This means that for example a pn-counter CRDT, will have it’s basic

data state with an positive and negative variables, but also a dictionary that will keep

it’s Access Control List.

The new CRDTs consists in a triple, containing {increment,decrement,policies}. The

policies consist of subject, rights, for example a subject Bob that may read and write

will have an entry on the dictionary <Bob, [read,write]>. The possible permissions a

subject may obtain are, read, write (make changes only to the object but not the policies),

writeplus (ability to also make changes to the policy) and own (enables the possibility

of deleting the object). The attribution of rights is sequential meaning that a user

cannot have the permissions to perform a write operation without having permissions

to execute the read operation.

In this new CRDT there was the need to make changes in the Generate−downstream−
operation, update and to add a new value−policy operation. This changes consisted in:

• Value-policy: This method is responsible to return the current permissions value

of a given subject. This operation is used when it is necessary to test if a given

user has the permissions required to perform a given operation.

• Generate-downstream-operation: This operation is the one that is performed

when UpstreamOperations are executed over a replica. As discussed earlier, our

50

4.2. CONCURRENT UPDATES DETECTION

system makes the required permission verification only when it is issued by the

user, meaning that it will be checked only on the method Generate−downstream−
operation when a replica receives an update. This operation will use the valuepolicy
with the identification of the subject that made the UpstreamOperation.

The method also modified to support modifications on the policies since this

method needs not only to propagate operations about increments and decrements,

but also about policy changes.

• Update: The update is responsible to change the object. In this case the changes

made do update consisted in adding the possibility to receive DownstreamOperations

that changed the access control policies.

These methods are the backbone of the CRDTs. As they were described, they will

not protect against the issues mentioned earlier, being the objects only able to store the

data and change the policies.

In the next section it will be discussed the extra changes that had to be done to the

CRDTs and to the Antidote system, so that the system can overcome the challenges

mentioned in Chapter 3.

Also it is important to remember one of the bigger problems of the ACL (access

control list), the problem with multiple users. If we have an application that would

have an large number of users, we could have our CRDTs storing a lot of information

since each user will have its own entry in our policies dictionary. To deal with this

challenge, it is always possible to group the users into categories. This can be changed

at the application level, considering that the subject that will submit the operation will

consist in the identifier of a group. This makes it possible to reduce the number of

entries in the access control policies.

Algorithm 1 CRDT pn-counter data type

1: {increment,decrement,policies}
2: increment← Integer
3: decrement← Integer
4: policies←Dictionary({subject, rights}, Identif ierT oken)
5: subject← String
6: rights← Setwithpossiblevalues[read,write,writeplus,own]

51

CHAPTER 4. IMPLEMENTATION

Algorithm 2 GenerateDownstreamOperation pn-counter

Ensure: FinalOp! = {NoP ermissions}if f !policies.contains(s, r)
1: procedure Generate-Downstream-Operation(Op,s)
2: if op.equal(Increment ∪Decrement) then
3: if hasP ermissions(write, s,policies) then
4: Return NewDownstreamCountOp

5: else
6: Return NoP ermissions
7: end if
8: else//op.equal(Set −Right)
9: if hasP ermissions(writeplus, s,policies) then

10: Return NewDownstreamRightOp + policies
11: else
12: Return NoP ermissions
13: end if
14: end if
15: end procedure

Algorithm 3 Method to check if user has permission

1: procedure hasP ermissions(right,s,policies)
2: newList← [read,write,writeplus,own]
3: count← 0
4: for each entry i in policies do
5: if i.subject == s then
6: newList← intersection(i.rights,newList)
7: count + +
8: end if
9: end for

10: if count == 0 then
11: returnf alse
12: else
13: if newList.isElement(right) then
14: returntrue
15: else
16: returnf alse
17: end if
18: end if
19: end procedure

52

4.2. CONCURRENT UPDATES DETECTION

Algorithm 4 Update Operation Adding Right

1: procedure update(Op,s,currentP olicy)
2: oldP olicy←Op.policies
3: right←Op.right
4: if oldP olicy == currentP olicy then
5: policies.removeRights(s)
6: policies.addRight(s, right)
7: else
8: policies.addRight(s, right)
9: end if

10: end procedure

4.2 Concurrent Updates Detection

To deal with the challenges discussed in the previous chapter, there is the need to know

how to detect the existence of a concurrent updates. As discussed in Chapter 3, it

should be possible for multiple replicas to concurrently execute operations that modify

the access control policies. Given this fact, it is possible that three different replicas

may be changing the permissions of Bob at the same time. If there is no mechanism

to preserve the state of the access control policy for Bob, in each replica two of those

policy changes will be lost and with it possible important information and increases the

possibility of information leakage.

Tackling this issue consists in detecting the existence of concurrent updates, and

when they exist they should be dealt in a way so that all the policies on a subject are

preserved. In a simple example, a subject Bob, which suffers two concurrent updates of

his policies one giving read permissions and another giving read and write permissions,

should have that information maintained in the system until a new change in policies

occurs changing again his access control policies.

In this case, when there is a Generate −Downstream−Operation that modifies the

access control policies, part of the message propagated by that operation to all repli-

cas is the current state of the ACL (P1). In each replica that receives the result of that

Generate−Downstream−Operation will perform the Update operation. In the Update

operation it will also enter as argument the current value of the access control policies

(P2). If the state of P1 is equal to the state of P2, that means that no concurrent oper-

ations were executed, and we can simply remove the old rights and add the new ones

to that user, otherwise we should only add the new rights without adulterating the old

ones as illustrated in Algorithm 5 (also in Appendix).

53

CHAPTER 4. IMPLEMENTATION

It should be noticed that in the pseudo-code it’s compared the totality of the policies

(current and old), but that’s not what is effectively performed being only a simplification

in the algorithm, since what should be compared is the policies of only that subject s.

