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Abstract 

The present dissertation was developed with the main purpose of comparing the different design 

philosophies existing for prestressed reinforced concrete members, as well as analyzing a solution that 

is both safe and economically viable. 

Since one of the major problems in civil engineering infrastructures is due to corrosion, a study was 

conducted to examine the feasibility of replacing the material used as reinforcement and prestress. The 

steel, which for many decades has been used shall be replaced by FRP, particularly CFRP. However, 

since carbon presents a brittle behavior, a new design methodology suggested by fib and by the 

Canadian code is presented so that the failure is not due to the reinforcement but due to the concrete, 

which, although it is not a ductile material, presents more ductility than materials with carbon fibers. 

In this way, a code has been developed so that, through the balance of the cross section, it calculates 

the amount of reinforcement required, following the American (ACI) and European code (Eurocode) 

design methodology. Another code for prestressed reinforced concrete members was elaborated to 

analyze the prestress system used and the material used as reinforcement and tendons. 

The European code has proved to be economically viable since, for the same applied moment, it 

requires a smaller amount of reinforcement. As for the bonded and unbonded system the results show 

that the systems with unbonded tendons are only feasible when the concrete members are subjected 

to high moments. It is also observed that depending on the initial force applied on the prestress, the 

results may be favorable regarding to the amount of reinforcement required, however the amount of 

reinforcement can be significantly increased when the initial force of the prestress is highly increased. 
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Resumo 

A presente dissertação foi elaborada com o principal objectivo de comparar as diferentes filosofias de 

dimensionamentos existentes para peças de betão armado pré-esforçado, bem como analisar uma 

solução que seja ao mesmo tempo, segura e economicamente viável.  

Uma vez que um dos principais problemas nas infraestruturas de engenharia civil, ocorre devido a 

corrosão. Foi elaborado um estudo para analisar a viabilidade de substituição do material usado como 

armadura ordinária e cabos de pré-esforço. O aço, que por muitas décadas vem sendo usado, passa a 

ser substituído por FRP, nomeadamente CFRP. No entanto, uma vez que o carbono apresenta um 

comportamento frágil, uma nova metodologia de dimensionamento sugerida pela FIB é apresentada, 

para que a rotura não se dê pela armadura ordinária, mas sim pelo betão, que mesmo não sendo um 

material dúctil, apresenta mais ductilidade que os elementos feitos com fibras de carbono. 

Deste modo, foi elaborado um código que através do equilíbrio da secção transversal, calcula a 

quantidade de reforço necessária através da metodologia de dimensionamento do código americano 

(ACI) e do código Europeu (Eurocódigo). Um segundo código foi elaborado para peças de betão 

armado pré-esforçadas para analisar o sistema mais adequado para o pré-esforço, bem como o 

material mais vantajoso. 

 O código europeu mostrou-se economicamente mais viável, uma vez que para o mesmo momento 

fletor requer uma menor quantidade de armadura. Quanto ao sistema aderente e não aderente os 

resultados mostram que os sistemas com pré-esforço não aderente só são viáveis para um momento 

atuante muito elevado. Observa-se também que, dependendo da força inicial que aplicamos no pré-

esforço, os resultados podem ser bem vantajosos relativamente a quantidade de armadura necessária, 

mas, no entanto, pode aumentar significativamente a quantidade de reforço necessário quando 

aumentamos em demasia a força inicial aplicada nos cabos. 
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1 Introduction  

1.1 Objectives and Scope 

Textile reinforced concrete, carbon concrete composites or CFRP RC are different names for the same 

type of modern development. The use of high performance fibers as a replacement for reinforcement 

steel. Among the advantages are the high strength, high durability, excellent fatigue resistance, a 

principal non-corrosive characteristic and more. Barriers for practical application include high price, 

required adaptation of production technology and also lack of experience in practical design or lack of 

design rules itself. One of the most promising materials as a replacement for steel are carbon fibers. 

The economic aspect of design solution is strongly connected to the required amount of reinforcement 

and the security factor. The use of high safety factor leads to expensive infrastructures. A conservative 

approach might be as safe as uneconomic. The blind transfer of RC design rules to Carbon fiber 

reinforcement might be as simple as unsafe, because the switch from ductile steel reinforcement to 

brittle carbon fibers will have fundamental impact on the load bearing behavior and especially on the 

observable failure types. For design with CFRP various guidelines and recommendations exists already, 

but they differ fundamentally in the numbers chosen for safety factors and safety concepts. The aim of 

this study is to show the impact on design results caused by using different design concepts and to 

create a conceptual design for both the structures described above and the elements to be used. 

1.2 Thesis outline  

The presented thesis is divided into five chapters. 

Chapter 1: Theme Description, previously developed work, motivations and objectives to be achieved 

with the realization of this work. 

Chapter 2: The design theory for reinforced concrete structures according to the American and 

European code. Comparison between the different approaches for the flexural design in the ultimate 

limit state. 

Chapter 3: History of prestress and its different systems. The influence of the choice of types of tendons, 

whether bound or unbound. Physical and mechanical characteristics of the material used for the ultimate 

limit state. Introduction to a new design theory suggested by fib. 

Chapter 4: Presenting the results obtained with the help of VBA program. Comparison in the amount of 

reinforcement needed when using the American or European approach. Comparison between bonded 

and unbonded tendons and also carbon tendons and rebars. Effect of the initial prestress force for a 

prestressed rectangular section of reinforced concrete. 

Chapter 5 - Conclusions taken from the realization of this thesis and suggestion for future works. 
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2 Design philosophy  

The aim of this study is to understand and compare the different approaches based on the ACI 318 and 

ACI 314 [1-3] and the Eurocode 2 [4] The principles adopted for both codes are the same, the concrete 

member must be in equilibrium, which means that the internal forces must balance the external load.   

However, they present differences in the design procedure which leads to significant differences in the 

results for reinforced concrete structures in bending. 

For prestressed reinforced concrete structures another comparison is made, and different types of 

reinforcement and prestress are used. 

Once one of the most important aspect of this study is to evaluate the feasibility of CFRP structures, 

and since the Eurocode does not provide a design procedure for this type of material and so, for the 

conventional steel prestressed structure the EC2 was followed and for CFRP ones the design procedure 

given by FIB [5] was followed.  

In this chapter are described the procedures given by the previously-mentioned codes and different 

assumptions are considered to evaluate where these differences come from. 

2.1 ACI 314 & ACI 318 flexure design philosophy 

The approach suggested by the ACI [2] is that there is a reduction in the resistant moment and not a 

reduction of the capacities of the material. Differently than suggest by Eurocode 2 [4] 

To calculate the resistant moment, i.e. the design strength of a given cross section, the considered 

assumptions are: 

• Bernoulli hypothesis, plan sections remain plans after loading. The strain in concrete and 

reinforcement is assumed to be directly proportional to the distance from the neutral axil. Linear 

strain distribution; 

• The static equilibrium and the strain compatibility must be satisfied; 

• Stress in reinforcement below the yield point shall be taken as the strain times the modulus of 

elasticity, Es linear behavior. For strains, greater than that corresponding to εy, stress is 

considered as fy; 

• For the flexural calculation, the tensile strength of concrete is neglected; 

• Concrete strength = f’c; 

• Yield strength of reinforcement = fy; 

• Concrete ultimate compressive strain εcu = 0.003; 



4  2. Design philosophy 

2.1.1 Design concrete compressive strength 

The compressive strength is given by the strength of the concrete, which means that the ultimate load 

is the one that causes the failure. Figure 2.1 shows the stress-strain curve of the concrete, therefore a 

simplification of the real curve is given in the ACI code [6] and the stress-stress curve for concrete is the 

one shown in Figure 2.2. 
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Figure 2.1 - Stress-Strain curve for concrete adapted from ACI [6] 

 

Figure 2.2 – Parabolic-rectangular stress-strain curve for concrete adapted from ACI [6] 

To calculate the stress of the concrete curve (Figure 2.2) the equation shown in the expression (12) 

must be used: 

 𝑓𝑐 = {
0.85𝑓′

𝑐
[2 (

Ɛ𝑐

Ɛ𝑐2
) − (

Ɛ𝑐

Ɛ𝑐2
)

2

]     𝑓𝑜𝑟 0 ≤ Ɛ𝑐 ≤  Ɛ𝑜  

     0.85𝑓′
𝑐
                                   𝑓𝑜𝑟 Ɛ𝑜 ≤ Ɛ𝑐 ≤  Ɛ𝑐𝑢  

 (1) 
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2.1.2 Design flexural tensile strength of steel 

For the steel used as reinforcement the following behavior of the material was considered (Figure 2.3). 

It presents an initial linear branch that satisfies the Law of Hook and after reaching the point of yield, the 

stress remains constant on a horizontal plateau.  

 

Figure 2.3 - Stress-strain curve for steel adapted from ACI [7] 

 

2.1.3 Design procedure 

For the section analysis the scheme presented in the following figure is given by ACI Committee Report 

[7] and it depends on the type of the state that has been chosen, Ultimate, Figure 2.4 (c) or Service, 
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Figure 2.4 (d). This code also presents a simplification, the rectangular stress block due to its easy 

calculation process. Figure 2.4(e). 

 

 

Figure 2.4 - Internal stress and strain distribution for a rectangular section under flexure at 

ULS;(a) Cross Section; (b) Strain Diagram; (c) Parabola-rectangular stress block; (d) bilinear 

stress block; (e) Rectangular stress block. Adapted from ACI [7]. 

 

When the compression reinforcement is considered the following scheme is adopted,  

(Figure 2.5) and therefore, the compression force given by the reinforcement helps the compression 

force given by the concrete. The tensile force must balance both forces, the concrete and the steel ones. 

 

Figure 2.5 - Rectangular stress block considering compression reinforcement [8] 

However, for this case, it was considered a reinforced concrete member under flexure and compression 

reinforcement were not included in the equilibrium. 

Below is presented the calculation scheme considering the rectangular stress-block. 
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For a singly reinforced rectangular beam, an initial strain is always assumed for the concrete and steel. 

