
Pedro Alexandre Afonso Simão

Bachelor of Computer Science and Engineering

IoT Platforms for Building Automation with
Energy Efficiency and Comfort Concerns

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: Vasco Amaral, Assistant

Professor, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa

Co-adviser: Jácome Cunha, Assistant

Professor, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa

December, 2017

IoT Platforms for Building Automation with Energy Efficiency and Comfort
Concerns

Copyright © Pedro Alexandre Afonso Simão, Faculdade de Ciências e Tecnologia, Univer-

sidade NOVA de Lisboa.

A Faculty of Sciences and Technology e a NOVA University of Lisbon têm o direito, per-

pétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exem-

plares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio

conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos

e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não

comerciais, desde que seja dado crédito ao autor e editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

I would like to start by thanking my advisor Professor Vasco Amaral and coadviser

Professor Jácome Cunha for all support, advices and availability provided while writing

this document. Also, a big thanks to my colleague João Cambeiro, for all technical support.

I also would like to thank to the NOVA University of Lisbon and in particular to the

Department of Informatics, for all the journey of the last years. My closest family for

giving me the opportunity to study far away from my home town. All my friends and

colleagues that always supported me along this journey.

v

Abstract

It is increasingly common to work and live in buildings controlled by some system, the

so-called Building Automation Systems, where to keep the levels of comfort and reduce

energy consumption are very important requirements. These systems control from heat-

ing, ventilation, air conditioning, to lights intensity, with the goal of reducing energy

costs and make the building occupants satisfied.

However, these systems are usually proprietary and have high costs associated, due

to the required equipment to deal with all the devices and the distinct communications.

Therefore, our goal is to reduce reduce these costs, which is quite difficult due to the vast

devices heterogeneity.

In this dissertation, we implement a Building Automation System taking advantage

of existing Internet of Things (IoT) solutions. Thus, this thesis explores how IoT solutions

can fit adequately into the scenario of building automation.

To validate our technological choices and evaluate the adequacy of the chosen middle-

ware, we made use of an existing case study of a room with multiple components and an

aquarium as a subsystem. We have compared different IoT approaches and their impact

on the energy consumption and occupants comfort.

The results obtained helped us to realise that in fact there are several aspects that can

be enhanced in order to reduce energy consumption and maintain occupants’ comfort.

An initial investment in the implementation of these systems may involve different types

of equipment and development effort to achieve the desired solution. However in long

term, it is worth the effort and initial investment on these systems since they can actually

reduce the energy consumption and guarantee good conditions for the room occupants.

Keywords: Cyber-Physical System, Internet of Things, Internet of Things Architectures,

Internet of Things Platforms, Building Automation, Intelligent Buildings

vii

Resumo

É cada vez mais comum trabalhar e viver em edifícios controlados por algum sistema, os

chamados Building Automation Systems, onde manter os níveis de conforto e reduzir o

consumo de energia são requisitos muito importantes. Estes sistemas controlam o aqueci-

mento, ventilação, ar condicionado e intensidade das luzes, com o objetivo de reduzir os

custos de energia e manter os ocupantes do edifício confortáveis.

No entanto, estes sistemas são normalmente proprietários e têm um grande custo

associado devido ao equipamento necessário para lidar com todos os dispositivos e as

diferentes comunicações. Portanto, em geral, o grande objetivo passa por minimizar este

custo, sendo complicado devido à grande diversidade de dispositivos.

Nesta dissertação, implementamos um Building Automation System aproveitando as

soluções existentes. Assim, esta tese explora como as soluções Internet of Things (IoT)

podem adequar-se a um cenário de building automation.

Para validar as nossas escolhas tecnológicas e avaliar se o middleware escolhido é o

mais adequado, usamos um caso de estudo existente de uma sala com vários componentes

e um aquário como subsistema. Comparamos as diferentes abordagens IoT e o impacto

que estas têm no consumo de energia e no conforto dos ocupantes.

Os resultados obtidos ajudaram-nos a perceber que de facto existem vários aspetos

que podem ser melhorados de maneira a reduzir o consumo de energia mantendo o

conforto dos ocupantes. Um investimento inicial na implementação destes sistemas pode

envolver vários equipamentos e um esforço de desenvolvimento para atingir a solução

desejada. No entanto, a longo termo vale a pena o esforço e o investimento inicial nestes

sistemas, uma vez que estes conseguem de facto reduzir o consumo de energia e garantir

boas condições de conforto para os ocupantes da sala.

Palavras-chave: Sistema Ciber Físico, Internet of Things, Arquiteturas Internet of Things,
Plataformas Internet of Things, Automação de Edifícios, Edifícios Inteligentes

ix

Contents

List of Figures xv

List of Tables xix

Glossary xxi

Acronyms xxiii

1 Introduction 1

1.1 Context and Description . 1

1.2 Challenges . 2

1.3 Problem Statement and Final Goals . 3

1.4 Expected Contributions . 3

1.5 Research Project . 4

1.6 Document Structure . 4

2 Background 7

2.1 Cyber-Physical System . 7

2.2 Internet of Things . 9

2.3 Building Automation System . 10

2.3.1 Architecture Levels . 10

2.3.2 Sensors, Actuators and Controllers 11

2.3.3 Communication Networks . 11

2.3.4 Occupancy Detection . 12

2.4 Summary . 12

3 Case study 15

3.1 Overall Description . 15

3.2 Physical Setup . 16

3.3 Available Services . 18

3.3.1 Control and Monitor . 18

3.3.2 Lights . 18

3.4 Occupants Comfort . 18

3.5 Summary . 19

xi

CONTENTS

4 State of the art of IoT platforms 21

4.1 Internet of Things Architectures . 22

4.2 Internet of Things Elements . 23

4.3 Internet of Things Platforms . 24

4.3.1 WSO2 IoT . 25

4.3.2 IBM Watson IoT . 26

4.3.3 ThingSpeak IoT . 26

4.3.4 Microsoft Azure IoT . 27

4.3.5 Amazon Web Service . 27

4.4 Comparison of Internet of Things Platforms 28

4.4.1 Key concepts . 28

4.4.2 Data analytics . 29

4.4.3 Communication models . 30

4.4.4 Features . 32

4.4.5 Discussion . 33

4.5 Internet of Things Middleware . 34

4.6 Fog Computing . 35

4.7 Building Automation System enhanced by Internet of Things 37

4.8 Summary . 38

5 Comparison Review 39

5.1 Devices Management . 40

5.2 Data Processing, Analytics and Events . 42

5.3 Application and User Management . 45

5.4 Discussion . 46

5.4.1 Comparison of WSO2 and IBM Watson platforms 47

5.4.2 Comparison of Open-Source and PaaS 50

5.5 Summary . 51

6 Conceptualisation and Implementation 53

6.1 Requirements Engineering . 53

6.1.1 Stakeholders . 54

6.1.2 Questionnaires . 54

6.1.3 User Stories . 54

6.1.4 Functional Requirements . 59

6.1.5 Non-Functional Requirements . 64

6.1.6 Requirements Tracing . 66

6.2 Detailed User Stories . 67

6.2.1 Device Management . 67

6.2.2 Occupant Comfort, Presence Detection and Suggestions 70

6.2.3 Scheduling . 73

xii

CONTENTS

6.2.4 Notifications . 75

6.2.5 Aquarium . 77

6.3 Architecture . 78

6.3.1 Non-Functional Requirements Treatment 78

6.3.2 Architecture Styles . 81

6.3.3 Architecture Views . 82

6.4 Implementation . 86

6.4.1 Automation . 87

6.4.2 Front-end . 98

6.4.3 Backup . 100

6.4.4 Devices Tool . 101

6.5 Summary . 103

7 Evaluation and Results 105

7.1 Questionnaire . 105

7.2 Environment luminosity and temperature 108

7.3 Presence detection . 110

7.4 Energy Consumption . 115

7.4.1 Lights . 115

7.4.2 Monitor . 117

7.4.3 Coffee Machine . 118

7.4.4 Other equipment . 119

7.4.5 Energy cost . 119

7.5 Occupants’ opinion . 123

7.6 Summary . 125

8 Conclusion 127

8.1 Summary . 127

8.2 Contributions . 129

8.3 Limitations . 130

8.4 Future Work . 130

Bibliography 133

A Questionnaire 143

B Questionnaire 2 149

C Requirements Tracing 153

D Front-end User Interface 157

xiii

List of Figures

2.1 Cyber-Physical System model . 8

2.2 Relationship between CPS and IoT . 8

2.3 Internet of Things vision . 9

2.4 Building Automation System Architecture Level 11

3.1 SmartLab simplified 2D model . 16

4.1 Internet of Things 5 Layer Architecture . 23

4.2 WSO2 architecture . 25

4.3 IBM Watson IoT architecture . 26

4.4 ThingSpeak IoT architecture . 27

4.5 Azure architecture . 27

4.6 Amazon WS architecture . 28

4.7 Device-to-Device communication model example 30

4.8 Device-to-Cloud communication model example 31

4.9 Device-to-Gateway communication model example 31

4.10 Back-end data sharing communication model example 32

4.11 Fog Computing . 37

5.1 Relationship between device type, model and the physical device 40

5.2 WSO2 create device type . 41

5.3 IBM Watson create device type . 42

5.4 Data Analytics Workflow . 42

5.5 Application owner life cycle perspective . 45

5.6 Application consumer life cycle perspective 46

6.1 Use Case Diagram - Device Management . 68

6.2 Use Case Diagram - Occupant Comfort, Presence Detection and Suggestions 70

6.3 Use Case Diagram - Scheduling . 73

6.4 Use Case Diagram - Notifications . 75

6.5 Use Case Diagram - Aquarium . 77

6.6 Process proposal to handle NFRs . 79

6.7 Architecture Views - Class Diagram . 83

xv

List of Figures

6.8 Architecture Views - Sequence Diagram . 84

6.9 Architecture Views - Components Diagram 85

6.10 Architecture Views - Deployment Diagram 86

6.11 Node-Red Flow Example . 93

6.12 Power socket workday energy consumption example 96

6.13 WebApp User Interface Flux Architecture . 99

6.14 Data Visualisation User Interface Example . 99

6.15 Backup Module Overview Diagram . 100

6.16 Device Tool Overview Diagram . 102

7.1 Important physical aspects . 106

7.2 Temperature satisfaction level . 106

7.3 Noise satisfaction level . 106

7.4 Luminosity satisfaction level . 106

7.5 Ventilation satisfaction level . 106

7.6 Preferable light source . 106

7.7 Lights state at morning . 107

7.8 Air condition system state at morning . 107

7.9 Notifications to open/close windows . 107

7.10 Coffee machine turned on at morning . 107

7.11 Luminosity level of a work station near the window 108

7.12 Luminosity level of a work station near the window over a day 109

7.13 Luminosity level of a work station away from the window over a day 109

7.14 Temperature level of a work station near the window over a day 110

7.15 Temperature level of a work station away from the window over a day 110

7.16 Occupant portable computer energy consumption 111

7.17 Occupant monitor energy consumption . 112

7.18 Occupant presence detection through energy consumption 113

7.19 Light power state behaviour . 113

7.20 Luminosity level of a work station . 114

7.21 Light brightness state behaviour . 114

7.22 Light 1 and Light 2 power state without automation 115

7.23 Light 1 brightness state without automation 115

7.24 Light 2 brightness state without automation 116

7.25 Light 1 power state with automation . 116

7.26 Light 2 power state with automation . 117

7.27 Light 1 brightness state with automation . 117

7.28 Light 2 brightness state with automation . 117

7.29 Monitor energy usage without automation . 118

7.30 Monitor energy usage with automation . 118

7.31 Coffee machine energy usage without automation 119

xvi

List of Figures

7.32 Coffee machine energy usage with automation 119

7.33 Devices daily usage hours with/without automation 121

7.34 Devices energy cost per month with/without automation 121

7.35 Coffee machine energy cost per month with/without automation 122

7.36 Month energy cost with/without automation 123

7.37 Occupant’s opinion . 124

7.38 System overall rating . 125

D.1 Front-end User Interface - Desktop view for devices types list 157

D.2 Front-end User Interface - Desktop view for devices list 158

D.3 Front-end User Interface - Desktop view for device details and control view . 158

D.4 Front-end User Interface - Desktop view for rules view 159

D.5 Front-end User Interface - Mobile view for rules view 159

D.6 Front-end User Interface - Mobile view for rule configuration view 160

D.7 Front-end User Interface - Mobile view for device details and control view . 160

D.8 Front-end User Interface - Desktop view for ticket support 161

xvii

List of Tables

3.1 SmartLab physical components installed . 17

3.2 Fish tank equipped components . 17

4.1 Comparison of the key concepts of the studied platforms 29

4.2 Comparison of data analytics tools provided by the studied platforms 30

4.3 Comparison of features provided by the studied platforms 33

4.4 Fog comparison with cloud . 37

5.1 Platforms Comparison Overview . 52

6.1 User Management Mapping . 67

6.2 Handle Non-Functional Requirements (NFR) - Identify and Select NFR . . . 79

6.3 Handle NFR - Identify contributions between NFR 80

6.4 Devices connected to sockets map . 89

6.5 Backup Module - Devices List example file . 101

6.6 Backup Module - Devices State example file 101

6.7 Devices Tool - Input example file . 102

6.8 Devices Tool - Output example file . 103

7.1 Occupant card reader records . 111

7.2 Equipment energy consumption and cost per day 121

7.3 Solution equipment list . 122

C.1 User Management Mapping . 153

C.2 API Management Mapping . 153

C.3 Device Management Mapping . 154

C.4 Occupant Comfort Mapping . 154

C.5 Presence Detection Mapping . 154

C.6 Scheduling Mapping . 155

C.7 Suggestions Mapping . 155

C.8 Notifications Mapping . 155

C.9 Aquarium Mapping . 155

xix

Glossary

Arduino Micro-controller used to build digital devices with capabilities to sense and

control objects in the physical world.

Enterprise Service Bus Refers to an environment designed to promote interconnectivity

between different services.

feedback loop Outputs of components serve as input as a part of chain of cause and

effect.

Gateway Piece of networking hardware that interconnects networks with different net-

work protocol technologies by performing the required protocol conversions.

Message Broker Refers to a program module that translates a message from one protocol

to another, validate messages and route the message for one or more destinations.

xxi

Acronyms

API Application Program Interface.

ARP Address Resolution Protocol.

BAS Building Automation System.

BLE Bluetooth Low Energy.

CPS Cyber-Physical System.

CSV Comma Separated Values.

FR Functional Requirements.

HTTP Hypertext Transfer Protocol.

IaaS Infrastructure as a Service.

IoT Internet of Things.

JSON JavaScript Object Notation.

MQTT Message Queuing Telemetry Transport.

NFC Near Field Communication.

NFR Non-Functional Requirements.

OSGi Open Service Gateway Initiative.

PaaS Platform as a Service.

REST Representational State Transfer.

RFID Radio Frequency Identification.

SDK Software Development Kit.

xxiii

ACRONYMS

UI User Interface.

UML Unified Modelling Language.

US User Stories.

xxiv

C
h
a
p
t
e
r

1
Introduction

This Chapter contains a brief introduction about the work developed in this
dissertation. Section 1.1 briefly introduces a short description of BAS. Then, the
challenges of implementing a Building Automation System (BAS) are presented
(section 1.2), followed by the problem statement and final goals (section 1.3). We
then lists the expected results of this dissertation (section 1.4). Lastly, we present
the global structure of this document (section 1.6).

1.1 Context and Description

One of the concerns of computer science is the automation of tasks, whether for safety

reasons (to make various tasks safer for humans) or for economic reasons (to increase

productivity and efficiency). If we extend this concern to other domains such as Building

Automation, we see a focus on the topic of reducing energy consumption.

In recent years, the way we use energy has changed because of the global environ-

mental issues. For a sustainable development and a reduction of the impact that energy

consumption has on the environment, it is necessary to resort to strategies that allow us

to use resources more intelligently [SB15].

The biggest impact of the unintelligent use of energy lies in the larger buildings

(industrial and service). Thus, the concept of BAS has emerged with the motivation

of environmental safety and economic reasons.

BASs began by resolving the main part of energy waste in buildings: heating, venti-

lation, and air conditioning systems. However, in commercial and residential buildings

the light expenses should also be taken into consideration. [Ast+16].

Several technologies contribute to the implementation of these systems. The general

idea is to have components installed in the environment with measuring capabilities

1

CHAPTER 1. INTRODUCTION

(sensors), that provide data to the system. The system has the responsibility of interpret-

ing the data provided by the sensors and sending signals to other components installed

with the capability of changing the desired state (actuators). Actuators are mechanisms

responsible for turning on/off or changing intensity values of some device.

This setup has provided the concept of intelligent buildings, which can provide com-

fort to the occupants, while efficiently maximise the use of energy. In this way, it is possi-

ble to observe a reduction of energy consumption and consequently in its costs [Dom+16].

1.2 Challenges

Designing and implementing a BAS is a complex process where several challenges can

arise. Initially, it is important to analyse the environment where the system will act. Some-

times it is possible to find some control system already implemented [Ast+16; Lea+14].

This makes it a challenge due to the closed, custom, lack of documentation, and property

nature of these systems, which gives the equipment manufacturers full control over in-

stallations and upgrades. Therefore, these systems have a high cost associated [Cor14;

Ker+16; Tat16].

On the other hand, it is important to understand what kind of components are neces-

sary to control and how the system will communicate with them. The system must take

into account a vast heterogeneity of components available, and have the ability to deal

with them. In this case, the challenge is to decide the most appropriate architecture that

the system should adopt, considering all the components involved and future changes, in

case it is necessary to support new components. [Dom+16].

There is a need to realise what entities will interact with the system and understand

their roles and preferences. To engage the entities to help reducing energy costs, we

can use techniques and mechanisms based on games (gamification). This will create

conditions to stimulate the entities to take specific actions by making use of the hu-

man psychological predisposition to engage in games. These techniques can encourage

humans to complete tasks that would normally be tedious [Det+11]. However, having

humans has a part of the system may cause some issues due to the complex psychological

and behavioural aspect of humans [Mun+13].

The vast heterogeneity of devices is a problem for the BASs. There is no simple way to

deal with this vast variety, so building owners need to choose equipment within the same

range, which makes the price of these solutions higher [Dom+16].

The concept has been revolutionising the implementation of these systems, with the

vision to connect everything to the Internet. This makes it possible to acquire low-cost

hardware modules that make buildings more efficient and economical to operate [Att+16;

Cor14]. Currently, there are many Internet of Things (IoT) platforms that provide func-

tionalities to help in the implementation of BASs [Cor14; Tat16; Zha+16]. Despite each

platform documentation and functionalities provided are well-defined, it is hard to un-

derstand which solution is the most appropriate for a specific context.

2

1.3. PROBLEM STATEMENT AND FINAL GOALS

1.3 Problem Statement and Final Goals

Taking into account the challenges stated in section 1.2, the goal of this dissertation is

to provide a comparative analysis of the existing IoT platforms for building automation

with energy efficiency and comfort concerns.

Thus, the research question this dissertation intends to answer can be formulated as

follows:

What are the concerns that should be taken into account, and appropriate software

architecture for IoT solutions that can be used, to implement a BAS while ensuring

low energy consumption and occupant comfort?

To understand the best solution to adopt based on existing work, we have analysed

what are the key concepts an IoT platform should adopt in order to support the IoT

paradigm. In Chapter 4, we present a discussion on the several possible solutions based on

their architecture. The most relevant aspects of each one take into account the case study

described in Chapter 3. However, for this thesis, we had the requirement that the solution

should not be limited to the case study, so it has to be a general solution. Therefore, it

should be considered the platform capacity to be easily adapted to new requirements, a

different environment, the detection of errors and unexpected behaviours.

To validate this work, we have implemented a solution using some of the selected

IoT platforms and compared them taking into account the concerns coming from the

conducted analysis, and if the goal of ensuring low energy consumption and occupant

comfort is fulfilled.

1.4 Expected Contributions

As we will see throughout this document, at the end of this dissertation, based on

the research carried out, we expect to contribute to the state of art and accomplish the

following goals:

• A study about the state of the art of the Internet of Things architectures;

• An analysis about the selected Internet of Things platforms;

• An analysis of what are the key concepts and features an Internet of Things platform

should provide;

• A comparison about the selected Internet of Things platforms

• An explanation of how Internet of Things supports the implementation of Building

Automation Systems;

• A validation plan to analyse energy efficiency in real case scenario considering the

behaviour of different users.

3

CHAPTER 1. INTRODUCTION

1.5 Research Project

The research conducted by this dissertation is part of the NOVA LINCS SmartLab

research project, which aims to create an integrated automation solution for an open

office. The SmartLab will serve as our case study (described in Chapter 3).

The result of the analysis coming from the first chapters will help us to understand

what are the concerns that should be taken into account and an adequate IoT platform

that can be used to implement a BAS in the SmartLab.

1.6 Document Structure

In addition to this Chapter, this document is structured as follows:

• Chapter 2 - Background: This Chapter explains important concepts to understand

the work proposed in this dissertation. It starts by explaining the concept of CPS

(section 2.1) and IoT (section 2.2). It then introduces the idea of BAS and its compo-

nents (section 2.3).

• Chapter 3 - Case study: This Chapter describes our case study. It starts by describ-

ing the scenario (section 3.1), all the components and the relationships between

them (section 3.2). Then, it describes the available services provided by these com-

ponents (section 3.3). It concludes by describing the mechanisms implemented for

occupancy detection (section 3.4).

• Chapter 4 - State of the art of IoT platforms: This Chapter presents the state of the

art of the IoT architectures (section 4.1) and the required elements to accomplish

an IoT solution (section 4.2). Then, it introduces some existing platforms for imple-

menting an IoT solution (section 4.3). Then, it presents a list of the key concepts and

features an IoT solution should provide (section 4.4), and whether these platforms

provide or not these concepts. After explaining what an IoT platform is, it intro-

duces the IoT middleware concept (section 4.5) and Fog Computing (section 4.6),

and explains how these concepts are related to the IoT architecture and platforms.

It ends by presenting how IoT enhances BAS (section 4.7).

• Chapter 5 - Comparison Review: This Chapter describes in more detail the selected

IoT platforms. It starts by presenting the differences in the process of connecting

new devices to each platform (section 5.1). Then, it describes the tools provided

for Data Processing and Visualisation (section 5.2). Afterwards, it presents how the

platforms handle Application and User Management (section 5.3). In the end it is

presented a detailed discussion about the platforms (section 5.4).

• Chapter 6 - Conceptualisation and Implementation: This Chapter describes our

work on the case study, from the requirements to the implementation of a concrete

4

1.6. DOCUMENT STRUCTURE

solution. It starts by presenting the conducted requirement analysis, describes the

stakeholders, the users stories, the functional and non-functional requirements

(section 6.1). Then it details the user stories using use cases (section 6.2). In the

sequence, it presents the architecture styles and views selected (section 6.3). Finally,

it ends by showing the result of the implementation phase (section 6.4).

• Chapter 7 - Evaluation and Results: This Chapter presents the evaluation of our

work in several dimensions. It starts by presenting the results of the questionnaire

conducted to collect the opinion of the occupants of the case study (section 7.1).

Then, it presents the analysis of the temperature and brightness data (section 7.2);

the data regarding the mechanism used to detect presence and the events associated

with the presence of occupants (section 7.3); the before and after energy consump-

tions and associated costs (section 7.4); and lastly, it presents the results of the

questionnaire conducted that evaluates the occupants’ opinions about the system

(section 7.5).

• Chapter 8 - Conclusion: This Chapter closes the dissertation by summarising the

results (section 8.1 and section 8.2), while highlighting its limitations (section 8.3)

and pointing to future directions of this research (section 8.4).

5

C
h
a
p
t
e
r

2
Background

This Chapter explains important concepts to understand the work proposed in
this dissertation. It starts by explaining the concept of CPS (section 2.1) and IoT
(section 2.2). It then introduces the idea of BAS and its components (section 2.3).

2.1 Cyber-Physical System

Nowadays we can see many applications of Cyber-Physical Systems (CPSs). From

minuscule systems such as pacemakers to large scale such as power grids. So it is pos-

sible to witness CPSs in different areas such as medicine, aerospace, transportation ve-

hicles, defence and robotic systems, industry and building automation systems. CPSs

can interact with the human through many modalities providing social and economic

advantages [Lee+10].

CPSs are defined as the systems that are composed of physical processes, cyber com-

ponents and network mechanisms. The system operations are monitored and controlled

by embedded computers and networks usually with a feedback loop where computations

affect a specific physical process and vice versa.

Lee and Seshia defined CPS as a set of the following four layers:

• Physical Layer: Corresponds to the part of the system that is not accomplished

either with computers or digital networks, that exist in nature. It may include

mechanical parts, biological and chemical processes or human actions (represented

as the physical plant in Figure 2.1);

• Control Layer: Is composed of computers responsible to get sensors information,

analyse this information with logical controls and make a decision. As a result,

computers send an action through a group of actuators that affect the respective

physical process [LS15; Raj+10];

7

CHAPTER 2. BACKGROUND

• Sensors and Actuators Layer: Composed of devices responsible for collecting infor-

mation present in the physical layer and affect a respective physical process [KM15;

Raw+15]. The sensors and actuators are the interfaces between the physical and

cyber world. As illustrated in Figure 2.1 a CPS may contain several systems and

devices. In order for these components to exchange information, a network mecha-

nism is required;

• Network Layer: Represents the mechanisms provided for the components of the

CPS to communicate.

Figure 2.1: Cyber-Physical System model (adapted from [LS15])

Despite the systems and engineering evolution, there are some points that should be

taken into account. The physical world is not predictable. Therefore systems must be

prepared to adapt to unexpected conditions. So, these systems must operate dependably,

efficiently, in real-time, and take into consideration safety and security [Lee08; Lee+10].

The next Chapter will introduce the concept of IoT. These concepts are related, both

reflect a vision that aims to connect the physical world with cyber components. Lee

and Seshia defend that the term CPS is more foundational and durable because it does

not compromise with implementation approaches or particular applications [LS15]. Fig-

ure 2.2 illustrates the relationship between these two concepts. CPS can be systems

connected via Internet and non-Internet technologies, while the IoT are systems that are

connected only via Internet technologies.

Figure 2.2: Relationship between CPS and IoT (adapted from [Hen16])

8

2.2. INTERNET OF THINGS

2.2 Internet of Things

IoT refers to a technological revolution which aims to create a world where physical

devices (things) are connected through the Internet, making it possible for these devices

to collect and exchange data in order to accomplish certain goals in a specific context.

As mentioned before, the IoT differs from CPS because it refers uniquely to devices

connected to each other through the Internet. The IoT solutions usually combine physical

things with hardware or software. As a result, the physical functions of a thing can be

enhanced with additional functionalities [Eva12; WF+15].

A particular detail of IoT vision (Figure 2.3) is that these devices are invisibly em-

bedded in the environment around us. Therefore, it is possible to achieve a distributed

network of devices of various types communicating with each other with minimum hu-

man intervention [Kop11; Per+14; Xia+12]. To make the devices unnoticed to the user

IoT requires [Gub+13]:

• Shared knowledge of the state of its users and devices;

• Processing contextual information;

• Analytic tools to help in autonomous and smart behaviour.

IoT are opening new opportunities for a wide number of applications with the promise

of increasing our life’s quality [Xia+12]. Based on scale, coverage, and user involvement

it is possible to divide IoT applications per domain. These domains are classified into:

• Society;

• Industry;

• Environment.

Figure 2.3: Internet of Things vision (adapted from [Per+14])

9

CHAPTER 2. BACKGROUND

In short, the IoT main goal is to create a better world for human beings. To achieve

this goal it is required that the devices have knowledge about what the users want, what

the users need and like in a specific time and space, and acting accordingly without direct

human instructions [Per+14].

2.3 Building Automation System

In energy management applications of CPS in large scale, when various systems like

heating, ventilation, air conditioning and lights are networked and controlled to achieve

some specific goal of energy efficiency and occupants comfort, these type of systems can

be called BAS. That is, BAS is a class of a CPS [Ree+15].

In more detail, a BAS is a system that controls and monitors building services respon-

sible for heating, ventilation, air conditioning, lighting and others.

BASs received attention due to its potential to reduce energy costs and make building

operation simpler while improving indoor environment and minimizing environmental

impact. To achieve this potential, BASs required a wide range of interconnected com-

ponents in a distributed manner, which provides information about the environment

and enables decision-making regarding how the controlled components will act in order

to provide energy reduction costs and occupants satisfaction [Bra+05]. The functions

provided by a BAS are distributed in the following areas [Ast+16]:

• heating, ventilation and air conditioning;

• lighting systems;

• shading systems;

• monitoring and data acquisition;

• security and safety management;

• power generation systems;

• energy conservation and storage.

2.3.1 Architecture Levels

The architecture of this distributed system (represented in Figure 2.4) can be organ-

ised in three hierarchical levels [Dom+16; Fer+11; Lil+17]:

• Field level: In this level belongs all the field devices (sensors and actuators) respon-

sible for metering, setting and switching;

• Automation level: This level is responsible to provide control functionality. It is

responsible for process measurements, execute control loops and activate events;

10

2.3. BUILDING AUTOMATION SYSTEM

• Management level: In this level is where all the information about the system

is collected and represented. This is where the configurations of the system are

introduced. Activities like data visualisation, generation of reports and long-term

data storage belong to this level.

Figure 2.4: Building Automation System Architecture Level (adapted from [Dom+16])

2.3.2 Sensors, Actuators and Controllers

BASs employ a wide number of components as mentioned before. Without automated

monitoring, it is hard to operate and remain aware of equipment and system condi-

tions [Bra+05]. In order to fulfil automation, BASs requires various types of components.

These components are responsible for sensing, metering, setting and controlling and are

defined as follows [Ast+16; Dom+16]:

• Sensors: Devices with measures capabilities. They measure physical quantities and

convert them to a digital or analogue signal;

• Actuators: Used to modify the intensity or change the state of physical devices;

• Controllers: Application specific hardware with embedded software that controls

physical actuators. These hardware modules can have input and output capabilities.

Input ports allow a controller to receive data from a monitored input or commands

from the system. Output ports allow a controller to send signals to the controlled

devices.

2.3.3 Communication Networks

Communication protocols denote the physical media through which information and

commands pass between devices, and are the central question of interoperability [Bra+05].

The backbone of the field level is the Fieldbus, a digital communication link between

field devices such as sensors, actuators and controllers. The Fieldbus supports a two-way

communication that provides the capability to read and write devices data. Thus, all the

11

CHAPTER 2. BACKGROUND

devices on the Fieldbus network need to be identified by a unique address [LS13]. In this

way field devices send and receive information over Fieldbus and can communicate with

each other or with control devices at the automation level [Mer+09].

