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Abstract 
 

The subventricular zone (SVZ) represents the major neurogenic niche of the rodent brain and its 

modulation upon brain injury may enhance brain repair. Herein, we used biocompatible and traceable 

polymeric nanoparticles (NPs) to deliver microRNA-124 (miR-124) into SVZ cells. miR-124 is a key 

neuronal fate determinant and was recently described as anti-inflammatory and neuroprotective. 

Therefore, the efficiency of NPs to deliver miR-124 and prompt SVZ neurogenesis and brain repair in 

Parkinson’s disease (PD) and stroke models was evaluated. 

Firstly, we showed that miR-124 NPs were efficiently internalized by neural stem/progenitors cells 

and neuroblasts and promoted their differentiation into matured neurons by targeting Sox9 and Jagged1 

(two stemness-related proteins) in vitro. Likewise, intracerebral administration of miR-124 NPs 

increased the number of migrating neuroblasts reaching the olfactory bulb, both in control mice and in 

mice subjected to a 6-hydroxydopamine (6-OHDA), a model for PD. Moreover, miR-124 NPs increased 

the levels of new neurons in the lesioned striatum of 6-OHDA-challenged mice, correlating with 

functional improvement.  

Interestingly, miR-124 NPs also demonstrated the ability to decrease cell death and enhance 

neuronal differentiation of SVZ cultures after oxygen and glucose deprivation, suggesting a potential 

beneficial role in stroke. Therefore, miR-124 NPs were intravenously injected in mice subjected to 

photothrombotic (PT) stroke. In contrast to intracerebral administration, miR-124 NPs were unable to 

promote recovery of lost neurological function in PT mice. miR-124 NPs did not affect SVZ neurogenesis 

nor post-stroke inflammation.  

We conclude that miR-124 NPs treatment modulates PD outcome in vivo, while in stroke it improves 

survival and neuronal differentiation of SVZ cells. However, the promising in vitro data from stroke could 

not be verified in vivo. Thus, we provide evidence supporting that miR-124 NPs are well tolerated and 

positive modulators of endogenous SVZ neurogenesis as well as their potential application in brain 

repair strategies. 

 

Keywords: Neural Stem Cells; MicroRNA-124-loaded nanoparticles; Neurogenesis; Parkinson’s 

disease; Stroke; Brain repair. 
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Resumo 
 

A região subventricular (SVZ) representa o maior nicho neurogénico do cérebro de roedores e, a 

sua modulação após lesão pode promover a reparação cerebral. Neste trabalho, usámos 

nanopartículas (NPs) poliméricas biocompatíveis e rastreáveis como veículos de entrega de microRNA-

124 (miR-124), um promotor essencial da neurogénese, recentemente descrito como anti-inflamatório 

e neuroprotector. A eficiência das NPs na entrega de miR-124 e, o seu consequente efeito neurogénico 

e reparador foram avaliados em modelos animais da doença de Parkinson (PD) e acidente vascular 

cerebral (AVC).  

Inicialmente provámos que as miR-124 NPs foram internalizadas por células 

estaminais/progenitoras neurais e neuroblastos, promovendo a sua diferenciação e maturação 

neuronal através da diminuição da expressão das proteínas Sox9 e Jagged1. Posteriormente, 

mostrámos que a administração intracerebroventricular de miR-124 NPs aumenta o número de novos 

neurónios no bolbo olfativo de murganhos saudáveis e com PD. As miR-124 NPs também aumentaram 

o número de novos neurónios no estriado de murganhos com PD, culminando na diminuição dos seus 

défices motores. 

Curiosamente, as miR-124 NPs demonstraram ser capazes de reduzir a morte celular e aumentar 

a diferenciação neuronal de células SVZ privadas de oxigénio e glucose, sugerindo um possível 

envolvimento no AVC. Como tal, administrámos as miR-124 NPs intravenosamente em murganhos 

previamente sujeitos a fototrombose (modelo de AVC). Inesperadamente, as miR-124 NPs 

demonstraram ser incapazes de melhorar os défices neurológicos dos murganhos, aumentar a 

neurogénese na SVZ e, modular a resposta inflamatória.  

Assim, o uso de miR-124 NPs permitiu diminuir os danos causados pela PD e, aumentar a 

sobrevivência e diferenciação neuronal de células SVZ num modelo in vitro de AVC. Contudo, in vivo, 

no modelo de AVC usado, estes efeitos benéficos não foram verificados. Concluindo, este trabalho 

evidencia o papel das miR-124 NPs no aumento da neurogénese da SVZ e a sua potencial utilização 

em estratégias de reparação cerebral. 

 

 

 

Palavras chave: Células estaminais neurais; Nanopartículas carregadas com microRNA-124; 

Neurogénese; Doença de Parkinson; Acidente vascular cerebral; Reparação cerebral.
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1.1 Neural Stem Cells 
Neurogenesis, the generation and development of nerve cells, was traditional viewed as a process 

exclusive of the embryonic and perinatal brain (Bizzozero 1894; Ramon y Cajal 1913). The acceptance 

of adult neurogenesis, a milestone in the field, was only made in the early 1990s (Nottebohm 2002). 

The first evidence of adult neurogenesis were presented by Joseph Altman and collaborators, in the 

1960s (Altman 1962; Altman 1963). They showed that adult-born cells formed in the subventricular zone 

(SVZ) travel through the rostral migratory stream (RMS) to the olfactory bulb (OB) where they 

differentiate into mature neurons (Altman and Das 1965; Altman 1969). Still, the existence of post-natal 

new neurons in the OB and dentate gyrus of mammals was proven unequivocally only a few years later 

(Kaplan and Hinds 1977). Thereafter, several groups showed that adult neurogenesis was conserved 

from rodents (Kuhn et al. 1996; Kempermann et al. 1997) to humans (Eriksson et al. 1998; Kukekov et 

al. 1999), which rapidly led the scientific community to pursue the restauration of dysfunctional circuitries 

through the modulation of neurogenesis.  