4.3 Restrictive Minimum Permissions

Section 4.2, consisted in showing how to detect and maintain the complete information

about the concurrent policy changes. This way there is no possibility for information to

be lost, but there is still the challenge on how to choose the right policy when there are

multiple current policies, so that we can completely protect our data.

In this case as discussed earlier, we will use the RestrictiveMiniumP ermission. Hav-

ing in account that section 4.2 leaves us with a system that under concurrent operations

that modify the state of the access control policy, keep all the possible values, to have

a secure system we may consider always choosing the option that will give us the best

guarantee of security, meaning that we will only allow what is common on all the con-

current policies.

Illustrated in Algorithm 8 (also in Appendix), we show how this is achieved in our

system. In this case, when there is the need to check if a user has the permissions to

execute an operation, it will search in the policies for entries subject. If it encounters

only one, there is only the need to compare it to the permission needed to execute the

operation, otherwise if there are multiple, it is made the intersection between all the

occurrences so that we can have the minimum value. If the user doesn’t exist it will

always return false.

With this, we get the guarantee that there’s no possibility of leakage of information,

when there’s the existence of concurrent modifications of the access control policies,

followed by an attempt to access that data object by a subject affected by that policy

modification.

4.4 Operation Ordering Challenge

In this section we will describe the next challenge related to the ordering of operations

(Figure 3.5) and how it was solved. To support this functionality, there were two possible

distinct solutions, one that requires a system that guarantees the causality of operations

over an object, and another that doesn’t need causality guarantees but that uses more

resources in the messages that are propagated between replicas.

54

4.4. OPERATION ORDERING CHALLENGE

In the next subsections it will be presented the two distinct solutions in more detail,

subsection 4.4.1 containing the solution without causality and subsection 4.4.2 con-

taining the solution with causality, knowing that the challenge consists in making sure

the operations that add new data performed after the revoking of permissions, doesn’t

appear before in other replicas, allowing information leakage.

4.4.1 Without Causality

In this alternative, we have no guarantees that any operation that access data is only ex-

ecuted after any other operation of modification of policies that has occurred (logically)

before.

To tackle this issue, this solution adds access control policies to allDownstreamOperations.

When a write operation on data is performed, it will also propagate the current state of

the access control policy of that replica. Using the example of the Figure 3.5, if Alice

removes Bob reading permissions, and after it makes a write operation (for example,

adding a photo), that write operation will be propagated (DownstreamOperation) to-

gether with information about the access control policies on the replica R1, meaning,

that will contain explicitly the information that Bob cannot perform read operations.

When that information reaches replica R2, the write operation performed by Alice will

be performed at the same time that the access control policies are updated, since the

write operation now brings additional information about the state of the policies in

replica R1. This way, when Bob tries to perform a reading operation on R2, it will

be calculated the minimum of his permissions as described in section 4.3, which will

reflect the fact that Bob has lost his rights to perform reading operations, leading the

request to be denied, maintaining the new information secure.

4.4.2 With the Use of Causality

The second option is more conventional, and instead of making more information go

through the network, it simply delays the write operation so that it will only be applied

after the access control policies modifications made on the original replica have also

been applied.

This solution was achieved using the guarantees of object operation causality, mean-

ing that each operation performed in a single object will have a version number (ef-

fectively by vector clock) and that all operations that modify an object are applied in

sequence by each replica. Using again the example of Figure 3.5, if Alice removes Bob

reading permissions, R1 will see that operation and will apply a version number to it

55

CHAPTER 4. IMPLEMENTATION

(in this case 1), and after it makes a write operation (adding a photo) which will have a

new version number (in this case 2). If the operation marked with the version 1 arrives

first, it will execute it immediately since it was the number of version R2 was expecting,

otherwise if it receives the operation with version number 2, it will wait for the other

operation, only executing the operation with version number 2 after he receives and

executes the number 1. In this case we get the guarantee that Bob won’t be able to see

the new photo added by Alice, since his replica will wait for the new permissions, and

only after that it will add the new photo to his replica.

It should be noticed that this is only possible because both access control policies

and data belong to the same object, since Antidote only gives guarantees of causality

per object.

4.4.3 Causality vs No Causality

In the two previous subsections it was described two distinct ways to deal with the

problems of the lack of order provided by weakly consistent systems.

In short, the option of using causality should be chosen when we have a bigger guar-

antee that operations will not take too much time reaching the other replicas, meaning

that even if the operations that are received are not ordered they will not take too much

time being applied, without the necessity to add more information to each update oper-

ation message. This means the trade-off between the two solutions consists in the first

without causality, adding additional information to each message which will put more

pressure on the network but it once the message arrives the operation can be immedi-

ately processed, and on the second solution with causality, it will make some operations

to take time to take effect even though they already reached a remote replica but they

still need to wait for other operation from which they depend.

Also it should be considered the expected amount of time the system will run with-

out the existence of possible disordered operations. In a highly unstable network the

problem of the cost of causal consistency becomes even a bigger issue. If the system

runs most of the time without any kind of disordered operations because the network

allows it to, then the solution that uses causality will most likely be a better choice,

since without problems in the network that cause disordered operations, the system

will continue to apply the operations without waiting and it won’t be needing the extra

information on the messages that in bigger systems with a large amount of subjects may

become non-negligible. Although as said earlier the application of causal consistency

in systems is a costly process.

56

4.5. SUMMARY

The option of our solution without causality also offers a higher level of protection.

With causality described earlier we only ensure that for each replica to be aware that a

given order operations issued by each individual object exists for each object, and that

these operations must be applied in order. For example in Alice’s case, if she performs

two operations on the same replica, those operation need to be seen in all replicas by

that order, meaning that if she removes the permissions to Bob and afterwards changes

the state of the data of the CRDT, these two operations are executed by that relative

order in all replicas.