The Fieldbus results in cable savings and resultant cost reduction compared to pre-

vious analogue communication buses. The field devices can carry out their own compu-

tational capabilities. The field devices interoperability does not become an issue since

Fieldbus devices are interoperable. Thus devices from different manufacturers can work

together without loss of functionality [Sen14].

As mentioned before, IoT is about connecting devices, performing computational

processes either in embedded computers or in cloud services. In this sense, IoT may

actually support the evolution of BASs [Ast+16; Cor14].

2.3.4 Occupancy Detection

One of the goals of BASs is to maintain indoor comfort while reducing energy costs.

For this purpose, BASs requires occupancy detection techniques supported by sensors or

other mechanisms. The most common occupancy detection techniques are based on the

following strategies:

• presence or movement detection;

• CO2 concentration.

In order to occupancy detection to work strategies need to be implemented. These

strategies can be supported by two types of systems:

• Terminal based detection systems: Occupancy detection is based on mobile phones

or Radio Frequency Identification (RFID) tags inserted in objects carried by the oc-

cupants;

• Non-terminal based detection systems: Occupancy detection is based on sensors

to measure CO2 concentration, infrared levels emitted by surrounding objects and

image recording devices.

For reliable occupancy detection, different mechanisms should be adopted taking into

account the BAS context and the occupants involved [Ast+16].

2.4 Summary

In this Chapter, it was described the fundamental concepts for a better understanding

of the next chapters. We start by explaining what a CPS is, its components and char-

acteristics. Then, we talk about the IoT concept, its components and how it relates to

the CPS. Lastly, we introduce the BAS concept, its components and architecture. All of

12

2.4. SUMMARY

these concepts are important because one of the main goals of this thesis is a BAS system

implementation based on IoT technologies. It is important to highlight the CPS concept

because this particular case study takes place in an office where its occupants and also

the physical aspects are part of the system. Thus, the system has to deal with different

types of equipment and their data (IoT), in order reduce energy consumption by creating

automation rules (BAS), and to deal with the physical aspects and the human presence in

the system (CPS).

13

C
h
a
p
t
e
r

3
Case study

This Chapter describes our case study. It starts by describing the scenario
(section 3.1), all the components and the relationships between them (section 3.2).
Then, it describes the available services provided by these components (section 3.3).
It concludes by describing the mechanisms implemented for occupancy detection
(section 3.4).

3.1 Overall Description

The Computer Science Department at FCT/UNL has a room, called SmartLab, with

several components installed. The SmartLab will be used as a test case scenario for the

proposed system. The goal is to suggest a simulation platform for energy efficiency studies

considering the behaviour of the SmartLab occupants. To design the system architecture

it will take into consideration all the components already installed in the SmartLab and

their occupants. The challenge is to autonomously control the required components in

order to minimise energy waste and operation costs without disturbing and causing side

effects to the SmartLab occupants.

The proposed system must continuously acquire and analyse information from the

installed components. Afterwards, it must make the best decision based on the present

or absent occupants and the current time.

In Figure 3.1 is illustrated a simplified model of the SmartLab. It is possible to see that

every desk in the SmartLab has a computer, a light bulb and an outlet. It is also installed a

fish tank as a subsystem, a coffee machine, and an air conditioning system. The following

sections will clarify all the components in the SmartLab in order to accomplish the desired

result.

15

CHAPTER 3. CASE STUDY

Figure 3.1: SmartLab simplified 2D model. Legend: AC - Air Conditioning, CM - Coffee
Machine, FT - Fish Tank, L - Light Bulb, O - Outlet

3.2 Physical Setup

As mentioned before, the SmartLab is equipped with several components. These

components can be distributed by different categories (represented in Table 3.1). In the

sensors category, we include all the devices responsible for acquiring values about the

SmartLab environment. Currently, we measure light intensity, temperature, both inside

and outside the room, and energy consumption. It is also implemented a system for

occupancy detection (described in section 3.4). The actuators category is composed of

the devices responsible to change a specific physical value and control the energy waste

in every desk present in the room. The computer will be used as a control component,

responsible to evaluate the device’s data and apply the required logic to understand what

commands need to be sent to the actuators.

In the room, it is possible to find a fish tank that contributes to a relaxing atmosphere

in the room. The fish tank is the only subsystem present in the SmartLab and it has

its own components to maintain the fish tank operational (represented in Table 3.2).

In addition to helping taking care of the fish, the subsystem also needs to take into

consideration the aquaponic capabilities provided by the fish tank. To accomplish this

the fish tank is composed of a set of sensors and actuators in order to automate the control

and maintenance tasks of the fish tank.

16

3.2. PHYSICAL SETUP

Table 3.1: SmartLab physical components installed

Component Type Description

LED Lights Actuator Used to change the light intensity of the room.
It can be turned on or off. It is also possible
to set a specific value for light intensity and
colour.

Outlets Sensor/Actuator Outlets have both measuring and sensing ca-
pabilities. They can be used to measure the
energy at a specific workstation. On the other
hand, it is possible to turn on or off the outlet.

Estimote Beacons Sensor Estimote Beacons are used for occupancy detec-
tion, temperature and light measuring.

Computer Controller The computer used as the main controller of
the installed devices in the room.

Table 3.2: Fish tank equipped components

Component Type Description

Open Aquarium Controller Responsible for automating the control and main-
tenance tasks that take place in the fish tank, in
order to maintain a good, environment to the fish.

Ph level sensor Sensor Component used to measure the Ph level of the
tank water.

Temperature sensor Sensor Component used to measure the current tempera-
ture of the water.

Water level sensor Sensor Component used to measure the level of the water
inside the tank that may decrease due to evapora-
tion.

Lights Actuator The tank has some plants that need a certain time
of light exposure. This actuator is responsible to
provide luminosity to the plants inside the tank if
the natural light is not sufficient.

Ventilator Actuator Based on the water temperature, this actuator is
used to cool down the water if high-temperature
levels are measured.

Feeder Actuator This actuator is used to feed the fish according to a
pre-defined schedule or, through the computer.

One Arduino is installed to control the fish tank tasks. The sensors and actuators are

connected to the I/O ports of the Arduino. The Arduino is configured in order to feed the

fish in a specific schedule and turn on/off the lights to provide luminosity to the plants

inside the tank. This controller is connected to the server mentioned before making it

possible to manually control and monitor the fish tank through the provided computer.

17

CHAPTER 3. CASE STUDY

3.3 Available Services

The distributed components mentioned before provide a set of services. The following

sections describe in more detail the services supported by the current setup present in

the SmartLab.

3.3.1 Control and Monitor

The SmartLab has a computer responsible for control and monitor activities. It pro-

vides the capability to get information about the state of the sensors and control actuators

through an implemented Application Program Interface (API). A User Interface (UI) is

also provided in order to visualise pertinent information about the components installed

in the room.

All the components listed before are based on Internet communication. Therefore, all

the components have a unique address so that the computer can communicate through

the component IP address.

3.3.2 Lights

It is possible to observe in Figure 3.1 that there are some light bulbs installed in the

SmartLab. These bulbs can be switched on/off directly in the bulb switch as a normal

one, or remotely through the light bulbs API. The computer provides the mechanisms to

obtain the status of each bulb in the room, to switch it on or off, and to change the light

intensity and colour.

3.4 Occupants Comfort

The SmartLab is used as a workroom and occasionally for meetings. Thus, it is at-

tended by different types of people. To provide comfort to the occupants while reducing

energy costs, it is required to implement mechanisms so that the system has knowledge

about the presence of occupants in the room.

To accomplish this requirement the SmartLab is equipped with a set of devices (Bea-

cons) to detect human presence through proximity technologies. Beacons are tiny, low

power computers that can be attached to walls or objects in the physical world. These

devices can help to provide the knowledge about human or specific entities present in

the SmartLab.

The SmartLab entrance door has a card reader equipment. Only authorised entities

can enter the room. However, using this strategy is not enough. Think of a meeting

composed of several entities and just one has the authority to open the door. If that entity

goes outside the room for some reason it is required to have mechanisms to understand

that there are other entities inside. Thus, it is necessary to adopt multiple mechanisms

that support occupancy detection [Ast+16].

18

3.5. SUMMARY

The data provided by the occupancy detection mechanisms allow us to adopt strate-

gies based on the presence of occupants, such as switching off the lights or the unused

outlets when no one is present in the room. Thus, it is possible to reduce energy costs

based on the occupancy data.

3.5 Summary

In this Chapter, we describe the case study where the main goal of this work and

the next chapters are based on. It is important to note that there are different types of

equipment distributed across the room. In the next chapters, namely on the requirements

analysis and the conceptualization phases, it will be taken into consideration these types

of equipment. Lately, it will be important to recall the room plant due to the fact that the

results reflect the equipment’s position relative to the room.

19

C
h
a
p
t
e
r

4
State of the art of IoT platforms

This Chapter presents the state of the art of the IoT architectures (section 4.1)
and the required elements to accomplish an IoT solution (section 4.2). Then, it
introduces some existing platforms for implementing an IoT solution (section 4.3).
Then, it presents a list of the key concepts and features an IoT solution should
provide (section 4.4), and whether these platforms provide or not these concepts.
After explaining what an IoT platform is, it introduces the IoT middleware concept
(section 4.5) and Fog Computing (section 4.6), and explains how these concepts
are related to the IoT architecture and platforms. It ends by presenting how IoT
enhances BAS (section 4.7).

There are some solutions that implement a building automation with Internet tech-

nologies. These solutions implement a prototype system to monitor and control the filed

devices in order to reduce energy consumption costs. Jung et al. [Jun+12] and Mohamed

et al. [Moh+16] offer a solution to integrate existing BAS with cloud computing technolo-

gies, through a gateway, in order to enhance the current system capabilities. Attitalla

et al. [Att+16] and Gusmanov et al. [Gus+16] offer prototype solutions that use available

APIs and libraries, in order to connect the field devices and provide monitor and control

functionalities. These solutions are not based on a reference architecture and were im-

plemented for a very concrete case. Whereby, they do not offer scalable, and adaptable

solutions, that helps to deal with the devices heterogeneity or services integration. That

is why, we pretend to analyse the existent approaches, understand the functionalities

provided and realise how these fit in the building automation to create an adaptable and

scalable solution.

21

CHAPTER 4. STATE OF THE ART OF IOT PLATFORMS

4.1 Internet of Things Architectures

An IoT architecture should have the capacity to interconnect many heterogeneous de-

vices, collect data from multiple sources, and connect several services in order to provide

the expected functionality. Before discussing how an IoT architecture is structured, it

is important to mention the requirements these architectures should take into account.

Wang et al. [Wan+17] and Ray [Ray16] list these considerations when designing an IoT

architecture:

• Interoperability: Allows the integration of heterogeneous devices, networks, sys-

tems and services across domains and systems.

• Service Oriented Architecture principle: Allows third-parties to offer and con-

sume services.

• Service modularisation and loose coupling: Simplifies provided and consumed

services by third-parties through reusable and modularized services.

• Multipoint communication: Adopts mechanisms to allow objects to communicate

with multiple objects at the same time.

• Dynamic and runtime reconfiguration: Enables adding and removing objects dy-

namically to networks. Due to network topology changes, it should allocate re-

sources dynamically in order to create flows among all objects.

• Simplified deployment: Simplify the deployment of IoT in order to reduce devel-

opment costs.

• Controlled interaction and decentralisation: Supports distributed data accessing,

processing and storage. It allows the users to decide which data can be shared.

Now we can describe how IoT architectures are usually organised. There are several

approaches that try to organise the architecture in several layers but the most common are

the 3 and 5 layer architecture [AF+15]. The 5 layer architecture (illustrated in Figure 4.1)

is composed of the following layers [AF+15; Ara+16; Li+15; Mar+17; Thi15]:

• Perception Layer: Composed of all the devices that interact with the physical world

in order to collect data (sensors) or to change a desired state or value (actuators).

Every device in this layer has a unique identifier (name or address) that identifies it

in the digital domain.

• Network Layer: Represents the mechanisms used to transfer the produced data in

the Perception Layer to the Middleware Layer through technologies such as RFID,

ZigBee, Wi-Fi, 2G, Bluetooth Low Energy (BLE) and many others.

22

4.2. INTERNET OF THINGS ELEMENTS

• Middleware Layer: This layer pairs a service with its requester based on unique

address or names. It provides an abstraction mechanism that enables developers to

work with models that represent a specific object without worrying about hardware

specifications. This layer is also responsible for making decisions based on the

received data and store data in databases.

• Application Layer: Provides output information based on the services requested

by the end users. It shapes the application to a specific context such as smart home,

smart city and many others.

• Business Layer: Responsible for system configuration and monitoring activities.

Represents the tools used to build reports and graphs based on the data received

from the application layer. This layer also represents the mechanisms used to

predict system behaviour based on big data analysis.

Figure 4.1: Internet of Things 5 Layer Architecture (adapted from [Kha+12])

The 3 layer architecture is an abstraction of the 5 layer architecture. Being struc-

tured as Perception Layer, Network Layer and Application Layer. The last layer (Ap-

plication Layer) represents a merge between the Middleware, Application and Business

Layers [AF+15].

4.2 Internet of Things Elements

There are a set of main elements needed to deliver the expected functionality from

IoT based on the architecture layers mentioned before. These elements can be divided

into the following categories [AF+15; Mar+17; Min13; Pra+16; Wan+16]:

• Identification: Device identification is crucial for the IoT to know all the involved

objects. Actually, there are multiple methods for object identification through name

or address. Identification by name its possible to achieve with electronic product

codes (EPC) or ubiquitous code (uCode). Identification by address refers to assign

an IP address to the object achieved with today’s IPv4, IPv6 and others.

23

CHAPTER 4. STATE OF THE ART OF IOT PLATFORMS

• Sensing: Sensing refers to the capacity to collect data from the environment through

the related objects, analyse, and take specific actions based on the collected data.

The IoT sensing devices can be smart sensors, actuators and wearable sensors.

• Communication: Communication is a crucial part of the IoT. It can be restricted to

the characteristics of the devices such as battery life, data transmission limited range

and protocols. The most common protocols used are Wi-Fi, ZigBee, GSM, Bluetooth,

Z-Wave, 6LowPAN, Message Queuing Telemetry Transport (MQTT), Thread and

many others. Proximity communications such RFID, Near Field Communication

(NFC) and BLE (Beacons) are commonly used.

• Computation: Computation is composed of hardware platforms such as Arduino,

Raspberry Pi and others. Cloud platforms can also be used to provide storing or

processing functionalities.

• Services: IoT services can be categorised into four types responsible for the follow-

ing tasks:

– Identity-related Service: Map the identified real-world objects to virtual ob-

jects;

– Information Aggregation Service: Collect and summarise the data provided

by the devices;

– Collaborative-Aware Service: Make decisions based on the data provided by

the Information Aggregation services;

– Ubiquitous Service: Provide Collaborative-Aware services to anyone at any-

time.

• Semantics: The ability to extract knowledge to provide the required services refers

to Semantic. In order to extract knowledge, it is required to model information,

recognize and analyse data to make sense.

4.3 Internet of Things Platforms

An IoT platform provides a set of generic functionalities that can be used to build

an IoT application. It is a virtual solution, where data drives business intelligence and

each device has something to talk with another device. Meaning that an IoT platform

translates devices data so that it can be used intelligently by other devices. Additionally,

an IoT platform provides the required tools that enable a user to implement business use

cases and it provides data management and real-time analysis [NC15].

Currently, there are many solutions that allow us to accomplish an IoT solution. All

the platforms present common concepts but there are some differences at the architectural

level and functionalities provided. The platforms we present were selected based on the

24

4.3. INTERNET OF THINGS PLATFORMS

criteria that they provide documentation explaining the architecture on which they are

based. The following sections briefly describe the selected IoT platforms.

4.3.1 WSO2 IoT

WSO2 is an open-source technology company founded by Dr Sanjiva Weerawarana

and Paul Fremantle in August 2005. The platform created by this company is based on

the Open Service Gateway Initiative (OSGi) technology which allows components to be

dynamically installed, started, stopped, updated, and removed. Therefore, it is possible

to achieve a completely modular solution [Fre16a; Inc16a; Inccea]. In order to fulfil the

IoT paradigm, the WSO2 IoT Server was built by reusing the WSO2 components based

on a reference architecture.

The architecture, represented in Figure 4.2, is organised in five horizontal layers

and two vertical layers. These vertical layers (also called cross-cutting layers) represent

the functionality that spans layers. This means these vertical layers represent a set of

functionalities (caching, validation, authentication) that are accessible to all the layers.

Each layer is composed of multiple components that provide essential capabilities that

help to implement a scalable IoT platform. These capabilities include tools to connect

and manage all the devices, data analytics, API management for devices and web-based

UIs.

Figure 4.2: WSO2 architecture (adapted from [Fre16a])

Comparing the WSO2 architecture to the five layers architecture mentioned before,

the Devices layer represents the Perception layer. The Communication layer corresponds

to the Network layer. The Aggregation/Bus and part of the functionalities provided

by the Event processing and Analytics layer represent the Middleware layer. The top

three layers, Web/Portal, Dashboard and API management, represent the Application

and Business layers [Fre16a; Inc16b].

25

CHAPTER 4. STATE OF THE ART OF IOT PLATFORMS

4.3.2 IBM Watson IoT

IBM Watson IoT is a cloud platform created by IBM in 2014. This platform helps to

create an IoT solution that aggregate data collected by the connected devices, sensors, and

gateways. This platform was built based on an architecture, represented in Figure 4.3,

structured in five layers.

Figure 4.3: IBM Watson IoT architecture (adapted from [Watd])

Comparing the IBM Watson IoT architecture to the five layers architecture mentioned

before, the User layers represents the Application layer. The Proximity network corre-

sponds to the Perception layer. The Public network represents the Network layer. The

Provider Cloud layer represents the Middleware layer. Finally, the Enterprise Network

corresponds to the Business layer.

To fulfil the IoT paradigm IBM Watson IoT uses multiple platform services, each one

responsible for a set of specific tasks. These services provide the tools to create an IoT

solution. IBM Watson IoT provides recipes to simplify the connection of devices and

scenarios that help to implement the architecture [Watb; Watd].

4.3.3 ThingSpeak IoT

ThingSpeak is cross-platform created in 2010, that enables the creation of sensor

applications. This platform was built based on an architecture, represented in Figure 4.4,

structured in three layers.

Comparing the ThingSpeak IoT architecture to the three layers architecture men-

tioned before, the Things layer represents the Perception layer. The Cloud Service cor-

responds to the Middleware layer and the Services and Application layer represents the

Application layer.

We decide to present this solution because it has some different aspects compared to

the other solutions namely, the fact that this platform does not provide Device Model

mechanisms. The Things layer represents stream data channels, that allow us to send

data without the need to associate this data with device properties [Thi14].

26

4.3. INTERNET OF THINGS PLATFORMS

Figure 4.4: ThingSpeak IoT architecture (adapted from [Thi14])

4.3.4 Microsoft Azure IoT

Azure IoT Suite is an enterprise-grade solution created by Microsoft in 2016. This

platform helps to build, deploy, and manage IoT solutions using Azure services based on

an architecture. The architecture, represented in Figure 4.5, is structured in three layers

and provides the required components to enable the communication between devices and

cloud-based systems, and the integration of analytics, control and business processes.

Figure 4.5: Azure architecture (adapted from [Fre16b])

Comparing the Azure IoT architecture to the three layers architecture mentioned

before, the Device connectivity layer represents the Perception layer. The Data processing,

Analytics and Management correspond to the Middleware layer. Lastly, the Presentation

and Business represent the Application layer.

Azure IoT Suite provides preconfigured, completed and working solutions to address

common IoT scenarios. The Azure IoT Suite is composed of several core platform services

and application level components. The components provide a set of required functionali-

ties in order the achieve a modular and flexible IoT solution [DBce; Fre16b].

4.3.5 Amazon Web Service

Amazon WS is an Infrastructure as a Service (IaaS) platform created by Amazon in

2006. This platform allows to easily connect devices, and interact with cloud services.

This platform is based on a three layers architecture, represented in Figure 4.6, that

provide the capabilities of device management, data analytics and presentation, and

external communication to other services.

Comparing the Amazon Web Service architecture to the three layers architecture

mentioned before, the Things corresponds to the Perception layer, the Cloud Service

27

CHAPTER 4. STATE OF THE ART OF IOT PLATFORMS

Figure 4.6: Amazon WS architecture (adapted from [Awsb])

represents the Middleware layer and the Services and Applications correspond to the

Application layer.

In Amazon WS the Things layer represents the provided SDKs that help to connect the

hardware devices, authenticate and exchange messages using different communication

protocols. This platform also provides a concept of Device Shadow of each device that

includes the device latest state, making it easier to build applications that interact with

the connected devices [Awsa; Awsb].

4.4 Comparison of Internet of Things Platforms

Once the platforms have been described, we can start to define the most relevant

aspects to be compared. These aspects are structured in four categories. In section 4.4.1

we list the key concepts an IoT platform should provide. In section 4.4.2 we detail the

most common mechanisms used for data analytics. In section 4.4.3 we describe the

communication models found in these platforms. Lastly, section 4.4.4 presents all the

features provided by the selected IoT platforms.

4.4.1 Key concepts

After analysing in more detail the existing solutions, we noticed the concepts that

an IoT platform should provide. The following list describes the key concepts from

the analysis conducted and Table 4.1 compares these concepts between the mentioned

platforms.

• Device Model: Enables the representation of device details, such as model and

serial number, data emitted, configuration parameters and its operations.

• Device Management: Capability to support device management in order to main-

tain a list of connected devices and their status. It should provide tools to help in

device registry, integration, enable/disable device features, control device identi-

fiers and localisation, and allow error reporting and handling.

• Integration: Capability to provide tools to integrate technologies to empower enter-

prises to build a connected business. Representational State Transfer (REST) APIs,

Enterprise Service Bus and Message Broker are commonly used.

28

4.4. COMPARISON OF INTERNET OF THINGS PLATFORMS

• Analytics: Provide tools to collect data from multiple sources and integrate real-

time, predictive and interactive analysis.

• Visualisation: Provides web-based UIs or dashboards for data visualisation.

• External Communication: Allows the interaction with systems outside its network

using machine-to-machine communication (APIs).

• Identity and Access Management: Ensures security while connecting multiple

identities from different applications, APIs and devices regardless of the standards

which they adopt.

Table 4.1: Comparison of the key concepts of the studied platforms. Legend: no mention,
low or no support #, medium or partial support G#, high or full support

WSO2 IBM Azure AWS ThingSpeak

Device model #

Device management #

Integration

Analytics

Visualisation

External communication

Identity and Access Management

4.4.2 Data analytics

As mentioned in section 4.2 an IoT solution should provide the capability to extract

knowledge from the data collected. In order to extract valuable information, several

mechanisms can be used.

Note that in section 4.4.1, we list Analytics as a key concept. We consider important to

specify this aspect because, in our case study multiple mechanisms for data analytics can

be used, in order to provide a better comfort for the occupants and to realise strategies

for reducing energy consumption costs.

The following list describes the mechanisms found in the analysis of solutions and

Table 4.2 compares these concepts between the mentioned platforms.

• Machine Learning: Capability to learn and make predictions based on data through

learning algorithms;

• Natural Language Processing: Ability to analyse, understand, and derive meaning

from human writing or speech;

• Predictive: Predict unknown events based on current and historical facts;

29

CHAPTER 4. STATE OF THE ART OF IOT PLATFORMS

• Real-time: Ability to analyse the data as soon as it enters the system;

• Batch: Ability to process transactions in a group without requiring user interaction;

• Image and Video: Extract meaningful information from images and videos.

Table 4.2: Comparison of the data analytics tools provided by the studied platforms.
Legend: no mention, low or no support #, medium or partial support G#, high or full
support

WSO2 IBM Azure AWS ThingSpeak

Machine Learning

Natural Language Processing # G# G# #

Predictive

Real-time

Batch # #

Image and Video # G# #

4.4.3 Communication models

IoT is about to connect everything, and therefore it is possible to find many types

of communications between the existing components. On that matter, a wide range of

protocols arises in order to support the different communication models. The following

sections describe the communication models found in IoT [Iot; MP]. Although in different

ways, all the platforms provide the mechanisms to accomplish these communication

models. The biggest difference between them resides in the way they simplify these

communications, whether through services or custom gateways.

Device-to-Device Communication

Represents the communication between two or more devices that exchange data be-

tween them, as the example in Figure 4.7. These devices can communicate through many

types of networks, including IP networks, but most often use protocols such as Bluetooth,

Z-Wave, ZigBee and others. This communication model transfers small data packages of

information between devices at a relatively low data rate [HAM16; MP].

Figure 4.7: Device-to-Device communication model example (adapted from [HAM16])

30

4.4. COMPARISON OF INTERNET OF THINGS PLATFORMS

Device-to-Cloud Communication

In the Device-to-cloud communication, exemplified in Figure 4.7, the device is con-

nected directly to an Internet cloud service to exchange data. This approach uses com-

munication mechanisms like traditional wired Ethernet or Wi-Fi connections to estab-

lish a connection between the device and the network, but can also use cellular tech-

nology. Device-to-cloud communication provides the capability to access devices re-

motely [HAM16; MP].

Figure 4.8: Device-to-Cloud communication model example (adapted from [HAM16])

Device-to-Gateway Communication

Device-to-gateway communication, exemplified in Figure 4.9, represents the commu-

nication between the device through a Gateway in order to reach an Internet cloud service.

Gateway devices serve as an intermediary between the device and the cloud service and

provide other functionalities such as security and data protocol translation. Gateway de-

vices can fill the gap between devices with different communications protocols [HAM16;

MP].

Figure 4.9: Device-to-Gateway communication model example (adapted from [HAM16])

31

CHAPTER 4. STATE OF THE ART OF IOT PLATFORMS

Back-end data sharing

Back-end data sharing, exemplified in Figure 4.10 is a communication model that

enables the end users to export and analyse data from an Internet cloud service in combi-

nation with data from other sources. This model also provides authorised third parties

to access devices data [HAM16; MP].

Figure 4.10: Back-end data sharing communication model example (adapted from
[HAM16])

4.4.4 Features

The following list describes the features found in the platforms analysis and Table 4.3

compares these concepts between the mentioned platforms.

• Libraries/SDK: Provide code to simplify the building and connection of devices

and applications that are used by the IoT platform;

• Virtual/Shadow Device: Used as a communication layer between the application

and the device. The virtual/shadow act as a persistent, virtual representation of the

device state in a specific time;

• Agents: Software installed on the devices used to perform actions on behalf of

another component;

• Rule Engine: Ability to create rules in order to trigger a specific action upon an

event occurrence;

• Group/Zone: Ability to create groups or zones and manage the belonging devices;

• Tasking: Ability to forward control commands to the devices;

• Messaging Services: Ability to publish or subscribe to topics of the devices;

• Alerts and Notifications: Trigger notifications and alerts to notify the users of a

certain event.

32

4.4. COMPARISON OF INTERNET OF THINGS PLATFORMS

Table 4.3: Comparison of features provided by the studied platforms. Legend: no men-
tion, low or no support #, medium or partial support G#, high or full support

WSO2 IBM Azure AWS ThingSpeak

Libraries/SDK #

Virtual/Shadow Device #

Agents #

Rule Engine

Group/Zone G# #

Tasking

Messaging Services G#

Alerts and Notifications

4.4.5 Discussion

Architectures are either more or less suitable for a specific context. Therefore, there

is no such thing as an inherently good or bad architecture. However, there are some

guidelines that should be followed when designing architectures. Even if the architec-

ture does not satisfy one of the rules, it does not imply that the architecture will fail its

purpose [Bas+12; Som10].

As mentioned in section 4.1, the IoT architectures are usually structured in 3 or 5

layers, and all the platforms described in section 4.3 are in accordance with these patterns.

It is important to note that there are many solutions that allow us to create an IoT

solution. The platforms mentioned in section 4.3 were selected because they are the

ones that provide documentation explaining the architecture on which they are based

and their architectures and elements provided resemble on the IoT architecture and

elements mentioned in sections 4.1 and 4.2. Moreover, the features they offer are the ones

that fit the case study. However, there are other solutions available that should not be

discarded. We do not consider these solutions in this thesis because they do not provide

documentation explaining the architecture they are based or they do not provide the

functionalities.

A question to be taken into account is the fact that some of the solutions mentioned

are Platform as a Service (PaaS). This means that these platforms allow the users to

develop, run, and manage applications without the concern of building and maintaining

the infrastructure required to develop and launch an application [Law08]. This type of

platforms have some advantages such as [Law08]:

• Productivity/Efficiency: Hosting the development environment increases produc-

tivity and lets release products faster and reduce software costs;

• Scalability: Eliminates the need to configure hardware modules, storage subsys-

tems, and security, thus making the deployment environment scale.

33

CHAPTER 4. STATE OF THE ART OF IOT PLATFORMS

However, PaaS platforms have some drawbacks too [Law08]:

• Accessibility: Connectivity problems or the PaaS system crash and the platform

vendor goes out of business making the platform inaccessible;

• Portability: When using these platforms the users are dependent on the platform

which they are working with. The developed applications are limited to the plat-

form used and in many cases, there is no easy way to transfer the product elsewhere;

• Security: All content is on the side of the platform vendor. The users are not in

control of sensitive information within the platform.

In our evaluation, we will take into consideration the characteristics usually associ-

ated with PaaS platforms we just introduced. However, we will simply assume these

characteristics are present/absence if the platform under evaluation is a PaaS or not. That

is, we will not further investigate the degree of each characteristic in the corresponding

platform.

Another issue to be taken into consideration is the fact that solutions are composed

of several components. Most of the components already exist. Therefore, by aggregating

these components and providing the mechanisms to make them communicate with each

other, it is possible to achieve a solution that fits the IoT requirements and functionalities.

However, we emphasise that, although the platforms can provide the expected char-

acteristics from an IoT solution, the biggest difference that can arise between them is in

terms of performance, usability, scalability, and ease of setup.

4.5 Internet of Things Middleware

In the previous sections, we saw what is an IoT platform, its requirements and pre-

sented multiple architecture approaches. However, there are still solutions that abstract

one of the problems of the IoT platforms. As mentioned before, nowadays there are mul-

tiple communication protocols and many types of devices. This often makes it harder to

handle the communication between all devices. Therefore, other solutions may arise in

order to provide smooth communication between all the components of an IoT system.

