
Sara Russo Rosa

Licenciada em Ciência e Engenharia Informática

A Rule-based Engine to support a Framework for
the Experimental Validation of Domain Specific

Languages

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

Orientador: Prof. Dr. Vasco Miguel Moreira Amaral,
Prof. Auxiliar, Universidade Nova de Lisboa

Co-orientador: Prof. Dr. Miguel Carlos Pacheco Afonso Goulão,
Prof. Auxiliar, Universidade Nova de Lisboa

Júri

Presidente: Prof. Dr. Carlos Augusto Isaac Piló Viegas Damásio
Arguente: Prof. Dr. João Carlos Pascoal de Faria

Vogal: Prof. Dr. Vasco Miguel Moreira Amaral

Setembro, 2017

A Rule-based Engine to support a Framework for the Experimental Validation
of Domain Specific Languages

Copyright © Sara Russo Rosa, Faculdade de Ciências e Tecnologia, Universidade NOVA

de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “unlthesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

Em memória dos meus avôs,
Fernando e João.

Acknowledgements

Começo por agradecer aos meus orientadores, Professores Miguel Goulão e Vasco Amaral,

e à investigadora Ankica Barišić por todo o apoio, sugestões e críticas, e pela disponibili-

dade que demonstraram ao longo da realização desta dissertação. Sem dúvida que com a

sua ajuda o trabalho tornou-se mais fácil.

Aos meus colegas que participaram nos estudos desta dissertação.

À Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, pela formação

de excelência oferecida aos alunos. E em especial ao Departamento de Informática, que

nestes anos me acolheu tão bem e se tornou na minha segunda casa.

Aos meus companheiros nesta aventura, em especial à Katia Duarte, ao Pedro Simão,

ao Tomás Rogeiro, ao Rui Teodósio e ao André Correia.

À Jessica Alegria, pelos anos de amizade. À Mariana Lourenço e ao José Sintra pelos

momentos de diversão.

Um agradecimento muito especial ao Pedro Dias, o meu principal companheiro nesta

aventura, por todo o carinho e paciência ao longo destes anos.

Por último, quero agradecer aos meus pais e a minha avó, por me terem encaminhado

ao longo destes anos, pela sua constante preocupação, e principalmente, por sempre

acreditarem no meu sucesso.

vii

Abstract

Software systems are widely used in people daily routines and responsibilities, therefore,

systems need to be developed rapidly and efficiently. Domain specific languages (DSLs)

are languages that are applied to a specific application domain. Since DSLs provide

notations and constructs adapted to a particular domain, they offer gains in expressive-

ness and ease of use when compared with general-purpose languages (GPLs). Therefore,

one of the most important steps in the Software Language Engineering is the evaluation

of the languages produced, with the end-users, since the risk of building inappropri-

ate languages, that often do not fit the end users, may decrease productivity. Although

DSLs evaluation is one of the most important steps in development process, Software
Language Engineers tend to relax the experimental validation of their products due to

several reasons like costs (time, means, money, the number of people required, etc.) and

required know-how associated with it. The lack of systematic approaches and guidelines

to evaluate DSLs, and a comprehensive set of tools may explain this shortcoming in the

current state of practice. The Usability Driven DSL development with USE-ME (USE-ME)

approach, developed in NOVA-LINCS, "promotes the quality in use of DSLs by building a
framework that leverages usability as a main concern". The feedback of the pilot studies was

that despite the approach was "more or less easy" to understand it was not easy to model,

since "there were too many steps to follow" and the framework did not provide a "guided

cycle". So, in order to improve the system usability and the quality of the models pro-

duced with USE-ME, we developed a new version of the framework with validation rules
implemented with Eclipse Validation Language (EVL) that guide, suggest and validate the

Software Language Engineer actions throughout the development process. The validation
rules were designed in such a way that the tool educates the user about the process, so

that the user makes the best decision regarding his DSL evaluation.

We performed two experiments, with different goals. The main goals of the first one

was to analyse the effect of validation rules on the USE-ME framework, with respect to

their impact on the System Usability Scale, and on the Model Correctness of USE-ME models.

We analysed the results and we found evidences of improvements on the System Usability
Scale, and on the Model Correctness of models, brought by the addition of the rules. The

second experiment was conducted with a research team from Ege University, in Turkey.

The main goal of this experiment was to perform a guided evaluation on a DSL related

ix

with Multi-Agent Systems, SEA-ML. Since the number of participants was low we cannot

draw conclusions regarding this experiment.

Despite the significant results from the first experiment further evaluation on the

new version of the framework is necessary, this time, with more experienced users and

with more complex exercises. With this new experiment, we can compare the results and

improve the USE-ME framework.

Keywords: Domain Specific Languages, Languages Evaluation, Software Language En-

gineering, Tool Support, Usability, Validation Rules, Workflow-oriented tool, Rule-based

System

x

Resumo

Os sistemas de software são amplamente utilizados nas rotinas e nas responsabilidades

diárias das pessoas, desta forma, os sistemas têm de ser desenvolvidos de forma rápida e

eficiente. As Linguagens de Dominio Especifico (LDEs) são linguagens que são aplicadas

a um domínio específico. Uma vez que as LDEs fornecem notações e construções adap-

tadas a um domínio específico, oferecem ganhos na expressividade e facilidade de uso

quando comparados com as linguagens de uso geral. Uma das etapas mais importantes na

Engenharia de Software e Linguagens é a avaliação das linguagens produzidas com os utili-

zadores finais, uma vez que o risco de desenvolver linguagens inadequadas, que muitas

vezes não se adaptam aos utilizadores finais, pode diminuir produtividade. Embora a ava-

liação das LDEs seja uma das etapas mais importantes no processo de desenvolvimento,

os Engenheiros de Linguagens de Software tendem a relaxar a validação experimental dos

seus produtos devido a vários motivos (tempo, meios, dinheiro, número de pessoas ne-

cessárias, etc.) e à falta de conhecimento necessário associado a estas avaliações. A falta

de abordagens e diretrizes sistemáticas para avaliar as LDEs, e a falta de ferramentas que

suportem a avaliação podem explicar o atual estado de prática.

O Usability Driven DSL development with USE-ME (USE-ME), desenvolvido na NOVA-

LINCS, "promove a qualidade no uso de LDEs, através de uma framework que eleva a usa-
bilidade como principal artefacto" [Bar+17]. O feedback dos estudos-piloto, realizado ao

USE-ME, foi que apesar da abordagem ser "mais ou menos fácil" de entender não era fácil

de modelar, já que "haviam muitos passos a seguir" e a framework não fornecia um "ciclo de
desenvolvimento guiado". De forma a melhorar a usabilidade do sistema e a qualidade dos

modelos produzidos com o USE-ME, desenvolvemos uma nova versão da framework, com

regras de validação expressas no Eclipse Validation Language (EVL), que permitem guiar,

sugerir e validar as ações dos Engenheiros de Linguagens de Software ao longo do processo

de desenvolvimento. As regras de validação foram desenhadas de forma a que a ferramenta

eduque o utilizador sobre o processo, para que quando seja necessário tomar decisões o

utilizador escolha a mais adequada em relação à sua avaliação LDE.

Realizamos duas experiências, com diferentes objetivos. Os principais objetivos da pri-

meira experiência foram analisar o efeito das regras de validação no USE-ME, em relação

ao seu impacto na Escala de Usabilidade do Sistema e na Correção dos Modelos, produzidos

com o USE-ME. Analisamos os resultados e encontramos evidências de melhorias tanto

xi

na Escala de Usabilidade do Sistema como na Correção dos Modelos, influencidos pela adição

das regras. A segunda experiência foi conduzida com uma equipa de investigação da Ege

University, na Turquia. O principal objetivo desta experiência foi a realização de uma

avaliação guiada a uma LDE relacionada com Sistemas Multi-Agentes, SEA-ML. Como o

número de participantes foi baixo, não podemos tirar conclusões desta experiência.

Apesar de os resultados da primeira experiência serem significativos, é necessária

uma avaliação mais aprofundada da nova versão da framework, com utilizadores mais

experientes e com exercícios mais complexos. Para que, possamos comparar os resultados

e melhorar a estrutura do USE-ME.

Palavras-chave: Linguagem de Domínio Específico, Avaliação de Linguagens, Engenha-

ria de Software e Linguagens, Suporte à ferramenta, Usabilidade, Regras de validação,

Ferramenta orientada ao workflow, Sistema baseado em regras

xii

Contents

List of Figures xvii

List of Tables xix

Listings xxi

1 Introduction 1

1.1 Context and Description . 1

1.2 Motivation . 2

1.3 Objectives . 2

1.4 Key Contributions . 3

1.5 Structure . 3

2 Background 7

2.1 Domain Specific Languages . 7

2.1.1 DSLs versus GPLs . 8

2.1.2 DSLs Stakeholders . 9

2.1.3 DSLs Development Cycle . 9

2.2 Model-Driven Development . 11

2.3 Human–computer interaction . 12

2.3.1 Usability . 13

2.4 Eclipse Modelling Tools . 15

2.5 Summary . 16

3 Usability Driven DSL development with USE-ME 17

3.1 Introduction . 17

3.2 The USE-ME framework . 18

3.2.1 Architecture and Technologies . 18

3.2.2 Workflow . 19

3.2.3 Pilot Studies . 28

3.3 Summary . 29

4 Related Work 31

4.1 Tool Support for Agent Development using the Prometheus Methodology 31

xiii

CONTENTS

4.2 J-PRiM: A Java Tool for a Process Reengineering i* Methodology 32

4.3 PETIC Wizard Proposal: a Software Tool for Support PETIC Methodology 33

4.4 A Qualitative Study on User Guidance Capabilities in Product Configura-

tion Tools . 33

4.5 Business process modeling with continuous validation 34

4.6 Rule-based detection of inconsistency in UML models 35

4.7 Cognitive support, UML adherence, and XMI interchange in Argo/UML . 37

4.8 Summary . 37

5 Validation Rules Implementation 39

5.1 Implementation Alternatives . 39

5.2 Solution . 40

5.3 Validation Rules . 41

5.3.1 Rules Design . 43

5.4 Use Case Scenario . 43

5.5 Summary . 46

6 Evaluation 47

6.1 Experiment . 47

6.1.1 Goals . 47

6.1.2 Tasks . 48

6.1.3 Experimental Materials . 48

6.1.4 Participants . 49

6.1.5 Hypotheses, parameters and variables 49

6.1.6 Design . 50

6.1.7 Procedure . 50

6.1.8 Analysis procedure . 51

6.2 Results and Analysis . 51

6.2.1 SUS . 51

6.2.2 Model Correctness . 56

6.3 Discussion . 58

6.3.1 Evaluation of Results and Implications 58

6.3.2 Threats to Validity . 59

6.3.3 Inferences . 59

6.4 SEA-ML Guided Evaluation . 60

6.5 Summary . 61

7 Conclusions 63

7.1 Contributions . 63

7.2 Limitations . 64

7.3 Future Work . 64

xiv

CONTENTS

Bibliography 67

A Validation Rules 73

B USE-ME Original Version: Lego Exercise 95

C USE-ME Original Version: Smart House Exercise 103

D USE-ME New Version: Lego Exercise 111

E USE-ME New Version: Smart House Exercise 119

F Experiment Presentation 127

G Background Questionnaire 131

H Feedback Questionnaire 135

I Installation guide 139

I.1 System Requirements . 139

I.2 Download USE-ME and examples . 140

I.3 Import USE-ME . 140

I.4 Import USE-ME examples . 140

I.5 Create an USE-ME model . 141

I.6 Validate an USE-ME model . 141

xv

List of Figures

2.1 Gap between the Problem Domain and the Solution Domain, taken from [Viste]. 8

2.2 DSL life cycle, taken from [Bar+17]. 10

2.3 MDD software development, taken from [Voxte]. 12

2.4 Jacob Nielsen usability attributes, taken from [Gyrte]. 13

2.5 SUS Likert scale, adapted from [Asste]. 15

3.1 USE-ME architecture, taken from [Bar+17]. 18

3.2 USE-ME life cycle, taken from [Bar+17]. 19

3.3 USE-ME activity diagram, taken from [Bar+17]. 20

3.4 Utility class diagram, taken from [Bar+17]. 20

3.5 Context Model class diagram, taken from [Bar+17]. 21

3.6 Context Modeling activity diagram, taken from [Bar+17]. 22

3.7 Goal Model class diagram, taken from [Bar+17]. 23

3.8 Goal Modeling activity diagram, taken from [Bar+17]. 24

3.9 Evaluation Model class diagram, taken from [Bar+17]. 24

3.10 Evaluation Modeling activity diagram, taken from [Bar+17]. 25

3.11 Interaction Model class diagram, taken from [Bar+17]. 26

3.12 Interaction Modeling activity diagram, taken from [Bar+17]. 26

3.13 Survey Model class diagram, taken from [Bar+17]. 27

3.14 Survey Modeling activity diagram, taken from [Bar+17]. 27

3.15 Report Model class diagram, taken from [Bar+17]. 28

3.16 Report Modeling activity diagram, taken from [Bar+17]. 28

5.1 Concrete Syntax of EVL, adapted from [Kol+10]. 41

5.2 USE-ME framework with validation rules. 42

5.3 USE-ME activity diagram, taken from [Bar+17]. 44

5.4 Context Specification creation. 44

5.5 Context Modeling activity diagram, taken from [Bar+17]. 44

5.6 Context Model class diagram, taken from [Bar+17]. 45

5.7 The Context Specification should have a name, and must include a Context

Model. 45

6.1 Results of the difference original-new. 53

xvii

List of Figures

6.2 Results of the difference new-original. 55

xviii

List of Tables

6.1 Experimental design. 50

6.2 SUS descriptive statistics organized by experiments. 51

6.3 Wilcoxon Signed-Rank Test results organized by experiments. 52

6.4 SUS descriptive statistics organized by versions. 52

6.5 Wilcoxon Signed-Rank Test results organized by versions. 52

6.6 List of errors and warnings found in the models inspection. 57

A.1 Utility validation rules. 74

A.2 Context validation rules. 76

A.3 Goal validation rules. 81

A.4 Evaluation validation rules. 84

A.5 Interaction validation rules. 88

A.6 Survey validation rules. 91

A.7 Report validation rules. 93

xix

Listings

xxi

C
h
a
p
t
e
r

1
Introduction

In this chapter, we introduce the work carried out in this dissertation by making an overview
description of the context (section 1.1), highlighting and motivating the problem to be solved
(section 1.2). We also explain our main goal (section 1.3) and the contributions of this disser-
tation (section 1.4). The chapter ends with a presentation on the structure of this document
(section 1.5).

1.1 Context and Description

Software systems are widely used in people daily routines and responsibilities, therefore,

systems need to be developed rapidly and efficiently, in order to match the users mental

model of the problems. Domain specific languages (DSLs) are languages that are applied

to a specific application domain. These languages are designed to bridge the gap between

the Problem Domain (essential concepts, domain knowledge, techniques, and paradigms)

and the Solution Domain (technical space, middleware, platforms and programming

languages) [Vö+13]. Since DSLs provide notations and constructs adapted to a particular

domain, they offer gains in expressiveness and ease of use when compared with general-

purpose languages (GPLs) [Mer+05].

Software Language Engineering (SLE) "is the application of a systematic, disciplined
and quantifiable approach to the development, usage, and maintenance of software languages"
[Rad+90]. One of the most important steps in the SLE is the evaluation of the languages

produced with the end users, since the risk of building inappropriate languages, that

often do not fit the end users, may decrease productivity or increase the language main-

tenance costs [Bar+12a]. Although DSLs evaluation is one of the most important steps

in development process, Software Language Engineers tend to relax the experimental

validation of their products due to several reasons like costs (time, means, money, the

1

CHAPTER 1. INTRODUCTION

number of people required, etc.) and required know-how associated with it. The lack of

systematic approaches and guidelines to evaluate DSLs, and a comprehensive set of tools

may explain this shortcoming in the current state of practice. These concerns need to

be addressed from early stages of the DSL development cycle in order to enable practi-

tioners to perform timely evaluations, rather than designing the complete DSL before the

implementation.

1.2 Motivation

A well designed DSL is based on a thorough understanding of the application domain,

since these languages are expected to be used by groups that are more familiar with

domain concepts. So, there is a need to involve language stakeholders (i.e. Software Lan-

guage Engineers, Domain Experts and End Users) in the process, as it allows to increase

end users productivity and product quality. As we mentioned in the previous section

1.1, Software Language Engineers lack the validation of their languages with the end users.

Based on the lack of systematic approaches and guidelines to evaluate DSLs, Ankica et al.

developed Usability Driven DSL development with USE-ME (USE-ME) in NOVA-LINCS.

The goal of this approach is to "promote quality in use of DSLs by building a framework

that leverages usability as a main concern" [Bar+17]. The DSL development with USE-

ME is composed by 6 phases performed by the SLE. During the iterate and incremental

development process the SLE defines: the DSL context of use (Context Modeling phase),

sets the DSL goals (Goal Modeling phase), organizes usability experiments (Evaluation

Modeling phase), defines interaction tasks (Interaction Modeling phase), develops survey

questionnaires (Survey Modeling phase), and collects the data from the interaction and

survey experiments (Report Modeling phase). USE-ME was tested with students, during

a DSL course, in which each student played the role of a Software Language Engineer and

developed USE-ME models in order to assess their own DSL. The feedback of the pilot

study was that despite USE-ME was "more or less easy" to understand the approach was

not easy to model since "there were too many steps to follow" and the framework did not

provide a "guided cycle". So, in order to improve the user experience with the USE-ME

framework we developed a new version of the USE-ME tool and in the next section 1.3

we present its main objectives.

1.3 Objectives

As mentioned in the previous section 1.2, the participants of the pilot studies found that

USE-ME workflow was complex, so they suggested that the tool should offer "some kind of

guidance". For that purpose, we developed a new version of the USE-ME framework with

validation rules that guides, suggests and validates the Software Language Engineer actions

throughout the development process. Some of the USE-ME activities are mandatory (e.g.
the creation of the context modeling phase is mandatory) and some are suggestions (e.g.

2

1.4. KEY CONTRIBUTIONS

the creation of the interaction and survey modeling phase is a suggestion, however, one

of these modeling activites must be created) so we need to provide to the SLE the right

information regarding the activity so that the SLE could choose what is the best option

regarding his DSL. Because of that, we decided to add to the validation rules information

about the process so that the user could learn while using the tool. Other concern with the

original USE-ME version was that not all the language syntactic rules could be expressed

in the language meta-model (i.e.), so users could create USE-ME models that were not

correct. With the addition of validation rules we can verify the models produced with

USE-ME and alert the user for errors/warnings.

In this dissertation, we evaluate the System Usability Scale and the Model Correctness of

both USE-ME versions, original (i.e. without validation rules) and new (i.e. with validation

rules). The main objective is to understand which version suits end users better.

1.4 Key Contributions

The main contribution of this dissertation is an updated version of the USE-ME frame-

work that allows to support the SLE in one of the most important steps of the Software
Language Engineering process, which is the language (i.e. DSL) evaluation. Supporting

the SLE during the evaluation process is crucial to mitigate the risk of building languages

that often do not fit the end users. With the new version of the USE-ME framework we

are able to guide, suggest and validate the SLE actions through the development process.

We also present other important contributions, such as:

• a study and an analysis on experimental evaluations of Domain Specific Languages,

and a comparison between these approaches;

• a study and an analysis on wizards/tools that are concerned with user guidance,

the quality of the models produced, increasing productivity of the end user, and to

decrease the maintenance costs;

• a discussion on the implementation alternatives, a solution and an architecture for

the prototype;

• an experiment planning, conduction, and analysis regarding the usability (mea-

sured with SUS) and the Model Correctness of the USE-ME and the Model Correctness
of the USE-ME models.

1.5 Structure

This document is organised, excluding the current chapter, in the following way:

• Chapter 2 - Background: in this chapter, we introduce the basic notions and con-

cepts that will be used throughout this dissertation. First, it is crucial to understand

3

CHAPTER 1. INTRODUCTION

the notion of Domain Specific Languages (DSLs) (section 2.1), the main difference

between DSLs and General-Purpose Languages (GPLs) (section 2.1.1), the DSLs

stakeholders (section 2.1.2) and its development cycle (section 2.1.3). In this chap-

ter, we also talk about Model-Driven Development (section 2.2), Human-computer

interaction (section 2.3), Usability (section 2.3.1), and Eclipse Modelling Tools (sec-

tion 2.4);

• Chapter 3 - Usability Driven DSL development with USE-ME: in this chapter, we

introduce the USE-ME framework. In section ?? we elaborate a state-of-the-art

regarding DSLs evaluation. In section 3.2, we present the USE-ME framework, its

domain concepts, meta-models and activity specifications. Also, in this section we

present the results regarding the USE-ME pilot studies;

• Chapter 4 - Related Work: in this chapter, we present some tools related with this

dissertation: Tool Support for Agent Development using the Prometheus Methodol-

ogy (section 4.1), J-PRiM: A Java Tool for a Process Reengineering i* Methodology

(section 4.2), PETIC Wizard Proposal: a Software Tool for Support PETIC Method-

ology (section 4.3), A Qualitative Study on User Guidance Capabilities in Product

Configuration Tools (section 4.4), Business process modeling with continuous vali-

dation (section 4.5), Rule-based detection of inconsistency in UML models (section

4.6), and Cognitive support, UML adherence, and XMI interchange in Argo/UML

(section 4.7). All these approaches are concerned with user guidance, models qual-

ity, increase productivity and decrease maintenance costs. For each approach we

provide a description, present the stakeholders involved, present its implementa-

tion, and explain how it could be applied to the USE-ME framework;

• Chapter 5 - Validation Rules Implementation: in this chapter, we discuss the imple-

mentation alternatives and the problems that were found during the USE-ME pilot

studies (section 5.1). We also describe the solution that we found to be the most

appropriate to deal with the problems described (section 5.2). Then, we explain in

more detail how we implemented the validation rules and how we integrated them

on the USE-ME framework (section 5.3). We finish this chapter by providing an use

case scenario (section 5.4);

• Chapter 6 - Evaluation: in this chapter, we report the experiment conducted (sec-

tion 6.1), including its goals (section 6.1.1), the tasks proposed (section 6.1.2), the

experiment materials (section 6.1.3), the participants (section 6.1.4), the hypotheses

(section 6.1.5), the design (section 6.1.6), the procedure (section 6.1.7), and the anal-

ysis (section 6.1.8). The results from the SUS and the Model Correctness assessment

are then analysed, in section 6.2, and discussed in section 6.3. In section 6.3.2 we

examined the validity of the process;

4

1.5. STRUCTURE

• Chapter 7 - Conclusions: in this chapter, we sum up the main contributions of this

dissertation 7.1, the limitations of our solution 7.2, and we propose future work in

order to improve the USE-ME framework 7.3.

5

C
h
a
p
t
e
r

2
Background

In this chapter, we introduce the basic notions and concepts that will be used throughout
this dissertation. First, it is crucial to understand the notion of Domain Specific Languages
(DSLs) (section 2.1), the main difference between DSLs and General-Purpose Languages (GPLs)
(section 2.1.1), the DSLs stakeholders (section 2.1.2) and its development cycle (section 2.1.3).
In this chapter, we also talk about Model-Driven Development (section 2.2), Human-computer
interaction (section 2.3), Usability (section 2.3.1), and Eclipse Modelling Tools (section 2.4).

2.1 Domain Specific Languages

Domain-specific languages (DSLs) are "programming languages or executable specification
languages that offer, through appropriate notation and abstractions, expressive power focused
on, and usually restricted to, a particular problem domain" [VD+00]. These programming

languages offer gains in expressiveness and ease of use when compared with General-

purpose languages (GPLs) since they apply to a specific domain [Bar+12b].

DSLs are designed to narrow the gap between the Problem Domain (essential concepts,

domain knowledge, techniques, and paradigms) and the Solution Domain (technical

space, middleware, platforms and programming languages) (Figure 2.1) [Vö+13]. These

types of languages are usually expressed as text or graphic diagrams, but they can also

be represented as matrices, tables, forms, or trees [KP09].

By offering domain abstractions and semantics in a more readily apparent form, DSLs

allow experts in the domain to work directly with domain concepts [KP09].

A well designed DSL is based on a thorough understanding of the application domain,

and this allows to increase end users productivity [Bar+12b].

7

CHAPTER 2. BACKGROUND

Figure 2.1: Gap between the Problem Domain and the Solution Domain, taken from
[Viste].

2.1.1 DSLs versus GPLs

General-purpose languages (GPLs) are programming languages designed to be used in

a wide variety of application domains. Unlike DSLs, these languages are not specialized

for a particular domain. GPLs are used by people that have high knowledge of technical

and computational concepts, while DSLs are expected to be used by groups that are

more familiar with the domain concepts (e.g. experts from physics, chemistry, finance,

management, etc.) [Fow10] [Bar+17].

DSLs offer several advantages when compared to GPLs [Mer+05]:

• allow to hide complexity;

• improve end users productivity;

• promote better product quality;

• are more amenable to verifications;

• increase data longevity (as independent abstractions, models are migratable);

• act as communication tools (i.e. Domain Experts themselves may understand, com-

municate, validate, modify, and often even develop DSL programs);

• enhance quality, productivity, reliability, maintainability, portability and reusabil-

ity;

• allow validation at the domain level.

However, DSLs also have some disadvantages when compared to a GPLs [Mer+05]:

• require that users learn a new language (that has limited applicability) versus using

a general language;

• have higher design, implementation, and maintenance costs;

8

2.1. DOMAIN SPECIFIC LANGUAGES

• scope is more difficult to maintain;

• are more likely to loose processor efficiency;

• are harder to modify;

• are more difficult to integrate with other components of the IT system, as compared

to integrating with GPLs;

• code examples are harder to find.

When developing a new language the DSLs advantages and disadvantages should be

compared to an existing baseline solution (often, implemented with a GPL), in order to

make the best decision regarding the stakeholder requirements.

2.1.2 DSLs Stakeholders

There are three main stakeholders, each one with different background and knowledge,

that are involved in the DSL development process:

• Language Engineer: is a professional that is an expert in the creation of software

languages. The language engineer is responsible for managing implementation

priorities, design the software language and making the language functional. To

sum up, language engineers are involved in specification, implementation, and

evaluation of the language [Kle08]. Language Engineers work with Domain Experts

to determine abstractions, notations and constraints in order to capture domain

knowledge;

• DSL End-User or Domain User: is the person that is going to use the language

developed [Kle08]. During the DSL development domain users should be involved

in the process and can propose changes in the application specifications. Not in-

volving these users in the process may result in failure to adopt the DSL, if it does

not fit the target audience [Vö+13];

• Domain Expert: is a person that has a deep knowledge of the domain. In spite

of commonly not having a strong background in software development, domain

experts work closely with language engineers in the language definition. Domain

experts are responsible for managing the system goals and iterations [Vö+13].

2.1.3 DSLs Development Cycle

A well designed DSL is hard to build since it requires both domain knowledge and lan-

guage development expertise, and a few people have both [Mer+05]. Software Language

Engineering (SLE) "is the application of a systematic, disciplined and quantifiable approach
to the development, usage, and maintenance of software languages" [Rad+90].

9

CHAPTER 2. BACKGROUND

According to Mernik et al. the DSL development cycle consists of five development

phases: decision, domain analysis, design, implementation and deployment [Mer+05].

Barišić et al. added one more phase to DSL development cycle: evaluation, before the

deployment phase (Figure 2.2) [Bar+12b].

Figure 2.2: DSL life cycle, taken from [Bar+17].

A typical SLE process starts with the decision phase. It corresponds to the "When?",

When should a DSL be developed?, while the remaining phases are the "How?" parts, How to
implement a DSL?. In the beginning of the DSL development the decision to develop a new

one or to reuse an existing one should be considered, by the stakeholders (i.e. Domain

Experts and Language Engineers), since developing a DSL may imply more expenses

and/or maintenance in the future [Mer+05].

After the decision phase comes the analysis phase. In this phase, the problem is

identified and the knowledge on the domain is collected. During this phase Domain

Experts help Language Engineers to define the domain concepts, the feature models, the

functional and technical requirements, and the goal model for the language.. The output

of this phase is the domain model. To sum up, the domain model represents [Mer+05]:

• the domain definition where the scope of the problem is identified;

• domain terminology (vocabulary, ontology);

• description of domain concepts;

10

2.2. MODEL-DRIVEN DEVELOPMENT

• feature models describing the commonalities and variabilities of domain concepts

as well as their interdependencies.

Usually the variabilities indicate what information is required to specify a system,

while commonalities define, with a set of common operations and primitives, the execu-

tion model.

After the analysis phase comes the design phase. In this phase the Language Engi-

neers define the language abstract syntax (i.e. the meta-model), the model representations,

and the production/composition rules [Bar+17]. Therefore, the language semantics is

defined. Also in this phase, the DSL relationship with other languages, and the formal

nature of the design description are identified [Mer+05]. As already mentioned in the

decision phase, a DSL can be designed from scratch or based on a existing one.

In the implementation phase the most suitable implementation approach (e.g. in-

terpreter, compiler, preprocessing, embedding, extensible compiler/interpreter, COTS,

hybrid) should be chosen [Mer+05] [Bar+17]. Also in this phase the developers produce

model checkers and simulators that will help modelers to validate the models [Bar+17].

Barišić et al. proposed a new phase for the DSL development, which is the evaluation

phase. In this DSL development phase the verifications (i.e. testing if the right function-

ality is provided by the DSL) and the validations (i.e. testing if the DSL is right for its

users) are executed [Bar+17]. This phase helps to mitigate one of the biggest problems in

software engineering, which is the software comprehension [Bar+17].

After the evaluation phase comes the deployment phase, where the DSL and the

applications built with it are used [Mer+05]. Also in this phase the DSL documentation

is delivered [Bar+17]. In this phase the developers and the domain experts use the DSL

developed to specify models, which are implemented with one of the implementation

patterns.

Visser recommends that DSLs should be developed incrementally, with an inductive

approach, in contrast to designing the complete DSL before implementation, because

the DSL introduces abstractions that allow to capture a set of common programming

patterns in software development for a particular domain [Vis08]. Developing DSLs

iteratively mitigates the risk of failure, since an iterative process produces useful DSLs

for sub-domains early on [Vis08].

2.2 Model-Driven Development

Model-Driven Development (MDD) is a style of software development that is an alterna-

tive to the traditional style of programming (Figure 2.3). Stahl et al. described modelling

as a important tool in engineering, since it allows engineers to create abstractions when

analysing and/or designing systems [SV06]. A model does not have a specific meaning,

and can only be understood if it is combined with an interpretation [SV06].

11

CHAPTER 2. BACKGROUND

In software projects usually the models and the code are not directly connected, so

models often become obsolete due to software evolution actions where only the code

is updated, due to time constraints. The MDD proposes to solve this problem with

techniques that include model-driven requirements engineering, design, code generation

from models, testing, software evolution, among others [KT08] [WC99].

Figure 2.3: MDD software development, taken from [Voxte].

DSLs can be (and often are) built with the MDD approach, since MDD allows to create

modelling abstractions close to the problem domain. MDD techniques and tools are seen

as a viable approach for dealing with accidental complexity of the solution [Bar+17].

MDD also supports the code generation required to implement the specifications created

with the DSL. In the DSL development the modeler has to be aware of the meaning of the

language elements in order to create and transform models. Therefore, it is important

that a DSL is well-documented and adopts concepts of the problem domain, in order to

be clear to the modeler.

2.3 Human–computer interaction

Human Computer Interaction (HCI) "is a discipline concerned with the design, evaluation
and implementation of interactive computing systems for human use and with the study of
major phenomena surrounding them" [Sin+10]. From a Human-Computer Interaction per-

spective, when developing a system, there are two main terms that should be considered

[Sin+10]:

• Functionality: is defined by the set of actions or services that a system provides to

its users;

• Usability: is the degree by which the system can be used efficiently and effectively

to accomplish the user goals.

Nowadays, humans are surrounded by computers, so the way they interact plays a

very important role. HCI major concern is improving the interactions between users and

computers, by minimizing the barrier between the humans cognitive model of what they

want to achieve, and computers understanding of the users task [Sin+10].