However, if Bob already starts without reading properties, and concurrently Alice

changes the data and someone else gives reading permissions to Bob, since those two

operations are not causally related, there will be no protection of ordering in this case,

meaning that even though Alice made the operation knowing Bob had no permissions,

he will still be able to see the update because of the concurrent change of policy mod-

ification. In our solution without use of causality, that won’t be the case. When the

operation is sent to modify the data of the CRDT, the information about the permissions

is sent with it, propagating the permissions that don’t allow Bob to make read opera-

tions. Of course the system cannot protect that data from Bob for the rest of the time,

since another subject with adequate permissions may give again the permissions to Bob

to be able to make reading operations, but that already follows the expected semantics

of a system with access control.

It should be also remembered that in current applications there is a strong rejection

about using causal consistency because of it’s associated overheads, meaning that a

more general approach that can be applied to weak eventual consistent systems may be

a better choice since it is more used in the real application use-cases.

With all this in mind, we show that it is possible to provide an access control under

weak consistency without having to rely on any form of a stronger consistency. It was

also discussed how causal consistency can also achieve this objective when we are refer-

ring to order of operations, although this was not our objective since our focus was to

present a solution that can be integrated in a system with weak consistency which is the

most used model.

4.5 Summary

In this chapter it is demonstrated the implementation adopted to tackle the issues

described in the end of the previous chapter.

57

CHAPTER 4. IMPLEMENTATION

First of all there is a description on how the CRDTs work, and how the convergence

of data is achieved. This is an important point of our work, since the use of special data

types to achieve convergence is the building block of our solution. After, it is presented

the discussion on how to apply access control to those data types.

The following topics in this chapter consist in the solutions given to solve the prob-

lems discussed in the end of Chapter 3, consisting in multiple methods to guarantee

special secure guarantees and showing it’s implementation and explaining their opera-

tion.

58

C
h
a
p
t
e
r

5
Evaluation

In our solution we implement a system that doesn’t restrict any of the properties of a

weakly consistent system, only adding a small overhead in the propagation of operations

that change data, making it also propagate the access control list. An evaluation about

this overhead was also added, so it is possible to know how this mechanism affects the

size of the messages used to propagate write operations.

In comparison to a system that uses strong consistency, our system will have a better

performance since it avoids the burden of strong coordination among replicas and it is

well known that a weakly consistent system has a better availability and lower latency

than a strong consistency systems.

Also comparing to an hybrid system (data with weak consistency and policies with

strong consistency), our system will follow the performance of the hybrid under a low

amount of policy changes adding only some overhead because of the size of the messages

transmitted, but will perform better under a high amount of policy changes.

In relation to systems that provide causality guarantees, it should be reminded the

comparison between our system using causal guarantees and without (described in sec-

tion 4.4.3). However the big difference between these systems is the cost of adding causal

consistency, which because of this fact are less used in the industry, making our solution

more fit to already existing solutions commonly found in real world deployments.

In the following sections the different evaluation and tests on our solution are pre-

sented. In this tests we only use one executing replica of the data storage system, and

59

CHAPTER 5. EVALUATION

simulate multiple other replicas that generate DownstreamOperations to this replica

(the other multiple replicas are emulated using testing tools of the Antidote system). In

this tests we use subjects that will be described in each test. This users are introduced

directly in the operations without any need for authentication, since in this case we are

focusing only in the correctness of the system, and not on the application in which it

will be used. The permissions given to the users are incremental, being able to have

permissions such as read so that they can read the data, write in which it is added

the possibility to write in the data of the CRDT but not on his policies, writeplus that

adds the capability of modifying the access control policies of the CRDT and own in

which is added the possibility to delete the object.

These tests were performed using emulated multiple replicas that had the objective

of producing DownstreamOperations to a single real replica, so it is possible to control

it’s state and see the results of the experience and document them and assess if it be-

haves as it should, following the semantics already described in this dissertation, in an

environment in which we can actually force the existence of the problems described,

such as multiple concurrent modifications to data and access control policies and the

existence of disordered, data and access control policies, write operations.

The following sections are split into two different type of evaluations. The first con-

sists in tests to evaluate the correctness of our solution given the issues discussed in this

dissertation. The latter consists in an evaluation to measure the overhead introduced

by those same solutions.

5.1 Correctness Tests

To properly evaluate our approach, the first step was to verify if the properties described

in the previous sections were verified. In this section we validate our approach executing

a set of operations, using them to perform correctness tests. These correctness tests

will give the notion if the solutions previously presented, follows the discussed secure

properties of how an access control system with weak consistency should behave.

The evaluation was performed by comparing our secure CRDTs described in this

dissertation (with it’s secure properties) and the regular CRDTs (with no access control),

so that it is possible to compare the result both output in similar executions and which

one follows the access control semantics defined in this dissertation. The CRDTs used

in the evaluation consist in secure-pncounter-crdts. In both we compare the result also

using assertions that force the systems to respect the desired state the system should

have at each time and reporting if that doesn’t occur.

60

5.1. CORRECTNESS TESTS

The tests that were performed are split into three categories, under a sequential

flow of operations where operations are seen in all replicas in the same order, under a

sequential flow but where the operations reach another replica disordered and under

concurrent operations.

The tables ’Operations’ columns on this section consist as follows:

Replica Represents the replica where the operation is being executed and the identifier

of the operation. If the replica name is followed by the number of an operation it

means that same was an UpstreamOperation, otherwise it’s a result of receiving

an DownstreamOperation and updating it’s value;

Subject Represents the Subject performing the operation. The possible values are

the identifier of the subject or Update (if it consists in a DownstreamOperation

update);

Operation Represents the operation being issued. The possible values are the opera-

tion or the update with the identifier of the original operation that created the

DownstreamOperation received;

Object Value on the Replica Represents the local value of the object.

The tables ’Results’ on this section consist as follow:

Operation The number of operation in the table ’Operations’ in the column 1, in which

the assertion was made;

Assertion The assertion that was made;

Secure CRDT result The result in our secure CRDT;

Normal Data Type Result The result in a normal CRDT.