IoT middleware is an interface that allows the interaction between the IoT compo-

nents. The main purpose of these solutions is to act as a mediator that hides the het-

erogeneity of the different devices, components and services in an IoT system. It does

not replace an IoT platform because these two have different approaches. We can con-

sider an IoT platform as a suite that simplifies processes like development, deployment,

maintenance, analytics and intelligent decision. An IoT middleware is a suite service

mainly aimed to handle the heterogeneity problem of an IoT system, allowing smooth

communication between the different components. Additionally, an IoT platform speci-

fies internally a middleware, it is specific and in accordance with the platform architec-

ture [NC15].

34

4.6. FOG COMPUTING

There are several IoT middleware approaches, and these also have different types of

architectures. These architectures can be classified as service-based, cloud-based and

actor-based.

The service-based IoT follows a three-layer architecture composed of Physical Plane

(sensors, actuators), Virtual Plane (server infrastructure) and the Application Plane (util-

ity). This approach has some limitations, namely because it provides the functionalities

to collect data but not for data analysis. It is also a heavy solution that requires com-

putational resources and needs to be deployed in multiple nodes or powerful gateways

between the IoT devices.

The cloud-based IoT is composed of functional blocks and the services are limited to

the existing blocks. The provided functionalities are exposed through a set of APIs. The

resources provided can be accessed and controlled only by vendors provided applications

or cloud supported APIs.

The actor-based IoT can be visualised as a three circular architecture. The outermost

circle represents the sensors and actuators, the middle circle represents the devices used

for access and the inner circle represents the cloud. A particularity of this approach is that

the middleware can be embedded in all the layers, since it is designed to be light-weight.

Thus, the middleware computation units are distributed across the network.

The difference between these approaches resides on the provided support to add new

devices, the type of services and computer units they support and where the middleware

can be deployed. The service-based is deployed on servers or in the cloud. Usually, it has

a limited set of functionalities and it is restricted to external services integration. The

service-based is also not designed to be extendible or customised by the users. The actor-

based architecture provides the best latency and scalability because it can be deployed in

any layer and device. Thus, it can perform computations where it provides more benefits.

All these approaches support security and privacy. However, the cloud and service-

based approaches may have weak security in the communication between the middle-

ware and the physical devices, due to the fact that middleware cannot be deployed or

embedded on devices. Therefore, it can compromise the data sent from devices to the

middleware [Ngu+17].

4.6 Fog Computing

In the previous sections, we described what are IoT platforms and presented examples

of some existing solutions. Then, we described what are IoT middlewares and how they

can fill the gap concerning the devices and protocols diversity. There is another concept

called Fog Computing that can help in building IoT systems. Usually, an IoT system

demands significant computation and storage resources. Thus, the question of where

these resources should be placed may arise. An obvious solution would be to have these

resources available through the cloud. However, using the cloud for IoT systems may be

35

CHAPTER 4. STATE OF THE ART OF IOT PLATFORMS

infeasible in many scenarios [Yan+14]. Yannuzzi et al. enumerates the following scenarios

that are not favoured by the current cloud [Yan+14]:

• Mobility: Applications that require computing and storage support on the move.

Such support can be required under fast mobility patterns. Traditional cloud needs

to adopt strategies to achieve pervasiveness while providing the reliability expected

by these applications.

• Reliable control and real-time: Applications placed in locations where the com-

munication with the cloud is to expensive or unreliable. Obviously, we cannot

guarantee reliable control under such conditions when these applications require

very low latency. In these applications of IoT, sometimes are required computing

resources to control and apply logic. Therefore, these scenarios demand external

computing and storage resources. However, current communications and cloud are

not prepared to handle these applications requirements based on low latency, or

real-time.

• Data aggregation and analytics: Applications that involve data management and

processing are well supported by the traditional cloud centralised model, and it is

perfectly suitable for controlling and managing data produced by a large number

of components. However, when multiple distributed components produce data

and demand analytics and external processing for decision making, the traditional

cloud may not have the capability to ensure this. Instead, these applications require

resources placed close to the data producers that can be used for local processing

and data analytics for fast decision making. Relevant data will be pushed to the

cloud only when its content is important.

Note that these scenarios are listed as features or requirements of an IoT platform, and

yet there are IoT platforms based on cloud computing or in centralised data management

mechanisms. So, we can conclude that the IoT platforms face complex challenges for

supporting the requirements presented. Thus, the concept of Fog Computing offers

a way to deal with these challenges. Yannuzzi et al. shows why combining the Fog

Computing with cloud computing is the most plausible way to build an adaptable and

scalable platform for IoT.

The concept of Fog Computing consists of carrying out computation and storage

functionalities to the near edges of the network. Figure 4.11 represents the main vision

of Fog Computing. Note that there is a layer between the physical devices and the upper

layer. The Fog level is composed of multiple nodes responsible for some computing and

storage functionalities in order to handle the dependency that the bottom layer has with

the upper layer [Chi16].

So, comparing the Fog architecture with a traditional one we can see that the Fog

approach carries out the data nearest the end user instead of using infrastructure data

centers. It carries out the communication nearest the end user instead of depending on the

36

4.7. BUILDING AUTOMATION SYSTEM ENHANCED BY INTERNET OF THINGS

Figure 4.11: Fog Computing

services provided by the upper layers. Lastly, it carries out the control and management

functionalities nearest the end user instead of depending on specific gateways. In general,

the core of a traditional view is located at the upper layer and the bottom layers use the

services provided. In a Fog view, the core is located at the bottom layers [Chi16]. Table 4.4

shows the differences between the Fog nodes and the Cloud in terms of response time and

storage availability. In short, we should take advantage of this concept when building an

IoT solution where Fog nodes will be helpful to minimise the latency, conserve network

bandwidth, operating reliability, and move the data to a better place for processing when

needed.

Table 4.4: Fog comparison with cloud

Fog Nodes near
devices

Fog aggregation
nodes

Cloud

Response time Milliseconds Seconds to min-
utes

Minutes, days,
weeks

Storage time Transient Hours, days, weeks Months, years

Geographic coverage Local Wider Global

4.7 Building Automation System enhanced by Internet of

Things

As the IoT grows, may surge the concern of what role the BAS will play in this new rev-

olution where more and more devices and information exists. Many BAS manufacturers

do not believe that BAS will disappear or weaken due to the arising of IoT technologies.

37

CHAPTER 4. STATE OF THE ART OF IOT PLATFORMS

Instead, the manufacturers believe that the BAS will see their capabilities and functional-

ities enhanced [Tat16].

Traditional BAS solutions have high costs associated, making it difficult for small or

medium-sized buildings to adopt these solutions. These solutions can have high costs

due to the closed, custom, and property nature of these systems, which gives the equip-

ment manufacturers full control over installations and upgrades. The IoT solutions are

changing this paradigm by enabling solutions that make buildings more efficient and

economical to operate. So, bringing the IoT technologies to building automation allows

to dramatically reduce BAS costs [Cor14; Ker+16].

Building automation is using data analytics to improve building performance. So, it

is possible to see a trend that BAS is moving from building level to enterprise level and

eventually to the cloud [Att+16; Moh+16; Zha+16].

As we saw earlier, a BAS architecture is composed of 3 layers. We also saw that usually

an IoT solution is composed of 5 layers. It is possible to notice that there are similarities

between the layers of each of the architectures. The BAS bottom layer (Field level) is

composed of the field devices, such as in the IoT architecture bottom layer (Perception

layer). The BAS middle layer (Automation level) is responsible for decision-making, such

as the Middleware layer present in the IoT architecture. The top layer (Management

level) of the BAS architecture, represents the system configuration, the tools for data

visualisation and data storage, which is similar to the upper layers of the IoT architecture.

Since the IoT platforms can support the BAS requirements and functionalities, and take

into account the case study mentioned in Chapter 3, it is possible to implement a BAS

using an IoT platform.

4.8 Summary

To choose the best approach, taking into consideration our case study, it was necessary

to study the existing technologies. This study involved a rigorous analysis of multiple

approaches to IoT architectures and platforms. As a result, we present the common and

divergent key aspects of these approaches, being possible to observe that there are several

aspects that can influence the choice of the solution. Lastly, we presented the concepts of

IoT middlewares and Fog Computing, how they relate to IoT solutions and how they can

help in the challenges faced by traditional solutions. The result of this Chapter helped us

to choose the best approach considering our case study and to realise that there are some

differences that imply tradeoffs for someone who wants to build an IoT system. Thus,

the analysis from this study creates a comparison guide for future platforms. In the next

Chapter, we will evaluate the main differences between the selected platforms, namely a

platform that we have full control and a PaaS.

38

C
h
a
p
t
e
r

5
Comparison Review

This Chapter describes in more detail the selected IoT platforms. It starts by
presenting the differences in the process of connecting new devices to each platform
(section 5.1). Then, it describes the tools provided for Data Processing and Visuali-
sation (section 5.2). Afterwards, it presents how the platforms handle Application
and User Management (section 5.3). In the end it is presented a detailed discussion
about the platforms (section 5.4).

In this Chapter, taking into consideration the analysis from Chapter 4, we choose two

platforms. The platform we opted to represent the PaaS scenario was the IBM Watson,

and the other the WSO2 platform. We choose these two platforms because, in addition to

having a similar architecture, at the layer level, they also provide the features we need for

our case study. Additionally, in terms of data analytics, these two are the ones that offer a

solid basis for future applications. Another reason that made us choose these platforms

was that in comparison with the others, these offer a richer documentation with examples

of applications and how to build a complete solution.

Initially, to provide a good comparative analysis of these two platforms, we developed

a prototype in both platforms with the minimal functionalities for our case study. The

next sections of this Chapter explain the process in each phase, the differences found

between the platforms and in the end we describe in more detail the advantages and dis-

advantages of each one. We also clarify that we analysed these platforms having in mind

their analytics mechanisms by basing our opinion solely on the available documentation.

In Chapter 6 we will explain why we decide to implement the control rules independently

from the platform. However, the comparative analysis made about the analytics mecha-

nisms will be useful for future applications, like pattern and behaviour recognition about

users and devices.

39

CHAPTER 5. COMPARISON REVIEW

5.1 Devices Management

In this section, we want to demonstrate the differences in the process of creating and

connecting a new device to the platform.

To add a new device, we need to ensure that the platform knows what type of device

we want to connect. Firstly, it is necessary to create a Device Type that represents our

device. The Device Type is an abstraction of the device and allows us to specify what are

the properties and operations of a device.

After the Device Type is created, it is possible to create a device of the respective type,

the Device Model, that specifies the values of the properties present in the Device Type.

Usually, after a device is created the platform provides the data required to connect the

device.

Connecting to the device allows us to send data or commands to the respective device

appliance. In our case we use Agents, software used to perform actions on behalf of

another component. Agents are the bridge between the physical device and its model.

An Agent communicates with the device to collect data, and send it to the platform, or

to send commands to the device (Figure 5.1 exemplifies the relationship between these

components).

Figure 5.1: Relationship between device type, model and the physical device. Device
Type acts like an interface and the Device Model instantiate it. The Device represents the
physical device that connects to their model, through the Agent software.

40

5.1. DEVICES MANAGEMENT

WSO2

To create a new Device Type in the WSO2 platform, we use Maven Archetype toolkit

(represented in Figure 5.2). This tool provides a project template and generates a sample

project based on the provided properties values [Mav]. The generated code is an OSGi

module, called Device Plugin that represents the new Device Type.

To connect the module to the platform, it is required to edit a configuration file, that

specifies the installed modules, and installs it through Maven. To specify the Device

Type properties and operations, it is required to change the source code of the generated

code [Inc16c].

After the Device Plugin is installed, it is possible to add a new device to the platform

through the WSO2 platform dashboard UI. To add a new device, it is required to fill a

form with the fields that represent the device properties. This process results in a new

Device Model added and a set of files downloaded. The downloaded files contain an

example program of how to connect the device and a configuration file that contains the

device unique identification and the properties required to connect the physical device

to its model [Inc16b].

Since the WSO2 platform does not provide libraries that helps to connect the devices

to the platform, it is up to the developer in charge to develop the Agent code, based on

the example and the configuration file provided.

Figure 5.2: WSO2 create device type (adapted from [Inc16a])

IBM Watson

To create a new Device Type in IBM Watson platform, we use the Dashboard UI

(represented in Figure 5.3) and we need to fill a web form specifying the device properties.

A set of predefined properties are presented, and for detailed properties, we can provide

a metadata object represented in JavaScript Object Notation (JSON) syntax.

41

CHAPTER 5. COMPARISON REVIEW

After the Device Type is created, it is possible to create a new device model, through

Watson Dashboard UI, that specifies the property values defined by the Device Type. This

process results in a new Device Model added, and the required information to connect

the device to the platform is presented [Wate].

The IBM Watson platform provides a large variety of libraries in different program-

ming languages that help to connect the devices to the platform. In this case, it is up to

the developer to choose the preferred tool and use it to develop the Agent code [Watc].

Figure 5.3: IBM Watson create device type (adapted from [Wate])

5.2 Data Processing, Analytics and Events

In this section, we will explain the differences found in the tools provided by the

platforms for data analytics. As we mentioned before in Chapter 4, these platforms

provide mechanisms for data analytics based on real-time and persisted data.

Usually, an IoT platform follows a workflow for data analytics that consists in the

phases represented in Figure 5.4.

Figure 5.4: Data Analytics Workflow (adapted from [Inccef])

42

5.2. DATA PROCESSING, ANALYTICS AND EVENTS

The first phase is about collecting data that comes from different sources, for example,

an agent software publishing data to a topic, about a device status. The second phase

consists of analysing the collected data to produce meaningful information. Lastly, these

data should be available through different mechanisms, such as visualisation and event

notifications.

WSO2

The WSO2 component responsible for data analytics is the Data Analytics Server. This

component provides multiple mechanisms to allow users to extract knowledge from the

data. The following list presents the data analytics mechanisms WSO2 provides and how

they work.

• Interactive Analytics: Uses the Apache Lucene Query Language and all the data

must be prepared and organised taking into account the queries to be performed.

Therefore, we have to configure our data tables and columns indexed according

to the queries to be performed. This configuration is performed through the UI

provided by the Data Analytics Server component [Incceb; Inccec; Incced; Inccef].

• Batch Analytics: Uses Spark SQL as the engine, being possible to create scripts to

execute scheduled and interactive queries. The scripts can be created through the

UI provided by the Data Analytics Server component [Inccec; Inccef].

• Real-time analytics: Uses Siddhi Query Language, designed to process event streams

to identify complex event occurrences. "Events" is an object associated with only

one event stream, and is composed of a timestamp and set of attribute values. Event

streams are logical series of events ordered in time [Inccec; Inccef].

• Execution Plans: In order to analyse the event streams, it is required to create

Execution Plans. The Execution Plan is used to store event processing logic and

is composed of a set of queries and related input and output event streams. To

create an Executing Plan we must specify its unique name, the input and the out-

put streams identifiers and the query in Siddhi Language. As a result, every time

an event occurs on the specific event stream, the execution plan is triggered, the

query is executed and the result is sent to the specified output event stream [Inccec;

Inccef].

• Predictive Analytics: Uses the WSO2 Machine Learner component, that provides

a user-friendly wizard-like interface, which guides users through a set of steps to

find and configure machine learning algorithms [Inccec; Inccee].

43

CHAPTER 5. COMPARISON REVIEW

IBM Watson

The IBM platform provides multiple services for data analytics that users can choose

according to their needs.

Users ask questions about their data in order to produce meaningful information.

Therefore, the IBM Watson platform provides services that allow the user to ask questions

about their data. The Watson Analytics service requests the user to select a data source

through a UI. The data source can be a local file in Comma Separated Values (CSV)

format, an online service for hosting data, or an external database system. Once the data

source is configured, the user can configure the required questions. Lastly, through a

UI the user selects the values and properties to be evaluated. This process results in a

dashboard with multiple interactive views taking into account the properties selected

by the user [Wata]. The following list presents the data analytics mechanisms the IBM

Watson platform provides and how they work.

• Streaming Analytics: Provide tools to ingest, analyse and correlate data in real-

time as it arrives from different sources. Allows to process a huge volume of data

in motion, and helps to find opportunities and risks across the data. Supports data

from different sources and formats such as unstructured text, video, audio, geospa-

tial, sensor, and uses the data to make decisions. IBM also provides a complete

solution with a development environment for stream analytics [Comceg].

• Decision Optimisation: Service that helps to solve real-life problems, by providing

tools to make decisions about a goal, or to maximise profit or reduce cost, while

satisfying a set of constraints and limitations. This service runs in the cloud by

adopting mathematical or constraint programming, and is accessible using APIs or

the Software Development Kits (SDKs) provided by IBM [Comceb].

• Geospatial Analytics: Keeps track of IoT devices position on the move and opens

a number of new applications and opportunities. This service is used to monitor

when devices enter or leave specific locations, or to calculate for how long a device

was in a specific location. The service uses a message broker allowing the devices

to publish information continuously through the MQTT protocol [Comcec].

• Graph: To analyse enormous quantities of data and the relationships between these

data using traditional relational and tabular methods can be a complex task. Thus,

this service simplifies this process by representing the data as a set of notes and

the relationships between these data as vertices and each node can have attributes

associated. It enables to answer questions about large networks of interrelated

data [Comced].

• Machine Learning: Service that provides a set of REST APIs that can be called from

any language. It allows the development of predictive models, or to make smarter

decisions and solve complex problems [Comcef].

44

5.3. APPLICATION AND USER MANAGEMENT

5.3 Application and User Management

As mentioned in Chapter 4, these platforms provide the mechanisms required for

user and application management.

User management is the platform capability to manage entities in order to allow the

resources to have different authorisation levels by different entities. The entities may

have different roles and permissions. Therefore, the platform must provide the required

mechanisms to manage the existing entities roles and permissions. Furthermore, it should

guarantee that the entities only access the authorised resources [Comcee; Incceh].

Application management is the platform capability to enable applications manage-

ment during their life cycle. This goes from the initial development process and deploy-

ment to monitoring.

Figure 5.5 illustrates the life cycle of an application developed in the owner’s perspec-

tive. An application life cycle is composed of several activities. Initially, the "Develop

Activity" is where the application actually developed or modified and made available.

The "Publish Activity" is where the application properties are configured, such as its

security requirements, access rates and limitations, and its certificates. "Manage Activity"

consists of application keys management, their policies and versions. Lastly, the "Monitor

Activity" consists of collecting information about the application behaviour, its usage and

user feedback evaluation [Comcea; Incceg].

Figure 5.5: Application owner life cycle perspective (adapted from [Incceg])

On the other hand, we have the consumer’s perspective. Figure 5.6 illustrates the life

cycle of an application in the consumer perspective. The initial activity, "Find" consists

in searching for applications by filtering tags and rating. "Explore activity" consists of

evaluating the other user’s feedback, ratings or ask questions to application’s owner. "Sub-

scribe Activity" is where the consumer registers the application for use and subscribes

the provided API and in turn receives its application and authorisation keys. Lastly,

"Evaluate" is when the consumer provides feedback and rate the application and shares

its experience or provide suggestions [Comcea; Incceg].

Both platforms provide a dashboard for user management, where an authorised user

has an overview of the system. Listing all the existing users, and their activity is possible.

45

CHAPTER 5. COMPARISON REVIEW

Figure 5.6: Application consumer life cycle perspective (adapted from [Incceg])

The platforms dashboard allow to create new users, with specific roles and permissions

previously created, or to modify and remove users permissions. In the dashboard, it is

also possible to create or edit system’s roles and permissions. In both platforms a user

can represent different entities that interact with the system, such as a device, another

program or system. The platforms store the users and their permissions in a database

that can be accessed by all the components of the platform through identity and access

components, for further authorisation [Comcee; Incceh].

The platforms also provide a dashboard for application management, where an autho-

rised user can publish or subscribe applications. For a user with permission to manage

applications, the dashboards provide the functionalities to create or configure applica-

tions. It is possible to manage access levels, APIs limit usage, application visibility, and

the applications keys for both production and sandbox environment. Any authenticated

user has permission to search and subscribe to the existing applications [Comcea; Incceg].

The platforms also provide the capability to manage users and applications through a

REST API. However, only the IBM Watson platform provides multiple SDKs in different

programming languages that simplify the process of build external applications that may

use these management functionalities.

5.4 Discussion

In this Chapter, we reflect on all the aspects from an early stage of development of

the agents required to communicate with the devices and platform, to the final phase of

deployment, and we will enumerate some aspects we found relevant to this process. Both

platforms were able to provide the required tools for a prototype implementation of a

minimal set of functionalities. This prototype was implemented with the functionalities

to store and control devices state. Thus, we create two device types and added two

devices of each type for both platforms. It was stored data about the devices state. In what

respects to devices control, it was built a sample application to control the devices through

a REST API provided by the platforms. The sample application allows to manually

control the devices and to schedule the time to turn on or off the devices.

46

5.4. DISCUSSION

5.4.1 Comparison of WSO2 and IBM Watson platforms

Create Devices

The platforms approach the process of creating new device types in a very different

way. As mentioned before, WSO2 uses Maven tool to create a module that represents a

device type, while IBM Watson provides a form to specify the device type properties. It is

easy to see that this process is more complex using the WSO2. However, WSO2 ensures

that all devices are according to its type, unlike IBM Watson. A device type is represented

as an OSGi module in WSO2, and it is required to stop the system every time we need

to add, edit or remove one module. In IBM Watson a device type is represented through

JSON, and it can be modified any time without stopping the system. However, editing

device types on IBM Watson may cause issues on existing devices. Thus, it requires

special attention when changing a device type. In WSO2 as it needs to stop the system

to install or edit modules, the module installation process ensures whether the specified

properties respect the existing devices, notifying with an error otherwise. Additionally,

IBM Watson provides functionalities to add, edit and remove devices types through a

REST API, unlike WSO2 that does not support these functionalities.

Add Devices

Once the device types are created on both platforms, we can start adding the devices

of each type. On both platforms, this process can be done by filling a form. In WSO2 the

form shows exactly the properties specified by the device type previously created. In IBM

Watson the form shows the properties specified by the device type and allows to add extra

fields to a specific device. Note that in IBM Watson we can add extra fields to a device,

allowing each device of the same type to have different properties. However, adding extra

fields to specific devices may lead to issues when creating an external application for

devices control, because the devices fields of the same type are not consistent. This issue

does not happen in WSO2 because the platform ensures that devices of the same type

have the same properties. Additionally, both platforms provide a REST API to create,

edit and remove devices from the platform. It is also important to mention the lack of

functionality by IBM Watson to create groups of devices. Otherwise, WSO2 allows the

creation and management of devices groups either through a dashboard or REST API.

Connect Devices

Once the devices are added to the platforms the next step is to connect the physical

devices to the platform. In this phase, it is required to get the access credentials for

each device and implement the software for the agent that will handle the commutation

between the physical device and its model. To implement the agent software used to

communicate with WSO2, the developer in charge must deal with all the required code

47

CHAPTER 5. COMPARISON REVIEW

since WSO2 does not provide SDKs. Thus, the developer must handle the communica-

tion with the physical devices, the authentication process and the publication of data by

himself/herself. It is a time-consuming process because, usually, an agent is in charge

of multiple devices of the same type. Thus, it must adopt mechanisms to handle mul-

tiple processes. The software agent code for WSO2 is not part of this dissertation, so it

was reused code of another work in development. The development of software agent

code for IBM Watson is simplified through the SDKs provided. Thus, the developer just

needs to handle the physical device communication, since the platform communication

is encapsulated in methods provided by the SDKs.

Devices Credentials

For devices’ credentials, WSO2 platform provides a configuration file when the device

is added to the platform. The file contains the unique device identifier, the platform

endpoints to be used by the software agent to publish devices data and subscribe to

events. The configuration file also contains the tokens required for device authentication

on the platform, in order to allow it to publish data to its specific endpoints. Additionally,

the agents must handle the process to refresh device authentication tokens. Again, this

process is simplified by IBM Watson. It allows to generate device credentials after adding

the device to the platform, that will be used by the agents to authenticate the device. So

we can conclude that IBM Watson simplifies the agent development process, handling

the communication between the physical device and the platform.

These platforms present many differences taking into account the credentials used

to authenticate the devices on the platform. WSO2 forces tokens to be refresh within a

specified time. IBM Watson generates tokens with an expiration date and does not allow

to refresh tokens validation. This means that the system administrator has to generate

new tokens manually, and the refresh token process cannot be automated. Additionally,

IBM Watson allows that one and only one device with the same credentials can be authen-

ticated at the same time. Otherwise, WSO2 allows multiple authentications with the same

credentials, being possible to publish data from different sources. Thus, the system ad-

ministrator must ensure that the data published for each device is consistent between all

the sources. Lastly, to publish data about the devices state and subscribe to events, both

platforms support the MQTT protocol, but IBM Watson also allows these functionalities

through a REST API over the Hypertext Transfer Protocol (HTTP) protocol.

Network Bandwidth

One important aspect for those choosing an IoT platform is the volume of data that

flows through the network. So, we used the WireShark tool in order to evaluate the vol-

ume of data flowing on the network when communicating with these platforms. Since the

devices specification are different in both platforms it implies that the volume of data is

different. The WireShark tool allowed us to evaluate the data flowing between the agent

48

5.4. DISCUSSION

to the platforms from the moment of device authentication to the first time the agent

published data about the device state. We notice that the authentication process by an

agent that communicates with IBM Watson has a volume of data of approximately 4536

bytes. This same process but communication within WSO2 has approximately 3025 bytes.

In both cases, the data is the sum of all requests and responses between an agent and the

platform from the initial request, to credentials verification and authentication confirma-

tion. The process to publish data about a device state by an agent that communicates with

IBM Watson has a volume of data of approximately 423 bytes, while the same process

communicating with WSO2 has a volume of data of approximately 1056 bytes. Despite

the published data of the devices has equal values, the big difference on the volume of

data is due to the fact that WSO2 uses a single endpoint for each device property, while

IBM Watson uses the same endpoint for all the properties.

Device Communication

After devices are created and communication is established, it is important to know

if the platforms are receiving the data correctly and they can send a control command to

the devices. Both platforms provide a dashboard where it is possible to check existing

devices and their status in real-time. WSO2 presents a chart for each device property, and

the chart data is updated whenever the platform receives a new value. IBM Watson by

default does not show any chart because it is up to the user to choose which type of chart

to use for a given device property. There is a difference in the platforms’ dashboards for

device control. WSO2 dashboard provides the functionalities to control a device property

manually. Otherwise, due to the fact that there is no uniformity in the properties of

the created devices, IBM Watson does not provide this option. However, both platforms

provide the required tools to control the devices through a REST API by specifying the

device unique identifier, the property identifier and the new value.

Application Development

To develop an application that can communicate with the platform in order to obtain

data and control the devices, it is required to create an application on the platform.

This application is created by the system administrator and it can be done through the

platform’s dashboard. The system administrator specifies the application name and

subscribes to a set of provided APIs. Then, it is required to generate authorisation keys

with scopes that define the permissions of the created application. Furthermore, these

keys will be used in the modules to be developed. The process of application management

is available through the platform’s dashboard and also through platforms REST API.

49

CHAPTER 5. COMPARISON REVIEW

5.4.2 Comparison of Open-Source and PaaS

To close this comparative analysis about the platforms, we will note some relevant

points that we consider relevant for the development of an IoT system. Not focusing

specifically the WSO2 and IBM Watson platforms, but what they represent, that is an

open-source platform that gives us control of our system and all the process depends on

us and a platform with the characteristics of a PaaS.

Setup and Updates

In an open-source platform, a greater effort is required not only for initial setup but

also on deployment, always requiring someone designated to maintain the system and

its resources. Otherwise, in a PaaS the resources management is handled by the service

host. Another issue is the platforms updates, that was a point that cause some delays

in the work of this dissertation. As we implemented the solution, some issues were

discovered on the WSO2 platform. Other users already reported these issues and they

were being fixed by the WSO2 platform developers. Since some of our components were

already dependent on the current platform version, it was not possible to upgrade to

a new version, as it invalidates some of the components already developed. In a PaaS

usually, the updates are transparent to its users.

Libraries and Services

Another aspect to be taken into account when developing an IoT solution is whether

a platform provides SDKs for application development. In our case, all the implemented

code to communicate with IBM Watson was always more accessible and required less

development effort compared to the code developed to interact with WSO2, since it does

not provide SDKs. Later this can create issues on the components that interact with WSO2,

because a change in the platforms requests parameters may invalidate some methods of

the implemented components. Otherwise, using the platform provided SDKs usually

minimises these issues since the methods are encapsulated. Another point in favours of

a PaaS is the integration of external services. To integrate external services, IBM Watson

simplifies this process by requiring only to select the service and configure authentication

methods for the selected service.

Documentation

Another consideration when constructing an IoT solution is the documentation pro-

vided by the chosen platform. We notice that although there are many available solutions,

only a few offer rich documentation and practical examples. Both WSO2 and IBM Watson

presented reasonable documentation. However, the documentation provided by WSO2

had several flaws which caused some issues.

50

5.5. SUMMARY

Deployment

Regarding the initial setup and the deploy phases, there are a few differences. As

expected, in a PaaS this process is simplified and the deploy of the final solution is as

simple as just changing the solution to production mode. If the whole development

process goes as expected, then at the end we have a solution ready to go. In an open-

source platform where it is required to prepare all the infrastructure where it will be

deployed, there are some aspects to take into account. We have to take into account

the specific hardware requirements, configure accesses, databases, and handle possible

network configurations.

It is also important to mention that the deployment process requires opening some

specific ports, namely for database services, a port for communication with the MySQL

protocol for example, and for Message Broker services over the MQTT protocol. In some

scenarios, opening local ports may not interfere, but as a PaaS, opening ports for external

communication can be a requirement not possible to satisfy.

Communication

Another important aspect is the lack of communication in some environments. In our

case study, the loss of access to the Internet is an event that happens regularly. Therefore,

using a PaaS implies the loss of communication with the platform, and is necessary to

adopt mechanisms to deal with these flaws. In the case of a platform located on our

local network, the loss of Internet signal does not imply that the components cannot

communicate with the platform, since they are in the same network as the platform.

Costs

The cost of these solutions lies in different aspects. In a PaaS, the cost is associated

with service usage, the growth of the volume of data and services consumption rates.

However, the cost associated with the development and deployment phases is simplified,

since it does not require to handle with infrastructure and resources configuration and

maintenance. Otherwise, the cost of an open-source solution that is located in our infras-

tructure, requires configuration and maintenance costs. As a summary, Table 5.1 presents

the points where these platforms diverge.