12

2.3. HUMAN–COMPUTER INTERACTION

2.3.1 Usability

In the field of Human Computer Interaction, there are two widely recognized definitions

of usability: Jacob Nielsen usability attributes and the International Organization for

Standardization (ISO) standard concerning usability. Nielsen divides usability in five

attributes (Figure 2.4) [Nie94]:

Figure 2.4: Jacob Nielsen usability attributes, taken from [Gyrte].

• Learnability: the system should be easy to learn. It means that a user must be able

to learn how to use a system as quickly and as easily as possible. However, different

learning times are acceptable, depending on the type of system. If a system is

intended to be used by advanced users, the learning curve can be longer;

• Efficiency: the system should be efficient to use, so that once the user has learned

how to use the system, a high level of productivity should be achieved. There are

some users who do not need to learn to use a system fully, however: they feel

satisfied when they have learned the basic functionalities;

• Memorability: when casual users return to the system, after some time without

using it, they should easily remember the system functions without having to learn

everything all over again;

• Errors: the system should be clear so that the users make as few errors as possible,

during the use of the system, when they make errors, the system should support easy

recovery from them, and as result the system will have a low error rate. Catastrophic

errors must not occur.

• Satisfaction: the system should be pleasant to use, so that users are satisfied when

using it, as it affects the users motivation and thus the effectiveness of use. The

13

CHAPTER 2. BACKGROUND

system satisfaction can be evaluated, for example, through user questionnaires as

we are going to see on section 2.3.1.1.

A user-friendly interface (e.g. a website or software application) design that is easy-to-

learn, supports users tasks and goals efficiently and effectively, is satisfying and engaging

to use. Usability also depends on a number of factors including how well the functionality

adapts to user needs, how well the application flow adapts to user tasks, and how well

the application response adapts to user expectations [Firte]. From both final user and

developers point of view, usability is crucial since it can cost time and effort, and also can

determine the success or failure of a software system. Software with poor usability can

reduce the productivity to a level of performance worse than without the system. Also

when applied to DSLs, usability has an impact on the achieved productivity of the DSL

end users [Bar+12a].

The ISO 9241-11 standard defines usability as "the extent to which a product can be
used by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction
in a specified context of use" [924te]. To sum up, usability is about:

• Effectiveness: the accuracy and completeness with which specified users can achieve

specified goals in particular environments;

• Efficiency: the resources expended in relation to the accuracy and completeness of

goals achieved;

• Satisfaction: the comfort and acceptability of the work system to its users and other

people affected by its use.

The difference between these approaches is their scope. Nielsen refers to the usability

of the product, in a particular context of use, while the ISO definition is in terms of the

results of using the product.

2.3.1.1 System Usability Scale

The System Usability Scale (SUS) is a simple, ten-item scale, that allows to "quick and
dirty" assess the usability of a given product or service [Bro+96] [Ban+08]. SUS is a Likert
scale that can be applied to a wide range of interface technologies, since it is technology

agnostic [Ban+08].

Each item is scored on a 5-point scale of strength of agreement (Figure 2.5), where

1-point means strongly disagree and 5-point means strongly agree. If a participant feels

that (s)he cannot respond to a particular item, (s)he should mark the centre point of the

scale. The SUS questionnaire contains the following items:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

14

2.4. ECLIPSE MODELLING TOOLS

Figure 2.5: SUS Likert scale, adapted from [Asste].

3. I thought the system was easy to use.

4. I think I would need the support of a technical person to be able to use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

The SUS scale is used after the participant has had an opportunity to use the system

being evaluated, but before any discussion [Bro+96]. Participants should be asked to

record their response to each item, rather than thinking about items for a long time

[Bro+96].

2.3.1.2 Scoring SUS

Each item score contribution will range from 0 to 4. For items 1,3,5,7 and 9 the score

contribution is the scale position minus 1. For items 2,4,6,8 and 10 the score contribution

is 5 minus the scale position. Then the sum of scores is multiplied by 2.5, in order to

obtain the overall value of the system usability [Bro+96]. The SUS final score can range

from 0 to 100, where higher scores indicate better usability [Ban+08]. Though the scores

are from 0 to 100, these values are not percentages and should be considered only in terms

of their percentile ranking. A SUS score above 68 would be considered above average

and anything below 68 is below average. However the best way to interpret the results

involves "normalizing" the score to produce a percentile ranking [Ban+09].

2.4 Eclipse Modelling Tools

Eclipse Modeling Tools provides tools for building model-based applications [Eclteb],

with Eclipse Modeling Framework (EMF) [Ecltea] technologies. The EMF is a plugin

15

CHAPTER 2. BACKGROUND

that allows to generate code based on a structured data model, the Ecore. The Ecore is

the language meta-model. The modelled data can be validated, persisted, and edited

[Ste+08].

It is not possible to express all the language syntactic rules through the language

meta-model, so if we want to add more validations to a language we should use Epsilon

Validation Language (EVL) [Eclted]. EVL is a validation language, from the Epsilon

[Ecltec] family, that allows to verify the model correctness. EVL constraints are similar

to OCL 1 constraints. However, EVL supports dependencies between constraints (e.g. if

constraint A fails, do not evaluate constraint B). Also, with EVL we can evaluate inter-

model constraints (unlike OCL).

2.5 Summary

In this chapter we presented some concepts related with Domain Specific Languages

(DSLs) (section 2.1). First, we introduced the basic differences between DSLs and General-

Purpose Languages (GPLs) (section 2.1.1), we presented the DSLs main stakeholders

(section 2.1.2), and we talked about the DSLs development cycle (section 2.1.3). Also, in

this chapter we presented Model-Driven Development (section 2.2), Human-computer

interaction (HCI) (section 2.3) concerns and focused on Usability (section 2.3.1). We

explained how to evaluate a system Usability with System Usability Scale (section 2.3.1.1).

Finally, we presented Eclipse Modelling Tools technologies (section 2.4).

1Object Constraint Language. Latest access: August 2017. URL: http://www.omg.org/spec/OCL/

16

http://www.omg.org/spec/OCL/

C
h
a
p
t
e
r

3
Usability Driven DSL development with

USE-ME

In this chapter we introduce the USE-ME framework. In section 3.2 we present the USE-ME
framework, its domain concepts, meta-models and activity specifications. Also, in this section
we present the results regarding the USE-ME pilot studies.

3.1 Introduction

The Usability Driven DSL development with USE-ME (USE-ME) approach was developed,

in NOVA-LINCS, with the goal of promoting quality in use of DSLs by building up a concep-
tual framework that supports the development process by leveraging usability as a first-class
concern [Bar+17]. As we saw in the previous chapter, in section 2.1.2, DSLs are intended

to be used by the end users. However, the software industry does not seen to report

investment on assessing DSLs with the end users. Possible explanations for this include

the perceived high costs of such evaluations, as well as the lack of systematic approaches,

guidelines and tools. Most of the evaluations are only performed at the final stages of

DSL development, when changes have a significant impact on the budget.

Barišić et al. [Bar+17] state the DSL usability concerns must be addressed from the

early stages of development so that DSL engineers can perform timely evaluations. As dis-

cussed in section 2.1.3, Visser recommends that DSLs should be developed incrementally

in order to introduces abstractions that help to mitigate the risk of developing inappro-

priate solutions that often do not fit the end users and cannot be reused.

In section 3.2 we present the USE-ME framework, its domain concepts, meta-models

and activity specifications. Also in this section we present the results regarding the

USE-ME pilot studies.

17

CHAPTER 3. USABILITY DRIVEN DSL DEVELOPMENT WITH USE-ME

3.2 The USE-ME framework

As mentioned in section 3.1, the USE-ME approach supports Software Language En-

gineers during the DSL development process taking into consideration the DSL final

usability. The USE-ME activities can be seen as normal Expert Evaluator (i.e. the person

that designs, gathers, interprets and synthesise DSL evaluations) activities, in the SLE

(section 2.1.3) [Bar+17].

In section 3.2.1 we present the technologies used to develop USE-ME, and in section

3.2.2 we introduce the USE-ME development workflow, and describe each phase (i.e. the

stakeholders involved, the phase models, and the artefacts produced).

3.2.1 Architecture and Technologies

The USE-ME conceptual framework (Figure 3.1) was specified on Cameo Systems Mod-

eler 1, a Model-Based Systems Engineering (MBSE) environment, that is used to define,

trace and visualize systems models and diagrams. The USE-ME main concepts were rep-

resented as UML 2 class diagrams, and the workflow as UML activity diagrams [Bar+17].

Figure 3.1: USE-ME architecture, taken from [Bar+17].

The USE-ME framework was developed in Eclipse Modeling Tools (mentioned in

section 2.4) with Eclipse Modeling Framework (EMF) technologies [Ecltea] [Bar+17]. The

EMF was used to develop the language meta-model, the Ecore (section 2.4), based on

the class diagrams specified in Cameo System Modeler [Bar+17]. The USE-ME Ecore

is composed by 7 small Ecores (i.e. context, goal, evaluation, interaction, survey, report,

and utility), one for each development phase, we will explain each one of them in the

next section 3.2.2. Sirius 3, allows to create custom graphical modeling workbenches by

leveraging Eclipse Modeling Tools technologies, such as EMF. The workbench created is

1Cameo Systems Modeler. Latest access: August 2017. URL: https://www.nomagic.com/products/

cameo-systems-modeler
2Unified Modeling Language. Latest access: August 2017. URL: http://www.uml.org/
3Sirius. Latest access: August 2017. URL: https://eclipse.org/sirius/

18

https://www.nomagic.com/products/cameo-systems-modeler
https://www.nomagic.com/products/cameo-systems-modeler
http://www.uml.org/
https://eclipse.org/sirius/

3.2. THE USE-ME FRAMEWORK

composed on a set of Eclipse editors (e.g. diagrams, tables and trees) which allow users to

create, edit, and visualize EMF models. Sirius was used to create visual representations of

USE-ME models [Bar+17]. To sum up, the USE-ME allows Software Language Engineers

to design USE-ME instances in an EMF generated tree editor, and further, to preview the

implemented representations with Sirius [Bar+17].

3.2.2 Workflow

The USE-ME framework life-cycle is composed by 6 phases (Figure 3.2), performed by the

Expert Evaluator, that support the DSL development cycle (mentioned in section 2.1.3).

Each modeling activity goal is described briefly below [Bar+17]:

Figure 3.2: USE-ME life cycle, taken from [Bar+17].

1. the Context Modeling, allows to define the DSL context of use,

2. the Goal Modeling, sets the DSL goals,

3. the Evaluation Modeling, organizes the usability experiments,

4. the Interaction Modeling, defines the interaction tasks,

5. the Survey Modeling, supports the survey questionnaires,

6. the Report Modeling, collects the data from survey and/or interaction experiments.

The usability evaluation with USE-ME framework is an iterative and incremental de-

velopment process (Figure 3.3). It starts with the Context Modeling, in order to define the

language context of use. Next, in the Goal Modeling phase, the language usability goals

and their correspondent scope is defined. After Goal Modeling comes the Evaluation

19

CHAPTER 3. USABILITY DRIVEN DSL DEVELOPMENT WITH USE-ME

Figure 3.3: USE-ME activity diagram, taken from [Bar+17].

Modeling, in which the expected evaluation goals and their corresponding evaluation

steps are set, and so the evaluation is prepared. The next phase, is the Interaction Mod-

eling and/or Survey Modeling, since it is not mandatory to perform both models. The

Interaction Modeling should be created if some interaction tasks are performed (i.e. DSL

usability tests). The Survey Modeling should be used if the evaluation is through the

means of a questionnaire. The last phase is the Report Modeling, in which the data from

the evaluations is collected and then stored in a report.

In each one of the next sections, from section 3.2.2.2 to section 3.2.2.7, we will describe

each development phase in more detail. We will present each phase meta-model, activity

diagram, stakeholders involved, and artefacts produced.

3.2.2.1 Utility

The main goal of the Utility Package is to reuse the artefacts developed in previous

evaluations [Bar+17]. The main elements from this phase are (Figure 3.4):

Figure 3.4: Utility class diagram, taken from [Bar+17].

• DSL: the language under evaluation. Each DSL should have an Abstract Syntax
and/or Concrete Syntax associated;

• Existing GM: an existing goal model. If the DSL already was evaluated normally

there is an existing goal model that represents the language goals in previous itera-

tions;

20

3.2. THE USE-ME FRAMEWORK

• Profile Template: is a template for characterizing a specific user profile based on a

Logical Expression (e.g. age > 18). Profile Templates can describe background infor-

mation (e.g. demographic data, education, special needs/disabilities) and relevant

experience with domain activities (e.g. expected knowledge sets, ontology);

• CE Variable: is a variable that describes the language environment. It can be asso-

ciated to a Technical, Physical and/or Social environment;

• Process Model: refers to business process models that were developed during the

DSL development;

• Survey Engine: refers to survey engines that were used to collect/store the experi-

ments results (e.g. Google Forms);

• Priority Value: is a value that represents an object priority (e.g. a stakeholder prior-

ity). It can have one of 3 values: High, Medium, or Low.

3.2.2.2 Context Modeling

In the Context Modeling phase the Software Language Engineer and the Domain Expert

have to answer to the following questions:

1. Who will use the DSL?

2. Where will the DSL be used?

3. How is the DSL expected to be used?

Figure 3.5: Context Model class diagram, taken from [Bar+17].

The main elements from this phase are (Figure 3.5):

• User Profile: allows to answer to the question who will use the language. The USE-

ME approach suggests that regarding the DSL in evaluation there are 5 User Profiles

(i.e. stakeholders) that should be created, they are specifications of DSL Stakeholder:

21

CHAPTER 3. USABILITY DRIVEN DSL DEVELOPMENT WITH USE-ME

Domain Expert, Expert Evaluator, Language Engineer, and End User. All these stake-
holders have different priorities (mentioned in section 3.2.2.1): DSL Stakeholder and

End User have the highest priority High since the DSL is supposed to be used by the

end users; Domain Expert priority is Medium since it is a stakeholder that has a high

knowledge on the domain, however it is not the final user; Expert Evaluator and

Language Engineer have the lowest priority (Low) since they evaluate and build the

language, respectively, but they do not use it. Each new End User sub-profile should

be justified by the creation of a Logical Expression (mentioned in section 3.2.2.1);

• User Hierarchy: is composed by all the User Profiles created. The USE-ME approach

suggests that the root node is the DSL Stakeholder. The Domain Expert, Expert
Evaluator, Language Engineer, and End User are DSL Stakeholder sub-profiles. The

new End User sub-profiles created, the DSL final users which inherit the parent

properties, should be connected to the End User;

• Context Environment: allows to answer to the question where the DSL is going to

be used. There are 3 types of environments: Technical, Physical, and Social. Each

environment has a CE Variable (mentioned in section 3.2.2.1) that is a specification

of the environment associated (e.g. CE Variable Computer is an specification of the

Physical Environment). Not all the environments need to be created but at least one

must be;

• Workflow: allows to answer to the question how the DSL is expected to be used.

Each Workflow should be associated to an actor (i.e. User Profile) that is going to

perform the workflow, to a CE Variable that represents the specification of the envi-

ronment that is going to be used during the workflow execution, and to a priority;

• Scenario: represents a task, related with a Workflow, that has to be performed by a

user. It should be created when a Workflow priority is high, in order to decompose

the Workflow into Scenarios.

Figure 3.6: Context Modeling activity diagram, taken from [Bar+17].

The first artefact to be produced in the Context Modeling (Figure 3.6) is the User

Hierarchy, by prioritizing the User Profiles. However, in order to do that, first the DSL

User Profiles have to be specified. At the same time, two artefacts are produced: the User

22

3.2. THE USE-ME FRAMEWORK

Profile and the Context Environment. During the User Profile classification each User
Profile is classified, this means that to each User Profile a Logical Expression is associated.

During the Context Environment definition each environment (i.e.Technical, Physical

and Social) is associated to a CE Variable. The final artefact to be produced, by the Expert

Evaluator, is the Workflow. During the Workflow definition the Workflows are defined

and, if they are important, they are decomposed into Scenarios. If the Expert Evaluator

needs to make changes he can continue by extending the Context Modeling. If not the

next phase is the Goal Modeling.

3.2.2.3 Goal Modeling

In the Goal Modeling phase the Software Language Engineer and the Domain Expert

determine the language goals, the Why is the language being developed?. The main elements

from this phase are (Figure 3.7):

Figure 3.7: Goal Model class diagram, taken from [Bar+17].

• Usability Goal: represents the language usability goals. The USE-ME approach

considers the Usability Goal Quality in Use as the highest goal of a DSL. The Usabil-

ity Goal Quality in Use is decomposed into more refined Sub Goals. One of the Sub
Goals specified must have the same priority as the Parent goal;

• Scope: should be related to one Usability Goal, since it specifies the scope to which

an Usability Goal applies to;

• Actor: represents a User Profile and is responsible for achieving a specific Usability
Goal. The USE-ME approach suggests that an Actor representing the User Profile

Expert Evaluator should be created and should be responsible for achieving the

Usability Goal Evaluating the DSL;

• Method: allows to define the measurable requirements (i.e. Usability Requirements)
that contribute to achieve a Usability Goal. Each Method should have a Test Case
associated in order to evaluate the i.e. Usability Requirements;

• Usability Requirement: contributes to achieve a Usability Goal;

23

CHAPTER 3. USABILITY DRIVEN DSL DEVELOPMENT WITH USE-ME

• Success Coverage: represents the evaluated context coverage.

Figure 3.8: Goal Modeling activity diagram, taken from [Bar+17].

The first artefacts to be produced in the Goal Modeling (Figure 3.8) are the Usability
Goals. During the Goal specification the Usability Goals are defined. Usability Goals repre-

sent the goals, highest objectives, that the language should achieve. At the same time two

artefacts are produced, the Scope and the Actor. During the Context selection the Usabil-
ity Goals are associated to a Scope. During the Responsible actor selection the Usability
Goals are associated to an Actor responsible for achieving the Usability Goal. Next, if the

Usability Goals are decomposed into Sub Goals that only have one Actor responsible, two

artefacts are produced at the same time. During the Functional Goal association the Func-
tional Goals, provided by the Language Engineer, are associated with the Method. During

the Measurable method application all the measurable requirements i.e. Usability Re-
quirements are specified. During Success Coverage calculation, after the last development

phase, the Success Coverage is produced. The Success Coverage indicates the evaluation

results. The next phase is the Evaluation Modeling.

3.2.2.4 Evaluation Modeling

In the Evaluation Modeling phase the Software Language Engineer and the Domain Ex-

pert organize the usability experiments. The main elements of this phase are (Figure 3.9):

Figure 3.9: Evaluation Model class diagram, taken from [Bar+17].

24

3.2. THE USE-ME FRAMEWORK

• Evaluation Goal: allows to define the experiment problem, the research questions,

and the hypothesis;

• Language: is the language under evaluation. If the is a comparative evaluation then

a second language should be created;

• Participant: refers to the actual participants, that represent a specific User Profile,

in the experiment;

• Evaluation Context: in which context i.e. User Profiles, Workflows, and Context En-
vironments are the experiments executed;

• Documentation: refers to the teaching materials (e.g. presentations, videos, guided

examples, etc.) that were produced for the experiment;

• Process: defines the experiment process, by modeling the activities that should be

performed, and the User Profiles that are going to execute the activities.

• Test Model: refers to usability activities that do not require learning (i.e. question-

naires, interviews, and observations). The Test Model is supported by the Interaction

Modeling and Survey Modeling.

Figure 3.10: Evaluation Modeling activity diagram, taken from [Bar+17].

The first artefact to be produced in the Evaluation Modeling (Figure 3.10) phase

is the language under evaluation. Next, if the evaluation is comparative then a new

language should be created, producing an artefact Language. Then, the evaluation goals

are defined and so the artefact Evaluation Goal that describes all the Evaluation Goal is

created. After that, the Evaluation Expert defines the actual participants in the evaluation

that represent User Profiles. Next, during the Evaluation Context specification the context

of the evaluation is defined, and so the Evaluation Context is produced. At the same time

three artefacts are produced: the Documentation, Process, and the Test Model. During

the Teaching Material creation (e.g. presentations, videos, guided examples, etc.) the

Documentation is produced. During the Process specification the experiment Process is

created by defining the activities that should be performed. In parallel, the Test Model
is produced by defining activites that do not require learning such as questionnaires,

interviews, or observations. The next phase is the Interaction and/or Survey Modeling.

25

CHAPTER 3. USABILITY DRIVEN DSL DEVELOPMENT WITH USE-ME

3.2.2.5 Interaction Modeling

The main goal of Interaction Modeling is to measure DSL usability through user interac-

tion tasks. The main elements of this phase are (Figure 3.11):

Figure 3.11: Interaction Model class diagram, taken from [Bar+17].

• Task: is an activity that should be performed by the participant, and that further is

going to be analysed;

• Interaction Syntax: represents the language syntax (i.e. abstract and concrete syn-

tax). A DSL does not need to have associated both but must have at least one;

• Event: describes how one event is going to be captured (i.e. which sub-events are

going to be performed by the participant), analysed (e.g. observation) and recorded

(e.g. screen record, live observation and think aloud);

• Interaction Result: stores the statistical analysis and the results from the experi-

ment.

Figure 3.12: Interaction Modeling activity diagram, taken from [Bar+17].

The first artefact to be developed in the Interaction Modeling (Figure 3.12) activity is

the Task, during the Interaction Task definition. In parallel, during the Interaction Syntax

analysis, the language Interaction Syntax is described by defining the Abstract Syntax
and/or Concrete Syntax. After that, during the Events specification, the Event is detailed

by defining how the event is going to be captured (i.e. which sub-events are going to be

performed by the participant), analysed (e.g. observation) and recorded (e.g. screen record,

live observation and think aloud). The last artefact to be produced is the Interaction Result,
during the Interaction execution, which is going to store the experiment results.

26

3.2. THE USE-ME FRAMEWORK

3.2.2.6 Survey Modeling

The main goal of Survey Modeling is to gather information in order to describe, compare

and explain certain behaviours. The main elements of this phase are (Figure 3.13):

Figure 3.13: Survey Model class diagram, taken from [Bar+17].

• Questionnaire: defines a set of questions, background and feedback. These question-

naires can be done in a Survey Engine that automatic organizes answers (e.g. Google

Forms, Survey Monkey, etc.);

• Background Qs: is a question related with the participant background (e.g. demo-

graphic data, education, knowledge, special needs/disabilities);

• Feedback Qs: is a question that collects the user satisfaction feedback regarding one

specific subject;

• Survey Results: stores the statistical analysis and the results from the question-

naires in a Survey Engine (e.g. Google Forms, Survey Monkey, etc.).

Figure 3.14: Survey Modeling activity diagram, taken from [Bar+17].

The Survey Modeling (Figure 3.14) starts with a decision. If the Evaluation Expert

decides to add more Background questions then the next step is Background question

definition and the artefact produced is BackgroundQs; if the Evaluation Expert decides

to add more Feedback questions then the next step is Feedback question definition and

the artefact produced is FeedbackQs. Next, during the Survey participant assessment the

experiment Participants are assigned, and during the Survey result formatting the Survey
is performed. Then, during the Survey execution the final artefact to be produced is the

Survey Result, that stores the results from the experiments.

27

CHAPTER 3. USABILITY DRIVEN DSL DEVELOPMENT WITH USE-ME

3.2.2.7 Report Modeling

The main goal of Report Modeling is to construct a final report on the experiment, by

collecting all the results and to suggest changes for the next iterations. The main elements

of this phase are (Figure 3.15):

Figure 3.15: Report Model class diagram, taken from [Bar+17].

• Evaluation Result: gathers the results values from both interaction and survey ex-

periments, and stores these results in a report;

• RecommendGM: refers to the Usability Goals that were tested and suggests require-

ments to improve in next iterations.

Figure 3.16: Report Modeling activity diagram, taken from [Bar+17].

The first artefact to be produced in the Report Modeling activity (Figure 3.16) is the

Evaluation Result, during the Evaluation result analysis. Based on the results from the

Evaluation Result, the Expert Evaluator performs the Recommendation specification, that

produces the RecommendGM. At the same time, during the Success Coverage calculation,

the Success Coverage (mentioned in section 3.2.2.3) is produced which helps the Expert

Evaluator to decide if the goals should be redesigned or not.

3.2.3 Pilot Studies

The pilot studies were conducted with Computer Science Master students (i.e. novice

users), that did not know anything about the USE-ME approach, during a DSL course.

Each group was developing their own DSL. In total 4 different DSLs were being developed.

After an introduction to usability evaluation the students received a guided tutorial on the

USE-ME tool, and were also guided during the usability evaluation of their own DSLs. At

the end of the session, the students filled a background and feedback questionnaire. Students

found that although it was "more or less easy" to understand the approach it was not so

28

3.3. SUMMARY

easy to model the DSL evaluation with the framework. Some pointed out that "there were
too many steps to follow" and that the tool should provide a "guided cycle" [Bar+17]. To

sum up, they did not feel very confident while using the USE-ME tool [Bar+17].

3.3 Summary

In this chapter we introduced the USE-ME framework. In section 3.2 we present the

USE-ME framework, technologies used, domain concepts, meta-models and activity spec-

ifications. Also, in this section 3.2.3 we present the results regarding the USE-ME pilot

studies.

29

C
h
a
p
t
e
r

4
Related Work

In this chapter we present some tools related with this dissertation: Tool Support for Agent

Development using the Prometheus Methodology (section 4.1), J-PRiM: A Java Tool for

a Process Reengineering i* Methodology (section 4.2), PETIC Wizard Proposal: a Soft-

ware Tool for Support PETIC Methodology (section 4.3), A Qualitative Study on User

Guidance Capabilities in Product Configuration Tools (section 4.4), Business process

modeling with continuous validation (section 4.5), Rule-based detection of inconsis-

tency in UML models (section 4.6), and Cognitive support, UML adherence, and XMI in-

terchange in Argo/UML (section 4.7). All these approaches are concerned with user guidance,
models quality, increasing productivity and decreasing maintenance costs. For each approach
we provide a description, present the stakeholders involved, present its implementation, and
explain how we applied these approaches to the USE-ME framework.

4.1 Tool Support for Agent Development using the Prometheus

Methodology

In [PW02] Padgham et al. describe the Prometheus Design Tool (PDT) and how it sup-

ports the Prometheus Methodology. Prometheus is an intelligent agent methodology

that covers all the development stages (i.e. specification, design, implementation and

testing/debugging). PDT is a graphical user interface that covers 3 design phases of the

Prometheus methodology: System Specification, Architectural Design, and Detailed Design.

Since the Prometheus methodology is iterative, when changes are done in the design they

affect other parts as well. They are linked together, so there is a need to update the other

parts as well. However, it is really hard for the System Developer to manually check if the

design remains consistent. So, the main goal of the PDT is to support the System Devel-
oper, during the Prometheus methodology, by helping the System Developer to maintain a

31

CHAPTER 4. RELATED WORK

consistent design. Consistency Checking in PDT has 2 features: continuously active, that

prevents some errors from occurring (e.g. not possible to have references to non-existent

entities, two entities with the same name, only valid links between entities are allowed,

etc.), and consistency check that generates a list of errors and warnings, performed on

demand, that can be checked by the System Developer (e.g. writing internal data that is

never read, etc.).

Despite our approach (section 3.1) is different from the Prometheus Methodology,

consistency check is performed based on the relationships between design artefacts and

the USE-ME approach validation is based on a meta-model, we can retain some ideas

from the PDT tool. In USE-ME we guide, validate and suggest the Software Language
Engineer actions during the DSL development process but we only do that on demand,

like the consistency check feature on PDT, since it is intended to help novice users more

than experts.

4.2 J-PRiM: A Java Tool for a Process Reengineering i*

Methodology

In [Gra+06] Grau et al. state that i* is widely used in fields such as requirements engineer-

ing, organizational analysis, business process reengineering, etc. However, it requires

the adoption of a methodology for defining the models and tool support in order to ma-

nipulate these models. The i* models are represented graphically, which is one of the

strongest points, but when users work on a specific problem or domain some difficulties

often appear, such as: overload of variants of the i* language, a lack of guidelines for con-

structing the models, and lack of tools to support the users. In order to deal with these

problems Grau et al. developed J-PRiM, a Java tool, that guides the users through the

construction of i* models. The J-PRiM is composed by 5 phases: Analysis of the Currrent
Process, Construction of the i* Model, Generation of Alternatives, Evaluation of Alternatives,
and Specification of the New System. Each phase is decomposed into steps. There are 3

types of steps: forms (i.e. steps that require the user to enter data), guided (i.e. steps that

complete existing data but still require user expertise), and automatic (i.e. steps that gener-

ate new data without user interaction). During the development the tool guides the user

for obtaining the i* model (e.g. by providing the actors created in the beginning when they

need to be associated, by helping the user to distribute responsibilities between actors,

by defining the metrics for evaluating the model, etc.). Usually the i* models are repre-

sented graphically. However, the J-PRiM shows the i* elements in a tree-form hierarchy

like the USE-ME framework. Also in the J-PRiM all the phases and steps are ordered in

specific tabs, which allow to guide the user through the tool. Since the PRiM is a iterative

process when the user changes the data in the early steps the J-PRiM allows to apply

those changes in the next phases. This feature is also used in the USE-ME framework.

For example, when a stakeholder is deleted USE-ME alerts the user to associate another

32

4.3. PETIC WIZARD PROPOSAL: A SOFTWARE TOOL FOR SUPPORT PETIC

METHODOLOGY

stakeholder where the deleted one was associated.

4.3 PETIC Wizard Proposal: a Software Tool for Support

PETIC Methodology

In [Pal+12] Palmeira et al. describe an Information and Communication Technology (ICT)

strategic planning methodology called PETIC. The goal of PETIC is to use information

and knowledge, for a competitive advantage, to manage businesses by guiding the man-

ager through the strategic planning. PETIC is composed by 5 components: PETIC artefact,
TIC Process Catalogue, TIC Stock Repository, Costs Graphs versus Importance, and Gantt
Maps. In order to support the manager through the strategic planning, to decrease costs,

and to decrease development time, Palmeira et al. developed PETIC Wizard. When using

the PETIC Wizard the manager will be able to easily check the achieved goals and targets,

and the associated costs.

The main goal of this tool is to provide guidance to the manager to develop PETIC

artefacts, just like our goal with the USE-ME tool, since developing artefacts without a

tool/wizard support takes more time and the costs are higher. In [Pal+12] Palmeira et al.

did not describe which technologies they used to developed the PETIC Wizard.

4.4 A Qualitative Study on User Guidance Capabilities in

Product Configuration Tools

In [Rab+12] Rabiser et al. performed a qualitative study on tools capabilities, using

cognitive dimensions of notations, for user guidance in product configuration. Rabiser

et al. developed a wizard called DOPLER ConfigurationWizard (CW). The main goal of

this configuration tool is to guide users during the product configuration with a focus

on business-oriented end users. There are 3 types of configuration tools: Feature-oriented
tools (i.e. if the configuration options are presented in a tree; the user guidance is not the

primary focus in these tools, since users can selects any node of the tree), Knowledge-based
tools (i.e. if the configuration options are described using constraints; the user guidance

is important in these tools), and Workflow-oriented tools (i.e. if the configuration options

are described to users by presenting choices, like questions, in a certain order). Rabiser

et al. used cognitive dimensions to evaluate and characterize user guidance capabilities.

Next, we describe each capability that is applied to USE-ME approach and explain how:

• Hiding and showing: configuration options depending on stage of the configura-

tion. In the USE-ME approach we use this by providing to the user only the neces-

sary activities that need to be performed at a certain workflow phase, distinguishing

between mandatory and suggestion activities;

33

CHAPTER 4. RELATED WORK

• Views and filters: views allow to structure the decision space, while filters can be

used to only show certain options. In the USE-ME approach we use this by only

showing errors and warnings from a particular development phase;

• Branching and navigation support: guide the user through the configuration activ-

ities. In the USE-ME approach we use this by guiding the user through the workflow,

so the tool only shows the next workflow step when the user completed the previous

one;

• Freedom in navigation: the tool should give freedom to the user, it should not force

the user to follow a strict guidance. In the USE-ME approach we guide novice users

more than experts, so for that purpose our tool only guides the user on demand and

when the user needs help from the tool;

• On-the-fly validity checks: of user choices. In the USE-ME approach we validate

Software Language Engineer choices in a more preventive way, so we provide expla-

nation and help in order to guide the user;

• Immediate feedback: to understand the effects of their choices. In the USE-ME

approach we provide to the users immediate feedback on their actions through

validation, on demand. For that we suggest that the user validates the model every

time the make important changes;

• Annotations and comments: on options. In the USE-ME approach we explain to

the user his/her options, we do not want a strict guidance so we educate the user so

that he makes the best option regarding the DSL under evaluation.