Knowing the initial strain, it is possible to calculate the depth of the neutral axis that satisfies the balanced 

strain condition through the following expression: 

 𝑥 =  
𝜀𝑐

𝜀𝑐 + 𝜀𝑠

∙ 𝑑 (2) 

where: 

𝑥   is the depth of the neutral axis; 

𝜀𝑐  is the concrete strain; 

𝜀𝑠  is the steel strain; 

𝑑  is distance from extreme compression fiber to centroid of tension reinforcement; 

By calculating through the numerical integration the stress block diagram, it is possible to obtain the 

resulting compression force, 𝐶:  

 𝐶 = 0.85𝑓𝑐
′𝛼𝑏 (3) 

where : 

f'c  is specified compressive strength of concrete; 

b   is the width of rectangular cross section; 

α = x∙ β1; 

β1- reduction coefficient obtained from the following parameter table (Table 2.1) provided by ACI [9] 

Table 2.1 – Concrete stress block parameters given by ACI [9] 

f’c [MPa] ≤8 35 42 49 ≥56 

α 0.72 0.68 0.64 0.60 0.56 

β 0.425 0.400 0.375 0.350 0.325 

β1 0.85 0.8 0.75 0.7 0.65 

γ = α/ β1 0.85 0.85 0.85 0.86 0.86 

 

To satisfy the equilibrium condition the internal forces must balance, hence it is possible to write the 

following expression: 

 𝐹𝑠 = 𝐶 (4) 
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Where: 

C is the resulting compression force given by equation (2) 

T is the tensile force of reinforcement given by: 

 𝐹𝑠 = 𝐴𝑠𝑓𝑦 (5) 

Where: 

𝐴𝑠  is the area of tension steel reinforcement; 

𝑓𝑦  is the specified yield stress of non-prestressed steel reinforcement; 

Thus, it is possible to write the following expression: 

 𝐴𝑠𝑓𝑦 = 0.85𝑓𝑐
′𝛽1𝑥𝑏 (6) 

Thus, introducing Eq. (2) and Eq. (4) into Eq. (3) the following expression can be derived and therefore 

it is possible to obtain the necessary amount of reinforcement, 𝐴𝑠:  

 𝐴𝑠 =
0.85𝑓𝑐

′𝛽1𝑥𝑏

𝑓𝑦

 (7) 

The nominal moment is the capacity of the structure to resist the applied loads and it can be calculate 

by the internal forces of the cross section, as can be seen in the following expression: 

 𝑀𝑛 = 𝐴𝑠𝑓𝑦 (𝑑 −
𝛽1𝑥

2
) (8) 

Once the nominal moment has been calculated, the reduction factor is applied and the following 

condition must be satisfied: 

 𝑀𝑢 ≤  𝜙𝑀𝑛 (9) 

Where: 

𝜙     is the reduction factor; 

𝑀𝑛   is the nominal moment capacity; 

𝑀𝑢   is the factored moment at section; 

The procedure that has been demonstrated above serves for the simplification suggested by the ACI[7] 

to use rectangular stress block instead of parabolic one. Since the shape of the stress block changes 

when it comes to the bilinear situation, it is necessary to calculate the application point for the new 

resulting compression force. Instead of an integration of a constant function the integral of a polynomial 

function of the first degree must be calculated and thus the compressive force is given by: 
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 𝐶𝑡   =
𝑓𝑐

′ ∙ 𝑏 ∙ 𝑥𝑡

2
 (10) 

Where 𝑥𝑡 represents the compressed zone until it reaches 𝑓𝑐
′. 

Regarding the application point of the force, as it is known, the resulting force on the triangular part, 

before the concrete strain reaches the ultimate strain, is applied to a third of the extreme compression 

fiber (𝑐𝑡/3). On the other hand, the constant part of the stress, after the strain reaches its ultimate point, 

is calculated in the same way the resulting force is applied in the middle of the stress block. 

After the calculation of the resulting compression force and the point of application for the linear stress 

block, it is possible to calculate the nominal moment by the following equation (10) and thus proceed to 

check the ultimate limit state through equation (8). 

 𝑀𝑛  =  𝐶𝑡 ∙  𝑧𝑡 ∙ 𝐶𝑟 ∙  𝑧𝑟 (11) 

Where: 

𝐶𝑡    is the resulting compression force before the ultimate strain is reached; 

𝑧𝑡    is the distance between the force resulting from the triangular stress block and the tensile force; 

𝐶𝑟    is the resulting compression force after the ultimate strain is reached; 

𝑧𝑟    is the distance between the force resulting from the rectangular stress block and the tensile force; 

For the present study, the bilinear scheme has been used and it does not include compression 

reinforcement. 

2.1.4 Safety factors 

The ACI code [7] reduces the nominal strength and therefore a reduction factor must be used depending 

on the failure type. The strength reduction factor can be seen in Figure 2.6. 
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Figure 2.6 - Strength reduction factor ACI 318 [2]   

Where: 

• Compression-controlled: Φ= 0.65 

• Tension-controlled: Φ = 0.90  

• Transition zone: Φ = 0.65 + (εsy – 0.002) (250/3) 

2.1.5 Load combinations 

According to ACI [2] the load combinations considered are presented in  Table 2.2 and the required 

strength should be bigger than the factored loads. 

Table 2.2 – Load combinations 

Loading combination Primary load 

U = 1.4D D 

U = 1.2D + 1.6L + 0.5(Lr or S or R) L 

U = 1.2D + 1.6(Lr or S or R) + (1.0L or 0.5W) Lr or S or R 

U = 1.2D + 1.0W + 1.0L + 0.5(Lr or S or R) W 

U = 1.2D + 1.0E + 1.0L + 0.2S E 

U = 0.9D + 1.0W W 

U = 0.9D + 1.0E E 

**Required strength U shall include internal load effects due to reactions induced by prestressing with a 

load factor of 1.0. 
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Where : 

U = the design (ultimate) load  

D = dead load 

F = fluid load  

T = self straining force  

L = live load  

Lr = roof live load  

H = lateral earth pressure load, ground water pressure.  

S = snow load  

R = rain load  

W = wind load  

E = earthquake load 

2.2 Eurocode 2  

Contrary to what is provided by the ACI code,presented in the previous section, the Eurocode 2 is not 

based on reducing the bearing capacity of the reinforced concrete member but on the contrary, the 

resistant moment is already calculated with the reduced capacities of the materials that are affected by 

a safety factor. 

To calculate the resistant moment, design strength, of a given cross section the assumptions considered 

are:  

• Bernoulli hypothesis, flat sections remain flat after loading. The strain in concrete and 

reinforcement is assumed to be directly proportional to the distance from the neutral axis. Linear 

strain distribution; 

• The static equilibrium and the strain compatibility must be satisfied; 

• Stress in reinforcement below the yield point shall be taken as the strain times the modulus of 

elasticity, linear behavior. For strains, greater than that stress, is considered as  fyd  ; 

• For the flexural calculation, the tensile strength of concrete is neglected; 

• Design concrete strength = fcd ; 

• Design yield strength of steel reinforcement = fyd;;  

• Concrete ultimate compressive strain 𝜀𝑐𝑢 = 0.0035; 
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2.2.1 Design compressive strength of concrete 

• Stress-strain relationship for the design of the cross section 

According to EN-1992-1-1 (3.1.7) there are three options for the stress-strain distribution and stress 

block: (1) Parabola-rectangle, Figure 2.7; (2) Bi-linear and (3) Rectangular. The stress-strain 

distribution that has been used in this thesis is the parabola-rectangle as shown.  

 

Figure 2.7 - Parabola-rectangle stress-strain diagram for concrete under compression [4] 

In which the design value of concrete compressive strength is given by the following expression: 

 𝑓𝑐𝑑 =  
𝛼𝑐𝑐𝑓𝑐𝑘

𝛾𝑐

 (12) 

Where: 

𝛾𝑐        is the partial safety factor for concrete; 

αcc   is the coefficient taking account of long term effects on the compressive strength and of unfavorable 

effects resulting from the way the load is applied. 

The value of αcc can be found in the National Annex and therefore it is considered as 0.85 in the 

German Annex and 1.0 in the Portuguese Annex. 

The curve shown in Figure 2.7 can be obtained by the following expressions: 

 𝜎𝑐 = 𝑓𝑐𝑑 [1 − (1 −
Ɛ𝑐

Ɛ𝑐2

)
𝑛

] 𝑓𝑜𝑟 0 ≤ Ɛ𝑐 ≤  Ɛ𝑐2   (13) 

   

 𝜎𝑐 = 𝑓𝑐𝑑   𝑓𝑜𝑟 Ɛ𝑐2 ≤ Ɛ𝑐 ≤ Ɛ𝑐𝑢2 (14) 
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Regarding the stress block the parabola-rectangle is used (Figure 2.8) in this study to represent 

the most realistic behavior of the concrete member. 

 

Figure 2.8 - Parabola-rectangle, bilinear and rectangular stress block  adapted from Eurocode 2 

[4]  

2.2.2 Design flexural tensile strength of steel 

Regarding the steel reinforcement the following stress-strain distribution is given by EN-1992-1-1(3.2.7) 

and the assumption B with the horizontal branch has been used for the flexural design, Figure 2.9. 

 

Figure 2.9 - Idealized and design stress-strain diagrams for reinforcing steel[4]  

The value of the design yield strength of reinforcement is given by the following expression: 

 𝑓𝑦𝑑 =  
𝑓𝑦𝑘

𝛾𝑠

 (15) 

2.2.3 Safety factors 

The safety factors concept given by Eurocode considers that the material capacity must be reduced and 

then the nominal moment is compared with the applied factored moment. 



2. Design philosophy  15 

To calculate the used values previously mentioned, 𝑓𝑐𝑑 and 𝑓𝑦𝑑, respectively, the Design value of 

concrete compressive strength and the Design yield strength of reinforcement, the following safety 

factors recommended by EC2 should be: 

• Concrete : γc = 1.5 

• Steel : γs = 1.15 

2.2.4 Design procedure  

According to EC2, the verification of a singly reinforced beam involves analyzing the strain in the 

concrete member when it is subjected to a load. Thus, 4 scenarios can be considered to describe a 

state of stress-strain of a reinforced concrete member when subjected to bending moment. In Figure 

2.10, and Table 2.3 the behavior of the cross section can be observed when the strains reach its 

limit. When the strain of the concrete or the steel reaches the ultimate strain, it is considered that the 

concrete member reached its limit and therefore fails. 