5.5 Summary

The analyses made in the previous Chapter and the fact that we have observed certain

characteristics that may influence the platform choice, made us create this Chapter. To

make this document more complete, we chose two platforms with different development

and deployment environments and similar architectures and functionalities. We also

implemented a prototype with a set of basic functionalities to collect data and control

51

CHAPTER 5. COMPARISON REVIEW

devices state. The differences and the challenges found in this process helped us to create

a guide that will allow someone who wants to create an IoT solution to make a better

decision.

Table 5.1: Platforms Comparison Overview

WSO2 IBM

Create Devices Requires Maven Archetype
tool. Edit configuration file
and source code for addi-
tional properties.

Web form based.

Device Properties All devices of the same type
have the same properties.

Devices of the same type
may have additional fields.

Devices Group Allows to create and man-
age groups of devices.

Does not provide device
group features.

Device Agents Does not provide libraries.
Developer deals with entire
code.

Provides multiple libraries
in different languages. De-
veloper can choose what
tools to use.

Publish and Subscribe MQTT HTTP and MQTT

Security Random generated tokens.
Requires refresh tokens
mechanisms.

Random generated tokens
with expiration date. Ad-
ministrator handles tokens
renewal.

Data Visualisation Real-time charts for every
device property.

User must select the types
of charts and devices prop-
erties.

Device Control Allow device control
through dashboard.

Does not allow device con-
trol through dashboard.

Application Development Does not provide libraries.
Developer deals with entire
code.

Provides multiple libraries
in different languages. De-
veloper can choose what
tools to use.

Setup and Deploy Configure system infras-
tructure. Setup databases
and network ports.

Setup network ports.

Costs Infrastructure configura-
tion and maintenance.

System growth and usage
rates.

52

C
h
a
p
t
e
r

6
Conceptualisation and Implementation

This Chapter describes our work on the case study, from the requirements to
the implementation of a concrete solution. It starts by presenting the conducted
requirement analysis, describes the stakeholders, the users stories, the functional
and non-functional requirements (section 6.1). Then it details the user stories using
use cases (section 6.2). In the sequence, it presents the architecture styles and views
selected (section 6.3). Finally, it ends by showing the result of the implementation
phase (section 6.4).

6.1 Requirements Engineering

Requirements Engineering is the process of finding, analysing and documenting the

requirements a system should fulfil, and the services and the constraints on its oper-

ations [Som10]. Requirements identify the capabilities of a system to resolve a given

problem in a given context. They also express the needs of the involved entities and

define the system goals and services. Moreover, the requirements can be classified into

two categories [Som10]:

• User requirements: Statements expressed in natural language that describes the

services the system should provide to the users and its constraints;

• System requirements: A more detailed description of the system operations and

services to be implemented and its operational constraints.

The following sections describe the process conducted in order to understand what

are the entities that interact with the system, what they expect from it and a detailed

description of what services the system should provide.

53

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

6.1.1 Stakeholders

In Software Engineering the Stakeholder is an individual, team or organisation that

have interest in the realization of the system [Soc+14]. In order to describe the require-

ments, we start by identifying the entities that interact with the system and what they

expect from it. The following list presents the stakeholders found during the analysis:

• Administrator: This group comprises those responsible for system configuration,

users and devices management;

• User: This group comprises those concerned about reducing energy consumption

and maintaining a good working environment;

• Occupant: An Occupant is a person that works in the case study lad and helps the

system in manual tasks that cannot be accomplished by automated tools.

Note that these stakeholders are just an abstraction of roles and permissions of users

in a specific context or action. This means that an Administrator can sometimes act like

a User or an Occupant and vice versa.

6.1.2 Questionnaires

Questionnaires are a traditional technique used in Software Engineering for require-

ments elicitation [Soc+14].

Firstly, we elaborate a questionnaire (that can be found in Appendix A) focused on the

occupants, based on two studies conducted by [HA97] and [Cae+17]. This questionnaire

was attended by 5 occupants of the office, and our goal is to understand what physical

aspects are more pleasant for them in a workplace, understand if they were happy with

the current environment in the office and how it can be improved.

The questionnaire results were analysed and they helped us to understand some as-

pects the occupants would like to be changed and what aspects are the most important

for them in a work area. Furthermore, these results will be presented and analysed in

more detail in Chapter 7.

6.1.3 User Stories

User Stories (US) is an elicitation technique used in Software Engineering to describe

in natural language the required functionalities a system must provide expressed in user

terms [Soc+14].

Firstly, we discovered what were the expected functionalities and the points of interest

for the mentioned stakeholders. These functionalities were analysed and described in the

form of US. Then, in order to simplify the understanding of the US found, we give them

a unique identifier and divide them into several categories presented in the following

sections.

54

6.1. REQUIREMENTS ENGINEERING

User Management

This group of US represents the management functionalities provided by the system

for user management.

• US-UM1: As an Administrator, I want to see a list of all registered accounts;

• US-UM2: As an Administrator, I want to create new user accounts with specific

roles;

• US-UM3: As an Administrator, I want to be able to remove existing accounts;

• US-UM4: As an Administrator, I want to manage the permissions of a given role;

• US-UM5: As an Administrator, I want to create new roles with specific permissions;

• US-UM6: As a User, I want to authenticate in the system, so that I can have access

to protected resources.

Device Management

This group of US represents the management functionalities provided by the system

for device management.

• US-DM1: As an Administrator, I want a list of all supported device types;

• US-DM2: As an Administrator, I want a list of all registered devices;

• US-DM3: As an Administrator, I want a list of all devices within a group;

• US-DM4: As an Administrator, I want to add a new device, so that it can be used

by the system;

• US-DM5: As an Administrator, I want to add devices automatically from a file, in

order to simplify the process of adding a new device;

• US-DM6: As an Administrator, I want to edit device properties, so that it can

represent the real values;

• US-DM7: As an Administrator, I want to remove a device, in order to disable a

non-existing device;

• US-DM8: As an Administrator, I want to assign devices to an existing group, or

create a new one;

• US-DM9: As an Administrator, I want to remove devices from a group, or delete

the group;

• US-DM10: As an Administrator, I want to visualise the current and historical data

of all devices;

55

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

• US-DM11: As an Administrator, I want to mark a device as critical to ensure that it

is not turned off;

• US-DM12: As an Administrator, I want to backup all devices data, in order to keep

devices data secure in case of system failure;

• US-DM13: As a User, I want to manually control a device, in order to override

system commands.

API Management

This set of US represents the management functionalities provided by the system for

creating and managing applications.

• US-AM1: As an Administrator, I want to create a new application, in order to

subscribe to existing APIs;

• US-AM2: As an Administrator, I want a list of all supported APIs;

• US-AM2: As an Administrator, I want a list of all registered applications;

• US-AM4: As an Administrator, I want to generate new access tokens with specific

permissions, so that they can be used by different users;

• US-AM5: As an Administrator, I want to be able to remove an application, so that

it can not be used;

• US-AM6: As an Administrator, I want to be able to unsubscribe an API, so that the

application can not access its resources;

• US-AM7: As an Administrator, I want to be able to revoke an access token, so that

the users can not use it anymore.

Occupant Comfort

This set of US represents the expected system behaviour that helps to provide a better

comfort to the occupants.

• US-OC1: As an Occupant, I want the lights to adapt their brightness and colour, in

order to provide a better visual comfort;

• US-OC2: As an Occupant, I want the air conditioning to be adapted, in order to

achieve a better thermal comfort;

• US-OC3: As an Occupant, I want the space with clean, fresh and circulated air, in

order to improve the air quality;

• US-OC4: As an Occupant, I want the space with an adequate level of noise, in order

not to be distracted.

56

6.1. REQUIREMENTS ENGINEERING

Presence Detection

This group of US represents the expected behaviour in case of presence detection or

inactivity for a certain amount of time.

• US-PD1: As a User, I want the lights to turn off when there is no activity, in order

to reduce energy consumption;

• US-PD2: As a User, I want the air conditioning system to turn off when there is no

activity, in order to reduce energy consumption;

• US-PD3: As a User, I want the uncritical devices to turn off when there is no activity,

in order to reduce energy consumption;

• US-PD4: As an Occupant, I want the outlets to turn on when I arrive so that I can

start working;

• US-PD5: As an Occupant, I want the lights to turn on when I arrive and if the

luminosity is low;

• US-PD6: As an Occupant, I want the coffee machine to turn on when I arrive so

that it can be prepared to serve coffee;

• US-PD7: As a User, I want the system to detect human presence adopting multiple

mechanisms.

Scheduling

This group of US represents the functionalities provided in order to schedule events.

• US-SC1: As a User, I want to schedule the time to feed the fishes;

• US-SC2: As a User, I want to schedule the time to turn on/off a device, in order to

reduce the energy consumption;

• US-SC3: As a User, I want to schedule the time to turn on/off a group of devices, in

order to reduce the energy consumption;

• US-SC4: As a User, I want to edit the time of a previously scheduled time;

• US-SC5: As a User, I want to remove a scheduled time, so that it no longer take

effect;

• US-SC6: As a User, I want the devices to turn on/off at the scheduled time.

57

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

Suggestions

This group of US represents the suggestions made to the occupant, in order to help

the system in tasks that can not be accomplish by itself.

• US-SG1: As an Occupant, I want to be notified to open the window, so that I can

take advantage of natural temperature, in order to keep good thermal conditions

and help to reduce energy consumption;

• US-SG2: As an Occupant, I want to be notified to open the blinds, so that I can take

advantage of natural daylight, in order to keep a good luminosity level and help to

reduce energy consumption;

• US-SG3: As an Occupant, I want to be notified to open the window, so that I can

keep a good air quality.

Notifications

This group of US represents the functionalities provided in order to notify the user in

case of certain events.

• US-NT1: As a User, I want to be notified about consumptions out of the ordinary,

in order to evaluate if something went wrong;

• US-NT2: As an Administrator, I want to be notified about devices that do not change

their state over a long period of time, in order to evaluate if something went wrong;

• US-NT3: As a User, I want to be notified about important events, so that I can keep

track of what is happening;

• US-NT4: As a User, I want to be notified about aquarium status, in order to prevent

that something bad happens to the fishes;

• US-NT5: As an Administrator, I want to be notified about system errors, so that I

can fix them as soon as possible.

Aquarium

This set of US describes the required behaviour to keep a good environment in the

fish tank.

• US-AQ1: As a User, I the want the fishes fed, in order to keep them alive;

• US-AQ2: As a User, I want a stable water level in the aquarium, in order to keep a

good environment for the fishes;

• US-AQ3: As a User, I want the aquarium lights to be adapted, in order to keep a

good environment for the fishes;

58

6.1. REQUIREMENTS ENGINEERING

• US-AQ4: As a User, I want a stable water temperature for the aquarium, in order to

keep a good environment for the fishes.

6.1.4 Functional Requirements

Functional Requirements (FR) are statements that describe the services and resources

the system should provide, how the system should behave in particular situations with

specific inputs. FR can also define what the system should not do [Som10].

Next, we will present what the FR the system should provide taking into account our

case study and the US described before. To simplify the understanding of the FR, we

give them a unique identifier and divide them into several categories presented in the

following sections.

6.1.4.1 User Management

This set of FR describes the functionalities the system should provide in order to

manage users, their permissions and roles.

• FR-UM1: The system should allow a registered user to authenticate through per-

sonal credentials such as username and password;

• FR-UM2: The system should allow an authorised user to create new user accounts;

• FR-UM3: The system should allow an authorised user to manage the permissions

of other accounts;

• FR-UM4: The system should allow an authorised user to remove other accounts;

• FR-UM5: The system should ensure that exists at least one user with Administrator

role. Therefore, it should not be allowed to remove the last user with the Adminis-

trator role;

• FR-UM6: The system should display a list of the registered users;

• FR-UM7: The system should display a list of the supported roles and their permis-

sions;

• FR-UM8: The system should allow an authorised user to create new roles and assign

permissions.

6.1.4.2 Device Management

This set of FR describes the functionalities the system should provide in order to

manage the devices.

• FR-DM1: The system should allow an authorised user to add a new device through

a form with properties such as device name, description and position;

59

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

• FR-DM2: The system should allow an authorised user to edit device properties

through a form;

• FR-DM3: The system should display a list of the supported device types;

• FR-DM4: The system should display a list of the registered devices;

• FR-DM5: The system should allow an authorised user to create groups of devices;

• FR-DM6: The system should display a list of the created groups;

• FR-DM7: The system should allow an authorised user to remove a group, keeping

its devices unassigned of any group;

• FR-DM8: The system should display a list of devices of a given group;

• FR-DM9: The system should allow an authorised user to remove a device;

• FR-DM10: The system should allow an authorised user to mark a device as critical;

• FR-DM11: The system should allow an authorised user to add multiple devices at

once by importing a CSV file;

• FR-DM12: The system should allow an authorised user to change a device state;

• FR-DM13: The system should allow an authorised user to consult the current state

of a device;

• FR-DM14: The system should allow an authorised user to consult historical data of

a device state within a specific date and time;

• FR-DM15: The system should allow an authorised user to export all data about

devices state.

6.1.4.3 API Management

This set of FR describes the functionalities the system should provide in order to

manage the provided APIs, the authorised roles and applications.

• FR-AM1: The system should allow an authorised user to create a new application

through a form with properties such as name and description;

• FR-AM2: The system should allow an authorised user to select an application and

subscribe to existing APIs;

• FR-AM3: The system should allow an authorised user to define the maximum num-

ber of requests per minute an API can support;

• FR-AM4: The system should allow an authorised user to generate new access tokens

with a specific expiration date and a set of permissions;

60

6.1. REQUIREMENTS ENGINEERING

• FR-AM5: The system should display a list of the permissions available;

• FR-AM6: The system should display a list of the supported APIs;

• FR-AM7: The system should display a list of the registered applications;

• FR-AM8: The system should allow an authorised user to remove an application;

• FR-AM9: The system should allow an authorised user to select an application and

unsubscribe an API;

• FR-AM10: The system should allow an authorised user to revoke a previously gen-

erated access token.

6.1.4.4 Measurement

This set of FR describes the functionalities the system should perform in order to

measure data about its environment.

• FR-MS1: The system should collect and store data about office temperature level

through indoor temperature sensors;

• FR-MS2: The system should collect and store data about outside temperature level

through outdoor temperature sensors;

• FR-MS3: The system should collect and store data about office luminosity level

through indoor light sensors;

• FR-MS4: The system should collect and store data about outside luminosity level

through outdoor luminosity sensors;

• FR-MS5: The system should collect and store data about office air quality through

indoor air quality monitors;

• FR-MS6: The system should collect and store data about outside air quality through

outdoor air quality monitors;

• FR-MS7: The system should collect and store data about devices energy consump-

tion;

• FR-MS8: The system should only store meaningful data about devices, in order to

reduce the size of the stored data.

61

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

6.1.4.5 Occupant Comfort

This set of FR describes the functionalities the system should provide in order to keep

a good environment for the office occupants.

• FR-OC1: The system should turn on/off the lights in order to provide a good visual

comfort, taking into account the occupants and the current luminosity level;

• FR-OC2: The system should dim the lights in order to provide a good visual comfort,

taking into account the occupants and the current luminosity level;

• FR-OC3: The system should turn on/off the air conditioning system in order to

provide a good thermal comfort, taking into account the occupants;

• FR-OC4: The system should regulate the air conditioning system temperature in

order to provide a good thermal comfort, taking into account the occupants and the

current temperature level;

6.1.4.6 Presence Detection

This set of FR describes how the system should react in human absence or human

presence detection.

• FR-PD1: The system should be able to detect human presence by evaluating the

outlet’s consumption variation;

• FR-PD2: The system should be able to detect human presence by evaluating the

entries and exits of the office through a card reader mechanism;

• FR-PD3: The system should be able to detect human presence by evaluating the

data received by mobile phones in range;

• FR-PD4: The system should be able to detect human presence by evaluating the

data received by presence detection sensors;

• FR-PD5: The system should turn off the lights when there is no activity;

• FR-PD6: The system should turn off the air conditioning when there is no activity;

• FR-PD7: The system should turn off the outlets at night if there is no activity;

• FR-PD8: The system should turn off the coffee machine at night if there is no

activity;

• FR-PD9: The system should turn on the lights when it detects human presence and

if the luminosity is low;

• FR-PD10: The system should turn on the outlets when it detects human presence;

62

6.1. REQUIREMENTS ENGINEERING

• FR-PD11: The system should turn on the coffee machine when it detects human

presence in the morning.

6.1.4.7 Scheduling

This set of FR describes the functionalities the system should provide in order to

enable the schedule of events.

• FR-SC1: The system should allow an authorised user to schedule the date and time

to turn on/off a device;

• FR-SC2: The system should allow an authorised user to schedule the date and time

to turn on/off a group of devices;

• FR-SC3: The system should allow an authorised user to edit a scheduled rule;

• FR-SC4: The system should allow an authorised user to remove a scheduled rule;

• FR-SC5: The system should be able to turn on/off the specified devices at the

scheduled date and time.

6.1.4.8 Suggestions

• FR-SG1: The system should suggest the user to open the window if the indoor air

quality is lower than outside;

• FR-SG2: The system should suggest the user to open the window blinds if it is

possible to take advantage of natural daylight;

• FR-SG3: The system should suggest the user to open the window if it is possible to

take advantage of outdoor temperature.

6.1.4.9 Notifications

This set of FR describes the functionalities the system should provide in order to alert

predefined users about important events.

• FR-NT1: The system should notify predefined users when it turns off all the lights;

• FR-NT2: The system should notify predefined users when it turns on/off all the

outlets;

• FR-NT3: The system should notify predefined users when it turns off the coffee

machine;

• FR-NT4: The system should notify predefined users about devices which are inac-

tive within 1 hour;

63

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

• FR-NT5: The system should notify predefined users about devices with unusual

energy consumption;

• FR-NT6: The system should notify predefined users when it feeds the fishes;

• FR-NT7: The system should notify predefined users when the fish tank water level

is too low/high;

• FR-NT8: The system should notify predefined users when the fish tank water tem-

perature level is too low/high;

• FR-NT9: The system should notify predefined users when some unexpected error

occurs.

6.1.4.10 Aquarium

This set of FR describes the functionalities the system should provide in order to keep

a good environment for the fishes.

• FR-AQ1: The system should allow an authorised user to schedule the date and time

to feed the fishes;

• FR-AQ2: The system should allow an authorised user to edit the scheduled date

and time to feed the fishes;

• FR-AQ3: The system should feed the fishes at the scheduled date and time;

• FR-AQ4: The system should maintain a stable water level on the fish tank by turning

on/off the pump water;

• FR-AQ5: The system should maintain a stable water temperature level on the fish

tank by turning on/off the ventilator;

• FR-AQ6: The system should maintain a stable light level on the fish tank by turning

on/off the aquarium lights.

6.1.5 Non-Functional Requirements

NFR are not related to specific services provided by the system, but how the system

will provide them. These requirements describe properties such as reliability, availability,

performance, security, safety, storage and deployment. Therefore they may define con-

straints on the system implementation or constraints that affect the overall architecture of

the system [Som10]. Since there is no standard for categorising and listing NFR [Chu+00],

we will use the types of NFR proposed by Sommerville [Som10].

The following list presents the NFR the system must ensure, categorised by the types

proposed by Sommerville:

64

6.1. REQUIREMENTS ENGINEERING

Product Requirements: Requirements that specify the behaviour and constraints of

the system. May include performance, reliability, usability and security requirements.

– NFR1: The system must ensure a moderate response time during its utilisation;

– NFR2: The system must ensure a moderate response time when reacting to physi-

cal events;

– NFR3: The system must allow simultaneous access by different users;

– NFR4: The system must be secure and resist to attempted attacks by unauthorised

users;

– NFR5: The system must protect its resources so that they can only be accessed by

authorised users;

– NFR6: The system must ensure the privacy of users privileged data;

– NFR7: The system must ensure that all external communications are encrypted;

– NFR8: The system must be fault tolerance in case of misuse by users or internal

errors;

– NFR9: The system must be accurate, reliable and maximise the correct operating

time and minimise the recovery time in case of failures;

– NFR10: The system must ensure the compatibility and cooperation between its

components;

– NFR11: The system must be capable of handling the growth of its components;

– NFR12: The system must be easily adapted to meet new requirements, correct

defects and maximise its lifetime;

– NFR13: The use of the system must be intuitive, easy to learn and to memorize by

its users;

– NFR14: The system must ensure that the users can achieve their goals efficiently

and effectively;

– NFR15: The system interfaces must be responsive and adapt according to the

device used for access;

– NFR16: The system must manage the high volume of store data, in order to use

the minimum storage space possible;

– NFR17: The system must ensure that the scheduled rules are executed, even if

due to failure it cannot execute the action at the scheduled time.

Organisational Requirements: Requirements driven by policies or procedures in the

customer and developer organisation. May include development process and environ-

ment requirements, and requirements that define how the system should be used.

– NFR18: The system must be available during normal working hours, and may be

unavailable at night for possible maintenance;

65

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

– NFR19: The system must calculate the energy consumption taking into account

the energy contract agreement established with the institution;

– NFR20: The development of the devices’ software must ensure that the device

state is updated at least hourly;

– NFR21: The development of the devices’ software must adopt multi-thread mech-

anisms in order to deal with multiple simultaneous events;

– NFR22: The development of the devices’ software, whenever possible, must use

MQTT protocol for communication instead of HTTP;

– NFR23: The development of new devices’ software must follow the structure

already implemented in other devices, in order to keep the software consistent;

– NFR24: The development of the devices’ software must ensure that, when the

system is down in case of failure or networks issues, the devices’ data are stored

in local memory until system recovers;

– NFR25: The developed devices’ software must be exported so that it can be

portable and executable without requiring to install dependencies.

External Requirements: Requirements driven from external factors to the system. May

include legislative requirements, ethical and regulatory requirements.

– NFR26: The temperature, luminosity and air quality provided should not com-

promise the occupants’ productivity;

– NFR27: The temperature, luminosity and air quality provided should not com-

promise the well-being of occupants;

– NFR28: The temperature level must be defined according to the legislation that

defines the standards for indoor temperature in work offices;

– NFR29: The luminosity level must be defined according to the legislation that

defines the standards for indoor luminosity in work offices;

– NFR30: The air quality level must be in accordance with the legislation that de-

fines the standards for indoor air quality in work offices;

– NFR31: The fish tank water temperature must be defined according to the stan-

dards for water temperature in aquariums with freshwater fish.

6.1.6 Requirements Tracing

At this point, we described requirements using US and FR, so it is important to relate

these two sources to ensure that everything is covered and consistent [AN05].

Thus, we grouped the US in different tables, and for each user story identifier we

specify the matching FR. Table 6.1 exemplifies the result of this process for the User

Management requirements. The rest of the tables can be found in Appendix C.

66

6.2. DETAILED USER STORIES

Table 6.1: User Management Mapping

User Story Identifier Functional Requirements

US-UM1 FR-UM6

US-UM2 FR-UM2

US-UM3 FR-UM4, FR-UM5

US-UM4 FR-UM3

US-UM5 FR-UM7, FR-UM8

US-UM6 FR-UM1

6.2 Detailed User Stories

This section details the most relevant US. Note that we only list the requirements

considering our case study, so it is possible to achieve different set of requirements for a

different scenario.

Another detail is that there are several requirements, but some of them are already

supported by IoT platforms. Therefore, we will only specify the US focused on au-

tomation, the ones that contribute to the reduction of energy consumption, and for

improving the comfort for office occupants.

Firstly, we divide the US by sections and for each section, we will present a use case

diagram, modelled with the Unified Modelling Language (UML) language, followed by a

detailed specification of its use cases based on the template suggested in [AN05].

The following identifiers represent the selected US:

• Device Management: US-DM5, US-DM11, US-DM12;

• Occupant Comfort: US-OC1, US-OC2, US-OC3, US-OC4;

• Presence Detection: US-PD1, US-PD2, US-PD3, US-PD4, US-PD5, US-PD6, US-

PD7;

• Scheduling: US-SC1, US-SC2, US-SC3, US-SC4, US-SC5, US-SC6;

• Suggestions: US-SG1, US-SG2, US-SG3;

• Notifications: US-NT1, US-NT2, US-NT3, US-NT4, US-NT5;

• Aquarium: US-AQ1, US-AQ2, US-AQ3, US-AQ4.

6.2.1 Device Management

This section presents the use case diagram for device management in Figure 6.1 and

its use cases specifications. Considering the selected US, the Administrator can mark a

device as critical, backup devices data and add devices through a list.

67

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

Figure 6.1: Use Case Diagram - Device Management

Use case: Mark device as critical

Brief description: The Administrator marks a device as critical, so that it can not be

turned off by the system.

Primary actors: Administrator

Preconditions:

1. The Administrator is authenticated in the system.

Main flow:

1. The use case starts when the Administrator accesses to the devices page.

2. The system finds and displays all the available devices.

3. The Administrator selects one device from the list and marks it as critical.

4. The Administrator confirms the action.

5. The system marks the device as critical.

Postconditions:

1. The device is marked as critical.

Exceptions:

1. Administrator cancels the use case. The system does not mark the device as criti-

cal.

68

6.2. DETAILED USER STORIES

Use case: Backup devices data

Brief description: The Administrator requests a backup of the data from devices.

Primary actors: Administrator

Preconditions:

1. The Administrator is authenticated in the system.

Main flow:

1. The use case starts when the Administrator accesses to the devices page.

2. The system finds and displays all the available devices.

3. The Administrator selects multiple devices from the list.

4. The Administrator confirms the action.

5. The system returns a file with the selected devices’ data.

Postconditions:

1. A backup of the devices’ data is created.

Exceptions:

1. Administrator cancels the use case. The system does not backup the devices’ data.

Use case: Add devices from list

Brief description: The Administrator selects the file with a list of devices to be added.

Primary actors: Administrator

Preconditions:

1. The Administrator is authenticated in the system.

Main flow:

1. The use case starts when the Administrator accesses to the devices page.

2. The Administrator selects a file with a list of devices and uploads it.

3. The system validates the uploaded file.

4. The system adds each device in the list to the database.

Postconditions:

1. The devices are added to the system.

69

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

Exceptions:

1. Administrator cancels the use case. The system does not add any device.

2. Invalid devices file. The system does not add any device.

6.2.2 Occupant Comfort, Presence Detection and Suggestions

This section presents the use case diagram for occupant comfort, presence detection

and suggestions in Figure 6.2 and its use cases specifications. Considering the selected

US, the system must ensure the occupants’ comfort. Therefore, it should collect current

environment values and act accordingly.

We will only describe the Adapt luminosity, Get current air quality, and Change

outlet state use cases. The use case for temperature is similar to the luminosity, and the

noise level similar to the air quality.

Figure 6.2: Use Case Diagram - Occupant Comfort, Presence Detection and Suggestions.
In this diagram, the sensors and actuators are represented as Secondary actors because
they are external entities to the system with their own logic.

70

6.2. DETAILED USER STORIES

Use case: Adapt luminosity

Brief description: The system adapts the light status taking into account the current

luminosity and human presence.

Primary actors: Time

Secondary actors: Light sensor, Light

Main flow:

1. The use case is triggered automatically every 20 seconds.

2. The system checks for human presence in the room.

3. If human presence is detected

a) The system reads current indoor luminosity value from the Light sensor.

b) The system reads current outdoor luminosity value from the Light sensor.

i. If indoor luminosity level is too low

A. If outdoor luminosity is enough to provide good luminosity

– The system notifies to open the window.

– The system turns off the light.

B. Else

– The system increases the light’s brightness level.

ii. Else

– The system decreases the light’s brightness level.

4. Else

– The system turns off the light.

Postconditions:

1. The light state reflects the luminosity of the requirements.

Use case: Change outlet state

Brief description: The system changes outlet state taking into account the time and

human presence.

Primary actors: Time

Secondary actors: Outlet

Preconditions:

1. The outlet is marked as uncritical by an Administrator

71

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

Main flow:

1. The use case is triggered automatically every 20 seconds.

2. The system checks for human presence in the room.

3. If human presence is not detected

a) Calculate for how long there is no activity.

b) If it is night and inactivity time is superior to 10 minutes

– The system turns off the outlet.

c) Else If inactivity time is superior to 30 minutes

– The system turns off the outlet.

4. Else

– The system turns on the outlet.

Postconditions:

1. The system changed the outlet state taking into consideration the human presence.

Use case: Change window state

Brief description: The system suggests to open the window to improve the air quality.

Primary actors: Time

Secondary actors: Air quality sensor

Main flow:

1. The use case is triggered automatically every 20 seconds.

2. The system checks for human presence in the room.

3. If human presence is detected

a) The system reads current outdoor air quality from Air quality sensor.

b) The system reads current indoor air quality from Air quality sensor.

c) If outdoor air quality is greater then indoors

– The system notifies to open the window.

d) Else

– The system notifies to close the window.

72

6.2. DETAILED USER STORIES

6.2.3 Scheduling

This section presents the use case diagram for scheduling in Figure 6.3 and its use

cases specifications. Considering the selected US, the User can schedule the time to turn

on/off a specific device or a set of devices, edit or remove a previously defined schedule

time and schedule the time to feed the fishes. We will only describe the Schedule time to

turn on devices, Schedule time to turn on group and Edit scheduled time since these

are the most relevant, and the other use cases have a similar flow.

Figure 6.3: Use Case Diagram - Scheduling

Use case: Schedule time to turn on a device

Brief description: The User creates a rule to turn on a specific device, so that it can be

powered on by the system at the scheduled time.

Primary actors: User

Preconditions:

1. The User is authenticated in the system.

Main flow:

1. The use case starts when the User accesses the scheduled rules page.

2. The system displays a list of all scheduled rules.

3. The User presses the button to create a new rule.

4. The system displays all the available devices.

73

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

5. The User selects the desirable device, specifies the time to turn on the device and

confirms it.

6. The system creates a new rule for the selected device.

Postconditions:

1. A new schedule rule for the device is created.

Use case: Schedule time to turn on a group of devices

Brief description: The User creates a rule to turn on a set of devices, so that they can

be powered on by the system at the scheduled time.

Primary actors: User

Preconditions:

1. The User is authenticated in the system.

Main flow:

1. The use case starts when the User accesses the scheduled rules page.

2. The system displays a list of all scheduled rules.

3. The User presses the button to create a new rule.

4. The system displays all the available groups.

5. The User selects the desirable group, specifies the time to turn on the device

belonging to that group and confirms it.

6. The system creates a new rule for the selected group.

Postconditions:

1. A new schedule rule for the group is created.

Use case: Edit scheduled time

Brief description: The User edits a previously created scheduled rule.

