
 
 
 

Vera Rute Soares Gomes 
 

Licenciada em Conservação e Restauro 
  
  
  
  
   
  
  

Effectiveness of aged graffiti cleaning 
technologies on cultural heritage granite 

 
 
 

Dissertação para obtenção do Grau de Mestre em 
Ciências da Conservação 

 
Especialização em pedra 

 
 
 
 

   Orientadora: Doutora Maria Amélia Alves Rangel Dionísio, 
 Professora Auxiliar, IST-UL 

Co-orientador: Doutor José Santiago Pozo-Antonio, Investigador, 
 UVigo 

 
 
 
 
 
 
 

          Júri: 
 

 

Presidente:   Prof. Doutor(a) Nome Completo 
          Arguente(s):   Prof. Doutor(a) Nome Completo 

 Vogal(ais):   Prof. Doutor(a) Nome Completo 
                      

  
  
  
  
  
 

Setembro 2017 



II 
 

  



III 
 

 
 
 

Vera Rute Soares Gomes 
 

Licenciada em Conservação e Restauro 
 
 
 
 
 
 
 

Effectiveness of aged graffiti cleaning 
technologies on cultural heritage granite 

 
 
 

Dissertação para obtenção do Grau de Mestre em 
Conservação e Restauro 

 
Especialização em pedra 

 
 
 
 

   Orientadora: Doutora Maria Amélia Alves Rangel Dionísio, 
 Professora Auxiliar, IST-UL 

Co-orientador: Doutor José Santiago Pozo-Antonio, Investigador, 
 UVigo 

 
 
 
 
 
 
 
 

          Júri: 
 

 

Presidente:   Prof. Doutor(a) Nome Completo 
          Arguente(s):   Prof. Doutor(a) Nome Completo 

 Vogal(ais):   Prof. Doutor(a) Nome Completo 
                      

  
  
  
  
  
 

Setembro 2017 



IV 
 

  



V 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effectiveness of aged graffiti cleaning technologies on cultural heritage granite 

Copyright © Vera Rute Soares Gomes, Faculdade de Ciências e Tecnologia, Universidade 

Nova de Lisboa. 

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, 

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de 

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio 

conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e 

de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não 

comerciais, desde que seja dado crédito ao autor e editor. 



VI 
 

  



VII 
 

Acknowledgments 

I would first like to express my sincere gratitude to my supervisors Professor Amélia 
Dionísio and Doctor Santiago Pozo for the guidance, enthusiastic encouragement and useful 
critiques. 

I am grateful to Fundação Calouste Gulbenkian that co-founded this work within the 
framework Programa de Estímulo à Investigação 2016, P 202710. 

I wish to present my special thanks to Instituto Superior Técnico (IST), CERENA 
Strategic project FCT- UID/ECI/04028/2013 and experts that contributed to this research, 
specially to Professor António Maurício from Civil Engineering, Architecture and Georesources 
Department of IST for his assistance with the climatic chamber, to Professor Manuel Pereira 
also from Civil Engineering, Architecture and Georesources Department of IST for his support 
in XRD analysis, to Professor Luís Alves from Mechanical Engineering Department of IST who 
helped me with the roughness measurements, to Professor Luís Santos from Centro de 
Química Estrutural of IST for his support in Raman analysis and finally from Chemical 
Engineering Department of IST to Professor Ana Serro and Phd Ana Topete for their 
assistance with the static contact angle measurements and to Professor Elisabete Silva and 
Phd Olga Ferreira for their help with the cross cut test. 

A very special gratitude goes out to Natural Resources and Environmental Engineering 
Department at Universidade de Vigo (Spain), for the opportunity to develop my research in the 
Cultural Heritage conservation laboratory. I would also like to extend my thanks to Professor 
Teresa Rivas for her kindness, advice and guidance, to Phd’s Jorge Feijoó and Ivan de Rosario 
for the hospitality and also to CACTI investigation centre experts who contributed to this 
research. 

I also would like to specially thank Professor Alberto Ramil from Naval and Industrial 
Engineering Department, at Universidade da Coruña (Spain) for his assistance with the laser 
cleaning procedures and with the confocal microscopy images. These thanks must be 
extended to the experts of the SAI investigation centre who contributed for this research. 

I am grateful to Professor João Sotomayor from Chemistry Department at Faculdade 
de Ciências e Tecnologia, Universidade Nova de Lisboa and also to Miguel Carvalhão for the 
help with the static contact angle measurements. 

I would like to pay my regards to Alberto Pereira from ClinArte® (Spain) for his 
assistance with the mechanical cleaning procedures. 

Finally, I thank my family, Davide Barbosa and friends for providing me with unfailing 
support and continuous encouragement throughout my study and through the process of 
researching and writing of this dissertation. Thank you. 
  



VIII 
 

  



IX 
 

Resumo 

Os graffitis, como resultado de atos de vandalismo, constituem uma das mais severas 

ameaças à pedra em Património Cultural. A sua limpeza é dispendiosa e pode acarretar danos 

físico-químicos. Os graffitis são muitas vezes executados em superfícies sem proteção anti 

graffiti e na prática são apenas removidos após longa exposição ambiental, levando à sua 

possível interação, seja com os agentes ambientais, seja com o substrato pétreo. 

Esta dissertação pretende estudar até que ponto a exposição a ambientes 

contaminados vai influenciar a remoção dos graffitis, para assim fornecer elementos 

relevantes para futuras intervenções em Património Cultural. 

Levaram-se a cabo dois conjuntos de estudos comparativos, em amostras não 

envelhecidas e em amostras artificialmente envelhecidas (em câmara climática com SO2). 

Aplicaram-se quatro graffitis em aerossol sobre um granito da Península Ibérica, Rosa Porriño, 

que foram submetidos a diversos procedimentos de limpeza: dois métodos químicos, quatro 

métodos mecânicos e um laser. 

Foram utilizadas técnicas de microscopia, métodos químicos e físicos para, em 

primeiro lugar caraterizar as tintas envelhecidas e não envelhecidas e posteriormente avaliar 

as performances de limpeza, tendo em conta o grau de extração de graffiti e efeitos nocivos. 

Os resultados obtidos revelaram que o grau de limpeza com agentes químicos e laser 

está dependente da composição do ligante das tintas (resinas alquídicas ou de polietileno). 

Importa também salientar o papel do SO2 na performance dos vários métodos de 

limpeza. Após envelhecimento as tintas tornaram-se mais difíceis de limpar, apresentando 

maiores alterações globais de cor, maior percentagem de resíduos e superfícies mais 

hidrorrepelentes. As melhores performances de limpeza foram obtidas com o método químico 

baseado em hidróxido de potássio AGS 600® e com o mecânico Hydrogommage® com 

abrasivo à base de silício. 

Por fim, apresentam-se algumas linhas de investigação futuras. 

 

Palavras Chave: Património Cultural; granito; envelhecimento; tintas de graffiti 

métodos de limpeza; performance. 

 

Publicações: Com base nesta dissertação foram desenvolvidos vários estudos, 

resultando numa comunicação sob o título Effectiveness of aged graffiti cleaning on granite by 

chemical and mechanical procedures apresentado e publicado na European Geosciences 

Union General Assembly em Vienna e num manuscrito publicado V. Gomes, A. Dionísio and 

J.S. Pozo-Antonio, Conservation strategies against graffiti vandalism on Cultural Heritage 

stones: protective coatings and cleaning methods, Prog. Org. Coatings. 113C (2017) 90-109. 
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Environment e um manuscrito submetido à revista Construction and Building Materials. 
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Abstract 

Graffiti paintings, as an act of vandalism, are one of the most severe threats to Cultural 

Heritage stone. The cleaning is expensive and may induce chemical and physical damages to 

the stone. Graffiti is often executed in surfaces without anti-graffiti protection and in real 

practice are only removed after long periods of environmental exposure, leading to their 

interaction with the environmental agents and with the stone substrate. 

This dissertation intents to study to what extent the exposure to polluted environments 

will affect the graffiti removal, in order to provide relevant elements for future interventions in 

Cultural Heritage. 

Two sets of comparative studies were conducted, on unaged and on artificially aged 

samples (in a climatic chamber with SO2). Four graffiti aerosol paints were applied on an 

Iberian Peninsula granite, Rosa Porriño. Different cleaning procedures were applied: two 

chemical methods, four mechanical methods and a laser based-method. 

Microscope techniques, chemical and physical analytic techniques were used in order 

to firstly asses the characterization of unaged and aged paints and secondly to evaluate the 

cleaning performances based on the graffiti extraction level and induced harmful effects. 

The obtained results showed that the chemical and laser cleaning performance is 

associated to the binder composition of the paints (alkyd or polyethylene resins). 

It must also be pointed out the role of SO2 in the cleaning performance for all the 

cleaning methods. After ageing, the paints became more difficult to clean, presenting higher 

global colour changes, residue percentages and the surfaces became more water repellent. 

The best cleaning performances were achieved with the potassium hydroxide based chemical 

cleaner AGS 600® and the mechanical Hydrogommage® with silicon based abrasive. 

Finally, some futures research lines are pointed out. 

 

Keywords: Cultural Heritage; granite; ageing; graffiti aerosol paints; cleaning methods; 

performance. 

 

Publications: In the context of this dissertation several studies were developed 

resulting in a communication entitled Effectiveness of aged graffiti cleaning on granite by 

chemical and mechanical procedures presented and published in European Geosciences 

Union General Assembly in Vienna and a published manuscript V. Gomes, A. Dionísio and 

J.S. Pozo-Antonio, Conservation strategies against graffiti vandalism on Cultural Heritage 

stones: protective coatings and cleaning methods, Prog. Org. Coatings. 113C (2017) 90-109. 

There is also a manuscript accepted under major revision to Science of the Total Environment 

journal and one manuscript submitted to Construction and Building Materials journal. 
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1. Introduction 

The term graffiti derives from the Italian word graffiare (to scratch) and can be defined 

as writing or drawings scribbled, scratched, drawn or painted, on a wide range of materials and 

substrates, mainly located in public accessible places, as result of a vandalism act [1]. Many 

cities worldwide spend huge amounts of money in cleaning campaigns to tackle graffiti 

vandalism [2]. The European Commission has financed projects with the aim to develop 

sustainable anti-graffiti products to ensure the satisfactory graffiti extraction without inducing 

damages on the substrate (GRAFFITAGE, 2005-2008) [2] and also focused on support urban 

environment policies to prevent and eliminate graffiti (GRAFFOLUTION, 2014-2016) [3]. 

However, in many cases, graffiti is done in historic surfaces without anti-graffiti protective 

coatings and in real practice, they are not shortly removed after their execution, i.e., most of the 

times they are cleaned after long term environmental exposure. This leads the graffiti to interact 

with the environmental agents (e.g. rain and atmospheric pollutants) and with the stone 

substrate. Along with the previously mentioned consequences it must be added the damages 

associated to cleaning, such as surface abrasion, chemical contamination or mineralogical 

alterations [4,5]. There are different cleaning methods, being the most traditional the chemical 

and mechanical. Most scientific production focuses on graffiti cleaning of carbonate stones [6] 

(Appendix 7.1). In the last decade, the application of the laser to clean Cultural Heritage stone 

has been investigated [6]. 