This are the contents of the tables that will be present and discussed in the next

subsections.

61

CHAPTER 5. EVALUATION

Table 5.1: Operations: Sequential Operations Test

Replica Subject Operation Object Value on the Replica

1- R1 (Op1) Alice Increment: 3 {0,0,[{"Alice",[read,write,writeplus,own]}, {"Bob",[]}]}
2- R2 Update Update de 1 {3,0,[{"Alice", [read,write,writeplus,own]}, {"Bob",[]}]}
3 - R1 (Op2) Alice Decrement: 8 {3,0,[{"Alice", [read,write,writeplus,own]}, {"Bob",[]}]}
4 - R2 Update Update de 3 {3,8[{"Alice", [read,write,writeplus,own]}, {"Bob",[]}]}

Table 5.2: Result: Sequential Operations Result

Operation Assertion Secure CRDT result Normal Data Type Result
2 AssertEqual value(Bob) == [] Ok Ok
4 AssertEqual value_counter() == 3 Ok Ok
6 AssertEqual value_counter() == -5 Ok Ok

Table 5.3: Operations: Sequential Operations Test with Revocation

Replica Subject Opertation Object Value on the Replica

1- R1 (Op1) Alice Increment: 5 {0,0,[{"Alice",[read,write,writeplus,own]}, {"Bob",[read,write]}]}
2- R2 Update Update de 1 {5,0,[{"Alice", [read,write,writeplus,own]}, {"Bob",[read,write]}]}
3 - R1 (Op2) Alice Change Policy: {"Bob",[read]} {5,0,[{"Alice", [read,write,writeplus,own]}, {"Bob",[read,write]}]}
4 - R2 Update Update de 3 {5,0,[{"Alice", [read,write,writeplus,own]}, {"Bob",[read]}]}
5 - R2 (Op3) Bob Increment: 3 {5,0,[{"Alice", [read,write,writeplus,own]}, {"Bob",[read]}]}
6 - R1 Update UpdateValue {5,0,[{"Alice", [read,write,writeplus,own]}, {"Bob",[read]}]}

5.1.1 Sequential Operations

The first two tests (Table 5.1 and Table 5.3) and their respective assertion values (Ta-

ble 5.2 and Table 5.4), show the results in a stable network, where all the operations are

sequential and maintain their order.

The objective in this tests was to verify if our solution would perform correctly under

a normal sequential execution.

In the first test, we start by performing an increment issued by Alice on replica R1.

Afterwards Alice issues a new operation in this case consisting in an decrement. Both

these operation were sequential, meaning that they were seen in the same order in R1

and R2.

As we can see in the results table Table 5.2, both CRDTs were able to deal with

sequential operations, even without any assurance of special access control policies,

which was expected since only in concurrent operations the normal data type should

show incorrect behavior.

To be sure that sequential operations wouldn’t create an incorrect behavior on the

normal data type, we made again tests with sequential operations, but in this case we

62

5.1. CORRECTNESS TESTS

Table 5.4: Results: Sequential Operations Test with Revocation

Operation Assertion Secure CRDT Result Normal Data Type Result
2 AssertEqual value(Bob) == [read,write] Ok Ok
4 AssertEqual value(Bob) == [read] Ok Ok
6 AssertEqual value_counter() == 5 Ok Ok
8 AssertEqual value(Bob) == [read] Ok Ok

Table 5.5: Operations: Disordered Operations

Replica Subject Operation Object Value on the Replica

1-R1 (Op1) Alice Mudança Policica: {"Bob", []} {0, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, [read, write]}]}
2-R1 Update Update de 1 {0, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, []}]}
3-R1 (Op2) Alice Increment: 3 {0, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, []}]}
4-R1 Update Update de 3 {3, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, []}]}
5-R2 Update Update de 3 {3, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, [???]}]}
6-R2 (Op3) Bob Read Operation on the Object {3, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, [???]}]}
7-R2 Update Update de 1 {3, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, [???]}]}

Table 5.6: Results: Disordered Operations

Operation Asserton Secure CRDT Result Normal Data Type Result

5 AssertEqual value(Bob) == [] Ok AssertEqualFailed - expected []; value(Bob) = [read,write]
6 AssertEqual value(Bob) == [] Ok AssertEqualFailed - expected []; value(Bob) = [read,write]

revoked write properties of an user to verify if it would take effect. This can be seen in

Table 5.3) where in operation Op2 Alice removes the permissions for "Bob" to perform

write operations. As seen in the table results 5.4, both the data types worked as it should,

meaning that it was confirmed that under sequential operations there was no need for

additional security guarantees.

5.1.2 Disordered Operations

The previous tests showed that both solutions worked in an environment where the

updates would be executed in a similar way. The next step in the correction tests was to

force sequential operations to reach the other replica in a different order and evaluate

if it allowed any data leakage in any of the data types. This test allowed us to verify

the correctness of the system under a scenario where operations could reach another

replica out of order, for example, Alice could perform a revocation operation and after

an increment operation (locally), and the opposite being verified in another replica,

which would leave the increment operation available for moments to the user to which

Alice removed the permissions.

63

CHAPTER 5. EVALUATION

This test (Table 5.5 was performed using 2 replicas, as represented in Figure 3.5.

The initial state of our object is {0,0, [{"Alice", [read,write,writeplus, own]}, {"Bob", [read,

write]}]}. This means that in this object, we start with the following permissions. Alice

can read the object, write on his data, write on the access control policies of the object

and also delete the object. Bob in other hand, is only able to read the object and write

on the data of the object.

In this case the objective is to verify if Bob can observe the new value of the CRDT by

Alice after she had made the operation of removing the read capacity to Bob. As shown

in the Figure 3.5, Alice executes its operations in replica R1 and Bob on the replica R2.