During the embryonic development, neuroepithelial cells and later radial glia cells originate neurons 

and glia cells based on spatial and temporal cues (Pearson and Doe 2004). Soon after birth, glial fibrillary 

acidic protein (GFAP)-expressing astrocyte-like cells assume the role of radial glia cells as neural stem 

cells (NSCs) (Doetsch et al. 1999; Garcia et al. 2004). NSCs can self-renew, proliferate and possess 

multipotent features, being able to differentiate into neurons, astrocytes and oligodendrocytes (Reynolds 

and Weiss 1992). These cells are found in discrete regions of the brain – neurogenic niches – that are 

mainly found in the SVZ lining the lateral ventricles and in the subgranular zone (SGZ) of the dentate 

gyrus of the hippocampus (Gage 2000; Ma et al. 2009). Neurogenesis in these germinal niches persist 

throughout life although it decreases with age (Kuhn et al. 1996). A rising number of evidence has also 

been pointing to the existence of other neurogenic regions in the brain, namely in the circumventricular 

organs located along the ventricular midline (Itokazu et al. 2006; Bennett et al. 2009), in the walls of the 

third and fourth ventricles (Lin et al. 2015), in the meninges of the spinal cord (Petricevic et al. 2011; 

Decimo et al. 2011), in the substantia nigra (SN) (Lie et al. 2002), in the amygdala (Bernier et al. 2002), 

in the cerebellum (Klein et al. 2005), among other regions, reviewed at (Lin 2015). All these regions 

share the ability to generate multipotent precursors that can be isolated and differentiated in vitro, 

however, they usually occur in low levels in physiological conditions being only perceptive after injury 

(Ming and Song 2005). These facts together with the lack of evidence for the presence of niche 

structures to house these cells make their role in brain homeostasis a matter of controversy.  

Neurogenic niches are composed of NSCs and supporting cells – endothelial cells, astrocytes, 

ependymal cells, progenitors cells, neurons and microglia – that confer a specific microenvironment able 

to regulate in a fine-tuned way the self-renewal and differentiation of NSCs in vivo (Ming and Song 

2011). A huge number of molecular players are involved in the modulation of the neurogenic process, 

including cell receptors, soluble factors released by neighbor cells, transcription factors, growth factors, 

cytokines, hormones, epigenetic regulators, non-coding RNAs, to name few, reviewed at (Ninkovic and 

Götz 2007; Ma et al. 2010; Mu et al. 2011). NSCs fate can be altered in response to pathological events 

or regulated by extrinsic signals (pharmacological stimuli). Indeed, it was shown that in the adult brain 

of Huntington patients NSCs increase their proliferative and migratory features, providing a clear 
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indication of their regenerative potential (Curtis et al. 2003). Other studies have confirmed that upon 

lesion SVZ cells had the capability to migrate towards the lesioned area. In some cases, they could even 

differentiate into the respective cell phenotype of the lesioned regions, leading ultimately to functional 

recovery (Arvidsson et al. 2002; Parent et al. 2002; Goings et al. 2004). As so, endogenous NSCs are 

a virtual unlimited source of new cells that upon an injury respond by proliferating, migrating towards the 

lesion and differentiating into neurons, raising high expectations for regenerative medicine. Therapeutic 

approaches based on augmentation of the brain natural endogenous response to injury overcome 

limitations related with cell transplantation, such as the low number of cells typically available for therapy, 

low cell survival after transplantation, immune rejection of grafted cells, teratoma formation, and ethical 

issues (Christie and Turnley 2012). This approach seems to be particularly feasible because numerous 

studies have demonstrated that growth factors (e.g. glial cell-derived neurotrophic factor (GDNF), brain-

derived neurotrophic factor (BDNF), granulocyte colony-stimulating factor (G-CSF)), and other 

molecules (e.g. erythropoietin, pramipexole, ephrin-A1) are able to induce neurogenesis leading 

eventually to functional recovery (Dempsey et al. 2003; Kobayashi et al. 2006; Kadota et al. 2009; 

Winner et al. 2009; Jing et al. 2012). However, strategies based on enhancing endogenous NSCs 

activity are still limited to pre-clinical studies. Developing new platforms to efficiently deliver pro-

neurogenic factors to NSCs is imperative to boost the endogenous reparative capacity of the adult brain.  

 

1.1.1 Subventricular zone  
In rodents, the SVZ stem cell niche, which includes the ventricular and subventricular zones, located 

between the lateral ventricles and the striatum, represents the largest germinal region in the adult brain. 

The SVZ comprises four major different types of cells: ependymal cells, NSCs (type B cells), transit 

amplifying cells (type C cells) and neuroblast (type A cells) (Figure 1.1 A, B). Ependymal cells form a 

monolayer that lines the ventricle walls creating a thigh barrier between the ventricle lumen and the 

brain parenchyma. These cells have cilia in direct contact with the ventricle lumen and they play a critical 

role in the regulation of the neurogenic process (Paez-Gonzalez et al. 2011). The NSCs or type B cells 

are slow dividing specialized astrocyte-like cells derived from radial glia with self-renewal and 

multipotent properties (Doetsch et al. 1997; Doetsch et al. 1999). These polarized cells project a cilium 

into the ventricle lumen, being in direct contact with the cerebrospinal fluid (CSF) in the apical region 

while the basal side have end-feet structures that contact with blood vessels. Therefore, NSCs can 

sense cues present both in the CSF and the blood. Type B cells share many features with brain 

astrocytes, including the expression of GFAP, brain lipid-binding protein (BLBP), and glutamate 

aspartate transporter (GLAST). Nevertheless, they also express markers of immaturity such as sex 

determining region Y-box 2 (sox 2) and nestin. Type B cells can be in a quiescent state or in an activated 

state (Codega et al. 2014). Activated B cells divide asymmetrically giving rise to type C cells, non-radial 

actively proliferating transit amplifying progenitors that express the transcription factors Ascl1 (also 

known as Mash1) and distal-less homeobox 2 (Dlx2) as well as the epidermal growth factor receptor 

(EGFR). After approximately three rounds of symmetrical divisions, type C cells generate immature 

neuroblast (type A cells) that will divide one to two times during their journey towards the OB (Ortega et 

al. 2013; Ponti et al. 2013). Type A cells express doublecortin (DXC) and polysialylated neural cell 
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adhesion molecule (PSA-NCAM), and have a high migratory capacity travelling long distances (up to 

millimeters) from the SVZ to the OB. Chains of neuroblasts coming from different paths converge in the 

anterior SVZ to form the RMS, a tube-like structure formed of specialized astrocytes and blood vessels 

that confer additional physical support to the migration (Lois and Alvarez-Buylla 1994; Lois et al. 1996; 

Doetsch and Alvarez-Buylla 1996; Lledo et al. 2006). Neuroblasts migrate rostrally until they reach the 

OB; once there, they detach from the RMS chains (tangentially oriented) and move radially towards 

different layers of the OB. These new neurons mature and integrate mainly as GABAergic granule 

interneurons in the granular cell layer (GCL) and in a lower extent as GABAergic or dopaminergic 

(smaller amount) periglomerular interneurons in the glomerular layer (GL). There is also a very small 

percentage of cells that differentiate into glutamatergic juxtaglomerular neurons (Brill et al. 2009; Ming 

and Song 2011). 