 

Figure 2.10 - Stress distribution when the reinforced concrete member is subjected to bending 

moment [10] 

Table 2.3 - Stress-strain distribution for concrete crushing and steel failure 

Case scenario Concrete Steel Failure 

I 
ε𝑐 =  ε𝑐𝑢2 ; 𝜎𝑐 =  f𝑐𝑑 

0 <  ε𝑠 < ε𝑦𝑑;  𝜎𝑠 <  𝑓𝑦𝑑 

Concrete 

II 
ε𝑐 =  ε𝑐𝑢2 ; 𝜎𝑐 =  f𝑐𝑑 

ε𝑦𝑑 <  ε𝑠 < ε𝑢𝑑;  𝜎𝑠 ≥  𝑓𝑦𝑑 

Concrete 

III 
ε𝑐2 ≤  ε𝑐 ≤ ε𝑐𝑢2 ; 𝜎𝑐 =  f𝑐𝑑 

ε𝑠 = ε𝑢𝑑;  𝜎𝑠 ≥  𝑓𝑦𝑑 Steel 

IV ε𝑐 ≤ ε𝑐𝑢2 ; 𝜎𝑐 <  f𝑐𝑑  ε𝑠 = ε𝑢𝑑;  𝜎𝑠 ≥  𝑓𝑦𝑑 Steel 
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Figure 2.11 – Stress block considering compression reinforcement [11] 

The scheme (Figure 2.11) is shown to demonstrate the case scenario for a concrete beam with 

compression reinforcement and how to calculate its resistance capacity. The main difference from the 

previous scheme, (Figure 2.10), is that, a compression force due to the compression reinforcement force 

is included in the equilibrium.  

By knowing the initial strain, it is possible to calculate the position of the neutral axis using the same 

expression used in section 2.1.3 equation (1). 

Considering the stress block that has been mentioned, Figure.2.8, for a given cross section, the 

compression force that is given by the integration of the stress-block is calculated. The stress 

considered has the expression (12) or (13), depending on the strain value. And the resulting 

compression force is given by: 

 𝐹𝑐 = ∫
𝐴

  𝜎𝑐  𝑑𝐴 (16) 

The compression force is given by the sum of the two parts: the compression force after the strain 

reaches 𝜀𝑐𝑢2, represented by the rectangular portion of the stress-block and a second part, due to the 

parabolic portion, when the strain has not reach 𝜀𝑐𝑢2 yet. 

Integrating the rectangular part of the stress block we get: 

 𝐶𝑟  =  𝑓𝑐𝑑 ∙  
𝜀𝑐𝑢2 − 𝜀𝑐2

𝜀𝑐𝑢2

 ∙  𝑏 ∙ 𝑥 (17) 

As for the force resulted of the parabolic stress-block, the force is obtained through the following 

equation: 
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 𝐶𝑝  =  𝑓𝑐𝑑 ∙  
𝑛

𝑛 + 1
∙

𝜀𝑐2

𝜀𝑐𝑢2

 ∙ 𝑏 ∙ 𝑥 (18) 

Thus, the resulting compression force is given by: 

 𝐹𝑐  =  𝐶𝑟 + 𝐶𝑝 (19) 

The position of the compression force to the neutral axis can be calculated by solving the following 

integral: 

 𝑥 −  𝑐 =
∫𝐴  𝜎𝑐 ∙ 𝑦 𝑑𝐴

∫𝐴  𝜎𝑐 𝑑𝐴
  (20) 

 

In order to satisfy the balance of longitudinal forces we have: 

 ∑ 𝐻 = 0 →  𝐹𝑐 =  𝐹𝑠 (21) 

 

Where: 

 𝐹𝑐     is the resulting compression force; 

 𝐹𝑠    is the tensile force; 

  𝐹𝑠  =  𝜎𝑠 𝐴𝑠 (22) 

 

and from Figure 2.9 the stress in the steel reinforcement is given by: 

  𝜎𝑠  = {
  𝑓𝑦𝑑 𝑓𝑜𝑟   𝜀𝑠  ≥    𝜀𝑦𝑑

  𝜀𝑠  𝐸𝑠  𝑓𝑜𝑟   𝜀𝑠 <    𝜀𝑦𝑑
 (23) 

After calculating the compression force and the force due to the reinforcement, it is possible to calculate 

the resistant moment of the cross section: 

   𝑀𝑅𝑑 =    𝐹𝑐 ∙ 𝑧 = 𝐹𝑠 ∙ 𝑧 (24) 

And the nominal moment: 

 𝜇 =  
  𝑀𝑅𝑑

𝑏𝑑2𝑓𝑐𝑑

 (25) 

After the above calculations have been completed, it is necessary to check the condition of the ultimate 

limit state.  
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     𝑀𝐸𝑑  ≤ 𝑀𝑅𝑑 (26) 

. Where: 

  𝑀𝐸𝑑- is the design moment 

  MRd- is the resistance moment  

 

 

To calculate the design moment the applied load may be esteemed through one of the following four 

combinations according to Eurocode, depending in which environment situation the structure is. 

Persistent/transient design situations: 

 𝐸𝑑 = 𝐸 ∑ 𝛾𝐺𝑗𝐺𝑗𝑘

𝑚

𝑗=1

+  𝑃 +  𝛾𝑄𝑖𝑄𝑖𝑘 + ∑ 𝛾𝑄𝑖𝜓0𝑖𝑄𝑖𝑘

𝑛

𝑖=2

 (27) 

 𝐸𝑑 = 𝐸 ∑ 𝐺𝑗𝑘

𝑚

𝑗=1

+  𝑃 + 𝐴𝑑 + (𝜓11𝑜𝑢 𝜓21)𝑄𝑖𝑘 + ∑ 𝜓2𝑖𝑄𝑖𝑘

𝑛

𝑖=2

 (28) 

Seismic design situations: 

 𝐸𝑑 = 𝐸 ∑ 𝐺𝑗𝑘

𝑚

𝑗=1

+  𝑃 + 𝐴𝐸𝑑 + ∑ 𝜓2𝑖𝑄𝑖𝑘

𝑛

𝑖=1

 (29) 

   

Where: 

𝐸 Effect of actions; 

𝐸𝑑 is the design value of effect of actions; 

𝐺𝑗𝑘 is the characteristic value of permanent action j; 

𝑄1𝑘 is the characteristic value of the leading variable action; 

𝐴𝐸𝑘Characteristic value of seismic action; 

𝐴𝐸𝑑 is the design value of an accidental action and 𝐴𝐸𝑑  = 𝛾1𝐴𝐸𝑘; 

𝑃 Relevant representative value of a prestressing action; 

𝛾𝐺𝑗 Partial factor for permanent action j; 

𝛾𝑄𝑖  Partial factor for variable action i; 
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𝛾1Importance factor (see EN 1998); 

𝜓0 Factor for combination value of a variable action; 

𝜓1Factor for frequent value of a variable action; 

𝜓2Factor for quasi-permanent value of a variable action; 

2.3 Comparison- ACI codes and Eurocode 2 

The procedure followed in this section is for reinforced concrete members without prestress. The cross 

section is known and so is the bending moment. Axial forces were not considered. 

To summarize the different flexural design approaches given by the European code and the American 

code, the following table is presented, Table 2.4: 

Table 2.4 - ACI and EC2 design comparison 

ACI EC2 
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3 Prestressed reinforced concrete members 

In this chapter the different materials used for reinforced concrete members with prestress and its history 

will be described briefly. Also, different types of prestress systems and the flexural design method in the 

ultimate limit state will be presented. 

In order to optimize prestressed reinforced concrete members, three types of structures were studied. 

conventional steel reinforced concrete structures, CFRP structures and finally mixed structures (CFRP 

and steel). 

3.1 Prestress history  

The benefits of prestressing capacities have been used from decades. The earliest date goes back to 

the beginning of the 18th century, a timber bridge made of timber by Stephen Harriman Long, Figure.3.1. 

[12].  

 

 

Figure 3.1 - Prestressed wooden bridge as designed by Stephen H. Long [12] 

Prestressed concrete members were well developed a few years later by Peter H. Jackson who obtained 

the first patent for prestressed concrete structure: a sidewalk made of prestressed cast iron and wrought 

iron[12]. 

His patent consisted of large plates of cast iron working as the upper chord of a small truss, tie rods of 

wrought iron working as the lower chord, and metallic stanchions working as vertical posts Figure 3.2 

Peter H. Jackson created new techniques for bridges, trusses and prestress.  
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Figure 3.2 - Prestress cast iron sidewalk as designed by Peter H. Jackson-Diagrams[12]  

In the 19TH century, Eugène Freyssinet, a structural engineer who propose to replace three old 

suspension bridges over Allier River (France) using high quality concrete with the cost of a single one. 

Le Veurdre Bridge (1910), Boutiron Bridge, and Châtel-deNeuvre Bridge. However, deformation 

problems were detected shortly after its construction and in 1940 the bridge was destroyed during the 

war. In 1928 Freyssinet patent his ideas and an addendum was made. In 1930 Freyssinet demonstrates 

his knowledge and a few conclusions of his study are shown as an example:[12] 

• the recommendation to use high-quality concrete; 

• very high strength steel (wires); 

• a variety of methods to tension the wires;  

• the possibility of precasting several long elements on only one beam of wires followed by cutting 

them to the desired length; 

• high strength concrete to reduce to a minimum the loss of initial prestress; 

• high initial stress of tensioned steel; 

An expansion of prestressed concrete occurred in Europe due to the World War I. 

In 1937, the German engineer Ewald Hoyer, secured four patents about precast prestressed concrete 

beams. 

In 1939 Freyssinet secured a patent for what is known nowadays as post-tensioning system. The system 

includes the anchorage device, the duct, the jack and the tendon. Figure 3.3. 
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Figure 3.3 -  Prestress cast iron sidewalk as designed by Peter H. Jackson- [12] 

Another contribution was made by the Belgian Gustav Magnel to solve the problem of the steel 

relaxation and its influence on prestressed concrete members. Corrosions are one of the main problems 

of steel, and in order to solve the problem of steel tendons and rebars, important research on the use 

of new material was and still is nowadays conducted at many European universities.  

3.2  Prestress systems  

Concrete members present a good behavior when subjected to compression forces, however they have 

a very poor behavior when subjected to tension, so the tensile strength may be neglected and therefore 

a solution must be provided to compensate the lack of tensile strength. Steel and FRP are materials 

used to compensate the lack of tension forces in the concrete beam, either as conventional 

reinforcement or as prestressed cables, since these materials have a high tensile strength. 

Prestressed cables are a good alternative to solve the lack of tensile strength. By tensioning high-

strength tendons, compression stress is induced before loading, so after loaded (by equilibrium) the 

tensile forces will balance the compressive forces, which means that the tensile stresses will reduce or 

even be canceled as shown in Figure 3.4. Consequently, less reinforcement will be required. 
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Figure 3.4 – (a) Concrete member subjected to bending without prestress; (b) concrete member 

subjected to bending with prestress- tensile strength reduction[13] 

 

Advantages of prestressed concrete members: 

• Increased spans; 

• Higher slenderness of structural elements; 

• Lighter structures; 

• Improved in-service and long-term behavior; 

• Smaller deflections; 

• Rational use of high-strength concrete and steel; 

There are two ways to tension the prestress, pre-tensioning and post-tensioning. In this dissertation only 

the post tensioning system was evaluated comparing bonded and unbonded tendons. Figure 3.5, 

summarize some of the prestress existing types. 