Primary actors: User

Preconditions:

1. The User is authenticated in the system.

74

6.2. DETAILED USER STORIES

Main flow:

1. The use case starts when the User accesses the scheduled rules page.

2. The system displays a list of all scheduled rules.

3. The User selects the rule to be edited.

4. The User specifies the new time to change the device state and confirms it.

5. The system updates the time of the selected rule.

Postconditions:

1. The selected schedule rule is updated.

6.2.4 Notifications

This section presents the use case diagram for notifications in Figure 6.4 and its use

cases specifications. Considering the selected US, the system must notify the Administra-

tor about inactive devices, and notify the User about consumptions out of ordinary and

aquarium events.

Figure 6.4: Use Case Diagram - Notifications

Use case: Notify about inactive devices

Brief description: The system notifies the Administrator when a device does not up-

date its state in the last hour.

Primary actors: Time

Secondary actors: Administrator

Main flow:

75

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

1. The use case is triggered automatically every 20 seconds.

2. The system compares the current time with the time of the last state of a device.

3. If the time is greater than 1 hour

– The system notifies the Administrator by about the inactive device.

Use case: Notify about consumptions out of ordinary

Brief description: The system notifies the User when a device has an unusual energy

consumption.

Primary actors: Time

Secondary actors: User

Main flow:

1. The use case is triggered automatically every 20 seconds.

2. The system reads the current energy consumption of a device.

3. The system calculates the average consumption of a device and its standard devia-

tion.

4. If the current energy standard deviation is too high

– The system notifies the User about the device with an unusual energy con-

sumption.

Use case: Notify about the aquarium state

Brief description: The system notifies the User about relevant events in the aquarium.

Primary actors: Time

Secondary actors: User

Main flow:

1. The use case is triggered automatically every 20 seconds.

2. The system reads the current state of the aquarium.

3. If the current water level is too high or to low

– The system notifies the User, warning him/her about a problem with the water

level in the aquarium.

4. If the current water temperature is too high or too low

– The system notifies the User, warning him/her about a problem with the water

temperature in the aquarium.

76

6.2. DETAILED USER STORIES

6.2.5 Aquarium

This section presents the use case diagram for the aquarium in Figure 6.5 and its

use cases specifications. Considering the selected US, the system must feed the fishes

automatically, take care of the water level, temperature and the provided light. We will

only describe the Feed fishes and Adapt temperature use cases since the other use cases

have a similar flow. Notice that the aquarium is a subsystem and our system interacts

with it through an interface. Thus, we are not representing the aquarium components

individually.

Figure 6.5: Use Case Diagram - Aquarium

Use case: Feed fishes

Brief description: The system automatically feeds the fishes at the scheduled time.

Primary actors: Time

Secondary actors: Aquarium

Preconditions:

1. The User scheduled the time to feed the fishes.

Main flow:

1. The use case starts at the scheduled time to feed the fishes.

2. The system feeds the fishes by turning on the feeder.

Postconditions:

1. The fishes were feed.

77

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

Use case: Adapt temperature

Brief description:

Primary actors: Time

Secondary actors: Aquarium

Main flow:

1. The use case is triggered automatically every 20 seconds.

2. The system reads the aquarium current water temperature.

3. If the water temperature is too hot for the fishes

a) The system turns on the aquarium ventilator.

4. Else

a) The system turns off the aquarium ventilator.

Postconditions:

1. The water temperature is within the requirement limits.

6.3 Architecture

A system architecture is a conceptual model that defines how a system should be or-

ganised and structured. It is a critical link between the system design and requirements

engineering since it identifies the organisation of the system components, the relation-

ships and constraints between them. The process of creating this model is known as Ar-

chitectural design, and it needs to satisfy the functional and non-functional requirements

of a system. Therefore, the close relationship between the system requirements and the

architectural design will influence the architectural style and structure chosen [Som10].

The following sections describe the process conducted in order to achieve a system

architecture that conforms to the system requirements defined before.

6.3.1 Non-Functional Requirements Treatment

NFR have a strong influence on design decisions and implementation, allowing us a

wide range of possible solutions to choose [Som10]. According to Chung et al. [Chu+00],

time and cost are usually limited resources, thus we can not work with all the defined

NFR. Thus, in order to achieve an appropriate design solution we need to handle the

selected NFR, analyse all the trade-offs, resolve possible conflicts between them and

assign a degree of importance to each one. The result of this analysis will help us to

achieve a well-founded solution based on the system requirements [Chu+00; Ras+03]. To

handle the NFR we used a process proposed in [Ras+03] which consists of the activities

78

6.3. ARCHITECTURE

represented in Figure 6.6. The goal of this process is to identify, select the most relevant

NFR, and resolve possible conflicts between them. Furthermore, this process can help to

refine the selected NFR and identify conflicts between its operations/use cases [Ras+03].

Our goal focuses only on identify and select NFR and find the conflicts between them.

Figure 6.6: Process proposal to handle NFRs (adapted from [Ras+03])

Note that the activity Identify and specify FR is already accomplished in Section 6.1.4,

and we already identified the NFR in Section 6.1.5. The next activity consists in selecting

the NFR and matching them with a real non-functional requirement. Table 6.2 represents

the result of this process.

Table 6.2: Identify and Select NFR. The first column represents the non-functional re-
quirement identifier, and the second column the non-functional requirement name.

NFR Identifier NFR Name

NFR1, NFR2, NFR16 Performance

NFR3 Accessibility

NFR4, NFR5, NFR6, NFR7 Security

NFR8, NFR17 Fault tolerance

NFR9, NFR17 Reliability

NFR10 Interoperability

NFR11 Scalability

NFR12 Maintainability

NFR13, NFR14, NFR15 Usability

NFR18 Availability

NFR19, NFR20, NFR21, NFR22, NFR23,
NFR24, NFR25

Implementation

NFR26, NFR27, NFR28, NFR29, NFR30,
NFR31

Safety

The outcome of the previous activity, provides us with a list of the NFR, but as men-

tioned before, treating all the NFR requires an additional time and cost. Therefore, there

is a need to select the most important NFR taking into account our case study and the

stakeholders needs [Chu+00]. The following list describes the most important NFR and

Table 6.3 shows the contributions between them.

• Performance: The amount of time required to react to a stimulus or the number of

events processed during a certain period of time;

79

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

• Scalability: The capability of the system to be enlarged, in size, distribution, or

manageability, in order to accommodate the involved components;

• Maintainability: The capability of the system to be modified. Modifications may

include corrections, improvements or adaptation of the system to changes in envi-

ronment, or in its requirements;

• Safety: The capability to achieve acceptable levels of risk of harm to people, soft-

ware, equipment or the environment in a specified context of use.

We choose the following NFR because the system should have a reasonable perfor-

mance for decision-making, it should ensure the safety of the occupants and it should be

easy to maintain and grow so that it can meet its requirements or to handle the increase

of its components.

Table 6.3: Identify contributions between NFR. Each NFR can contribute negatively (-) or
positively (+) to others. Empty cells represent null contribution/not significant.

NFRs Performance Scalability Maintainability Safety

Performance +

Scalability + -

Maintainability -

Safety - -

Analysing in more detail Table 6.3 we conclude that there are some negative and

positive contributions. Performance is a requirement that suggests an architecture within

a small number of components deployed on a few number of computers instead of dis-

tributed across the network. Meaning that it is recommended to use large components

rather than small for reducing components communications. On the other hand, Main-

tainability suggests an architecture to use fine-grain, self-contained components and

separate components by concerns or functionalities. Safety is a requirement that suggests

an architecture with all safety operations to be located in a single component or in a small

number of components. Thus, we can conclude that Performance contributes positively to

a Safety regarding a reduced number of components. On the other hand, Maintainability

can create potential conflicts for the same reasons it creates with Performance. Scalabil-

ity suggests an architecture design taking into account the possibility of future changes.

Increasing the system components and its number of resources number may lead to an

increase in its performance. However, a scalable system may contribute negatively to

Maintainability and Safety, due to the increase of necessary resources or components to

maintain, and the need to be careful about existing safety rules [Som10].

Taking into account this analysis we conclude that there is a potential conflict between

the suggested architectural styles of these NFR. However, it can be solved using different

architectural styles for different parts of the system [Som10].

80

6.3. ARCHITECTURE

The last activity of this process, represented on Figure 6.6, is Redesign Architecture

that leads us to the following section, where we will choose an adequate architecture style

taking into account the list of NFR.

6.3.2 Architecture Styles

As we saw before, a system architecture is a collection of components, their relation-

ships and constraints. Graphically, it can be seen as a view in which each node represents

a system component and the arcs the relationships. Therefore, there are several ways to

organise and structure the system components. An architectural style defines a family

of such systems in terms of a pattern, specifying how the system components can be

combined and its constraints [GS94].

These patterns capture the essence of an architecture that has been used in other

systems, describe when they should be used, their strengths and weaknesses. So, an

architectural pattern describes a system organisation that has been successful in other

systems [Som10].

At this point, it is possible to analyse a list of architectural styles and choose the ones

that best adapt to our system requirements. We will follow the architectural styles pro-

posed by Bass et al. and Garlan and Shaw [Bas+12; GS94]. We analyse each architectural

style in order to understand the advantages each one could provide to our system archi-

tecture. The following list presents the selected architectural styles and an explanation

of how these styles are related to our system.

• Client-Server: The client-server pattern is composed of two types of components.

The client is a component that requests services from a server component. The

server is a component that provides services to the clients. This pattern is useful

when there are shared resources required by a large number of clients. The core

functionalities are provided by the server component. Thus, this pattern promotes

the maintainability and scalability, since the modifications are made in a single

location or a small number of locations.

• Publish-Subscribe: In the publish-subscribe pattern, the components communi-

cate through messages or events announcement. There are components that sub-

scribe a set of specific events, and other components emit these events. A mid-

dleware ensures that the triggered events are received by all the subscribers. This

pattern promotes maintainability since the components do not know each other,

making it easier adding new components or modifying existing ones. On the other

hand, this pattern implies a significant cost on performance, since the messages

delivery time is unpredictable.

• Model-View-Controller: The model-view-controller pattern separates the appli-

cation functionality into three types of components: a model, that contains the

application data; a view, that displays the data represented by the model, and serve

81

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

as an interaction point to the user; a controller, that behaves as an intermediary be-

tween the model and the view and reacts to data state changes, or user actions. This

pattern promotes the maintainability and scalability. Since these components are

loosely coupled, the modifications in one component will have a minimal impact

on the others.

The client-server pattern will help us to structure the system, so its resources and

services are shared with all the clients. In this specific case, the server component will

provide the required resources and services for user and device management. This pattern

is useful since it allows any kind of client device to access the server resources, as long it

has an internet connection. Since the resources are server-side the clients do not suffer

too much impact from server modifications. This allows us to modify the server services

to evolve, or to meet new requirements ensuring a maintainable and scalable system.

The publish-subscribe pattern is used to structure devices communication level, and

for handling events that are triggered in system runtime. In this specific case, a mid-

dleware will be responsible for event management. The devices will be publishers com-

ponents, that provide the data about the device state, and subscribers to allow external

components to change a device state. This pattern makes it easy to add or remove devices

without interfering with the existing ones. Thus, it allows the system the capacity the be

maintainable and scalable.

The model-view-controller pattern will help us to structure the system grouping

components by concerns. In this specific case, the model components will represent the

system stored data, for example, the devices properties values. The views will represent

the system relevant data about the models, and the controllers are responsible for all

the logic to provide the required functionalities. This pattern is useful for the system

UI since models, views and controllers are independent. Moreover, we can modify the

components to meet new requirements, without affecting too much the existing ones.

This ensures the system capability to be modifiable over time.

6.3.3 Architecture Views

Nowadays, systems tend to be complex and our focus is usually only on one specific

aspect of the system. It is impossible to represent all the important aspects of an archi-

tecture in a single model. Therefore, to simplify the system understanding it is a good

practice to adopt multiple views, each one representing different perspectives of the sys-

tem. These views provide an overall idea of the system decomposed of modules, how

these modules interact at runtime, and how the systems’ components can be distributed.

So, each view is important in different stages of the system development process [Som10].

There are several proposals concerning what views should be defined. The most

common solution is the 4+1 View Model, proposed by Kruchten, in [Kru95]. This model

suggests the following fundamental architectural views:

82

6.3. ARCHITECTURE

• Logical view: The functionalities provided by the system to end users. It serves as

a communication model between all the involved stakeholders;

• Process view: The dynamic aspects of the system, its processes, how they commu-

nicate and their behaviour at runtime;

• Development view: The system programmers perspective, focusing on software

management and its subsystems;

• Physical view: The system engineer perspective, focusing on components topology,

how they are mapped from software to hardware and how they communicate.

Figure 6.7 represents a logical view of the system architecture. Note that this model

was designed following the model-view-controller pattern. In blue we have the system

boundaries, that represent the system interfaces presented to the users for data visuali-

sation, interaction and input data, or back-end interfaces for external services. The red

components are the controllers, where it is located the main logical functionalities of the

system. The model components in orange represent the system state as data models and

its relationships. Remember that this diagram only presents the functionalities taking

into account the selected requirements, in the previous sections.

Figure 6.7: Architecture Views - Class Diagram

83

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

Figure 6.8 represents a process view of the system architecture for a very specific

scenario, in this case for the process of changing a device state. Initially, the automation

component requests the list of existing devices to the platform component, creating lo-

cally the entities that represent each device. The automation component requests the

last state of the devices and sets the devices properties values accordingly. At the end of

this process, the automation component is responsible for evaluating the devices states

that need to be adjusted. If a device state needs to be adjusted, the automation model

communicates with the platform component with the device to be changed and the new

state value, which in turn communicates with the physical device.

Figure 6.8: Architecture Views - Sequence Diagram

Figure 6.9 represents a development view of the system architecture. In this model,

it is possible to verify that there are 4 main components. The Platform component rep-

resents the chosen platform subsystem. In this case, we are not representing its internal

components because, regarding our system this component is like a black box, that pro-

vides interfaces for user and device management. The Database component represents a

subsystem that stores data that will complement the data on the platform. The compo-

nent responsible for the automation is represented as the Automation Module subsystem.

This component depends on the interfaces provided by the Platform, for device control,

and Database to require more detailed data about the devices and scheduled rules. It

also uses an external email service component for notifications. Lastly, the Front-end

component is a subsystem responsible for displaying information about the devices in ad-

dition to the one provided by the Platform. This component provides the functionalities

to define new rules and devices additional values.

84

6.3. ARCHITECTURE

Figure 6.9: Architecture Views - Components Diagram

Figure 6.10 represents a physical view of the system architecture that shows how the

software components are deployed to physical ones. The whole system is composed of 4

types of components. The simplest component is the Device, that represents all the physi-

cal devices to be used by the system, from sensors to actuators. Device Agents are used as

intermediaries for communication between the Platform and the Devices. These can be

Raspberries or Arduinos, where are installed the software responsible to collect devices

state data and send it to the Platform. In our case study, the Device Agents communicate

with the Devices through HTTP or Bluetooth. The Platform component is an application

server, where the chosen platform will be running. It provides all the functionalities

for devices, user API management and data storage. This server communicates with the

Device Agents using publish-subscribe mechanism through MQTT protocol. The Device

Agents are responsible to publish devices state and subscribe to topics in order to handle

events triggered to change devices state. Lastly, the Computer component is responsible

for providing the functionalities of the Front-end module. It enables rule management

and edit detailed data about the devices. This computer also contains the component

responsible for the automation control. Locally, the Automation Control process com-

municates with the database system through the MySQL protocol. Furthermore, these

components also communicate through a websocket over TCP/IP. This communication

path allows the settings modified by the users on the Front-end system, to take effect

on the Automation Control process without having to restart it or wait for it to update

85

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

its values the next time it communicates with the database. In order to request data

about the devices and control them, the Computer component also communicates with

the Platform over HTTP.

Figure 6.10: Architecture Views - Deployment Diagram

6.4 Implementation

This section goal is to show the work developed to achieve a functional product,

taking into account the requirements analysis and the architecture design presented in

previous sections. The following sections will approach the technologies used for the

implementation of the components, explain how these are related to the components

presented in the architectural design, and the functionalities provided.

In Chapter 5 we described a detailed analysis between WSO2 and IBM Watson plat-

forms. For our final proposal, we choose to use the WSO2 platform. It provides the

expected functionalities of an IoT platform and for our case study. Being open-source,

it gives us the freedom and ownership of the platform and the existing data, unlike the

IBM Watson where the data would not be owned by us. Another advantage is the costs

associated with these two solutions. Since WSO2 is open-source its deployment can be

done using our infrastructure, not having to support utilisation and network bandwidth

costs. It also makes us independent of external services in case of some unexpected fail-

ure. Another reason to choose WSO2 instead of IBM Watson is due to the fact that our

case study is subject to network failures and latency problems. These have a significant

impact on automation and control systems. Therefore, having WSO2 platform located on

our local network reduces possible network and communication failures.

86

6.4. IMPLEMENTATION

The chosen platform is able to support some of the functionalities provided by the

automation module. However, we decided to separate the control and automation logic

from the platform in an independent module. The reason to do this is to make this module

independent of the platform chosen. Thus, keeping logic and control rules independent

of the platform allows this module to be independent of the platform and enables the

capability to adopt another platform in the future. In this case, it will only be necessary

to handle the communication between the module and the platform, keeping all the logic

and control rules intact. Usually, each platform provides different tools, mechanisms and

their own languages for control and rule-based events. Therefore, it requires an additional

effort to learn and develop solutions based on the chosen platform. Thus, making this

module independent is another advantage. Another reason is that in the future we may

decide to follow Fog Computing principles. In this way, since the automation module is

independent of the platform, we could change it easily by handling the communication

directly with device agents instead of communication with the platform.

The following components communicate with the WSO2 Platform through the HTTPS

protocol. The platform administrator has previously created an Application through the

APIs management page. It was granted the required permissions to this Application

so that it can provide the expected functionalities. As a result, these components have

to include on each request the application key and the token provided by the platform

administrator. In this particular case, the provided token has an expiration time of 1

year. Therefore, our components do not have to deal with the logic to refresh the token.

However, in a real case scenario that logic must be taken into account.

Most of the components presented below were developed using NodeJS. We chose

to use NodeJS because it uses an event-driven, non-blocking model. The NodeJS uses

internal mechanisms that help to deal with multiple requests, making it easy to develop

these modules, reducing development effort by the programmers. Furthermore, it is an

open-source technology that can be executed on any platform.

6.4.1 Automation

The developed system has as one of the objectives the automation of multiple devices,

in order to reduce the energy consumption while ensuring the occupants’ comfort. There-

fore, before the implementation of the automation module it was necessary to evaluate

the following points:

• Understand the standards the system should adopt to improve occupants comfort

and ensure good working conditions;

• Set of devices that can be controlled in order to reduce energy consumption without

interfering with occupants working conditions.

87

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

The following sections describe in more detail the analysis conducted to understand

the standards the system should adopt and the required preconditions to ensure the

proper system operation.

6.4.1.1 Comfort Standards

In order to understand what are the recommended standards for workspace comfort,

we start by analysing previous studies that are realised and test in case scenarios similar

to our own study. The result of this analysis helped us to realise what are the standards

that should be taken into account to ensure the occupants’ comfort.

In the case of thermal comfort, the environmental conditions for an indoor air temper-

ature of a building should be 18ºC in the heating season and 25ºC for the cooling season.

Note that these values are the minimum required to ensure minimal thermal conditions

in terms of the building structure.

Regarding the indoor air quality, the reference values for air refresh rate should be

between 0.4Rp and 0.6Rp, where Rp is the ventilation rate per person per hour [Des].

For visual comfort, it is necessary to take into account the natural and artificial sources

of light. The outdoor luminosity level is approximately 10000 lux on a clear day. In

a workspace near the window, this value can drop to approximately 1000 lux, and to

values between 25 and 50 lux in a workspace in the middle of a room away from the

window. Therefore, it is necessary to adopt strategies to handle the luminosity levels.

Depending on the activity the recommended light level is in the range of 500 to 1000 lux,

but for activities like normal office work, study, pc work it is recommended levels of 500

lux [Hua+12].

In a study conducted by Huang et al., they tried to understand what are the luminosity

levels that provide better visual comfort for office occupants. In this study 120 people

from both genders, with ages between 19 and 28 years took part. The participants were

exposed to different levels of temperature, noise, and luminosity during a fixed period of

time. At the end of each period of time, each participant had to fill a form that evaluates

the degree of satisfaction during that time. After a short break, the participant repeated

another test with different values. As a result of this study, Huang et al. noted that

the range of temperature values that provide higher satisfaction to the participants was

between 20.9ºC and 30.4ºC. For luminosity satisfaction, the values were above 300 lux,

and for noise levels bellow 49.6dB. Huang et al. also concluded that the temperature and

noise levels are the ones that cause a greater impact on the participants’ satisfaction levels

in comparison with luminosity levels. It is important to take these values into account

since these can have a negative impact on occupants well-being, mood, and also in their

productivity [hor+16; Hua+12; Maxa].

Remember that in our case study we have an aquarium and it needs special atten-

tion because the room temperature and luminosity levels can affect the aquarium water

temperature. The aquarium in our case study contains fishes of cold water, and the

88

6.4. IMPLEMENTATION

recommended water temperature should be between 15ºC and 20ºC [Bol09]. Addition-

ally, one of the thermodynamics principles says that the heat generated by objects can

be transferred to other objects if they have distinct temperatures [LL17]. Following the

heat transfer principle, if the room temperature is too high it implies an increase in the

aquarium water temperature, and eventually, it can lead to water evaporation. Other-

wise, a lower room temperature implies a decrease in the aquarium water temperature.

The luminosity level coming from natural or artificial light sources can also cause this

phenomenon. Therefore, our system must be able to apply rules to reduce the energy con-

sumption, ensure the occupants comfort with the standard values described before, and

also make sure that these values have a minimal impact on the aquarium environment.

6.4.1.2 Devices Categorisation

In an initial phase, it was required to organise the room devices to allow us to map the

devices located on a specific workstation, that lead to a group of devices allocated within

the workstation. Thus, the devices were placed in the workstations and we took note

of their relative position to the room. Furthermore, the devices’ positions were inserted

in the platform and used to calculate the nearest devices from a specific source. This

mapping process also helped us to produce a list of devices that can be controlled and in

what socket they were plugged in. Table 6.4 presents the result of the mapping process

and we can see a description of what device is connected to a specific socket and if it is

considered a critical device.

Table 6.4: Devices connected to sockets map

Outlet Socket Description Critical

1 1,2,3 Aquarium Yes

3 1 Peripherals No

3 2 Portable Computer Yes

3 3 Monitor No

3 5 Light No

3 6 Heat/Cooler Fan No

4 1 Raspberry Pi 3 Yes

4 3 Portable Computer Yes

4 4 Raspberry Pi 3 Yes

5 1 Monitor No

5 2 Portable Computer Yes

5 3 Monitor No

5 4 Coffee Machine No

5 5 Light No

89

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

The sockets marked as critical represent the ones that can not be turned off in any

case by our system. Note that there are 3 sockets that represent the occupants’ portable

computers. Furthermore, we will explain the reason for this choice. After this mapping,

we asked the room occupants to plug their portable computers to the designated sockets,

in the ambit of this dissertation and to simplify the process of data measurement, and

also to make it easier the analysis of the energy consumption. Additionally, note that

the definition of critical devices is customisable through the Front-end module. So, it is

possible to change at any moment what devices are critical or not.

6.4.1.3 Control Rules

Before we describe the implementation process, we need to specify the control rules

this module will support in this phase. There are several types of rules, the ones triggered

in a specific time of a day, or changes in the room environment and also through presence

detection events. To specify the existent rules we adopt a syntax proposed by Open

Hab [Ope]. Each rule consists of 3 blocks that define its name, what event triggers the

rule and its action.

Schedule Rules

This set of rules describes the rules that are triggered by time events. These rules were

previously scheduled through the UI provided by the Front-end module.

rule "turn on uncritical sockets"

when "time is 7.30 am"

then

1. Iterate sockets collection

1.1. If socket S is not critical

1.1.1 Turn on socket S

end

rule "feed the fishes"

when "time is 10.00 am"

then

1. Feed fishes

end

rule "turn off coffee machine"

when "time is 7.30 pm"

then

1. Search for socket with id SOCKET_5_4

1.1 Turn off socket

end

90

6.4. IMPLEMENTATION

rule "turn off lights and uncritical sockets"

when "time is 8.00 pm"

then

1. If the room is empty

1.1 Iterate lights collection

1.1.1 Turn off light

1.2 Iterate sockets collection

1.2.1 If socket S is not critical

1.2.1.1 Turn off socket

end

Presence Detection Rules

This set of rules describe the rules that are triggered by presence detection events,

whether is when an occupant arrives or leaves the workplace, or when the room is empty.

rule "turn off lights and air condition"

when "room is empty"

then

1.1 Iterate lights collection

1.1.1 Turn off light

1.2 Turn of air condition system

end

rule "adapt workspace luminosity every 20 seconds"

when "occupant arrives at workspace"

then

1. Get workspace current light intensity

2. Search for the light on its workspace

3. Calculate the new light state

4. Change the light state with the calculated value

end

rule "turn off workspace light"

when "occupant leaves the workspace"

then

1. If occupant leaves the workspace

1.1 Search for the light on its workspace

1.1.1 Turn off the light

end

91

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

Environment Rules

This set of rules describe the rules that are triggered by changes in room environment

variables, such as luminosity and temperature levels.

rule "adapt lights intensity"

when "room light is not within the standards"

then

1. If the room is not empty

1.1 If the current light is lower than standards

1.1.1 Increase lights brightness

1.2 Else If the current light is higher than standards

1.2.1 Decrease lights brightness

end

rule "adapt room temperature"

when "room temperature is not within the standards"

then

1. If the room is not empty

1.1 If the current temperature is lower than standards

1.1.1 Increase air condition temperature

1.2 Else If the current temperature is higher than standards

1.2.1 Decrease air condition temperature

end

Notification Rules

This set of rules describe the rules that are triggered by relevant events about overall

system functionalities.

rule "notify about room lights and outlets"

when "all lights/outlets turned on or off"

then 1. Notify if all lights are turned on or off

end

rule "notify about fishes feed"

when "system feed the fishes"

then 1. Notify when the system feed the fishes

end

rule "inactive devices"

when "device does not update its state within 1 hour"

then 1. Notify about devices that do not update their states

end

92

6.4. IMPLEMENTATION

rule "system report"

when "a system error occurred"

then 1. Notify the cause of the system failure

end

6.4.1.4 Implementation and Components

In the deployment diagram presented in Section 6.3.3 Figure 6.10 we saw that the

communication between the devices and the platform is achieved through an interme-

diary, a device agent. Before we start the automation module implementation it was

required to ensure that the agent devices were able to communicate with all the physical

devices, if all the control commands were being sent correctly and if the physical devices’

data were correctly published to the platform.

The agents installation and setup was a work developed previously and it is not the

focus of this dissertation, but it was required to ensure that they were in accordance with

our system requirements. Therefore, the agents must also ensure that the published data

have a relevant change from the previous device state, in order to reduce the volume of

data generated. Additionally, each agent is responsible to publish the device state hourly,

to evaluate the possibility of inactive devices. Once these conditions were guaranteed, we

started the implementation process of our solution.

In an initial phase of the implementation, we started by using a flow-based program-

ming tool for the IoT, that allow us to describe the application behaviour through a

network of nodes. This allowed us to create an automation module through a visual

language, allowing future changes to be cheaper and faster.

The tool used for the initial phase was Node-red, based on NodeJS and released by

IBM in 2014 [Maxb].

Figure 6.11 illustrates an example of a flow created with this tool. In this flow, it is

possible to observe an input node that provides a HTTP route, that parses the received

data and changes the state of the specified light. Despite the advantages provided by

this tool, we choose to discard it due to the complexity of our system. However, it was a

tool that provided us with an implementation of a general solution and helped us in the

implementation of the final solution.

Figure 6.11: Node-Red Flow Example (adapted from [Maxb])

93

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

As mentioned before, the automation module should manage multiple environment

variables, namely temperature and light, in order to provide comfort to occupants. This

management does not happen by turning on or off the devices, it needs to adapt the

environment taking into account the occupants inside.

To control the air condition and adapt its temperature we used an adaptation of

the algorithm proposed by Purdon et al. [Pur+13] (represented in Listing 6.1). This

algorithm has two methods to handle air condition control. The first method uses the

room occupants votes, where they can vote to decrease (-1), preserve (0), or increase

(+1) the temperature. In this case, the temperature is adapted with variations of ±1ºC

because lower values would take more time to be reflected in the room temperature, and

higher values would reflect in drastic changes in the room temperature. The second

method adapts the temperature in order to reduce the energy consumption. Purdon et al.

concluded that changing the temperature with variations of ±0.5ºC against the outside

temperature may imply a reduction of energy consumption, calling this strategy Drift.

The system should only operate in Drift mode if the current temperature is not the most

suitable and it should stop as soon as it founds the proper temperature level.

Listing 6.1: Air Condition Control algorithm (adapted from [Pur+13])

function controlAirCondition()

if(isRoomEmpty) then

return turnAirConditionOff()

end if

if(userVote < 0){

return changeTemperature(setPoint - 1)

}else if(userVote > 0){

return changeTemperature(setPoint + 1)

}

if(drift) then

if(setPoint > outdoorTemp) then

return changeTemperature(setPoint - 0.5)

else

return changeTemperature(setPoint + 0.5)

end if

end if

end function

To control the lights and adapt the room luminosity we used an adaptation of the

algorithm proposed by Mohamaddoust et al. [Moh+11]. This algorithm calculates the

luminosity level according to predefined activity values for each workstation. As men-

tioned before, the recommended luminosity levels for our case study workstations its

about 500 lux. This value can have a tolerance value of ±10 lux. The algorithm idea

94

6.4. IMPLEMENTATION

is to calculate the difference between the current luminosity and the recommended lu-

minosity value. The difference between these values represents the degree of dimming.

However, we noted that the values received by the sensors installed in our case study are

not accurate. Although we take into account the idea proposed by Mohamaddoust et al.

algorithm to adapt luminosity, it was necessary to change it so that we can achieve stable

luminosity levels applicable to our case study. Therefore, instead of calculating the exact

value to affect each light bulb, we decided to dim the luminosity over time. This allowed

us to achieve the desired luminosity level and change the light bulb intensity with smooth

changes without causing drastic luminosity changes.

One of the particularities of this system is the adaptation of the luminosity in a specific

workstation. Therefore, the light sensors were positioned so that they can measure the

workstation luminosity. Since there is no direct map between light sensors and the light

bulbs it was necessary to adopt a mechanism to calculate the nearest light sources from

a light sensor. To calculate the nearest light bulb to a specific light sensor we used the

euclidean distance. This measures the distance in a straight line between two points.