To test this we start by performing the operation of Alice removing the permis-

sions of Bob (Op1) to make read operations which is executed locally and subsequent

DownstreamOperations are created to send to the other replica. In this case before we

allowed that operation to reach replica R2 we made Alice perform a new operation

consisting in increment the CRDT (Op2). To test if information leakage was possible

we made it so that Op2 would reach replica R2 first than replica Op1, and between

them Bob would perform a read operation Op3. The objective was to evaluate if Bob

should be able to see the state of the object that had been incremented by Alice. As

discussed in the previous chapters, a correct access control should not allow for Bob

to see the new update of Alice, since as far as she knows she removed the permissions

before submitting the new operation, believing that Bob wouldn’t be able to observe it.

In the assertions Table 5.6, we can verify that there is a distinct result to this flow

of execution in both data types. The assertion checks if at the time Bob performs the

read operation he locally has the permissions to do it. In a normal data type he has

the permissions, since the revocation of permissions only arrives at R2 after Bob has

performed the read operation, allowing for leakage of information. However in our

secure CRDT and due to policies being propagated with the data and afterwards the

minimum of policies being calculated, we get the result consists in Bob being unable

to read the object and with this, the new increment performed by Alice, performing

correctly.

This is due to our secure system sending the permissions with the data, which

means that when the Alice increment operation reaches R2, it already contains an

entry that states that Bob has no permissions. When the evaluation to check if Bob has

permissions enters in effect Bob has two different permissions read and empty, to which

the restrictive minimum policy will return empty, not allowing Bob to perform the read

operation.

64

5.1. CORRECTNESS TESTS

Table 5.7: Operations: Concurrent Modification of Policies Test

Replica Subject Operation Object Value on Replica

1-R1 (Op1) Alice Mudança politica: {"Bob", []} {0, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, [read, write]}]}
2-R1 Update Update de 1 {0, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, []}]}
3-R3 (Op2) John Mudança politica: {“Bob”, [read]} {0, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, [read, write]}]}
4-R3 Update Update de 3 {0, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, [read]}]}
5-R1 Alice Incremento: 3 {0, 0, [{“Alice”, [read, write, writeplus, own]}, {“Bob”, []}]}.
6-R1 Update Update de 5 {3, 0, [{“Alice”, [read, write, writeplus, own]}, {“Bob”, []}]}.
7-R2 Update Update de 1 {0, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, []}]}
8-R2 Update Update de 3 {0, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, [???]}]}
9-R2 Update Update de 5 {3, 0, [{“Alice”, [read, write, writeplus, own]}, {“Bob”, [???]}]}.
10-R2 (Op3) Bob Leitura sobre objeto {3, 0, [{“Alice”„[read, write, writeplus, own]}, {“Bob”, [???]}]}

Table 5.8: Results: Concurrent Modification of Policies Test

Operation Assertion Secure CRDT Result Normal Data Type Result

8 AssertEqual value(Bob) == [] Ok AssertEqualFailed - expected []; value(Bob) = [read]
10 AssertEqual value(Bob) == [] Ok AssertEqualFailed - expected []; value(Bob) = [read]

5.1.3 Concurrent Operations

The previous tests showed that both solutions worked in an environment where the

updates would be executed in a similar way, and that only our solution would protect

leakage of data when operations arrive to other replicas in an disordered manner. The

next step in the correction tests was to force concurrent modifications of policy rights to

verify which would be the final result. This test allowed us to verify the correctness of

the system under a scenario where two different principals would perform operations

to change the permissions of another principal and evaluate if it was possible to exist

leakage of information.

The initial state of the target object is {0,0, [{"Alice", [read,write,writeplus,own]},
{"Bob", [read,write]}, {"John", [read,write,writeplus,own]}.

The operations that were performed are described in Table 5.7, following the same

structure as the one presented before in the Table 5.5. To test this we resort to the

example illustrated in Figure 3.6 in which exists a concurrent modification of the access

control policies of Bob (replica R1 and R3). In this example, Alice performs an increment

operation after removing the read permissions Bob previously had in R1, and another

user John in replica R3 performs concurrently to the operations of Alice, an operation

that allows Bob to perform reading operations. After that Bob tries to observe the state

of the object in R2. In this case the operation of removing the permissions of Bob

performed by Alice is the first operation reaching R2, afterwards the operation adding

65

CHAPTER 5. EVALUATION

permissions to Bob performed by John arrives to replica R2 and only in the end the

increment operation performed by Alice will reach the replica R2 which is followed by

a read performed by Bob.

In this case the main concern is the value present in the replica R2 after the execu-

tion of the sixth operation (when the increment arrives to replica R2). As previously

discussed, the expected the result in a correct access control system should be the deny

of permissions on his read operation, since Alice removes the permissions of Bob and

makes the increment knowing that Bob shouldn’t be able to see her modifications.

The Table 5.8 shows the assertions used to test this case and the results achieved

using our secure solution and native CRDTs that don’t provide our secure properties.

The table structure follows that one already described for Table 5.6. In this case the

assertions consisted mainly in verifying the state of the read permissions of Bob when

he tried to perform the read Operation (Op3). In a normal data type, Bob has the

read permissions, this happens due to the update performed by John being the last

to arrive to R2, which in a normal data type will be the value that will stay in the

object. However, the same is not verified using our secure CRDTs. This happens due

to the detection of concurrent updates and also to the use of a restrictive minimum

policy. When the update of policy from John reaches the replica R2, it realizes that John

and Alice operations were performed without knowing the other intention, and with

this it will keep both policy values in store. Afterwards when Bob tries to perform a

read operation the minimum value of policy will be calculated and the more restrictive

permissions of Alice will win, not allowing Bob to perform the read, respecting the

correct behavior of an access control system.

Has shown in Tabels 5.6 and 5.8 and its tests, by using our solution, the system

always behave correctly, following the semantics of how a system with access con-

trol should behave, never allowing the leakage of information of the modifications

performed by Alice. Systems that only use native CRDTs and with no extra security

guarantees, on contrary, show their weaknesses for example in this case, by allowing

Bob to read updates that he shouldn’t be allowed to, clearly demonstrating the dan-

gers of privacy inherent to data storage systems that operate under the model of weak

consistency.