To the best of our knowledge, there are no scientific studies focused on aged graffiti 

removal. Therefore, this research aims to firstly characterize the ageing process of graffiti paints 

and to optimize their removal from a granite subjected to SO2 rich atmosphere through different 

cleaning procedures: chemical, mechanical and laser. 

2. State of the art 

An evaluation of the graffiti aerosol paints and their removal methods, considering the 

stone type, the paints binder composition and the removal method is here briefly presented. 

More details can be found in [6]. 

2.1. Graffiti aerosol paints 

The range of materials used by graffiti-writers is fairly extent and can often be found in 

multiple layers, superimposed, requiring a sequence of methods/products to be removed [7,8]. 

Aerosol paint outlines as the main material used by graffiti-writers due to its visual impact and 

quick and easy application [5,9]; they are composed of pigments that provide colour and opacity, 

additives that improve certain properties (e.g. plasticity, fluidity, thickness, etc.), a solvent that 

allows this mixture to flow and a binder that holds this mixture together to the substrate [10]. 
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These paints may harden by evaporation of the solvent or through polymerization [1]. The paints 

that harden by evaporation of the solvent can be dissolved through re-application of the solvent 

to return to the previously liquid state [1,7]. The paint may penetrate to various depths depending 

on factors like a high solvent content (that implies a higher flow rate), the interfacial tension solid 

surface/liquid and the substrata characteristics [10]. Is barely impossible to distinguish the type 

of paint without proper analysis and most of the times on-site trials are used to decide the most 

suitable cleaning method [1]. 

From the universe of graffiti aerosol paints covered by the literature, it is important to 

highlight some brands that were specially developed for the graffiter’s market such as Montana 

Colours®, Felton®, Krink® and Nero D’inferno® [6]. 

White pigments are the main component of all paints (white and coloured); titanium 

confers whiteness, brightness and opacity to graffiti in Montana Colours® [11–14], Trans-

colour® [15,16], Felton® [15,16] and Motip-Dupli®. Black colour is often obtained by adding 

carbon, silver colour by aluminium and gold colour by zinc and copper (Montana Colours® in 

[11–14]) and (Trans-colour® in [15,16]). 

Additives may be also present in small amounts: plasticizers or dispersants to increase 

plasticity or fluidity, surfactants and wetting agents to disperse pigments, thickeners, pH buffers 

to stabilize the pH range, anti-foaming agents to alter the surface tension of a paint, freeze–thaw 

agents, biocides and sequestering agents to remove metal ions [5,9]. The main synthetic binders 

in twentieth-century paints are acrylic, alkydic and nitrocellulosic [17]. 

Acrylic resins are based on the esters of acrylic and methacrylic acids [17] and can be 

found in Krink® and Nero D’inferno® cutting edge paints [18,19]. This paint may be purely acrylic 

or copolymerized with other vinyl species, such as styrene which is present in low-cost paints 

and also in artist quality paints, like Trans-colour® and Felton® [15,16]. 

Alkydic resins are polyesters formed by a polyalcohol and a dicarboxylic acid [17]. Its 

drying mechanism is similar to oil paint, i.e. complex oxidative polymerization reactions resulting 

in a cross-linked insoluble film [17]. These resins were identified in Motip-Dupli® Montana Black 

[20], Montana Colours® [11–14] and Motip Home & Hobbylacquer® [10,21,22]. 

Nitrocellulosic resins are composed of cellulose nitrate, a second resin (usually alkydic) 

and large quantities of plasticizers (mainly dibutyl and dioctyl phthalate). It is formulated as a 

solution that can be re-dissolved in the same solvent [17]. Almost half of 51 red aerosol paints 

analysed by Govaert & Bernard, were composed of alkyd-nitrocellulose-based binders [23]. 

Samolik et al. also detected in Motip-Dupli® Montana Gold an acrylic resin along with 

nitrocellulose [20]. 

The main aerosol paint solvents are hydrocarbons (aliphatic, naphthenic and aromatic-

toluene and xylene), oxygenated (ketones, esters, glycol esters and alcohols-especially n-

butanol) and water [5,9]. 
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2.2. Graffiti removal methods 

Graffiti removal procedures, despite apparently simple, are potentially harmful and 

basically irreversible interventions. Several recommendations for the cleaning of Cultural 

Heritage stone have been proposed in the past decades [24,25] as well as methods for 

assessment  the cleaning results [26]. In addition to it, must also be considered the chemical 

composition of the paint and the intrinsic properties of the stone. Most of the scientific production 

focus graffiti cleaning of carbonate stones (Appendix 7.1), namely limestone and marble. The 

traditional removal procedures applied by professionals are the chemical and mechanical based 

methods, probably because they are the most economical methods. Nevertheless, scientific 

publications based on the evaluation of their cleaning effectiveness are scarce, being the 

publications led by the laser studies (Appendix 7.1). 

2.2.1. Chemical removal methods 

Chemical cleaning is due to the reaction between the chemical remover and the paint, 

achieving its dissolution and extraction [27]. Chemical agents are available in various 

compositions and consistencies (e.g. gels and poultices) to be adapted to different substrates 

[1,28]. Already in 1999, Urquhart  reported the ghosting due to graffiti penetration, mainly in 

porous stones [7], later corroborated by other authors [18,19]. 

The traditional solvents recommended for limestone, marble, sandstone, slate and 

granite are usually based on organic solvents like methylene and acetone or alkali caustic 

removers [29]. These organic solvent based removers work by weakening the adhesion 

between the paint and the stone, while caustic removers broke down alkydic based paints by 

saponification [1,7]. In Avebury Neolithic sandstones and Stonehenge Heel a combination of 

methylene dichloride and acetone (prior to laser application), was successfully tested to remove 

the remaining paint [30]. More recently Samolik et al. used a mixture of ethanol, acetone and 

xylene to successfully remove nitrocellulosic acrylic and alkydic based paint (Montana Gold from 

Motip-Dupli®) on limestone, sandstone, plaster and brick. However, they did not succeed in 

removing the alkydic black paint Montana Black from Motip-Dupli® [20]. Carvalhão & Dionísio 

used a solution based on potassium hydroxide (AGS 60TM) to remove Motip Home & 

Hobbylacquer® paints and achieved a homogeneous cleaning on Branco marble, while for Lioz 

limestone an extra-accumulation on stilolytes was registered [21]. The surface lightness also 

increased and dissolution of grain boundaries and loss of crystals was detected. Pozo-Antonio 

et al. tested Wendrox® and Eligraf® (based in organic solvents) and QuitaGraffi 200®–

QuitaSombras 60® (QG+QS) rich in potassium hydroxide on two granites (Silvestre and Rosa 

Porriño), with satisfactory results for various alkydic Montana Colours®. The silver graffiti 
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required a subsequently application of TS-99 paint stripper [13]. Chemical contamination was 

also detected with Wendrox® and QG+QS. 

2.2.2. Mechanical removal methods 

The mechanical cleaning acts through an abrasive process of the surface and is 

frequently associated with an heterogeneous cleaning, damage and an increase of the 

susceptibility to retain soiling by the substrate [1,28]. The pressure applied may have an 

abrasive effect and cause damage as verified by various authors in dolomitic marble [18,19] and 

on limestone, sandstone, plaster and brick with high-pressure water jet and blast cleaning [20]. 

Recently, Careddu & Akkoyun studied the best water-jet cleaning operational conditions for 

Carrara marble, finding the best results with an inter-distance between passes of 0.5 mm, 200 

MPa water pressure, 12.0 mmin-1 travel speed [31]. 

In the last years, low pressure projection methods have been developed with the aim to 

reduce the substrate damage. Low pressure steam was used to remove a water soluble white 

paint from Avebury Neolithic Sandstone [30]. Carvalhão & Dionísio tested Sponge-Jet® (a 

blasting media with a sponge-like urethane polymer involving spherical calcium carbonate 

particles) and Exastrip® (pure spherical calcium carbonate particles) at low pressure (0.5–2.5 

bar) to clean Branco marble and Lioz limestone [21]. Despite their successful cleaning level, 

punctual paint traces were found in Lioz stilolytes. The topography changes were reduced 

comparatively to those registered on the surface cleaned with an alkaline cleaner. However the 

hydrophobicity increased, probably due to unremoved polymers and also significant global 

colour changes were detected. Pozo-Antonio et al. tested Hydrogommage®, based on the 

circular projection of air–water–micro grained abrasive (99% SiO2 content, 0.5–0.1 mm grain 

size mixture) at low-pressure (0.5–1.5 bar) to clean various Montana Colours® alkydic aerosol 

paints on Rosa Porriño and Silvestre granites with satisfactory results. However, an increase 

around 10 µm on the average roughness for both substrates was reported [13]. In a later work 

[32], the same authors used hyperspectral imageing technique to characterize the cleaning 

performances, being Hydrogommage® and the nanosecond-pulsed Nd:YVO4 laser working at 

355 nm the more suitable techniques. 

2.2.3. Laser removal methods 

The mechanism responsible for laser cleaning is the ablation; the undesired layers are 

removed by the beam irradiation when the fluence (energy deposited per unit area) exceeds its 

critical extraction threshold [33,34]. The most used lasers are neodymium-based systems, i.e. 

Nd:YAG or Nd:YVO4 [4]. Laser allows non-mechanical contact, has a selective action since it 

provides a located and accurate cleaning and adjustment in real time [4]. In 2003, Costela et al. 
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were the pioneers to apply this technology to remove paints on marble obtaining satisfactory 

results without damage using a Nd:YAG at 355 nm (3rd harmonic) whereas at 532 nm (2nd 

harmonic) left residues of polymeric base [15]. Later Gómez et al. used the same paints and 

stone to compare Nd:YAG working at the fundamental harmonic 1064 nm with XeCl excimer at 

308 nm. While Nd:YAG left residues and darkened the surface, XeCl achieved satisfactory 

results without damage [16]. Daurelio working at 1064 nm and 532 nm tested three laser 

protocols for graffiti removal on Bisceglie dolmen with a Nd:YAG [35]: 1) A laser beam in air or 

via a guiding fibre glass, removed satisfactorily black paint; 2) A rectangular-shaped laser beam 

removed ink, graphite and aerosol paints; and 3) A rectangular-shaped laser beam with a 

mixture of water and red-brown earth removed paint markers. Later, Andriani et al. successfully 

removed inks with the third protocol and with the second one with water [36]. Ortiz et al. cleaned 

different paints on dolomitic white marble with Nd:YAG laser working at 266 nm. At 1064 nm it 

was only achieved the removal of black aerosol but with yellowing effect [19]. Samolik et al. also 

reported yellowing with 1064 nm, darkening with 355 nm and satisfactory results with 532 nm 

[20]. While MotipDupli® Montana Black paints were not successfully removed, satisfactory 

results were obtained for MotipDupli® Montana Gold [20].  

Fiorucci et al. studied different fluence values (from 0.1 J cm-2 to 1.2 J cm-2) of Nd:YVO4 

laser at 355 nm applied on Rosa Porriño granite finding optimal results with 0.1 J cm-2. 