Equation 6.1 is the general expression that calculates the distance between the points p e

q defined in an Euclidean n-space [Jai+99].

d(p,q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 (6.1)

In our case study, the devices coordinates are represented in a three-dimensional

space, therefore we can calculate the distance between two points through the simplified

expression presented in the equation 6.2.

d(p,q) =

√√√ 3∑
i=1

(pi − qi)2 (6.2)

Using this method to calculate the distance between two points, allowed us to know

what light bulbs need to be adapted when the luminosity level of a sensor is not within

the recommended values.

At the beginning of the automation module development process, there was no mech-

anism to handle presence detection. This dissertation does not focus on what equipments

should be chosen and their installation. Instead it focuses on how to handle the existing

equipment in order to achieve the desired solution. Therefore, we must adopt a mecha-

nism to handle presence detection taking advantage of the existing ones.

The first attempt results on using network mechanism to detect connected devices.

This was achieved using the Address Resolution Protocol (ARP) to get the cached list

that maps IP addresses to MAC addresses. Having the list of IP addresses, we filtered

it by MAC addresses in order to get the ones that represent occupants’ mobile devices

or portable computers. Lastly, to ensure each device was connected to the room local

network we emit a ping. This solution had some problems due to the existence of multiple

95

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

networks reached by the devices. Therefore, we could not guarantee that occupants’

devices were connected to our room local network.

The second attempt results on analysing the energy consumption designated for oc-

cupants’ portable computers. Note that in Table 6.4 the sockets 3-2, 4-3 and 5-2 are

designated to occupants’ portable computers. It was also mentioned that we asked the

occupants to connect their computers to the designated socket. This option is due to

the fact that we realise that it was possible to deduce presence detection by analysing

the energy consumption of a portable computer. Figure 6.12 represents an energy con-

sumption chart of a portable computer during a workday. Analysing this chart we can

see that before 9 am there was no energy consumption, and it starts registering energy

consumption when someone plug in its portable computer. It is also possible to see that

during this workday, the occupant leaves the room two times, represented by the time

intervals that there is no energy consumption. Even if the occupant leaves the room and

closes its computer and leaves it plugged in, the energy consumption drops drastically

but not to zero. So we consider that the occupant is not present if the power consumption

in the sockets is bellow 5 watts.

Figure 6.12: Power socket workday energy consumption example

We realised that this method is not accurate due to its limitations, for example, the

occupant uses his portable computer in battery mode. Therefore, it was developed an

external mechanism to read occupants’ identification card when they enter or leave the

room. These data records were compared to the method described before to ensure that

they match. In Chapter 7 we will explain how the identification card reader helped us to

minimise the limitations coming from the sockets energy reading method.

The automation module final solution was developed using NodeJS, and we start by

structure the required functionalities by different services. The adopted structure helps

in code organisation and it simplifies future modifications since it only requires to add

or modify service functionalities. The following list presents the components in our

automation module, describing each one and the functionalities provided.

96

6.4. IMPLEMENTATION

• Core: Main component of the automation module. It deals with the interaction

between the other components. It contains the fundamental control logic, the meth-

ods to analyse the data coming from the other components and decision making.

This module is also capable to adapt to new devices added to the platform, without

requiring to restart the module in case of modifications on the platform.

• Event Handler: Handles emitted events by the other components and it calls the

specified functions registered as listeners of the emitted events.

• Database Service: Responsible for querying the local database, in order to get

scheduled rules and the list of critical devices. These queries are executed when the

system starts and every time the Socket Service component receives a message from

the external Front-end module.

• Task Service: Responsible for rule schedule management. It creates, destroys tasks

with the rule specified properties, and it also emits the event to trigger the rule at

the specified time.

• Detection Service: Handles room presence detection. It evaluates the data to check

for occupant presence and what workstations have occupants working. It also eval-

uates the data to check if the room is empty or not.

• Devices Service: Responsible for devices management at execution time. It stores

each device state and properties in memory. Provides the functionalities to get

devices by a specific device type, and it calculates the nearest devices giving an

origin point.

• Platform Service: Deals with all the communications between the automation mod-

ule and the platform, providing the functionalities to get the platform devices list

and to get and set devices state. Additionally, to reduce the number of requests

made to the platform, it also contains the logic to determine if the change of state

is different from the current one.

• Socket Service: Provides a websocket service, creating a server in a specific port that

waits for new clients to connect. It is responsible for the communication between

the automation module and the Backup module, sending a message every time it

is necessary to backup the devices’ data. It also handles the communication with

the Front-end module, receiving a message every time a modification to scheduled

rules or device properties are made through the Front-end module.

• Notification Service: Responsible to send notifications to administrators or occu-

pants. At this moment it provides the functionalities to send alert emails to admin-

istrators when a specific event occurs in the room environment or in case of system

failure.

97

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

• Maintenance Service: Evaluates the devices state consulting the new states coming

from the platform and comparing them with the ones in memory. If the evaluating

method notes an unusual state or state not updated within 1 hour it notifies the

administrators through the Notification Service component.

6.4.2 Front-end

The Front-end module is composed of two sub-modules, the Web Application and

Data Visualisation. The Web Application module is used to complement the UI, enhanc-

ing the functionalities provided by the Platform. The Data Visualisation module provides

visualisation tools that are not accomplished by the Platform. Since the Platform falls

back on the functionalities provided for data visualisation and device customisation, it

arises the need to complement it with these two modules. The following subsections

describe what technologies were used in the implementation of these modules, and what

functionalities they provide.

6.4.2.1 Web Application

The Web Application module is composed of a Web Server and a UI. To allow modi-

fications and ensure this module maintainability, we choose to divide these components

into two. The Web Server interacts with the Platform and the local database, and the UI

handles the user interaction. Therefore, we choose to use technologies that support the

separation of the client and server components. Making these two components as inde-

pendent as possible, we can guarantee that future modifications have the least impact on

them.

The Web Server was developed using NodeJS, with the ExpressJS Framework. This

framework allows creating web applications following the model-view-controller pattern,

which goes according to the architectural design presented before, namely the compo-

nents diagram. Therefore, the Web Server contains the controllers and models required

to provide the expected functionalities. However, the view component is reached using a

separated component. The UI component was developed using React, a component-based

technology developed by Facebook, that allows the creation of interactive web applica-

tions [Fac17b]. Since React does not follow the model-view-controller pattern by default,

we choose to structure the application following the Flux Architecture, also provided by

Facebook. This pattern allows us to structure the application on the client side following

a model-view-controller style, dividing the components by different concepts. Figure 6.13

illustrates the data flow provided by the Flux Architecture. The Action represents the

interaction that triggers a specific event. The Dispatcher acts like a message hub, redirect-

ing the actions to the specific stores, that previously subscribe to the actions. The Store

represents the application state, instead of a single model it contains all the applications

models. It is also responsible to emit events about state change, that will be caught by the

subscribers. The view is the component used to display the application state. Note that

98

6.4. IMPLEMENTATION

the flux pattern also follows the publish-subscribe mechanism, where the stores triggered

the event message when the state as changed, and the view needs to update [Fac17a].

Figure 6.13: WebApp User Interface Flux Architecture [Fac17a])

Lastly, the UI was developed taking into account responsive guidelines, allowing the

Web Application to be accessed through any device. Appendix D presents some images

of the developed UI. As an extra we added an interface for support, that presents system

failure reports, and allows users to suggest modifications or corrections.

6.4.2.2 Data Visualisation

The Data Visualisation module was developed using the PHP language and provides

visualisation tools such as charts, average and total values. It was developed thinking on

future analyses, to provide more information that the Platform could not. This module

does not interact with the Platform directly since it uses offline data provided by the

Backup module, described in Section 6.4.3.

Figure 6.14 presents the UI developed for this module. As we can see it provides a

panel containing multiple options to select periods of time, the device and the respective

sensor. The chart, created using Google Chart API, is interactive and allows the user

to zoom or click to check a specific value. An advantage of this UI is that it lets the

user navigate through the days, or select the period of Automation on or off. Lastly, this

module also provides the functionality to download the chart as an image.

Figure 6.14: Data Visualisation User Interface Example

99

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

6.4.3 Backup

The Backup component is responsible to backup the devices’ state stored on the

platform between a given time range. It is useful for backing up the specific devices’ data

at a specific time. Since the Platform does not provide the functionalities to analyse the

data and create charts within 1 month, backup data also enables more useful visualisation

tools used by the data visualisation component.

The Backup component is a console application developed in NodeJS and it can be

executed with an argument that specifies the time range, or with no arguments and it

runs as a service. Running this component with an argument that specifies the time range,

will backup all the devices data between that range for a time period not greater than 24

hours. After the backup is completed the program terminates. Otherwise, running this

program without arguments, it will run as a service. When running as a service it creates

a communication path with the Automation module, through a websocket. This ensures

that the Automation module can trigger the backup script at a specific time every day

without the necessity to worry about this process. Figure 6.15 illustrates the interaction

diagram of the Backup module process while executing as a service.

Figure 6.15: Backup Module Overview Diagram

100

6.4. IMPLEMENTATION

As we can see the Automation module triggers the backup script, that starts by getting

the devices list from the Platform, and storing in a local file afterwards. Then, the Backup

module iterates through the devices and requests each device state to the Platform, and

stores all the devices states at the end of the iteration. Note that requiring all the device

state even if for a period of 24 hours, leads us with a large number of requests and data to

be handled. Therefore the Backup module ensures that there is a time interval between

each request and it makes sure that for large periods it divides into smaller time intervals

resulting in a reduced amount of data. For example, backing up the devices state in a

period of 24 hours, the Backup module divides into time frames of 1 hour. At the end

of the backup process, it notifies the Automation module so that it can notify the users

about the completed backup. The output of this process consists of two CSV files, one

that contains the devices with their properties, exemplified in Table 6.5, and the other

with the device states between the date range, exemplified in Table 6.6.

Table 6.5: Backup Module - Devices List example file. Legend: Id - device unique identi-
fier. Type - identifier of the device type. Name - description of the device name. (X,Y,Z) -
coordinates in meters relative to the room.

Id Type Name X Y Z

1 estimotebeacon Workstation 8 5.500 2.060 0.750

2 smartlights Workstation 8 5.83 2.53 1.20

Table 6.6: Backup Module - Devices State example file. Legend: Id - device unique
identifier. Type - identifier of the device type. Name - description of the device name.
Sensor - description of the sensor name. Value - current value of the sensor. Timestamp -
date and time of the day of then the state changed occur in milliseconds.

Id Type Name Sensor Value Timestamp

1 estimotebeacon Workstation 8 lightSensor 51.84 1501543563114

2 smartlights Workstation 8 powerSensor 1 1501545003697

6.4.4 Devices Tool

The Devices Tool component is responsible to automate the process of adding devices

to the Platform. To add a new device to the Platform it is required to do it through a

form on the Platform. Once the device is added, the Platform provides a set of files for

download, that contains the device credentials used to authenticate the device with the

Platform. Having a large number of devices causes this task to be time-consuming. There-

fore, this module automates this process by adding the devices given a pre-configured

file in CSV, and downloads the specific device credential files.

The Devices Tool is a console application developed in NodeJS and it is executed with

only one argument that specifies the path to the file to be used. The file must be filled

101

CHAPTER 6. CONCEPTUALISATION AND IMPLEMENTATION

following a template. Figure 6.16 illustrates the Device Tool process interaction with the

Platform module.

Figure 6.16: Device Tool Overview Diagram

As we can see the Device Tool component starts by reading the devices’ file, exempli-

fied in Table 6.7 from the specified path and parses the data. Then, it iterates each device

and requests the Platform module to add a new device with the properties read from the

file. The Platform response contains a buffer data that must the read until the last frame.

Afterwards, the Device Tool writes the data in the buffer to a local file. As a result of

this process, we can see the devices added to the Platform and a set of configuration files

downloaded, exemplified in Table 6.8, for each device added.

Table 6.7: Devices Tool - Input example file. Legend: Name - description of the device
name. Type - identifier of the device type. (X,Y,Z) - coordinates in meters relative to the
room. LId - unique identifier for smartlights. BId - unique identifier for estimotebeacons.
The last two values are unique for each type of device. Furthermore they will be used by
the Platform to communicate with the physical devices.

Name Type X Y Z LId BId

Workstation 8 estimotebeacon5.50 2.06 0.75 - QW

Workstation 8 smartlights 5.83 2.53 1.20 AF -

102

6.5. SUMMARY

Table 6.8: Devices Tool - Output example file

Name Description

server-name Address of the server endpoint

deviceId Unique identifier of the device

device-name Description of the device name

mqtt-sub-topic Name of the MQTT topic for the device to subscribe

mqtt-pub-topic Name of the MQTT topic for the device to publish

mqtt-ep Address of the MQTT endpoint

auth-token Token used for device authentication over MQTTS

refresh-token Token used for refresh the new token when the current expires

6.5 Summary

In this Chapter, the complete process from the conceptualisation to the implementa-

tion phases of the final system was presented. We wanted to present all the phases and

justifications of our choices. Although this process was based on our concrete case study,

we believe that the result of this process can be used in future applications, since all the

design and architecture of the system was based on performance, maintainability and

scalability requirements. As a result of this process we have:

• A rigorous requirements analysis of the functional and non-functional requirements

the system has to guarantee;

• A system architecture design justified through the analysis of requirements and

different views;

• A study of recommended comfort values based on similar case studies, medical

studies or standards, for a place with the characteristics of our case study;

• A description of the control rules and mechanisms used;

• A description of the components and their interaction resulted from the implemen-

tation phase.

103

C
h
a
p
t
e
r

7
Evaluation and Results

This Chapter presents the evaluation of our work in several dimensions. It
starts by presenting the results of the questionnaire conducted to collect the opinion
of the occupants of the case study (section 7.1). Then, it presents the analysis of the
temperature and brightness data (section 7.2); the data regarding the mechanism
used to detect presence and the events associated with the presence of occupants
(section 7.3); the before and after energy consumptions and associated costs (sec-
tion 7.4); and lastly, it presents the results of the questionnaire conducted that
evaluates the occupants’ opinions about the system (section 7.5).

7.1 Questionnaire

At the beginning of the requirements analysis phase, we made a questionnaire to the

office occupants. The questionnaire was attended by 5 occupants and its goal was to

understand how satisfied the occupants were with the office and to understand if they

would like to get suggestions from the system to be developed in order to improve their

satisfaction level.

One of the questions asked what is the physical aspect they consider the most impor-

tant in a workplace. The presented options were Comfortable temperature, Freedom

from noise, Good luminosity and Good ventilation. Figure 7.1 presents the results of

this question. We can observe that a comfortable temperature and freedom from noise

are considered by the occupants the most important aspects of the workplace.

To complement the above question, the questionnaire presented another set of ques-

tions to understand the level of satisfaction for each physical aspect. Therefore, the

occupants had to classify the temperature, luminosity, noise and ventilation within the

ranks Very dissatisfied, Dissatisfied, Satisfied and Very satisfied. Figures 7.2 to 7.5

105

CHAPTER 7. EVALUATION AND RESULTS

80%
20%

Comfortable temperature
Freedom from noise

Figure 7.1: Important physical aspects

present the satisfaction levels for these variables. We can observe that the office occu-

pants are satisfied with the current levels. However, one of the goals of this system was to

control the office devices in order to improve the occupants’ comfort. With these results,

we realise that, since the occupants are satisfied with the current levels provided by the

office environment, our system should be able to maintain these levels in a more effective

way.

60%

40%

Satisfied
Very satisfied

Figure 7.2: Temperature satisfaction level

40%

60%

Satisfied
Very satisfied

Figure 7.3: Noise satisfaction level

60%

40%

Satisfied
Very satisfied

Figure 7.4: Luminosity satisfaction level

90%
10%

Satisfied
Very satisfied

Figure 7.5: Ventilation satisfaction level

Although the occupants were satisfied with the office environment levels, there are

some key aspects that need an improvement. Note in Figure 7.6 that 60% of the occupants

answered that prefer to work with natural light and 40% prefer artificial light or a mix of

the two light sources. In this situation, we have to evaluate individual preferences of each

occupant, in order to adjust the system according to their needs. However, the system by

default must adopt the least energy cost method.

60%

20%
20%

Natural
Artificial
Both

Figure 7.6: Preferable light source

After evaluating the satisfaction levels provided by the office environment, we asked

the occupants what were the state of some devices when they arrived at work in the

morning. In Figure 7.7 we can observe that 80% of the occupants find the lights turned

on when they arrive at work in the morning. This is an important issue the system should

106

7.1. QUESTIONNAIRE

handle because lights should be off as much as possible. We also asked occupants how

they find the air condition system when they arrive at work in the morning. In Figure 7.8

we can observe that all the occupants answer that the air condition is turned off when

they arrive. In a future case study, it will be interesting to predict occupants arrival in

order to turn on the air condition system to provide a comfortable temperature when

arriving at work.

80%
20%

On
Off

Figure 7.7: Lights state at morning

100%
Off

Figure 7.8: Air condition system state at
morning

In the questionnaire we asked the occupants if they would like to get suggestions for

some actions, to help the system improve their comfort or to reduce energy consumption

costs. We decided to use notifications to suggest the occupants of some actions since our

case study does not have the mechanism to automatically control the windows. So we

asked the occupants if they would like to get notifications to open or close the windows in

order to improve the office environment comfort levels. As we can observe in Figure 7.9,

all the occupants answered yes. Thus, we had the permission to enable the system to

make suggestions to the occupants in order to take advantage of natural resources and

turn off office devices.

100%
Yes

Figure 7.9: Notifications to open/close windows

Lastly, the office has a frequently used coffee machine. Thus, we had the interest to

understand if the occupants would like the coffee machine to be turned on when they

arrive at the workplace. In Figure 7.10 we can observe that 90% of the occupants would

like the coffee machine to be turned on, and we noticed that the occupants who answered

that they do not want the coffee machine to be turned on, actually do not drink coffee at

all. So it is an irrelevant improvement for these occupants.

80%
20%

Yes
No

Figure 7.10: Coffee machine turned on at morning

107

CHAPTER 7. EVALUATION AND RESULTS

The questionnaire results were helpful in the earlier phase of the system requirements

analysis. The system design, architecture and implementation were based on the results

obtained from this questionnaire. However, not all aspects were met due to the inability

to accommodate all the required equipment. Nevertheless, the system architecture is

prepared so that later we can integrate all the missing equipment to help us reach all

these aspects. In short, we observe that in general the occupants are satisfied with the

current comfort conditions provided by the office environment, although there are some

aspects relative to temperature and luminosity that can be improved by adopting methods

to predict occupants behaviour or by making intelligent suggestions.

7.2 Environment luminosity and temperature

After analysing the occupants’ opinions, we proceed to the analysis of sensors regis-

tered data about the office environment. Once again this analysis helped us to understand

that some key aspects need some improvement. Figure 7.11 presents a luminosity chart

from a workstation placed near the window, for a period of 14 days. Note that almost

every day the sensor presents luminosity levels too high for a workstation, being possible

to observe values between 2000 to 7000 lux.

Figure 7.11: Luminosity level of a work station near the window

Decreasing the chart scale to one day, represented in Figure 7.12, we observe that

these high values happen between 18:00h and 20:00h and present sudden changes in

luminosity levels. This behaviour is caused by the outdoor luminosity coming from the

sun light. In this specific case, it is important to suggest the occupant to close the window

when this event is verified. For comparison, Figure 7.13 presents the luminosity level of

one day in a workstation away from the window. In this case, we can observe that the

luminosity level remains stable for long periods of time, and the variations are gradual

over time.

108

7.2. ENVIRONMENT LUMINOSITY AND TEMPERATURE

Figure 7.12: Luminosity level of a work station near the window over a day

Figure 7.13: Luminosity level of a work station away from the window over a day

We can observe a repetition pattern in these events as they are caused by natural

elements, in this case the sun. Since the sun is a source of light and heat it causes differ-

ent effects on workstations temperature located at different distances from the windows.

In this case we, can observe that the workstation near the window reaches higher and

lower temperatures comparing to the workstation away from the window (Figures 7.14

and 7.15). Figure 7.14 presents a chart of a workstation temperature level near the win-

dow over a day and Figure 7.15 of one away from the window. We can observe that in both

workstations the temperature levels along the day has approximately the same gradient.

However, the temperature levels reached are very different. In the workstation near the

window, the maximum temperature was 28.06ºC, the minimum 22.81ºC and the aver-

age 25.43ºC. In the workstation away from the window, the maximum temperature was

26.13ºC, the minimum 23.5ºC and the average 24.81ºC. Therefore, there is a difference

of +1.93ºC in relation to the maximum temperature, -0.69ºC to the minimum and +0.62

to the average.

Analysing the temperature levels records of these stations, we can observe that these

109

CHAPTER 7. EVALUATION AND RESULTS

Figure 7.14: Temperature level of a work station near the window over a day

Figure 7.15: Temperature level of a work station away from the window over a day

differences in temperature levels are maintained throughout the days.

7.3 Presence detection

We intend to show that the mechanism used for presence detection described in Chap-

ter 6 can determine presence despite its limitations. To show that the method of reading

the energy consumption from the sockets used by the personal computers of each oc-

cupant can be used as a presence detection mechanism, the occupants were asked to

pass their access card on a card reader every time they enter or leave the office. These

data were recorded for comparison with the readings of the sockets. However, we realise

that none of these methods is perfect, as both have their limitations. The socket energy

consumption may not represent the absence of the occupant if he/she leaves the office

with the computer turned on. The card reader mechanism is also not perfect as it is easy

for an occupant to forget to pass the card in the reader. However, combining these two

methods we realise that they complement each other. Additionally, it is important to

110

7.3. PRESENCE DETECTION

mention that it would be worthwhile to adopt other mechanisms for presence detection.

Table 7.1 shows the records about an occupant entering or leaving the office.

Table 7.1: Occupant card reader records

Identifier Date

oc100 2017-09-13 11:08

oc100 2017-09-13 13:11

oc100 2017-09-13 16:16

To further analyse the behaviour of the occupant, we present the energy consumption

of the socket designated to the occupant’s portable computer. Figure 7.16 presents a

chart of the occupant’s portable computer energy consumption. In this first example,

we can see that the first record of the occupant was on September 13 at 11:08h. In the

consumption chart the first record was at 11:08:46h, that is after 46 seconds the card has

been recorded. We can conclude that this occupant arrived at the workplace at 11:08h

on September 13. In the analysis of the table and the chart, we faced an interesting

behaviour. There is a card record at 13:11h, but from the chart, we can see that energy

consumption continues until 14:22h. To understand the reason of this, we decided to

analyse the energy consumption of the monitor used by this occupant.

Figure 7.16: Occupant portable computer energy consumption

Figure 7.17 presents a chart of the occupant’s monitor energy consumption. We can

observe that the first record was at 11:15h. Compared to the occupant’s portable computer

chart, we can observe that both continue to record energy after the time recorded by the

card reader. Additionally, in both energy consumption charts we can see that they begin

to record energy consumption around 14:30h. This leads us to think the occupant left

the office at the time recorded 13:13h, leaving its portable computer and the monitor

turned on. The portable computer and monitor used by this occupant have entered sleep

111

CHAPTER 7. EVALUATION AND RESULTS

mode due to their inactivity. Both returned to record energy at 14.30h, but there was no

record of occupant’s card reader. In this case, the occupant may not have passed the card

on the card reader when he/she returned to the office. Scenarios like these need a more

rigorous analysis, to understand the real behaviour of the occupants. Finally, we can see

in the energy consumption charts that the portable computer and monitor stop recording

energy consumption approximately at 16:06h. Later a reading of the occupant’s card was

registered at 16:16h. As there are no more card and energy consumption records until

the end of the day, we can conclude that in this case, the occupant left the workplace 10

minutes after turning off his equipment.

Figure 7.17: Occupant monitor energy consumption

Analysing individually the energy consumption records of the portable computer

and monitors’ sockets of the other occupants and the card records, we notice that these

events happen regularly. However, it is easy to evaluate the first entry of an occupant

in the workplace, as well the last exit. It is important to mention the importance of

adopting various mechanisms for presence detection. The two approaches used helped

us to realise that there are several possible scenarios where the system may not correctly

detect presence.

After analysing the data regarding occupants preferences, the environment of the case

study and the presence detection events, we can now describe how the system reacts to

these events. In this specific case, we present the behaviour of the light state during a work

day, affected by the detection of an occupant in the workplace. Figure 7.18 presents the

energy consumption of an occupant’s portable computer during its workday. Observing

the chart behaviour we see that around 9:30h happens the first energy consumption

record. Between 12:51h and 13:24h there is a drop in energy consumption, and since is is

not a zero consumption, we can infer that there is a computer connected in sleep mode.

Lastly, around 14:30h until the end of the day there is no more energy consumption

recorded.

Now we will see the behaviour of the light state during these energy consumption

112

7.3. PRESENCE DETECTION

changes. We can observe in Figure 7.19 that the light was turned off until around 9.50h.

However, due to presence detected at 9.30h, the light turned on. On the other hand, we

can observe that in the absence of energy consumption between 12:51h and 13:24h, the

light turned off. Lastly, the light remained off from 14.38h until the end of the day.

Figure 7.18: Occupant presence detection through energy consumption

Figure 7.19: Light power state behaviour

Finally, we analyse the behaviour of light brightness state against the luminosity levels

present in a workstation. It is possible to observe in Figure 7.20 that the luminosity level

was below 45 until 10.15h. That is, when the occupant was detected in the office, the

current luminosity level was below 45 lux and when the light was turned on at 9.50h

the light brightness was set to 0.3 as we can observe in Figure 7.21. However, when the

luminosity level reached levels greater than 50 lux at 10.16h a decrease to 0.2 in light

brightness can be observed at 10.18h. Later at 10:52h the luminosity levels were bellow 45

lux, therefore it is possible to observe an increase of the light brightness to 0.3. Note that

the luminosity level remained less than 45 lux, so the light brightness was not adapted.

Lastly, around 15:15h, the luminosity level reached values higher than 50 lux, in this

case there was no light brightness adjustment because as we saw in the previous chart

the occupant left the office at around 14.30h and the light was already off.

113

CHAPTER 7. EVALUATION AND RESULTS

Figure 7.20: Luminosity level of a work station

Figure 7.21: Light brightness state behaviour

We recall that as mentioned in Chapter 6 the recommend luminosity levels for a place

with the characteristics of our case study is about 500 lux, and we also mentioned that

the luminosity sensors used are not the most accurate ones, because they are too sensitive

to light changes. For this reason, we had to adapt the values to our case study. However,

it is important to analyse the system behaviour according to the environment variables

and presence detection changes. Thus, we can observe that the system is acting according

to the rules for which it was defined too.

114

7.4. ENERGY CONSUMPTION

7.4 Energy Consumption

7.4.1 Lights

In the previous section, we describe how the system adapts the state of the lights

according to the detection of the occupants and also to the current luminosity in the

office. The system rule of adapting the brightness state or turning on and off a light

implies a reduction of energy, due to the fact that the light is turned off whenever the

occupant is not in the workstation and when the outside luminosity is sufficient to ensure

an adequate level. It is interesting to show the difference that exists in the behaviour of a

light before and after the of the system. Figure 7.22 shows the status of two lights during

a 14 day period without automation.

Figure 7.22: Light 1 and Light 2 power state without automation

Note that the lights were always on, but in Figure 7.23 we can observe that Light 1

brightness was 0.15 and in Figure 7.24 the Light 2 brightness was between 0.1 and 0.2.

The lights need to keep a constant Wi-Fi connection for communication with the system.

The specifications of the light on the manufacturer website, describe that the light has a

consumption of 0.7watts in standby mode. Additionally, a light turned off state also has

a consumption of 0.7watts and it has a maximum of 11watts [Lif].

Figure 7.23: Light 1 brightness state without automation

115

CHAPTER 7. EVALUATION AND RESULTS

Figure 7.24: Light 2 brightness state without automation

Figure 7.25, 7.26, 7.27 and 7.28 show the above lights state in a 14 day period but

with automation. It is possible to observe that both lights were off most of the time in

comparison with the previous charts. It is also interesting to note that there are differences

in the power and brightness values between these two lights. We notice that Light 1 was

turned on more often than Light 2. This happen, due to the fact that Light 1 is placed in a

workstation occupied more frequently during this period. Additionally, it is also possible

to see that Light 1 has lower brightness values than Light 2. This is due to the fact that the

Light 1 is located on a workstation closer to the window that receives higher luminosity

levels from the outside.

It is possible to notice that there was a big change in the number of hours these

lights were using energy. The used lights have a minimum energy consumption, but it

is important to determine the reduction of hours in a scenario with automation. As we

saw in Figure 7.22 in the 14 days period without automation both lights were always

on and a minimum brightness level for approximately 336 hours. In Figure 7.25 we can

observe Light 1 usage hours reduced to 61 hours. In Figure 7.26 we can observe Light 2

usage hours reduced to 18 hours in a period of 14 days. This means that the Light 1 had

a reduction of 81.84% and Light 2 of 94.64% in usage hours.

Figure 7.25: Light 1 power state with automation

116

7.4. ENERGY CONSUMPTION

Figure 7.26: Light 2 power state with automation

Figure 7.27: Light 1 brightness state with automation

Figure 7.28: Light 2 brightness state with automation

7.4.2 Monitor

Now we will show the difference of a monitor state present in the office with and

without automation. In Figure 7.29 we can observe the monitor state during a 14 day

period without automation. The monitor has an energy consumption while active and

117

CHAPTER 7. EVALUATION AND RESULTS

standby. Thus, it is possible to reduce the monitor energy consumption by turning off
its socket. In Figure 7.30 we can observe a reduction in monitor usage hours when the

automation is on.

Figure 7.29: Monitor energy usage without automation

Figure 7.30: Monitor energy usage with automation

It was possible to observe a reduction in the number of hours the monitor was using

the energy of approximately 309 hours to 132 hours, achieving a 57.28% reduction in

monitor usage hours.

7.4.3 Coffee Machine

In the office, there is a coffee machine and we notice that it is the equipment that

consumes most energy. We also observed that the coffee machine is left turned on many

times during the day, as we can see in Figure 7.31. In Figure 7.32 we can observe a

reduction in the energy usage by coffee machine resulted from turning off the coffee

machine socket every day at evening when the office is empty.