5.2 Overhead

To give a better overview of our system we also conducted evaluation to measure the

overhead introduced by our solution, consisting in tests to check the amount of time

66

5.2. OVERHEAD

operations took to execute and the size of the messages exchanged between replicas.

To test the amount of overhead introduced to the update operations in terms of

execution time, we measured the average of the execution time of an update function

consisting in the increment by four of the CRDT. In this case the measurement was

made using microseconds, where on average and median, the time it took to complete

the operations was close to 0 mics, having only a peak max value of 12 mics. In the

same test for the generate downstream operation, the results were an average of 2 mics

and median 1 mics. In both this tests, the multiple operations to be able to give us

a median and average and a good comparing state, were performed in 50000 mics.

Doing the same with a CRDT that doesn’t provide our secure properties also gives us

the result of an average 2 mics and median 1 mic, showing negligible overhead to our

solution. Comparing to a solution without access control policies (meaning the use of

a simple CRDT that doesn’t provide access control restrictions) the result of generate

downstream operation changes to a median of 1 mics and an average of also 1 mics,

showing that the overhead on the execution level is not too high.

Figure 5.1: Message Size on Data Updates

To evaluate the difference of the message size, two different charts were made, the

first giving the message size of data operations (in a counter the increment and decre-

ment operations) and the latter giving the message size of policy operations. On both

67

CHAPTER 5. EVALUATION

Figure 5.2: Message Size on Policy Updates

evaluations the Y-axis represents the result of the operations erts debug:size, that repre-

sent the words needed in erlang.

The first set of results is represented in the Figure 5.1. As mentioned on this thesis,

the way to prevent unauthorized access to data was to propagate the information on

the policies at the time the operation was done on the replica in which the request

originated. This makes the size of the message propagated between replicas to increase

with the amount of users existing in the system. As shown in the results in the Figure

5.1 an increase of the number of users drastically increases the size of messages. In

systems that have a large amount of users, the system should use group names instead

of user names, becoming a system closer related to a Role Based Access Control, that

will reduce the message size drastically. To this test we used erlang command erts

debug:size to measure the size of the operations propagated in words.

This is verified due to the fact that our CRDTs propagate the current policies when

performing an operation that modifies the state of the data (not the permissions).

This means that our solution produces an high overhead that increases with the

number of new users that join the system making our solution viable only if we take

advantage of a model closer to a Role Based Access Control where users are grouped,

meaning less identifiers and less message size.

The second evaluation is represented in the Figure 5.2. In this case we evaluate the

size of the messages when a policy change is made (when there is a set right operation).

68

5.3. SUMMARY

In this case we only propagate with the operation the state of the rights of the user we

are changing the rights. This means that there are only four different possible values.

In the Figure 5.2 it is represented the size of messages when there is a propagation of a

change of policy rights on a user in which before had been target of n concurrent policy

operations, where n is captured in the X axis (1 to 4).

This means our solution will provide a negligible overhead to operations that change

the access control policies, which in addition to the time tests performed, make it a

good solution in systems that have a large amount of change of policies operations. This

however goes against what is verified in 5.1, since usually a system with a large number

of policy updates will only happen in a system that has a large number of users, which

makes data operations costly in message size.

5.3 Summary

In this section we were able to prove with correctness tests that our solution could

perform so that no leakage of information was possible, and with this fully protect the

users from situations where it’s sensible information could be temporarily available to

unauthorized users.

Also the evaluations performed to verify the overhead introduced were conclusive

in a way that showed our solution only introduced a reasonable overhead to the message

size of operations that modify the data (not the policies). Although as discussed this can

be attenuated by using a model closer to Role-Based Access Control, where each user is

classified into a group and only those groups identifiers have permissions.

In Summary our solution offers the desirable security guarantees while adding only

a partial overhead to what precious already existed (and that does not provide the

desirable security guarantees).

69

C
h
a
p
t
e
r

6
Conclusion

In this dissertation we tackled the challenges associated with access control in the con-

text of data storage systems that offer weak consistency. This systems are extremely

relevant due to the proliferation of geo-replicated systems that support most of the

large scale systems nowadays. Our main objective was to produce a way to provide

access control in the most correct way possible and supporting properties that would

make an access control to be viable in the real world scenarios, without the necessity to

provide stronger consistency properties which are both more costly and less used in the

industry.

Contrarily to other alternatives, we don’t need guarantees of causal propagation or

stronger forms of consistency, since we integrate the policies directly at the object level

in the data storage system, also giving enough granularity to be able to control the

access to each specific object. Our evaluation shows that our approach, integrated in

the Antidote system, provides the desired properties for a mechanism of access control.

The evaluation was more centered on verifying the correctness of the system, since it is

already know that stronger consistency properties make the system less available, and

the goal of our work was to make sure that even with the addition of access control

policies we wouldn’t disrupt the advantages of using a system with weak consistency

such as the improved availability and lower latency of operations.

As it was mentioned in the topic of access control on a peer-to-peer environment, we

can in the future extend this mechanism of access control to be able to achieve a correct

71

CHAPTER 6. CONCLUSION

(and trustful) execution in environments where the replication of data is extended as

to include the clients, with capacity of propagating operations between them. In this

dissertation we already give an introduction to this systems and discuss alternatives to

solve the issues they bring, however the implementation and evaluation in this scenario

will be addressed as future work.

An example of a system that behaves as described is the Legion system [20], which

tries to enrich the form of how the web applications are constructed, offering a direct

interaction between clients to increase the availability and lower the latency in the prop-

agation of operations, creating a peer-to-peer network between clients in a transparent

fashion.

Publications:

Part of the results in this dissertation were published in the following publications:

Controlo de Acessos em Sistemas com Consistência Fraca Tiago Costa, Albert Linde,

Nuno Preguiça e João Leitão. Actas do oitavo Simpósio de Informática, Lisboa, Portugal,

September, 2016.