The DOPLER CW guides the users through questionnaires, so in a workflow-oriented

tool. When a decision depends on other decisions, Rabiser et al. constrained the validity

options.

Despite the work done by Rabiser et al. was applied to configuration tools we retained

and applied the cognitive dimensions study to the USE-ME approach since this tool had

guidance problems (section 3.2.3). DOPLER CW was developed using the cognitive

dimensions concepts. However, Rabiser et al. did not mention how they implemented it.

4.5 Business process modeling with continuous validation

In [Kü+10] Kühne et al. describe a modeling tool that identifies problems in business

process models through the application of rules. Like in the DSL development most

validation methods are only applied when the model is already complete. The validation

approach proposed by Kühne et al. provides immediate feedback about the modeling

errors to the modeler during the model construction. It identifies technical (e.g. deadlocks

in the control flow) and ’bad style’ errors. The tool provides feedback about the problem,

34

4.6. RULE-BASED DETECTION OF INCONSISTENCY IN UML MODELS

identifies the reasons and gives suggestions on how to fix it. In order to provide to users

this feedback Kühne et al. developed a feature called continuous validation that allows

to detect and fix errors at a early stage in the process modeling based on rules. The

continuous validation was used to validate Event-Driven Process Chains (EPC) syntactical,

semantic and pragmatic issues. For EPC models, the syntax is decribed by the meta-

model. However, not all syntactical restrictions can be captured by the meta-model. So

in order to check the syntactic correctness of a model, OCL constraints were added to

the meta-model. Kühne et al. did not want to restrict the modeler, but to give him/her

feedback about the possible errors and improvements. For that purpose Kühne et al.

defined the following principles:

• the validation rules should be expressed in a human-readable manner;

• the validation rules should refer to parts of the model that may cause errors;

• the validation rules should be specific enough so that the user can easily understand

the feedback;

• the validation rules should be seamlessly integrated into the modeling tool with the

capability to provide error and suggestions.

The application of these principles results in a process-specific validation rules and

helper functions.

For the implementation of the approach Kühne et al. chose oAW because of its build-

in GMF integration. The validation rules therefore were expressed in the oAW Check

language, where the keyword error represents an error and specifies a corresponding

advice, and the keyword warning provides a suggestion.

We applied the validation feature (not continuous) and principles proposed by Kühne

et al. to the USE-ME framework, to provide feedback about errors and suggestions to

the Software Language Engineer since it is not possible to express all the validation rules

through the language meta-model. The mandatory activities are represented as errors,

and the suggested activities are represented as suggestions/improvements. However,

since the USE-ME framework was developed using the Eclipse Modeling Tools (section

3.2.1) with Eclipse Modeling Framework (EMF) technologies, we choose to use EVL (sec-

tion 2.4) since it is a validation language from the Epsilon [Ecltec] family, that allows to

verify the model correctness.

4.6 Rule-based detection of inconsistency in UML models

In [Liu+02] Liu et al. describe an approach that detects inconsistencies, notifies users,

and recommends solutions through specific rules during the design process. Every time

the designers change the language model there is a chance of inadvertently introducing

inconsistencies that are really hard to identify and resolve manually. In order to solve

35

CHAPTER 4. RELATED WORK

that problem Liu et al. developed a software, RIDE (Rule-based Inconsistency Detec-

tion Engine), that automates the detection and resolution of design inconsistencies (i.e.
information redundancy, nonconformance to standards and requirements, and the propa-

gation of change through a model as it evolves) in UML models, by using OCL constraints

that maintain the well-formedness of the semantics. In order to detect these inconsisten-

cies RIDE, runs a production system in the background of an editor, so when the rules

detect inconsistencies they add an entry to the working memory of the production system.

Liu et al. describe 3 types of inconsistencies:

• Redundancy: when an artefact is represented multiples times;

• Conformance to Constraints and Standards: constraints can be from internal or ex-

ternal conflicts. The model has to include the standards (i.e. best practices, industry

standards, and corporate standards);

• Change: due to change requests in the design, inconsistencies can easily be intro-

duced.

The production system works in a cyclic way by:

1. Recognizing: the rules that can be applied;

2. Resolving conflicts: choosing one of the rules to be executed;

3. Acting: by applying the rule.

Most of the actions require user feedback, therefore the approach notifies the user

with the inconsistency notice, and then the user can solve the problem. There are 4 types

of rules:

• Inconsistency rules: that represent inconsistencies in the design;

• Resolution rules: that correspond to user fixing;

• Cleanup rules: that remove expired inconsistency from the working memory ele-

ments;

• Orphan control rules: that remove the working memory elements whose parent is

invalid or has been deleted.

RIDE was implemented in Java, with Jess - Java Rule Engine, and can be integrated

into an existing UML Design Environment.

We applied Liu et al.’s work to the USE-ME approach since we have 3 types of rules:

error, guidance and suggestions. However, in our case the user solves the problems since

there are some suggestions, for example, that the tool should help the user to decide but

the final decisions is from the user. Also, the user is the one that has the knowledge on the

DSL under evaluation since the tool behaves equally for all the DSLs under evaluation.

36

4.7. COGNITIVE SUPPORT, UML ADHERENCE, AND XMI INTERCHANGE IN

ARGO/UML

4.7 Cognitive support, UML adherence, and XMI interchange

in Argo/UML

In [RR00] Robbins et al. describe ARGO/UML, an object-oriented design tool that uses

UML design notation, that provides support for cognitive tasks (i.e. decision-making, de-

cision ordering, and task-specific design understanding) as a way to increase productivity

and quality of the final designs, and to decrease maintenance costs. Design critics are

active agents that continuously check the design for potential errors, stylistic violations,

and incomplete sections. Design critics provide knowledge to the designers when they

are missing information about the problem or about the solution domain. The design
critic feature is continuously active and designers cannot control when the validation is

applied, and can only see the feedback produced. The goal of the critics is to warn the

designer about potential problems or suggest improvements in the design. Also, each

critic is independent from the other and delivers is own feedback to the designer. All

the feedbacks are stored in a ’to do’ list, where items are grouped by priority, category,

etc. When the designer choose a problem to solve, from the ’to do’ list, all the design

elements in all diagrams related to that problem are highlighted. To sum up, the designer

is responsible for solving a critic. However, some critics are harder to solve and for that

purpose Robbins et al. developed a ARGO/UML wizard. The wizard guides the designer

through the necessary steps and decisions to solve the critic. However, the designer can

leave the wizard at any time and manipulate the models on his own.

ARGO/UML was developed using JavaBeans with a UML meta-model. ARGO/UML

uses XMI files to store design representations, and for validating the representations

Robbins et al. used OCL.

In ARGO/UML the design critic is continuously active but in the USE-ME framework

the validation is performed by the Software Language Engineer on demand. In the AR-

GO/UML tool designers do not see the critics, only the feedback. In the USE-ME tool

the users do not see the validation rules only the results from applying the rules to the

model, so they only see the errors and the suggestions. In the ARGO/UML the critics are

independently of others, but in the USE-ME tool they are not since we guide the users

throughout the workflow so rules depend on each other.

4.8 Summary

In this chapter we presented some approaches that are concerned with user guidance,

models quality, increased productivity and decreased maintenance costs. For each ap-

proach we presented a description, the stakeholders involved, its implementation, and

explain how we applied each one to the USE-ME framework.

37

C
h
a
p
t
e
r

5
Validation Rules Implementation

In this chapter we discuss the implementation alternatives and the problems that were found
during the USE-ME pilot studies (section 5.1). We also describe the solution that we found to
be the most appropriate to deal with the problems described (section 5.2). Then, we explain
in more detail how we implemented the validation rules and how we integrated them on the
USE-ME framework (section 5.3). We finish this chapter by providing an use case scenario
(section 5.4).

5.1 Implementation Alternatives

For the prototype implementation, we considered some alternatives. First, we thought

about building the prototype from scratch but this would take more time, and since we

already had a framework built at NOVA-LINCS, the USE-ME framework [Bar+17] (men-

tioned in section 3), that already supports the iterative and incremental DSL development

process taking in consideration the language usability, we decided to use this framework

as the starting point. The USE-ME framework was developed using Eclipse Modeling

Tools with Eclipse Modeling Framework (EMF) technologies (mentioned in section 3.2.1)

[Bar+17]. The EMF was used to develop the language meta-model, the Ecore, that allows

to define the language syntactic rules (section 2.4). However, it is not possible to express

all the language syntactic rules through the language meta-model. So, by not adding

more validation to the meta-model, with a validation language, the Software Language
Engineers could create USE-ME models that were not correct.

During the USE-ME framework pilot evaluations the participants, that played the role

of Software Language Engineers, found that although the approach was ’more or less easy’
to understand it was not so easy to model the DSL evaluation with the tool (mentioned

in section 3.2.3). Most of the students pointed out that the USE-ME framework has ’too

39

CHAPTER 5. VALIDATION RULES IMPLEMENTATION

many steps to follow’ and that the tool should provide ’a form of guidance’. To sum up, the

users did not feel very confident while using the tool [Bar+17]. Therefore, our solution

should validate the model correctness while also guiding the Software Language Engineer
throughout the process.

5.2 Solution

In order to ensure that the USE-ME model is correct, and also to provide guidance to the

Software Language Engineer throughout the process we analyse some alternatives. The

tools that we presented (mentioned in section 4) support the user (i.e. system developer,

manager, designer, etc.) throughout all the approach development stages by providing

features that verified the correctness of the models and then provided feedback about

the errors and suggestions to the user (e.g. consistency checking, etc.), or by ordering

phases and steps in specific tabs which guides the user, or by providing a wizard that

helps the user to develop language artefacts [RR00]. In the field of Human-Computer

Interaction (HCI) one of the most popular guidance forms is to create a wizard when the

tool workflow is complex and error-prone, and if there are many steps in one task and

they must be completed in a specific order [Dow+05]. However, most wizards that we

presented (mentioned in section 4) are used to automate the work of the user which is not

our goal since we are going to guide the Software Language Engineer through the workflow

but he is the one that has the knowledge on the DSL so he should make the best decisions

regarding their DSL evaluation with the tool support.

Some of the validations performed in some tools (mentioned in section 4) were based

on relationships between design artefacts [PW02], and some were performed based on

the language meta-model [Kü+10] [RR00]. In the USE-ME framework we perform the

validation based on the language meta-model, in order to provide immediate feedback

about the modeling errors and suggestions during the model construction. These type

of tools are called Rule-based Systems. Also, some approaches performed the validations

continuously [Kü+10], while others performed the validations on demand [PW02], so the

user decides when he would like to validate the model. In the USE-ME framework we

are more interested in performing validation on demand since we believe that the tool

should give freedom and not force the user to follow a strict validation/guidance. We

also validate Software Language Engineer actions in a more preventive way, so we provide

explanation and help in order to guide the user not to commit errors.

Our solution for the USE-ME framework is to transform it into a Workflow-oriented tool
since the activities are described to the users in a certain order providing guidance, with

validation rules (see Appendix A) that also check the USE-ME model correctness, so it is

also a Rule-based System. Some activities, as we already mentioned, are mandatory and

some are suggestions so we need to provide to the user the right information regarding

the activity so that he decides to take the suggestion or not. Also, our goal is educate

novice users on our DSL approach and framework, since most of the users do not read

40

5.3. VALIDATION RULES

the documentation [NW06] we provide with each rule the basic information on why the

user should create an artefact, or associate a name, etc. As we discussed before we do not

want to restrict the user with the validation rules (see Appendix A), however, we think

that in the first time using the tool it is crucial to follow the validation/guidance rules in

order to learn how efficiently use the framework.

5.3 Validation Rules

As mentioned in the previous section 5.2 our solution verifies the model correctness

by identifying errors and suggestions in USE-ME models, through the application of

validation rules (see Appendix A). The USE-ME framework was developed in Eclipse

Modeling Tools (mentioned in section 3.2.1) with Eclipse Modeling Framework (EMF)

technologies, so in order to add more validation to the meta-model (i.e. Ecore) we used a

validation language.

The tools presented in section 4 that performed model validations used OCL to ex-

press the rules, however, since we used EMF to implement the USE-ME framework and

the EMF has its own validation language, Epsilon Validation Language (EVL), we analyse

both pros and cons of each language in order to decide which one would suit USE-ME

interests better. As we mentioned in section 5.2 our goal with the validation rules (see

Appendix A) is to educate novice users on the USE-ME framework and OCL has weak

support for specific feedback messages, meaning that the users should be familiar with

OCL in order to comprehend the failed rules [Kol+10]. Normally, development environ-

ments produce 2 types of feedback: errors and warnings (i.e. in our case they act like

suggestions). While errors indicate critical deficiencies, warnings indicate non-critical

issues. In OCL there is no such distinction between these two types of feedback, so it

is harder for the user to prioritize which one he should fix first [Kol+10]. In OCL each

rule is independent, meaning that ’if constraint A fails, don’t evaluate constraint B’ it is

not possible to express in OCL. In USE-ME almost each activity has a dependency on

other activity, so it would be meaningless to evaluate a rule were its pre-condition already

failed [Kol+10]. After analysing both languages we have decided to use EVL since we

think its the most appropriate language to express our requirements.

Figure 5.1: Concrete Syntax of EVL, adapted from [Kol+10].

41

CHAPTER 5. VALIDATION RULES IMPLEMENTATION

In Figure 5.1 we describe EVL Concrete Syntax. Each EVL rule in USE-ME is com-

posed by:

• Constraint or Critique: a Constraint captures critical errors that invalidate the

model, while the Critique captures non-critical situations that do not invalidate

the model, although they should be addressed by the user to increase the model

quality. In the USE-ME implementation we used Constraint to represent mandatory

activities or properties that need to be filled by the user, and Critique to represent

suggestion activities or properties;

• Guard: limit the applicability of invariants. For example, in USE-ME we have a first

rule that checks if the activity Create User Hierarchy was created, and have a second

rule that checks if User Hierarchy has name. In the second rule we have a Guard that

checks if the first rule is true, so if the User Hierarchy already exists, because it only

makes sense to check if the User Hierarchy has name if the User Hierarchy exists;

• Check: is an expression to be checked, it can return true or false. If it returns false

then the rule message is shown to the user;

• Message: allows to provide detailed feedback to the user on why the rule failed and

what needs to be done in order to fix it.

Figure 5.2: USE-ME framework with validation rules.

In Figure 5.2 we illustrate how we integrated the validation rules (see Appendix A)

with the USE-ME framework. After creating the USE-ME model (see Appendix I), the

Software Language Engineer needs to validate the model through the Validation Rules

in order to get feedback (see Appendix I.6). The rules will guide, suggest and validate

the Software Language Engineer actions during the DSL evaluation development. As we

mentioned, the validation does not work continuously. It is performed on demand, so the

user validates the model every time he needs feedback from the tool, either for validation

or guidance.

The validation rules were integrated in Eclipse Problems tab, such as Ecore default

messages and as messages generated when user compiles code, in order to avoid increas-

ing the complexity of the solution, so every user should be comfortable with it. Every

time the user validates the model, the list of feedback messages is updated.

42

5.4. USE CASE SCENARIO

5.3.1 Rules Design

Since most users do not read manuals and when it comes to use a new tool they prefer to

experiment on their own, when we designed the validation rules (see Appendix A) we did

it in a way that they transmit the right information to the user in a compact way [NW06].

In order to do that we applied the following principles [Kü+10]:

• the validation rules are expressed in a human-readable manner;

• the validation rules refer to parts of the model that cause errors;

• the validation rules are specific enough so that the user can easily understand the

feedback;

• the validation rules are integrated into the modeling tool with the capability to

provide error and suggestions.

The application of these principles results in a process-specific validation rules and

helper functions. For both type of rules, error and suggestion, we present the following

message format:

USE-ME development phase Error or Suggestion: informative message

In the beginning of the rule we inform the users that the feedback belongs to the

USE-ME model, in case they have more messages from other projects.

In EVL we can specify the context of the rules, a context specifies the kind of instances

on which the contained rules will be evaluated. In the USE-ME meta-model we decided

to divide it in packages, so there is a different package for every one of the phases (i.e.
Context, Goal, Evaluation, Interaction, Survey, Report and Utility). However, when we

tried to reach the packages in EVL context we discovered a bug1 that does not allow us to

do that. For that reason all rules are specified in the same context, the USE-ME context, so

we cannot show only the specific rules from one phase. In order to mitigate this problem

we decided to add the development phase on the rule itself. For example, when an error

occurs in Context Specification the rule is: ’USE-ME Context Error...’.

On the informative message we explain what is the error/suggestion and what the

user should do to fix it. Sometimes we give examples on how to fill a property, the values

that are most used, etc.

5.4 Use Case Scenario

In order to clarify how the USE-ME framework works with the validation rules (see

Appendix A) we are going to provide an example.

1Bug. Latest access: August 2017. URL: https://bugs.eclipse.org/bugs/show_bug.cgi?id=515262

43

https://bugs.eclipse.org/bugs/show_bug.cgi?id=515262

CHAPTER 5. VALIDATION RULES IMPLEMENTATION

Figure 5.3: USE-ME activity diagram, taken from [Bar+17].

The first development phase of USE-ME, as we can check by analysing the USE-ME

activity diagram (Figure 5.3), is the Context Modeling (if its the first iteration). Therefore,

the first activity that should be performed by the user is to create a Context Specification
in the USE-ME model, so that is the first feedback that the tool provides to the user. Also,

since the activity is mandatory it appears in the feedback list as an error, as shown in

figure 5.4:

Figure 5.4: Context Specification creation.

Figure 5.5: Context Modeling activity diagram, taken from [Bar+17].

When analysing the Context Modeling activity diagram (Figure 5.5) the next activity

44

5.4. USE CASE SCENARIO

that should be performed by the user is the User Hierarchy prioritizing but, in order to do

that, first the Software Language Engineer has to create the Context Model, since the User
Hierarchy depends on the Context Model (Figure 5.6). Since it is a mandatory dependency

it appears in the feedback list as an error.

Figure 5.6: Context Model class diagram, taken from [Bar+17].

When the user validates the model, after fixing the first error, a suggestion to add

a name to the Context Specification also appears, so that the user distinguishes better

between different Context Specifications since a USE-ME model can have more than one

Context Specification because it is a iterative and incremental development process. The

list of feedback messages is shown in figure 5.7:

Figure 5.7: The Context Specification should have a name, and must include a Context
Model.

After creating the Context Model the user can finally create the User Hierarchy, how-

ever the User Hierarchy is not complete until the Software Language Engineer specifies

Who are the DSL stakeholders (i.e. DSL stakeholder, Language Engineer, Domain Expert,

Language Evaluator, End User), what is the relation between them, what is their priority,

etc.

45

CHAPTER 5. VALIDATION RULES IMPLEMENTATION

The purpose of this example was to show that the USE-ME model development in-

volves a fairly complex workflow which makes it error-prone, particularly for Software

Language Engineers who are not yet experienced with the USE-ME approach, as discussed

in section 3.2.3. The Validation Rules aim at providing specific feedback to mitigate this

challenge. In the next chapter, we report on pilot studies conducted with the new version

of the tool to assess the extent to which the Validation Rules successfully contribute to

improve the USE-ME user experience.

5.5 Summary

In this chapter we discussed the implementation alternatives and why we chose to use the

USE-ME framework as a starting point. We also explain what were the main problems

with this framework, and provided a solution to mitigate them with validation rules.

Regarding the Validation Rules, we presented its format, how we integrated them in the

USE-ME tool, and how they provide specific feedback to the users in order to guide and

validate their actions. We finished this chapter by detailing a use case scenario.

46

C
h
a
p
t
e
r

6
Evaluation

In chapter 5 we proposed a new USE-ME framework, with Validation Rules, that guides the
Software Language Engineers throughout the development process while also validating the
model correctness. In this chapter we report the experiment conducted (section 6.1), including
its goals (section 6.1.1), the tasks proposed (section 6.1.2), the experiment materials (section
6.1.3), the participants (section 6.1.4), the hypotheses (section 6.1.5), the design (section 6.1.6),
the procedure (section 6.1.7), and the analysis (section 6.1.8). The results from the SUS and
the Model Correctness assessment are then analysed, in section 6.2. In section 6.3, we evaluate
the results and its implications (section 6.3.1), examined the validity of the process (section
6.3.2), and made some inferences regarding the results (section 6.3.3).

6.1 Experiment

6.1.1 Goals

We describe our two research goals using the Goal Question Metric research goals template

[BR88]. Our first goal (G1) is to analyse the effect of validation rules on USE-ME, for

the purpose of evaluation, with respect to its impact on the System Usability Scale, from

viewpoint of researchers, in the context of an experiment conducted with participants

with no experience with USE-ME framework at Universidade Nova de Lisboa (UNL). Our

second goal (G2) is to analyse the effect of validation rules on USE-ME, for the purpose

of evaluation, with respect to its impact on the Model Correctness, from viewpoint of

researchers, in the context of an experiment conducted with participants with no expe-

rience with USE-ME framework at Universidade Nova de Lisboa (UNL). Since we are

comparing the System Usability Scale (SUS) of two alternative USE-ME versions, we can

break down the G1 into ten sub-goals one for each SUS question. So, the sub-goals can

47

CHAPTER 6. EVALUATION

be obtained by replacing System Usability Scale with the questions from the SUS question-

naire (mentioned in section 2.3.1.1).

6.1.2 Tasks

Before starting the evaluation, each participant read and agreed with the terms of the con-

sent letter present in the beginning of both (i.e. background and feedback) questionnaires

(adapted from [Run+12]). After that, the participant filled the Background questionnaire
with the demographic information (Appendix G), since only students with background

knowledge on DSL development could participate in the experiment. Then, they saw a

presentation on the USE-ME framework (Appendix F).

Each participant in this study had to complete two tasks: modeling a DSL develop-

ment phase with the original USE-ME framework version, and modeling a DSL develop-

ment phase with the new USE-ME framework version. The order of the USE-ME versions

(i.e. original and new), the DSL development phases (i.e. utility, context, goal, evaluation,

interaction, survey, and report), and the modeling exercise (i.e. Lego Mindstorms and

Smart House) were randomly selected. The same participant did not use the same USE-

ME version, model the same development phase and model the same exercise twice, in

order to mitigate the learning effect. In both cases, we recorded the screen during the

exercise execution, and saved the modeling files that were produced by the participants.

We did not provide any feedback to the participant concerning whether they were able to

successfully complete the tasks, in order not to affect the following exercise.

After each task, the participant filled in a System Usability Scale (SUS) questionnaire

(Appendix H) to collect feedback about the USE-ME framework with respect to the mod-

eling phase and exercise he had performed.

6.1.3 Experimental Materials

As mentioned in section 6.1.2, the experimental material for the evaluation included a

consent letter in the beginning of each questionnaire, a Background Questionnaire on demo-

graphic information (Appendix G), one presentation on the USE-ME approach (Appendix

F), four modeling exercises, and a feedback questionnaire about the SUS (Appendix H).

We prepared four exercises: two with the original USE-ME version (Appendix B and C),

and two with the new USE-ME version (Appendix D and E). Each USE-ME version had

a Lego Mindstorms and a Smart House exercise, and the only difference between them

was an introductory paragraph that described how the participants could validate their

models. We designed modeling exercises equally and with similar complexity. Before the

real experiment we also tested these materials in pilot evaluations.

48

6.1. EXPERIMENT

6.1.4 Participants

As mentioned in section 6.1.3, we carried out pilot evaluations before the experiment.

The pilot evaluations were performed by two participants: one was the USE-ME author,

and one was a student representative of the experiment participants, with two different

goals. The goal of the USE-ME author was to check if the validation rules were according

to the USE-ME specifications, while the student validated the experiment materials (i.e.
presentation, exercises and questionnaires). Our original idea was that each participant

was going to model all USE-ME development phases in each exercise, but while perform-

ing the pilot evaluation we realized that it took too much time so we had to break-down

the experiment to one development phase per exercise, in such a way that each partici-

pant performed two tasks (one using the original version and one using the new version)

from different development phases.

The experiment was performed by 14 participants selected by convenience sampling,

since each participant should have a background knowledge in DSL development. They

were all Computer Science students at different levels at UNL. Each participant tested

both USE-ME versions (i.e. original and new), and none of them had experience with the

tool. With respect to the highest completed level of education, 8 had BSc degrees, and 6

had MSc degrees. The age of the participants was between 23 and 27. All the participants

had used DSLs in academic context and two of them had also used it in industry.

We also performed a guided evaluation on a DSL related with Multi-Agent Systems

(MAS). The DSL under evaluation, modelled with both USE-ME versions, was chosen

since there is a ongoing Scientific and Technological Cooperation between NOVA-LINCS

and Ege University International Computer Institute in Turkey. The Turkish group was

composed by 4 participants: 2 Computer Science students, and 2 professors. With respect

to the highest completed level of education, 1 had a BSc degree, 1 had a MSc degree, and

2 had PhD degrees.

6.1.5 Hypotheses, parameters and variables

For each goal, described in section 6.1.1, we defined the null H0 and the alternative

hypotheses H1.

H0SUS : Adding validation rules to USE-ME does not influence the System Usability
Scale.

H1SUS : Adding validation rules to USE-ME influences on the System Usability Scale.

The independent variable is the USE-ME version, which can be original, or new. The

dependent variables are the System Usability Scale items 2.3.1.1. Higher scores indicate

better usability [Ban+08].

We followed the same approach and refined the null H0 and the alternative hypotheses

H1 for the Model Correctness:

H0ModelCorrectness: Adding validation rules to USE-ME does not influence the Model
Correctness.

49

CHAPTER 6. EVALUATION

H1ModelCorrectness: Adding validation rules to USE-ME influences on the Model Correct-
ness.

6.1.6 Design

The participants used both USE-ME versions, original and new, the order was selected

randomly. In order to reduce the learning effects, the user did not model the same DSL

development phases (i.e. utility, context, goal, evaluation, interaction, survey, and report)

and the same modeling exercises (i.e. Lego Mindstorms and Smart House) in both experi-

ments. Seven of the fourteen participants started the experiment with the original version,

and seven started the experiment with new version.

Table 6.1: Experimental design.

Background Presentation T1 Feedback-SUS T2 Feedback-SUS

7 X X original X New X
7 X X New X original X

In Table 6.1 each line represents a set of participants that performed a sequence of

activities. # refers to the number of participants, Background to the background ques-

tionnaire (i.e. demographic data), Presentation of the USE-ME approach, T1 to the first

exercise, Feedback-SUS to the System Usability Scale questionnaire relative to the first exer-

cise, T2 to the second exercise, Feedback-SUS to the System Usability Scale questionnaire

relative to the second exercise. original stands for the USE-ME version without validation

rules, and New stands for the USE-ME version with validation rules.

6.1.7 Procedure

We prepared the workspace so that all participants had similar conditions: one laptop

with the USE-ME tool, one external monitor with the modeling exercise, and a mouse.

In each evaluation session there was only one participant at a time. First, we introduced

the USE-ME approach, and explained the tasks that the participant was going to perform.

We also informed the participant that we were going to record the laptop screen while

he was performing the exercise, so that we could analyse his session later. Finally, we

explained that he could quit at any time, if he so desires. Then the participant read and

agreed with the terms of the Consent Letter informing that he would freely participate

in the evaluation. Each participant performed two tasks: modeling a DSL evaluation

without Validation Rules, and with Validation Rules, and then filed the SUS questionnaire

concerning the system usability. The tasks order varied from one participant to the next,

as we already mentioned in section 6.1.6.

50

6.2. RESULTS AND ANALYSIS

6.1.8 Analysis procedure

We collected descriptive statistics for SUS (i.e. mean, standard deviation, minimum and
maximum) to get an overview of its values. Then we used the Wilcoxon Signed-Rank
Test 1, this test is a nonparametric test equivalent to the Paired Samples t Test. However,

the Wilcoxon Signed-Rank Test does not assume normality in the data and since the SUS
provides ordinal data data for each score, we cannot assume normality. The Wilcoxon
Signed-Rank Test is used to compare two sets of scores that come from the same partici-

pants, so we are going to compare the values from the participants that performed the

tests original-new and new-original.

6.2 Results and Analysis

6.2.1 SUS

6.2.1.1 Descriptive statistics

In table 6.2 we present the descriptive statistics for the SUS organized by experiments. As

we mentioned the participants could start the experiment with the original version and

then use the new version, or the contrary. So we analysed the SUS results separately (i.e.
original-new and new-original.) In the Version column we specify which of the USE-ME

versions we are considering, original stands for the USE-ME version without validation

rules and new stands for USE-ME version with validation rules. We also present the mean,

standard deviation, minimum, and the maximum for the SUS. By analysing our data set

we can assert that in both experiments, original-new (i.e. 82,85>57,14) and new-original
(i.e. 79,64>57,85), the SUS mean value is always higher in the new version.

Table 6.2: SUS descriptive statistics organized by experiments.

Version # Mean S.D. Minimum Maximum

or
ig

-n
ew original 7 57,14 15,50 37,50 77,50

new 7 82,85 8,34 70,00 92,50

ne
w

-o
ri

g new 7 79,64 17,10 45,00 100,00

original 7 57,85 20,48 32,50 92,50

In table 6.3 we describe the results from Wilcoxon Signed-Rank Test (i.e. negative
rank, positive rank, and the significance). When analysing the results from the experiment

original-new, we notice that all participants (i.e. positive rank = 7) have attributed a higher

SUS score for the new version. However, when analysing the results from the experiment

1Wilcoxon Signed-Rank Test. Latest access: September 2017. URL: https://statistics.laerd.com/
spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics.php

51

https://statistics.laerd.com/spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics.php

CHAPTER 6. EVALUATION

Table 6.3: Wilcoxon Signed-Rank Test results organized by experiments.

Version # Neg. Rank Pos. Rank Sig

original-new 7 0 7 ,018
new-original 7 1 6 ,034

new-original we noticed that one participants (i.e. negative rank = 1) assigned a higher

score to the original version, and six participants (i.e. positive rank = 6) assigned a higher

score to the new version.

In table 6.4 we present the descriptive statistics for the SUS organized by versions. We

calculated the mean, standard deviation, minimum, and the maximum for the SUS. By

analysing our data set we can assert that in both versions, the SUS mean value is higher

in the new version than the original version, as we already noticed in table 6.2.

Table 6.4: SUS descriptive statistics organized by versions.

Version # Mean S.D. Minimum Maximum

original 14 57,50 17,45 32,50 92,50
new 14 81,25 13,03 45,00 100,00

Table 6.5: Wilcoxon Signed-Rank Test results organized by versions.

Version # Neg. Rank Pos. Rank Sig

total 14 1 13 ,001

In table 6.5 we describe the results from Wilcoxon Signed-Rank Test (i.e. negative rank,
positive rank, and the significance). When analysing the results we noticed that 13

14 of the

participants prefer the new version, and 1
14 of the participants prefer the original version.

To sum up, we can conclude that the majority opts for the new version.

6.2.1.2 Hypotheses testing

RQ1: Do validation rules improve the System Usability Scale of the USE-ME framework?
We summarise in table 6.3 and in table 6.5 the results of the Wilcoxon Signed-Rank

Test for the SUS. The Wilcoxon Signed-Rank Test (see table 6.3) indicated that the new SUS

scores were statistically significantly higher than the original SUS scores, in the original-
new (Z=7; p-value=,018) and in the new-original experiment (Z=7; p-value=,034). Also,

in the aggregated Wilcoxon Signed-Rank Test that compared the results by versions, and

not by experiments as we mentioned before, indicated that the new (Mean=81,25) SUS

scores were statistically significantly higher than the original (Mean=57,50) SUS scores

(Z=14; p-value=,001). So, we can reject the null hypothesis and accept the alternative

one, the addition of validation rules influence the SUS score of the USE-ME tool for better.