To determine the usage periods of the coffee machine we had to interleave the data

between its socket power state and energy consumption. This was necessary in order to

118

7.4. ENERGY CONSUMPTION

Figure 7.31: Coffee machine energy usage without automation

Figure 7.32: Coffee machine energy usage with automation

evaluate the number of hours the coffee machine was working in the scenario, without

automation. In the scenario with automation the coffee machine was always on but the

system changes its state by turning on or off the socket. It was possible to observe a

reduction in the number of hours the coffee machine is using energy of approximately

195 hours to 75 hours, achieving a 61.54% reduction in coffee machine usage hours.

7.4.4 Other equipment

There are other equipment in the office that can not be turned off by the system in

order to contribute to a reduction of energy consumption. In this case, the aquarium and

the agents used to communicate with the physical devices. Therefore, for both automation

scenarios we can observe that every socket used by these devices was turned on.

7.4.5 Energy cost

One key aspect for someone who wants to implement an IoT solution is to know the

associated costs and if it is worth it. We observe in the above sections that in fact the

system with simple rules can actually reduce the usage time of the office equipment.

119

CHAPTER 7. EVALUATION AND RESULTS

In this section, we present the impact on the energy consumption cost by reducing the

equipment usage time.

Since we could not determine what plans and consumption rates were applied in our

case study, we had to simulate using approximate values for kWh cost. We start analysing

the existing plans and taxes and we realise that there are several options and the costs

can be different at different times of the day [Edp]. To simplify the analysis we decided

to present results considering a plan where the kWh cost is constant. In this case the 24

hours are divided into a single fraction of time, Simple with a cost of 0.1652(euro/kWh).

The next step is to determine the time interval that the equipment has been turned on.

Thus, taking into account the usage hours of each equipment, presented in the previous

section, it is possible to calculate their energy consumption. The energy in kilowatt-hours

per day E(kWh/day), represented in equation 7.1, is equal to the power P in watts (W)

times the number of usage hours per day t divided by 1000 watts per kilowatt.

E(kWh/day) = P (W)× t(h/day)/1000(W/kW) (7.1)

After we determine the energy consumption per day of each device, it is possible to

calculate their energy cost. The energy cost per day in euros Cost(euro/day), represented

in equation 7.2, is equal to the energy consumption per day E(kWh/day) times the energy

cost of 1kWh in cents/kWh divided by 100 cents per euro.

Cost(euro/day) = E(kWh/day)×Cost(cents/kWh)/100(cents/euro) (7.2)

For example, the coffee machine was turned on 195 hours in a period of 14 days in

the scenario without automation. This results in an average usage of 13.93 hours per day.

Additionally, from Figure 7.31 we can observe that the coffee machine has an average

power of 1100watts. Therefore, its energy consumption is 15.323(kWh/day) resulting in

an energy cost of 2.53(euro/day), using the Simple plan with rate of 0.1652(euro/kWh).

In the scenario with automation, the coffee machine was turned on 75 hours. This re-

sults in an average usage of 5.36 hours per day. Therefore, its energy consumption is

5.896(kWh/day) resulting in an energy cost of 0.974(euro/day). It is possible to observe

that we achieve a 61.50% reduction in coffee machine energy cost per day.

Table 7.2 presents the calculated cost per day for the rest of the equipment. To better

understand the impact of the costs, we presented the cost per month. Note that the

Monitor 2 has two types of usage hours, ha and hb. This is because the Monitor 2 has an

average of 27watts while operating and an average of 1watts in standby. In the scenario

with automation, this standby mode does not exist because the monitor’s socket is turned

off. Figure 7.33, Figure 7.34 and 7.35 illustrates the differences between the devices usage

hours and energy cost per month.

Note that Table 7.2 does not present the energy costs for the agents used, due to

the fact they are part of the solution itself. The occupants’ portable computers and the

aquarium are also not presented in the table, due to the fact that it just presents the cost

120

7.4. ENERGY CONSUMPTION

Table 7.2: Equipment energy consumption and cost per day. Legend: CM - Coffee Ma-
chine, M1 - Monitor 1, M2 - Monitor 2, L1 - Light 1, L2 - Light 2, AT. Off - Average hours
per day without automation, AT. On - Average hours per day with automation, ∗ Values
explained later.

CM M1 M2 L1 L2

AT. Off 13.93h 22.07h 6ho + 18hs 24h 24h

Cost per day 2.53€∗ 0.098€ 0.029€ 0.04€ 0.04€

Cost per month 75.94€∗ 2.95€ 0.86€ 1.30€ 1.30€

AT. On 5.36h 9.43h 6h 4.4h 4.4h

Cost per day 0.974€∗ 0.042€ 0.026€ 0.007€ 0.007€

Cost per month 29.22€∗ 1.26€ 0.77€ 0.24€ 0.24€

Figure 7.33: Devices daily usage hours with/without automation

Figure 7.34: Devices energy cost per month with/without automation

of the equipment that the system can control. It is also possible to observe that the coffee

machine has a high energy cost per day. This happens because the coffee machine has

an electrical resistance that heats over time. Thus, the coffee machine does not have a

121

CHAPTER 7. EVALUATION AND RESULTS

Figure 7.35: Coffee machine energy cost per month with/without automation

constant power consumption and it is possible to observe periods of consumption peaks

and other periods with lower values. However, equation 7.1 to calculate the energy

consumption of a device uses the device power in watts and the period of time the device

is consuming energy. In a more realist scenario, to calculate the exact value, it is required

to measure and calculate its cost over the different energy consumption periods.

The total energy cost for a month with the equipment presented in the table for the

scenario without automation results in an energy consumption cost of 82.35€. After this

analysis we can observe that is possible to reduce the energy costs to 31.73€, by reducing

the equipment number of usage hours.

To understand if the solution is worth it, we have to take into account the purchase

cost and calculate the energetic cost of the installed equipment. Table 7.3 presents the

required equipment to be installed in the office. Additionally, we have to calculate the

energy consumption cost for the Raspberries taking into account that they will be running

24 hours a day.

Table 7.3: Solution equipment list

Name Quantity Price Power

Raspberry Pi 3 43.98€ 2watts

LifX Light 2 58.93€ 11watts

Outlets 4 85.60€ -

Estimote Beacon Pack 84.20€ -

Total - 676.4€ -

Thus, three Raspberries operating 24 hours a day, results in an energy consumption

cost per month of 0.7134€. Note that the energy cost per month of the scenario without

automation is 82.35€ and the scenario with automation reduce this cost per month to

122

7.5. OCCUPANTS’ OPINION

31.73€. To this cost we need to add the energy cost of the 3 Raspberries that results in an

energy consumption cost per month of 32.44€, having a difference of 49.91€ comparing

with the cost of scenario without automation. Thus, the initial cost to ensure the required

equipment for this scenario was 676.4€meaning that at the end of 13.5 months we have

this saved amount (represented in Figure 7.36).

Figure 7.36: Month energy cost with/without automation

Notice that in these scenarios were involved some devices of the room and summing

the energy costs of the occupants’ computers or the aquarium, for example, will not affect

the above result since the system does not control any of them. However, we calculate

an average energy consumption cost for the rest of the devices to understand that over

time the initial investment is worth it. The values are mere estimates and should not

be taken strictly. This would make sense in a controlled scenario with these devices

keeping these consumption costs for a significant period of time. A real case scenario is

subject to many variables, such as the use of more devices, the occupants’ behaviour, the

environment temperature and luminosity that change over different seasons. Thus, the

presented analysis is according to this case study in specific. Therefore, another scenario

with other devices and other variables can have different results.

7.5 Occupants’ opinion

At the end of this work, we did another questionnaire to the occupants that par-

ticipated in the first one. This questionnaire was intended to evaluate the occupants’

opinions regarding the system during the period in which it was controlling the office

equipment. The questionnaire can be found in Appendix B.

In Figure 7.7 regarding the question about the lights state at morning from the first

questionnaire, we can observe that the majority of occupants answered that the lights

were turned on when they arrive at the office. On the other hand, in Figure 7.37 first bar,

we can observe that in the period with automation the occupants answered that the lights

where turned off when they arrive at the office at morning. We can further strengthen

123

CHAPTER 7. EVALUATION AND RESULTS

this point if we observe the chart from Figure 7.22, where the lights were always turned

on during the period without automation. Additionally, in the period with automation,

Figure 7.19, the lights were turned on taking into consideration the occupants presence.

In second and third bars from Figure 7.37 regarding the perception of the occupants

on the light changes and if these caused any discomfort, we can observe that although the

occupants were aware of these changes, they did not cause any discomfort to them. This

is due to the fact that the changes in the lights state were made gradually over time and

not instantaneously.

In Figure 7.10 regarding the first questionnaire, we can observe that the occupants

would like to have the coffee machine turned on when they arrive at the office. In order

to verify if this requirement was achieved, we asked the occupants in the second ques-

tionnaire what was the state of the coffee machine when they arrive at the office. As we

can observe in Figure 7.37 fourth bar, all the occupants answered that the coffee machine

was turned on. However, in Figure 7.31, we can perceive that in the period without

automation the coffee machine was turned on most of the time. Thus, this requirement

was fulfilled but more efficiently since in the period with automation the coffee machine

usage hours were reduced. Then, it was important to evaluate if there was any moment

where the office was out of energy or lights and if the occupants witnessed any moment

where the outlets were inoperable. This is an important question due to the fact that

one of the control rules is to turn off all the lights and uncritical outlets when the office

is empty. Thus, from Figure 7.37 fifth bar, we can observe that none of the occupants

witnessed this event.

Figure 7.37: Occupant’s opinion

Lastly, we wanted to know the general opinion of the office occupants regarding the

system behaviour. In Figure 7.38 first bar, we can observe that the control of equipment

made by the system did not cause any negative impact or discomfort to the occupants. On

the other hand, in Figure 7.38 second bar, we can observe that all the occupants answered

that they did not felt any improvement in their comfort. We do not think this is a negative

result since as we can observe in the results from the first questionnaire (Figure 7.2 to

Figure 7.5), the occupants in a general manner were already satisfied with the comfort

124

7.6. SUMMARY

levels existent in the office. However, we can consider positive the fact that an initial

version of the system does not cause any negative impact on the occupants’ comfort and

productivity, but still in a very efficient way.

Figure 7.38: System overall rating

7.6 Summary

The survey carried out by the office occupants allowed us to establish the function-

alities that the system had to guarantee. The analysis of the devices’ data allowed us to

observe that there are several aspects where the system can act to ensure a better comfort

in the office and also to reduce the energy consumption. It is also possible to observe

behaviours coming from events of natural cause and from the office utilisation. Later,

this data can be used, adopting learning techniques, in order to apply rules for energy

consumption and increase the comfort in the office environment. We observed that there

are several periods of time where the devices consume energy unnecessarily. Thus, it is

possible to reduce these periods by applying control rules. In the final section of this

Chapter, we presented a costs simulation. This simulation shows us how to determine

if it is worth an investment to build such systems. The example presented is applied to

a small number of devices and to a controlled case study, and for a real case it would

be necessary to take into consideration many other variables. However, the key idea to

keep from this analysis is that the system can actually reduce the number of hours the

devices consume energy, even using simple rules, and that implies a reduction of energy

consumption.

125

C
h
a
p
t
e
r

8
Conclusion

This Chapter closes the dissertation by summarising the results (section 8.1
and section 8.2), while highlighting its limitations (section 8.3) and pointing to
future directions of this research (section 8.4).

8.1 Summary

We have started our work by departing from the need to implement an architecture

to support IoT in BAS that could fit the needs of our case study of Office Automation - the

SmartLab. We learnt in the process, thanks to a profound comparative analysis, that a new

implementation from scratch would not bring much more advantages than the existing

architectures. The existing platforms had, as expected, standard features, however, we

have identified some key aspects related to the constraints of our case study that were

considerably different. Our process was to start an analysis to understand which main

features an IoT platform should provide. Then, we searched for different platforms, and

we noticed that they presented different architectures and functionalities.

Due to the wide variety and complexity (lack of support, documentation, training,

instability) of existing platforms and their differences, we decided to narrow down our

search and focus only on the platforms that could provide a well-defined architecture and

well documented regarding the description of their characteristics. As a consequence, as a

deliverable of our work, we presented a complete analysis of the key aspects and features

that an IoT platform should provide and a comparative study of their architectures and

features provided.

The conducted analysis highlighted the fact that some differences in the platform

would significantly influence the choice of the platform to the point that we decided to

select two platforms. As explained in this document, the selection criteria led to the

127

CHAPTER 8. CONCLUSION

selection of two platforms that presented similar features and different development and

deployment environments.

In the course of our work, we came to the need to answer to the question of how well

each of the chosen platforms could deal with the integration of existing devices to deploy

the solution - an IoT based BAS. Therefore, we decided to implement a minimum set of

functionalities using both platforms and provided a detailed description, in this docu-

ment, of the differences found and how these differences could influence tradeoffs both

due to the case study and the chosen platform. The implementations brought awareness

about factors that affect effort and cost that can influence the decision for someone who

wants to build an IoT solution. Thus, after our experience using two different approaches,

we present the aspects we consider fundamental when choosing a platform.

The second goal of this dissertation was to develop a system concerned with min-

imising energy consumption costs taking into account the comfort of the occupants in a

specific and controlled case study - the SmartLab. We started with the requirements anal-

ysis to understand what functional and non-functional requirements the system should

ensure. To assess the level of satisfaction of the office’s occupants, before (no automation)

and after the runtime of the implemented platforms, and how, in their perspective, the

system affected their comfort, we proceeded with an initial survey, by means of subject

questionnaires. In this way, we wanted to understand whether the occupants were satis-

fied with the office comfort conditions and what features they would like the system to

provide. After analysing the questionnaire results, we noticed that in general the occu-

pants were satisfied with the comfort conditions of the office. Therefore, the new system

had to be able to keep this level of satisfaction but in a more efficient way.

The next step was to correctly profile the stakeholders that interacted with the office

and what requirements they expected from it. Thus, we elaborated a set of user stories

that reflected the requirements expected by the stakeholders to validate with them. We

took care not to restrict ourselves to define only the functionalities about comfort and

automation. Therefore, we described the expected functionalities of an IoT solution,

namely for devices, users and applications management. The main reason for this de-

cision is the fact that a description of the expected requirements for configuration and

management may influence in choosing a platform. The next step was to describe the

functional and non-functional requirements of the system. In the functional require-

ments, we filtered those that our final system should focus on and we excluded those that

were already provided by the platforms. In the non-functional requirements, we chose

those that we consider most important considering the key functionalities required by

the occupants and our case study. Finally, we designed the system architecture based on

the styles and views that went according to the analysis and treatment of the functional

and non-functional requirements.

In the implementation phase, it was necessary to evaluate the comfort values, recom-

mended by authorities, medical studies or standards, for a place with the characteristics

128

8.2. CONTRIBUTIONS

of our case study and the methods available for control and automation of these vari-

ables. Our analysis helped us to understand which methods we should adopt in the

functionalities of our system and what mechanisms could simplify their implementation.

At the beginning of the implementation phase, there was an extended period of time

for collecting data about the devices installed in the office to better understand the tech-

nology setup, office behaviour as a system, and relevance of the extracted data, allowing

us to tune the adequate frequency of data collection among other aspects. The data col-

lected without automation would serve as a baseline for future comparison with data with

automation. At the end of the implementation phase of the chosen platforms, we made

several tests to ensure the system still met the initial requirements. Lastly, we collected

data about the same devices for a long period, but this time with automation with control

rules. To understand if the system had an impact and meet the defined rules we analysed

and compared the data provided from both periods. The data relative to phase without

automation, showed us that there were several hours that the devices consumed energy

when it was not necessary. The control rules implemented at this phase are superficial but

have managed to significantly reduce the number of hours that the devices are consuming

energy. Therefore, it was possible to observe a reduction in the energy consumption.

The results obtained helped us to realise that in fact there are several aspects that can

be improved in order to reduce energy consumption and maintain occupant comfort. An

initial investment in the implementation of these systems may involve different types of

equipment and development effort to achieve the desired solution. However, in the long

term it is worth the effort and initial investment on these systems since they can actually

reduce the energy consumption and guarantee good conditions for the office occupants.

Lastly, we wanted to know the general opinion of the office occupants regarding

the system behaviour. Thus, we proceeded with a second survey. After analysing the

questionnaire results, we observed that the occupants noticed changes in the state of

the office equipment and it did not cause any negative impact or discomfort to them.

Additionally, the occupants did not felt any improvement in their comfort. However, we

can consider positive the fact that the system does not cause any negative impact on the

occupants’ comfort and productivity.

8.2 Contributions

The main contribution of this dissertation is the results of our deep study on how to

choose adequate technology and implement BAS that use IoT.

Through the analysis of existing architectures and different platforms, it was possible

to contribute to a guide, which presents fundamental key aspects that helps with dealing

with tradeoffs while choosing the solution to be adopted, as well as the impacts that these

aspects may have at cost and effort level in all the development phases. The platforms’

comparative analysis and the highlighted features they provide can serve as a comparison

document for other future platforms. We also produced an extensive explanation of the

129

CHAPTER 8. CONCLUSION

concepts of IoT middleware and Fog Computing, their advantages and how they are

related to existing IoT platforms.

To deal with the complexity of the technologies involved and the multiplicity of use

scenarios non-related with BAS, made us choose a particular case study of Office automa-

tion with our SmartLab project. The analysis of requirements and architecture was based

on this specific case study and was designed taking into consideration non-functional

requirements, such as maintainability and scalability. Therefore, we believe that it can

be reused as a guide for future applications in similar case studies or even in case studies

that involve more components.

The analysis of the results obtained during the scenarios in our case study, with and

without automation, creates an opportunity to reason about the case study and design

extensions to the system and new applications. During our work, it was possible to

abstract valuable office environment patterns and both devices and occupants behaviours.

Thus, it is possible to create rules and learn from these events to provide greater reduction

of energy consumption.

8.3 Limitations

Unfortunately, during the progress of our work, due to unexpected technology con-

straints, that went against our planning, we faced several challenges regarding aspects

of the physical equipment. As already mentioned before in this document, there is some

equipment used, such as the luminosity sensors, that we later found to be not the most

suitable ones for our scenario. Another aspect is that we provide the analysis and logic

for control of the office temperature, but it was not possible to test in real devices, due to

the absence of air conditioning control devices capable to communicate with our system.

The same applies to the aquarium subsystem, which was taken into account during the

requirements analysis, architecture design and implementation but due to problems in

the aquarium control device, it was not possible to directly control the aquarium with

our platform. Additionally, the mechanisms used for presence detection worked but

needed a disciplined usage that could be feasible with the gentle help of the occupants

(small number), which in a different scenario with more occupants would probably not

be possible.

8.4 Future Work

The platforms chosen in our work are ideal to be extended with several applications

and functionalities. With a stable case study, and with adequate supporting platforms,

we have now a well-formed basis for prototyping solutions and complement the require-

ments analysis and design of the system architecture.

The independence of the control module in the chosen platforms, allows us to run and

test various scenarios, with other devices. We foresee that it will be interesting to analyse

130

8.4. FUTURE WORK

the advantages provided through the implementation of this system, but following the

Fog computing architecture. As said, the independence of the control module simplifies

and reduces the effort to adopt the Fog computing architecture.

The results obtained about the device states, make it possible to analyse patterns of

office utilisation and occupants behaviour through the adoption of machine learning and

predictive mechanisms. Thus, this analysis can contribute to a better management of

the devices and office policies, which in turn might imply a greater reduction of energy

consumption and an increase in the comfort provided to the office occupants.

In this case study, there are some limitations, namely aspects that can not be fully

automated, such as windows (automatic blinds and window open or close). It would be

interesting to adopt gamification methods so that the occupants can help the system to

contribute to a reduction in energy consumption.

As discussed along the thesis, we believe that adopting control strategies can have

an impact on energy consumption and occupant comfort. The work carried out in this

dissertation already shows us that it is worth the effort and initial investment for the

development of these solutions.

131

Bibliography

[AF+15] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash.

“Internet of Things: A Survey on Enabling Technologies, Protocols, and Ap-

plications”. In: IEEE Communications Surveys Tutorials 17.4 (2015), pp. 2347–

2376. issn: 1553-877X. doi: 10.1109/COMST.2015.2444095.

[Awsa] Amazon WS IoT. https://aws.amazon.com/iot-platform/. (accessed

February 4, 2017).

[Ara+16] T. Ara, P. G. Shah, and M. Prabhakar. “Internet of Things Architecture and

Applications: A Survey”. In: Indian Journal of Science and Technology 9.45

(2016). http://www.indjst.org/index.php/indjst/article/view/

106507. issn: 0974 -5645.

[AN05] J. Arlow and I. Neustadt. UML 2.0 and the Unified Process: Practical Object-
Oriented Analysis and Design (2Nd Edition). Addison-Wesley Professional,

2005. isbn: 0321321278.

[Ast+16] N. Aste, M. Manfren, and G. Marenzi. “Building Automation and Control

Systems and performance optimization: A framework for analysis”. In: Re-
newable and Sustainable Energy Reviews (2016). http://www.sciencedirect.

com/science/article/pii/S1364032116307365. issn: 1364-0321.

[Att+16] S. Attitalla, V. Choksi, and M. Potdar. “Web and Cloud Based Home Automa-

tion Systems: An Overview”. In: (2016).

[Awsb] AWS Architecture. https://aws.amazon.com/iot- platform/how- it-

works/. (accessed February 4, 2017).

[Bas+12] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. 3rd.

Addison-Wesley Professional, 2012. isbn: 0321815734, 9780321815736.

[Bol09] F. Boldissar. Heat Transfer in Aquariums. http://www.advancedaquarist.
com/2009/7/aafeature1. 2009.

[Bra+05] M. R. Brambley, D Hansen, P Haves, D. Holmberg, S. McDonald, K. Roth,

and P Torcellini. “Advanced sensors and controls for building applications:

Market assessment and potential R&D pathways”. In: Pacific Northwest Na-
tional Laboratory (2005).

133

https://doi.org/10.1109/COMST.2015.2444095
https://aws.amazon.com/iot-platform/
http://www.indjst.org/index.php/indjst/article/view/106507
http://www.indjst.org/index.php/indjst/article/view/106507
http://www.sciencedirect.com/science/article/pii/S1364032116307365
http://www.sciencedirect.com/science/article/pii/S1364032116307365
https://aws.amazon.com/iot-platform/how-it-works/
https://aws.amazon.com/iot-platform/how-it-works/
http://www.advancedaquarist.com/2009/7/aafeature1
http://www.advancedaquarist.com/2009/7/aafeature1

BIBLIOGRAPHY

[Cae+17] D. S. Caetano, D. E. Kalz, L. L. Lomardo, and L. P. Rosa. “Evaluation of

thermal comfort and occupant satisfaction in office buildings in hot and

humid climate regions by means of field surveys”. In: Energy Procedia
115 (2017). http://www.sciencedirect.com/science/article/pii/

S1876610217322166, pp. 183 –194. issn: 1876-6102.

[Chi16] M. Chiang. “Fog Networking: An Overview on Research Opportunities”. In:

(Jan. 2016).

[Chu+00] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-functional requirements
in software engineering. Springer, 2000. isbn: 978-1-4613-7403-9.

[Comcea] I. Comparison. IBM API life cycle Management. https://www.ibm.com/

support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.overview.

doc/api_management_overview.html. (accessed September 1, 2017).

[Comceb] I. Comparison. IBM Decision Optimization Documentation. https://console.

bluemix.net/docs/services/DecisionOptimization/DecisionOptimization.

html. (accessed September 1, 2017).

[Comcec] I. Comparison. IBM Geospatial Analytics Documentation. https://console.

bluemix.net/docs/services/geospatial/index.html. (accessed Septem-

ber 1, 2017).

[Comced] I. Comparison. IBM Geospatial Analytics Documentation. https://ibm-

graph-docs.ng.bluemix.net/index.html. (accessed September 1, 2017).

[Comcee] I. Comparison. IBM Identity and Access Management. https://www.ibm.com/
blogs/bluemix/2017/05/introducing-identity-access-management/.

(accessed September 1, 2017).

[Comcef] I. Comparison. IBM Machine Learning Documentation. https://console.

bluemix.net/docs/services/PredictiveModeling/index.html. (ac-

cessed September 1, 2017).

[Comceg] I. Comparison. IBM Streams Documentation. https : / / www . ibm . com /

support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.welcome.

doc/doc/kc-homepage.html. (accessed September 1, 2017).

[Cor14] I. Corporation. Affordable Building Automation System Enabled by the Internet
of Things (IoT). http://www.intel.com/content/www/us/en/internet-
of-things/blueprints/iot-building-automation-system-blueprint.

html. 2014.

[Des] Despacho (extrato) nº 15793-F/2013. https://www.academiaadene.pt/

download/pt/despacho-15793-f2013-zonamento-climatico-e-respetivos-

dados.pdf. 2013.

134

http://www.sciencedirect.com/science/article/pii/S1876610217322166
http://www.sciencedirect.com/science/article/pii/S1876610217322166
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.overview.doc/api_management_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.overview.doc/api_management_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.overview.doc/api_management_overview.html
https://console.bluemix.net/docs/services/DecisionOptimization/DecisionOptimization.html
https://console.bluemix.net/docs/services/DecisionOptimization/DecisionOptimization.html
https://console.bluemix.net/docs/services/DecisionOptimization/DecisionOptimization.html
https://console.bluemix.net/docs/services/geospatial/index.html
https://console.bluemix.net/docs/services/geospatial/index.html
https://ibm-graph-docs.ng.bluemix.net/index.html
https://ibm-graph-docs.ng.bluemix.net/index.html
https://www.ibm.com/blogs/bluemix/2017/05/introducing-identity-access-management/
https://www.ibm.com/blogs/bluemix/2017/05/introducing-identity-access-management/
https://console.bluemix.net/docs/services/PredictiveModeling/index.html
https://console.bluemix.net/docs/services/PredictiveModeling/index.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.welcome.doc/doc/kc-homepage.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.welcome.doc/doc/kc-homepage.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.welcome.doc/doc/kc-homepage.html
http://www.intel.com/content/www/us/en/internet-of-things/blueprints/iot-building-automation-system-blueprint.html
http://www.intel.com/content/www/us/en/internet-of-things/blueprints/iot-building-automation-system-blueprint.html
http://www.intel.com/content/www/us/en/internet-of-things/blueprints/iot-building-automation-system-blueprint.html
https://www.academiaadene.pt/download/pt/despacho-15793-f2013-zonamento-climatico-e-respetivos-dados.pdf
https://www.academiaadene.pt/download/pt/despacho-15793-f2013-zonamento-climatico-e-respetivos-dados.pdf
https://www.academiaadene.pt/download/pt/despacho-15793-f2013-zonamento-climatico-e-respetivos-dados.pdf

BIBLIOGRAPHY

[Det+11] S. Deterding, D. Dixon, R. Khaled, and L. Nacke. “From Game Design Ele-

ments to Gamefulness: Defining "Gamification"”. In: Proceedings of the 15th
International Academic MindTrek Conference: Envisioning Future Media Envi-
ronments. MindTrek ’11. http://doi.acm.org/10.1145/2181037.2181040.

ACM, 2011, pp. 9–15. isbn: 978-1-4503-0816-8. doi: 10.1145/2181037.

2181040.

[Dom+16] P. Domingues, P. Carreira, R. Vieira, and W. Kastner. “Building automation

systems: Concepts and technology review”. In: Computer Standards and
Interfaces 45 (2016). http://www.sciencedirect.com/science/article/

pii/S0920548915001361, pp. 1 –12. issn: 0920-5489. doi: \url{http:

//dx.doi.org/10.1016/j.csi.2015.11.005}.

[DBce] S. M. Dominic Betts. Azure IoT. https://docs.microsoft.com/en-us/

azure/iot-suite/iot-suite-what-is-azure-iot. (accessed January 28,

2017).

[Edp] EDP - Tarifários. https://energia.edp.pt/particulares/energia/

tarifarios. (accessed September 10, 2017).

[Eva12] D Evans. The Internet of Things How the Next Evolution of the Internet is
Changing Everything. 2012.

[Fac17a] Facebook. Flux, Application Architecture for Building User Interfaces. https:
//facebook.github.io/flux/docs/in-depth-overview.html. 2017.

[Fac17b] Facebook. React, A JavaScript Library for Building User Interfaces. https:

//facebook.github.io/react/. 2017.

[Fer+11] A. Fernbach, W. Granzer, and W. Kastner. “Interoperability at the man-

agement level of building automation systems: A case study for BACnet

and OPC UA”. In: ETFA2011. 2011, pp. 1–8. doi: 10.1109/ETFA.2011.

6059106.

[Fre16a] P. Fremantle. “A Reference Architecture for Internet of Things”. In: (2016).

http://wso2.com/whitepapers/a-reference-architecture-for-the-

internet-of-things/.

[Fre16b] P. Fremantle. “A Reference Architecture for Internet of Things”. In: (2016).

http://wso2.com/whitepapers/a-reference-architecture-for-the-

internet-of-things/.

[GS94] D. Garlan and M. Shaw. An Introduction to Software Architecture. Tech. rep.

Pittsburgh, PA, USA, 1994.

135

http://doi.acm.org/10.1145/2181037.2181040
https://doi.org/10.1145/2181037.2181040
https://doi.org/10.1145/2181037.2181040
http://www.sciencedirect.com/science/article/pii/S0920548915001361
http://www.sciencedirect.com/science/article/pii/S0920548915001361
https://doi.org/\url{http://dx.doi.org/10.1016/j.csi.2015.11.005}
https://doi.org/\url{http://dx.doi.org/10.1016/j.csi.2015.11.005}
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-what-is-azure-iot
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-what-is-azure-iot
https://energia.edp.pt/particulares/energia/tarifarios
https://energia.edp.pt/particulares/energia/tarifarios
https://facebook.github.io/flux/docs/in-depth-overview.html
https://facebook.github.io/flux/docs/in-depth-overview.html
https://facebook.github.io/react/
https://facebook.github.io/react/
https://doi.org/10.1109/ETFA.2011.6059106
https://doi.org/10.1109/ETFA.2011.6059106
http://wso2.com/whitepapers/a-reference-architecture-for-the-internet-of-things/
http://wso2.com/whitepapers/a-reference-architecture-for-the-internet-of-things/
http://wso2.com/whitepapers/a-reference-architecture-for-the-internet-of-things/
http://wso2.com/whitepapers/a-reference-architecture-for-the-internet-of-things/

BIBLIOGRAPHY

[Gub+13] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. “Internet of Things

(IoT): A vision, architectural elements, and future directions”. In: Future
Generation Computer Systems 29.7 (2013). http://www.sciencedirect.

com/science/article/pii/S0167739X13000241, pp. 1645 –1660. issn:

0167-739X. doi: http://dx.doi.org/10.1016/j.future.2013.01.010.