Undesirable damages, such as melting of the biotite and loss of the pink colouration of the K-

feldspar grains occurred in cleanings at 0.3 Jcm-2 [11]. Other researchers concluded that Fe 

compounds are very sensitive in response to 1064 nm laser irradiation [37,38]. Urones-Garrote 

et al. tested Nd:YAG at 355 nm and assigned the decolouration effect of the pinkish Rosa 

Porriño granite to the induced thermal effects in the microstructure and composition of 

potassium feldspar grains [39]. Rivas et al. working with Nd:YVO4 at 355 nm to clean several 

graffiti on Vilachán and Rosa Porriño granites confirmed the influence of the chemical 

composition of the graffiti paint on the cleaning effectiveness. The cleaning of red, blue and 

black paints from Montana Colours® had similar satisfactory results, while silver graffiti displayed 

a translucid film [14]. Paint penetration into the granite fissures was reported and remained after 

cleaning. Laser also caused melting of the biotite grains, fracturing of the quartz grains and a 

possible change in hydration of iron oxides and oxyhydroxides covering fissures was found. 

Pozo-Antonio et al. also applied the same laser and paints on Silvestre and Rosa Porriño 

granites [13]. The laser was satisfactory for all the paints except silver graffiti. In fact, in the 

surface cleaned of silver graffiti, a carbon and aluminium film was detected by SEM. Despite 

these results for the silver paint, in a later study [32], the laser proved by means of hyperspectral 

imageing technique to be one of the most suitable cleaning techniques. More recently Ramil et 

al. studied the optimal laser fluence ranges to clean graffiti paints on silicates with the previously 

used laser and paints on Rosa Porriño granite [39]. The cleaning effectiveness was found to be 
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influenced by the polymineralic characteristics of the granite since the four main minerals 

presented different behaviours. For quartz and K-feldspar grains the higher cleaning 

effectiveness levels were achieved with 0.1–0.2 Jcm-2 for all colours; for plagioclase, was 

achieved from 0.1 to 1.0 Jcm-2 depending on the graffiti colour and biotite started to be cleaned 

with 0.06 Jcm-1 (with melting occurrence at the lowest fluence). Textural characteristics of the 

stone such as fissural system and cleavage also interfere in the graffiti penetration and the 

cleaning performance [40]. 

3. Materials and methods  

3.1. Stone material 

A granite, Rosa Porriño, was selected from northwest Iberian Peninsula. It is a two-mica 

calcoalkaline coarse-grained granite with a panallotriomorphic heterogranular texture. Two 

hundred and forty samples with 1.5 cm thickness, measuring 5 cm x 5 cm were prepared from 

commercial disc-cutting finished-slabs. More information regarding this stone can be found in 

(Appendix 7.2). 

3.2. Aerosol paints  

Four colours of graffiti aerosol paint from Montana Colours® were selected based on 

previous researches [11,12,14,41] due to their different responses to conventional cleaning 

procedures: devil red (R-3027), ultramarine blue (R-5002), graphite black (R-9011) and silver 

chrome (RAL-7001). The paints were sprayed at an angle of 45° and from a distance of 30 cm 

over the disc-cutting face of the samples to facilitate identification of surface alterations after 

SO2 exposure. The paints were also applied on microscope slides (three slides per colour). The 

painted samples were left to air-dry in the laboratory (18±5ºC; 60±10% HR) for seven days. 

3.3. SO2 artificial ageing  

After the aerosol paints properly dried on stone surface, half of the samples were kept 

during two months in the laboratory under room conditions (18±5ºC; 60±10% RH) hereinafter 

designated as unaged, while the other half was placed during two months in a climatic chamber 

(FITOCLIMA 300EDTU) with SO2 artificial ageing at (25ºC and 98% RH) hereinafter designated 

as aged. Moreover, microscope slides painted with each graffiti colour were also subjected to 

the same procedure. The stablished RH value was used to simulate a frequently occurring 

outdoor condition, where stones are coated with a thin film of condensed moisture [42]. It has 

been pointed out that a high RH accelerates sulphate attack by SO2 dry deposition [43,44]. The 

SO2 contaminant (SO2 diluted at 3% in 3000 ppm of nitrogen) was dosed at a concentration of 



7 
 

200 ppm, which is about 4000 times higher than current SO2 levels in most urban areas from 

Europe [44–46]. It was decided to use this high concentration to obtain a high reaction rate. 

3.4. Cleaning methods 

The unaged and artificially aged samples were cleaned with different procedures, 

namely: two commercial chemical products, two mechanical methods with two abrasives each 

and a laser method. 

In what concerns the chemical methods two different commercial products were used:  

• A solution of potassium hydroxide (10–30% wt%) with surfactants (2-

aminoethanol, 1–2% wt%), from Trion Tensid AB, Sweden (AGS 600®), hereinafter designated 

as AGS; 

• A solution of n-butyl acetate, xylene and alcohol isobutyl, from 3M, Spain (Graffiti 

GR3®), hereinafter designated as GR3. 

These commercial chemical products were applied over stone surfaces with a soft brush 

and following suppliers’ recommendations AGS was left to act for 10 minutes and GR3 for 2 

minutes. After this time, the graffiti paints were removed by energetic brushing with hot tap water 

rinse (50°C) and with natural tap water rinse respectively. This procedure was repeated until a 

satisfactory cleaning was achieved, with a maximum of 5 cleaner applications and it was 

interrupted when the operator felt that more repetitions would not improve the final result. 

Afterwards the samples were left to dry for 15 days at laboratorial room conditions (18±5ºC; 

60±10% HR). The pH measurements of AGS showed that is a highly alkaline product with values 

above 14. 

Regarding the mechanical methods two different commercial equipment’s were used: 

• An equipment based on the circular projection of a mixture of air, water and micro 

abrasive (Hydrogommage®). Two sharp edged abrasives were used: silicon and aluminium 

silicate, both at pressure of 2 bars. Silicon abrasive is composed according to the technical 

sheet, around 98.6% SiO2, with almost 90% of particles comprised between 75-106 µm grain 

size (Appendix 7.3). Aluminium silicate abrasive is composed of 45-52% SiO2 and 24-31% Al2O3 

and presented a coarser grain size of 160-80 µm according to the technical sheet (Appendix 

7.3). Hereinafter designated as Hydro Si and Hydro Si Al respectively. 

• An equipment based on the circular projection of air and micro grained abrasive 

(IBIX®). Two abrasives were tested at pressure of 4 bars: the previously reported silicon and 

round shaped microparticles of CaCO3 with around 98% of CaCO3 and grain size comprised 

between 70–200 µm according to the technical sheet (Appendix 7.3). Hereinafter designated as 

IBIX Si and IBIX Ca respectively. 
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After the mechanical cleanings, the residues (abrasive and graffiti paints) were removed 

by tap water rinse. The FESEM characterization of the micro abrasives (Appendix 7.4) confirmed 

their composition, dimensions and morphology. 

Lastly a laser method was tested: 

• A Nd:YVO4 Coherent AVIA Ultra 355–2000® laser at the 355 nm wavelength and 

with 25 ns pulse duration (Appendix 7.5). The frequency (10 000 Hz), fluence (0.1-0.3 J.cm2), 

scan speed (25 mm.s-1), distance between scans (0.075 mm) and laser trajectory parameters 

(horizontally and vertically alternated with no more than four scans) were selected on the basis 

of previous studies in granites [11–14,40] and preliminary cleaning tests evaluated under a 

stereomicroscope. 

3.5. Analytical techniques 

In figure 3.1 is presented the experimental design of the laboratorial procedures used in 

the different phases of the study, namely the characterization of the (unaged and aged) aerosol 

paints and the cleaning methods performance. In the following sections, a brief description of 

each phase will be presented. 

Granite samples cutting and painting 

     

Half placed on laboratory  Half placed on climatic chamber with SO2 rich environment 

     

 
  

References  Cleaning methods  

          

 Chemical   Mechanical Laser 
            

 AGS GR3  Hydro IBIX Nd:YVO4 

                

  Si Si Al Si Ca 

          

Granite *1 

Red 
Blue 
Black 
Silver 

 Granite*2 

Red 
Blue 
Black 
Silver 

Granite*2 
Red 
Blue 
Black 
Silver 

 Granite*2 
Red 
Blue 
Black 
Silver 

Granite*2 
Red 
Blue 
Black 
Silver 

Granite*2 
Red 
Blue 
Black 
Silver 

Granite*2 
Red 
Blue 
Black 
Silver 

Granite*2 
Red 
Blue 
Black 
Silver 

    
    

       

Aerosol paints 
caracterization: 

Stereomicroscope, 
Spectrophotometer, 

XRD,  
Raman,  
FTIR,  
SEM 

Cross-cut 

Stone 
caracterization: 

Stereomicroscope, 
Spectrophotometer, 

Hyperspectral 
imageing technique, 

SEM, 
Profilometer, 

Confocal 
microscopy, 

Contact angle 

 Cleaning methods performance: 
Stereomicroscope,  
Spectrophotometer,  

Hyperspectral imageing technique 
SEM,  

Profilometer,  
Confocal microscopy,  

Goniometer. 

Fig.3.1 – Experimental design of the laboratorial procedures for the characterization of the paints, stone and 
cleaning methods performance. *1 refers to the stone reference, *2 refers to the stone submitted to the several 

cleaning methods. 
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3.5.1. Aerosol paints characterization 

In order to find any possible changes in the formulation of the aerosol paints by the 

manufacturer since the previous characterizations [10,13] and also to identify any 

morphological, chemical and mineralogical changes due to the artificial ageing, painted 

microscope slides and painted stones subjected to SO2 were evaluated and the results were 

compared with those obtained for the unaged samples. 

A first evaluation of the stones subjected to SO2 was performed by means of a 

stereomicroscope (Nikon Eclipse 800). 

Then, in order to identify chemical and mineralogical changes in the aerosol graffiti paint, 

the painted microscope slides were evaluated through X-ray fluorescence (XRF), X-ray 

diffraction (XRD), Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR) 

(Appendix 7.6). Chemical changes were characterized by XRF (ArtTAX, 800 spectrometer). 

Mineralogical changes were identified by XRD with a diffractometer (XPERT-PRO) by the 

random powder (grazing incidence) method. Raman spectroscopy was used to study the nature 

of the crystals developed over the aged silver paint (LabRam HR Evolution spectrometer). The 

aerosol paints functional groups were evaluated by FTIR using a Nicolet 6700 with a DTGS KBr 

detector. 

Gold-palladium coated samples of the painted stones surfaces were evaluated to find 

any physical or chemical alterations and formation of sub-products using two scanning electron 

microscopes with energy-dispersive x-ray spectroscopy (SEM-EDS) (Philips XL30 and JEOL 

JSM-6700) in Secondary Electrons (SE) and Back Scattered Electrons (BSE) modes. 

The colour changes of the surfaces of the painted samples after SO2 exposure were 

quantified with a spectrophotometer (Minolta CM-700d) in the CIELAB colour space (Appendix 

7.6). A total of 20 measurements for each sample were made, being each an average of 3 

measurements (as recommended by Prieto et al. for a granite with this grain size [47]). The 

chroma, colour purity C*ab was calculated based on a* and b* values, as follows: 𝐶∗ = ∗ +∗ ⁄  and for the colour difference the equation 𝛥𝐸∗𝐿 =  √ ∆𝐿∗ + ∆ ∗ + ∆ ∗  [48], was 

considered, being each ∆ the difference between the reference (unaged paint) value and after 

the ageing process. 