 

Figure 1.11 Localization and composition of neural stem cell (NSC) niches in the adult rodent brain. 
(A) Sagittal rodent brain slice displaying the localization of the two main neurogenic niches: the subventricular (SVZ) 
and subgranular (SGZ) zones. (B) At the SVZ, type B NSCs cells contact with the lateral ventricles and give rise to 
C progenitor cells that differentiate into neuroblasts (type A cells). Physiologically, neuroblasts migrate through the 
rostral migratory stream (RMS) towards the olfactory bulb (OB) where they differentiate into mature neurons; E, 
ependymal cells. (C) Similarly, type I (or B) stem cells at the SGZ give rise to type II (or D) progenitor cells that in 
turn generate neuroblasts (type III or G cells), which ultimately differentiate into mature granule neurons (M). 

 

The proliferation and migration rate of NSCs change in response to injury, which potentially makes 

them a good source of new cells for therapeutic purposes. Nevertheless, neural stem/progenitors cells 
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need to proliferate, migrate, maturate and functionally integrate into existing circuitries to trigger an 

efficient regenerative response. There are also limitations regarding the suitability in the type of cells 

generated or their survival. Hence, it is essential to understand and/or identify molecular mediators able 

to enhance this neurogenic response and, therefore useful for the development of novel therapeutic 

strategies. 

Isolation and culture of NSCs in vitro were pivotal to extend our knowledge regarding adult 

neurogenesis (Reynolds and Weiss 1992; Kilpatrick and Bartlett 1993). Free floating three-dimensional 

structures of thousands of cells – neurospheres – can be obtained from harvesting the SVZ cells and 

cultivate them into specific conditions: serum-free medium with mitogenic growth factors, namely 

epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2), into a non-adherent substrate. 

These conditions select cells responsive to EGF that include type C cells (around 70%) and activated 

type B cells, both with self-renewal and proliferative abilities. Differentiation into neurons, 

oligodendrocytes and astrocytes can be achieved by cultivating neurospheres in the absence of 

mitogenic growth factors and into an adhesive substrate. Although the limitations associated with in vitro 

culture, such as the non-total representation of the NSCs in vivo population, the number of passages, 

the loss and/or change of biological properties to name a few, it is still a solid method to appraise neural 

stem/progenitors cells properties in different conditions, screening potential therapeutic molecules or 

expand cells for replacement therapies (Doetsch et al. 2002; Gil-Perotín et al. 2013).  

Much is known about the germinal niches in rodents; notwithstanding translation of NSC-based 

brain repair strategies into humans requires sufficient knowledge of the human neurogenesis as well as 

differences and similarities regarding the SVZ stem cell niche among species. In humans, the SVZ also 

contains cells with NSC features that can be isolated and growth in vitro (Eriksson et al. 1998; Sanai et 

al. 2004). However, the human SVZ shows a distinct cytoarchitecture. A layer of multiciliated ependymal 

cells lines the ventricle wall followed by a gap layer, majorly devoid of cells, where a network of 

cytoplasmic projections derived from ependymal cells and astrocytes connect. SVZ astrocytes, with 

NSCs properties, accumulate after the gap layer organized in ribbon-like structures with some of the 

cells branching towards the ventricle lumen, similar to type B cells in rodents (Sanai et al. 2004; 

Quiñones-Hinojosa et al. 2006). Nonetheless, lower levels of proliferating cells as well as new neurons 

are found in the human SVZ when compared with rodents. Furthermore, there still is no consensus 

regarding the presence of a RMS structure in the human brain. A ventral extension of the lateral ventricle 

until the OB containing neuroblasts was reported in the human fetus during the late second trimester 

resembling the rodent RMS. Yet, no neuroblasts chain-like structures were found in the OB suggesting 

a putative migration of these newborn neurons towards other destinations (Guerrero-Cazares et al. 

2011). Indeed, in the developing post-natal brain (up to 18 months) streams of DCX-positive cells were 

found in the gap layer migrating tangentially to the OB through an evident RMS as well as to the medial 

prefrontal cortex through a medial migratory stream. Nonetheless, SVZ-OB migratory activity seems to 

subside with age, being almost inexistent in adulthood (Sanai et al. 2011). Other studies showed a RMS 

structure similar to the one seen in rodents, but exhibiting a 75º rotation forward due to the massive 

development of the human frontal cortex (Curtis et al. 2007; Kam et al. 2009). The presence of 

stem/progenitors cells and neuroblasts along the human ventricle-olfactory axis suggests that these 
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cells may be responsive to cues induced by cell loss. Moreover, it was recently shown, in the human 

brain, that precursors cells derived from the SVZ are able to migrate and differentiate into interneurons 

in the striatum (Ernst et al. 2014). Likewise, some pathologies, such as stroke, stimulate neurogenesis 

and neuroblast migration to the injured striatum (Jin et al. 2006), demonstrating the potential of adult 

neurogenesis in humans. Hence, SVZ NSCs hold great potential in the search for novel brain repair 

therapies.   

 

1.1.2 Subgranular zone 
The SGZ contains an adult germinal niche composed of a smaller pool of NSCs when compared 

with the SVZ (Lois and Alvarez-Buylla 1993; Morshead et al. 1994). The SGZ of the dentate gyrus of 

the hippocampus is a narrow band of tissue located between the granule cell layer and the hilus. 

Astrocyte-like NSCs, also known as radial astrocytes, type I cells or type B cells, reside in this region 

and are able to generate proliferating intermediate progenitors named type II cells or type D cells. These 

cells give rise to type III cells or type G cells (immature neuroblasts; Figure 1.1 A, C). Type I cells express 

markers of immaturity, such as nestin and Sox2, beside the glial marker GFAP, and possess stemness 

properties (self-renewal and multipotency) (Palmer et al. 1997; Bonaguidi et al. 2011). Similar to SVZ 

NSCs counterparts, type I cells have also end-feet in direct contact with blood vessels and extend a 

long radial process that transverse the granular cell layer ramifying into the molecular layer of the 

hippocampus (Palmer et al. 2000; Filippov et al. 2003). Type I cells generate type II progenitors, 

intermediate progenitor cells with high proliferative capacity (immature state), which give rise to type III 

cells (mature state). Type III cells are DCX and PSA-NCAM expressing migratory neuroblasts. In 

contrary to SVZ neuroblasts, SGZ newborn neurons migrate short distances towards the granule cell 

layer where they differentiate into mature glutamatergic granule neurons (type M cells). These new 

neurons project their axons towards the CA3 region of the hippocampus and within a period of seven 

weeks became indistinguishable from the remaining neurons (Seri et al. 2001; Zhao et al. 2008; 

Bonaguidi et al. 2012; Berg et al. 2015; Sun et al. 2015a). SGZ-derived neurons are involved in learning 

and memory processes, especially during their maturation where they present increased plasticity 

(Shors et al. 2001; Schmidt-Hieber et al. 2004). Indeed, it is known that behavioral performance can be 

augmented by increasing SGZ neurogenesis, while neurogenesis downregulation culminates in 

behavioral impairments (Deng et al. 2010). The organization and structure of the human adult SGZ 

germinal niche is similar to the rodent, but it has a more limited proliferative capacity than the SVZ 

(Eriksson et al. 1998; Curtis et al. 2012). Actually, it is thought that human SGZ proliferating cells are 

present in a small number and are relatively unresponsive to pathological alterations (Boekhoorn et al. 