52

6.2. RESULTS AND ANALYSIS

6.2.1.3 Difference in SUS scores

In order to check if there was a difference in the SUS results depending on the order that

the experiments took place (i.e. original-new and new-original) we decided to analyse in

more detail the SUS values. In figure 6.1 we have the results from the participants that

started the experiment with the original version (i.e. V1) and then used the new version (i.e.
V2). In figure 6.2 we have the results from the participants that started the experiment

with the new version (i.e. V2) and then used the original version (i.e. V1).

The difference values were calculated by subtracting the V1 values to the V2 corre-

sponding values, since V2 values were often higher. The SUS has half positive (i.e. 1,3,5,7

and 9) and half negative (i.e. 2,4,6,8 and 10) items, so some of the difference results tend

to be positive and others negative. The positive values are represented in a scale from 1

to 3 (i.e. the green marks), and the negative values are represented in a scale from -4 to -1

(i.e. the red marks). The zero values mean that the participant did not find any difference

between versions.

Figure 6.1: Results of the difference original-new.

1. I think that I would like to use this system frequently.

In figure 6.1, 2
7 of the participants that used V1-V2 found 1 value of difference, 2

7

found 2 values of difference, and 1
7 found 3 values of difference between V2 and V1 in the

ordinal scale. 2
7 found no differences between versions. In figure 6.2, 3

7 of the participants

that used V2-V1 found 1 value of difference, 1
7 found 2 values of difference, and 1

7 found

3 values of difference between V2 and V1 in the ordinal scale. 2
7 found no differences

between versions. When analysing the results we found that the participants that used

V1-V2 set a bigger difference between the versions than the V2-V1 participants. To sum

53

CHAPTER 6. EVALUATION

up, 10
14 of the participants would like to use V2 more than V1, and 4

14 found no differences

between versions.

2. I found the system unnecessarily complex.

In figure 6.1, 3
7 of the participants that used V1-V2 found 1 value of difference, 1

7 found

3 values of difference, and 1
7 found 1 negative value of difference between V2 and V1 in the

ordinal scale. 2
7 found no differences between versions. In figure 6.2, 3

7 of the participants

that used V2-V1 found 1 value of difference, and 1
7 found 1 negative value of difference

between V2 and V1 in the ordinal scale. 3
7 found no differences between versions. When

analysing the results we found that the participants that used V1-V2 set a bigger difference

between the versions than the V2-V1 participants. To sum up, 7
14 of the participants found

that the V2 was not unnecessarily complex, 5
14 found no differences between versions,

and 2
14 of the participants found that the V2 was unnecessarily complex.

3. I thought the system was easy to use.

In figure 6.1, 4
7 of the participants that used V1-V2 found 1 value of difference, and

2
7 found 3 values of difference between V2 and V1 in the ordinal scale. 1

7 found no

differences between versions. In figure 6.2, 3
7 of the participants that used V2-V1 found

1 value of difference, 1
7 found 2 values of difference, and 1

7 found 3 values of difference

between V2 and V1 in the ordinal scale. 2
7 found no differences between versions. When

analysing the results we found that the participants that used V2-V1 set a bigger difference

between the versions than the V1-V2 participants. To sum up, 11
14 of the participants

thought that V2 was easier to use than V1, and 3
14 found no differences between versions.

4. I think I would need the support of a technical person to be able to use this

system.

In figure 6.1, 3
7 of the participants that used V1-V2 found 1 value of difference, 1

7 found

2 values of difference, 1
7 found 3 values of difference, and 1

7 found 4 values of difference

between V2 and V1 in the ordinal scale. 1
7 found no differences between versions. In

figure 6.2, 4
7 of the participants that used V2-V1 found 1 value of difference, 1

7 found 3

values of difference, and 2
7 found 1 negative value of difference between V2 and V1 in the

ordinal scale. When analysing the results we found that the participants that used V1-V2

set a bigger difference between the versions than the V2-V1 participants. To sum up, 11
14

of the participants do not need the support of a technical person to be able to use V2, 1
14

found no differences between versions, and 2
14 of the participants think they would need

the support of a technical person to be able to use V2.

5. I found the various functions in this system were well integrated.

In figure 6.1, 2
7 of the participants that used V1-V2 found 1 value of difference, 1

7

found 3 values of difference, and 1
7 found 3 negative values of difference between V2

and V1 in the ordinal scale. 3
7 found no differences between versions. In figure 6.2, 3

7

of the participants that used V2-V1 found 1 value of difference, and 1
7 found 2 values

of difference between V2 and V1 in the ordinal scale. 3
7 found no differences between

versions. When analysing the results we found that the participants that used V1-V2 set a

bigger difference between the versions than the V2-V1 participants. To sum up, 7
14 of the

54

6.2. RESULTS AND ANALYSIS

participants found the various functions of V2 were better integrated than V1, 6
14 found

no differences between versions, and 1
14 of the participants found the various functions

of V1 were better integrated than V2.

Figure 6.2: Results of the difference new-original.

6. I thought there was too much inconsistency in this system.

In figure 6.1, 5
7 of the participants that used V1-V2 found 1 value of difference, and

1
7 found 1 negative value of difference between V2 and V1 in the ordinal scale. 1

7 found

no differences between versions. In figure 6.2, 3
7 of the participants that used V2-V1

found 1 value of difference, 1
7 found 2 values of difference, and 2

7 found 3 values of

difference between V2 and V1 in the ordinal scale. 1
7 found no differences between

versions. When analysing the results we found that the participants that used V2-V1 set

a bigger difference between the versions than the V1-V2 participants. To sum up, 11
14 of

the participants thought that there was too much inconsistency in V1 more than in V2,
2

14 found no differences between versions, and 1
14 of the participants thought that there

was too much inconsistency in V2 more than in V1.

7. I would imagine that most people would learn to use this system very quickly.

In figure 6.1, 4
7 of the participants that used V1-V2 found 1 value of difference, and

2
7 found 2 values of difference between V2 and V1 in the ordinal scale. 1

7 found no

differences between versions. In figure 6.2, 1
7 of the participants that used V2-V1 found 1

value of difference, 3
7 found 2 values of difference, 1

7 found 3 values of difference, and 1
7

found 1 negative value of difference between V2 and V1 in the ordinal scale. 1
7 found no

differences between versions. When analysing the results we found that the participants

that used V2-V1 set a bigger difference between the versions than the V1-V2 participants.

To sum up, 11
14 of the participants imagine that most people would learn to use V2 quicker

55

CHAPTER 6. EVALUATION

than V1, 2
14 found no differences between versions, and 1

14 of the participants imagines

that most people would learn to use V1 quicker than V2.

8. I found the system very cumbersome to use.

In figure 6.1, 3
7 of the participants that used V1-V2 found 1 value of difference, and

1
7 found 2 values of difference between V2 and V1 in the ordinal scale. 3

7 found no

differences between versions. In figure 6.2, 2
7 of the participants that used V2-V1 found 1

value of difference, 1
7 found 2 values of difference, 1

7 found 3 values of difference, and 1
7

found 1 negative value of difference between V2 and V1 in the ordinal scale. 2
7 found no

differences between versions. When analysing the results we found that the participants

that used V2-V1 set a bigger difference between the versions than the V1-V2 participants.

To sum up, 8
14 of the participants found that V1 was more cumbersome to use than V2,

5
14 found no differences between versions, and 1

14 of the participants found that V2 was

more cumbersome to use than V1.

9. I felt very confident using the system.

In figure 6.1, 5
7 of the participants that used V1-V2 found 1 value of difference, 1

7

found 2 values of difference, and 1
7 found 3 values of difference between V2 and V1 in

the ordinal scale. In figure 6.2, 3
7 of the participants that used V2-V1 found 1 value of

difference, 1
7 found 2 values of difference, and 1

7 found 1 negative value of difference

between V2 and V1 in the ordinal scale. 2
7 found no differences between versions. When

analysing the results we found that the participants that used V2-V1 set a bigger difference

between the versions than the V1-V2 participants. To sum up, 11
14 of the participants felt

more confident using V2 than V1, 2
14 found no differences between versions, and 1

14 felt

more confident using V1 than V2.

10. I needed to learn a lot of things before I could get going with this system.

In figure 6.1, 1
7 of the participants that used V1-V2 found 1 value of difference, and

3
7 found 2 values of difference between V2 and V1 in the ordinal scale. 3

7 found no

differences between versions. In figure 6.2, 2
7 of the participants that used V2-V1 found

1 value of difference, 1
7 found 2 values of difference, and 1

7 found 1 negative value of

difference between V2 and V1 in the ordinal scale. 3
7 found no differences between

versions. When analysing the results we found that the participants that used V2-V1

set a bigger difference between the versions than the V1-V2 participants. To sum up, 7
14

thought they will needed to learn a lot of things before using V1 more than V2, 6
14 found

no differences between versions, and 1
14 thought he will needed to learn a lot of things

before using V2 more than V1.

To sum up, we did not find any significant impact on the SUS score regarding the

order in which the participants performed the experiment.

6.2.2 Model Correctness

In section 6.1.1 we have defined another goal, G2, regarding the Model Correctness of the

models produced with original version (i.e. without validation rules) and with the new

56

6.2. RESULTS AND ANALYSIS

version (i.e. with validation rules). In table 6.6 we present the results of our inspection on

the models produced. As already mentioned in section 6.1.2, the same participant did not

use the same USE-ME version, model the same development phase and model the same

exercise twice, in order to mitigate the learning effect. The results are grouped according

to the order of the experiment, so original-new and new-original. In table 6.6 each line

(e.g. the line highlighted in grey) represents one participant. For each participant we

present the development phase (i.e. context, goal, evaluation, interaction, survey, report,

and utility), the errors (i.e. the total of errors from the development phase), and the

warnings (i.e. the total of warnings from the development phase). The modeling exercises

(i.e. Lego Mindstorms and Smart House) are omitted from the list since they are similar.

Table 6.6: List of errors and warnings found in the models inspection.

original-New New-original
original New New original

DV. Err. Warn. DV. Err. Warn. DV. Err. Warn. DV. Err. Warn.

I 1 4 S 0 0 U 0 0 E 7 9
U 0 5 G 0 0 C 0 0 R 4 7
E 7 9 U 0 0 E 0 0 G 0 0
S 2 8 R 0 0 I 0 0 C 12 5
R 4 7 C 0 0 R 0 0 S 2 8
G 0 2 E 0 0 G 0 0 U 0 0
C 12 5 I 0 0 S 0 0 I 0 0

As mentioned in section 5.3, errors indicate critical deficiencies, while warnings indi-

cate non-critical issues, suggestions. So despite not having impact on the model correctness
warnings help users to make decisions.

When analsying the table 6.6 we noticed that the models that were modelled with the

new version do not have any errors and/or warnings, but when we analyse the models

produced with the original version almost all models have errors and/or warnings and

there are the same between modeling phases. The modeling exercises for both versions are

similar, however, we omitted some details and we alerted the participants for this aspect

at the beginning of each exercise. By omitting some details we were trying to understand

if the user had learned anything from the first modeling exercise to the second one, and if

so we would notice it by the list of errors and/or warnings. However, since the modeling

phases were different it would be harder for the user to immediately understand what

was missing. The participants that started with the original version and then used the new
version learned less than the participants that started with the new version and then used

the original version, as we can check by analysing the lines highlighted in blue in table

6.6. These particular participants wrote in Feedback Questionnaire (Appendix H) that "I

don’t know if it is right and if have done everything", so despite having learned from

the previous exercise they did not feel confident enough without the validator "with the

validator I know what is missing". The participants that started with the original version

57

CHAPTER 6. EVALUATION

were less influenced by the learning effect, since they did not have used the version with

the validation rules, but when they finished the second exercise with the new version they

found that the first model was not correct "my first model is not correct a lot of things are

missing".

6.3 Discussion

6.3.1 Evaluation of Results and Implications

RQ1: Do validation rules improve the System Usability Scale of the USE-ME framework?

We found evidence of improvements brought by the addition of validation rules (see

section 6.2.1), in terms of the SUS with which our participants performed their model-
ing tasks. The Wilcoxon Signed-Rank Test indicated a statistically significant difference

observed when we compare the results from the SUS questionnaire between experiments

(i.e. original-new and new-original), and between versions (i.e. original and new). The

SUS mean scores were higher in the original-new experiment, 57,14 and 82,85 respec-

tively, with a p-value=,018. A similar statistically difference occurred in the new-original
experiment, 57,85 and 79,64 respectively, with a p-value=,034. When we aggregated the

results of the SUS by versions we found a greater statistically significant difference with

a p-value=,001. That said, the results seem to convey a lower usability for the USE-ME

framework without the validation rules than with validation rules. So, since the exercises

only differed on the presence of validation rules or not, we can reject the null hypothesis

and accept the alternative one (section 6.1.5), and affirm that the addition of validation
rules to USE-ME influenced the System Usability Scale.

RQ2: Do validation rules improve the Model Correctness of the USE-ME framework?

We found evidence of improvements brought by the addition of validation rules (see

section 6.2.2), in terms of the Model Correctness with which our participants performed

their modeling tasks. We found a significant difference, regarding the Model Correctness,
between the models produced with the original version and with the new version. Almost

all the models developed with the original version had errors/warnings, since we choose

to omit some details from the exercise, in order to see how the participants would react

to such omissions. In contrast, all the models produced with the new version were correct.

As we predicted the users that started the experiment with the original version learned

less than the participants that start the experiment with the new version (see section 6.2.2).

The main reason for that gap was the use of validation rules in the first exercise, which

in our interpretation, educated the participants more, since they guided, suggested and

validated the participants actions. The feedback from the users suggested that they felt

more confident after using the validation rules, since they never used the tool before. So,

since the modeling exercises only differed on the presence of validation rules or not, we

can reject the null hypothesis and accept the alternative one (section 6.1.5), and affirm

that the addition of validation rules to USE-ME influenced the Model Correctness.

58

6.3. DISCUSSION

6.3.2 Threats to Validity

The validity of our results strongly depends on factors in the experiment settings. We

analyse three types of threads to validity [Woh+12]:

Conclusion validity: we had a low number of participants in the experiment com-

pared with another experiments in the area of Software Engineering, and this aspect should

improve in further experiments with this tool. The number and the selection of partic-

ipants represent a threat since the USE-ME tool should be used by people that already

have a solid knowledge in DSL development and the participants were mainly novices.

Internal validity: there is a potential learning effect from the first exercise to the

second one. As we mentioned in 6.2.2 we noticed that the participants that performed

the exercises new-original were more affected by the learning effect than the original-new
participants, but that result was already expected, since they used the tool version with

the validation rules.

External validity: despite the participants had some knowledge about DSLs they

were mainly novices. So, there is a need to validate this approach with more experienced

users. The USE-ME tool is complex and none of the participants used it before and the

time was limited. We did not want to assess the user modeling skills, so we provided a

guided exercise since learning to use the tool and model the exercise at the same time

was too complex. Any experimental evaluation design has its own associated threats and

ours is no exception. Our decisions concerning the participants profile, and quantity, the

tasks they performed, etc., all entail some external validity threats (e. g. the results could

be potentially different for more experienced DSL developers). As such, we recommend

that the approach proposed in this dissertation should also be independently validated,

through replications of our own evaluation that could be adapted to tackle different exter-

nal threats (e.g. by having experienced DSL developers, instead of novices). To facilitate

such replications, the experimental materials used in this evaluation are available from

appendix B to appendix I.

6.3.3 Inferences

The results obtained suggest that the new version of the USE-ME framework, with val-
idation rules, improved the System Usability Scale and the Model Correctness of the tool

and of the models, respectively. Regarding the SUS score, as mentioned in section 3.2.3,

USE-ME had already been tested with students with no expertise in DSL evaluation, and

the results showed that they did not feel confident while using the tool because it was

"complex" and had "too many steps to follow" (this experience was guided). So, we had

to find a solution that mitigate this usability problem. We developed validation rules that

allow to guide, suggest and validate user actions, so that users felt more confident while

using the tool. During the design of the validation rules we decided to incorporate in

the feedback messages information about the process, in order to educate the user and

to help with the suggestion rules, so that the user could decided whether or not take

59

CHAPTER 6. EVALUATION

the suggestion. After analysing the results from the questionnaires we found that the

difference regarding the SUS score between versions is statistically significant, so we can

reject the null hypothesis and accept the alternative one, that the addition of validation
rules improved the SUS of the USE-ME framework.

Regarding the Model Correctness, no previous experience has been conducted on this

topic. However, since the validation rules validated the user actions, so they alerted the

user for errors/warnings we expected that the number of errors/warnings decreased in

the new version of the tool. Also, since some users started the experiment with the

original version and others started the experiment with new version, we were able to

observe that the users that started with the new version learned more (regarding the

evaluation process) than the users that started with the new version. When we designed

the experiment we omitted information from the exercise so that we could observe how

the users would behave with the lack of information. The participants that used the

new version first did not notice that some associations between objects were missing,

on the contrary, the participants that used the original version first noticed that some

associations were missing since the validation rules alerted them, so they were able to

produce a correct model with the help of the validation rules. After analysing the models,

produced by the participants, we found that the difference regarding the Model Correctness
between versions is significant, since almost all the models produced with the original
version had errors/warnings and none of the models produced with the new version had

errors/warnings. So, we can reject the null hypothesis and accept the alternative one, that

the addition of validation rules improved the Model Correctness of the USE-ME framework.

Despite the significant results is necessary to evaluate the SUS and the Model Cor-
rectness, during real DSLs evaluation and with more experienced users. So that, we can

compare the results and improve the USE-ME framework.

6.4 SEA-ML Guided Evaluation

As we mentioned in section 6.1.4, we performed a guided evaluation on a DSL related

with Multi-Agent Systems (MAS). We executed this experiment since there is a ongoing

Scientific and Technological cooperation between NOVA-LINCS and Ege University in

Turkey. SEA-ML 2 is a domain-specific modeling language used to model and generate

architectural artefacts for Multi-agent Systems (MAS) especially working on the Semantic

Web". SEA-ML was modelled using the original and the new version of the USE-ME frame-

work. The participants (2 Computer Science students and 2 professors) used the USE-ME

to modelled previous experiments, and to prepare the tool for upcoming evaluations. So,

since 2 participants (1 student and 1 professor) used the original and 2 participants (1

student and 1 professor) used the new version we cannot draw conclusions regarding this

evaluation. However, after comparing usability experiences the group said that the new

2SEA-ML. Latest access: September 2017. URL: http://serlab.ube.ege.edu.tr/resources.

htmlSEA_ML

60

http://serlab.ube.ege.edu.tr/resources.htmlSEA_ML
http://serlab.ube.ege.edu.tr/resources.htmlSEA_ML

6.5. SUMMARY

version was easier to learn, since the validation rules educated the user, and also alerted

for errors/warnings. They also pointed out that if the rules were marked in the tree model

it would be easier for the user to locate the errors/warnings.

6.5 Summary

In this chapter we planned and executed an experiment in order to compare the two

versions of the USE-ME framework. 14 participants performed the modeling exercises,

using both versions, the original and the new. The data collected showed that the new
version improved the System Usability Scale, and the Model Correctness of USE-ME models.

Our explanation for this results are the validation rules, that add to the USE-ME tool

guidance, suggestion and validation, which allow to help SLE during the DSL evaluation

process. Despite the significant results is necessary to evaluate the SUS and the Model
Correctness, during real DSLs evaluation and with more experienced users. So that, we

can compare the results and improve the USE-ME framework.

61

C
h
a
p
t
e
r

7
Conclusions

In the previous chapters we described our problem, designed a solution, implemented it, and
tested it with potential users. In this chapter we sum up the main contributions of this disser-
tation 7.1, the limitations of our solution 7.2, and we propose future work in order to improve
the USE-ME framework 7.3.

7.1 Contributions

The main contribution of this dissertation is an updated version of the USE-ME frame-

work that allows to support the SLE in one of the most important steps of the Software
Language Engineering, which is the evaluation (i.e. DSL evaluation). By supporting the

SLE we hope to mitigate the risk of building inappropriate languages that often decrease

users productivity, since the languages do not fit the end users, or that increase the mainte-

nance costs since they often cannot be reused. We establish a process for the experimental

validation of DSLs, with validation rules, during the development process, that validates,

suggests, based on the Software Language Engineers actions, and that guides this stake-

holder throughout a complex and error-prone DSL evaluation workflow. We were able to

increase the System Usability Scale of USE-ME, and the Model Correctness of the USE-ME

models, so we hope that Software Language Engineers feel more confident while using

this new version of the framework, as our participants felt, and also more aware of the

importance of assessing DSLs since the early stages of development.

We also present other important contributions, such as:

• a study and an analysis on experimental evaluations of Domain Specific Languages,

and a comparison between these approaches;

63

CHAPTER 7. CONCLUSIONS

• a study and an analysis on wizards/tools that are concerned with user guidance,

the quality of the models produced, increasing productivity of the end user, and to

decrease the maintenance costs;

• a discussion on the implementation alternatives, a solution and an architecture for

the prototype;

• an experiment planning, conduction, and analysis regarding the usability (mea-

sured with SUS) and the Model Correctness of the USE-ME and the Model Correctness
of the USE-ME models.

7.2 Limitations

One of the biggest limitations, regarding our solution, is that validation rules were de-

veloped to support the USE-ME meta-model, so they cannot be directly used in other

applications. However, the knowledge that we were able to gather, from our solution,

can be reused by other developers when they have validation, suggestions or guidance

problems in their frameworks.

Since the USE-ME tool was developed with Eclipse technologies (section 3.2.1) we

were restricted regarding the rules appearance. We wanted a more continuous validation
approach, but this kind of live validation, the term used in eclipse for showing the Ecore

validation messages, was not available for EVL integrations. So because of that, we had

to change the appearance of the messages so that the user could easily locate the errors/-

suggestions in the model. Also, because of this limitation the user needs to validate the

model, every time he makes changes, to check the messages produced by the validation
rules.

As we mentioned in chapter 3, the USE-ME meta-model is not flattered (i.e. each

development phase has its own Ecore inside one specific package) so because of that the

validation rules do not disappear when the user decides not to accept a suggestion given

by the tool.

7.3 Future Work

For the future work, we intend to find ways to improve the USE-ME framework, with the

validation rules proposed in this dissertation.

One of the aspects that could be improved in the USE-ME framework is the language

meta-model (i.e. the ecore), since the original one could be more specific (i.e. introduce

more restrictions in the ecore) regarding some objects in the USE-ME models. We cannot

express all the language restrictions through the meta-model, however, the language

meta-model should contain all the possible restrictions as this would allow to decrease

the validation rules list. Also, Eclipse allows to live validate (i.e. feature that allows to

validate the model continuously) the rules expressed in the Ecore, and in our opinion this

64

7.3. FUTURE WORK

would improve the user experience since the user would not need to validate the model

every time he makes changes. However, this feature does not allow to guide the SLE in

the process. It only works to validate the USE-ME models. For example, a few restrictions

that could be expressed in the USE-ME meta-model are related with the User Hierarchy.

The USE-ME approach suggests that users create five stakeholders: DSL Stakeholder,

Domain Expert, Expert Evaluator, Language Engineer, and End User. The DSL Stakeholder
is the parent of all the other stakeholders, and each stakeholder has different priorities

(already defined in the USE-ME approach) regarding the DSL developed. So, if we could

express this suggestion through the language meta-model it would be easier for the users

to understand the USE-ME stakeholders hierarchy. And also, this could be expressed

graphically which leads to our next improvement. As we mentioned in section 3.2.1,

Sirius allows the creation of custom graphical workbenches and it is already used in

the USE-ME framework. However, the user does not know when he can generate Sirius

models, or how to generate the models from the Package Explorer. So we propose, in

further iterations of the USE-ME framework, to explore the integration between those

two tools. Our idea is that USE-ME could have two views: one tree model (the original

and current one), and one graphical view (with Sirius). The validation rules could easily

be replicated to the Sirius validation language, AQL, which is similar to OCL and as

such similar to EVL. So, users could use the tree editor to get an overview of the process,

which is better for guidance between development phases, and use the graphical editor

to generate the models. Also, the icons that are currently used in Sirius were not tested

with users, so if the integrations between these two tools got better we suggest that the

icons usability should be tested.

65

Bibliography

[924te] I. 9241-11. Usability. https://www.iso.org/obp/ui. Latest access: August

2017.

[Asste] U. E. P. Association. How Low Can You Go? Is the System Usability Scale Range
Restricted? https://uxpa.org/jus/article/how- low- can- you- go-

system-usability-scale-range-restricted. Latest access: August 2017.

[Ban+08] A. Bangor, P. T. Kortum, and J. T. Miller. “An Empirical Evaluation of the

System Usability Scale”. In: International Journal of Human–Computer Inter-
action 24.6 (2008), pp. 574–594. doi: 10.1080/10447310802205776. url:

http://dx.doi.org/10.1080/10447310802205776.

[Ban+09] A. Bangor, P. Kortum, and J. Miller. “Determining What Individual SUS

Scores Mean: Adding an Adjective Rating Scale”. In: J. Usability Studies 4.3

(May 2009), pp. 114–123. issn: 1931-3357. url: http://dl.acm.org/

citation.cfm?id=2835587.2835589.

[Bar+12a] A. Barišić, V. Amaral, and M. Goulão. “Usability Evaluation of Domain-

Specific Languages”. In: 2012 Eighth International Conference on the Quality
of Information and Communications Technology. 2012, pp. 342–347. doi: 10.

1109/QUATIC.2012.63.

[Bar+12b] A. Barišić, V. Amaral, M. Goulão, and B. Barroca. “How to reach a usable

DSL? Moving toward a Systematic Evaluation”. In: Electronic Communica-
tions of the EASST 50 (2012).

[Bar+17] A. Barišić, V. Amaral, and M. Goulão. “Usability Driven DSL development

with USE-ME”. In: Computer Languages, Systems & Structures (2017). issn:

1477-8424. doi: http://dx.doi.org/10.1016/j.cl.2017.06.005. url:

http://www.sciencedirect.com/science/article/pii/S1477842417300477.

[BR88] V. R. Basili and H. D. Rombach. “The TAME project: towards improvement-

oriented software environments”. In: IEEE Transactions on Software Engineer-
ing 14.6 (1988), pp. 758–773. issn: 0098-5589. doi: 10.1109/32.6156.

[Bro+96] J. Brooke et al. “SUS-A quick and dirty usability scale”. In: Usability evalua-
tion in industry 189.194 (1996), pp. 4–7.

67

https://www.iso.org/obp/ui
https://uxpa.org/jus/article/how-low-can-you-go-system-usability-scale-range-restricted
https://uxpa.org/jus/article/how-low-can-you-go-system-usability-scale-range-restricted
http://dx.doi.org/10.1080/10447310802205776
http://dx.doi.org/10.1080/10447310802205776
http://dl.acm.org/citation.cfm?id=2835587.2835589
http://dl.acm.org/citation.cfm?id=2835587.2835589
http://dx.doi.org/10.1109/QUATIC.2012.63
http://dx.doi.org/10.1109/QUATIC.2012.63
http://dx.doi.org/http://dx.doi.org/10.1016/j.cl.2017.06.005
http://www.sciencedirect.com/science/article/pii/S1477842417300477
http://dx.doi.org/10.1109/32.6156

BIBLIOGRAPHY

[Dow+05] S. Dow, B. MacIntyre, J. Lee, C. Oezbek, J. D. Bolter, and M. Gandy. “Wizard

of Oz support throughout an iterative design process”. In: IEEE Pervasive
Computing 4.4 (2005), pp. 18–26. issn: 1536-1268. doi: 10.1109/MPRV.

2005.93.

[Ecltea] Eclipse. Eclipse Modeling Framework. https://www.eclipse.org/modeling/

emf. Latest access: August 2017.

[Eclteb] Eclipse. Eclipse Modeling Tools. https://www.eclipse.org/downloads/

packages/eclipse-modeling-tools/neonr. Latest access: August 2017.

[Ecltec] Eclipse. Epsilon. https : / / www . eclipse . org / epsilon. Latest access:

August 2017.

[Eclted] Eclipse. Epsilon Validation Language. https://www.eclipse.org/epsilon/

doc/evl. Latest access: August 2017.

[Firte] U. First. Introduction to User-Centered Design. http://www.usabilityfirst.

com/about-usability/introduction-to-user-centered-design. Latest

access: August 2017.

[Fow10] M. Fowler. Domain-specific languages. Pearson Education, 2010.

[Gra+06] G. Grau, X. Franch, and S. Avila. “J-PRiM: A Java Tool for a Process Reengi-

neering i* Methodology”. In: 14th IEEE International Requirements Engineer-
ing Conference (RE’06). 2006, pp. 359–360. doi: 10.1109/RE.2006.36.

[Gyrte] L. Gyr. Jacob Nielsen usability attributes. http://eu.landisgyr.com/better-
tech/usability-is-a-key-element-of-user-experience. Latest access:

August 2017.

[HM07] Ø. Haugen and P. Mohagheghi. “A multi-dimensional framework for char-

acterizing domain specific languages”. In: Proceeding of the 7th OOPSLA
Workshop on Domain Specific Modeling. 2007.

[KB15] G. Kahraman and S. Bilgen. “A framework for qualitative assessment of

domain-specific languages”. In: Software & Systems Modeling 14.4 (2015),

pp. 1505–1526. issn: 1619-1374. doi: 10.1007/s10270-013-0387-8. url:

https://doi.org/10.1007/s10270-013-0387-8.

[KP09] S. Kelly and R. Pohjonen. “Worst Practices for Domain-Specific Modeling”.

In: IEEE Software 26.4 (2009), pp. 22–29. issn: 0740-7459. doi: 10.1109/

MS.2009.109.

[KT08] S. Kelly and J.-P. Tolvanen. Domain-specific modeling: enabling full code gener-
ation. John Wiley & Sons, 2008.

[Kle08] A. Kleppe. Software language engineering: creating domain-specific languages
using metamodels. Pearson Education, 2008.

68

http://dx.doi.org/10.1109/MPRV.2005.93
http://dx.doi.org/10.1109/MPRV.2005.93
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/downloads/packages/eclipse-modeling-tools/neonr
https://www.eclipse.org/downloads/packages/eclipse-modeling-tools/neonr
https://www.eclipse.org/epsilon
https://www.eclipse.org/epsilon/doc/evl
https://www.eclipse.org/epsilon/doc/evl
http://www.usabilityfirst.com/about-usability/introduction-to-user-centered-design
http://www.usabilityfirst.com/about-usability/introduction-to-user-centered-design
http://dx.doi.org/10.1109/RE.2006.36
http://eu.landisgyr.com/better-tech/usability-is-a-key-element-of-user-experience
http://eu.landisgyr.com/better-tech/usability-is-a-key-element-of-user-experience
http://dx.doi.org/10.1007/s10270-013-0387-8
https://doi.org/10.1007/s10270-013-0387-8
http://dx.doi.org/10.1109/MS.2009.109
http://dx.doi.org/10.1109/MS.2009.109

BIBLIOGRAPHY

[Kol+10] D. Kolovos, L. Rose, R. Paige, and A. García-Domínguez. “The epsilon book”.

In: Structure 178 (2010), pp. 1–10.

[Kü+10] S. Kühne, H. Kern, V. Gruhn, and R. Laue. “Business process modeling with

continuous validation”. In: Journal of Software Maintenance and Evolution:
Research and Practice 22.6-7 (2010), pp. 547–566. issn: 1532-0618. doi:

10.1002/smr.517. url: http://dx.doi.org/10.1002/smr.517.

[Liu+02] W. Liu, S. Easterbrook, and J. Mylopoulos. “Rule-based detection of inconsis-

tency in UML models”. In: Workshop on Consistency Problems in UML-Based
Software Development. Vol. 5. 2002.

[Mer+05] M. Mernik, J. Heering, and A. M. Sloane. “When and How to Develop

Domain-specific Languages”. In: ACM Comput. Surv. 37.4 (Dec. 2005),

pp. 316–344. issn: 0360-0300. doi: 10 . 1145 / 1118890 . 1118892. url:

http://doi.acm.org/10.1145/1118890.1118892.

[Nie94] J. Nielsen. Usability engineering. Elsevier, 1994.

[NW06] D. G. Novick and K. Ward. “Why Don’T People Read the Manual?” In: Pro-
ceedings of the 24th Annual ACM International Conference on Design of Com-
munication. SIGDOC ’06. Myrtle Beach, SC, USA: ACM, 2006, pp. 11–

18. isbn: 1-59593-523-1. doi: 10.1145/1166324.1166329. url: http:

//doi.acm.org/10.1145/1166324.1166329.