 

Figure 3.5 - Prestress systems 

In the post-tensioning system, the prestress is tensioned after the hardening of the concrete member. 

When the concrete has acquired the necessary strength, the transfer of stress is carried out at the ends 

by anchors. 
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The following Figure 3.6 presents both system previously mentioned. 

 

Figure 3.6 - Prestress systems: (a) pre-tensioning; (b) post-tensioning [14] 

3.3 Bonded tendons 

As shown before, the tendon used on prestressing may be bonded or unbonded. Bonded tendons have 

a main feature that consists in tendons forming a bond in the concrete structure by grouting over 

its length. The grout, most of the time is a cementitious matrix to be applied after stressing the 

strands. After the grout hardens the longitudinal movement is not possible, so the function of 

the grout is: 

• Provides a continuous bond between the strand and the duct. 

• Increase protection against corrosion, since it creates a physical barrier. 

• Provides an environment non-conducted for corrosion through its alkalinity. 

By compatibility, the force in the strand is directly related with the deformation of the surrounding 

concrete. 

The losses by friction must be considered and it is higher in short tendons due to the high friction 

between the strand and its housing. 

The process to build a prestressed beam is shown in Figure 3.7: 
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Figure 3.7 - Process for the manufacture of a bonded prestressed RC beam with post tension 

system (a) Placing prestress cables, (b) Concreting and hardening of concrete, (c) Anchoring 

process, (d) Grouting process, (e) Hardening of the concrete beam, (f) Anchoring detail [15] 

 

Bonded Advantages: 

• Develops higher ultimate flexural strength;  

• Does not depend upon the anchorage after grouting;  

• Localizes the effects of damage; 

• Simple technique for demolishing or providing future opening in slab  

For the design of bonded tendons, in this dissertation, the flexural design has been made according to 

Eurocode with the following assumptions: 

• Perfect bond between tendon and concrete; 

• Concrete strain capacity is assumed as 0.0035; 

• Strain compatibility between prestress strain and concrete strain; 

• Linear strain behavior; 

• Tensile concrete strength may not be considered; 

• A plane section remains plane after deformations; 
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• Perfect bond between reinforcement bars and concrete; 

• The deformations due to the shear forces may be neglected; 

3.4 Unbonded tendons 

The prestress is designated as unbonded if the tendons are not bonded to the concrete member and 

therefore a longitudinal displacement is allowed relatively to the concrete. The compressive force goes 

only and directly from the anchors to the concrete  

For unbonded tendons, as shown in Figure 3.8, there is a coating material that prevents the corrosions 

of strands and reduces the friction effect and a plastic sheathing to encase and it acts as a bond breaker, 

protecting against damage by mechanical handling and barrier against intrusion of moisture and 

chemicals. 

 

Figure 3.8 - Cross-section of wire unbonded tendon 

When the concrete member is loaded a flexural deformation occurs and it leads to an increase in the 

length of the tendon. By compatibility of deformation the elongation and the strain are directly related. 

In that way, an increment of the stress must be considered, and it can be calculated considering the 

deformation and safety factors. 

Unbonded Advantages: 

• Provides greater available lever arm; 

• Reduces friction losses; 

• Simplifies pre-fabrications of tendons;  

• Grouting not required; 

• Can be constructed faster; 

 

The analysis regarding unbonded tendons relies on the following assumptions: 

• No friction between concrete and tendons; 
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• Tensile concrete strength may be ignored;  

• A plane section remains plane after deformations; 

• Perfect bond between reinforcement bars and concrete; 

• The deformations due to the shear forces may be neglected; 

• The stress in an unbonded tendon is constant over its full length; 

• Concrete creep and tendon relaxation are not considered in the present study; 

• Stress-Strain relationship is linear for both concrete and steel; 

3.5 FRP  

One of the major problems faced by civil engineers for construction with reinforced concrete members 

is the corrosion to which it is subjected, and it is directly related to their durability. 

Thus, new types of materials have been studied to replace the conventional reinforcement and 

prestress. In this dissertation will be studied the FRP material and, more specifically the CFRP. 

FRP (Fiber-reinforced polymer) are composite materials composed of aramid fibers (AFRP), basalt 

(BFRP), carbon (CFRP) or glass (GFRP). They can be used in aerospace, automotive, marine and 

construction industries, since it presents a high tensile strength.[16] 

• AFRP 

Aramid fibers are synthetic materials and it is known by their high strength and good heat-resistance. 

These fibers present a high modulus of elasticity but a low density. On the other hand, it has a higher 

cost than the other fibers such as glass and basalt, and therefore are less used as reinforcement in 

construction. In addition, the fibers of aramid also absorb moisture and must be impregnated with a 

polymer matrix 

• BFRP 

Basalt fibers are fibers with a high temperature and abrasion resistance, it has almost the same price of 

the glass fibers, however, the lack of guidelines for basalt by the ACI, Canadian Code and FIB makes 

them less competitive in the market than the other fibers. 

• CFRP 

Carbon fibers present high tensile strength, higher than all other fibers. They also feature lightweight 

and low thermal expansion. However, because it is a material with an elevated quality also presents a 

cost to match. 

 

 



3. Prestressed reinforced concrete members    29 

• GFRP 

Glass fibers have high electrical insulation properties, good heat resistance and have the lowest cost 

and therefore are widely used for reinforcing structures. It has a much lower modulus of elasticity than 

steel. 

The figure below (Figure 3.9) shows the comparison between the tensile strength of different materials 

used in the field of civil engineering. It should be noted that carbon has a modulus of elasticity similar to 

that of steel. 

 

Figure 3.9 – Tensile strength comparison for different materials [17] 

. 

Within all of the aforementioned fibers, the most interesting for the use of prestressing are the CFRPs 

because they have the highest strength and modulus of elasticity. One of the main problems with CFRP 

tendons is the fact that their anchoring is not a simple process for the post-tensioning or pre-tensioning 

systems. Each supplier produces tendons with different characteristics and for that reason to find a 

perfect solution is almost impossible. Another problem is the lack of lateral resistance that FRP tendons 

present, making it difficult to find an optimal anchoring system, because any lateral force imposed can 

damage the tendon, since it is a fragile material with a bad lateral resistance. Although some studies 

mention mechanical anchorage as a possible solution because it is easy to install [17], while some 

others, [18] suggest that anchorage systems of bonded type are more adequate to avoid a concentration 

of stress, distributing the load evenly from the anchorage to the FRP tendon. 

Mechanical anchors work by friction between the tendon and the interior of the anchorage. For the case 

of the mechanical anchorage type, a compression force is applied perpendicularly to the tendon axis. 

[18]. While bonded anchoring systems consist of wrapping the FRP tendon in an adherent material with 

the aim of distributing stress along the anchor's length, as it can be seen in Figure 3.10 since the high 

concentration at the end of the anchor can be very destructive[19]. 
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Figure 3.10 – Bond type anchorage system [18] 

3.5.1 FRP Structures 

The use of FRP in civil engineering structures has been growing considerably in recent decades, 

especially in pedestrian bridges. 

The first pre-stressed bridge built, Lunenshe Gasse Bridges, was built in 1980 Dusseldorf, Germany 

[20]. It is composed by twelve GFRP tendons. Figure 3.11. 

 

Figure 3.11 - Lunenshe Gasse Bridges [20]  

The first highway bridge was also built in Dusseldorf, Germany, in 1986, The Ulenbergstrasse bridges 

(Figure 3.12(a)) consisting of two spans and was also made in GFRP, Figure 3.12(b) [20]. 
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Figure 3.12 – (a) The Ulenbergstrasse bridges and (b) Technical data [20] 

Relatively to bridges with CFRP, the first CFRP bridge with prestressed tendons was made in Japan in 

1988 [21]. The first highway bridge with CFRP prestress and fibreoptic sensors was made in Alberta, 

Canada in 1993, the Beddington Bridges Trail, Figure 3.13. 

 

Figure 3.13 – The Beddington Bridges Trail, Canada [21] 

This bridge is composed of two spans 22.83m and 19.23m and each consisting of 13 bulb-tee sections 

precast and prestressed. Two types of CFRP cables were used, one produced by Tokyo Rope and the 

other by Mitsubishi Kasei [22]. 

The following table shows some examples of CFRP bridges (Table 3.1) with data provide from ACI 

Code[21]. 

 

 

 



32  3. Prestressed reinforced concrete members 

Table 3.1 - CFRP Bridges examples 

Bridge Country Year Picture 

Shinmiya Bridge 

First application of Carbon 

cable as prestressed 

material 

Japan 1988 

 

Rapid City Bridge 

Precast and post-tensioned 

bridge. 

Length: 9m 

Span: 5.2m 

United 

States 
1992 

 

Tsukude Golf Country 

Club Bridge 

Pedestrian bridge with a 

single span of 99.0m 

Japan 1993 

 

Beddington Trail Bridges 

Highway bridge with 

precast and prestressed 

concrete members. 

Canada 1993 

 

The West Mill Bridge 

High way bridge with span 

of 10.0m 

United 

Kingdom 
2002 
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3.6 Ultimate limit state  

3.6.1 Compression force 

The compression force, since it only depends on the strain, is calculated the same as shown in section 

2.2.4, equation (16) and (17).  

3.6.2 Prestress force 

The force of the prestress varies over time and it suffers instantaneous losses and long-term losses, 

however, it is considered a permanent action since in a short time it tends to its limit value.  

According to EC2 the procedure for calculating the prestress force is given as follows: 

• Maximum force 𝑃𝑚𝑎𝑥 imposed at the active end. 