2006; Lucassen et al. 2010; Low et al. 2011), while in rodents the presence of certain stimuli can 

increase SGZ NSCs responsiveness (Walker et al. 2008). External stimuli, including environment 

enrichment, learning, stress, physical activity to name a few, cause a plastic adaptation of both SVZ and 

SGZ neurogenic niches. For example, olfactory discrimination learning boosts the levels of new neurons 

in the OB through survival extension (Alonso et al. 2006), while hippocampus-dependent learning 

increases SGZ neuronal survival (Leuner et al. 2004). Also, enriched environment and physical exercise 

are inductors of hippocampal neurogenesis (Kempermann et al. 1997). Furthermore, SGZ neurogenesis 
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impairments in mice can be rescued by physical exercise (Lafenêtre et al. 2010). On the other hand, 

stress seems to negatively correlate with neurogenesis. An example is the reduction in the proliferation 

of type B and type D cells in the SGZ of mice exposed to stress cause by noise (Gonzalez-Perez et al. 

2011). These examples show once more the ability of NSCs to adapt to different environments. 

Moreover, Spalding and colleagues showed that approximately 700 new neurons are generated every 

day in each hippocampus in humans during adulthood. Impressively, hippocampal neurogenesis 

declines in a modest way (around 4-fold) during the entire human lifespan (Spalding et al. 2013). These 

studies confirm a relevant role of adult SGZ neurogenesis in brain function. Therefore, defects in adult 

neurogenesis have been associated with neurological and psychiatric diseases. Concluding, even 

though SGZ presents a more limited proliferative and migratory activity than the SVZ, it still holds high 

potential for the development of future regenerative therapies for treating neurological disorders. 

 

1.2 Neurogenesis in pathology 
The discovery of NSCs in the adult mammalian brain and the increased knowledge about the 

composition and function of the neurogenic niches opened new avenues in understanding brain 

plasticity and function. Remarkably, neurogenesis is enhanced upon brain lesion injury possibly as an 

attempt for brain repair. Nevertheless, the role of neurogenesis in neurodegenerative disorders is still 

under debate. As so, the role of neurogenesis in Parkinson’s disease (PD), which is a chronic pathology, 

and in stroke, an acute disorder, are discussed below.  

 

Parkinson’s disease 

Parkinson’s disease is a neurodegenerative disease that affects approximately 10 million people 

throughout the world (Hermanns 2011). PD is mainly characterized by the progressive degeneration of 

dopaminergic neurons in the SN leading to striatal dopamine (DA) depletion and the accumulation of 

alpha (α)-synuclein aggregates known as Lewy bodies (Spillantini et al. 1997; Damier 1999). The key 

symptoms that clinically define PD are rigidity, tremor, bradykinesia and postural instability. Currently, 

the standard treatment for PD is based on DA replacement (mainly using a precursor of DA, levodopa) 

with high efficacy in the early stages of the disorder. Nevertheless, during the time course of the disease 

these drugs lose effectiveness and cause side effects and severe psychiatric complications. Deep brain 

stimulation is also used in some patients, in more advanced stages of the disorder, with successful 

suppression of motor symptoms; however, it does not stop progression of the pathology. Several 

regenerative medicine approaches are under intense examination to address the impact of stem cells 

in PD. However, the low amount of data in post-mortem brain tissue from PD patients, together with 

contradictory experimental findings, make the role of adult neurogenesis in PD a high controversial 

subject within the scientific community. It was firstly shown that PD patients display impaired 

neurogenesis since they presented lower levels of cells expressing the marker for proliferation 

proliferating cell nuclear antigen (PCNA) in the SVZ, a decrease of nestin-positive cells (immature neural 

precursor cells) both in the OB and in the dentate gyrus of the hippocampus, as well as a reduction in 

beta (β)-III-tubulin-positive cells (neuronal marker) in the SGZ (Höglinger et al. 2004). DA seems to play 

a critical role in neurogenesis impairment. Indeed, PD progression negatively correlates to NSCs 



INTRODUCTION 

 
9 

numbers while the cumulative use of L-Dopa in PD patients seems to result in increased numbers of 

proliferating NSCs in the SVZ (O’Sullivan et al. 2011). The SN and the ventral tegmental area (VTA) 

project dopaminergic fibers that innervate the neurogenic niches in a specific pattern (Höglinger et al. 

2014), and they are in close proximity to EGFR-positive cells that include all type C cells and a subset 

of type B cells (Doetsch et al. 2002; Höglinger et al. 2004). Advanced PD patients have not only 

significantly less amount of EGFR-positive cells in the SVZ, but also weaker expression of EGFR 

(O’Keeffe et al. 2009). In addition, EGF and EGFR levels were also found to be decreased in the striatum 

of PD patients (Iwakura et al. 2005). SVZ type C and A cells express both D1-like and D2-like DA 

receptors (Coronas et al. 1997; Höglinger et al. 2004). DA reduction in animal models leads to 

impairments in NSCs proliferation and EGFR expression that are D2-like receptor-mediated (Höglinger 

et al. 2004; Coronas et al. 2004; O’Keeffe et al. 2009; Lao et al. 2013). Αlpha-synuclein also seems to 

be involved in neurogenesis impairments. Interaction between accumulated α-synuclein and p53 results 

in Notch1 signaling dysregulation in the SGZ of rats that potentially trigger some of the non-motor 

symptoms associated with the PD pathology (Crews et al. 2008; Desplats et al. 2012). Neural committed 

induced pluripotent stem cells (iPSCs) obtained from fibroblasts of patients with triplication of the α-

synuclein gene (SNCA; associated with early onset of PD) were unable to develop neuronal complex 

networks when compared with control neural committed iPSC, also showing a correlation between α-

synuclein expression and neurogenesis impairment (Oliveira et al. 2015). Hypermethylation of 

thousands of genes has been found in brain tissue of PD patients, specifically neurogenic-related genes 

such as Wnt, suggesting a critical role for Wnt-associated neurogenesis in PD (Zhang et al. 2016a). 