The adhesion of the paints was evaluated by Cross-Cut-Test [49]. A total of 6 grid lines 

in each sample surface were performed with a cross hatch cutter (Elcometer 107) with cutter 

blade 1, followed by adhesive tape application and removal in 180º after 5 minutes of contact. 

The paint detachment was assessed by stereo microscopy and classified from 0-5, best to worst 

according to UNE-EN-ISO-2409 [49]. The statistic hypothesis t-student test was used to 

statistically validate the obtained data. 
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3.5.2. Cleaning evaluation 

The performance of the cleaning methods was evaluated based on the graffiti extraction 

level and harmful effects (physical, chemical or mineralogical induced alterations). 

Firstly, the cleaned surfaces were observed with the previously referred 

stereomicroscope and SEM. 

The parameters of CIELAB space were measured and the global colour change 𝛥𝐸𝐿  

was computed. The residual staining (RS) after the cleaning procedures was also evaluated 

using the formula proposed by Masieri & Lettieri: = [ ∆𝐸  ∗ / ∆𝐸  ∗ ] ×  where ∆𝐸  ∗  and ∆𝐸  ∗  correspond respectively to the colour variations of the cleaned and 

painted surfaces versus the granite reference [50], being each ∆ the difference between the 

reference (before graffiti application) value and after each cleaning method. 

Hyperspectral imageing technique was used to study the reflectance changes of the 

surfaces after the cleaning. The system consisted in a CCD sensor Pulnix TM-1327 GE with an 

objective lens, focal 10 mm and a spectrograph ImSpector V10 with 4.55 nm resolution 

(Appendix 7.6). Three measurements per sample were performed. The Least square based 

orthogonal subspace (LSOSP) method [40,51] was used to determine the coefficient of 

abundance α since the higher α, the cleaner the surface should be. In this abundance, a 

dominant signal (granite) was assumed. Other signals from the paint were undesirable 

interferences that must be eliminated to improve the detectability of the dominant signal. For 

this, an orthogonal projector to the subspace of the undesirable signals was developed: 𝑃 = 𝐼 −𝑈𝑈#, being I: identity matrix (L x L, L is the number of channels of the spectrum), U is the matrix 

with the signals to be removed and 𝑈# = 𝑈 𝑈 − 𝑈 . Then, the coefficient of abundance α using 

LSOSP was calculated as: 𝛼𝐿 = 𝑃 − 𝑃 , where  is the matrix of the stone 

spectrum and  is the matrix composed with cleaned surface. Then the higher the 𝛼𝐿  the 

more satisfactory the cleaning performed. 

The roughness of the surface was measured with a profilometer (Surfecoder SE1200). 

A scan length of 4 mm and 10 scans per sample was considered. The arithmetic average 

roughness (Ra) was measured. The statistic hypothesis t-student test was used to statistically 

validate the obtained roughness data. Moreover, in order to establish the extent of the 

topographical variations that could be accepted has a result of a cleaning procedure, the 

methodology proposed by Gaspar et al. was adopted to Ra parameter [52]. The damage 

threshold was calculated by adding to the stone reference Ra the respective standard deviation, 

and then comparing the obtained value with the Ra’s after the diverse cleaning treatments. The 

values obtained above this damage threshold are statistically attributed to the impact of the 

cleaning procedures. 
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Confocal microscopy allowed to obtain a 3D surface roughness image (CM; PLu 2300 

Sensofar® optical imageing profiler). Three images per samples were collected with an EPI 10X-

N objective, an overlapping of 25%, a depth and a lateral resolution of 6.05 mm and 4.54 mm 

respectively. The acquired data were processed with Gwyddion software. 

In order to verify if surface hydrophobe alterations occurred, static contact angles were 

measured with a goniometer (CAM 100, KSV, Helsinki, Finland) equipped with a digital camera 

and image analysis software. A total of 5 measurements per sample were made, at room 

temperature (20°C) by applying the sessile drop method. Deionized water was used as the 

wetting liquid with a droplet volume of 13 μL. 

4. Results and discussion 

4.1. Aerosol paints characterization 

The red, blue and black graffiti paints after being submitted to a SO2 rich environment did 

macroscopically not presented any signs of degradation (Fig.4.1 A, D and G). The silver paint, 

however, showed graffiti losses and formation of crystals (Fig.4.1 J). Contrary to the other paints 

inside the climatic chamber, silver graffiti was coated with water drops. 

 

Fig.4.1 – Stereomicroscopy and SEM-micrographs of the aged paints (after SO2). Moreover, EDS spectra of the 
neoformed structures are provided. A-C: Red paint. D-F: Blue paint. G-I: Black paint. J-L: Silver paint. 
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Concerning the chemical composition, XRF spectra (Fig.4.2) showed common elements 

for all paints: K, Ca, Ti and Fe; moreover, red and blue paints (Fig.4.2 A and B) also present Cl, 

blue and black paints (Fig.4.2 B and C) contain Co and Cu and silver paint present Al (Fig.4.2 

D). It must be noticed that are two peaks in all XRF spectra, the inelastic (or Compton) diffusion 

around 16.4 keV and the peak corresponding to the molybdenum (Mo) equipment ampoule 

around 17.3 keV. The identified elements confirm the previous studies [11,14]. The emergence 

of sulfur Kα assignment was noticed in all paints after the artificial ageing. 

 

 

Fig.4.2 - XRF spectra of aged and unaged red (A), blue (B), black (C) and silver (D) paints. 

XRD on the unaged paints allowed to identify titania (TiO2) in red and blue paints (Fig.4.3 

A and B), barite (BaSO4) in red paint and aluminium (Al) in silver paint (Fig.4.3 D), corroborating 

the results of previous characterizations [11,14]. In Appendix 7.7 is presented the XRD peak list 
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of the three more intense peaks for each identified aerosol paint. Aluminium has also been 

reported in previous studies with Trans-colour® silver aerosol paints [15,16]. Diffractograms of 

the artificially aged paints showed the presence of gypsum (CaSO4•2H2O) on both red and black 

paints (Fig.4.3 A and C) and alunogen (Al2(SO4)3•16H2O) and metalunogen (Al2(SO4)3•12H2O) 

on silver paint (Fig.4.3 D). Raman spectroscopy confirmed the presence of alunogen in the 

 

 

Fig.4.3 – Powder XRD pattern of aged (after SO2 exposure) and unaged paints. A: Red paint. B: Blue paint. C: 
Black paint. D: Silver paint. Titania (T), gypsum (Gy), barite (B), graphite (Gr), aluminium (Al), alunogen (Ag) and 

metalunogen (M). 

 

Fig.4.4 - Raman spectra for aged silver paint (after SO2 exposure). 
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efflorescence crystals detected on silver paints (Fig.4.4). XRD allowed to detect graphite (C) in 

the aged black paint (Fig.4.3 C). Despite barite and graphite were only detected in the 

diffractograms of the aged samples, it was assumed that these compounds were also present 

in the unaged samples since barite is commonly used as an opacifier and graphite as a black 

pigment. 

FTIR showed that the red, blue and black paints are composed of alkyd resins or 

varnishes (Fig.4.5 A, B and C) due to C-H and ester functional groups: C-H aromatic alkene 

around 3117 cm-1, 3062 cm-1 and 740 cm-1, C-H asymmetric and symmetric stretching vibrations 

of alkanes at 2925 cm−1 and 2854 cm−1 respectively, C=O vibrations around 1722 cm−1 and 

1258 cm−1, C=C aromatic ring at 1624-1481 cm−1, C-H bend of CH2 symmetric deformation 

 

 
Fig.4.5 - FTIR spectra of aged (after SO2 exposure) and unaged paints. A: Red paint. B: Blue paint. C: Black paint. 

D: Silver paint. 
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at 1448 cm−1, CH3 asymmetric deformation and vibrations around 870 cm−1 also attributable to 

C-H, C-O of ester at 1179 cm−1, O-CH2 phthalate vibration at 1117 cm−1 and C-O vibration at 

1068 cm−1 [53,54]. Effects attributable to OH group were also detected: a broad band around 

3482 cm−1 and around 1650 cm−1 [54]. The three paints were similar, except in the range of 740-

529 cm−1. For the silver paint (Fig.4.5 D) the most intense effects were those for C-H asymmetric 

stretch vibrations of alkanes. These C-H vibrations according to other authors [14] may be an 

indication of polyethylene polymers in this paint. These results are in agreement with previous 

characterizations of the same unaged paints [11,14]. On the one hand, it was possible to notice 

that the alkyd systems show greater resistance than the polyethylene ones towards moisturized 

SO2 rich environments. On the other hand, FTIR spectrum of the aged silver paint allowed to 

identify some alteration signs, namely the disappearance of C=O, C=C groups and their 

substitution with a O-H group around 1650 cm-1 and the emergence of a C-O group around 

1068 cm-1 [54]. 

By SEM observation of the paint surfaces (Fig.4.1) it was possible to observe the 

formation of sulphur compounds: (i) needles rich in S and Ca; and also Ti in paints rich in this 

element (Fig.4.1 B, C, H and I); (ii) agglomerates rich in S, Ca, Ti and Fe (Fig.4.1 E and F), plus 

Al in silver paints and Ba in red paints (Fig.4.1 B and C); and (iii) in silver paint also occurred 

the formation of ramifications rich in S and Fe (Fig.4.1 K and L), in which the Fe presence may 

be related to the oxidation process of the biotite. All the mentioned sulphur rich compounds 

presented a more limited development in the alkyd paints than in the polyethylene one as can 

be seen by the stereomicroscope images of the paints (Fig.4.1 A, D, G and J). The 

improvements in the alkyd resin properties may explain its higher resistance towards sulphur 

rich environments in comparison to polyethylene ones. In what concerns the binders field, there 

are indicators that alkyd resins had been subject to many blending, modification and formulation 

transformations [55]. 

The cross-cut test allowed to qualitatively assess the adhesion of the paint according 

with the amount of detached material (Figure 4.6). The tested paints presented different 

adhesion degrees, blue and black paints registered the maximum adhesion (0). Silver paint 

 

Figure 4.6 - Cross-cut adhesion test according to UNE-EN-ISO-2409 standard of the unaged and aged (after SO2) 
paints. 
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presented the lowest adhesion (5), which is in agreement with the macroscopic deterioration of 

the paint and crystallizations formation. Red paint is the middle ground between these values. 

The paints did not presented significant adhesion alterations towards SO2 exposure. 

4.2. Cleaning performance 

The application time of each cleaning procedure was controlled in different manners: 1) 

in the chemically cleaned samples, under naked eye observations the experimented worker 

decided when the cleaning would not achieved an improvement with another application with a 

maximum of 5 applications and it was detected that the aged samples need around 1-2 

passages more to be cleaned than the unaged samples (Appendix 7.8); 2) in the mechanically 

cleaned samples, the application of the methods was controlled through the timing being needed 

the double time for the aged samples (Appendix 7.8); and 3) the laser cleaning was also 

controlled through naked eye observations and were applied the same number of passes since 

at first sight the results were similar. 