[PW02] L. Padgham and M. Winikoff. “Prometheus: A Methodology for Developing

Intelligent Agents”. In: Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems: Part 1. AAMAS ’02. Bologna,

Italy: ACM, 2002, pp. 37–38. isbn: 1-58113-480-0. doi: 10.1145/544741.

544749. url: http://doi.acm.org/10.1145/544741.544749.

[Pal+12] J. C. Palmeira, D. A. C. Neto, and D. R.P. C. do Nascimento. “PETIC Wizard

Proposal: A Software Tool for Support PETIC Methodology”. In: Proceedings
of the 6th Euro American Conference on Telematics and Information Systems.
EATIS ’12. Valencia, Spain: ACM, 2012, pp. 407–411. isbn: 978-1-4503-

1012-3. doi: 10.1145/2261605.2261672. url: http://doi.acm.org/10.

1145/2261605.2261672.

[Rab+12] R. Rabiser, P. Grünbacher, and M. Lehofer. “A Qualitative Study on User

Guidance Capabilities in Product Configuration Tools”. In: Proceedings of the
27th IEEE/ACM International Conference on Automated Software Engineering.

ASE 2012. Essen, Germany: ACM, 2012, pp. 110–119. isbn: 978-1-4503-

1204-2. doi: 10.1145/2351676.2351693. url: http://doi.acm.org/10.

1145/2351676.2351693.

[Rad+90] J. Radatz, A. Geraci, and F. Katki. “IEEE standard glossary of software engi-

neering terminology”. In: IEEE Std 610121990.121990 (1990), p. 3.

69

http://dx.doi.org/10.1002/smr.517
http://dx.doi.org/10.1002/smr.517
http://dx.doi.org/10.1145/1118890.1118892
http://doi.acm.org/10.1145/1118890.1118892
http://dx.doi.org/10.1145/1166324.1166329
http://doi.acm.org/10.1145/1166324.1166329
http://doi.acm.org/10.1145/1166324.1166329
http://dx.doi.org/10.1145/544741.544749
http://dx.doi.org/10.1145/544741.544749
http://doi.acm.org/10.1145/544741.544749
http://dx.doi.org/10.1145/2261605.2261672
http://doi.acm.org/10.1145/2261605.2261672
http://doi.acm.org/10.1145/2261605.2261672
http://dx.doi.org/10.1145/2351676.2351693
http://doi.acm.org/10.1145/2351676.2351693
http://doi.acm.org/10.1145/2351676.2351693

BIBLIOGRAPHY

[RR00] J. Robbins and D. Redmiles. “Cognitive support, UML adherence, and XMI

interchange in Argo/UML”. In: Information and Software Technology 42.2

(2000), pp. 79 –89. issn: 0950-5849. doi: http : / / dx . doi . org / 10 .

1016/S0950-5849(99)00083-X. url: http://www.sciencedirect.com/

science/article/pii/S095058499900083X.

[Run+12] P. Runeson, M. Host, A. Rainer, and B. Regnell. Case study research in software
engineering: Guidelines and examples. John Wiley & Sons, 2012.

[Sin+10] G. Sinha, R. Shahi, and M. Shankar. “Human Computer Interaction”. In:

2010 3rd International Conference on Emerging Trends in Engineering and Tech-
nology. 2010, pp. 1–4. doi: 10.1109/ICETET.2010.85.

[SV06] T. Stahl and M. Völter. Model-driven software development: technology, en-
gineering, management. Chichester: J. Wiley & Sons, 2006. url: http :

//cds.cern.ch/record/1692118.

[Ste+08] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: eclipse model-
ing framework. Pearson Education, 2008.

[VD+00] A. Van Deursen, P. Klint, and J. Visser. “Domain-Specific Languages: An

Annotated Bibliography.” In: Sigplan Notices 35.6 (2000), pp. 26–36.

[Vis08] E. Visser. “WebDSL: A Case Study in Domain-Specific Language Engineer-

ing”. In: Generative and Transformational Techniques in Software Engineering
II: International Summer School, GTTSE 2007, Braga, Portugal, July 2-7, 2007.
Revised Papers. Ed. by R. Lämmel, J. Visser, and J. Saraiva. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008, pp. 291–373. isbn: 978-3-540-88643-3.

doi: 10.1007/978-3-540-88643-3_7. url: https://doi.org/10.1007/

978-3-540-88643-3_7.

[Viste] E. Visser. “Composing Domain-Specific Languages”. https://www.slideshare.

net/eelcovisser/composing-domainspecific-languages-2488110. Lat-

est access: August 2017.

[Voxte] Voxxed. MDD. https://www.voxxed.com/2015/02/a-look-at-openxava-

a-lightweight-model-driven-java-framework. Latest access: August

2017.

[Vö+13] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L. Kats,

E. Visser, and G. Wachsmuth. DSL Engineering - Designing, Implementing and
Using Domain-Specific Languages. dslbook.org, 2013. isbn: 978-1-4812-1858-

0. url: http://www.dslbook.org.

[WC99] D. M. Weiss and Chi. Software Product-Line Engineering: A Family-Based
Software Development Process. Addison-Wesley Professional; Har/Cdr edition,

1999.

70

http://dx.doi.org/http://dx.doi.org/10.1016/S0950-5849(99)00083-X
http://dx.doi.org/http://dx.doi.org/10.1016/S0950-5849(99)00083-X
http://www.sciencedirect.com/science/article/pii/S095058499900083X
http://www.sciencedirect.com/science/article/pii/S095058499900083X
http://dx.doi.org/10.1109/ICETET.2010.85
http://cds.cern.ch/record/1692118
http://cds.cern.ch/record/1692118
http://dx.doi.org/10.1007/978-3-540-88643-3_7
https://doi.org/10.1007/978-3-540-88643-3_7
https://doi.org/10.1007/978-3-540-88643-3_7
https://www.slideshare.net/eelcovisser/composing-domainspecific-languages-2488110
https://www.slideshare.net/eelcovisser/composing-domainspecific-languages-2488110
https://www.voxxed.com/2015/02/a-look-at-openxava-a-lightweight-model-driven-java-framework
https://www.voxxed.com/2015/02/a-look-at-openxava-a-lightweight-model-driven-java-framework
http://www.dslbook.org

BIBLIOGRAPHY

[Woh+12] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.

Experimentation in software engineering. Springer Science & Business Media,

2012.

71

A
p
p
e
n
d
i
x

A
Validation Rules

In this appendix, we present the valdiation rules developed for the new USE-ME version.

This rules allow to guide, suggest and validate SLE actions throughout the USE-ME de-

velopment process. The rules are divided by table, so: the Utility rules are specified in

table A.1, the Context Model rules are specified in table A.2, the Goal Model rules are

specified in table A.3, the Evaluation Model rules are specified in table A.4, the Interac-

tion Model rules are specified in table A.5, the Survey Model rules are specified in table

A.6, the Report Model rules are specified in table A.7. For each rules we provide a:

• description: on the rule. It can be defined if the object must/should be defined (i.e.
Utility Specification must have a Name defined), or it can be associated if an object

was already created and should be associated to another object (i.e. DSL should have

a Documentation associated);

• type: which can be strict, meaning that the rule is mandatory (i.e. produces an

error), or it can be suggestion, meaning that the rule is a suggestion (i.e. produces a

warning);

• message: shown to the user, in order to help the user to fix the error/warning. The

validation rules were design in such a way that they can educate the user on the

development process.

73

APPENDIX A. VALIDATION RULES

Table A.1: Utility validation rules.

Description Type Message

UtilitySpecification.defined() strict USE-ME Utility Error: Create Child " Util-
ity Specification" in Parent "Specification" if
you would like to reuse some artefacts from
an existing DSL under development.

UtilitySpecification name.defined() suggestion USE-ME Utility Suggestion: "Name" of
"Utility Specification" should be set to bet-
ter distinguish between different utility
specifications.

UtilitySpecification DSL.defined() strict USE-ME Utility Error: Create Child "DSL"
in Parent "Utility Specification" to specify
the DSL under development.

DSL DslName.defined() strict USE-ME Utility Error: "Dsl Name" of "DSL"
must be set to better distinguish between
different DSLs.

DSL ConcreteSyntax.defined() suggestion USE-ME Utility Suggestion: Create Child
"Concrete Syntax" in Parent "DSL" to asso-
ciate a Concrete Syntax.

ConcreteSyntax name.defined() suggestion USE-ME Utility Suggestion: "Name" of
"Concrete Syntax" should be set to better
distinguish between different concrete syn-
taxes.

DSL AbstractSyntax.defined() suggestion USE-ME Utility Suggestion: Create Child
"Abstract Syntax" in Parent "DSL" to asso-
ciate an Abstract Syntax.

74

Description Type Message

AbstractSyntax name.defined() suggestion USE-ME Utility Suggestion: "Name" of "Ab-
stract Syntax" should be set to better distin-
guish between different abstract syntaxes.

DSL AbstractSyntax or ConcreteSyn-
tax.defined()

strict USE-ME Utility Error: Create Child "Con-
crete Syntax" and/or "Abstract Syntax" in
Parent "DSL".

DSL ExistingGoalModel.defined() suggestion USE-ME Utility Suggestion: Create Child
"Existing GM" in Parent "DSL" to reuse the
knowledge from a previous developed Goal
Model.

ExistingGoalModel name.defined() suggestion USE-ME Utility Suggestion: "Name" of "Ex-
isting GM" should be set to better distin-
guish between different existing goal mod-
els.

UtilitySpecification Functional-
Goal.defined()

suggestion USE-ME Utility Suggestion: Create Child
"Functional Goal" in Parent "Utility Specifi-
cation" to specify/reuse functional goals.

FunctionalGoal name.defined() suggestion USE-ME Utility Suggestion: "Name" of
"Functional Goal" should be set to better
distinguish between different functional
goals.

FunctionalGoal Exist-
ingGM.associated()

suggestion USE-ME Utility Suggestion: "Existing GM"
of "Functional Goal" should be associated
to refer to a specific goal model.

UtilitySpecification Process-
Model.defined()

suggestion USE-ME Utility Suggestion: Create Child
"Process Model" in Parent "Utility Specifi-
cation" to refer to business process models
previously designed.

ProcessModel name.defined() suggestion USE-ME Utility Suggestion: "Name" of "Pro-
cess Model" should be set to better distin-
guish between different process models.

UtilitySpecification Sur-
veyEngine.defined()

suggestion USE-ME Utility Suggestion: Create Child
"Survey Engine" in Parent "Utility Specifi-
cation" to connected to an existing survey
platform (e.g. Google Forms, ...).

UtilitySpecification Documenta-
tion.defined()

suggestion USE-ME Utility Suggestion: Create Child
"Documentation" in Parent "Utility Specifi-
cation" to reffer to existing documentation
(e.g. videos, presentations, ...).

Documentation name.defined() suggestion USE-ME Utility Suggestion: "Name" of
"Documentation" should be set to better dis-
tinguish between different documents.

DSL Documentation.associated() suggestion USE-ME Utility Suggestion: "Documenta-
tion" of "DSL" should be associated to refer
to existing documents (e.g. videos, presen-
tations, ...).

UtilitySpecification Out-
Ref.defined()

suggestion USE-ME Utility Suggestion: Create Child
"Outside Ref" in Parent "Utility Specifica-
tion" to refer to Process Model, Documenta-
tion or Survey Engine outside references.

75

APPENDIX A. VALIDATION RULES

Description Type Message

OutRef name.defined() suggestion USE-ME Utility Suggestion: "Name" of
"OutsideRef" should be set to better distin-
guish between different outside references.

OutRef Link.defined() suggestion USE-ME Utility Suggestion: "Link" of "Out-
side Ref" should be set to define the link to
the outside reference.

OutRef Tool.defined() suggestion USE-ME Utility Suggestion: "Tool" of "Out-
sideRef" should be set to define the tool
used.

OutRef OutRef.associated() suggestion USE-ME Utility Suggestion: "Outside Ref"
of "Outside Ref" should be associated.

Documentation OutRef.associated() suggestion USE-ME Utility Suggestion: "Outside Ref"
of "Documentation" should be associated to
refer to an existing outside reference.

ProcessModel OutRef.associated() suggestion USE-ME Utility Suggestion: "Outside Ref"
of "Process Model" should be associated to
refer to an existing outside reference.

UtilitySpecification Require-
ment.defined()

suggestion USE-ME Utility Suggestion: Create Child
"Requirement" in Parent "Utility Specifica-
tion" to define the DSL requirements.

Requirement name.defined() suggestion USE-ME Utility Suggestion: "Name" of "Re-
quirement" should be set to better distin-
guish between different requirements.

Requirement Description.defined() suggestion USE-ME Utility Suggestion: "Description"
of "Requirement" should be set.

FunctionalGoal Require-
ments.associated()

suggestion USE-ME Utility Suggestion: "Requirement"
of "Functional Goal" should be associated
to define the functional goal requirements.

Table A.2: Context validation rules.

Description Type Message

ContextSpecification.defined() strict USE-ME Context Error: Create Child "Con-
text Specification" in Parent "Specification"
to describe the DSL intended context of use.

ContextSpecification
name.defined()

suggestion USE-ME Context Suggestion: "Name" of
"Context Specification" should be set to bet-
ter distinguish between different context
specifications.

ContextModel.defined() strict USE-ME Context Error: Create Child "Con-
text Model" in Parent "Context Specifica-
tion".

ContextModel cmName.defined() strict USE-ME Context Error: "Cm Name" of
"Context Model" must be set to differenti-
ate from other context models.

ContextModel con-
textProvider.defined()

strict USE-ME Context Error: "Context Provider"
of "Context Model" must be set to specify
the entity/stakeholder that provides infor-
mation about the DSL.

ContextModel domain.defined() strict USE-ME Context Error: "Domain" of "Con-
text Model" must be set to specify the DSL
domain.

76

Description Type Message

ContextModel Lan-
guage.associated()

suggestion USE-ME Context Suggestion: "Language"
of "Context Model" should be associated to
represent the DSL under evaluation.

for each ContextModel UserHierar-
chy.defined()

strict USE-ME Context Error: Create Child "User
Hierarchy" in Parent "Context Model" to pri-
oritise the DSL users.

UserHierarchy UhDescrip-
tion.defined()

suggestion USE-ME Context Suggestion: "Uh Descrip-
tion" of "User Hierarchy" should be set to
describe the user hierarchy.

UserProfileSpecification.defined() strict USE-ME Context Error: Create Child "User
Profile Specification" in Parent "Context
Specification" to specify who will use the
DSL.

UserProfileSpecification
name.defined()

suggestion USE-ME Context Suggestion: "Name" of
"User Profile Specification" should be set
to better distinguish between different user
profile specifications

for each UserProfileSpecification
UserProfile.defined()

strict USE-ME Context Error: Create Child "User
Profile" in "User Profile Specification" to
specify the DSL end users.

for each UserProfile name.defined() suggestion USE-ME Context Suggestion: "Name" of
"User Profile" should be set to better distin-
guish between different user profiles.

UserProfileDSLStakeholder.defined() suggestion USE-ME Context Suggestion: Create Child
"User Profile" with Name "DSL Stake-
holder" in "User Profile Specification" to
specify the DSL root stakeholder.

UserProfile where name="DSL
Stakeholder"

suggestion USE-ME Context Suggestion: Rename
"Name" of "User Profile" to "DSL Stake-
holder".

UserProfileLanguageEngineer.defined()suggestion USE-ME Context Suggestion: Create Child
"User Profile" with Name "Language Engi-
neer" in "User Profile Specification" to spec-
ify the DSL language engineer.

UserProfile where name="Language
Engineer"

suggestion USE-ME Context Suggestion: Rename
"Name" of "User Profile" to "Language En-
gineer".

UserProfileDomainExpert.defined() suggestion USE-ME Context Suggestion: Create Child
"User Profile" with Name "Domain Expert"
in "User Profile Specification" to specify the
DSL domain expert.

UserProfile where name="Domain
Expert"

suggestion USE-ME Context Suggestion: Rename
"Name" of "User Profile" to "Domain Ex-
pert".

UserProfileExpertEvaluator.defined() suggestion USE-ME Context Suggestion: Create Child
"User Profile" with Name "Expert Evalua-
tor" in "User Profile Specification" to specify
the DSL expert evaluator.

UserProfile where name="Expert
Evaluator"

suggestion USE-ME Context Suggestion: Rename
"Name" of "User Profile" to "Expert Evalu-
ator".

UserProfileEndUser.defined() suggestion USE-ME Context Error: Create Child "User
Profile" Name "End User" in "User Profile
Specification" to specify the DSL end user.

UserProfile where name="End User" suggestion USE-ME Context Suggestion: Rename
"Name" of "User Profile" to "End User".

UserProfile name="Language
Engineer" set Parent(DSL Stake-
holder).associated()

suggestion USE-ME Context Suggestion: "Parent" of
"User Profile Language Engineer" should be
set to "DSL Stakeholder".

77

APPENDIX A. VALIDATION RULES

Description Type Message

UserProfile name="Domain
Expert" set Parent(DSL Stake-
holder).associated()

suggestion USE-ME Context Suggestion: "Parent" of
"User Profile Domain Expert" should be set
to "DSL Stakeholder".

UserProfile name="Expert Eval-
uator" set Parent(DSL Stake-
holder).associated()

suggestion USE-ME Context Suggestion: "Parent" of
"User Profile Expert Evaluator" should be
set to "DSL Stakeholder".

UserProfile name="End
User" set Parent(DSL Stake-
holder).associated()

suggestion USE-ME Context Suggestion: "Parent" of
"User Profile End User" should be set to
"DSL Stakeholder".

UserProfile name="End User" set
SubProfile.associated()

strict USE-ME Context Suggestion: "Sub Profile"
of "User Profile End User" must be set into
at least 2 end user sub profiles

UserProfile name!="DSL, LE, DE,
EE and EU" set Parent.associated()

strict USE-ME Context Error: "Parent" of "User
Profile" must be set.

UserProfile DSLStakeholder prior-
ity=high

suggestion USE-ME Context Suggestion: Change the
"Priority" of "User Profile DSL Stakeholder"
to "High" level.

UserProfile LanguageEngineer prior-
ity=low

suggestion USE-ME Context Suggestion: Change the
"Priority" of "User Profile Language Engi-
neer" to "Low" level.

UserProfile DomainExpert prior-
ity=medium

suggestion USE-ME Context Suggestion: Change the
"Priority" of "User Profile Domain Expert"
to "Medium" level.

UserProfile ExpertEvaluator prior-
ity=low

suggestion USE-ME Context Suggestion: Change the
"Priority" of "User Profile Expert Evaluator"
to "Low" level.

UserProfile EndUser priority=high suggestion USE-ME Context Suggestion: Change the
"Priority" of "User Profile End User" to
"High" level.

UserProfile if SubProfile>=1 check
if at least one of UserProfile prior-
ity=parent.priority

strict USE-ME Context Error: Change the "Prior-
ity" of one "Sub Profile" to match the "Par-
ent" priority.

UserHierarchy UserPro-
file.associated()

strict USE-ME Context Error: "User Profile" of
"User Hierarchy" must be associated to de-
fine the user hierarchy root profile, it is sug-
gested to associate the "DSL Stakeholder" as
the user hierarchy root profile.

for each UserProfileSpecification
ProfileTemplate.defined()

strict USE-ME Context Error: Create Child "Pro-
file Template" in Parent "User Profile Spec-
ification" to describe user profile character-
istics such as background information (e.g.
demographic data, education, ...) and rele-
vant experience with domain activities (e.g.
expected knowledge sets, ontology, ...).

ProfileTemplate name.defined() suggestion USE-ME Context Suggestion: "Name" of
"Profile Template" should be set to better
distinguish between different profile tem-
plates.

ProfileTemplate Category.defined() suggestion USE-ME Context Suggestion: "Category" of
"Profile Template" should be set to specify
the profile template category (e.g. demo-
graphic data, education, expected knowl-
edge set)

UserProfile where priority=high
ProfileTemplate.associated()

strict USE-ME Context Error: "Profile Template"
of "User Profile" must be associated to refer
to a specific profile template.

for each UserProfileSpecification
LogicalExpression.defined()

strict USE-ME Context Error: Create Child "Logi-
cal Expression" in Parent "User Profile Spec-
ification" to justify the creation of new end
user sub profiles.

78

Description Type Message

LogicalExpression name.defined() suggestion USE-ME Context Suggestion: "Name" of
"Logical Expression" should be set to bet-
ter distinguish between different logical ex-
pressions.

LogicalExpression Expres-
sion.defined()

strict USE-ME Context Error: "Expression" of
"Logical Expression" must be set it can con-
tain concrete (e.g. age >7) or abstract (e.g.
age = int) specifications.

LogicalExpression Classifier-
Name.defined()

suggestion USE-ME Context Suggestion: "Classifier
Name" of "Logical Expression" should be set
to better distinguish between different clas-
sifier expressions.

ProfileTemplate Classifiers/Logical-
Expression.associated()

strict USE-ME Context Error: "Classifiers" of
"Profile Template" should be associated to
define which classifiers apply to a specific
profile template.

UserProfile (prior-
ity=high&SubProfile>=1) Classi-
fier/LogicalExpression.associated()

strict USE-ME Context Error: "Classifier" of "User
Profile" should be associated to the "Logical
Expression" which classify the sub-profiles
in distinct sets.

EnviromentSpecification.defined() strict USE-ME Context Error: Create Child "En-
viroment Specification" in Parent "Context
Specification" to define where will the DSL
be used.

EnviromentSpecification
name.defined()

suggestion USE-ME Context Suggestion: "Name" of
"Enviroment Specification" should be set to
better distinguish between different enviro-
ment specifications.

for each EnviromentSpecification
Environment.defined()

strict USE-ME Context Error: Create Child "Tech-
nical Environment" and/or "Physical Envi-
ronment" and/or "Social Environment" in
Parent "Enviroment Specification" to spec-
ify in which environments the DSL is going
to be used.

TechnicalEnvironment
name.defined()

suggestion USE-ME Context Suggestion: "Name" of
"Technical Environment" should be set to
better distinguish between different techni-
cal enviroments.

TechnicalEnvironment Out-
Ref.associated()

suggestion USE-ME Context Suggestion: "Outside Ref"
of "Technical Environment" should be asso-
ciated to define an outside reference for the
environment.

PhysicalEnvironment
name.defined()

suggestion USE-ME Context Suggestion: "Name" of
"Physical Environment" should be set to bet-
ter distinguish between different physical
enviroments.

PhysicalEnvironment Out-
Ref.defined()

suggestion USE-ME Context Suggestion: "Outside Ref"
of "Physical Environment" should be associ-
ated to define an outside reference for the
environment.

SocialEnvironment name.defined() suggestion USE-ME Context Suggestion: "Name" of
"Social Environment" should be set to bet-
ter distinguish between different social en-
viroments.

SocialEnvironment Out-
Ref.defined()

suggestion USE-ME Context Suggestion: "Outside Ref"
of "Social Environment" should be associ-
ated to define an outside reference for the
environment.

79

APPENDIX A. VALIDATION RULES

Description Type Message

ContextModel contextEnviron-
ment.associated()

strict USE-ME Context Error: "Context Environ-
ment" of "Context Model" must be associ-
ated to define in which environment the
DSL is going to be used.

for each EnviromentSpecification
CEVariable.defined()

strict USE-ME Context Error: Create Child "CE
Variable" in Parent "Enviroment Specifica-
tion" to represent an environment variable
(e.g. operating system, computer, country).

CEVariable name.defined() suggestion USE-ME Context Suggestion: "Name" of
"CE Variable" should be set to better distin-
guish between different CE variables.

CEVariable Type.defined() suggestion USE-ME Context Suggestion: "Type" of "CE
Variable" should be set (e.g. OS = {Win-
dows, Mac, Linux}).

CEVariable isMandatory.defined() suggestion USE-ME Context Suggestion: "Mandatory"
of "CE Variable" should be set to true if...
false otherwise.

for each CEVariable type>=1 Com-
posedCEVariable.defined()

strict USE-ME Context Error: Create Child "CE
Variable" in Parent "CE Variable" to repre-
sent each type specified in "CE Variable"
type.

CEVariable name.defined() suggestion USE-ME Context Suggestion: "Name" of
"CE Variable" should be set to better distin-
guish between different CE variables.

CEVariable Type.defined() suggestion USE-ME Context Suggestion: "Type" of "CE
Variable" should be set (e.g. Mac = {El Cap-
itan, Yosemite}).

CEVariable isMandatory.defined() suggestion USE-ME Context Suggestion: "Mandatory"
of "CE Variable" should be set to true if...
false otherwise.

CEVariable ContextEnviron-
ment.associated()

suggestion USE-ME Context Suggestion: "Context En-
vironment" of "CE Variable" should be as-
sociated (e.g. technical, physical or social
environment).

for each TechnicalEnvironment
CEElement.associated()

strict USE-ME Context Error: "CE Element" of
"Technical Environment" must be associ-
ated to define which CE variables apply to
technical environment.

for each PhysicalEnvironment
CEElement. associated()

strict USE-ME Context Error: "CE Element" of
"Physical Environment" must be associated
to define which CE variables apply to phys-
ical environment.

for each SocialEnvironment CEEle-
ment. associated()

strict USE-ME Context Error: "CE Element" of
"Social Environment" must be associated to
define which CE variables apply to social
environment.

WorkflowSpecification.defined() strict USE-ME Context Error: Create Child
"Workflow Specification" in Parent "Context
Specification" to define how the DSL is ex-
pected to be used.

WorkflowSpecification
name.defined()

suggestion USE-ME Context Suggestion: "Name" of
"Workflow Specification" should be set to
better distinguish between different work-
flow specifications.

80

Description Type Message

for each WorkflowSpecification
Workflow.defined()

strict USE-ME Context Error: Create Child
"Workflow" in Parent "Workflow Specifica-
tion" to specify a group of tasks.

Workflow name.defined() suggestion USE-ME Context Suggestion: "Name" of
"Workflow" should be set to better distin-
guish between different workflows.

Workflow Actor.associated() suggestion USE-ME Context Suggestion: "Actor" of
"Workflow" should be associated to define
which user profiles perform the workflow.

Workflow priority=high ContextEle-
ment.associated()

suggestion USE-ME Context Suggestion: "Context Ele-
ment" of "Workflow" should be associated
to define environment elements that are rel-
evant.

Workflow Con-
textModel.associated()

suggestion USE-ME Context Suggestion: "Context
Model" of "Workflow" should be associated
to define the context to which the workflow
applies.

Workflow Process-
Model.associated()

suggestion USE-ME Context Suggestion: "Process
Model" of "Workflow" should be associated
to define which process models apply to the
workflow.

Workflow Priority.defined() suggestion USE-ME Context Suggestion: "Priority" of
"Workflow" should be set to high if the
workflow is very important.

for each Workflow priority=high
Scenario.defined()

strict USE-ME Context Error: Create Child "Sce-
nario" in Parent "Workflow" to represent
concrete tasks (i.e. use cases).

Scenario name.defined() suggestion USE-ME Context Suggestion: "Name" of
"Scenario" should be set to better distin-
guish between different scenarios.

Scenario Doc.associated() suggestion USE-ME Context Error: "Doc" of "Scenario"
should be associated to define which docu-
ments apply to the scenario.

Table A.3: Goal validation rules.

Description Type Message

GoalSpecification.defined() strict USE-ME Goal Error: If you don’t want to
extend "Context Model" create Child "Goal
Specification" in Parent "Specification" to
specify the objectives of the user while us-
ing the DSL.

GoalSpecification name.defined() suggestion USE-ME Goal Suggestion: "Name" of "Goal
Specification" should be set to better distin-
guish between different goal specifications.

for each GoalSpecification
GoalModel.defined()

strict USE-ME Goal Error: Create Child "Goal
Model" in Parent "Goal Specification" to
capture the various objectives of the system
that should be achieved.

GoalModel name.defined() suggestion USE-ME Goal Suggestion: "Name" of "Goal
Model" should be set to better distinguish
between different goal models.

GoalModel Language.associated() suggestion USE-ME Goal Suggestion: "Language" of
"Goal Model" should be set to better define
the DSL to which the goal model applies.

81

APPENDIX A. VALIDATION RULES

Description Type Message

for each GoalModel Usability-
GoalQualityInUse.defined()

strict USE-ME Goal Error: Create Child "Usabil-
ity Goal Quality in Use" in Parent "Goal
Model" to define usability goal that is the
highest level objective for the developed
DSL.

for each GoalModel Usability-
Goal.defined()

strict USE-ME Goal Error: Create Child "Usabil-
ity Goal" in Parent "Goal Model" to define
usability goal quality in use subgoals.

only one UsabilityGoal="Quality in
Use".defined()

strict USE-ME Goal Error: Rename "Usability
Goal Quality in Use" only one Usability
Goal Quality in Use can be defined.

UsabilityGoal Question.defined() strict USE-ME Goal Error: "Question" of "Usabil-
ity Goal" must be set.

UsabilityGoal name=’Quality in
Use’ priority=high

strict USE-ME Context Error: Change the "Prior-
ity" of "Usability Goal Quality in Use" to
high since it is the highest goal.

UsabilityGoal name="Quality in
Use" SubGoal.defined()

strict USE-ME Goal Error: "Sub Goal" of "Usabil-
ity Goal" must be set since "Usability Goal
Quality in Use" is the highest level objec-
tive.

UsabilityGoal name!="Quality in
Use" ParentGoal.defined()

strict USE-ME Goal Error: "Parent Goal" of "Us-
ability Goal" must be set to specify the us-
ability goal parent.

UsabilityGoal if SubGoal>=1 check
if at least one of UsabilityGoal Sub-
Goals priority=parent.priority

strict USE-ME Goal Error: Change the "Priority"
of one "Usability Goal" sub goals to match
the "Parent" priority level.

for each GoalSpecification
Scope.defined()

strict USE-ME Goal Error: Create Child "Scope"
in Parent "Goal Specification" to associate
the context of use (e.g. User Profiles, Envi-
ronments and Workflows) to a certain us-
ability goal.

Scope name.defined() suggestion USE-ME Goal Suggestion: "Name" of
"Scope" should be set to better distinguish
between different scopes.

Scope ContextModel.associated() strict USE-ME Goal Error: "Context Model" of
"Scope" must be associated to define to
which context of use it applies to.

Scope UsabilityGoal.associated() strict USE-ME Goal Error: "Usability Goal" of
"Scope" must be associated to define to
which usability goal it applies to.

Scope UserProfileSelec-
tion.associated()

suggestion USE-ME Goal Error: "User Profile Selec-
tion" of "Scope" must be associated to define
to which user profile it applies to.

Scope Workflow.associated() suggestion USE-ME Goal Error: "Workflow" of "Scope"
must be associated to define to which work-
flows it applies to.

Scope ContextEnviron-
ment.associated()

suggestion USE-ME Goal Error: "Context Environ-
ment" of "Scope" must be associated to de-
fine to which environments it applies to.

for each GoalSpecification Ac-
tor.defined()

strict USE-ME Goal Error: Create Child "Actor" in
Parent "Goal Specification" which is a spe-
cialization of DSL stakeholder.

Actor name.defined() suggestion USE-ME Goal Suggestion: "Name" of "Ac-
tor" should be set to better distinguish be-
tween different actors.

ActorExpertEvaluator.defined() suggestion USE-ME Goal Error: Create Child "Actor"
with Name "Expert Evaluator" in Parent
"Goal Specification" to represent the lan-
guage expert evaluator.

82

Description Type Message

Actor where name="Expert Evalua-
tor"

suggestion USE-ME Goal Suggestion: Rename "Name"
of "Actor" to "Expert Evaluator".

Actor Stakeholder.associated() strict USE-ME Goal Error: "Stakeholder" of "Ac-
tor " must be associated to define which DSL
stakeholder is responsible.

Actor="Expert Evaluator" Stake-
holder.size=1.defined()

suggestion USE-ME Goal Suggestion: "Stakeholder" of
"Actor Expert Evaluator" should only have
"User Profile Expert Evaluator" has stake-
holder.

Actor="Expert Evaluator" and Stake-
holder=UPExpertEvaluator.associated()

strict USE-ME Goal Suggestion: "Stakeholder" of
"Actor Expert Evaluator" should be associ-
ated to "User Profile Expert Evaluator".