Inflammation is also a major player in neurodegenerative disorders and higher expression of 

inflammatory molecules in PD patients, such as tumor necrosis factor-alpha (TNF-α) or other cytokines 

(e.g. interleukin (IL)-6), correlates with non-motor symptoms, namely anxiety and depression, which 

precede the motor symptoms of the pathology (Reale et al. 2009; Lindqvist et al. 2012). Similar 

symptomatology is found in animal models of impaired neurogenesis (Revest et al. 2009) leading some 

groups to defend a robust developmental component in PD onset and progression.   

On the other hand, the putative role of neurogenesis impairment on PD was challenged by Hol’s 

group that analyzed brain tissue from healthy controls, PD patients and incidental PD (did not received 

L-Dopa treatment) in terms of SVZ proliferation. No significant differences neither in terms of proliferation 

in the SVZ between groups nor in GFAP-delta (δ)-positive cells (radial glia marker) were found in the 

study. Cultivation of neurospheres, obtained from the post-mortem tissue of the three analyzed groups, 

was achieve with similar efficiency and differentiation potential into neurons and glial cells. Moreover, 

treatment of human NSC lines with dopamine and dopamine agonists did not result in the stimulation of 

NSCs proliferation (van den Berge et al. 2011), indicating that DA depletion may not affect the 

neurogenic capacity of the PD brain. Isolation and culture of human derived NSC lines from the SVZ, 

cortex or SN of post-mortem PD patients was confirmed by Wang et al. (Wang et al. 2012b), although 

a high variability in the amount of SVZ proliferating cells isolated from different donors was found (van 

den Berge et al. 2010). Inconsistent data have been reported over the last years showing decrease, 

maintenance or even increase of neurogenesis in PD patients and animal models, reviewed at (van den 

Berge et al. 2013).  
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PD models are based on the administration of toxins such as 6-hydroxidopamine (6-OHDA), 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat, to name a few, that cause 

selective death of dopaminergic neurons. Genetic models are used to model familial PD, but have also 

been instrumental to shed some light on PD mechanisms (Jagmag et al. 2015). The differential 

activation of dopamine receptors in NSCs (Höglinger et al. 2004; Coronas et al. 2004; Kippin et al. 2005) 

together with a high diversity of PD models (transgenic or toxin based models, acute or chronic 

administrations, different dosages and different spatial administration of toxins) (Dauer and Przedborski 

2003) may explain the different results communicated. For example, in 6-OHDA-challenged rats it was 

reported either an increase (Liu et al. 2006; Arias-Carrión et al. 2006; Aponso et al. 2008) or decrease 

(Höglinger et al. 2004; Winner et al. 2006) of SVZ proliferation. In a 6-OHDA mouse model of PD a 

reduction in SVZ proliferation together with higher survival rate of newborn neurons was also reported 

in the OB (Baker et al. 2004; Sui et al. 2012). Recently, Fricke and colleagues reported that the 6-OHDA 

lesion does not affect neurogenesis (Fricke et al. 2016). These discrepancies have generated a high 

debate in the scientific community about the limitations of experimental models but also the design of 

studies including the question about the sample size, controls groups, the type of analysis performed to 

name a few.  

 

Stroke 

Stroke is the most costly and long term disabling condition in adulthood worldwide affecting 

approximately 800,000 people per year (Mozaffarian et al. 2015). During a stroke episode, the brain or 

specific areas of the brain are deprived of blood supply either by a ruptured artery (hemorrhagic stroke) 

or by occlusion of an artery due to a blood clot and/or atherosclerosis (ischemic stroke) (Kyle and Saha 

2014). In both cases, there is deprivation of oxygen and nutrients, resulting in cell death and in many 

cases loss of neurological functions. Following an ischemic stroke, two distinct brain damage areas can 

be defined: ischemic core, which represents the irreversibly damage tissue supplied by the occluded 

artery; ischemic penumbra (and after the initial phase of approximately 24 hours: peri-infarcted area), 

which correspond to the tissue surrounding the ischemic core where neurons remain viable but stressed 

and vulnerable due to a reduction of the blood flow. Current treatments for ischemic stroke are 

essentially based in the systemic administration of tissue plasminogen activator (tPA) within the first 4.5 

h after symptom onset, local administration of tPA and endovascular treatments or endarterectomy. The 

very narrow therapeutic window for a systemic lysis therapy is limiting the number of patients eligible for 

this treatment. Therefore, the development of novel therapeutic strategies also beyond this time is 

essential to counteract acute loss of brain tissue and to foster processes to enhance recovery of lost 

neurological function. In humans, evidence suggests that neurogenesis is enhanced in response to a 

stroke insult. Nevertheless, the molecular mechanisms behind post-ischemic neurogenesis are poorly 

understood. An increase in the levels of proliferating (Ki67-positive cells) and neural progenitors cells 

(PSA-NCAM-positive cells) were observed in the vicinity of the lateral ventricle wall in stroke patients 

compared with age-matched controls (Macas et al. 2006). Conversely, augmentation of SVZ neural 

progenitor cell proliferation was observed in the injured brain hemisphere of patients within 2 weeks 

from stroke onset (Marti-Fabregas et al. 2010). The presence of new neurons in non-germinal regions 
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has also been reported in the adult human brain after stroke. Indeed, DCX-positive neuroblasts were 

found in the ischemic penumbra of cortical infarcts close to the vasculature, suggesting an important 

role of angiogenesis in stroke-induced neurogenesis (Jin et al. 2006). Neural stem/progenitor cells 

expressing nestin and musashi-1 were also observed in the ischemic human cortex during the first 

month after injury (Nakayama et al. 2010). An increase in the number of NSCs were seen near the SVZ 

of a stroke patient. Moreover, enhancement of neurogenesis and formation of novel blood vessels were 

also found in the peri-infarct area of this patient, indicating once more the relevance of the vasculature 

for neurogenesis as well as the possible migration of newborn cells into injury sites (Minger et al. 2007). 

Indeed, stroke patients presenting a higher microvessel density in the peri-infarct area have longer 

survival rates (Krupinski et al. 1994). Altogether, these reports suggest that adult NSCs are responsive 

to stroke injury even in the aged brain, despite the limited number of studies in the human brain after 

stroke. Notwithstanding, these evidence support the hypothesis that enhancing the endogenous brain 

repair response is correlated with improved stroke recovery. 