Stereomicroscopy allowed to perform the first evaluation of the cleaning in terms of 

graffiti extraction. Regarding the chemically cleaned aged samples (Fig.4.7 C and E), more 

residues were found on the surfaces comparatively to the cleanings of unaged ones. Two 

different paint residue patterns related to each chemical cleaner method were found for both 

unaged and aged samples. While AGS acted in the graffiti through dissolution by saponification, 

leaving behind sporadic lines of paint, GR3 crackled the paint film, leaving as result not only 

sporadic lines of paint as also some paint “islands” in areas probably with higher adherence of 

the paint layer to the stone. In fact, the triglycerides of the alkyd paints (red, blue and black) 

when interact with a strong base (alkaline solution such as AGS) trigger a chemical reaction 

known as saponification, the cleaner composed of KOH acts as a source of OH−, a highly 

nucleophilic anion that attacks polar bonds, catalysing the cleavage of the ester bonds, releasing 

fatty acids salts and glycerol [56]. However, GR3 appears to act by weakening the adhesion 

between the paint and the substrate. The mechanically cleaned samples (Fig.4.7 G, I, L and N) 

showed less residues than the chemically cleaned samples, but an increase in morphological 

alteration was detected, which may be associated with morphological alterations, later confirmed 

by the roughness tests. The aged laser cleaned samples (Fig.4.7 P) presented a surface with 

more colour differences and residues in relation to the unaged samples, this was particularly 

evident in the case of blue and black paint with a more demarked veil of graffiti colour associated 

with quartz mineral and in the case of silver paint with a glossy silver veil which after ageing also 

presented crystallizations. Macroscopically, the best chemical and mechanical cleaning 

performances were achieved with AGS and Hydro respectively (Fig.4.7). 
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SEM allowed to perform a more detailed analysis of the cleaned surfaces. Graffiti 

residues on the surface were identified due to the presence of deposits or particles rich in C, 

Na, Mg, Al, Cl, Ca, Ti, due to their presence in the composition of the paints. Therefore, they 

were used as markers to identify paint residues by EDS. SEM analysis (Fig.4.7 A and Appendix 

7.9) of aged unpainted substrates confirmed the presence of crystals rich in sulphur. Once 

quartz and alkali feldspars (Na and K) are amongst the most resistant silicates to acid media 

they showed little decay under SO2 conditions [44]. This can explain the limited development of 

crystals in Rosa Porriño granite (Fig.4.7 A). The development of sulphates around the particulate 

matter in a SO2 environment and their absence on environments with only SO2 (without 

particulate matter) were reported by Simão et al.[44]. Well-developed gypsum crystals 

associated to particulate matter emitted from motor vehicles (diesel and leaded gasoline) in a 

SO2 environment were found in Monção granite (calc-alkaline, one mica, medium coarse 

grained, pink colour) [44], mineralogical and texturally similar to Rosa Porriño. The particulate 

matter may play a critical role in the sulphation. These appear to contribute to the catalytic 

oxidation of SO2 to H2SO4 in the presence of humidity since their nanoparticle size provides a 

surface area that potentiates the sulphation [44]. 

As far as the cleaning is concerned, both aged and unaged chemically cleaned samples 

(Fig.4.7 D and F) presented only punctual residues of graffiti paint with AGS (Fig.4.7 D) and 

besides the punctual residues some bigger paint plaques with GR3 (Fig.4.7 F). Pozo-Antonio et 

al. tested QuitaGraffi 200®–QuitaSombras 60® (QG+QS) rich in potassium hydroxide and 

Wendrox® and Eligraf® based on dichloro-methane, organic acids, solvents and anionic 

surfactants on Silvestre and Rosa Porriño granites [13]. The products based on potassium 

hydroxide were, the most effective in removing the red, blue, black and silver Montana Colours®, 

however chemical contamination occurred with both Wendrox® and QG+QS [13]. Conversely, 

in the current study were not found any mineralogical alterations or residues of the cleaners. 

However, the evaluation of cleaning performance through SEM-EDS in granitic surfaces cleaned 

with potassium hydroxide-based products must be taken with caution because K is present in 

the granite forming minerals and also in the cleaners. The aged samples showed surfaces 

characterized by the presence of more paint residues and sulphur. So, despite macroscopically 

the majority of the paints appeared unaltered after ageing, the sulphur dioxide interacted with 

them. 

SEM allowed to detect that the surfaces of the samples cleaned with the mechanical 

methods had greater influence on the surface morphology (Fig.4.7 H, J, M, O) comparatively to 

chemical cleanings. Moreover, the presence of paint residues seems to be related with the 
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Fig.4.7 – Stereomicroscopy- and SEM-micrographs of the unaged and aged (after SO2 exposure) cleaned surfaces. 
A-B: Reference granite. C-D: Red paint with AGS. E-F: Red paint with GR3. G-H: Blue paint with Hydro Si. I-J: Blue 
paint with Hydro Si Al. L-M: Black paint with IBIX Si. N-O: Black paint with IBIX Ca. P-Q: Silver paint with Nd:YVO4. 
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morphological alterations of the surface. The lesser the residues, the higher the morphological 

alterations, since more effort was put in order to remove them. The satisfactory results were 

obtained through the best compromise between extraction and safeguard of the polymineralic 

granitic substrate. Hydro both with Si and Si Al (Fig.4.7 H and J) appeared to be the one with 

the best results, as referred by previous authors [13]. IBIX Si (Fig.4.7 M) induced the higher 

morphological alterations and lesser paint residues, and in contrast, IBIX Ca (Fig.4.7 O) was the 

one with more paint residues. For the mechanical cleaning of the aged samples, longer 

cleanings could be translated in more evident morphological alterations than those registered 

on the mechanically cleaned surfaces with unaged paints. 

On the surfaces cleaned with laser, the graffiti residues were not so evident as on the 

surfaces cleaned with chemical and mechanical procedures (Fig.4.7 Q) since the ablation 

removal mechanism allowed a more homogeneous cleaning [33]. As reported by other authors 

[13,14], despite satisfactory results were found in the cleaning of red, blue and black paints, the 

cleaning of silver paint left surfaces with residues rich in Al. regarding the induced damages to 

the granite forming minerals, despite the low fluences applied [40] alterations of biotite were 

observed, namely melting of the biotite grains (Fig.4.7 Q) as was reported in [13,14]. Recently, 

Ramil et al. reported the biotite melting (similar to drops) for even the lowest fluence tested of 

0.06 J.cm-1 [40]. Nevertheless, it must also be noticed that no other mineral alterations such as 

spallation or melting of feldspar planes and quartz fracture [11,14] were observed. The effect of 

ageing through SO2 exposure on laser cleaning was not so evident as on the other cleaning 

procedures. In fact, the cleaning conditions applied were the same, since at first sight the results 

were similar, however through the analytic techniques it was seen that the cleaning was not 

exactly the same. In fact, for the cleaning of aged silver graffiti was observed that the white 

crystallizations rich in Al and S formed after the ageing process, still remained on the surface 

after the cleaning process. So, the SO2 exposure hindered the laser cleaning process. 

The colour changes of the chemically cleaned samples comparatively to the reference 

granite surfaces (without graffiti) mainly affected L* (decreases- surfaces became darker) 

(Fig.4.8 A and B) and a* (decreases-surfaces became less reddish) (Appendix 7.10). On the 

surfaces cleaned of blue, black and silver graffiti, a* decreases can be related with the 

improvement of the cleaning, while in the cleaning of red graffiti, a* increases can be related to 

paint residues. However, b* coordinate remained similar to the reference. The chroma C*ab 

decreased in all cases, again with exception of red paint which tone appeared to intensify due 

to the colour of the residues. In the Fig.4.8, can be noticed that AGS (Fig.4.8 A) induced less 

colour alterations than GR3 (Fig.4.8 B). The global colour changes ΔE*
Lab (Table 4.2) are 

generally above 5 for all colours, which means that the observer notices two different colours 

[48]. AGS had better cleaning results, presenting a lower computed residue percentage (R, %) 

(Table 4.1), except for the silver paint whose difference can be related to its chemical nature. 
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Fig.4.8 - L*–C*ab data obtained for the granite reference and aerosol-painted surfaces after each cleaning 

procedure: A: AGS; B: GR3; C: Hydro Si; D: Hydro Si Al; E: IBIX Si and F: IBIX Ca; G: Nd:YVO4. 
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It must be added that GR3 applied solely on the stone showed higher colour modifications than 

AGS (Appendix 7.10). 

The mechanically cleaned samples (Fig.4.8 C-F), in general maintained the L*, a*, b* 

and C*ab around the reference values, with exception of the silver sample cleaned with Hydro Si 

Al (Fig.4.8 D), which increased in all coordinates and IBIX cleaned samples (Fig.4.8 E and F) 

which decreased in all coordinates. The mechanical methods that induced less colour alterations 

were Hydro Si (Fig.4.8 C), confirming [13], and IBIX Si (Fig.4.8 D). In general terms, their ΔE*
Lab 

can be noticed by an unexperienced observer [48] but are lower than those registered on the 

chemically cleaned surfaces (Table 4.1), except for the surfaces cleaned with IBIX Ca (Fig.4.8 

F)  showing the worst results. In fact, the mechanical methods were the ones that achieved less 

computed residue percentage (R, %). However, it must be noticed that these methods induced 

macroscopic morphological alterations due to their abrasive mechanism, especially IBIX. ΔE*
Lab 

of the surfaces with unaged graffiti and mechanically cleaned are between 0.40 and 8.90, which 

are lower than those obtained by Carvalhão & Dionísio (above 10) with soft-abrasive blasting 

media in two carbonate stones [21]. 

The laser cleaning (Fig.4.8 G) induced an increase of L* and decreases of a* and b* for 

surfaces cleaned of red and blue graffiti paints and surfaces cleaned of black and silver paints 

exhibited increases of a* and b*; moreover, the surfaces cleaned of silver paint showed L* 

decreases. C*ab did not experiment a clear trend. The. ΔE*
Lab of laser cleaned surfaces were the 

highest in comparison with the other cleaning methods (Table 4.1) and therefore, the observers 

would notice the unsatisfactory cleaning by laser due to the residues presence [48]. The 

computed residue percentage (R, %) showed the same trend that the ΔE*
Lab, especially for silver 

graffiti achieving an average residue percentage of 34.52% and of 66.07% for unaged paint and 

aged paint respectively. This unsatisfactory cleaning of silver paint in contrast with the other 

paints was reported in [11,13,14]. 

The results obtained for all the referred cleaning methods allowed to infer that the 

cleaning of aged samples led to higher ΔE*Lab comparatively to unaged ones, with values above 

3.5 in the cleanings of all colours. The most successful cleaning methods for aged samples were 

the same as for the unaged samples, being more difficult to remove than the unaged graffiti and 

with a higher residue percentage associated. It is evident that SO2 hindered the cleaning 

performance for all the cleaning methods  

In a previous work the suitability of hyperspectral imageing technique to detect variations 

in the reflectance of granite samples after laser cleaning was verified [40]. In the current 

research, the higher the 𝛼𝐿 , the more similar the reflectance of the cleaned surface to the 

reference granitic surface (without graffiti). Generally, it was detected that the cleaned surfaces 

of unaged graffiti showed a higher or equal 𝛼𝐿 , than their aged graffiti counterparts (Table 

4.1). However, some exceptions were detected where the unaged cleaned samples presented 



22 
 

lower 𝛼𝐿  than the aged ones. This occurred in red paints cleaned with Hydro Si; in blue 

paints cleaned with GR3, Hydro Si, IBIX Si, IBIX Ca; for black paints cleaned with AGS, Hydro 

Si, IBIX Ca and for silver paint cleaned with Hydro Si. From the obtained results can be 

concluded that the mechanical methods, based in micro abrasive removal mechanisms, among 

all the tested methods, are the less dependent on the graffiti ageing. It was also detected that 

the lowest 𝛼𝐿  were obtained on the surfaces cleaned by laser which is translated into a 

surface with more paint residues. 