72

Bibliography

[1] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça,

and M. Shapiro. “Cure: Strong semantics meets high availability and low latency”.

In: Proc. 36th IEEE International Conference on Distributed Computing Systems
(ICDCS 2016). June 2016.

[2] S. Almeida, J. Leitão, and L. Rodrigues. “ChainReaction: A Causal+ Consistent

Datastore Based on Chain Replication”. In: Proceedings of the 8th ACM European
Conference on Computer Systems. EuroSys ’13. 2013, pp. 85–98.

[3] S. A. Baset and H. Schulzrinne. “An analysis of the skype peer-to-peer internet

telephony protocol”. In: arXiv preprint cs/0412017 (2004).

[4] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A.

Gubarev, C. Heiser, P. Hochschild, et al. “Spanner: Google’s globally distributed

database”. In: ACM Transactions on Computer Systems (TOCS) 31.3 (2013), p. 8.

[5] Couchbase. Couchbase. url: http://www.couchbase.com/.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: amazon’s highly avail-

able key-value store”. In: ACM SIGOPS Operating Systems Review. Vol. 41. 6.

ACM. 2007, pp. 205–220.

[7] Douwiki. ACL. url: https://www.dokuwiki.org/acl.

[8] D. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-based access control. Artech

House, 2003.

[9] M. Frank. What is RBAC? url: http://www.mariofrank.net/rolemining.html.

[10] N. Hayashibara, X. Defago, R. Yared, and T. Katayama. “The ϕ accrual failure

detector”. In: Reliable Distributed Systems, 2004. Proceedings of the 23rd IEEE
International Symposium on. IEEE. 2004, pp. 66–78.

73

http://www.couchbase.com/
https://www.dokuwiki.org/acl
http://www.mariofrank.net/rolemining.html

BIBLIOGRAPHY

[11] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M. Cogdell, A.

Schnitzer, K. Sandlin, R. Miller, K. Scarfone, et al. “Guide to attribute based

access control (ABAC) definition and considerations (draft)”. In: NIST Special
Publication 800 (2013), p. 162.

[12] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo. “Attribute-based access control”. In:

Computer 2 (2015), pp. 85–88.

[13] A. Imine, A. Cherif, and M. Rusinowitch. “A flexible access control model for

distributed collaborative editors”. In: Workshop on Secure Data Management.
Springer. 2009, pp. 89–106.

[14] X. Jin, R. Sandhu, and R. Krishnan. “RABAC: role-centric attribute-based access

control”. In: Computer Network Security. Springer, 2012, pp. 84–96.

[15] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin. “Con-

sistent hashing and random trees: Distributed caching protocols for relieving hot

spots on the World Wide Web”. In: Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing. ACM. 1997, pp. 654–663.

[16] R. Klophaus. “Riak core: building distributed applications without shared state”.

In: ACM SIGPLAN Commercial Users of Functional Programming. ACM. 2010,

p. 14.

[17] R. Kohavi and R. Longbotham. “Online experiments: Lessons learned”. In: Com-
puter 40.9 (2007), pp. 103–105.

[18] A. Lakshman and P. Malik. “Cassandra: a decentralized structured storage sys-

tem”. In: ACM SIGOPS Operating Systems Review 44.2 (2010), pp. 35–40.

[19] J. Li. Distributed Systems - Lec 12: Consistency Models – Sequential, Causal, and
Eventual Consistency. url: http://www.cs.columbia.edu/~roxana/teaching/

DistributedSystemsF12/lectures/lec12.pdf.

[20] A. Linde. “Enriching Web Applications with Browser-to-Browser Communica-

tion”. MA thesis. Faculdade Ciência e Tecnologia, Universidade Nova de Lisboa,

July 2015.

[21] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. “Don’T Settle

for Eventual: Scalable Causal Consistency for Wide-area Storage with COPS”.

In: Proc. of the 23rd ACM Symposium on Operating Systems Principles. SOSP ’11.

Cascais, Portugal, 2011, pp. 401–416. isbn: 978-1-4503-0977-6.

[22] L.Naspter. Napster. url: http://www.napster.com.

74

http://www.cs.columbia.edu/~roxana/teaching/DistributedSystemsF12/lectures/lec12.pdf
http://www.cs.columbia.edu/~roxana/teaching/DistributedSystemsF12/lectures/lec12.pdf
http://www.napster.com

BIBLIOGRAPHY

[23] MongoDB. MongoDB. url: https://www.mongodb.com/.

[24] G. Oster, P. Urso, P. Molli, and A. Imine. “Proving correctness of transformation

functions in collaborative editing systems”. In: (2005).

[25] Riak. Riak KV. url: http://basho.com/products/riak-kv/.

[26] R. Rodrigues and P. Druschel. “Peer-to-peer systems”. In: Communications of the
ACM 53.10 (2010), pp. 72–82.

[27] P. Samarati and S. D. C. Di Vimercati. “Access control: Policies, models, and

mechanisms”. In: Lecture notes in computer science (2001), pp. 137–196.

[28] R. S. Sandhu. “Role-based access control”. In: Advances in computers 46 (1998),

pp. 237–286.

[29] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. “A comprehensive study

of convergent and commutative replicated data types”. PhD thesis. Inria–Centre

Paris-Rocquencourt, 2011.

[30] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. “Conflict-free replicated

data types”. In: Stabilization, Safety, and Security of Distributed Systems. Springer,

2011, pp. 386–400.

[31] S. Simon. “Brewer’s CAP Theorem”. In: ().

[32] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord:

A scalable peer-to-peer lookup service for internet applications”. In: ACM SIG-
COMM Computer Communication Review 31.4 (2001), pp. 149–160.