The use of animal models of stroke, namely rodents, has been of utmost importance to understand 

the neurogenic response to the injury as well as to shed light into the cellular and molecular mechanisms 

that occur after stroke (Kumar et al. 2016). The middle cerebral artery occlusion (MCAO) model, that 

can be transient or permanent, is one of the standard models of stroke. Nevertheless, other models 

such as the photothrombotic (PT) stroke model are starting to be more widely used due to its less 

invasiveness and high reproducibility. In accordance with the gathered data from humans, a bulk number 

of evidence also showed that neurogenesis and neuroblast migration from the SVZ to the injury site are 

augmented in stroke animal models (Lindvall and Kokaia 2015). The claims are supported by the 

presence of 5-bromo-2'-deoxyuridine (BrdU)- and DCX-double positive cells in the damaged striatum of 

rodents that gradually maturate into neuronal nuclei (NeuN)-expressing cells (Arvidsson et al. 2002; 

Parent et al. 2002; Thored et al. 2006; Yamashita et al. 2006). Nevertheless, the number of SVZ 

migrating neuroblasts reaching the ischemic territory is insufficient to recover the cell loss observed, and 

their survival is minimal (Arvidsson et al. 2002). Although strong evidence of a stroke-induced SVZ-

striatal neurogenesis are reported, studies showing cortical neurogenesis are limited (Jiang et al. 2001; 

Arvidsson et al. 2002; Parent et al. 2002). For example, the presence of BrdU-positive cells co-

expressing a neuronal marker (microtubule-associated protein-2 (Map-2), β-III-tubulin, or NeuN) as well 

as SVZ-derived neuroblasts were found in the boundaries of the cortical ischemic area of rodent MCAO 

models of stroke (Jiang et al. 2001; Jin et al. 2003; Kreuzberg et al. 2010). In a PT mouse model of 

stroke, DCX-expressing cells (most likely migrating neuroblasts) seemed to migrate from the SVZ 

through the corpus callosum to the peri-infarcted cortex up to 1 year after the ischemic insult; however, 

they did not become mature neurons (Osman et al. 2011). The higher variability regarding stroke-

induced neurogenesis in the cortex may be caused due to the animal model used, the location and size 

of the lesion as well as the surrounding environment that may provide differential cues. Indeed, both 

angiogenesis and inflammation are key regulators of adult neurogenesis. Inhibitors of angiogenesis 

have been shown to decrease both angiogenesis and neurogenesis (Plane et al. 2010), while infiltration 

of immune cells, due to blood brain barrier (BBB) breakdown, and increased reactivity of the resident 

microglia (brain immune cells) after MCAO resulted in the release of cytokines, chemokines and reactive 
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species that can control neurogenesis (del Zoppo et al. 2007). For example, the pro-inflammatory 

cytokine TNF-α either increases or decreases neurogenesis in a concentration-dependent manner 

(Bernardino et al. 2008). Altogether, these studies show that stroke induces neurogenesis in the human 

brain and in animal models of stroke. SVZ seems to be the major contributor for stroke-induced 

neurogenesis, despite the scarce evidence for cortical neurogenesis. Nevertheless, adult NSCs, namely 

the SVZ NSCs, showed to be a valuable source of new neurons with brain repair potential.  

 

1.3 MicroRNAs 
MicroRNAs (miRNA or miR) were firstly discovered in the 1990s but only in the 2000s these small 

molecules were identified as a novel class of biologic regulators, altering the view over the central dogma 

of molecular biology: DNA is transcribed into RNA being then translated into protein. miRNA are small 

non-coding RNAs with approximately 22 nucleotides (nt) in length that were firstly identified in 

Caenorhabditis elegans, but were rapidly found to be ubiquitous among plants and animals. The 

fundamental basis of miRNA pathways is conserved among these two kingdoms, yet miRNA mode of 

action is primarily different (mRNA cleavage vs mRNA translational repression and/or decay) (Bartel 

2004). Transcription and function of miRNA are tightly regulated and complex processes that include 

several steps of regulation, reviewed at (Towler et al. 2015). 

miRNA can be transcribed as independent transcription units or as miRNA genes located either in 

introns or exons of other genes (Rodriguez et al. 2004). In mammals, intronic miRNA originate the 

majority of the miRNA transcripts, being controlled independently of the host genome by different 

promotors (Monteys et al. 2010; Godnic et al. 2013; Ramalingam et al. 2014). miRNA genes are 

generally transcribed by RNA polymerase II generating an imperfect stem-loop structure flanked by 

single strand (ss)RNA, which is capped on the 5’ end and polyadenylated in the 3’ end and it is 

composed of hundreds to thousands of nt – pri-miRNA (Figure 1.2) (Lee et al. 2004; Cai et al. 2004). 

One arm of the pri-miRNA stem-loop comprises the sequence to generate either a single or a cluster of 

mature miRNA (Altuvia et al. 2005; Hertel et al. 2006). The microprocessor complex is composed of two 

RNA-binding proteins. DiGeorge Syndrome Critical Region 8 (DGCR8) interacts with pri-miRNA and 

recruits the RNase III enzyme DROSHA, which is responsible for cleaving the pri-miRNA in the stem-

loop, forming the precursor-miRNA (Pre-miRNA). Pre-miRNA has a 5’ phosphate group, a 2 nt overhang 

at 3’ end and approximately 60 nt long (Figure 1.2) (Lee et al. 2003; Zeng and Cullen 2005). The 

heterodimer Exportin-5 and its co-factor GTPase RAN (ras-related nuclear protein; complex 

Exportin/RAN) mediate pre-miRNA translocation to the cytoplasm. Once the pre-miRNA is shuttled 

through the nuclear pore, hydrolysis of GTP leads to the complex disassembly and releases the pre-

miRNA into the cytoplasm, where it will get mature (Yi et al. 2003; Lund 2004). Pre-miRNA is then 

recognized by the RNAse III Dicer that further cleaves the pre-miRNA into a 22 nt long miRNA duplex 

(MacRae et al. 2007). TRBP (transactivation-response RNA-binding protein) and PACT (protein kinase 

R-activating protein), although not essential for the process, increase Dicer accuracy facilitating the pre-

miRNA processing (Chendrimada et al. 2005; Lee et al. 2006; Kim et al. 2014; Wilson et al. 2015). The 

miRNA duplex complex is loaded into the argonaute (AGO) protein in an ATP-dependent manner 

assisted by the heat shock cognate protein-70 and heat shock protein-90 (HSC70/HSP90) chaperone 
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machinery (Iwasaki et al. 2010). Altogether they form the miRNA-induced silencing complex (miRISC). 