[Gus+16] K. Gusmanov, K. Khanda, D. Salikhov, M. Mazzara, and N. Mavridis. “Jolie

Good Buildings: Internet of things for smart building infrastructure sup-

porting concurrent apps utilizing distributed microservices”. In: CoRR
abs/1611.08995 (2016). http://arxiv.org/abs/1611.08995.

[HAM16] D. HAMILTON. The Four Internet of Things Connectivity Models Explained.

http://www.thewhir.com/web- hosting- news/the- four- internet-

of-things-connectivity-models-explained. 2016 (accessed January 21,

2017).

[Hen16] M. Henshaw. “Systems of systems, cyber-physical systems, the internet-of-

things. . . Whatever next?” In: (2016). doi: 10.1002/inst.12109.

[hor+16] Y. A. horr, M. Arif, M. Katafygiotou, A. Mazroei, A. Kaushik, and E. Elsar-

rag. “Impact of indoor environmental quality on occupant well-being and

comfort: A review of the literature”. In: International Journal of Sustain-
able Built Environment 5.1 (2016), pp. 1 –11. issn: 2212-6090. doi: http:

//dx.doi.org/10.1016/j.ijsbe.2016.03.006.

[Hua+12] L. Huang, Y. Zhu, Q. Ouyang, and B. Cao. “A study on the effects of thermal,

luminous, and acoustic environments on indoor environmental comfort in

offices”. In: Building and Environment 49 (2012), pp. 304 –309. issn: 0360-

1323. doi: http://dx.doi.org/10.1016/j.buildenv.2011.07.022.

[HA97] S. HYGGE and H. ALLAN. User Evaluation of Visual Comfort in Some Buildings
of the Daylight Europe Project. 1997.

[Wata] IBM Getting started with Watson Analytics. https://community.watsonanalytics.
com/wp-content/uploads/2017/04/Tutorial-about-Watson-Analytics-

2017-05-10.pdf?cm_mc_uid=09755305807814962356288&cm_mc_sid_

50200000=1496342298&cm_mc_sid_52640000=1496342298. (accessed June

4, 2017).

[Inc16a] W. Inc. WSO2 IoT Server. http://wso2.com/products/iot-server/. 2016

(accessed January 23, 2017).

[Inc16b] W. Inc. WSO2 IoT Server Documentation. https : / / docs . wso2 . com /

display/IoTS100/WSO2+IoT+Server+Documentation. 2016 (accessed Jan-

uary 23, 2017).

136

http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
https://doi.org/http://dx.doi.org/10.1016/j.future.2013.01.010
http://arxiv.org/abs/1611.08995
http://www.thewhir.com/web-hosting-news/the-four-internet-of-things-connectivity-models-explained
http://www.thewhir.com/web-hosting-news/the-four-internet-of-things-connectivity-models-explained
https://doi.org/10.1002/inst.12109
https://doi.org/http://dx.doi.org/10.1016/j.ijsbe.2016.03.006
https://doi.org/http://dx.doi.org/10.1016/j.ijsbe.2016.03.006
https://doi.org/http://dx.doi.org/10.1016/j.buildenv.2011.07.022
https://community.watsonanalytics.com/wp-content/uploads/2017/04/Tutorial-about-Watson-Analytics-2017-05-10.pdf?cm_mc_uid=09755305807814962356288&cm_mc_sid_50200000=1496342298&cm_mc_sid_52640000=1496342298
https://community.watsonanalytics.com/wp-content/uploads/2017/04/Tutorial-about-Watson-Analytics-2017-05-10.pdf?cm_mc_uid=09755305807814962356288&cm_mc_sid_50200000=1496342298&cm_mc_sid_52640000=1496342298
https://community.watsonanalytics.com/wp-content/uploads/2017/04/Tutorial-about-Watson-Analytics-2017-05-10.pdf?cm_mc_uid=09755305807814962356288&cm_mc_sid_50200000=1496342298&cm_mc_sid_52640000=1496342298
https://community.watsonanalytics.com/wp-content/uploads/2017/04/Tutorial-about-Watson-Analytics-2017-05-10.pdf?cm_mc_uid=09755305807814962356288&cm_mc_sid_50200000=1496342298&cm_mc_sid_52640000=1496342298
http://wso2.com/products/iot-server/
https://docs.wso2.com/display/IoTS100/WSO2+IoT+Server+Documentation
https://docs.wso2.com/display/IoTS100/WSO2+IoT+Server+Documentation

BIBLIOGRAPHY

[Inc16c] W. Inc. WSO2 IoT Server Documentation Create a new Device Type. https:

//docs.wso2.com/display/IoTS300/Creating+a+New+Device+Type.

2016 (accessed May 13, 2017).

[Inccea] W. Inc. WSO2 Carbon. http://wso2.com/products/carbon/. (accessed

January 24, 2017).

[Incceb] W. Inc. WSO2 Collecting Data. https://docs.wso2.com/display/DAS300/

Collecting+Data. (accessed June 1, 2017).

[Inccec] W. Inc. WSO2 Communicating Results. https://docs.wso2.com/display/
DAS300/Communicating+Results. (accessed June 1, 2017).

[Incced] W. Inc. WSO2 Event Streams. https://docs.wso2.com/display/DAS300/
Understanding+Event+Streams+and+Event+Tables. (accessed June 1,

2017).

[Inccee] W. Inc. WSO2 Machine Learner. https://docs.wso2.com/display/ML100/

Introducing+Machine+Learner. (accessed June 1, 2017).

[Inccef] W. Inc. WSO2 Data Analytics Server. https://docs.wso2.com/display/

DAS300/Introducing+DAS. (accessed May 31, 2017).

[Incceg] W. Inc. WSO2 API Manager Documentation. https://docs.wso2.com/

display/AM210. (accessed September 1, 2017).

[Incceh] W. Inc. WSO2 Enterprise Integrator Documentation. https://docs.wso2.

com/display/EI611. (accessed September 1, 2017).

[Iot] IoT Standards and Protocols. http://www.postscapes.com/internet-of-
things-protocols/. 2017 (accessed January 21, 2017).

[Jai+99] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data Clustering: A Review”. In:

ACM Comput. Surv. 31.3 (1999), pp. 264–323. issn: 0360-0300. doi: 10.

1145/331499.331504.

[Jun+12] M. Jung, J. Weidinger, C. Reinisch, W. Kastner, C. Crettaz, A. Olivieri, and

Y. Bocchi. “A transparent ipv6 multi-protocol gateway to integrate building

automation systems in the internet of things”. In: Green Computing and
Communications (GreenCom), 2012 IEEE International Conference on. IEEE.

2012, pp. 225–233.

[Ker+16] G. Keramidas, N. Voros, and M. Hbner. Components and Services for IoT Plat-
forms: Paving the Way for IoT Standards. 1st. Springer Publishing Company,

Incorporated, 2016. isbn: 3319423029, 9783319423029.

[KM15] S. K. Khaitan and J. D. McCalley. “Design Techniques and Applications

of Cyberphysical Systems: A Survey”. In: IEEE Systems Journal 9.2 (2015),

pp. 350–365. issn: 1932-8184.

137

https://docs.wso2.com/display/IoTS300/Creating+a+New+Device+Type
https://docs.wso2.com/display/IoTS300/Creating+a+New+Device+Type
http://wso2.com/products/carbon/
https://docs.wso2.com/display/DAS300/Collecting+Data
https://docs.wso2.com/display/DAS300/Collecting+Data
https://docs.wso2.com/display/DAS300/Communicating+Results
https://docs.wso2.com/display/DAS300/Communicating+Results
https://docs.wso2.com/display/DAS300/Understanding+Event+Streams+and+Event+Tables
https://docs.wso2.com/display/DAS300/Understanding+Event+Streams+and+Event+Tables
https://docs.wso2.com/display/ML100/Introducing+Machine+Learner
https://docs.wso2.com/display/ML100/Introducing+Machine+Learner
https://docs.wso2.com/display/DAS300/Introducing+DAS
https://docs.wso2.com/display/DAS300/Introducing+DAS
https://docs.wso2.com/display/AM210
https://docs.wso2.com/display/AM210
https://docs.wso2.com/display/EI611
https://docs.wso2.com/display/EI611
http://www.postscapes.com/internet-of-things-protocols/
http://www.postscapes.com/internet-of-things-protocols/
https://doi.org/10.1145/331499.331504
https://doi.org/10.1145/331499.331504

BIBLIOGRAPHY

[Kha+12] R. Khan, S. U. Khan, R. Zaheer, and S. Khan. “Future Internet: The Internet

of Things Architecture, Possible Applications and Key Challenges”. In: 2012
10th International Conference on Frontiers of Information Technology. 2012,

pp. 257–260. doi: 10.1109/FIT.2012.53.

[Kop11] H. Kopetz. “Internet of Things”. In: Real-Time Systems: Design Principles
for Distributed Embedded Applications. http://dx.doi.org/10.1007/978-
1-4419-8237-7_13. Boston, MA: Springer US, 2011, pp. 307–323. isbn:

978-1-4419-8237-7. doi: 10.1007/978-1-4419-8237-7_13.

[Kru95] P. B. Kruchten. “The 4+1 View Model of architecture”. In: IEEE Software
12.6 (1995), pp. 42–50. issn: 0740-7459. doi: 10.1109/52.469759.

[LS13] M. A. Laughton and M. G. Say. Electrical engineer’s reference book. Elsevier,

2013. isbn: 978-0-7506-4637-6.

[Law08] G. Lawton. “Developing Software Online With Platform-as-a-Service Tech-

nology”. In: Computer 41.6 (2008), pp. 13–15. issn: 0018-9162. doi: 10.

1109/MC.2008.185.

[Lea+14] S. Leal, G. Zucker, S. Hauer, and F. Judex. “A Software Architecture for

Simulation Support in Building Automation”. In: Buildings 4.3 (2014). http:

//www.mdpi.com/2075-5309/4/3/320, pp. 320–335. issn: 2075-5309. doi:

10.3390/buildings4030320.

[Lee08] E. A. Lee. “Cyber Physical Systems: Design Challenges”. In: 2008 11th
IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC). 2008, pp. 363–369. doi: 10.1109/ISORC.

2008.25.

[LS15] E. A. Lee and S. A. Seshia. Introduction to embedded systems: A cyber-physical
systems approach. Lee & Seshia, 2015. isbn: 978-0-262-53381-2.

[Lee+10] I. Lee, L. Sha, and J. Stankovic. “Cyber-physical systems: The next computing

revolution”. In: Adream, LAAS-CNSR-2010 (2010).

[Li+15] S. Li, L. D. Xu, and S. Zhao. “The internet of things: a survey”. In: Informa-
tion Systems Frontiers 17.2 (2015). http://dx.doi.org/10.1007/s10796-

014-9492-7, pp. 243–259. issn: 1572-9419. doi: 10.1007/s10796-014-

9492-7.

[LL17] J. Lienhard IV and J. Lienhard V. A Heat Transfer Textbook. 4th. Cambridge,

MA: Phlogiston Press, 2017.

[Lif] LifX - Light Bulb Specifications. https://www.lifx.com/pages/color-1000-
info-sheet?geo=false. (accessed September 10, 2017).

138

https://doi.org/10.1109/FIT.2012.53
http://dx.doi.org/10.1007/978-1-4419-8237-7_13
http://dx.doi.org/10.1007/978-1-4419-8237-7_13
https://doi.org/10.1007/978-1-4419-8237-7_13
https://doi.org/10.1109/52.469759
https://doi.org/10.1109/MC.2008.185
https://doi.org/10.1109/MC.2008.185
http://www.mdpi.com/2075-5309/4/3/320
http://www.mdpi.com/2075-5309/4/3/320
https://doi.org/10.3390/buildings4030320
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.1007/s10796-014-9492-7
https://doi.org/10.1007/s10796-014-9492-7
https://doi.org/10.1007/s10796-014-9492-7
https://www.lifx.com/pages/color-1000-info-sheet?geo=false
https://www.lifx.com/pages/color-1000-info-sheet?geo=false

BIBLIOGRAPHY

[Lil+17] G. Lilis, G. Conus, N. Asadi, and M. Kayal. “Towards the next generation of

intelligent building: An assessment study of current automation and future

IoT based systems with a proposal for transitional design”. In: Sustainable
Cities and Society 28 (2017). http://www.sciencedirect.com/science/

article/pii/S2210670716302414, pp. 473 –481. issn: 2210-6707. doi:

\url{http://dx.doi.org/10.1016/j.scs.2016.08.019}.

[Mar+17] G. Marques, N. Garcia, and N. Pombo. “A Survey on IoT: Architectures, Ele-

ments, Applications, QoS, Platforms and Security Concepts”. In: Advances in
Mobile Cloud Computing and Big Data in the 5G Era. Ed. by C. X. Mavromous-

takis, G. Mastorakis, and C. Dobre. http://dx.doi.org/10.1007/978-

3-319-45145-9_5. Springer International Publishing, 2017, pp. 115–130.

isbn: 978-3-319-45145-9. doi: 10.1007/978-3-319-45145-9_5.

[Mav] Maven Archetype Documentation. https://maven.apache.org/guides/

introduction/introduction-to-archetypes.html. 2016 (accessed May

13, 2017).

[Maxa] L. E. Maxwell. Facility Planning and Management - Noise in the Office Work-
place. http://dea.human.cornell.edu/sites/default/files/pdf/fpm-

notes_vol1_number1s.pdf.

[Maxb] L. E. Maxwell. Node-Red. https://nodered.org.

[Mer+09] H. Merz, T. Hansemann, and C. Hbner. Building Automation: Communication
Systems with EIB/KNX, LON and BACnet. 1st. Springer Publishing Company,

Incorporated, 2009. isbn: 3540888284, 9783540888284.

[Min13] D. Minoli. Building the internet of things with IPv6 and MIPv6: The evolving
world of M2M communications. John Wiley & Sons, 2013.

[Moh+11] R. Mohamaddoust, A. Toroghi Haghighat, m. j. Motahari, and N. Capanni.

“A Novel Design of an Automatic Lighting Control System for a Wireless Sen-

sor Network with Increased Sensor Lifetime and Reduced Sensor Numbers”.

In: 11 (Dec. 2011), pp. 8933–52.

[Moh+16] N. Mohamed, S. Lazarova-Molnar, and J. Al-Jaroodi. “CE-BEMS: A cloud-

enabled building energy management system”. In: 2016 3rd MEC Interna-
tional Conference on Big Data and Smart City (ICBDSC). 2016, pp. 1–6. doi:

10.1109/ICBDSC.2016.7460393.

[MP] T. T. Mulani and S. V. Pingle. “Internet of things”. In: International Research
Journal of Multidisciplinary Studies 2.3 ().

139

http://www.sciencedirect.com/science/article/pii/S2210670716302414
http://www.sciencedirect.com/science/article/pii/S2210670716302414
https://doi.org/\url{http://dx.doi.org/10.1016/j.scs.2016.08.019}
http://dx.doi.org/10.1007/978-3-319-45145-9_5
http://dx.doi.org/10.1007/978-3-319-45145-9_5
https://doi.org/10.1007/978-3-319-45145-9_5
https://maven.apache.org/guides/introduction/introduction-to-archetypes.html
https://maven.apache.org/guides/introduction/introduction-to-archetypes.html
http://dea.human.cornell.edu/sites/default/files/pdf/fpm-notes_vol1_number1s.pdf
http://dea.human.cornell.edu/sites/default/files/pdf/fpm-notes_vol1_number1s.pdf
https://nodered.org
https://doi.org/10.1109/ICBDSC.2016.7460393

BIBLIOGRAPHY

[Mun+13] S. Munir, J. A. Stankovic, C.-J. M. Liang, and S. Lin. “Cyber Physical System

Challenges for Human-in-the-Loop Control”. In: Presented as part of the 8th
International Workshop on Feedback Computing. https://www.usenix.org/

conference/feedbackcomputing13/workshop- program/presentation/

Munir. San Jose, CA: USENIX, 2013.

[NC15] B. Nakhuva and T. Champaneria. “Study of Various Internet of Things Plat-

forms”. In: 6 (Dec. 2015), pp. 61–74.

[Ngu+17] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng. “IoT Middle-

ware: A Survey on Issues and Enabling Technologies”. In: IEEE Internet of
Things Journal 4.1 (2017), pp. 1–20. issn: 2327-4662. doi: 10.1109/JIOT.

2016.2615180.

[Ope] openHab Textual Rules. http://docs.openhab.org/configuration/rules-
dsl.html.

[Per+14] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. “Context Aware

Computing for The Internet of Things: A Survey”. In: IEEE Communications
Surveys Tutorials 16.1 (2014), pp. 414–454. issn: 1553-877X. doi: 10.1109/

SURV.2013.042313.00197.

[Pra+16] S Pradeep, T Kousalya, K. A. Suresh, and J. Edwin. “IoT AND ITS CONNEC-

TIVITY CHALLENGES IN SMART HOME”. In: (2016).

[Pur+13] S. Purdon, B. Kusy, R. Jurdak, and G. Challen. “Model-free HVAC control us-

ing occupant feedback”. In: 38th Annual IEEE Conference on Local Computer
Networks - Workshops. 2013, pp. 84–92. doi: 10.1109/LCNW.2013.6758502.

[Raj+10] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. “Cyber-physical systems:

The next computing revolution”. In: Design Automation Conference. 2010,

pp. 731–736. doi: 10.1145/1837274.1837461.

[Ras+03] A. Rashid, A. Moreira, and J. Araújo. “Modularisation and Composition of

Aspectual Requirements”. In: Proceedings of the 2Nd International Conference
on Aspect-oriented Software Development. AOSD ’03. http://doi.acm.org/

10.1145/643603.643605. New York, NY, USA: ACM, 2003, pp. 11–20. isbn:

1-58113-660-9. doi: 10.1145/643603.643605.

[Raw+15] D. B. Rawat, J. J.P. C. Rodrigues, and I. Stojmenovic. Cyber-Physical Systems:
From Theory to Practice. Boca Raton, FL, USA: CRC Press, Inc., 2015. isbn:

1482263327, 9781482263329.

[Ray16] P. Ray. “A survey on Internet of Things architectures”. In: Journal of King
Saud University - Computer and Information Sciences (2016). issn: 1319-1578.

doi: http://dx.doi.org/10.1016/j.jksuci.2016.10.003.

140

https://www.usenix.org/conference/feedbackcomputing13/workshop-program/presentation/Munir
https://www.usenix.org/conference/feedbackcomputing13/workshop-program/presentation/Munir
https://www.usenix.org/conference/feedbackcomputing13/workshop-program/presentation/Munir
https://doi.org/10.1109/JIOT.2016.2615180
https://doi.org/10.1109/JIOT.2016.2615180
http://docs.openhab.org/configuration/rules-dsl.html
http://docs.openhab.org/configuration/rules-dsl.html
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1109/LCNW.2013.6758502
https://doi.org/10.1145/1837274.1837461
http://doi.acm.org/10.1145/643603.643605
http://doi.acm.org/10.1145/643603.643605
https://doi.org/10.1145/643603.643605
https://doi.org/http://dx.doi.org/10.1016/j.jksuci.2016.10.003

BIBLIOGRAPHY

[Ree+15] K. E. M. Reena, A. T. Mathew, and L. Jacob. “An Occupancy Based Cyber-

Physical System Design for Intelligent Building Automation”. In: Mathemat-
ical Problems in Engineering 501 (2015), p. 132182. doi: 10.1155/2015/

132182.

[Sen14] S. K. Sen. Fieldbus and Networking in Process Automation. Boca Raton, FL,

USA: CRC Press, Inc., 2014. isbn: 1466586761, 9781466586765.

[SB15] D. M. Simmonds and A. Bhattacherjee. “Smart Systems, Smarter Living: An

Empirical Study of the Building Automation System in Organizations”. In:

(2015).

[Soc+14] I. C. Society, P. Bourque, and R. E. Fairley. Guide to the Software Engineering
Body of Knowledge (SWEBOK(R)): Version 3.0. 3rd. Los Alamitos, CA, USA:

IEEE Computer Society Press, 2014. isbn: 0769551661, 9780769551661.

[Som10] I. Sommerville. Software Engineering. 9th. USA: Addison-Wesley Publishing

Company, 2010. isbn: 0137035152, 9780137035151.

[Tat16] R. Tatum. Where Does the Building Automation System Fit In An Internet of
Things World? http://www.facilitiesnet.com/buildingautomation/

article / Where - Does - the - Building - Automation - System - Fit - In -

An- Internet- of- Things- World- Facilities- Management- Building-

Automation-Feature--16651. 2016.

[Thi15] I. B. Thingom. “Internet of Things: Design of aNew Layered Architecture

and Studyof SomeExisting Issues”. In: (2015).

[Thi14] ThingSpeak. Introduction to the “Internet of Things” and ThingSpeak. ThingS-
peak Community. http://community.thingspeak.com/. 2014.

[Wan+17] W. Wang, K. Lee, and D. Murray. “A global generic architecture for the

future Internet of Things”. In: Service Oriented Computing and Applications
11.3 (2017), pp. 329–344. issn: 1863-2394. doi: 10.1007/s11761-017-

0213-1.

[Wan+16] Y. Wang, A. Khelil, A. Broering, and D. Anicic. “Big IoT”. In: Analysis of
Technology Readiness. 2016.

[Watb] Watson IoT. https://www.ibm.com/internet- of- things/platform/

watson-iot-platform/. (accessed February 4, 2017).

[Watc] Watson IoT APIs. https://console.ng.bluemix.net/docs/services/

IoT/reference/api.html. (accessed May 24, 2017).

[Watd] Watson IoT Architecture. https://www.ibm.com/devops/method/content/

architecture/iotArchitecture. (accessed February 4, 2017).

[Wate] Watson IoT Devices. https://developer.ibm.com/recipes/tutorials/

how-to-register-devices-in-ibm-iot-foundation. (accessed May 24,

2017).

141

https://doi.org/10.1155/2015/132182
https://doi.org/10.1155/2015/132182
http://www.facilitiesnet.com/buildingautomation/article/Where-Does-the-Building-Automation-System-Fit-In-An-Internet-of-Things-World-Facilities-Management-Building-Automation-Feature--16651
http://www.facilitiesnet.com/buildingautomation/article/Where-Does-the-Building-Automation-System-Fit-In-An-Internet-of-Things-World-Facilities-Management-Building-Automation-Feature--16651
http://www.facilitiesnet.com/buildingautomation/article/Where-Does-the-Building-Automation-System-Fit-In-An-Internet-of-Things-World-Facilities-Management-Building-Automation-Feature--16651
http://www.facilitiesnet.com/buildingautomation/article/Where-Does-the-Building-Automation-System-Fit-In-An-Internet-of-Things-World-Facilities-Management-Building-Automation-Feature--16651
http://community.thingspeak.com/
https://doi.org/10.1007/s11761-017-0213-1
https://doi.org/10.1007/s11761-017-0213-1
https://www.ibm.com/internet-of-things/platform/watson-iot-platform/
https://www.ibm.com/internet-of-things/platform/watson-iot-platform/
https://console.ng.bluemix.net/docs/services/IoT/reference/api.html
https://console.ng.bluemix.net/docs/services/IoT/reference/api.html
https://www.ibm.com/devops/method/content/architecture/iotArchitecture
https://www.ibm.com/devops/method/content/architecture/iotArchitecture
https://developer.ibm.com/recipes/tutorials/how-to-register-devices-in-ibm-iot-foundation
https://developer.ibm.com/recipes/tutorials/how-to-register-devices-in-ibm-iot-foundation

BIBLIOGRAPHY

[WF+15] F. Wortmann, K. Flüchter, et al. “Internet of things”. In: Business & Informa-
tion Systems Engineering 57.3 (2015), pp. 221–224.

[Xia+12] F. Xia, L. T. Yang, L. Wang, and A. Vinel. “Internet of Things”. In: Interna-
tional Journal of Communication Systems 25.9 (2012), pp. 1101–1102. issn:

1099-1131. doi: 10.1002/dac.2417.

[Yan+14] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, and M. Nemirovsky.

“Key ingredients in an IoT recipe: Fog Computing, Cloud computing, and

more Fog Computing”. In: 2014 IEEE 19th International Workshop on Com-
puter Aided Modeling and Design of Communication Links and Networks (CA-
MAD). 2014, pp. 325–329. doi: 10.1109/CAMAD.2014.7033259.

[Zha+16] P. Zhao, T. Peffer, R. Narayanamurthy, G. Fierro, P. Raftery, S. Kaam, and J.

Kim. “Getting into the zone: how the internet of things can improve energy

efficiency and demand response in a commercial building”. In: (2016).

142

https://doi.org/10.1002/dac.2417
https://doi.org/10.1109/CAMAD.2014.7033259

A
p
p
e
n
d
i
x

A
Questionnaire

143

APPENDIX A. QUESTIONNAIRE

144

145

APPENDIX A. QUESTIONNAIRE

146

147

A
p
p
e
n
d
i
x

B
Questionnaire 2

149

APPENDIX B. QUESTIONNAIRE 2

150

151

A
p
p
e
n
d
i
x

C
Requirements Tracing

Table C.1: User Management Mapping

User Story Identifier Functional Requirements

US-UM1 FR-UM6

US-UM2 FR-UM2

US-UM3 FR-UM4, FR-UM5

US-UM4 FR-UM3

US-UM5 FR-UM7, FR-UM8

US-UM6 FR-UM1

Table C.2: API Management Mapping

User Story Identifier Functional Requirements

US-AM1 FR-AM1, FR-AM2

US-AM2 FR-AM6

US-AM3 FR-AM7

US-AM4 FR-AM3, FR-AM4, FR-AM5,

US-AM5 FR-AM8

US-AM6 FR-AM9

US-AM7 FR-AM10

153

APPENDIX C. REQUIREMENTS TRACING

Table C.3: Device Management Mapping

User Story Identifier Functional Requirements

US-DM1 FR-DM3

US-DM2 FR-DM4

US-DM3 FR-DM8

US-DM4 FR-DM1

US-DM5 FR-DM11

US-DM6 FR-DM2

US-DM7 FR-DM9

US-DM8 FR-DM5, FR-DM6

US-DM9 FR-DM7

US-DM10 FR-DM13, FR-DM14

US-DM11 FR-DM10

US-DM12 FR-DM15

US-DM13 FR-DM12

Table C.4: Occupant Comfort Mapping

User Story Identifier Functional Requirements

US-OC1 FR-OC1, FR-OC2

US-OC2 FR-OC4

US-OC3 FR-OC3

Table C.5: Presence Detection Mapping

User Story Identifier Functional Requirements

US-PD1 FR-PD5

US-PD2 FR-PD6

US-PD3 FR-PD7, FR-PD8

US-PD4 FR-PD10

US-PD5 FR-PD9

US-PD6 FR-PD11

US-PD7 FR-PD1, FR-PD2, FR-PD3, FR-PD4

154

Table C.6: Scheduling Mapping

User Story Identifier Functional Requirements

US-SC1 FR-AQ1

US-SC2 FR-SC1

US-SC3 FR-SC2

US-SC4 FR-SC3, FR-AQ2

US-SC5 FR-SC4

US-SC6 FR-SC5

Table C.7: Suggestions Mapping

User Story Identifier Functional Requirements

US-SG1 FR-SG3

US-SG2 FR-SG2

US-SG3 FR-SG1

Table C.8: Notifications Mapping

User Story Identifier Functional Requirements

US-NT1 FR-NT5

US-NT2 FR-NT4

US-NT3 FR-NT1, FR-NT2, FR-NT3

US-NT4 FR-NT6, FR-NT7, FR-NT8

US-NT5 FR-NT9

Table C.9: Aquarium Mapping

User Story Identifier Functional Requirements

US-AQ1 FR-AQ3

US-AQ2 FR-AQ4

US-AQ3 FR-AQ6

US-AQ4 FR-AQ5

155

A
p
p
e
n
d
i
x

D
Front-end User Interface

Figure D.1: Front-end User Interface - Desktop view for devices types list

157

APPENDIX D. FRONT-END USER INTERFACE

Figure D.2: Front-end User Interface - Desktop view for devices list

Figure D.3: Front-end User Interface - Desktop view for device details and control view

158

Figure D.4: Front-end User Interface - Desktop view for rules view

Figure D.5: Front-end User Interface - Mobile view for rules view

159

APPENDIX D. FRONT-END USER INTERFACE

Figure D.6: Front-end User Interface - Mobile view for rule configuration view

Figure D.7: Front-end User Interface - Mobile view for device details and control view

160

Figure D.8: Front-end User Interface - Desktop view for ticket support

161

	List of Figures
	List of Tables
	Glossary
	Acronyms
	Introduction
	Context and Description
	Challenges
	Problem Statement and Final Goals
	Expected Contributions
	Research Project
	Document Structure

	Background
	Cyber-Physical System
	Internet of Things
	Building Automation System
	Architecture Levels
	Sensors, Actuators and Controllers
	Communication Networks
	Occupancy Detection

	Summary

	Case study
	Overall Description
	Physical Setup
	Available Services
	Control and Monitor
	Lights

	Occupants Comfort
	Summary

	State of the art of IoT platforms
	Internet of Things Architectures
	Internet of Things Elements
	Internet of Things Platforms
	WSO2 IoT
	IBM Watson IoT
	ThingSpeak IoT
	Microsoft Azure IoT
	Amazon Web Service

	Comparison of Internet of Things Platforms
	Key concepts
	Data analytics
	Communication models
	Features
	Discussion

	Internet of Things Middleware
	Fog Computing
	Building Automation System enhanced by Internet of Things
	Summary

	Comparison Review
	Devices Management
	Data Processing, Analytics and Events
	Application and User Management
	Discussion
	Comparison of WSO2 and IBM Watson platforms
	Comparison of Open-Source and PaaS

	Summary

	Conceptualisation and Implementation
	Requirements Engineering
	Stakeholders
	Questionnaires
	User Stories
	Functional Requirements
	Non-Functional Requirements
	Requirements Tracing

	Detailed User Stories
	Device Management
	Occupant Comfort, Presence Detection and Suggestions
	Scheduling
	Notifications
	Aquarium

	Architecture
	Non-Functional Requirements Treatment
	Architecture Styles
	Architecture Views

	Implementation
	Automation
	Front-end
	Backup
	Devices Tool

	Summary

	Evaluation and Results
	Questionnaire
	Environment luminosity and temperature
	Presence detection
	Energy Consumption
	Lights
	Monitor
	Coffee Machine
	Other equipment
	Energy cost

	Occupants' opinion
	Summary

	Conclusion
	Summary
	Contributions
	Limitations
	Future Work

	Bibliography
	Questionnaire
	Questionnaire 2
	Requirements Tracing
	Front-end User Interface