Table 4.1 – Colorimetric average data: the degree of colour difference ΔE*Lab (-), residue percentage: R (%) and 
abundance coefficient: αGmi (-) for the chemical, mechanical and laser cleaning procedures. The prefix A marks the 

samples that were subjected to ageing before the respective cleaning procedure. 

Cleaning 
methods 

Red paints Blue paints Black paints Silver paints 

ΔE*Lab 
(-) R (%) 𝛼𝐿  

(-) 
ΔE*Lab 

(-) R (%) αGmi 
(-) 

ΔE*Lab 
(-) R (%) 𝛼𝐿  

(-) 
ΔE*Lab 

(-) R (%) 𝛼𝐿  
(-) 

AGS 3.60 7.70 1.10 4.10 8.50 0.90 5.50 13.00 0.80 6.30 25.90 0.80 

A-AGS 9.60 20.70 0.80 4.60 9.70 0.90 7.10 17.00 1.00 18.50 75.60 0.80 

GR3 5.30 11.50 0.90 5.10 10.60 0.70 7.90 18.90 1.10 3.80 15.40 1.10 

A-GR3 10.90 23.60 0.80 11.90 24.90 1.00 10.50 25.10 0.70 4.60 18.90 0.80 

Hydro Si 1.90 4.10 0.80 0.80 1.70 0.80 2.10 5.10 0.80 0.60 2.60 0.80 

A-Hydro 
Si 

4.10 8.80 1.00 2.20 4.60 0.90 3.00 7.20 1.00 2.70 11.20 0.90 

Hydro Si 
Al 

2.50 5.40 1.00 2.30 4.70 0.80 3.80 9.00 0.80 5.80 23.90 1.10 

A-Hydro 
Si Al 

3.30 7.00 1.00 2.10 4.40 0.80 4.50 10.70 0.70 5.90 24.30 1.00 

IBIX  Si 0.80 1.70 1.00 0.40 0.80 0.90 1.90 4.40 0.90 1.80 7.20 0.80 

A-IBIX  Si 2.00 4.30 0.90 2.30 4.80 1.00 2.70 6.50 0.90 2.60 10.50 0.70 

IBIX  Ca 3.30 7.20 0.90 1.30 2.70 0.80 2.30 5.50 0.90 5.90 24.30 1.60 

A-IBIX  
Ca 

8.90 19.20 0.90 3.20 6.70 0.90 6.30 15.00 1.00 7.60 31.20 0.90 

Nd:YVO4 13.10 28.30 0.70 12.20 25.40 0.70 10.99 26.18 0.80 8.43 34.52 0.60 

A-
Nd:YVO4 

19.60 42.20 0.60 16.40 34.20 0.60 11.31 26.94 0.70 16.13 66.07 0.10 

The analysis of surface roughness values (Appendix 7.11) showed that after painting the 

stone samples generally occurred a Ra decrease (Fig.4.9). It is assumed that the paint created 

a film that filled the valleys of the stone, smoothing the surface. Except for silver paint which 

slightly increased this parameter (2.635 μm), indicating that this paint forms a heterogeneous 

coating. For the aged samples, a significant increase of silver paint Ra was registered 

(10.646 μm), being this probably related with the development of sulphur aggregates in the 

surface of the paint. For the chemically and laser cleaned samples, there were no statistical 

evidence of existing differences between Ra of the reference stone and after the cleaning 

(pvalues>0.05). Similar results were reported by Carvalhão & Dionísio in the cleaning of Branco 

marble and Lioz limestone with a commercial cleaner based on potassium hydroxide [21] and 

by Pozo-Antonio et al. with Nd:YVO4® at 355 nm laser cleaning of Rosa Porriño and Silveste 

granites [13]. This was particularly curious in the case of the samples cleaned with AGS due to 
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its high pH. The reference granite cleaned with the laser after SO2 ageing showed roughness 

alterations statistically higher than those registered on the stone reference without SO2 exposure 

which can be related to the decay promoted by SO2 attack. In contrast, Ra of the majority of the 

mechanically cleaned surfaces, except those cleaned with IBIX Ca showed pvalues ≤ 0.05 and 

thus, there were significant differences between the Ra of the reference stone and the values 

registered after cleaning, with a confidence interval of 95%. Therefore, mechanical procedures 

were the methods that induced greater surface roughness changes. 

In addition and in order to evaluate the extent of the topographical variations that could 

be accepted as a result of a cleaning treatment, a similar methodology to Gaspar et al. was 

implemented [52]. As was previously described, based on the Ra values, a damage threshold 

of 2.853 µm was computed. As can be seen in Fig.4.9 the roughness damage attributed to the 

cleaning performance (*2) were often coincident with the detected significant differences 

between the reference and after cleaning, to reject the null hypothesis with a confidence interval 

of 95% (*1). For the mechanical methods three deductions were made: (i) IBIX Ca induced some 

roughness alterations associated with damage, despite these were not evidenced by the 

statistical calculations; (ii) After IBIX Ca, Hydro Si exerted lower impact on surface roughness; 

conversely to other authors working with Silvestre and Rosa Porriño granites [13] Ra increased 

around 3 orders of magnitude less; (iii) IBIX Si showed the highest mechanical damage since 

Ra increased ≈4 μm on the unaged surfaces and ≈5 μm on the aged surfaces. It was not 

possible to find any relation between surface roughness and cleaning performance after SO2 

exposure, except for the laser cleaning, once the same cleaning conditions were applied for  

  

Fig.4.9 – Ra (average roughness) for aged (after SO2 exposure) and unaged samples before and after the cleaning 
procedures. The prefix A marks the samples that were subjected to ageing before the respective cleaning 

procedure. *1: Significant differences between the reference and after cleaning. *2 Roughness damage attributed to 
the cleaning performance. 
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aged and unaged samples and more residues were found in the laser cleaning of aged samples. 

Considering the confocal microscopy, a clear difference between the surfaces 

morphology can be noticed by the 3D images (Fig.4.10), being the highest morphological 

alterations detected in the surfaces cleaned with IBIX Si (Fig.4.10 D). A more homogeneous 

surface was obtained with AGS (Fig.4.10 B) and Nd:YVO4 (Fig.4.10 E), despite some localized 

mineral alterations were detected on the surface cleaned with the later, Hydro Si (Fig.4.10 C) 

represents the middle ground between these extremes. So, these results are in agreement with 

the ones obtained with Ra roughness. 

 

Fig.4.10 – 3D images obtained though confocal microscopy data of some different surfaces: reference stone (A) 
and surfaces cleaned of aged black graffiti with AGS (B); Hydro Si (C); IBIX Si (D) and Nd:YVO4 (E). 

In what concerns the static contact angle (Fig.4.11 and Appendix 7.12), in first place 

must be mentioned that since granite is a polymineral stone with grains of different compositions 

and characteristics, the static contact angles necessarily reflect this heterogeneity by means of 

variable results. Besides this, it must also be taken in consideration the Rosa Porriño fissural 

system, characterized by the three different fissures (transgranular, intergranular and 

intragranular) [57]. So, it was decided to present these measurements in a graph containing the 

minimum and maximum intervals and average values (Fig.4.11).  

First of all, must be noticed an increase of the hydrophobic behaviour after the application 

of all the paints without achieving surface hydrophobization, as reported by other authors with 
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alkyd paints applied in Branco marble and Lioz limestone [10,21,22]. According to Dionísio & 

Ribeiro and Ribeiro et al. the aerosol paints filled the stone surface irregularities, creating a 

smooth and uniform overcoat, acting as an impermeabilizing agent and keeping the stone from 

interacting with its surrounding environment [10,22]. 

These static contact angles had a tendency to decrease after the cleaning procedures, 

contrary to the results obtained by Carvalhão & Dionísio [21]. In fact, these authors considered 

that those higher values were related with traces of unremoved paint absorbed in some of the 

stone pores [21]. After the cleaning procedures Hydro Si was, on the one hand, the method that 

achieved the closest results to the stone reference. On the other hand, IBIX Si was the method 

that achieved surfaces with contact angle more distant to the reference; this method promoted 

a higher increase in the roughness values. Therefore, it may be inferred a relationship between 

the static contact angle and the roughness, since a rougher surface will present more cracks 

and fractures that will facilitate the water penetration. The aged stone surface became more 

hydrophobe, (in some cases exceeding the 90˚), a slight increase of the static contact angles 

also occurred with Branco marble and a higher one with Lioz limestone when submitted to SO2 

[10,22]. 

After the ageing, in the present study, the painted samples decreased their  

 
Fig.4.11 - Static contact angle represented in intervals of minimum, maximum and average for the unaged and 

aged (exposed to SO2) cleaned samples. A: Red paint. B: Blue paint. C: Black paint. D: Silver paint. The prefix A 
marks the samples that were subjected to ageing before the respective cleaning procedure. 



26 
 

hydrophobicity, which was the opposite of what occurred with the referred Branco marble and 

Lioz limestone coated with alkyd paints [10,22], the authors reported increases in the static 

contact angles and water vapour permeability after the artificial ageing.  

After the cleaning procedures of the aged samples, the surfaces became more water 

repellent. This allows to think that the SO2 had the ability to interact with the stone (became 

more water repellent), interact with the coating (decreased hydrophobicity since degraded the 

coating and allowed the entrance of water) and promoted interactions in the interface stone-

coating since a more water repellent pattern was observed after the cleaning processes. Must 

also be taken in consideration that the contact angles increase after cleaning may be related 

with traces of unremoved paint covering the granite fissures. After cleaning a SO2 aged surface, 

the static contact angle results are closer to the aged granite and not to the reference granite. 

This allows to infer (in agreement with the observation of water droplets on the samples surface) 

that SO2 may play a critical role in surface hydrophobization. Silver aerosol paint differentiates 

from the other aerosol paints by its higher static contact angles, even after the cleaning 

procedures. 

5. Final remarks 

Four aged and unaged graffiti aerosol paints (red, blue, black and silver) were evaluated 

in order to characterize their ageing process. These aerosol paints were tried to remove from a 

granite substrate with chemical, mechanical and laser technologies in order to optimize the 

graffiti removal procedures on samples subjected to SO2 environment (one of the more common 

urban contaminants). 

Red, blue and black paints had alkyd resins in their formulation whereas silver paint had 

polyethylene ones. Alkyd paints presented a greater resistance than polyethylene ones towards 

moisturized SO2 rich environments. Despite the formation of sulphur rich compounds in all 

paints, these had a more limited development in the alkyd paints than in the polyethylene one 

(silver). The silver paint was the one that presented more alteration signs, namely the 

disappearance of C=O, C=C groups, their substitution with an O-H group, emergence of a C-O 

group. These chemical alterations were followed by the formation of an unexpected mineral 

phase: alunogen in the form of crystals. The cleaning performance of chemical and laser 

methods was dependent on the binder composition (alkyd or polyethylene resins) and the 

pigments composition, namely the Al presence in silver paint. 