Actor Organization.defined() suggestion USE-ME Goal Error: "Organization" of "Ac-
tor " should be set to define the actor orga-
nization.

UsabilityGoal name="Quality in
Use" All Actors are ResponsibleAc-
tor.defined()

strict USE-ME Goal Suggestion: "Actor" should
be associated as "Responsible Actor" of "Us-
ability Goal Quality in Use".

UsabilityGoal with Subgoals =
0 only have one ResponsibleAc-
tor.defined()

suggestion USE-ME Goal Suggestion: "Responsible Ac-
tor" of "Usability Goal" should be only asso-
ciated to one single actor since the Usability
Goal does not have any sub goals.

UsabilityGoal ResponsibleAc-
tor.associated()

suggestion USE-ME Goal Suggestion: "Responsible Ac-
tor" of "Usability Goal" should be associ-
ated.

UsabilityGoal ResponsibleActor
Name=ExpertEvaluator.defined()

suggestion USE-ME Goal Suggestion: "Actor Expert
Evaluator" should be associated as single
"Responsible Actor" of one "Usability Goal"
without "Sub Goals".

UsabilityGoal SubGoals=0 and
ResponsibleActor=1 ProvidedFunc-
tionality.associated()

suggestion USE-ME Goal Suggestion: "Provided Func-
tionality" of "Usability Goal" should be set
to define the functional goal associated to
the usability goal.

for each GoalSpecification
Method.defined()

strict USE-ME Goal Error: Create Child "Method"
in Parent "Goal Specification" to define the
measurable requirements that contribute to
the achievement of the goal.

Method name.defined() suggestion USE-ME Goal Suggestion: "Name" of
"Method" should be set to better distinguish
between different methods.

Method UsabilityGoal.associated() strict USE-ME Goal Error: "Usability Goal" of
"Method" must be associated to define
to which usability goal it contributes to
achieve.

Method MethodDescrip-
tion.defined()

suggestion USE-ME Goal Suggestion: "Method De-
scription" of "Method" should be set.

Method TestCase/Sce-
nario.associated()

suggestion USE-ME Goal Suggestion: "Test Case" of
"Method" should be associated as it can be
used to evaluate the requirement.

Method FunctionalGoal.associated() suggestion USE-ME Goal Suggestion: "Functional
Goal" of "Method" should be associated as
it represents the funcionalities that are pro-
vided to support the execution of certain
test cases.

for each GoalSpecification Usabili-
tyRequirement.defined()

strict USE-ME Goal Error: Create Child "Usabil-
ity Requirement" in Parent "Goal Specifica-
tion" to define the usability requirements
that contribute to the achievement of the
goal.

83

APPENDIX A. VALIDATION RULES

Description Type Message

UsabilityRequirement
name.defined()

suggestion USE-ME Goal Suggestion: "Name" of "Us-
ability Requirement" should be set to better
distinguish between different usability re-
quirements.

UsabilityRequirement Old-
Name.defined()

suggestion USE-ME Goal Suggestion: "Old name" of
"Usability Requirement" should be set to
better distinguish between different old us-
ability requirements.

UsabilityRequirement Met-
ric.defined()

suggestion USE-ME Goal Suggestion: "Metric" of "Us-
ability Requirement" should be set to define
which metrics are going to be use to mea-
sure the requirement.

UsabilityRequirement Descrip-
tion.defined()

suggestion USE-ME Goal Suggestion: "Description" of
"Usability Requirement" should be set.

UsabilityRequirement OldDescrip-
tion.defined()

suggestion USE-ME Goal Suggestion: "Description
old" of "Usability Requirement" should be
set.

Method UsabilityRequire-
ment.associated()

suggestion USE-ME Goal Suggestion: "Usability Re-
quirement" of "Method" should be associ-
ated to define which measurable require-
ments (i.e. usability requirements) that con-
tribute to the achievement of the goal.

for each GoalSpecification Success-
Coverage.defined()

suggestion USE-ME Goal Error: Create Child "Success
Coverage" in Parent "Goal Specification" to
reflect the evaluated context coverage.

SuccessCoverage name.defined() suggestion USE-ME Goal Suggestion: "Name" of "Suc-
cess Coverage" should be set to better distin-
guish between different success coverages.

SuccessCoverage Scope.associated() strict USE-ME Goal Error: "Scope" of "Success
Coverage" must be associated.

SuccessCoverage Usability-
Goal.associated()

strict USE-ME Goal Error: "Usability Goal" of
"Success Coverage" must be associated.

SuccessCoverage SuccessFac-
tor.associated()

strict USE-ME Goal Error: "Success Factor" of
"Success Coverage" must be associated.

Table A.4: Evaluation validation rules.

Description Type Message

EvaluationSpecification.defined() strict USE-ME Evaluation Error: If you don’t
want to extend "Goal Model" create Child
"Evaluation Specification" in Parent "Speci-
fication" to evaluate the DSL.

EvaluationSpecification
name.defined()

suggestion USE-ME Evaluation Suggestion: "Name" of
"Evaluation Specification" should be set to
better distinguish between different evalua-
tion specifications.

for each EvaluationSpecification
EvaluationModel.defined()

strict USE-ME Evaluation Error: Create Child
"Evaluation Model" in Parent "Evaluation
Specification" to express the purpose of
evaluating a certain objective for the DSL
in a specific context.

EvaluationModel name.defined() suggestion USE-ME Evaluation Suggestion: "Name" of
"Evaluation Model" should be set to bet-
ter distinguish between different evaluation
models.

84

Description Type Message

Language.defined() strict USE-ME Evaluation Error: Create Child
"Language" in Parent "Evaluation Specifica-
tion" to define the language under evalua-
tion.

Comparative Language.defined() suggestion USE-ME Evaluation Error: Create Child
"Language" in Parent "Evaluation Specifica-
tion" to compare other language with the
language under evaluation.

Language name.defined() suggestion USE-ME Evaluation Suggestion: "Name" of
"Language" should be set to better distin-
guish between different languages.

Language Version.defined() suggestion USE-ME Evaluation Suggestion: "Version"
of "Language" should be set to define lan-
guage version.

Language DSL.associated() suggestion USE-ME Evaluation Suggestion: "DSL" of
"Language" should be associated to define
to which DSL applies to language.

Language Evaluation-
Model.associated()

strict USE-ME Evaluation Error: "Evaluation
Model" of "Language" must be associated
to define the language evaluation model.

EvaluationGoal.defined() strict USE-ME Evaluation Error: Create Child
"Evaluation Goal" in Parent "Evaluation
Specification" to define the experimental hy-
pothesis and research questions.

EvaluationGoal name.defined() suggestion USE-ME Evaluation Suggestion: "Name"
of "Evaluation Goal" should be set to bet-
ter distinguish between different evaluation
goals.

EvaluationGoal Responsible/Ac-
tor.associated()

strict USE-ME Evaluation Error: "Responsible" of
"Evaluation Goal" should be associated to
"Actor Expert Evaluator".

EvaluationGoal Usability-
Goal.associated()

strict USE-ME Evaluation Error: "Usability Goal"
of "Evaluation Goal" must be associated to
relate to the usability goals specified in goal
model.

EvaluationGoal UsabilityGoal has
only "Actor Expert Evaluator" as "Re-
sponsible Actor".associated()

strict USE-ME Evaluation Error: "Usability Goal"
of "Evaluation Goal" should correspond to
"Usability Goal" associated to "Actor" in
which this "Actor" is the only responsible.

EvaluationGoal Evaluation-
Model.associated()

strict USE-ME Evaluation Error: "Evaluation
Model" of "Evaluation Goal" must be associ-
ated to relate to the evaluation model.

EvaluationGoal ProblemDescrip-
tion.defined()

suggestion USE-ME Evaluation Suggestion: "Problem
Description" of "Evaluation Goal" should be
set to describe the problem.

EvaluationGoal ResearchQues-
tion.defined()

suggestion USE-ME Evaluation Suggestion: "Research
Question" of "Evaluation Goal" should be
set to specify the research question.

EvaluationGoal Hypothe-
sis.defined()

suggestion USE-ME Evaluation Suggestion: "Hypoth-
esis" of "Evaluation Goal" should be set to
define the experimental hypothesis.

EvaluationGoal Mesur-
ment.associated()

suggestion USE-ME Evaluation Suggestion: "Mesur-
ment" of "Evaluation Goal" should be asso-
ciated to define which methods can be in-
troduced as measurements.

85

APPENDIX A. VALIDATION RULES

Description Type Message

EvaluationGoal Lan-
guage.associated()

suggestion USE-ME Evaluation Suggestion: "Lan-
guage" of "Evaluation Goal" should be asso-
ciated to define the DSL under evaluation.

EvaluationGoal Compera-
tive.defined()

suggestion USE-ME Evaluation Suggestion: "Compera-
tive" of "Evaluation Goal" should be set to
true if a comparative evaluation (i.e. two
languages) was defined.

EvaluationGoal UsabilityRequire-
ment.associated()

suggestion USE-ME Evaluation Suggestion: "Usability
Requirement" of "Evaluation Goal" should
be associated to specify which usability re-
quirements are being evaluated.

Participant.defined() strict USE-ME Evaluation Error: Create Child
"Participant" in Parent "Evaluation Specifi-
cation" to define the study participants.

Participant name.defined() suggestion USE-ME Evaluation Suggestion: "Name" of
"Participant" should be set to better distin-
guish between different participants.

Participant Contact.defined() strict USE-ME Evaluation Error: "Contact" of
"Participant" must be set to store informa-
tion (e.g. email, phone, ...) about the partic-
ipant.

Participant UserProfile.associated() strict USE-ME Evaluation Error: "User Profile" of
"Participant" must be associated to match a
specific "User Profile" end user.

Participant Evaluation-
Model.associated()

strict USE-ME Evaluation Error: "Evaluation
Model" of "Participant" must be associated
to match a specific evaluation model.

EvaluationContext.defined() strict USE-ME Evaluation Error: Create Child
"Evaluation Context" in Parent "Evaluation
Specification" to specify the user profiles,
workflows, context environments taken
into consideration during the experiment
execution.

EvaluationContext name.defined() suggestion USE-ME Evaluation Suggestion: "Name" of
"Evaluation Context" should be set to bet-
ter distinguish between different evaluation
contexts.

EvaluationContext Evaluation-
Model.associated()

strict USE-ME Evaluation Error: "Evaluation
Model" of "Evaluation Context" must be as-
sociated to define the evaluation model re-
lated with the evaluation.

EvaluationContext Con-
textModel.associated()

strict USE-ME Evaluation Error: "Context Model"
of "Evaluation Context" must be associated
to specify the context of use related with the
evaluation.

EvaluationContext ContextEnviron-
ment.associated()

suggestion USE-ME Evaluation Suggestion: "Con-
text Environment" of "Evaluation Context"
should be associated to define the context
environment related with the evaluation.

EvaluationContext EnviromentIn-
stance.defined()

suggestion USE-ME Evaluation Suggestion: "Enviro-
ment Instance" of "Evaluation Context"
should be set to instantiate the environment
variables (e.g. [OS]: Windows 7 from CE-
Variables) related with the evaluation.

EvaluationContext UserProfileSelec-
tion.associated()

suggestion USE-ME Evaluation Suggestion: "User
Profile Selection" of "Evaluation Context"
should be associated to specify the user pro-
files related with the evaluation.

86

Description Type Message

EvaluationContext UserProfileSelec-
tion.associated() matches the Partic-
ipant UserProfile.associated()

suggestion USE-ME Evaluation Suggestion: "User
Profile Selection" of "Evaluation Context"
should contain all "User Profile" defined in
"Participant".

EvaluationContext Usability-
Goal.associated()

suggestion USE-ME Evaluation Suggestion: "Usability
Goal" of "Evaluation Context" should be as-
sociated to define the usability goals related
with the evaluation.

EvaluationContext Usability-
Goal.associated() matches the Evalu-
tionGoal Usability Goal.associated()

suggestion USE-ME Evaluation Suggestion: "Usability
Goal" of "Evaluation Context" should con-
tain all "Usability Goal" defined in "Evalua-
tion Goal".

EvaluationContext Work-
flow.associated()

suggestion USE-ME Evaluation Suggestion: "Work-
flow" of "Evaluation Context" should be as-
sociated to define the workflows related
with the evaluation.

EvaluationContext Sce-
nario.associated()

suggestion USE-ME Evaluation Suggestion: "Scenario"
of "Evaluation Context" should be associ-
ated to define the scenarios related with the
evaluation.

EvaluationContext Workflow from
Scenario.associated()

suggestion USE-ME Evaluation Suggestion: "Work-
flow" of "Evaluation Context" should con-
tain "Scenario" associated "Workflow".

Documentation.defined() strict USE-ME Evaluation Error: Create Child
"Documentation" in Parent "Evaluation
Specification" to define teaching materials
for the DSL (e.g. videos, guided examples,
videos).

Documentation name.defined() suggestion USE-ME Evaluation Suggestion: "Name" of
"Documentation" should be set to better dis-
tinguish between different documents.

Documentation Evaluation-
Model.associated()

strict USE-ME Evaluation Error: "Evaluation
Model" of "Documentation" must be associ-
ated to define for which evaluation the doc-
uments apply to.

Documentation OutRef.associated() suggestion USE-ME Evaluation Suggestion: "Outside
Ref" of "Documentation" should be associ-
ated to define outside references.

Documentation Sce-
nario.associated()

suggestion USE-ME Evaluation Suggestion: "Scenario"
of "Documentation" should be associated to
define which scenarios are covered by the
documentation.

all Scenario from EvaluationContext
Scenario.associated()

suggestion USE-ME Evaluation Suggestion: "Scenario"
of "Documentation" should contain all "Sce-
nario" associated in "Evalaution Context".

Process.defined() strict USE-ME Evaluation Error: Create Child
"Process" in Parent "Evaluation Specifica-
tion" to define the concrete design for the
evaluation by modelling the activities that
should be performed.

Process name.defined() suggestion USE-ME Evaluation Suggestion: "Name" of
"Process" should be set to better distinguish
between different processes.

Process Evaluation-
Model.associated()

strict USE-ME Evaluation Error: "Evaluation
Model" of "Process" must be associated to
specify the learning activities that are mod-
elled in the evaluation process.

87

APPENDIX A. VALIDATION RULES

Description Type Message

Process ProcessModel.associated() suggestion USE-ME Evaluation Suggestion: "Process
Model" of "Process" should be associated to
related process model.

TestModel.defined() strict USE-ME Evaluation Error: Create Child
"Test Model" in Parent "Evaluation Specifi-
cation" .

TestModel name.defined() suggestion USE-ME Evaluation Suggestion: "Name" of
"Test Model" must be set.

TestModel Evaluation-
Model.associated()

strict USE-ME Evaluation Error: "Evaluation
Model" of "Test Model" should be associ-
ated.

Table A.5: Interaction validation rules.

Description Type Message

IS and/or SS.defined() strict USE-ME Interaction/Survey Error: Cre-
ate Child "Interaction Specification" and/or
"Survey Specification" in Parent "Specifica-
tion".

InteractionSpecification.defined() suggestion USE-ME Interaction Error: If you need to
specify "Test Model" create Child "Interac-
tion Specification" in Parent "Specification"
to measure usability over concrete tasks
that involve interaction with the DSL.

InteractionSpecification
name.defined()

suggestion USE-ME Interaction Suggestion: "Name" of
"Interaction Specification" should be set to
better distinguish between different interac-
tion specifications.

for each InteractionSpecification In-
teractionModel.defined()

strict USE-ME Interaction Error: Create Child
"Interaction Model" in Parent "Interaction
Specification" to support the capture of
predefined events and to provide statistics
about the occurrences.

InteractionModel name.defined() suggestion USE-ME Interaction Suggestion: "Name" of
"Interaction Model" should be set to bet-
ter distinguish between different interac-
tion models.

InteractionModel Evaluation-
Model.associated()

strict USE-ME Interaction Error: "Evaluation
Model" of "Interaction Model" must be as-
sociated to specify the evaluation model to
which the interaction model applies to.

InteractionModel Partici-
pant.associated()

suggestion USE-ME Interaction Suggestion: "Partici-
pant" of "Interaction Model" should be as-
sociated to define which user profiles will
perform in the interaction.

Task.defined() strict USE-ME Interaction Error: Create Child
"Task" in Parent "Interaction Specification"
to represent a concrete task for which the
interaction will be analysed.

Task name.defined() suggestion USE-ME Interaction Suggestion: "Name" of
"Task" should be set to better distinguish
between different tasks.

Task Scenario.associated() strict USE-ME Interaction Error: "Scenario" of
"Task" must be associated to specify which
scenarios the task covers.

88

Description Type Message

Task InteractionModel.associated() suggestion USE-ME Interaction Suggestion: "Interac-
tion Model" of "Task’" should be associated
to specify the interaction model the task ap-
plies to.

Task Documentation.associated() suggestion USE-ME Interaction Suggestion: "Docu-
mentation" of "Task" should be associated
to specify the interaction model documen-
tation.

InteractionSyntax.defined() strict USE-ME Interaction Error: Create Child
"Interaction Syntax" in Parent "Interaction
Specification" to reflect the interaction ele-
ments from the version of the language.

for each Language from Evalua-
tion Specification InteractionSyn-
tax.defined()

suggestion USE-ME Interaction Suggestion: Create
Child "Interaction Syntax" in Parent "Inter-
action Specification" for each "Language"
specified in "Evaluation Specification".

InteractionSyntax name.defined() suggestion USE-ME Interaction Suggestion: "Name" of
"Interaction Syntax" should be set to bet-
ter distinguish between different interac-
tion syntaxes.

InteractionSyntax Interaction-
Model.associated()

strict USE-ME Interaction Error: "Interaction
Model" of "Interaction Syntax" must be asso-
ciated to specify to which interaction model
the interaction syntax applies to.

InteractionSyntax AS and/or Con-
creteSyntax.associated()

strict USE-ME Interaction Error: "Concrete Syn-
tax" and/or "Abstract Syntax" of "Interac-
tion Syntax" should be associated.

InteractionSyntax ConcreteSyn-
tax.associated()

suggestion USE-ME Interaction Suggestion: "Concrete
Syntax" of "Interaction Syntax" should be
associated to define the concrete syntax.

InteractionSyntax AbstractSyn-
tax.associated()

suggestion USE-ME Interaction Suggestion: "Abstract
Syntax" of "Interaction Syntax" should be
associated to define the abstract syntax.

InteractionSyntax Documenta-
tion.associated()

suggestion USE-ME Interaction Suggestion: "Docu-
mentation" of "Interaction Syntax" should
be associated.

InteractionSyntax Out-
sideRef.associated()

suggestion USE-ME Interaction Suggestion: "Outside
Ref" of "Interaction Syntax" should be asso-
ciated to an outside reference.

Event.defined() strict USE-ME Interaction Error: Create Child
"Event" in Parent "Interaction Specification"
to represent the type of data that will be
captured from different interaction devices.

Event name.defined() suggestion USE-ME Interaction Suggestion: "Name" of
"Event" should be set to better distinguish
between different events.

Event InteractionModel.associated() suggestion USE-ME Interaction Error: "Interaction
Model" of "Event" should be associated
to specify to which interaction model the
event applies to.

Event AnalysisType.defined() suggestion USE-ME Interaction Suggestion: "Analysis
Type" of "Event" should be set to describe
how the event is going to be analysed (e.g
observation, time observation, sucess/fail).

Event Capture.defined() suggestion USE-ME Interaction Suggestion: "Capture"
of "Event" should be set to describe how the
event is going to be captured.

89

APPENDIX A. VALIDATION RULES

Description Type Message

Event RecordEvent.defined() suggestion USE-ME Interaction Suggestion: "Record
Event" of "Event" should be set to define
how the event is going to be recorded (e.g.
screen record, live observation).

Event UsabilityRequire-
ment.associated()

suggestion USE-ME Interaction Suggestion: "Usability
Requirement" of "Event" should be associ-
ated to specify to which usability require-
ments the event applies to.

if Event Capture size>=1 then Cap-
tureAction.defined()

suggestion USE-ME Interaction Suggestion: Create
Child "Capture Action" in Parent "Event" to
define capture actions.

CaptureAction name.defined() suggestion USE-ME Interaction Suggestion: "Name" of
"Capture Action" should be set to better dis-
tinguish between different capture actions.

InteractionResult.defined() strict USE-ME Interaction Error: If the Evalua-
tion was executed create Child "Interaction
Result" in Parent "Interaction Specification"
to include statistical analysis and results of
the executed interaction model.

InteractionResult name.defined() suggestion USE-ME Interaction Suggestion: "Name" of
"Interaction Result" should be set to better
distinguish between different interaction re-
sults.

InteractionResult Event.associated() strict USE-ME Interaction Error: "Event" of "In-
teraction Result" must be associated to de-
scribe the event performed.

InteractionResult Interaction-
Model.associated()

strict USE-ME Interaction Error: "Interaction
Model" of "Interaction Result" must be asso-
ciated to specify to which interaction model
the interaction result applies to.

InteractionResult Out-
Ref.associated()

suggestion USE-ME Interaction Suggestion: "Outsife
Reference" of "Interaction Result" should be
set to specify outside references (e.g. google
forms).

ResultValue.defined() suggestion USE-ME Interaction Suggestion: Create
Child "Result Value" in Parent "Interaction
Result" to define the results obtained.

for each Capture Action Result-
Value.defined()

suggestion USE-ME Interaction Suggestion: Create
Child "Result Value" in Parent "Interaction
Result" for each "Capture Action" defined.

ResultValue name.defined() suggestion USE-ME Interaction Suggestion: "Name" of
"Result Value" should be set to better distin-
guish between different result values.

ResultValue ResultValue.defined() strict USE-ME Interaction Error: "Result Value"
of "Result Value" must be set.

ResultValue Language.associated() strict USE-ME Interaction Error: "Language" of
"Result Value" must be associated to a lan-
guage under evaluation.

ResultValue AssociatedRequire-
ment.associated()

suggestion USE-ME Interaction Suggestion: "Associ-
ated Requirement" of "Result Value" should
be associated to a specific requirement.

ResultValue RelatedAc-
tion.associated()

suggestion USE-ME Interaction Suggestion: "Related
Action" of "Result Value" should be associ-
ated to a capture action involved.

90

Table A.6: Survey validation rules.

Description Type Message

SurveySpecification.defined() suggestion USE-ME Survey Error: If you need to spec-
ify "Test Model" create Child "Survey Speci-
fication" in Parent "Specification" to support
formative methods for measuring usability.

SurveySpecification name.defined() suggestion USE-ME Survey Suggestion: "Name" of "Sur-
vey Specification" should be set to better dis-
tinguish between different survey specifica-
tions.

for each SurveySpecification Survey-
Model.defined()

strict USE-ME Survey Error: Create Child "Sur-
vey Model" in Parent "Survey Specification"
to collect information to measure usability.

SurveyModel name.defined() suggestion USE-ME Survey Suggestion: "Name" of "Sur-
vey Model" should be set to better distin-
guish between different survey models.

SurveyModel Evaluation-
Model.associated()

strict USE-ME Survey Error: "Evaluation Model"
of "Survey Model" must be associated to
specify to which evaluation model the sur-
vey model applies to.

SurveyEngine Survey-
Model.associated()

strict USE-ME Survey Error: "Survey Model" of
"Survey Engine" must be set.

SurveyModel Partici-
pant.associated()

suggestion USE-ME Survey Suggestion: "Participant"
of "Survey Model" should be associated to
define the participants involved in the sur-
vey.

Questionnaire.defined() strict USE-ME Survey Error: Create Child "Ques-
tionnaire" in Parent "Survey Specification"
to define a set of questions.

Questionnaire name.defined() suggestion USE-ME Survey Suggestion: "Name" of
"Questionnaire" should be set to better dis-
tinguish between different questionnaires.

Questionnaire Survey-
Model.associated()

strict USE-ME Survey Error: "Survey Model" of
"Questionnaire" must be associated to spec-
ify to which survey model the questionnaire
applies to.

Questionnaire UsabilityRequire-
ment.associated()

suggestion USE-ME Survey Suggestion: "Usability Re-
quirement" of "Questionnaire" should be as-
sociated to specify which usability require-
ments are addressed in the questionnaire.

FeedbackQs and/or Back-
groundQs.defined()

strict USE-ME Survey Error: Create Child "Feed-
back Qs" to collect opinions about the DSL,
and/or create Child "Background Qs" to col-
lect information about the participant in
Parent "Survey Specification".

BackgroundQs name.defined() suggestion USE-ME Survey Suggestion: "Name" of
"Background Qs" should be set to better
distinguish between different background
questions.

BackgroundQs UserPro-
file.associated()

strict USE-ME Survey Error: "User Profile" of
"Background Qs" should be set to define the
user profile involved in the questionnaire.

BackgroundQs LogicalExpres-
sion.associated()

suggestion USE-ME Survey Suggestion: "Logical Ex-
pression" of "Background Qs" should be as-
sociated to define to which logical expres-
sion is the question related.

BackgroundQs Question.defined() suggestion USE-ME Survey Suggestion: "Question" of
"Background Qs" should be set (e.g. demo-
graphic data, education).

91

APPENDIX A. VALIDATION RULES

Description Type Message

BackgroundQs Question-
naire.associated()

suggestion USE-ME Survey Suggestion: "Question-
naire" of "Background Qs" should be asso-
ciated to define which questionnaire is re-
lated to the background question.

BackgroundQs Scale.defined() suggestion USE-ME Survey Suggestion: "Scale" of
"Background Qs" should be set (e.g int, M/F,
scale).

BackgroundQs Type.defined() suggestion USE-ME Survey Suggestion: "Type" of
"Background Qs" should be set (e.g. demo-
graphics, experience, tendency).

FeedbackQs name.defined() suggestion USE-ME Survey Suggestion: "Name" of
"Feedback Qs" should be set to better distin-
guish between different feedback questions.

FeedbackQs Question.defined() suggestion USE-ME Survey Suggestion: "Question" of
"Feedback Qs" should be set (e.g. did you
enjoy the activity?, did you find it diffi-
cult?).

FeedbackQs Question-
naire.associated()

suggestion USE-ME Survey Suggestion: "Question-
naire" of "Feedback Qs" should be associ-
ated to define which questionnaire is re-
lated to the feedback question.

FeedbackQs Scale.defined() suggestion USE-ME Survey Suggestion: "Scale" of
"Feedback Qs" should be set (e.g. smiles
scale).

FeedbackQs Scenario.associated() suggestion USE-ME Survey Suggestion: "Scenario" of
"Feedback Qs" should be associated to col-
lect opinions and reactions for a specific sce-
nario.

FeedbackQs Type.defined() suggestion USE-ME Survey Suggestion: "Type" of
"Feedback Qs" shoauld be set (e.g. confi-
dence, likeable).

SurveyResult.defined() strict USE-ME Survey Error: If the Evaluation
was executed create Child "Survey Result"
in Parent "Survey Specification" to include
the statistical analysis and results.

SurveyResult name.defined() suggestion USE-ME Survey Suggestion: "Name" of "Sur-
vey Result" should be set to better distin-
guish between different survey results.

SurveyResult Question-
naire.associated()

strict USE-ME Survey Error: "Questionnaire" of
"Survey Result" must be associated to a spe-
cific questionnaire.

SurveyResult Survey-
Model.associated()

strict USE-ME Survey Error: "Survey Model" of
"Survey Result" must be associated to a spe-
cific survey model.

SurveyResult OutRef.associated() suggestion USE-ME Survey Suggestion: "Outsife Ref-
erence" of "Survey Result" should be asso-
ciated to a specific outside reference (e.g.
google forms).

for each SurveyResult Result-
Value.defined()

suggestion USE-ME Survey Suggestion: Create Child
"Result Value" in Parent "Survey Result" to
define the results obtained.

for each Quesiton Result-
Value.defined()

suggestion USE-ME Survey Suggestion: Create Child
"Result Value" in Parent "Survey Result" for
each question "Background Qs" and "Feed-
back Qs" defined.

ResultValue name.defined() suggestion USE-ME Survey Suggestion: "Name" of "Re-
sult Value" should be set to better distin-
guish between different result values.

92

Description Type Message

ResultValue ResultValue.defined() strict USE-ME Survey Error: "Result Value" of
"Result Value" must be set.

ResultValue Language.associated() strict USE-ME Survey Error: "Language" of "Re-
sult Value" must be associated to a language
under evaluation.

ResultValue AssociatedRequire-
ment.associated()

suggestion USE-ME Survey Suggestion: "Associated Re-
quirement" of "Result Value" should be as-
sociated to a specific requirement.

ResultValue RelatedAc-
tion.associated()

suggestion USE-ME Survey Suggestion: "Related Ac-
tion" of "Result Value" should be associated
to a capture action involved.

ResultValue RelatedQues-
tion.associated()

suggestion USE-ME Survey Suggestion: "Related Ques-
tion" of "Result Value" should be associated
to a question in the questionnaire.

Table A.7: Report validation rules.

Description Type Message

ReportSpecification.defined() strict USE-ME Report Error: If you don’t need to
specify "Test Model" or you already spec-
ify it create Child "Report Specification" in
Parent "Specification" to construct a final re-
port on the DSL evaluation.

ReportSpecification name.defined() suggestion USE-ME Report Suggestion: "Name" of "Re-
port Specification" should be set to better
distinguish between different report speci-
fications.

for each ReportSpecification Report-
Model.defined()

strict USE-ME Report Error: Create Child "Re-
port Model" in Parent "Report Specifica-
tion" to encapsulate the results of the exper-
iment and to take into consideration sugges-
tions.

ReportModel name.defined() suggestion USE-ME Report Suggestion: "Name" of "Re-
port Model" should be set to better distin-
guish between different report models.

EvaluationResult.defined() strict USE-ME Report Error: Create Child "Eval-
uation Result" in Parent "Report Specifica-
tion" to represent the results obtained.

EvaluationResult name.defined() suggestion USE-ME Report Suggestion: "Name" of
"Evaluation Result" should be set to better
distinguish between different evaluation re-
sults.

EvaluationResult EvaluationCon-
text.associated()

strict USE-ME Report Error: "Evaluation Con-
text" of "Evaluation Result" must be asso-
ciated to specify the evaluation context.

EvaluationResult Report-
Model.associated()

strict USE-ME Report Error: "Report Model" of
"Evaluation Result" must be associated to
specify the report model.

EvaluationResult InteractionRe-
sult.associated()

suggestion USE-ME Report Suggestion: "Interaction
Result" of "Evaluation Result" should be as-
sociated to specify the interaction results.

EvaluationResult Out-
Ref.associated()

suggestion USE-ME Report Suggestion: "Outsife Refer-
ence" of "Evaluation Result" should be asso-
ciated to refer to an outside reference.

93

APPENDIX A. VALIDATION RULES

Description Type Message

EvaluationResult SurveyRe-
sult.associated()

suggestion USE-ME Report Suggestion: "Survey Re-
sult" of "Evaluation Result" should be asso-
ciated to define the survey result.

for each EvaluationResult Result-
Value.defined()

suggestion USE-ME Report Suggestion: Create Child
"Result Value" in Parent "Evaluation Result"
to define the results obtained.

for each Interact+SurveyResult Re-
sultValue.defined()

suggestion USE-ME Report Suggestion: Create Child
"Result Value" in Parent "Evaluation Result"
for each "Interaction Result" and "Survey
Result".

ResultValue name.defined() suggestion USE-ME Report Suggestion: "Name" of "Re-
sult Value" should be set to better distin-
guish between different result values.

ResultValue Language.associated() strict USE-ME Report Error: "Language" of "Re-
sult Value" must be associated to a language
under evaluation.

ResultValue ResultValue.defined() strict USE-ME Report Error: "Result Value" of
"Result Value" must be set.

ResultValue AssociatedRequire-
ment.associated()

suggestion USE-ME Report Suggestion: "Associated Re-
quirement" of "Result Value" should be as-
sociated to a specific requirement.

ResultValue RelatedAc-
tion.associated()

suggestion USE-ME Report Suggestion: "Related Ac-
tion" of "Result Value" should be associated
to a capture action involved.

ResultValue RelatedQues-
tion.associated()

suggestion USE-ME Report Suggestion: "Related Ques-
tion" of "Result Value" should be associated
to a question in the questionnaire.