[33] H. Tran, M. Hitchens, V. Varadharajan, and P. Watters. “A trust based access con-

trol framework for P2P file-sharing systems”. In: System Sciences, 2005. HICSS’05.
Proceedings of the 38th Annual Hawaii International Conference on. IEEE. 2005,

pp. 302c–302c.

[34] S. University. Capability-Based Access Control. url: http://www.cis.syr.edu/

~wedu/Teaching/CompSec/LectureNotes_New/Capability.pdf.

[35] R. Van Renesse, D. Dumitriu, V. Gough, and C. Thomas. “Efficient reconciliation

and flow control for anti-entropy protocols”. In: proceedings of the 2nd Workshop
on Large-Scale Distributed Systems and Middleware. ACM. 2008, p. 6.

[36] W. Vogels. “Eventually consistent”. In: Communications of the ACM 52.1 (2009),

pp. 40–44.

[37] L. Vu, I. Gupta, J. Liang, and K. Nahrstedt. Insights into PPLive: A Measurement
Study of a Large-Scale P2P IPTV System. Tech. rep. Technical report, 2005.

75

https://www.mongodb.com/
http://basho.com/products/riak-kv/
http://www.cis.syr.edu/~wedu/Teaching/CompSec/LectureNotes_New/Capability.pdf
http://www.cis.syr.edu/~wedu/Teaching/CompSec/LectureNotes_New/Capability.pdf

BIBLIOGRAPHY

[38] M. Weber, A. Bieniusa, and A. Poetzsch-Heffter. “Access Control for Weakly

Consistent Cloud-Storage Systems”. Submitted for publication. 2016.

[39] Wikipedia. Bittorrent(protocol). url: http://en.wikipedia.org/wiki/BitTorrent_

(protocol)#Adoption.

[40] Wikipedia. Peer-to-peer. url: http://en.wikipedia.org/wiki/Peer-to-peer.

[41] T. Wobber, T. L. Rodeheffer, and D. B. Terry. “Policy-based access control for

weakly consistent replication”. In: Proceedings of the 5th European conference on
Computer systems. ACM. 2010, pp. 293–306.

[42] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. “CoolStreaming/DONet: a data-driven

overlay network for peer-to-peer live media streaming”. In: INFOCOM 2005.
24th Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE. Vol. 3. IEEE. 2005, pp. 2102–2111.

76

http://en.wikipedia.org/wiki/BitTorrent_(protocol)#Adoption
http://en.wikipedia.org/wiki/BitTorrent_(protocol)#Adoption
http://en.wikipedia.org/wiki/Peer-to-peer

A
p
p
e
n
d
i
x

A
Appendix

Algorithm 5 Update Operation Adding Right

1: procedure update(Op,s,currentP olicy)
2: oldP olicy←Op.policies
3: right←Op.right
4: if oldP olicy == currentP olicy then
5: policies.removeRights(s)
6: policies.addRight(s, right)
7: else
8: policies.addRight(s, right)
9: end if

10: end procedure

Algorithm 6 CRDT pn-counter data type

1: {increment,decrement,policies}
2: increment← Integer
3: decrement← Integer
4: policies←Dictionary({subject, rights}, Identif ierT oken)
5: subject← String
6: rights← Setwithpossiblevalues[read,write,writeplus,own]

77

APPENDIX A. APPENDIX

Algorithm 7 GenerateDownstreamOperation pn-counter

Ensure: FinalOp! = {NoP ermissions}if f !policies.contains(s, r)
1: procedure Generate-Downstream-Operation(Op,s)
2: if op.equal(Increment ∪Decrement) then
3: if hasP ermissions(write, s,policies) then
4: Return NewDownstreamCountOp

5: else
6: Return NoP ermissions
7: end if
8: else//op.equal(Set −Right)
9: if hasP ermissions(writeplus, s,policies) then

10: Return NewDownstreamRightOp + policies
11: else
12: Return NoP ermissions
13: end if
14: end if
15: end procedure

Algorithm 8 Method to check if user has permission

1: procedure hasP ermissions(right,s,policies)
2: newList← [read,write,writeplus,own]
3: count← 0
4: for each entry i in policies do
5: if i.subject == s then
6: newList← intersection(i.rights,newList)
7: count + +
8: end if
9: end for

10: if count == 0 then
11: returnf alse
12: else
13: if newList.isElement(right) then
14: returntrue
15: else
16: returnf alse
17: end if
18: end if
19: end procedure

78

20
16

A
cc

es
s

C
on

tr
ol

in
W

ea
k

ly
C

on
si

st
en

t
Sy

st
em

s
T

ia
go

C
os

ta

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Description
	Document Organization

	Related Work
	Access Control
	Access Control List (ACL)
	Role-Based Access Control (RBAC)
	Attribute-Based Access Control (ABAC)
	Capability-Based Access Control
	Divergence Issues for Weakly Consistent Replication
	Access Control Model for Distributed Collaborative Editors

	Data Storage Systems
	Consistency
	Conflict Resolution techniques
	Examples of Data Storage Systems

	Peer-to-Peer
	Overlay Networks
	Example peer-to-peer overlay networks
	Access Control Basic requirements on a P2P system

	Geo-Replicated systems that use some sort of access control
	Data storage systems with eventual consistency
	Systems without mutual trust
	Systems with causal consistency

	Summary

	Theoretical Model
	Convergence on a Weakly Consistent Model
	System Model
	Policies and Trust Model

	Access Control Semantics
	Inconsistency Challenges
	Concurrent update on the access control policies

	Client to Client Communication Model
	Summary

	Implementation
	Data Object
	Applying Access Control to the Original Data Object

	Concurrent Updates Detection
	Restrictive Minimum Permissions
	Operation Ordering Challenge
	Without Causality
	With the Use of Causality
	Causality vs No Causality

	Summary

	Evaluation
	Correctness Tests
	Sequential Operations
	Disordered Operations
	Concurrent Operations

	Overhead
	Summary

	Conclusion
	Bibliography
	Appendix