Chemical methods induced higher global colour changes and lesser roughness 

alterations. AGS based on KOH, showed a satisfactory cleaning since it acted through the alkyd 

resins by saponification, effectively dissolving the paints, except for the silver paint which 

achieved better results with GR3. Comparably to GR3 also induced less colour modifications. 
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Mechanical methods achieved higher extraction levels of graffiti, leading lesser paint 

residues on the samples surfaces than the chemical ones, but with a macroscopic morphological 

alterations increase, revealing an increase in roughness, the higher from all the tested methods. 

The global colour changes and the residue percentages were the lowest among all the tested 

methods. IBIX Si induced high morphological alterations in such a way that a brighter abraded 

surface was noticed. IBIX Ca despite induced lower morphological alterations it left high residue 

percentage. Hydro Si induced the lowest colour alterations and in terms of morphologic 

alterations this method is placed between the chemical and the laser (the lowest morphological 

changes induced) and IBIX Si (the highest morphological changes induced). Among the other 

cleaning methods, Hydro Si was the one which surface hidrophocity resembled more to the 

reference stone. 

The laser method Nd:YVO4 left coloured veils of blue, black and a more evident one of 

silver paint. Higher global colour changes, residue percentage and reflectance modification were 

verified, being highest changes for all the tested methods, especially in the case of silver paint. 

However, few morphological alterations were registered. 

In general terms SO2 clearly influences the cleaning performance for all the cleaning 

methods. The aged cleaned surfaces were more difficult to clean (needed more passages and 

required more time), presented higher global colour changes and showed a higher residue 

percentage. A more water repellent surface was also verified after ageing; the cleaned surfaces 

after SO2 exposure showed static contact angles closer to the aged granite than to the reference 

granite which profs the influence of SO2 on the graffiti and the stone. 

Further studies focused on the cleaning performance of aged graffiti paintings with 

particulate matter emitted from motor vehicles should be developed since it may play a critical 

role in the sulphation process. This research should also be extended to more stone substrates, 

such as carbonate ones: limestone and marble very employed in Cultural Heritage and less 

studied silicate ones like sandstones. 
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7. Appendix 

Appendix 7.1 – Distribution of graffiti cleaning studies by stone type (A) and by 

graffiti removal methods (B) 

 
Fig.7.1 - Distribution of graffiti cleaning studies by stone type (A) limestone, marble, sandstone, granite and others 

and by graffiti removal methods (B) chemical, mechanical, laser and biological. 

Appendix 7.2 – Brief petrographic description and technical specifications of 

Rosa Porriño granite 

Rosa Porriño it is a two-mica calcoalkaline coarse-grained granite with a 

panallotriomorphic heterogranular texture composed of 40% quartz (grain sizes from 3.8-0.8 

mm), 27% potassium feldspar (microcline, grain sizes reaching 10 mm), 14% plagioclase 

(grain sizes smaller than 1.8 mm), 8% biotite (1-2 mm in grain size), 2% muscovite and 5% 

accessory minerals [58]. The major element chemical composition (in wt%) is 71.9% SiO2, 

13.7% Al2O3, 2.55 Fe2O3, 0.94% CaO, 6.94% K2O, 3.34% Na2O, 0.25% MgO, 0.05% P2O5, 

0.025% MnO [59]. Open porosity is 0.85% [60]. 

Table 7.1 - Characteristics and physical-mechanical properties of Rosa Porriño granite [61]. 

Photograph Characteristics Value 

 

 

Petrographic denomination Biotite granite 

Apparent density  2.612 (Kg/m3) 

Open porosity 0,70 (%) 

Water absorption by atmospheric pressure 0,3 (%) 

Compression resistance 103 ± 28,3 (MPa) 

Flexural strength under concentrated load 9,7 ± 1,2 (MPa) 

Decreasing of flexural strength after 48 

cycles frost-taw 

< 0,02 (%) 

Abrasion resistance 17,0 ± 0,2 (mm) 
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Appendix 7.3 – Technical data sheets of the used abrasives  

The technical data sheets were provided by ClinArte S.L. company. The brand of the 

abrasives is unknown since it is considered by the company confidential information. 

 

Silicon 

Composition: SiO2 ≈ 98.6 %, Al2O3 ≈0.800 %, TiO2 ≈ 0.070 %, Fe2O3 ≈ 0.050 %, K2O ≈ 

0.400 % and CaO ≈ 0.030%. 

Size range: 106-75 µm (89.8%), 150-106 µm (6.9%), 212-150 µm (0.7%), 300-212 µm 

(0.2%). 425-300 µm (0.1%). 

Hardness: 7 Mohs. 

Density: 2.64 g/cm3. 

 

Aluminium silicate 

Composition: SiO2 ≈ 45-52 %, Al2O3 ≈ 24-31 %, Fe2O3 ≈ 7-11 %, CaO ≈ 3-8 %, K2O ≈ 

2-5 %, MgO ≈ 2-3 %, TiO ≈ 0-2 % and Na2O ≈ 0-1 %. 

Size range: 160-80 µm. 

Hardness: 7 Mohs. 

Density: 2.4- 2.6 g/cm3. 

 

Calcium carbonate 

Composition: CaCO3 (~98%), CaF2 (˂0.5%), Ca(NO3)2 (˂0.5%), NH4NO3 (˂0.5%) and 

Ca3(PO4)2 (˂0.5%). 

Size range: 70–200 µm. 

Density: 2.83 g/cm3  
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Appendix 7.4 – SEM micrographs of the tested abrasives 

 
Fig.7.2 – SEM (BSE mode) of the abrasives with the respective EDS: silicon (A and B); aluminium silicate (C and 

D) and calcium carbonate (E and F). 

Appendix 7.5 – Characteristics of the used laser  

A Nd:YVO4 Coherent AVIA Ultra 355–2000® laser at the 355 nm wavelength and with 

25 ns pulse duration. The pulse repetition rate can be selected from a single-shot to 100kHz 

with around 0.1 mJ energy per pulse. A Galilean beam expander was arranged, to improve the 

focalization, with a 150 mm convergent lens, a diameter of D ≈ 150 µm and a fluence of 

1.2 J.cm-2. The target surface was placed on a motorized XYZ translation stage, with the Z 

axis of the impinged beam perpendicular to the sample surface. The beam scanning along 

parallel lines in X direction allowed a homogeneous irradiation of the target surface. The 

frequency (10 000 Hz), fluence (0.1-0.3 J.cm-2), scan speed (25 mm.s-1), distance between 

scans (0.075 mm) and laser trajectory parameters (horizontally and vertically alternated with 

no more than four scans) were selected on the basis of previous studies in granites [11–14,40]. 

Preliminary cleaning tests evaluated under stereomicroscope. 
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Appendix 7.6 – Analytical methods used: characteristics and conditions  

XRF: ArtTAX, 800 spectrometer is equipped with an air-cooled low-power X-ray tube 

with a Mo target. The primary X-ray beam is focused to a diameter of 70 mm by means of 

polycapillary X-ray mini lens. In all cases the spectrometer was operated at 40 kV, 0.6 mA and 

200 s acquisition time, in air atmosphere. The obtained data was treated with PANalytical 

software. 

XRD: XPERT-PRO diffractometer with CuKα radiation at 40 kV and 30 mA, with a 

2 theta step size of 0.1° and a counting time of 50.0313 s. The diffractometer is provided with 

automatic divergence slit. 

Raman: LabRam HR Evolution spectrometer is equipped with a solid-state laser 

operating at 532 nm with a resolution of 6 cm-1 for the 600 grooves.mm-1 grating. The laser 

beam was focused with 100× Olympus objective lens. The samples were analyzed with 10 s 

laser exposure time for 16 scans and the data obtained was treated with Labspec software. 

FTIR: Nicolet 6700 spectrometer with a DTGS KBr detector. The spectra were obtained 

in a transmission mode, between 400 and 4000 cm-1, with a resolution of 4 cm-1 and 20 sample 

scans. 

Spectrophotometer: The measurements were made in specular component included 

(SCI) mode, for a spot diameter of 8 mm with diffuse illumination by means of xenon flash arc 

lamp and 10 nm diffuse bandwidth, using illuminant D65 at observer angle 2°. 

Hyperspectral: CCD sensor Pulnix TM-1327 GE with an objective lens, focal 10 mm 

and a spectrograph ImSpector V10 with 4.55 nm resolution, records a linear array of 

1392 pixels of the object under analysis to obtain an image at each wavelength (1040) in the 

range of 400–700 nm. 
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Appendix 7.7 – XRD aerosol graffiti paints peak list 

Table 7.2 – XRD peak list of the three more intense peaks for each identified aerosol paint compound. 

Compound 
Name 

Chemical Formula Ref. 
Code 

Paints d-spacing 
[Å] 

Relative 
Intensity [%] 

Aluminium Al 00-004-
0787 

Unaged 
Silver 

2.33712 100.00 
2.33712 50.00 
2.02414 45.60 

Aged Silver 2.34122 64.31 
2.02738 29.97 
1.22178 14.13 

Titania TiO2 00-021-
1276 

Unaged 
Red 

1.68396 100.00 
3.24581 71.71 
1.35728 50.08 

Aged Red 3.24786 100.00 
1.68860 69.98 
2.48741 46.70 

Unaged 
Blue 

3.25132 100.00 
1.68579 78.48 
2.48760 54.37 

Aged Blue 3.24661 100.00 
1.68758 68.16 
2.48676 52.35 

Barite BaSO4 00-024-
1035 

Aged Red 2.48741 46.70 
1.36109 27.21 
1.34756 13.40 

Gypsum CaSO4•2H2O 00-006-
0046 

Aged Red 1.68860 69.98 
2.48741 46.70 
1.62504 22.47 

Aged Black 4.26382 100.00 
3.06051 65.75 
2.86627 52.53 

Graphite C 00-025-
0284 

Aged Black 3.34218 77.87 

Alunogen Al2(SO4)3•16H2O 00-016-
0360 

Aged Silver 4.49987 100.00 
13.59022 24.53 
2.96491 5.86 

Metalunogen Al2(SO4)3•12H2O 00-021-
0011 

Aged Silver 2.02738 29.97 
3.02874 14.89 
1.92344 2.41 
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Appendix 7.8 – Number of cleaner applications, number of passages and 

necessary time to achieve a satisfactory cleaning level for chemical, mechanical and laser 

methods 

Table 7.3 – Number of cleaner applications (ap) for chemical methods (AGS and GR3); number of passages (p) 
for laser (Nd:YVO4) and necessary time (t) referred in seconds for mechanical methods (Hydro and IBIX) , to 

achieve a satisfactory cleaning level. The prefix A marks the samples that were subjected to ageing before the 
respective cleaning procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Cleaning methods Granite Red paints Blue paints Black paints Silver paints 
AGS 4 (p) 4 (p) 4 (p) 4 (p) 4 (p) 

A-AGS 5 (p) 5 (p) 5 (p) 5 (p) 5 (p) 

GR3 1 (p) 4 (p) 2 (p) 1 (p) 1 (p) 

A-GR3 3 (p) 5 (p) 4 (p) 5 (p) 3 (p) 

Hydro Si 0.10 s (t) 0.10 s (t) 0.10 s (t) 0.10 s (t) 0.10 s (t) 

A-Hydro Si 0.20 s (t) 0.20 s (t) 0.20 s (t) 0.20 s (t) 0.20 s (t) 

Hydro Si Al 0.05 s (t) 0.05 s (t) 0.05 s (t) 0.05 s (t) 0.05 s (t) 

A-Hydro Si Al 0.10 s (t) 0.10 s (t) 0.10 s (t) 0.10 s (t) 0.10 s (t) 

IBIX Si 0.05 s (t) 0.05 s (t) 0.05 s (t) 0.05 s (t) 0.05 s (t) 

A-IBIX Si 0.10 s (t) 0.10 s (t) 0.10 s (t) 0.10 s (t) 0.10 s (t) 

IBIX Ca 0.05 s (t) 0.05 s (t) 0.05 s (t) 0.05 s (t) 0.05 s (t) 

A-IBIX Ca 0.10 s (t) 0.10 s (t) 0.10 s (t) 0.10 s (t) 0.10 s (t) 

Nd:YVO4 2 (p) 2 (p) 3 (p) 3 (p) 4 (p) 

A-Nd:YVO4 2 (p) 2 (p) 3 (p) 3 (p) 4 (p) 
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Appendix 7.9 – SEM micrographs of aged and unaged stone, graffiti aerosol paints and cleaned surfaces
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Appendix 7.10 – Colorimetric data of aged and unaged stone, graffiti aerosol paints and cleaned surfaces 

Table 7.4 - L*, a*, b* average data obtained for the stone, paint and cleaned surfaces with and without SO2 ageing. The prefix A marks the samples that were subjected to 

ageing before the respective cleaning procedure. 