RecommendedGM.defined() strict USE-ME Report Error: Create Child "Rec-
ommended GM" in Parent "Report Specifi-
cation" to include updates (changes or new
goals) to the previous goal model.

RecommendedGM name.defined() suggestion USE-ME Report Suggestion: "Name" of
"Recommended GM" should be set to bet-
ter distinguish between different recom-
mended goal models.

RecommendedGM Refer-
sTo.associated()

strict USE-ME Report Error: "Refers To" of "Rec-
ommended GM" must be associated to the
goal model evaluated.

RecommendedGM Report-
Model.associated()

strict USE-ME Report Error: "Report Model" of
"Recommended GM" must be associated to
the report model that was evaluated.

RecommendedGM Functional-
Goal.associated()

suggestion USE-ME Report Suggestion: "Functional
Goal" of "Recommended GM" should be as-
sociated to the functional goals that should
improve in the next iteration.

RecommendedGM Suggeste-
dRequirements.associated()

suggestion USE-ME Report Suggestion: "Suggested Re-
quirements" of "Recommended GM" should
be associated to suggest requirements that
should improve.

RecommendedGM Usability-
Goal.associated()

suggestion USE-ME Report Suggestion: "Usability
Goal" of "Recommended GM" should be as-
sociated to the usability goal that should im-
prove in the next iteration.

94

A
p
p
e
n
d
i
x

B
USE-ME Original Version: Lego Exercise

In this appendix, we present the Lego exercise for the USE-ME original version.

95

LEGO Mindstorms

The main goal of this exercise is to perform an usability evaluation on a DSL under
development.

LEGO Mindstorms are programmable robots designed for children. The main purpose of
these robots is to teach kids to code, with some basics notions on coding while they play,
and for that purpose a DSL Lego was developed.

1. Specification

First, you should create Specification with name US, within Specification US you should
create a DSL with name Lego. Within DSL Lego you should create a Concrete Syntax with
name csLego, an Abstract Syntax with name asLego, and an ExistingGM with name
gmLego.
In Specification US you should also create a Functional Goal with name fgLego, a
Process Model with name pmLego, a Survey Engine, a Documentation with name
docLego, an Outside Ref with name refLegoModeling (Link: cameo.com; Tool: Cameo
System Modeler), and a Requirement with name Zooming (Description: improve zooming
option).

2. Context Specification

First, you should create Context Specification with name cs. Within Context Specification
cs you should create a Context Model with Cm name cmLego (Context Provider: FCT;
Domain: Program a robot). Within Context Model cmLego you should create an User
Hierarchy (Uh Description: uhLego).
Next, you should create an User Profile Specification with name upsLego. Within you
should create User Profile with name DSL Stakeholder (Priority: high, Sub Profile: End
User),
User Profile with name End User (Priority: high, Sub Profile: Children and Adults),
User Profile with name Children (Priority: high, Sub Profile: Grade-Schoolers and Teens),
User Profile with name Grade-Schoolers (Priority: high),
User Profile with name Teens (Priority: medium), and
User Profile with name Adults (Priority: medium).

Next, you should create: Profile Template with name DSL Stakeholder, Profile Template
with name End User, Profile Template with name Children, Profile Template with name

Grade-Schoolers, Profile Template with name Teens, and Profile Template with name
Adults with Category: background demographics knowledge.

After that, you should create:
Logical Expression with name Age (Classifier: Age; Expression: >5; Profile Template: DSL
Stakeholder, End User),
Logical Expression with name Age Children (Classifier: Age Children; Expression: 5-18;
Profile Template: Children),
Logical Expression with name Age Grade-Schoolers (Classifier: Age Grade-Schoolers;
Expression: 5-12; Profile Template: Grade Schoolers),
Logical Expression with name Age Teens (Classifier: Age Teens; Expression: 13-18;
Profile Template: Teens),
Logical Expression with name Age Adults (Classifier: Age Adults; Expression: >18; Profile
Template: Adults),
Logical Expression with name School Grade (Classifier: School Grade; Expression: 1-12;
Profile Template: Children, Grade Schoolers, Teens),
Logical Expression with name Computers (Classifier: Computers; Expression: Ordinal,
Scale, Experience; Profile Template: all Profile Templates),
Logical Expression with name Programming (Classifier: Programming; Expression:
Ordinal, Scale, Experience; Profile Template: all Profile Templates).

Next, you should create an Environment Specification with name esLego. Within
Environment Specification esLego you should create: Technical Environment with name
teLego, Physical Environment with name peLego, and Social Environment with name
seLego.
After that, you should create:
CE Variable with name Robot (Context Environment: Physical Environment pe; Mandatory:
false; Type: Mindstorms),
CE Variable with name Computer (Context Environment: Physical Environment pe;
Mandatory: true; Type: Desktop),
CE Variable with name Application (Context Environment: Technical Environment te;
Mandatory: true; Type: Computer App), and
CE Variable with name Workplace (Context Environment: Social Environment se;
Mandatory: true; Type: Classroom).
You should also create inside each CE Variable the correspondent CE Variable type (e.g.
CE Variable with name Mindstorms within CE Variable Robot).

Lastly, you should create Workflow Specification with name wsLego, and then:
Workflow with name W1: Program the robot (Actor: End User; Context Element: Robot;
Context Model: cmLego, Priority: High; Process Model: pmLego), and
Workflow with name W2: Modify the language (Actor: Language Engineer; Context
Element: Application; Context Model: cmLego, Priority: Low; Process Model: pmLego).
You should create two scenarios for Workflow W1: Program the robot:
Scenario with name Move front and back, and
Scenario with name Move forward until it hits an obstacle and then stop.

3. Goal Specification

First, you should create Goal Specification with name gs. Then within Goal Specification
gs you should create a Goal Model with name gmLego. Within Goal Model gmLego you
should create:
Usability Goal with name Quality in Use (Priority: High; Question: Is the Quality in Use
achieved?; Sub Goal: UG1 and UG2) this means that the DSL is usable,
Usability Goal with name UG1: Capability to program the robot (Priority: High; Question:
Are the End Users capable of program the robot?; Sub Goal: UG1.1),
Usability Goal with name UG1.1: Usability of programming the robot (Priority: High;
Question: Is it usable to program the robot?), and
Usability Goal with name UG2: Evolve the language (Priority: Medium; Question: Are
Language Engineers capable of evolve the language?).

Next, you should create:
Scope with name QualityInUse (Context Environment: all; Context Model: cmLego;
Usability Goal: Quality in Use; User Profile Selection: DSL Stakeholder; Workflow: all),
Scope with name CapabilityProgramRobot (Context Environment: all; Context Model:
cmLego; Usability Goal: UG1 and UG1.1; User Profile Selection: End User; Workflow: W1),
and
Scope with name EvolveLanguage (Context Environment: all; Context Model: cmLego;
Usability Goal: UG2; User Profile Selection: Language Engineer; Workflow: W2).

After that, you should create:
Actor with name Lego Development (Organization: Lego Dev; Responsible For: Quality in
Use, UG1 and UG2; Stakeholder: Language Engineer), and
Actor with name Expert Evaluator (Organization: Language Evaluator; Responsible For:
all; Stakeholder: Expert Evaluator).

You should also create Method with name Programming Robot is usable (Method
Description: Programming the robot is usable from end user perspective; Test Case: all;
Usability Goal: Quality in Use and UG1.1; Usability Requirement: all).

Lastly, you should create:
Usability Requirement with name Effectiveness (Description/Description old:
programming the robot is effective; Metric: Correctness of programmed code; Old Name:
Effectiveness),
Usability Requirement with name Learnability (Description/Description old: programming
the robot is easy to learn; Metric: Reused knowledge; Old Name: Learnability) ,
Usability Requirement with name Satisfaction (Description/Description old: programming
the robot is satisfactory; Metric: Satisfaction questions; Old Name: Satisfaction) , and
Usability Requirement with name Efficiency (Description/Description old: programming the
robot is efficient; Metric: Efficient programming; Old Name: Efficiency).

4. Evaluation Specification

First, you should create Evaluation Specification with name es. Then within Evaluation
Specification es you should create Evaluation Model with name emLego. After that you
should create only one Language with name Lego (DSL: Lego; Version: Mindstorms), since
you are not doing a comparative evaluation.
Next, you should create:
Evaluation Goal with name egLegoEffectiveness (Comparative: false; Hypothesis =
{effectiveness has no impact in robot programming, effectiveness has impact in robot
programming}; Problem Description: analyse the impact of effectiveness on robot
programming; Research Question: is it effective to program the robot?; Usability Goal:
UG1.1), and
Evaluation Goal with name egLegoSatisfaction (Comparative: false; Hypothesis:
{satisfaction has no impact in robot programming, satisfaction has impact in robot
programming}; Problem Description: analyse the impact of satisfaction on robot
programming; Research Question: is it satisfactory to program the robot?; Usability Goal:
UG1.1).

The participants chosen for the Evaluation are children, so you should create:
Participant with name Children (Contact: Teacher contact; User Profile: Children).

After that you should create Evaluation Context with name ecLego (Context Environment:
all; Context Model: cmLego; Environment Instance: Robot={Lego Mindstorms},
Computer={Desktop}, Application={Computer app}, Workplace={Classroom}; Scenario: all;
Usability Goal: UG1.1; User Profile Selection: Children; Workflow: W1).

Next, you should provide some Documentation with name doc (Evaluation Model: emLego;
Scenario: all) for the Scenarios.

Lastly, you should create the Process with name EvaluationProcess (Evaluation Model:
emLego).

5. Interaction Specification

First, you should create Interaction Specification with name is. Then within Interaction
Specification is you should create Interaction Model with name imLego (Evaluation
Model: emLego; Participant: Children). Next, you should create Task with name taskLego
(Documentation: all; Scenario: all).
After that, you should create Interaction Syntax with name isLego (Documentation: all;
Interaction Model: imLego; Outside Ref: refLegoModeling).

Next, you should create Event with name EffectivenessVideo (Analysis Type: Observation;
Capture: {Move front, Move back, Bump}; Interaction Model: imLego; Manual: true; Record
Event: Screen Record; Usability Requirement: Effectiveness). And within Event
EffectivenessVideo, create:
Capture Action with name Move front, Capture Action with name Move back, and
Capture Action with name Bump.

After evaluating the DSL you created Interaction Result with name irLego (Event:
Effectiveness Video; Interaction Model: imLego; Outside Ref: refLegoModeling) and
extracted the following result values:
Result Value with name MoveFront (Associated Requirement: Effectiveness; Language:
Lego; Result Value: 0,75),
Result Value with name MoveBack (Associated Requirement: Effectiveness; Language:
Lego; Result Value: 0,75), and
Result Value with name Bump (Associated Requirement: Effectiveness; Language: Lego;
Result Value: 0,78).

6. Survey Specification

First, you should create Survey Specification with name ss. Then within Survey
Specification ss you should create Survey Model with name smLego (Participant:
Children; Survey Engine: Survey Engine).

Next you should create: Questionnaire with name Background Questions (Survey Model:
smLego) and Questionnaire with name Feedback Questions (Survey Model: smLego;
Usability Requirement: Satisfaction).

After that you should define:
Background Qs with name Q1 (Logical Expression: Age Children; Question: Age; Scale:
Integer; Type: Demographics; User Profile: Children),
Background Qs with name Q2 (Logical Expression: School Grade; Question: School grade;
Scale: Integer; Type: Demographics; User Profile: Children),
Background Qs with name Q3 (Logical Expression: Computers; Question: How often do
you play computer games?; Scale: {Every day, Sometimes, Rarely}; Type: Experience; User
Profile: Children),
Background Qs with name Q4 (Logical Expression: Programming; Question: Have you ever
programmed?; Scale: {Yes, No}; Type: Experience; User Profile: Children),
Feedback Qs with name F1 (Question: Did you enjoy the activity?; Scale: {Smiley face,
Neutral face, Sad face}; Scenario: all; Type: Likeability),
Feedback Qs with name F2 (Question: Did you find it hard to move the robot front and
back?; Scale: {Smiley face, Neutral face, Sad face}; Scenario: all; Type: Confidence),
Feedback Qs with name F3 (Question: And to move front until it hits an obstacle and then
stop?; Scale: {Smiley face, Neutral face, Sad face}; Scenario: all; Type: Confidence), and
Feedback Qs with name F4 (Question: Would you like to repeat this activity?; Scale:
{Smiley face, Neutral face, Sad face}; Scenario: all; Type: Confidence).

After evaluating the DSL you should create Survey Result with name srLego (Outside
Reference: refLegoModeling; Questionnaire: Background and Feedback Questions) and
extracted the following result values:
Result Value with name Q1 (Language: Lego; Related Question: Q1; Result Value: 11,5),
Result Value with name Q2 (Language: Lego; Related Question: Q2; Result Value: 6),
Result Value with name Q3 (Language: Lego; Related Question: Q3; Result Value: 0,71),
Result Value with name Q4 (Language: Lego; Related Question: Q4; Result Value: 0,8),

Result Value with name F1 (Associated Requirement: Satisfaction; Language: Lego;
Related Action: all; Related Question: F1; Result Value: 0,94),
Result Value with name F2 (Associated Requirement: Satisfaction; Language: Lego;
Related Action: all; Related Question: F2; Result Value: 0,52),
Result Value with name F3 (Associated Requirement: Satisfaction; Language: Lego;
Related Action: all; Related Question: F3; Result Value: 0,53), and
Result Value with name F4 (Associated Requirement: Satisfaction; Language: Lego;
Related Action: all; Related Question: F4; Result Value: 0,95).

7. Report Specification

First, you should create Report Specification with name rs. Then within Report
Specification rs you should create Report Model with name rmLego. Next you should
define Evaluation Result with name erLego and within:
Result Value with name EffectivenessLego (Related Action: all; Result Value: 0,78), and
Result Value with name SatisfactionLego (Related Question: F1, F2, F3, F4; Result Value:
0,85).

Next, you should create Recommended GM with name rgmLego (Functional Goal: fgLego;
Refers To: gmLego; Report Model: rmLego; Suggested Requirements: Zooming; Usability
Goal: UG1.1).

Lastly, you should create Success Coverage with name scLego (Scope: all; Success
Factor: all; Usability Goal: UG1.1) in Goal Specification with name gs.

Thank you!

A
p
p
e
n
d
i
x

C
USE-ME Original Version: Smart House

Exercise

In this appendix, we present the Smart House exercise for the USE-ME original version.

103

Smart House

The main goal of this exercise is to perform an usability evaluation on a DSL under
development.

A Smart House is a collection of technical home automation concepts that are integrated
together to meet the user goals, and for that purpose a DSL Smart House was developed.

1. Specification

First, you should create Specification with name us. Then within Specification us you
should create a DSL with name Smart House. Within DSL Smart House you should create
a Concrete Syntax with name csSH, an Abstract Syntax with name asSH, and an
ExistingGM with name gmSH.
In Specification us you should also create a Functional Goal with name fgSH, a Process
Model with name pmSH, a Survey Engine, a Documentation with name docSH, an
Outside Ref with name refSHModeling (Link: cameo.com; Tool: Cameo System Modeler) ,
and a Requirement with name Zooming (Description: improve zooming option).

2. Context Specification

First, you should create Context Specification with name cs. Then within Context
Specification cs you should create Context Model with Cm name cmSH (Context provider:
FCT; Domain: Program a smart house). Within Context Model cmSH you should create an
User Hierarchy (Uh Description: uhSH).
Next, you should create an User Profile Specification with name upsSH. Within you should
create User Profile with name DSL Stakeholder (Priority: high, Sub Profile: End User),
User Profile with name End User (Priority: high, Sub Profile: Adults and Teens),
User Profile with name Adults (Priority: high, Sub Profile: Young adults and Middle adults),
User Profile with name Young Adults (Priority: high),
User Profile with name Middle Adults (Priority: medium), and
User Profile with name Teens (Priority: medium).

Next, you should create: Profile Template with name DSL Stakeholder, Profile Template
with name End User, Profile Template with name Adults, Profile Template with name
Young Adults, Profile Template with name Middle Adults, and Profile Template with
name Teens with Category: background demographics knowledge.

After that, you should create:
Logical Expression with name Age (Classifier: Age; Expression: >13; Profile Template:
DSL Stakeholder, End User),
Logical Expression with name Age Adults (Classifier: Age Adults; Expression: 20-64;
Profile Template: Adults),
Logical Expression with name Age Young Adults (Classifier: Age Young Adults;
Expression: 20-40; Profile Template: Young Adults),
Logical Expression with name Age Middle Adults (Classifier: Age Middle Adults;
Expression: 40-64; Profile Template: Middle Adults),
Logical Expression with name Age Teens (Classifier: Age Teens; Expression: 13-19;
Profile Template: Teens),
Logical Expression with name Computers (Classifier: Computers; Expression: Ordinal,
Scale, Experience; Profile Template: all Profile Templates),
Logical Expression with name House Automation (Classifier: House Automation;
Expression: Ordinal, Scale, Experience; Profile Template: all Profile Templates).

Next, you should create an Environment Specification with name esSH. Within
Environment Specification esSH you should create: Technical Environment with name
teSH, Physical Environment with name peSH, and Social Environment with name seSH.
After that, you should create:
CE Variable with name Smart House (Context Environment: Physical Environment pe;
Mandatory: false; Type: NOVA-LINCS),
CE Variable with name Computer (Context Environment: Physical Environment pe;
Mandatory: true; Type: Desktop),
CE Variable with name Application (Context Environment: Technical Environment te;
Mandatory: true; Type: Computer App), and
CE Variable with name Workplace (Context Environment: Social Environment se;
Mandatory: true; Type: Classroom).
You should also create inside each CE Variable the correspondent CE Variable type (e.g.
CE Variable with name NOVA-LINCS within CE Variable Smart House).

Lastly, you should create Workflow Specification with name wsSH, and then:
Workflow with name W1: Program the Smart House (Actor: End User; Context Element:
Smart House; Context Model: cmSH, Priority: High; Process Model: pmSH), and
Workflow with name W2: Modify the language (Actor: Language Engineer; Context
Element: Application; Context Model: cmSH, Priority: Low; Process Model: pmSH).
You should create two scenarios for Workflow W1: Program the Smart House:
Scenario with name When front door opens says Hello, and
Scenario with name When alarm rings Smart House opens windows.

3. Goal Specification

First, you should create Goal Specification with name gs. Then within Goal Specification
gs you should create a Goal Model with name gmSH. Within Goal Model gmSH you
should create:

Usability Goal with name Quality in Use (Priority: High; Question: Is the Quality in Use
achieved?; Sub Goal: UG1 and UG2) this means that the DSL is usable,
Usability Goal with name UG1: Capability to program the smart house (Priority: High;
Question: Are the End Users capable of program the smart house?; Sub Goal: UG1.1),
Usability Goal with name UG1.1: Usability of programming the smart house (Priority:
High; Question: Is it usable to program the smart house?), and
Usability Goal with name UG2: Evolve the language (Priority: Medium; Question: Are
Language Engineers capable of evolve the language?).

Next, you should create:
Scope with name QualityInUse (Context Environment: all; Context Model: cmSH; Usability
Goal: Quality in Use; User Profile Selection: DSL Stakeholder; Workflow: all),
Scope with name CapabilityProgramSmartHouse (Context Environment: all; Context
Model: cmSH; Usability Goal: UG1 and UG1.1; User Profile Selection: End User; Workflow:
W1), and
Scope with name EvolveLanguage (Context Environment: all; Context Model: cmSH;
Usability Goal: UG2; User Profile Selection: Language Engineer; Workflow: W2).

After that, you should create:
Actor with name Smart House Development (Organization: Smart House Dev;
Responsible For: Quality in Use, UG1 and UG2; Stakeholder: Language Engineer), and
Actor with name Expert Evaluator (Organization: Language Evaluator; Responsible For:
all; Stakeholder: Expert Evaluator).
You should also create Method with name Programming Smart House is usable (Method
Description: Programming the smart house is usable from end user perspective; Test Case:
all; Usability Goal: Quality in Use and UG1.1; Usability Requirement: all).

Lastly, you should create:
Usability Requirement with name Effectiveness (Description/Description old:
programming the smart house is effective; Metric: Correctness of programmed code; Old
Name: Effectiveness),
Usability Requirement with name Learnability (Description/Description old: programming
the smart house is easy to learn; Metric: Reused knowledge; Old Name: Learnability) ,
Usability Requirement with name Satisfaction (Description/Description old: programming
the smart house is satisfactory; Metric: Satisfaction questions; Old Name: Satisfaction) , and
Usability Requirement with name Efficiency (Description/Description old: programming the
smart house is efficient; Metric: Efficient programming; Old Name: Efficiency).

4. Evaluation Specification

First, you should create Evaluation Specification with name es. Then within Evaluation
Specification es you should create Evaluation Model with name emSH. After that you
should create only one Language with name Smart House (DSL: Smart House; Version:
NOVA-LINCS), since you are not doing a comparative evaluation.
Next, you should create:

Evaluation Goal with name egSHEffectiveness (Comparative: false; Hypothesis =
{effectiveness has no impact in smart house programming, effectiveness has impact in smart
house programming}; Problem Description: analyse the impact of effectiveness on smart
house programming; Research Question: is it effective to program the smart house?;
Usability Goal: UG1.1), and
Evaluation Goal with name egSHSatisfaction (Comparative: false; Hypothesis:
{satisfaction has no impact in smart house programming, satisfaction has impact in smart
house programming}; Problem Description: analyse the impact of satisfaction on smart
house programming; Research Question: is it satisfactory to program the smart house?;
Usability Goal: UG1.1).

The participants chosen for the Evaluation are adults, so you should create:
Participant with name Adults (Contact: Personal contact; User Profile: Adults).

After that you should create Evaluation Context with name ecSH (Context Environment: all;
Context Model: cmSH; Environment Instance: Smart House={NOVA-LINCS},
Computer={Desktop}, Application={Computer app}, Workplace={Classroom}; Scenario: all;
Usability Goal: UG1.1; User Profile Selection: Adults; Workflow: W1).

Next, you should provide some Documentation with name doc (Evaluation Model: emSH;
Scenario: all) for the Scenarios.

Lastly, you should create the Process with name EvaluationProcess (Evaluation Model:
emSH).

5. Interaction Specification

First, you should create Interaction Specification with name is. Then within Interaction
Specification is you should create Interaction Model with name imSH (Evaluation Model:
emSH; Participant: Adults).
Next, you should create Task with name taskSH (Documentation: all; Scenario: all).
After that, you should create Interaction Syntax with name isSH (Documentation: all;
Interaction Model: imSH; Outside Ref: refSHModeling).

Next, you should create Event with name EffectivenessVideo (Analysis Type: Observation;
Capture: {Wake up alarm rings, Opens Windows}; Interaction Model: imSH; Manual: true;
Record Event: Screen Record; Usability Requirement: Effectiveness). And within Event
EffectivenessVideo, create:
Capture Action with name Wake up alarm rings, and Capture Action with name Opens
Windows.

After evaluating the DSL you created Interaction Result with name irSH (Event:
Effectiveness Video; Interaction Model: imSH; Outside Ref: refSHModeling) and extracted
the following result values:
Result Value with name Wake up alarm rings (Associated Requirement: Effectiveness;
Language: Smart House; Result Value: 0,78), and

Result Value with name Opens Windows (Associated Requirement: Effectiveness;
Language: Smart House; Result Value: 0,75).

6. Survey Specification

First, you should create Survey Specification with name ss. Then within Survey
Specification ss you should create Survey Model with name smSH (Participant: Adults;
Survey Engine: Survey Engine).

Next you should create: Questionnaire with name Background Questions (Survey Model:
smSH) and Questionnaire with name Feedback Questions (Survey Model: smSH;
Usability Requirement: Satisfaction).

After that you should define:
Background Qs with name Q1 (Logical Expression: Age Adults; Question: Age; Scale:
Integer; Type: Demographics; User Profile: Adults),
Background Qs with name Q2 (Logical Expression: Computers; Question: Have you ever
programmed?; Scale: {Yes, No}; Type: Experience; User Profile: Adults),
Background Qs with name Q3 (Logical Expression: House Automation; Question: Have you
ever interacted with a smart house?; Scale: {Yes, No}; Type: Experience; User Profile:
Adults),
Feedback Qs with name F1 (Question: Did you enjoy the activity?; Scale: {Yes, No};
Scenario: all; Type: Likeability),
Feedback Qs with name F2 (Question: Did you find it hard to program the smart house to
detect the wake up alarm?; Scale: {Yes, No}; Scenario: all; Type: Confidence),
Feedback Qs with name F3 (Question: And to open the windows after detecting the alarm?;
Scale: {Yes, No}; Scenario: all; Type: Confidence), and
Feedback Qs with name F4 (Question: Would you like to repeat this activity?; Scale: {Yes,
No}; Scenario: all; Type: Confidence).

After evaluating the DSL you should create Survey Result with name srSH (Outside
Reference: refSHModeling; Questionnaire: Background and Feedback Questions) and
extracted the following result values:
Result Value with name Q1 (Language: Smart House; Related Question: Q1; Result Value:
25,5),
Result Value with name Q2 (Language: Smart House; Related Question: Q2; Result Value:
0,6),
Result Value with name Q3 (Language: Smart House; Related Question: Q3; Result Value:
0,71),
Result Value with name F1 (Associated Requirement: Satisfaction; Language: Smart
House; Related Action: all; Related Question: F1; Result Value: 0,94),
Result Value with name F2 (Associated Requirement: Satisfaction; Language: Smart
House; Related Action: all; Related Question: F2; Result Value: 0,52),
Result Value with name F3 (Associated Requirement: Satisfaction; Language: Smart
House; Related Action: all; Related Question: F3; Result Value: 0,53), and

Result Value with name F4 (Associated Requirement: Satisfaction; Language: Smart
House; Related Action: all; Related Question: F4; Result Value: 0,95).

7. Report Specification

First, you should create Report Specification with name rs. Then within Report
Specification rs you should create Report Model with name rmSH. Next you should define
Evaluation Result with name erSH and within:
Result Value with name EffectivenessSH (Related Action: all; Result Value: 0,78), and
Result Value with name SatisfactionSH (Related Question: F1, F2, F3, F4; Result Value:
0,85).

Next, you should create Recommended GM with name rgmSH (Functional Goal: fgSH;
Refers To: gmSH; Report Model: rmSH; Suggested Requirements: Zooming; Usability Goal:
UG1.1).

Lastly, you should create Success Coverage with name scSH (Scope: all; Success Factor:
all; Usability Goal: UG1.1) in Goal Specification with name gs.

Thank you!

A
p
p
e
n
d
i
x

D
USE-ME New Version: Lego Exercise

In this appendix, we present the Lego exercise for the new USE-ME version.

111

LEGO Mindstorms

The main goal of this exercise is to perform an usability evaluation on a DSL under
development.
Important note: You must “Validate” the model every time you make changes, and focus
only on the errors that start with “USE-ME (Development phase) Error/Suggestion” (e.g.
“USE-ME Utility Specification Error or Suggestion”).

How to “Validate”?

Right click on the UseMe Model root “platform:/resource/(Modeling Project name)/(UseMe
Model name).useme” > “Validate”.
It is recommended to follow the rules that the tool generates.

Also the “Validate” action does not save the file, so you should save it every time you make
important changes.

LEGO Mindstorms are programmable robots designed for children. The main purpose of
these robots is to teach kids to code, with some basics notions on coding while they play,
and for that purpose a DSL Lego was developed.

1. Specification

First, you should create Specification with name US, within Specification US you should
create a DSL with name Lego. Within DSL Lego you should create a Concrete Syntax with
name csLego, an Abstract Syntax with name asLego, and an ExistingGM with name
gmLego.
In Specification US you should also create a Functional Goal with name fgLego, a
Process Model with name pmLego, a Survey Engine, a Documentation with name
docLego, an Outside Ref with name refLegoModeling (Link: cameo.com; Tool: Cameo
System Modeler), and a Requirement with name Zooming (Description: improve zooming
option).

2. Context Specification

First, you should create Context Specification with name cs. Within Context Specification
cs you should create a Context Model with Cm name cmLego (Context Provider: FCT;
Domain: Program a robot). Within Context Model cmLego you should create an User
Hierarchy (Uh Description: uhLego).

Next, you should create an User Profile Specification with name upsLego. Within you
should create User Profile with name DSL Stakeholder (Priority: high, Sub Profile: End
User),
User Profile with name End User (Priority: high, Sub Profile: Children and Adults),
User Profile with name Children (Priority: high, Sub Profile: Grade-Schoolers and Teens),
User Profile with name Grade-Schoolers (Priority: high),
User Profile with name Teens (Priority: medium), and
User Profile with name Adults (Priority: medium).

Next, you should create: Profile Template with name DSL Stakeholder, Profile Template
with name End User, Profile Template with name Children, Profile Template with name
Grade-Schoolers, Profile Template with name Teens, and Profile Template with name
Adults with Category: background demographics knowledge.

After that, you should create:
Logical Expression with name Age (Classifier: Age; Expression: >5; Profile Template: DSL
Stakeholder, End User),
Logical Expression with name Age Children (Classifier: Age Children; Expression: 5-18;
Profile Template: Children),
Logical Expression with name Age Grade-Schoolers (Classifier: Age Grade-Schoolers;
Expression: 5-12; Profile Template: Grade Schoolers),
Logical Expression with name Age Teens (Classifier: Age Teens; Expression: 13-18;
Profile Template: Teens),
Logical Expression with name Age Adults (Classifier: Age Adults; Expression: >18; Profile
Template: Adults),
Logical Expression with name School Grade (Classifier: School Grade; Expression: 1-12;
Profile Template: Children, Grade Schoolers, Teens),
Logical Expression with name Computers (Classifier: Computers; Expression: Ordinal,
Scale, Experience; Profile Template: all Profile Templates),
Logical Expression with name Programming (Classifier: Programming; Expression:
Ordinal, Scale, Experience; Profile Template: all Profile Templates).

Next, you should create an Environment Specification with name esLego. Within
Environment Specification esLego you should create: Technical Environment with name
teLego, Physical Environment with name peLego, and Social Environment with name
seLego.
After that, you should create:
CE Variable with name Robot (Context Environment: Physical Environment pe; Mandatory:
false; Type: Mindstorms),
CE Variable with name Computer (Context Environment: Physical Environment pe;
Mandatory: true; Type: Desktop),
CE Variable with name Application (Context Environment: Technical Environment te;
Mandatory: true; Type: Computer App), and
CE Variable with name Workplace (Context Environment: Social Environment se;
Mandatory: true; Type: Classroom).

You should also create inside each CE Variable the correspondent CE Variable type (e.g.
CE Variable with name Mindstorms within CE Variable Robot).

Lastly, you should create Workflow Specification with name wsLego, and then:
Workflow with name W1: Program the robot (Actor: End User; Context Element: Robot;
Context Model: cmLego, Priority: High; Process Model: pmLego), and
Workflow with name W2: Modify the language (Actor: Language Engineer; Context
Element: Application; Context Model: cmLego, Priority: Low; Process Model: pmLego).
You should create two scenarios for Workflow W1: Program the robot:
Scenario with name Move front and back, and
Scenario with name Move forward until it hits an obstacle and then stop.

3. Goal Specification

First, you should create Goal Specification with name gs. Then within Goal Specification
gs you should create a Goal Model with name gmLego. Within Goal Model gmLego you
should create:
Usability Goal with name Quality in Use (Priority: High; Question: Is the Quality in Use
achieved?; Sub Goal: UG1 and UG2) this means that the DSL is usable,
Usability Goal with name UG1: Capability to program the robot (Priority: High; Question:
Are the End Users capable of program the robot?; Sub Goal: UG1.1),
Usability Goal with name UG1.1: Usability of programming the robot (Priority: High;
Question: Is it usable to program the robot?), and
Usability Goal with name UG2: Evolve the language (Priority: Medium; Question: Are
Language Engineers capable of evolve the language?).

Next, you should create:
Scope with name QualityInUse (Context Environment: all; Context Model: cmLego;
Usability Goal: Quality in Use; User Profile Selection: DSL Stakeholder; Workflow: all),
Scope with name CapabilityProgramRobot (Context Environment: all; Context Model:
cmLego; Usability Goal: UG1 and UG1.1; User Profile Selection: End User; Workflow: W1),
and
Scope with name EvolveLanguage (Context Environment: all; Context Model: cmLego;
Usability Goal: UG2; User Profile Selection: Language Engineer; Workflow: W2).