 𝑃𝑚𝑎𝑥 =  𝐴𝑝 ∙ 𝜎𝑝,𝑚𝑎𝑥 (30) 

Where: 

𝐴𝑝        is the area of a prestressing tendon or tendons; 

𝜎𝑝,𝑚𝑎𝑥  is the Maximum prestress stress; 

 𝜎𝑝,𝑚𝑎𝑥  =  𝑚𝑖𝑛  {𝑘1 ∙  𝑓𝑝𝑘 ;  𝑘2 ∙  𝑓𝑝0.1𝑘  } (31) 

𝑘1  =  0.8 

𝑘2 = 0.9 

• The value of the initial prestress force 𝑃𝑚0: 

𝑃𝑚0  =  𝐴𝑝∙ 𝜎𝑝,𝑚0 

where: 

𝜎𝑝,𝑚0   is the stress in the tendon immediately after tensioning or transfer; 

 𝜎𝑝,𝑚0  =  𝑚𝑖𝑛  {𝑘1 ∙  𝑓𝑝𝑘 ;  𝑘2 ∙  𝑓𝑝0.1𝑘  } (32) 

𝑘1  =  0.75 

𝑘2 = 0.85 

As previously mentioned, the bonded and unbonded tendons present different approaches and thus 

the prestress forces are presented for each type of tendons. 
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• In the case of bonded tendons, we have: 

 𝐹𝑝  =  𝐴𝑝 ∙ 𝜎𝑝 (33) 

With: 

The prestress stress given by: 

  𝜎𝑝 =  {
 
0.9𝑓𝑝𝑘

𝛾𝑝

  𝑓𝑜𝑟   𝜀𝑝  ≥    𝜀𝑝𝑑

  𝜀𝑝  𝐸𝑝  𝑓𝑜𝑟   𝜀𝑝 <    𝜀𝑝𝑑

 (34) 

 

For the case of the carbon we do not have yield plateau and thus the tension can only be calculated 

linearly until reaching the ultimate strain. 

 

• In the case of unbonded tendons we have: 

  𝜎𝑝  ≅  
𝑃∞

𝐴𝑝

 +  𝛥 𝜎𝑝,𝑈𝐿𝑆 (35) 

Therefore, equation (33) into equation (30) it is possible to obtain the force of prestress that is given by: 

 𝐹𝑝 = 𝑃∞ + 𝛥 𝜎𝑝,𝑈𝐿𝑆∙ 𝐴𝑝 (36) 

Where: 

𝐹𝑝             is the prestress force; 

𝐴𝑝            is the area of a prestressing tendon or tendons; 

 𝜎𝑝            is the stress applied to the tendon; 

fp              is the tensile strength of prestressing; 

 

fpk             is the characteristic tensile strength of prestressing; 

𝛾𝑝                    is the partial factor for actions associated with prestressing; 

𝑃∞             is the prestress force after all losses; 

𝛥 𝜎𝑝,𝑈𝐿𝑆     is the increase of the stress from the effective prestress to the stress in the ultimate limit state 

and it can be considered as 100 MPa according to EC2, section 5.10.8 

The strain distribution scheme is shown in the following Figure 3.14: 
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Figure 3.14 - Strain distribution for prestressed concrete beam 

The prestress strain is the sum between the initial strain and the strain of tendon available in flexure. 

Given by: 

 𝜀𝑝  =  ∆𝜀𝑝 +  𝜀𝑝0 (37) 

  

The initial strain is given by the following equation: 

 𝜀𝑝0  =
𝑃∞

𝐴𝑝 ∙ 𝐸𝑝

 (38) 

 

And the strain in the prestress can be obtained by geometry : 

 
∆𝜀𝑝

𝑑 − 𝑥
 =  

𝜀𝑐

𝑥
 (39) 

The method used is the one provided by the EC, considering a parabolic-rectangular stress block and 

some values assumed as given values, such as: the pre-stress used, the type of concrete, the type of 

steel and a cross-section with a given geometry. Thus, the only unknown, is the need or not of extra 

reinforcement to satisfy the balance. 

The calculation of the cross-section resistance capacity is a result of the equilibrium of the strains in the 

failure through the iterative method. Considering that the strain of concrete reaches the ultimate strain. 

This method is based on initiating the process with ultimate strain for concrete and reinforcement. 

Depending on the need for a greater or lesser compression zone to satisfy the balance of forces, an 
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adjustment in the strain to reach the equilibrium is made. Once the strain is found, stress and the 

corresponding forces may be calculated.  

 

3.6.3 Materials 

Regarding the concrete properties used in this chapter they are the same as the ones presented in 

section 3.2 and for the reinforcement and prestress the following stress-strain distribution is considered. 

And as it can be seen, Table 3.2, steel and CFRP present different behavior that shall be considered in 

the design procedure. For the steel, it is possible and preferable to design after the yield point while for 

CFRP material this point does not exist, therefore the concrete member fails abruptly if the failure is due 

to CFRP reinforcement. The Table 3.2 shows these differences.  

Table 3.2 - Steel and carbon. Comparison of stress-strain curves 

Material Rebars Tendons 

 

 

 

Steel 

 

 

 

 

Carbon 

 

 

 

 

 

 

 

 

 

 

 

The values of the safety factors used for each material of the prestressed reinforced concrete structure 

are presented in Table 3.3. For steel and concrete the values considered are given by EC2 [4] and for 

CFRP the safety factors considered are given by FIB [5] 

𝑓𝑓𝑘 

𝑓𝑓𝑑 𝑓𝑝𝑓𝑑 

𝑓𝑝𝑓𝑘 
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Table 3.3 - Material safety factors given by FIB[5] and EC2 [4] 

Concrete 
Steel 

(tendons/rebars) 

CFRP 

(Tendons) 

CFRP 

(Rebars) 

1.5 1.15  1.3 1.8 

 

3.6.4 ULS – Flexural Verification 

The ultimate limit state is a state in which the carrying capacity of the structure is exceeded, and 

therefore the safety of the structure and especially of human lives are compromised. It should be noted 

that the structures can be dimensioned for the ultimate limit state or for the service state, and the 

distinction between the two is made through the risk. Ultimate Limit State can lead to human and material 

losses, while the service state only leads to the discomfort of the user of the structure. 

The verification of the ultimate limit state sums up the calculation of the amount of reinforcement required 

when the reinforced concrete member is subjected to a given moment. 

For the ultimate limit state to be verified, the following condition must be satisfied: 

𝐸𝑑  ≤   𝑅𝑑   

Where: 

𝐸𝑑 is the value of the applied load and 𝑅𝑑 the resistant capacity;  

As for the calculation of 𝑅𝑑, resistant capacity of the structure, a cross section analysis is made and as 

shown in Figure 3.15, these forces must be considered. 

 

Figure 3.15 - Internal forces for calculation of the cross-section resistance capacity 
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The verification of the ultimate limit state was done through the balance of the forces. Assuming an initial 

strain, ultimate strain and through an iterative process it was possible to find the neutral axis and the 

forces that balance the applied loads as well. 

 ∑  H =  0 (40) 

 ∑  M =  0 (41) 

Where: 

H are the horizontal forces; 

M is the moment in the cross section; 

Doing the equilibrium of the moments at the point where the reinforcement is applied, it is possible to 

write the following: 

 𝑀𝑅𝑑  = 𝐹𝑐 ∙ Z + 𝐹𝑝 ∙ 𝑧𝑝 (42) 

Where: 

𝑀𝑅𝑑  is the resistant moment; 

𝐹𝐶  is the resulting compression force; 

𝑍 is the level arm, the difference between the compression force and the tensile force in the 

reinforcement rebars; 

𝐹𝑝 is the force in prestressed cables; 

𝑍𝑝 is the level arm, the difference between the tensile force in rebars and the prestress force;  

The equilibrium given by the equation (41) the balance of the longitudinal forces is obtained. 

 𝐹𝑐 − 𝐹𝑝  −  𝐹𝑠  =  0 (43) 

With the expression (45), the tensile force in the steel reinforcement can be found and so the amount of 

reinforcement. 
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4 Parametric study for optimization of RC structures in bending 

with CFRP 

4.1 General considerations 

CFRP are materials with high performance fibers that have been used in civil construction in order to 

replace the conventional steel used as reinforcement and pre-stress. The lack of uniformity in the 

guidelines and the high cost are some of the characteristics that prevent this material from expanding 

exponentially in its use for the structures. The feasibility of the solution is directly related to the amount 

of material used, which may vary depending on the type of reinforcement, the design procedure and the 

value of the safety factor. 

Several recommendations [5], [7], [23], [24] for CFRP structures exist today, but they do not agree with 

the value of the safety factor or with the design procedure itself. 

Thus, a parametric study has been conducted and it is presented in this paper to show the impact on 

design results caused by using different design concepts, for the possible failure modes, for the type of 

material used as reinforcement and tendons and for the type of prestress system (bonded or unbonded). 

Prestressed and non-prestressed sections are analyzed in the following chapter. 

The main goal of this dissertation is to analyze and optimize the design procedure for CFRP reinforced 

concrete structures. 

4.2 The code developed 

In order to help on solving the problems that have been mentioned, a study that used Visual Basic 

Application (VBA) was developed and in this way several other programs were created. 

Thus, the results obtained by the program were based on the balance of forces and therefore for a 

cross-section, with a given geometry and known mechanical properties, it was possible to calculate the 

amount of reinforcement required that satisfies the equilibrium condition. 

Several codes for different case scenarios were elaborated. A code in which the rules suggested by the 

Eurocode 2 [4] were followed (Appendix A). A second code for the design of reinforced concrete 

structures, but according to the ACI Standard [2], [3] design procedure and it is presented in the 

(Appendix B). The two codes previously mentioned are for non-prestressed reinforced concrete 

structures and it has the main goal to compare the design procedure given by these two codes. 

The third one is for prestressed reinforced concrete structures” and it presents three different 

approaches (subparts). The first one, in which the applied moment or section width varies (Appendix C); 

a second one in which the value of the prestress force is variable and finally a design variation in which 

the strength of the material and its strain are reduced. 
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The codes are subdivided into 4 subparts: Input, Constitutive Laws, Calculation process and Output. 

And to demonstrate what was developed in a brief way it is presented a flowchart in Figure 4.1 to 

summarize the codes presented in the appendices. 

Input- In this section all variables are entered manually. Program users have the freedom to choose the 

type of concrete and steel they want to work with, as well as the cross-section geometry and the limit 

strains of each material in a database table. Each code has its own table and properties to vary. 

Regarding the CFRP material the user must decide the specified values, which means, the safety factor 

is applied after, during the iteration process. 

Constitutive Laws- In this section is defined the type of stress-strain diagram used to calculate the 

stress at the point of interest. 

Calculation process- The part of the calculation itself, where the loop is drawn and by an iterative 

process seeks the balanced solution. The process in program 1 and 2 generates values for µ from 0 to 

0.48 with the increment of 0.01 and µ is directly proportional to the applied moment. Regarding the 

program for prestressed members, the value of the input becomes the applied moment and in a second 

case the width of the cross section. And finally, the last one, varying the value of the initial force of the 

prestress. 