Cleaning methods Granite Red paints Blue paints Black paints Silver paints 

L* a* b* L* a* b* L* a* b* L* a* b* L* a* b* 

Reference 66.51 3.86 6.91 44.25 43.27 16.90 37.82 1.31 26.14 31.17 0.01 0.20 88.45 0.45 0.64 

A-Reference 72.66 2.85 10.34 46.90 37.74 13.66 38.37 0.27 20.58 30.15 0.09 0.06 54.11 0.68 0.69 

AGS 64.46 3.45 7.87 68.51 5.10 9.61 63.11 2.00 5.73 61.76 4.96 9.34 60.26 2.86 6.66 

A-AGS 62.88 2.95 8.21 57.22 5.99 8.17 62.35 2.11 5.92 59.51 2.67 6.34 48.25 1.88 5.11 

GR3 61.61 2.23 5.68 65.31 6.70 11.28 61.52 3.12 6.49 58.73 2.61 6.13 64.49 5.19 9.80 

A-GR3 61.68 3.00 7.43 55.60 3.82 7.40 56.25 0.53 1.85 56.04 2.91 7.07 62.45 1.71 6.50 

Hydro Si 68.58 4.56 7.43 65.32 4.26 7.43 62.47 3.69 6.49 60.69 2.91 6.38 66.58 4.20 8.17 

A-Hydro Si 68.50 5.87 9.38 65.52 3.83 7.42 63.94 3.63 6.66 64.33 3.26 6.26 63.37 4.31 7.97 

Hydro Si Al 69.28 4.48 7.93 66.71 5.08 9.49 63.49 2.75 6.29 58.37 2.22 5.32 61.28 4.33 8.01 

A-Hydro Si Al 67.98 4.80 9.67 65.38 4.24 7.36 61.95 2.55 5.50 64.55 3.02 6.22 63.06 5.03 8.83 

IBIX Si 65.71 3.02 6.98 65.21 3.31 5.79 66.13 2.85 5.54 65.65 3.63 6.38 63.85 3.17 5.97 

A-IBIX Si 69.55 4.19 6.98 65.54 3.29 6.13 67.01 3.98 6.71 66.76 3.62 6.76 65.57 3.09 6.04 

IBIX Ca 65.71 3.44 6.53 61.70 4.27 6.74 62.95 3.17 6.33 60.24 3.09 5.83 64.11 6.45 10.90 

A-IBIX Ca 63.12 4.54 9.74 63.36 7.73 11.88 61.59 2.50 5.46 60.98 5.17 9.48 57.16 3.93 7.37 

Nd:YVO4 66.28 1.99 4.98 56.63 3.38 8.14 54.95 0.00 4.63 56.17 2.05 9.76 58.40 1.74 5.85 

A-Nd:YVO4 68.00 3.43 8.76 48.11 2.95 5.81 51.27 1.62 2.52 59.37 2.62 9.19 51.79 2.45 7.22 
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Appendix 7.11 – Surface roughness average and standard deviation data (Ra) of aged and unaged stone, graffiti aerosol paints 

and cleaned surfaces 

Table 7.5 – Surface roughness average - Ra (µm). The prefix A marks the samples that were subjected to ageing before the respective cleaning procedure. *1 There are 

significant differences between the reference and after the cleanings to reject the null hypothesis with a confidence interval of 95%, *2 Roughness damage attributed to the 

cleaning performance. 

Cleaning methods Granite [μm] Red paints [μm] Blue paints [μm] Black paints [μm] Silver paints [μm] 
Reference 1.925 ± 0.929 0.735 ± 0.322*1 0.465 ± 0.128*1 1.291 ± 1.225 2.635 ± 1.182 

A-Reference 1.721 ± 1.387 0.899 ± 0.586*1 0.553 ± 0.301*1 0.656 ± 0.331*1 10.646 ± 3.367*1 

AGS 1.829 ± 1.096 1.635 ± 1.442 1.130 ± 0.374 *1 1.907 ± 1.353 2.069 ± 1.205 

A-AGS 1.900 ± 0.464 2.302 ±1.401 1.407 ± 0.556 2.195 ± 0.872 2.153 ± 2.043 

GR3 1.724 ± 1.308 1.348 ±0.535 1.850 ± 1.140 1.869 ± 2.155 2.018 ± 0.873 

A-GR3 1.655 ± 0.858 1.410 ±0.661 1.116 ± 0.509 *1 2.076 ± 1.599 1.802 ± 0.875 

Hydro Si 3.359 ± 1.022 *1, 2 3.868 ± 0.756 *1, 2 3.784 ± 0.521 *1, 2 3.922 ± 0.954 *1, 2 3.724 ± 2.005 *1, 2 

A-Hydro Si 3.943 ± 1.732 *1, 2 4.300 ± 1.218 *1, 2 4.344 ± 1.395 *1, 2 4.596 ± 0.947 *1, 2 3.236 ± 0.970 *1, 2 

Hydro Si Al 4.135 ± 1.649 *1, 2 4.147 ± 1.150 *1, 2 4.270 ± 0.687 *1, 2 4.678 ± 1.378 *1, 2 4.526 ± 1.400 *1, 2 

A-Hydro Si Al 3.956 ± 1.833 *1, 2 4.111 ± 0.985 *1, 2 3.764 ± 1.462 *1, 2 3.910 ± 0.710 *1, 2 3.399 ± 0.814 *1, 2 

IBIX Si 4.555 ± 1.437 *1, 2 6.443 ± 1.210 *1, 2 5.796 ± 1.672 *1, 2 6.716 ± 1.740 *1, 2 6.387 ± 1.405 *1, 2 

A-IBIX Si 5.868 ± 1.945 *1, 2 7.101 ± 1.917 *1, 2 5.605 ± 1.408 *1, 2 5.540 ± 0.924 *1, 2 5.311 ± 2.717 *1, 2 

IBIX Ca 4.464 ± 2.308 *1, 2 3.165 ± 2.231 *2 1.863 ± 0.928 2.860 ± 1.188 *2 2.310 ± 1.413 

A-IBIX Ca 3.302 ± 1.773 *2 1.691 ±0.859 2.849 ± 1.118 1.678 ± 1.208 2.804 ± 1.433 

Nd:YVO4 1.411 ± 0.734 1.251 ± 0.969 0.836 ± 0.296 *1, 2 1.588 ± 0.964 2.261 ± 1.504 

A-Nd:YVO4 4.092 ± 2.184 *1, 2 1.680 ± 0.868 1.770 ± 0.884 2.041 ± 1.790 1.736 ± 0.955 
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Appendix 7.12 – Static contact angle data of aged and unaged stone, graffiti aerosol paints and cleaned surfaces 

Table 7.6 – Average static contact angle measurements represented in intervals of minimum (Min.), maximum (Max.) and average (Ave.) The prefix A marks the samples that 

were subjected to ageing before the respective cleaning procedure. 

Cleaning 
methods 

Granite Red paints Blue paints Black paints Silver paints 

Min. Max. Ave. Min. Max. Ave. Min. Max. Ave. Min. Max. Ave. Min. Max. Ave. 

Reference 52.76 40.28 44.80 84.90 77.70 81.94 89.56 80.01 84.80 91.88 72.96 85.27 98.87 82.94 90.65 

A-Reference 100.91 53.75 70.87 82.62 58.60 72.13 80.52 70.36 76.17 84.48 69.57 79.04 74.38 51.91 65.48 
AGS 48.53 36.92 43.21 73.19 67.68 69.42 63.74 49.66 58.37 62.57 46.12 54.89 102.72 83.07 94.38 

A-AGS 54.66 28.00 40.76 86.60 69.43 77.96 72.90 63.02 66.08 86.14 59.38 72.91 118.48 91.20 99.43 
GR3 52.99 44.45 48.77 79.49 46.52 65.01 90.45 69.11 82.32 76.55 43.79 60.29 106.48 82.19 98.86 

A-GR3 75.63 66.40 72.15 89.70 80.00 86.44 93.30 75.68 82.72 84.71 63.89 75.38 112.64 92.33 99.57 
Hydro Si 58.98 29.00 46.19 66.47 41.48 56.42 63.00 55.80 58.48 52.60 41.78 48.45 72.70 65.88 68.89 

A-Hydro Si 77.93 51.61 68.27 87.34 72.67 77.11 88.42 65.68 82.14 86.15 68.17 80.12 109.33 83.41 96.27 
Hydro Si Al 78.71 44.95 61.91 73.33 51.63 59.84 69.13 62.81 65.72 97.90 79.14 89.51 77.85 48.37 68.53 

A-Hydro Si Al 94.92 59.59 82.72 100.95 86.10 94.18 99.93 88.78 94.77 111.17 80.67 93.39 111.19 87.09 98.04 
IBIX Si 49.48 28.17 38.36 40.62 24.64 32.90 52.54 24.79 39.06 98.57 64.79 87.34 67.09 42.79 57.45 

A-IBIX Si 92.80 34.20 64.05 95.27 59.93 79.76 84.40 70.13 78.19 127.30 50.51 94.23 104.45 94.77 99.41 
IBIX Ca 52.13 45.53 48.85 77.59 56.42 67.70 93.43 67.52 81.69 85.12 59.20 71.29 95.63 49.83 73.41 

A-IBIX Ca 85.71 64.93 72.47 106.57 76.85 89.33 113.49 51.28 86.61 104.00 73.46 86.01 117.11 99.63 108.96 
Nd:YVO4 79.55 58.06 67.88 79.99 71.46 75.51 87.37 74.59 82.27 78.84 66.49 72.42 89.38 68.89 80.80 
A-Nd:YVO4 96.00 78.76 89.01 83.18 75.00 79.20 102.20 85.02 91.04 84.32 71.94 77.50 96.85 85.63 90.20 

 