After that, you should create:
Actor with name Lego Development (Organization: Lego Dev; Responsible For: Quality in
Use, UG1 and UG2; Stakeholder: Language Engineer), and
Actor with name Expert Evaluator (Organization: Language Evaluator; Responsible For:
all; Stakeholder: Expert Evaluator).

You should also create Method with name Programming Robot is usable (Method
Description: Programming the robot is usable from end user perspective; Test Case: all;
Usability Goal: Quality in Use and UG1.1; Usability Requirement: all).

Lastly, you should create:

Usability Requirement with name Effectiveness (Description/Description old:
programming the robot is effective; Metric: Correctness of programmed code; Old Name:
Effectiveness),
Usability Requirement with name Learnability (Description/Description old: programming
the robot is easy to learn; Metric: Reused knowledge; Old Name: Learnability) ,
Usability Requirement with name Satisfaction (Description/Description old: programming
the robot is satisfactory; Metric: Satisfaction questions; Old Name: Satisfaction) , and
Usability Requirement with name Efficiency (Description/Description old: programming the
robot is efficient; Metric: Efficient programming; Old Name: Efficiency).

4. Evaluation Specification

First, you should create Evaluation Specification with name es. Then within Evaluation
Specification es you should create Evaluation Model with name emLego. After that you
should create only one Language with name Lego (DSL: Lego; Version: Mindstorms), since
you are not doing a comparative evaluation.
Next, you should create:
Evaluation Goal with name egLegoEffectiveness (Comparative: false; Hypothesis =
{effectiveness has no impact in robot programming, effectiveness has impact in robot
programming}; Problem Description: analyse the impact of effectiveness on robot
programming; Research Question: is it effective to program the robot?; Usability Goal:
UG1.1), and
Evaluation Goal with name egLegoSatisfaction (Comparative: false; Hypothesis:
{satisfaction has no impact in robot programming, satisfaction has impact in robot
programming}; Problem Description: analyse the impact of satisfaction on robot
programming; Research Question: is it satisfactory to program the robot?; Usability Goal:
UG1.1).

The participants chosen for the Evaluation are children, so you should create:
Participant with name Children (Contact: Teacher contact; User Profile: Children).

After that you should create Evaluation Context with name ecLego (Context Environment:
all; Context Model: cmLego; Environment Instance: Robot={Lego Mindstorms},
Computer={Desktop}, Application={Computer app}, Workplace={Classroom}; Scenario: all;
Usability Goal: UG1.1; User Profile Selection: Children; Workflow: W1).

Next, you should provide some Documentation with name doc (Evaluation Model: emLego;
Scenario: all) for the Scenarios.

Lastly, you should create the Process with name EvaluationProcess (Evaluation Model:
emLego).

5. Interaction Specification

First, you should create Interaction Specification with name is. Then within Interaction
Specification is you should create Interaction Model with name imLego (Evaluation

Model: emLego; Participant: Children). Next, you should create Task with name taskLego
(Documentation: all; Scenario: all).
After that, you should create Interaction Syntax with name isLego (Documentation: all;
Interaction Model: imLego; Outside Ref: refLegoModeling).

Next, you should create Event with name EffectivenessVideo (Analysis Type: Observation;
Capture: {Move front, Move back, Bump}; Interaction Model: imLego; Manual: true; Record
Event: Screen Record; Usability Requirement: Effectiveness). And within Event
EffectivenessVideo, create:
Capture Action with name Move front, Capture Action with name Move back, and
Capture Action with name Bump.

After evaluating the DSL you created Interaction Result with name irLego (Event:
Effectiveness Video; Interaction Model: imLego; Outside Ref: refLegoModeling) and
extracted the following result values:
Result Value with name MoveFront (Associated Requirement: Effectiveness; Language:
Lego; Result Value: 0,75),
Result Value with name MoveBack (Associated Requirement: Effectiveness; Language:
Lego; Result Value: 0,75), and
Result Value with name Bump (Associated Requirement: Effectiveness; Language: Lego;
Result Value: 0,78).

6. Survey Specification

First, you should create Survey Specification with name ss. Then within Survey
Specification ss you should create Survey Model with name smLego (Participant:
Children; Survey Engine: Survey Engine).

Next you should create: Questionnaire with name Background Questions (Survey Model:
smLego) and Questionnaire with name Feedback Questions (Survey Model: smLego;
Usability Requirement: Satisfaction).

After that you should define:
Background Qs with name Q1 (Logical Expression: Age Children; Question: Age; Scale:
Integer; Type: Demographics; User Profile: Children),
Background Qs with name Q2 (Logical Expression: School Grade; Question: School grade;
Scale: Integer; Type: Demographics; User Profile: Children),
Background Qs with name Q3 (Logical Expression: Computers; Question: How often do
you play computer games?; Scale: {Every day, Sometimes, Rarely}; Type: Experience; User
Profile: Children),
Background Qs with name Q4 (Logical Expression: Programming; Question: Have you ever
programmed?; Scale: {Yes, No}; Type: Experience; User Profile: Children),
Feedback Qs with name F1 (Question: Did you enjoy the activity?; Scale: {Smiley face,
Neutral face, Sad face}; Scenario: all; Type: Likeability),
Feedback Qs with name F2 (Question: Did you find it hard to move the robot front and
back?; Scale: {Smiley face, Neutral face, Sad face}; Scenario: all; Type: Confidence),

Feedback Qs with name F3 (Question: And to move front until it hits an obstacle and then
stop?; Scale: {Smiley face, Neutral face, Sad face}; Scenario: all; Type: Confidence), and
Feedback Qs with name F4 (Question: Would you like to repeat this activity?; Scale:
{Smiley face, Neutral face, Sad face}; Scenario: all; Type: Confidence).

After evaluating the DSL you should create Survey Result with name srLego (Outside
Reference: refLegoModeling; Questionnaire: Background and Feedback Questions) and
extracted the following result values:
Result Value with name Q1 (Language: Lego; Related Question: Q1; Result Value: 11,5),
Result Value with name Q2 (Language: Lego; Related Question: Q2; Result Value: 6),
Result Value with name Q3 (Language: Lego; Related Question: Q3; Result Value: 0,71),
Result Value with name Q4 (Language: Lego; Related Question: Q4; Result Value: 0,8),
Result Value with name F1 (Associated Requirement: Satisfaction; Language: Lego;
Related Action: all; Related Question: F1; Result Value: 0,94),
Result Value with name F2 (Associated Requirement: Satisfaction; Language: Lego;
Related Action: all; Related Question: F2; Result Value: 0,52),
Result Value with name F3 (Associated Requirement: Satisfaction; Language: Lego;
Related Action: all; Related Question: F3; Result Value: 0,53), and
Result Value with name F4 (Associated Requirement: Satisfaction; Language: Lego;
Related Action: all; Related Question: F4; Result Value: 0,95).

7. Report Specification

First, you should create Report Specification with name rs. Then within Report
Specification rs you should create Report Model with name rmLego. Next you should
define Evaluation Result with name erLego and within:
Result Value with name EffectivenessLego (Related Action: all; Result Value: 0,78), and
Result Value with name SatisfactionLego (Related Question: F1, F2, F3, F4; Result Value:
0,85).

Next, you should create Recommended GM with name rgmLego (Functional Goal: fgLego;
Refers To: gmLego; Report Model: rmLego; Suggested Requirements: Zooming; Usability
Goal: UG1.1).

Lastly, you should create Success Coverage with name scLego (Scope: all; Success
Factor: all; Usability Goal: UG1.1) in Goal Specification with name gs.

Thank you!

A
p
p
e
n
d
i
x

E
USE-ME New Version: Smart House Exercise

In this appendix, we present the Smart House exercise for the new USE-ME version.

119

Smart House

The main goal of this exercise is to perform an usability evaluation on a DSL under
development.
Important note: You must “Validate” the model every time you make changes, and focus
only on the errors that start with “USE-ME (Development phase) Error/Suggestion” (e.g.
“USE-ME Utility Specification Error or Suggestion”).

How to “Validate”?

Right click on the UseMe Model root “platform:/resource/(Modeling Project name)/(UseMe
Model name).useme” > “Validate”.
It is recommended to follow the rules that the tool generates.

Also the “Validate” action does not save the file, so you should save it every time you make
important changes.

A Smart House is a collection of technical home automation concepts that are integrated
together to meet the user goals, and for that purpose a DSL Smart House was developed.

1. Specification

First, you should create Specification with name us. Then within Specification us you
should create a DSL with name Smart House. Within DSL Smart House you should create
a Concrete Syntax with name csSH, an Abstract Syntax with name asSH, and an
ExistingGM with name gmSH.
In Specification us you should also create a Functional Goal with name fgSH, a Process
Model with name pmSH, a Survey Engine, a Documentation with name docSH, an
Outside Ref with name refSHModeling (Link: cameo.com; Tool: Cameo System Modeler) ,
and a Requirement with name Zooming (Description: improve zooming option).

2. Context Specification

First, you should create Context Specification with name cs. Then within Context
Specification cs you should create Context Model with Cm name cmSH (Context provider:
FCT; Domain: Program a smart house). Within Context Model cmSH you should create an
User Hierarchy (Uh Description: uhSH).

Next, you should create an User Profile Specification with name upsSH. Within you should
create User Profile with name DSL Stakeholder (Priority: high, Sub Profile: End User),
User Profile with name End User (Priority: high, Sub Profile: Adults and Teens),
User Profile with name Adults (Priority: high, Sub Profile: Young adults and Middle adults),
User Profile with name Young Adults (Priority: high),
User Profile with name Middle Adults (Priority: medium), and
User Profile with name Teens (Priority: medium).

Next, you should create: Profile Template with name DSL Stakeholder, Profile Template
with name End User, Profile Template with name Adults, Profile Template with name
Young Adults, Profile Template with name Middle Adults, and Profile Template with
name Teens with Category: background demographics knowledge.

After that, you should create:
Logical Expression with name Age (Classifier: Age; Expression: >13; Profile Template:
DSL Stakeholder, End User),
Logical Expression with name Age Adults (Classifier: Age Adults; Expression: 20-64;
Profile Template: Adults),
Logical Expression with name Age Young Adults (Classifier: Age Young Adults;
Expression: 20-40; Profile Template: Young Adults),
Logical Expression with name Age Middle Adults (Classifier: Age Middle Adults;
Expression: 40-64; Profile Template: Middle Adults),
Logical Expression with name Age Teens (Classifier: Age Teens; Expression: 13-19;
Profile Template: Teens),
Logical Expression with name Computers (Classifier: Computers; Expression: Ordinal,
Scale, Experience; Profile Template: all Profile Templates),
Logical Expression with name House Automation (Classifier: House Automation;
Expression: Ordinal, Scale, Experience; Profile Template: all Profile Templates).

Next, you should create an Environment Specification with name esSH. Within
Environment Specification esSH you should create: Technical Environment with name
teSH, Physical Environment with name peSH, and Social Environment with name seSH.
After that, you should create:
CE Variable with name Smart House (Context Environment: Physical Environment pe;
Mandatory: false; Type: NOVA-LINCS),
CE Variable with name Computer (Context Environment: Physical Environment pe;
Mandatory: true; Type: Desktop),
CE Variable with name Application (Context Environment: Technical Environment te;
Mandatory: true; Type: Computer App), and
CE Variable with name Workplace (Context Environment: Social Environment se;
Mandatory: true; Type: Classroom).
You should also create inside each CE Variable the correspondent CE Variable type (e.g.
CE Variable with name NOVA-LINCS within CE Variable Smart House).

Lastly, you should create Workflow Specification with name wsSH, and then:

Workflow with name W1: Program the Smart House (Actor: End User; Context Element:
Smart House; Context Model: cmSH, Priority: High; Process Model: pmSH), and
Workflow with name W2: Modify the language (Actor: Language Engineer; Context
Element: Application; Context Model: cmSH, Priority: Low; Process Model: pmSH).
You should create two scenarios for Workflow W1: Program the Smart House:
Scenario with name When front door opens says Hello, and
Scenario with name When alarm rings Smart House opens windows.

3. Goal Specification

First, you should create Goal Specification with name gs. Then within Goal Specification
gs you should create a Goal Model with name gmSH. Within Goal Model gmSH you
should create:
Usability Goal with name Quality in Use (Priority: High; Question: Is the Quality in Use
achieved?; Sub Goal: UG1 and UG2) this means that the DSL is usable,
Usability Goal with name UG1: Capability to program the smart house (Priority: High;
Question: Are the End Users capable of program the smart house?; Sub Goal: UG1.1),
Usability Goal with name UG1.1: Usability of programming the smart house (Priority:
High; Question: Is it usable to program the smart house?), and
Usability Goal with name UG2: Evolve the language (Priority: Medium; Question: Are
Language Engineers capable of evolve the language?).

Next, you should create:
Scope with name QualityInUse (Context Environment: all; Context Model: cmSH; Usability
Goal: Quality in Use; User Profile Selection: DSL Stakeholder; Workflow: all),
Scope with name CapabilityProgramSmartHouse (Context Environment: all; Context
Model: cmSH; Usability Goal: UG1 and UG1.1; User Profile Selection: End User; Workflow:
W1), and
Scope with name EvolveLanguage (Context Environment: all; Context Model: cmSH;
Usability Goal: UG2; User Profile Selection: Language Engineer; Workflow: W2).

After that, you should create:
Actor with name Smart House Development (Organization: Smart House Dev;
Responsible For: Quality in Use, UG1 and UG2; Stakeholder: Language Engineer), and
Actor with name Expert Evaluator (Organization: Language Evaluator; Responsible For:
all; Stakeholder: Expert Evaluator).
You should also create Method with name Programming Smart House is usable (Method
Description: Programming the smart house is usable from end user perspective; Test Case:
all; Usability Goal: Quality in Use and UG1.1; Usability Requirement: all).

Lastly, you should create:
Usability Requirement with name Effectiveness (Description/Description old:
programming the smart house is effective; Metric: Correctness of programmed code; Old
Name: Effectiveness),
Usability Requirement with name Learnability (Description/Description old: programming
the smart house is easy to learn; Metric: Reused knowledge; Old Name: Learnability) ,

Usability Requirement with name Satisfaction (Description/Description old: programming
the smart house is satisfactory; Metric: Satisfaction questions; Old Name: Satisfaction) , and
Usability Requirement with name Efficiency (Description/Description old: programming the
smart house is efficient; Metric: Efficient programming; Old Name: Efficiency).

4. Evaluation Specification

First, you should create Evaluation Specification with name es. Then within Evaluation
Specification es you should create Evaluation Model with name emSH. After that you
should create only one Language with name Smart House (DSL: Smart House; Version:
NOVA-LINCS), since you are not doing a comparative evaluation.
Next, you should create:
Evaluation Goal with name egSHEffectiveness (Comparative: false; Hypothesis =
{effectiveness has no impact in smart house programming, effectiveness has impact in smart
house programming}; Problem Description: analyse the impact of effectiveness on smart
house programming; Research Question: is it effective to program the smart house?;
Usability Goal: UG1.1), and
Evaluation Goal with name egSHSatisfaction (Comparative: false; Hypothesis:
{satisfaction has no impact in smart house programming, satisfaction has impact in smart
house programming}; Problem Description: analyse the impact of satisfaction on smart
house programming; Research Question: is it satisfactory to program the smart house?;
Usability Goal: UG1.1).

The participants chosen for the Evaluation are adults, so you should create:
Participant with name Adults (Contact: Personal contact; User Profile: Adults).

After that you should create Evaluation Context with name ecSH (Context Environment: all;
Context Model: cmSH; Environment Instance: Smart House={NOVA-LINCS},
Computer={Desktop}, Application={Computer app}, Workplace={Classroom}; Scenario: all;
Usability Goal: UG1.1; User Profile Selection: Adults; Workflow: W1).

Next, you should provide some Documentation with name doc (Evaluation Model: emSH;
Scenario: all) for the Scenarios.

Lastly, you should create the Process with name EvaluationProcess (Evaluation Model:
emSH).

5. Interaction Specification

First, you should create Interaction Specification with name is. Then within Interaction
Specification is you should create Interaction Model with name imSH (Evaluation Model:
emSH; Participant: Adults).
Next, you should create Task with name taskSH (Documentation: all; Scenario: all).
After that, you should create Interaction Syntax with name isSH (Documentation: all;
Interaction Model: imSH; Outside Ref: refSHModeling).

Next, you should create Event with name EffectivenessVideo (Analysis Type: Observation;
Capture: {Wake up alarm rings, Opens Windows}; Interaction Model: imSH; Manual: true;
Record Event: Screen Record; Usability Requirement: Effectiveness). And within Event
EffectivenessVideo, create:
Capture Action with name Wake up alarm rings, and Capture Action with name Opens
Windows.

After evaluating the DSL you created Interaction Result with name irSH (Event:
Effectiveness Video; Interaction Model: imSH; Outside Ref: refSHModeling) and extracted
the following result values:
Result Value with name Wake up alarm rings (Associated Requirement: Effectiveness;
Language: Smart House; Result Value: 0,78), and
Result Value with name Opens Windows (Associated Requirement: Effectiveness;
Language: Smart House; Result Value: 0,75).

6. Survey Specification

First, you should create Survey Specification with name ss. Then within Survey
Specification ss you should create Survey Model with name smSH (Participant: Adults;
Survey Engine: Survey Engine).

Next you should create: Questionnaire with name Background Questions (Survey Model:
smSH) and Questionnaire with name Feedback Questions (Survey Model: smSH;
Usability Requirement: Satisfaction).

After that you should define:
Background Qs with name Q1 (Logical Expression: Age Adults; Question: Age; Scale:
Integer; Type: Demographics; User Profile: Adults),
Background Qs with name Q2 (Logical Expression: Computers; Question: Have you ever
programmed?; Scale: {Yes, No}; Type: Experience; User Profile: Adults),
Background Qs with name Q3 (Logical Expression: House Automation; Question: Have you
ever interacted with a smart house?; Scale: {Yes, No}; Type: Experience; User Profile:
Adults),
Feedback Qs with name F1 (Question: Did you enjoy the activity?; Scale: {Yes, No};
Scenario: all; Type: Likeability),
Feedback Qs with name F2 (Question: Did you find it hard to program the smart house to
detect the wake up alarm?; Scale: {Yes, No}; Scenario: all; Type: Confidence),
Feedback Qs with name F3 (Question: And to open the windows after detecting the alarm?;
Scale: {Yes, No}; Scenario: all; Type: Confidence), and
Feedback Qs with name F4 (Question: Would you like to repeat this activity?; Scale: {Yes,
No}; Scenario: all; Type: Confidence).

After evaluating the DSL you should create Survey Result with name srSH (Outside
Reference: refSHModeling; Questionnaire: Background and Feedback Questions) and
extracted the following result values:

Result Value with name Q1 (Language: Smart House; Related Question: Q1; Result Value:
25,5),
Result Value with name Q2 (Language: Smart House; Related Question: Q2; Result Value:
0,6),
Result Value with name Q3 (Language: Smart House; Related Question: Q3; Result Value:
0,71),
Result Value with name F1 (Associated Requirement: Satisfaction; Language: Smart
House; Related Action: all; Related Question: F1; Result Value: 0,94),
Result Value with name F2 (Associated Requirement: Satisfaction; Language: Smart
House; Related Action: all; Related Question: F2; Result Value: 0,52),
Result Value with name F3 (Associated Requirement: Satisfaction; Language: Smart
House; Related Action: all; Related Question: F3; Result Value: 0,53), and
Result Value with name F4 (Associated Requirement: Satisfaction; Language: Smart
House; Related Action: all; Related Question: F4; Result Value: 0,95).

7. Report Specification

First, you should create Report Specification with name rs. Then within Report
Specification rs you should create Report Model with name rmSH. Next you should define
Evaluation Result with name erSH and within:
Result Value with name EffectivenessSH (Related Action: all; Result Value: 0,78), and
Result Value with name SatisfactionSH (Related Question: F1, F2, F3, F4; Result Value:
0,85).

Next, you should create Recommended GM with name rgmSH (Functional Goal: fgSH;
Refers To: gmSH; Report Model: rmSH; Suggested Requirements: Zooming; Usability Goal:
UG1.1).

Lastly, you should create Success Coverage with name scSH (Scope: all; Success Factor:
all; Usability Goal: UG1.1) in Goal Specification with name gs.

Thank you!

A
p
p
e
n
d
i
x

F
Experiment Presentation

In this appendix, we present the presentation on the USE-ME framework. The main

goal of this presentation was to introduce participants to USE-ME development phases,

interface, stakeholders, etc.

127

A Framework for Experimental Validation
of Domain Specific Languages

Prof. Vasco Amaral, Prof. Miguel Goulão, Ankica Barišić and Sara Rosa

Universidade NOVA de Lisboa

A Framework for Experimental Validation of Domain Specific LanguagesSara Rosa2

USE-ME Lifecycle

Validation Rules

3 A Framework for Experimental Validation of Domain Specific LanguagesSara Rosa

● The rules are classified in the following way:
○ Strict: if an activity is mandatory;
○ Suggestion: if an activity is not mandatory.

User Hierarchy

4 A Framework for Experimental Validation of Domain Specific LanguagesSara Rosa

A
p
p
e
n
d
i
x

G
Background Questionnaire

In this appendix, we present the background questionnaire that was performed before the

first exercise. The main goal of this questionnaire was to gather participants demographic

data, background knowledge, etc.

131

Background Questionnaire
This experimental work is conducted within the NOVA Laboratory for Computer Science and

Informatics (NOVA LINCS). NOVA LINCS is a new unit of the national Science & Technology network

in the area of Computer Science and Engineering, launched in 2014/2015, and hosted at the

Departamento de Informática of Faculdade de Ciências e Tecnologia of Universidade Nova de

Lisboa (DINOVA), a leading academic department in Portugal.

All information stated as part of this experiment is confidential and will be kept as such.

Prof. Vasco Amaral and Prof. Miguel Goulão are responsible for this experiment and can be

contacted at:

 Prof. Vasco Amaral: vasco.amaral@fct.unl.pt; +351 212 948 300 (ext. 10712); Office P2/3

 Prof. Miguel Goulão: mgoul@fct.unl.pt; +351 212 948 536 (ext. 10731); Office P2/17

We would like to emphasize that:

 your participation is entirely voluntary;

 you are free to refuse to answer any question;

 you are free to withdraw at any time.

The experiment will be kept strictly confidential and will be made available only to members of the

research team of the study or, in case external quality assessment takes place, to assessors under

the same confidentiality conditions. Data collected in this experiment may be part of the final research

report, but under no circumstances will your name or any identifying characteristic be included in the

report.

*Obrigatório

1. I agree with the terms. *

Marcar apenas uma oval.

 Yes

 No Pare de preencher este formulário.

2. Age *

3. Completed academic degree *

Marcar apenas uma oval.

 BSc

 MSc

 PhD

4. Degree in *

Marcar apenas uma oval.

 Computer Science and Engineering

 Outra:

Com tecnologia

5. Have you ever used Domain Specific Languages? *

Marcar apenas uma oval.

 Yes

 No Pare de preencher este formulário.

6. Please state in which context have you used Domain Specific Languages *

Marcar tudo o que for aplicável.

 Academic

 Industry

 Outra:

7. Have you ever modeled Domain Specific Languages? *

Marcar apenas uma oval.

 Yes

 No Pare de preencher este formulário.

8. Please state in which context have you modeled Domain Specific Languages *

Marcar tudo o que for aplicável.

 Academic

 Industry

 Outra:

A
p
p
e
n
d
i
x

H
Feedback Questionnaire

In this appendix, we present the feedback questionnaire that was performed after the

modeling exercises. The main goal of this questionnaire was to collect participants feed-

back about the USE-ME versions (original and new).

135

Feedback Questionnaire
This experimental work is conducted within the NOVA Laboratory for Computer Science and
Informatics (NOVA LINCS). NOVA LINCS is a new unit of the national Science & Technology network
in the area of Computer Science and Engineering, launched in 2014/2015, and hosted at the
Departamento de Informática of Faculdade de Ciências e Tecnologia of Universidade Nova de
Lisboa (DINOVA), a leading academic department in Portugal.

All information stated as part of this experiment is confidential and will be kept as such.

Prof. Vasco Amaral and Prof. Miguel Goulão are responsible for this experiment and can be
contacted at:

 Prof. Vasco Amaral: vasco.amaral@fct.unl.pt; +351 212 948 300 (ext. 10712); Office P2/3
 Prof. Miguel Goulão: mgoul@fct.unl.pt; +351 212 948 536 (ext. 10731); Office P2/17

We would like to emphasize that:
 your participation is entirely voluntary;
 you are free to refuse to answer any question;
 you are free to withdraw at any time.

The experiment will be kept strictly confidential and will be made available only to members of the
research team of the study or, in case external quality assessment takes place, to assessors under
the same confidentiality conditions. Data collected in this experiment may be part of the final research
report, but under no circumstances will your name or any identifying characteristic be included in the
report.

*Obrigatório

1. I agree with the terms. *
Marcar apenas uma oval.

 Yes

 No Pare de preencher este formulário.

2. USEME version: *
Marcar apenas uma oval.

 1 (i.e. no validation rules)

 2 (i.e. with validation rules)

3. Modeling exercise: *
Marcar apenas uma oval.

 Lego

 Smart House

4. Modeling activity: *
Marcar apenas uma oval.

 Utility Specification

 Context Specification

 Goal Specification

 Evaluation Specification

 Interaction Specification

 Survey Specification

 Report Specification

5. I think that I would like to use this system frequently. *
Marcar apenas uma oval.

1 2 3 4 5

Strongly disagree Strongly agree

6. I found the system unnecessarily complex. *
Marcar apenas uma oval.

1 2 3 4 5

Strongly disagree Strongly agree

7. I thought the system was easy to use. *
Marcar apenas uma oval.

1 2 3 4 5

Strongly disagree Strongly agree

8. I think I would need the support of a technical person to be able to use this system. *
Marcar apenas uma oval.

1 2 3 4 5

Strongly disagree Strongly agree

9. I found the various functions in this system were well integrated. *
Marcar apenas uma oval.

1 2 3 4 5

Strongly disagree Strongly agree

10. I thought there was too much inconsistency in this system. *
Marcar apenas uma oval.

1 2 3 4 5

Strongly disagree Strongly agree

Com tecnologia

11. I would imagine that most people would learn to use this system very quickly. *
Marcar apenas uma oval.

1 2 3 4 5

Strongly disagree Strongly agree

12. I found the system very cumbersome (i.e. difficult) to use. *
Marcar apenas uma oval.

1 2 3 4 5

Strongly disagree Strongly agree

13. I felt very confident using the system. *
Marcar apenas uma oval.

1 2 3 4 5

Strongly disagree Strongly agree

14. I needed to learn a lot of things before I could get going with this system. *
Marcar apenas uma oval.

1 2 3 4 5

Strongly disagree Strongly agree

15. Suggestions

A
p
p
e
n
d
i
x

I
Installation guide

In this appendix, we present a step-by-step installation guide.

I.1 System Requirements

1. Install Java 1.8;

2. Install Eclipse Modeling Tools for Neon Release 3;

3. Run Eclipse Neon;

4. Go to Help→ Install New Software;

5. On the Work with form select Neon;

6. On the Modeling package select EMF - Eclipse Modeling Framework SDK and

Diagram Editor for Ecore (SDK);

7. Follow the instructions provided by Eclipse;

8. Restart your Eclipse after the installation;

9. Go to Help→ Eclipse Marketplace;

10. Search for Sirius→ Install;

11. Follow the instructions provided by Eclipse;

12. Restart your Eclipse after the installation;

13. Go to Help→ Eclipse Marketplace;

14. Search for Epsilon→ Install;

139

APPENDIX I. INSTALLATION GUIDE

15. Follow the instructions provided by Eclipse;

16. Restart your Eclipse after the installation.

I.2 Download USE-ME and examples

1. Go to https://github.com/akki55/useme/tree/master/language;

2. Download USE-ME:

• pt.fct.unl.novalincs.useme.model;

• pt.fct.unl.novalincs.useme.model.edit;

• pt.fct.unl.novalincs.useme.model.editor;

• pt.fct.unl.novalincs.useme.model.tests;

• pt.fct.unl.novalincs.useme.sirius.design;

3. Go to https://github.com/akki55/useme/tree/master/examples;

4. Download the examples:

• pt.fct.unl.novalincs.useme.example.Lego;

• pt.fct.unl.novalincs.useme.example.SmartHouse;

• pt.fct.unl.novalincs.useme.example.Visualino.

I.3 Import USE-ME

1. On Eclipse workplace, go to File→ Import→ Projects from Folder or Archive→ Next
and import into your workspace the following files:

• pt.fct.unl.novalincs.useme.model;

• pt.fct.unl.novalincs.useme.model.edit;

• pt.fct.unl.novalincs.useme.model.editor;

• pt.fct.unl.novalincs.useme.model.tests;

2. After importing all the files, right click on pt.fct.unl.novalincs.useme.model →
Run As→ Eclipse Application.

I.4 Import USE-ME examples

1. On runtime environment, go to File→ Import→ Projects from Folder or Archive→
Next and import into your runtime environment the following files:

• pt.fct.unl.novalincs.useme.sirius.design;

140

https://github.com/akki55/useme/tree/master/language
https://github.com/akki55/useme/tree/master/examples

I .5. CREATE AN USE-ME MODEL

• pt.fct.unl.novalincs.useme.example.Lego;

• pt.fct.unl.novalincs.useme.example.SmartHouse;

• pt.fct.unl.novalincs.useme.example.Visualino.

2. After importing all the files, check the file Name.useme for more details.

I.5 Create an USE-ME model

1. Go to File→ New→Modeling Project→ add the Project name→ Finish;

2. Right click on the new Modeling Project→ New→ Other→ UseMe Model→ Next
→ fill the File name→ Finish.

I.6 Validate an USE-ME model

1. Open the .useme file inside the Modeling Project;

2. Right Click on the root platform:/resource/(Modeling Project name)/(UseMe model
name))→ Validate;

3. Repeat the previous step every time you want to validate your model, or if you need

guidance/suggestions. We recommend that you Validate the model every time you

make changes.

Important note: the Validate action does not save the file, so you should save it every

time you make important changes.

141

	List of Figures
	List of Tables
	Listings
	Introduction
	Context and Description
	Motivation
	Objectives
	Key Contributions
	Structure

	Background
	Domain Specific Languages
	DSLs versus GPLs
	DSLs Stakeholders
	DSLs Development Cycle

	Model-Driven Development
	Human–computer interaction
	Usability

	Eclipse Modelling Tools
	Summary

	Usability Driven DSL development with USE-ME
	Introduction
	The USE-ME framework
	Architecture and Technologies
	Workflow
	Pilot Studies

	Summary

	Related Work
	Tool Support for Agent Development using the Prometheus Methodology
	J-PRiM: A Java Tool for a Process Reengineering i* Methodology
	PETIC Wizard Proposal: a Software Tool for Support PETIC Methodology
	A Qualitative Study on User Guidance Capabilities in Product Configuration Tools
	Business process modeling with continuous validation
	Rule-based detection of inconsistency in UML models
	Cognitive support, UML adherence, and XMI interchange in Argo/UML
	Summary

	Validation Rules Implementation
	Implementation Alternatives
	Solution
	Validation Rules
	Rules Design

	Use Case Scenario
	Summary

	Evaluation
	Experiment
	Goals
	Tasks
	Experimental Materials
	Participants
	Hypotheses, parameters and variables
	Design
	Procedure
	Analysis procedure

	Results and Analysis
	SUS
	Model Correctness

	Discussion
	Evaluation of Results and Implications
	Threats to Validity
	Inferences

	SEA-ML Guided Evaluation
	Summary

	Conclusions
	Contributions
	Limitations
	Future Work

	Bibliography
	Validation Rules
	USE-ME Original Version: Lego Exercise
	USE-ME Original Version: Smart House Exercise
	USE-ME New Version: Lego Exercise
	USE-ME New Version: Smart House Exercise
	Experiment Presentation
	Background Questionnaire
	Feedback Questionnaire
	Installation guide
	System Requirements
	Download USE-ME and examples
	Import USE-ME
	Import USE-ME examples
	Create an USE-ME model
	Validate an USE-ME model