With the limit strain defined as input it is possible to calculate the neutral axis and consequently the 

stress. After determining tensions, it is possible to calculate the resulting compression force and the 

tensile force applied to the reinforcement. Once these forces have been calculated, we only have to 

calculate the moment at one of these points and we can obtain the resistant moment of the cross section. 

This moment is compared later with the applied moment and if the difference between them is less than 

10-5 we consider that the moments are equal and as such, we find the solution and the loop ends. If the 

applied moment is smaller than the resistant one we have to follow the strain curve of the concrete and 

we divide the strain value by half in each iteration, reducing the compressed zone until the equilibrium 

is found. If the applied moment is greater than the resistant one, we elaborate the same procedure but 

following the steel strain way. 

Output – The output of the program consists of many different variables and we can chose among those 

to have the desired plot. In this case it is possible to analyze the amount of reinforcement and the 

variation of the strain in relation to the variation of the applied moment, section width or initial force of 

the prestress. 

 



4. Parametric study for optimization of RC structures in bending with CFRP  41 

  

Figure 4.1 - Flowchart of the cycle performed by VBA code 
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4.2.1 Properties of materials  

The properties of the CFRP tendons used in the code are shown in Table 4.1  

Table 4.1 – Properties of CFRP tendons 

CFRP Tendons 

𝒇𝐩𝐤 (MPa) 2690 

𝒇𝐩𝟎,𝟏𝐤 (MPa) 2421 

𝒇𝐩𝐝 (MPa) 2022.56 

𝐄𝐟 (GPa) 155 

𝜺𝐮𝐤 (‰) 17,35 

𝜸𝐟  1.33 

𝐀𝐩 (cm2) 11.0544 

𝐏𝐦𝟎 (kN) 1275,46 

𝚫𝐏𝐜+𝐬+𝐫 (%) 10 

On the other hand, the type of tendon selected is steel, the data considered are as follows in Table 4.2. 

Table 4.2 – Properties of steel tendons 

Steel Tendons 

𝒇𝐩𝐤 (MPa) 1770 

𝒇𝐩𝟎,𝟏𝐤 (MPa) 1593 

𝒇𝐩𝐝 (MPa) 1539,13 

𝐄𝐬 (GPa) 195 

𝜺𝒖𝒌 (‰) 25 

𝜸𝒔  1.15 

𝐀𝐩 (cm2) 11.0544 

𝐏𝐦𝟎 (kN) 1275,46 
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𝚫𝐏𝐜+𝐬+𝐫 (%) 10 

  

For the type of ordinary reinforcement, it is possible for the user to choose CFRP or steel and the 

characteristics of the rebar of each material are in Tables 4.3 and Table 4.4 respectively. 

Table 4.3 - Properties of CFRP rebars 

Carbon_Rebars 

𝒇𝐟𝐤 (MPa) 2550.0 

𝒇𝐟𝐝 (MPa) 1416,67 

𝐄𝐟 (GPa) 158,0 

𝜺𝐟𝐤 (‰) 16,14 

𝜺𝐟𝐝 (‰) 8,97 

𝜸𝐟 1.8 

  

Table 4.4 - Properties of CFRP rebars 

Steel_rebars 

𝒇𝐲𝐤 (MPa) 500 

𝒇𝐲𝐝 (MPa) 434,78 

𝐄𝐬 (GPa) 200 

𝜺𝐮𝐤 (‰) 25 

𝜺𝐲𝐝 (‰) 2.174 

𝜸𝒔 1.15 

Where: 

Ap is the area of a prestressing tendon or tendons; 

Ef is the elastic modulus of FRP; 

Es is the elastic modulus of steel; 

𝑓fd is the design value of tensile strength for FRP and  𝜀fd is its respective strain; 
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𝑓fk is the characteristic value of tensile strength of FRP reinforcement and  𝜀fk is its respective strain; 

𝑓yd is the design yield strength of reinforcement and 𝜀yd is its respective strain; 

𝑓yk is the characteristic yield strength of reinforcement; 

𝜀uk is the characteristic strain of reinforcement or prestressing steel at maximum load; 

ΔPc+s+r (%) Are the long-term losses due to creep, shrinkage and relaxation at location x, at time t; 

𝛾f partial safety factor for FRP; 

𝛾𝑠 partial safety factor for Steel; 

Since, as previously mentioned, there is no European standard for the design of FRP structures, the 

values of these safety factors (Table 4.1-Table 4.4) were taken from previous studies [25] and guideline 

[5]. 

Case 1 

In the case 1 the parameters of the cross-section as well as the properties of the concrete to be used 

are always constant and considered as input for the program. Table 4.5 and Table 4.6. 

Table 4.5 – Geometry of the cross section for case 1 

Cross_Section 

h(m) 1.1 

dp(m) 1.075 

d(m) 1.153 

b(m) 0.96 

e(m) 0.49 

Table 4.6 – Concrete properties for case 1 

Concrete 

𝒇𝐜𝐤 (MPa) 30 

𝒇𝒄𝒅 (MPa) 17 

εc2(‰) 2 

εcu2(‰) 3.5 

n 2 
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Variations are made relatively to type and material of the reinforcement and prestress as shown below, 

Table 4.7 

Table 4.7 – Table used to choose the type of prestress system, tendon material, rebar material 

and concrete strength class for case 1 

Properties 

Tendon_Type Bonded 

Tendon_Material  Carbon 

Rebar_Material Carbon 

Concrete_Type 
 

 

The code also allows the variation of the concrete strength but in this case, it was not considered for 

this dissertation. 

Case 2 

This case considers that the width of the cross section varies for a given and constant applied bending 

moment, MEd = 3500kNm 

Table 4.8 - Geometry of the cross section for case 2 

Cross_Section 

h(m) 1.1 

dp(m) 1.075 

d(m) 1.153 

MEd[kNm] 3500 

Table 4.9 - Concrete properties for case  

Concrete 

𝒇𝐜𝐤 (MPa) 30 

𝒇𝒄𝒅 (MPa) 17 

εc2(‰) 2 

εcu2(‰) 3.5 

n 2 

 

Bonded or Unbonded 

CFRP or Steel 

CFRP or Steel 
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After this, as shown before, variations are made relatively to type and material of the reinforcement and 

prestress as shown below: 

Table 4.10 - Table used to choose the type of prestress system, tendon material, rebar material 

and concrete strength class for case 1 

Properties 

Tendon_Type Bonded 

Tendon_Material  Carbon 

Rebar_Material Carbon 

Concrete_Type 
 

 

4.3 ACI 314/318 vs Eurocode 2 analysis 

As presented in Chapter 2, ACI 318 [1]  and the ACI 314 [3] codes have a different approach than and 

EC2 [4] when it comes to the dimensioning of reinforced concrete structures in the ultimate limit state. 

Previous work made by KLEBER BARROS [26] has shown that these different design approaches 

suggested by EC2 [4] and ACI  [1], lead to a difference of results when analyzing the amount of 

reinforcement needed. Thus, several comparisons were elaborated in order to understand the factor 

that influences these processes the most, creating several assumptions and different cases as seen in 

the following tables. The reinforced concrete member in question had a rectangular cross-section with 

known geometry and mechanical properties. 

For this study it was compared the design of a simply supported reinforced concrete beam, subjected 

to an applied load (Figure 4.2) and rectangular cross section (Figure 4.3) with the following 

characteristics. 

It is important to point out that the following results are for a given cross section and specific materials 

and therefore it should not be generalized to other cases without a more detailed study. 

Data provided  

• Cross section geometry 

High: 0.80m 

Width: 0.6m 

Length: 9,0m 

• Material 

Concrete type: C30/37 

Bonded or Unbonded 

CFRP or Steel 

CFRP or Steel 
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Steel reinforcement: B500- A500NR 

E = 210GPa 

Varying 

• Applied moment varying from µ= 0 to µ = 0.48 

Objective 

• Amount of reinforcement required 

 

Figure 4.2 - Applied load, shear and bending moment diagrams 
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A-A’ 

 

Figure 4.3 - Cross section and stress- strain distribution adapted from EC2 considering failure 

due to concrete crushing [4] 

 

In the case of ACI, the following scheme was considered, and it can be seen in Figure 4.4. 

 

Figure 4.4 - Cross section and stress- strain distribution adapted from ACI considering failure 

due to concrete crushing [7] 

The first code was elaborated following the parameters suggested by the EC2 [4] and a second one 

following the ACI Standard [1], however in order to analyze different parameters the ultimate strain, the 

safety factor and the design procedure itself changes. 

Four cases are presented below to compare EC2 [4] and ACI 318[1]. 
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4.3.1 Case A - ACI 318 and Eurocode 2 design procedure 

In case A the comparison is made regarding the Eurocode 2 [4] and ACI [1],[2],[3] design procedure. 

For this study the hypotheses considered are in the following Table 4.1. The main goal of this study was 

to prove the difference found in the previous work [26]. And for this, all parameters were maintained as 

suggested by the codes. With this is study it is also possible to compare the Eurocode in two European 

countries (Portugal and Germany) where 𝛼𝑐𝑐 can take different values according to the national annex, 

1.0 in the Portuguese case and 0.85 for German one. 

 

 

 

 

 

Table 4.11 - Assumptions, case A 

ACI 318 Eurocode 2 

Stress block bilinear 

Perfect bond between the concrete 

and the reinforcement 

εcu = 0.003 

Фt = 1/γs =0.90→ γs ≅ 1.11 

Фc =1/γc= 0.65→ γc ≅ 1.54 

Stress block parabolic-rectangular  

Perfect bond between the concrete 

and the reinforcement 

εcu = 0.0035 

γs =1.15 

             γc = 1.5 
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Figure 4.5 - Results for ACI [1] and Eurocode [4] design with the Portuguese National Annex 

(PT) and with the German one (DE); (a) Amount of reinforcement required with the variation of 

the applied moment; (b) Depth of the neutral axis and level arm varying the applied moment; 

(c)Strain distribution with the variation of the applied moment; (d) Nominal moment varying the 

nominal moment 

Throughout the observation of Figure 4.5 some conclusions can be drawn. In Figure 4.5 (a) it is possible 

to observe the amount of reinforcement required in function of the different applied moment. The three 

curves that are presented refers to the European Code with the Portuguese and German Annex and the 

last one with the ACI Code. 