The N-domain of AGO starts the unwind the miRNA duplex originating: a guide or mature strand, 

thermodynamically more stable and prevalent with higher biological activity that is retained in the 

miRISC complex; and a passenger strand (miR*), which is released to either be degraded or 

incorporated into another miRISC complex (Kwak and Tomari 2012; Noland and Doudna 2013; Meijer 

et al. 2014). The four AGO proteins expressed in humans (AGO-1, -2, -3 and -4) can perform non-

cleavage inhibition of mRNA, but only AGO-2, the most abundantly expressed AGO protein, has 

nuclease activity, meaning that it is the only one able to cleave the target mRNA (Figure 1.2) (González-

González et al. 2008; Valdmanis et al. 2012; Wang et al. 2012a). The majority of miRNA follows the 

canonical biogenesis pathway (described above); nevertheless, miRNA that are similar in structure and 

function but bypass some of the maturation steps of the canonical pathway have been described, the 

non-canonical miRNA. There are three major alternatives to synthesize these miRNA: i) 

Drosha/DGCR8-dependent and Dicer-independent pathway; ii) Drosha/DGCR8-independent and Dicer-

dependent pathway; iii) Drosha/DGCR8-independent and Dicer-independent pathway, reviewed at 

(Abdelfattah et al. 2014; Daugaard and Hansen 2017). 

 
Figure 1.22 Schematic representation of the canonical pathway of microRNA (miRNA) biogenesis. 
Briefly, miRNA are mostly transcribed by the RNA polymerase II into long transcripts called pri-miRNA that are 
processed into a miRNA precursor (pre-miRNA) of approximately 60 nucleotides (nt) long, by the microprocessor 
complex composed of DiGeorge Syndrome Critical Region 8 (DGCR8) and Drosha. The pre-miRNA is exported to 
the cytoplasm via Exportin 5 transporter, where it is further processed into a miRNA duplex (~22 nt) by Dicer and 
TRBP (transactivation-response RNA-binding protein) proteins. In the presence of proteins of the Argonaut family 
(AGO 1 to 4), the most thermodynamically stable strand of the miRNA duplex is selected as the guide/mature strand 
while the other, passenger strand (miR*), is released usually to be degraded. Following processing, miRNA are 
assembled into miRNA-induced silencing complexes (miRISC complex) composed of miRNA, AGO, Dicer and 
TBRP proteins. In some cases, mostly seen in plants, miRNA are able to bind mRNA with perfect of nearly perfect 
complementarity resulting in endonucleolytic cleavage and mRNA degradation. In other cases, mostly seen in 
animals, the miRNA binds to the target mRNA with incomplete pairing presenting mismatches and/or bulges, which 
results in mRNA translational repression and/or mRNA decay. 
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miRNA are able to regulate in a very precise way the expression of hundreds of different genes. 

The same miRNA can bind to numerous different mRNA and a single mRNA can present multiple 

miRNA binding sites, either for the same or for different miRNA (Friedman et al. 2009). The target 

recognition of the miRNA is mainly based on Watson-Crick pairing of a specific region from nt 2 to 8, 

seed sequence, and a match site in the 3’UTR (Bartel 2009; Wang 2014). miRNA can regulate 

translation of mRNA either by pairing with the target mRNA in a perfect or near perfect complementary 

way, mostly seen in plants, where AGO-2 cleaves the target mRNA (Figure 1.2) (Bartel 2004; Yekta et 

al. 2004; Karginov et al. 2010). In animals, the miRNA-mRNA interaction is mainly made through 

incomplete pairing with presence of mismatches and/or bulges. Herein, mRNA translational repression 

and mRNA destabilization/decay mechanisms prevail (Huntzinger and Izaurralde 2011; Eichhorn et al. 

2014). There are still some controversies regarding the contribution of each mechanism for miRNA 

action. However, recent developments in the field indicate that miRNA action is time-dependent, 

promoting mRNA translational repression in an initial phase followed by a dominant effect of mRNA 

degradation in the steady-state (Djuranovic et al. 2012; Béthune et al. 2012; Meijer et al. 2013; Larsson 

and Nadon 2013; Eichhorn et al. 2014). 

miRNA were found to be essential for several biological processes including self-renewal and cell 

differentiation, neuronal maturation, cell cycle and apoptosis, to name a few. Their presence in diverse 

biological fluids, such as blood, cerebrospinal fluid and urine, highlights its clinical relevance. Circulating 

miRNA are very stable and they seem to escape RNases by binding circulating proteins or exosomes 

(Sohel 2016). miRNA are involved in the control of central nervous system development and adult 

neurogenesis, which suggests a possible role of miRNA in brain pathologies. Indeed, in different CNS 

disorders a specific signature of miRNA in terms of expression not only in the affected tissue, but also 

in the circulant fluids has been reported. Deregulation of certain miRNA has been linked with 

pathological conditions including cancer, neurodegenerative disorders, inherited diseases, and many 

others (Jiang et al. 2009). As so, miRNA might be versatile molecules with a high clinical potential. 

Indeed, the same miRNA can bind to several different targets and control entire signaling pathways 

making them relevant therapeutic and/or target molecules for brain pathologies. Therefore, diverse 

novel technologies have been developed in order to improve exogenous miRNA function and stability. 

For example, miRNA mimics are non-natural double stranded RNA that once inside the target cell 

perform the same action as the endogenous miRNA, being used for gain of function studies (Wang 

2009). Another example is anti-miRNA, antagomiR or blockmiR that are chemically engineered 

oligonucleotides, similar to miRNA mimics, used for loss of function/inhibition studies. These anti-miRNA 

are complementary to the mature sequence of a specific miRNA of interest and bind to it in an 

irreversible manner (Krutfeldt et al. 2005). Furthermore, there are still some gaps in our knowledge 

regarding the role of miRNA in the central nervous system as well as some contradictory information 

that need to be clarified for developing efficient miRNA-based therapies. For example, miRNA similar 

sequence and short length allied to limitations on the miRNA techniques can cause misinterpretations 

of the results, hampering the reproducibility needed for clinical translation (Witwer and Halushka 2016). 

Nevertheless, several miRNA technologies have already translated into clinical trials (Li and Rana 

2014). A good example of miRNA-based therapeutics is the locked nuclei acid (LNA)-modified antisense 
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inhibitor of miR-122 (miravirsen), currently in phase II clinical trials, that showed to be highly effective in 

reducing the hepatitis C virus from chronic patients without causing serious side effects (Lindow and 

Kauppinen 2012). Our knowledge regarding miRNA increased during the past years leading to stability 

and nuclease resistance improvement of miRNA by chemical modifications as well as the development 

of some promising miRNA-based strategies currently in clinical trials. Still, the delivery of miRNA into 

tissues, namely into the brain, is a major limitation for the development of miRNA-based therapies. Thus, 

improvements on brain delivery strategies for miRNA are pivotal.  