It is observed that for a reduced moment there is small variation in the amount of reinforcement between 

the three curves, but from a certain point this difference increases considerably, being this point where 

the concrete member has reduced ductility and as such the designer should not do the project in that 

zone. For the same applied moment, it should be noted that the most conservative Code is the Eurocode 

with the German national annex since it always requires a greater amount of reinforcement than the 

other curves. When it comes to Figure 4.5 (b), the curve corresponding to the neutral axis of the 

Portuguese annex is lower than the German one, since the Portuguese one presents a higher 

compressive strength and to maintain the same applied moment it has to present a larger level arm for 

the moment calculation, such conclusions can be drawn and are consistent with what was theoretically 

expected. In Figure 4.5 (c) the strains are presented and in the case of the concrete strain they are very 

similar, except for the ACI curve which presents an ultimate strain of 0.003 instead of 0.0035. Regarding 
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the steel strain, for the Portuguese case, which presents a lower depth of the neutral axis, it requires a 

greater strain than the German annex and also greater than the ACI code. The graph of Figure 4.5 (d) 

shows a value of μ varying the applied moment and it is observed that for the German annex the reduced 

ductility point of the structure is reached before the Portuguese and the ACI ones. 

It is noteworthy that in this study at no time was considered the compression reinforcement since, in 

general, it is usual to make checks for simply reinforced concrete beams. One of the problems faced by 

structural engineers is the use of single or double reinforced concrete beams, ie whether or not to use 

compression reinforcement. The issue is raised because at high moments the stress of the tensioned 

reinforcement is below the yield and thus is not economically feasible, making it more cost effective to 

adopt a solution with compression reinforcement. [27];[28]. 

As can be seen in Figure 2.10 it is possible to identify 4 different zones depending on the strain of steel 

and concrete.  

According to [26,27] different situations can occur regarding to the ductility of reinforced concrete 

members without compression reinforcement which are directly related to the four phases mentioned in 

Table 2.3. 

Situation I 

The bending moment is high (µ > 0.3), the concrete has crushed and it reached the ultimate strain. on 

the other hand, steel has not reached the yield yet. In this case the structure presents a brittle behavior. 

Situation II  

The bending moment is medium (0.1< µ < 0.25), the concrete has crushed and it reached the ultimate 

strain. on the other hand, steel is between yielding and failure. In this case the structure presents the 

adequate ductility. 

Situation III 

The bending moment is low (0.05< µ < 0.1), the concrete strain is between the strain at reaching the 

maximum strength and the ultimate strain on the other the steel has reached the ultimate strain.  

Situation IV 

The bending moment is low (µ < 0.1), the concrete strain has not reached the maximum strain yet, 

however steel is at the ultimate strain.  

For both situations, III and IV the beam is not under much stress, the reinforcement is little requested. 

According to LNEC Tables, [26], section 3.2, for simply reinforced rectangular beams the reinforced 

concrete beam is only economically viable if: 

𝛼 ≤ 𝛼𝑙𝑖𝑚= 0.617 

µ ≤ µ𝑙𝑖𝑚= 0.371 

𝜔 ≤ 𝜔𝑙𝑖𝑚= 0.499 
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µ is the nominal moment, given by: 

 µ =  
𝑀𝑅𝑑

𝑏𝑑2𝑓𝑐𝑑
 (45) 

𝜔 is the percentage of tensioned mechanical reinforcement: 

 𝜔 =  
𝐴𝑠𝑓𝑦𝑑

𝑏𝑑𝑓𝑐𝑑
 (46) 

𝛼 is the value of the relative depth of the neutral axis given by: 

 
𝛼 =  

𝑥

𝑑
 

 

(47) 

The limit values correspond to the steel reaching the yield (𝜀𝑠  =  𝜀𝑦𝑑). 

After considering these situations it is possible to observe in Figure 4.5 that where there are great 

differences in the results it is in zone I because with the ACI the end of the ductility is reached before. 

After this point there is no great interest of comparison since the design preference is in zone II and not 

I. 

Portugal and Germany follow the same code, Eurocode, however there are small differences in their 

National Annexes, one of these differences is how the value of the strength is calculated, and it leads 

to small differences in the results as seen in Figure 4.5. The Portuguese way is safer, requires more 

reinforcement than the German way, but still requires less reinforcement than the ACI. 

4.3.2 Case B - Eurocode 2 and ACI 318 with Eurocode parameters  

In order to understand the differences in results between EC2 and ACI for the amount of reinforcement 

required, it follows the case B, the results are presented in Figure 4.6 and its objective was to analyze 

the influence of the design, which means, the procedure to apply the safety factor, comparing the 

process given by EC2 [4] and ACI [1]. As shown in the Table 4.2, all the features remain the same, the 

same stress block, the same ultimate strain and the same safety factor, the only parameter that was 

changed was the design procedure. All the European parameters using the ACI procedure. The 

difference regarding the required amount of reinforcement, as it can be seen in Figure 4.6 is high. 

Thus, for case B, the applied moment continues to be what varies, however, the strain limit for the ACI 

case becomes the Eurocode, as well as the stress block and safety factors as shown below: 
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Table 4.12 - Assumptions, case B 

ACI Eurocode 

Stress block parabolic-rectangular  

Perfect bond between the concrete 

and the reinforcement 

εcu = 0.0035 

Фt = 1/γs = 1/1.15≅0.8696 

Фc =1/γc=1/1.5≅ 0.6667 

 

Stress block parabolic-rectangular  

Perfect bond between the concrete 

and the reinforcement 

εcu = 0.0035 

γs =1.15 

             γc = 1.5 

 

Figure 4.6 - Difference between ACI and Eurocode- PT (Portuguese National Annex) and DE 

(German National Annex), changing the procedure of the design. Amount of reinforcement 

required 

Analyzing Figure 4.6 it is possible to observe that, even though all parameters are the same and the 

only difference is the design procedure itself, the great difference observed in Figure 4.5 (a) is 

maintained and thus the design procedure and not the variants themselves may be the cause of the 

differences presented in the three procedures considered. 

4.3.3 Case C- ACI procedure and the effect of the ultimate strain 

To evaluate the effect of the ultimate strain of the concrete, the analysis of case C was elaborated. The 

present case differs from the previous ones since the comparison is made only with the design provided 
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by ACI [1] and it is only to analyze the differences obtained when the ultimate strain of the concrete 

changes. The following plot, Figure 4.7 was considered in order to understand if the difference shown 

in Figure 4.5 is due to the difference in the concrete ultimate strain. 

This case was elaborated following the ACI [1] and only the ultimate strain (Table 4.3) varied and 

analyzing the following chart, it can be observed that before the point of interest, that is, before reaching 

the yield point, the difference between the amount of reinforcement required for the two situations are 

identical and leads us to conclude that despite a small difference in strain distribution Figure 4.7 (b)  this 

difference is due to the variation of the concrete ultimate strain and that even if there is such strain 

variation, it does not lead to the great difference initially mentioned in the previous work [26] 

 

 

Table 4.13 - Assumptions, case C 

ACI ACI 

Stress block bilinear 

Perfect bond between the concrete 

and the reinforcement 

εcu = 0.003 

Фt = 1/γs =0.90 

Фc =1/γc= 0.65 

 

Stress block bilinear 

Perfect bond between the concrete 

and the reinforcement 

εcu = 0.0035 

Фt = 1/γs =0.90 

Фc =1/γc= 0.65 
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Figure 4.7 - Results for variation of the ultimate limit strain. ACI procedure considering the 

bilinear (bili) stress block. (a) Amount of reinforcement required; (b) Strain distribution 

4.3.4 Case D- ACI comparison for effect of the safety factor 

In case D, the main goal was to see if the large difference shown in the first graph was due to a small 

difference in the safety factor value. Thus, the following assumptions have been taken, Table.4.4, 

following the ACI design process and the results are shown below in Figure 4.8.  

 

Table 4.14 - Assumptions, case D 

ACI ACI 

Stress block bilinear 

Perfect bond between the concrete 

and the reinforcement 

εcu = 0.003 

Фt = 1/γs = 1/1.15 ≅ 0.8696 

Фc =1/γc = 1/1.5 ≅ 0.6667 

Stress block bilinear 

Perfect bond between the concrete 

and the reinforcement 

εcu = 0.003 

Фt = 1/γs = 0.90 ≅1/1.11  

Фc =1/γc = 0.65 ≅1/1.54  
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Figure 4.8 - Variation of the safety factor. ACI design. (a) Amount of reinforcement required; (b) 

Strain distribution 

As can be seen from the graph in the Figure 4.8, this small difference shown in Table 4.14 of the variation 

of the safety factor has no influence on the results. All the curves presented are superimposed, the 

required amount of reinforcement curve and the curve of the strains distributions. Thus, we can conclude 

that this parameter, safety factor, is not the cause of the difference presented in the previous work. 

4.4 Analysis of prestressed reinforced concrete members 

The analysis of structures with prestress was also done for a simply supported beam, as shown in 

section 3, Figure 3.15. 

Two different cases were analyzed for prestressed reinforced concrete structures: 

• Case 1- Varying the applied bending moment (MEd) from 0 to 5000 kNm 

• Case 2 - Varying the width (b) from 0.45m to 1.50m 

In each case we have 3 types of structures Figure 4.9-4.11 to analyze: 

• Conventional steel prestressed reinforced concrete structures. 
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Figure 4.9- Prestressed RC beam- Steel rebar and steel tendons 

 

• Mixed structures: steel + carbon 

 

Figure 4.10 – Prestressed RC beam - Steel rebar and CFRP tendons 
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• CFRP prestressed reinforced concrete structures 

 

Figure 4.11- Prestressed RC beam - CFRP rebar and carbon tendons 

For the case study considered, the prestress has the following configuration, the parabolic one, 

equivalent loads, axial, transverse and bending moment diagrams, as shown in Figure 4.12.  

 

Figure 4.12 – Prestress configuration, loads and diagrams 
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4.5 Bonded vs Unbonded tendons - Case 1 

As mentioned in section 3, bonded and unbonded prestress have different characteristics and ways of 

design. In order to understand the difference in these results, comparisons were made between bonded 

and unbonded tendons for the different combinations presented in the following Table 4.15. 

Table 4.15- Rebars-tendons combinations 

Combination Rebar material Tendon material 

SS 

SC 

CC 

Steel 

Steel 

Carbon 

Steel 

Carbon 

Carbon 

 

The following figures are showing the main differences regarding the amount of reinforcement for every 

type of structure: 

The following chart Figure 4.13 refers to the conventional prestressed reinforced concrete structure. 

Being pre-stress and reinforcement both steels. In this graph we have the amount of reinforcement for 

the case of the bonded and unbonded tendons as well as the respective strains, for the steel and for the 

concrete when the applied moment varies. 
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Figure 4.13 - Comparison for steel rebars and tendons varying the applied bending moment 

 

With this graph it is possible to observe that up to the balanced point it is indifferent the use of bonded 

or unbonded tendons, however once it reaches the balanced point, the bonded tendons require less 

reinforcement than the unbonded ones. A large strain reduction of the reinforcement is also observed 

when the material used as prestress is steel, having no strain limitation. However, when it is changed 

to CFRP, it reduces drastically to approximately 0.007 for bonded tendons because the restriction is 

made by the CFRP tendon, in the bonded case because of the compatibility of strains. 
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Figure 4.14 - Comparison for steel rebars and CFRP tendons varying the applied bending 

moment 

The graph showed in Figure 4.14 refers to the same variations as the graph of Figure 4.13 however the 

prestress used in this case are CFRP tendons. Thus, the strains of the bonded tendons are reduced to 

a value a little higher than the limit strain of the carbon, because once bonded to the concrete, it has to 

verify the compatibility of the strain. For the unbonded case, it can be observed that the strain of the 

reinforcement does not lead to any change, and it is equal to 0.025. The trend mentioned above remains 

the same. Up to some point, the type of tendon is indifferent however after that limit, the bonded tendons 

are more advantageous in the amount of reinforcement required. 
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Figure 4.15 - Comparison for CFRP rebars and tendons varying the applied bending moment 

For the last comparison, Figure 4.15, we have both reinforcement and prestress in CFRP. The strain in 

both cases are reduced to the carbon limit strain however the results confirm the expected, leading to 

the conclusion that the bonded tendons are more feasible related to the amount of reinforcement 

required. 
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4.6 Bonded vs Unbonded tendons - Case 2 

The following graphs Figure 4.16-4.18 are related to case 2. The study was developed to see the 

influence of beam width on the two types of tendons: Bonded and Unbonded for different materials. 

 

Figure 4.16 - Comparison for steel rebars and tendons varying the width 

 

Figure 4.17 - Comparison for steel rebars and CFRP tendons varying the width 
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Figure 4.18 - Comparison for CFRP rebars and tendons varying the width 

When analyzing Figures 4.18,4.19 and 4.20, the same trend is observed for all three cases: bonded 

tendons require less amount of reinforcement than unbonded tendons in all situations. However, from a 

certain width of the beam to the CFRP structures it is indifferent the type of tendons that is used when 

analyzing the amount of reinforcement required.  

4.7 Bonded tendons  

The results presented in this section are comparisons made only for bonded tendons and its main 

objective is to show differences for different types of reinforcement and prestress, varying the applied 

moment. And the scheme given previously in Figure 4.9-4.12 represents the structures that have been 

studied. 

In all cases presented, Figure 4.19 and Figure 4.20 cases with carbon are only more advantageous 

when the moment is above a given value. However, for high moment the use of CFRP can lead to a 

reduction of almost 40% when compared to the beams using steel as reinforcement and prestress. 
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Figure 4.19 - Comparison of bonded tendons. Effectiveness of steel tendons and rebars 

compared to CFRP tendons 
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Figure 4.20 - Comparison of bonded tendons. Effectiveness of steel tendons and rebars 

compared to CFRP tendons and rebars 
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4.8 Unbonded post tensioning  

Similar to the previous section, a prestress study with unbonded tendons was developed. The main 

objective was to analyze the behavior of a prestressed reinforced concrete beam using CFRP and 

compare with beams using conventional steel. 

Analyzing the figure below Figure 4.21  it is possible to observe that for the combination SC and SS, the 

behavior is exactly the same, as there is no compatibility restriction relatively to the strain of the tendon, 

because the tendon is not connected to the concrete. That is the reason that the strain shown in Figure 

4.21 for the reinforcement is the same regardless of whether the tendon used is made of carbon or steel.  

Observing the second figure, Figure 4.22, a different behavior is identified. The amount of reinforcement 

required by the CC combination is much lower than is required for the steel. Significant strain reduction 

is observed, not due to the capability restriction but because of the CFRP itself which presents a much 

lower strain than steel. 
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Figure 4.21 - Comparison of unbonded tendons. Effectiveness of steel tendons and rebars 

compared to carbon tendons 
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Figure 4.22 - Comparison unbonded tendons. Effectiveness of steel tendons and rebars 

compared to carbon tendons and rebars 

 



70                                        4. Parametric study for optimization of RC structures in bending with CFRP 

4.9 Influence of the initial prestress in the amount of reinforcement  

Pre-stress is considered an advantageous aspect for civil engineering infrastructures and also from an 

economic point of view. 

In order to analyze the effect of pre-stress on the amount of reinforcement required, the following study 

was developed for pre-stress cables with bonded tendons.  

Through analysis of the graphs below, Figure 4.23 it is possible to draw some conclusions relating strain 

with the amount of reinforcement required. For the mixed and carbon structures we can observe that 

there is a decrease in the amount of reinforcement as we increase the force of the prestress. However, 

after some limit there is an exponential increase in the amount of required reinforcement and when we 

simultaneously analyze what happens with the strain in the reinforcement, we can observe that it is not 

used, which is economically unviable the structure since the reinforcement is much less expensive than 

the prestress. For the case of the conventional prestressed reinforced concrete structure with steel as 

in the two previously mentioned structures there is a reduction in the amount of reinforcement required 

with the increase of the force of the prestress, despite of that, after a certain point, the amount of 

reinforcement and strain remain constant and this fact happens because the applied moment does not 

require more reinforcement since this verifies the ULS for the moment that, in this case, was applied. 

Thus, it was concluded that the increase of the force of the prestress in carbon structures is 

advantageous up to a certain point, since from this point on, the amount of reinforcement increases 

exponentially. For the case scenario with steel reinforcement and prestress it goes up to the minimum 

limit point and it maintains constant in a horizontal plateau. 
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Figure 4.23 - Effect of the initial force of the prestress 
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4.10 New design approach 

The case that follows is only for the CC combination, because it presents both the carbon reinforcement 

and the carbon tendons, and therefore has a sudden rupture if it fails through the carbon, considering 

that this is a material with a brittle behavior. 

Studies have been made and according to the document given by fib [5], by the Canadian code[27] and 

also by BALAFAS and BURGOYNE [29] ,the failure is preferable by the concrete and not by the carbon. 

The failure is not as abrupt and catastrophic as the failure of the CFRP material and therefore, failure 

by the concrete should be preferred because it still has a deformation capacity. When compared to steel 

it is not significant but when compared to carbon, it is quite advantageous because it provides some 

obvious signs before the failure of the structure. 

 

The compression failure occurs when the concrete crushes and tensile strain in the FRP are smaller 

than the ultimate strain. Compression failure in these situations occurs more smoothly, when compared 

to an over-reinforced concrete beam with internal steel reinforcement because, as observed in the stress 

strain graph of CFRP tendons, FRP materials usually present larger strains than yield strain of the typical 

steel prestressing tendons, thus the beam will present great deformations before the failure. 

According to FIB [5], if the failure occurs due to the concrete crushing, then it does not matter the value 

of the safety factor that we use for the rebar. However, if the failure is due to rupture of the carbon rebar, 

then we must use the value of the safety factor associated with these rebars. 

The failure due to concrete crushing, implies that we do not need a safety factor so high for the strain of 

the reinforcement, since it will never reach the ultimate limit strain and so, from a certain point, the safety 

coefficient can be reduced to the unit.  

Thus, the results presented in Figure 4.24 are for the cases A and B, shown in Table 3.2 in section 3.6.3 

and with the respective modification for the safety factors. In A there is a reduction of the strain limit due 

to the safety factor and in case B this does not occur. 

After a careful analyze of the graph, Figure 4.24, we can observe that in an initial phase the results are 

very similar to the amount of reinforcement needed for both cases. They are practically the same. 

However, after the balanced point, the case where the safety factor is higher it requires more 

reinforcement as it was expected. Since the results do not show great differences later studies can be 

made to understand what happens in the transition zone and the exact point where the new method is 

advantageous. Nevertheless, for the study in question, it is concluded that the variation of stress-strain 

distribution type and choice of safety value do not justify the work that the calculation gives when 

analyzing the amount of reinforcement. Therefore, since it is the most practical way and because it does 

not present major differences in the amount of reinforcement, the conventional way of calculation is 

more advantageous. 
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Figure 4.24 - Analysis of the new design approach 
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5 Conclusions 

This chapter presents the results of this work and presents proposals for further work in this field of 

study. 

The demand for safe and economically advantageous infrastructures has been and still is one of the 

problems faced by civil engineers, so new design approaches must be constantly updated as new 

application materials emerge in order to obtain a balance between safety and cost. 

In this project the Excel program has been used to compare the design of reinforced concrete beams 

with and without prestress cables and to analyze their flexural behavior. 

Several criteria can influence the cost of the infrastructure and one of them is the amount of material 

used, whether concrete, reinforcement or cables of prestress. Focusing on these aspects the present 

study was developed and with it, some conclusions can be drawn and used for new design methods. 

A comparative study was elaborated in order to understand why the American and the European codes 

require different amount of reinforcement for the same applied moment, and with the results obtained 

with this study it is evidenced that the greatest difference is in the procedure itself and not in the physical 

and mechanical properties presented by the material.  

As to the type of material used as reinforcement and prestress to be used it was concluded that carbon 

for both situations significantly reduces the amount of material required. 

Another aspect to be considered when dealing with prestressed reinforced concrete beams are the 

types of prestressed to be used and the unbonded tendons have proved to be less viable than the 

bonded ones, regardless of the type of material used as reinforcement and as prestress. Once 

concluded that the bonded tendons, from this point of view, are more advantageous, the influence that 

the initial force of the prestress has on the reinforcement were analyzed. The rebars are considered 

economically viable when they fully utilized, i.e. the maximum possible strain. By varying the initial force 

of the prestress, a reduction in the amount of reinforcement is observed until a certain point in which the 

amount of reinforcement begins to grow exponentially. In the case of prestress with CFRP and in the 

case of prestress using steel, the amount of reinforcement remains the same after a certain point. 

To sum up, the design must be done carefully since different parameters can lead to different results. 

The CFRP are materials that are worth investing in their research, because as it was observed with this 

study, it presents great advantages when it comes to corrosion, degradation of structure and amount of 

material required. 

It is important to point out that the results obtained and the conclusions that have been taken in this 

dissertation are for a given cross section and specific materials and therefore it should not be 

generalized to other cases without a more detailed study. 
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For later works an optimum cost approach would be interesting, as well as other types of effects on 

prestressed reinforced concrete, deflection, shear and torsion. Also, the anchoring system for FRP 

tendons, since it is one of the biggest problems for FRP prestressed cables. 
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