 

1.4 MicroRNA-124 
The miR-124 was firstly identified in mice and it is transcribed from three different loci: miR-124-1 

on chromosome 14, miR-124-2 on chromosome 3 and miR-124-3 on chromosome 2. The three copies 

have similar mature sequence and are highly conserved among species, including mice and humans. 

The expression levels of miR-124 increase in the prenatal period peaking at the end of the fetal 

development and remain elevated in the post-natal brain (Krichevsky et al. 2003). miR-124 accounts for 

25% to 48% of the total miRNA in the adult brain, and it is highly expressed among all brain regions 

except the pituitary gland. Outside the CNS, miR-124 is 100-times less expressed than in the brain, 

being also considered a neuronal specific miRNA, since it is mostly expressed in neuronal cells (Lagos-

Quintana et al. 2002; Mishima et al. 2007; Baroukh and Van Obberghen 2009). miR-124 is able to 

regulate hundreds of non-neural genes that are responsible for neural phenotype acquisition and 

maintenance being known as a master regulator of neurogenesis (Lim et al. 2005; Conaco et al. 2006). 

Expression of miR-124 is initiated during the transition of NSCs to progenitor cells and enhanced with 

neuronal maturation (Cheng et al. 2009; Akerblom et al. 2012). It has been shown that overexpression 

of miR-124 results in forced neuronal differentiation both in progenitor cells (Visvanathan et al. 2007; Yu 

et al. 2008) and in HeLa cells (Lim et al. 2005). Lentiviral overexpression of miR-124 precursor in 

combination with other factors, namely miR-9, also led to a forced differentiation of human neonatal 

foreskin fibroblasts into functional mature neurons (Yoo et al. 2011). In vivo, miR-124 overexpression in 

the SVZ increased the number of newborn neurons without affecting their migratory capability (Cheng 

et al. 2009; Akerblom et al. 2012), while its downregulation led to a 30% reduction of post-mitotic neurons 

(Cheng et al. 2009). Knockdown of miR-124-1 in mice resulted in a smaller brain size, neuronal 

dysfunction and axonal miss-sprouting in the dentate gyrus (Sanuki et al. 2011). miR-124 not only 

promotes neuronal commitment, but it also controls the choice among neuronal and astrocytic 

differentiation through fine-tuning the expression of a critical epigenetic regulator, Ezh2 (Neo et al. 

2014), inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling (Krichevsky 

et al. 2006), and reduction of Sox9 expression (Cheng et al. 2009) (Figure 1.3). miR-124 expression 

enhances axonogenesis by regulating the level of cytoskeletal proteins (Yu et al. 2008; Gu et al. 2014), 

and regulates dendritic differentiation by targeting the ras homology growth-related (RhoG) pathway 

(Figure 1.3) (Franke et al. 2012). Moreover, miR-124 is required for homeostatic plasticity, a 

compensatory adjustment in neuronal activity (Hou et al. 2015). 

Several miR-124 predicted targets that contribute to its neurogenic potential have been confirmed 

experimentally (Figure 1.3). The REST pathway is one of them. REST regulates miR-124 transcription 
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in non-neuronal cells and it is responsible for inhibiting the expression of neural genes. In neuronal cells, 

miR-124 keeps REST silent promoting the expression of pro-neuronal genes (Conaco et al. 2006; 

Visvanathan et al. 2007). The small c-terminal domain phosphatase 1 (SCP1), a critical inducer of chick 

and mouse embryonic neurogenesis and part of the REST signaling pathway is downregulated by miR-

124 (Visvanathan et al. 2007). Other components of the REST signaling pathway including the methyl 

CpG binding protein 2 (MeCP2) and coREST also present binding sites for miR-124 (Wu and Xie 2006). 

Moreover, miR-124 controls the transition of a chromatin-remodeling complex, changing the BAF 

complex subunits from neural-progenitor-specific to neuron-specific, an essential step for post-mitotic 

neural development and dendritic outgrowth during embryogenesis (Yoo et al. 2009). Another important 

target of the miR-124 is the RNA binding polypyrimidine tract-binding protein 1 (PTBP1). During 

neuronal differentiation, miR-124 decreases PTBP1 levels increasing the amount of PTBP2 in the cells 

and triggering neuron-specific alternative splicing patterns (Makeyev et al. 2007). Interestingly, it was 

shown that downregulation of PTBP by miR-124 is sufficient to generate functional neurons from 

fibroblasts (Xue et al. 2013). The Notch signaling pathway is of utmost importance for the maintenance 

of neural stem/progenitor cells. The Notch receptor is expressed by NSCs, which in the presence of its 

ligand Jagged1 contributes to self-renewal and maintenance of the undifferentiated state. In rodents 

SVZ, overexpression of miR-124 represses Jag1 translation leading to NSCs differentiation (Cheng et 

al. 2009; Liu et al. 2011). Additionally, miR-124 represses the expression of the transcription factor Sox9 

in the SVZ, a regulator of gliogenesis (Cheng et al. 2009). Although many aspects of the miR-124 

regulatory network need to be unveiled, these data clearly support the idea that miR-124 is able to 

modulate both embryonic and adult neurogenesis, namely in the SVZ. 

 

Figure 1.33 Schematic representation of miR-124 molecular targets and pathways experimentally identified.  
miR-124 induces neuronal differentiation by targeting mRNA of proteins inhibiting neuronal differentiation, such as 
the REST pathway and the Jagged1 protein, a Notch ligand. miR-124 also regulates alternative splicing through 
targeting the PTBP protein and chromatin remodeling through the BAF complex. The choice between neuronal and 
glial fate is also controlled by miR-124 once it downregulates Sox9, STAT3 and the epigenetic regulator Ezh2. miR-
124 is not only an inducer of neurogenesis, but it also improves axonogenesis by regulating cytoskeleton proteins 
(RhoG), decreases inflammation (TLR pathway) and cell death. Bax, Bcl-2-associated X protein; Bim, Bcl-2-like 
protein 11; Ezh2, enhancer of zeste homolog 2; MeCP2, methyl CpG binding protein 2; PTBP, RNA binding 
polypyrimidine tract-binding protein; REST, RE1 silencing transcription factor; STAT3, signal transducer and 
activator of transcription 3; TLR, toll-like receptor. 
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miR-124 is a brain-specific miRNA, specially expressed in neurons; nevertheless, in the past 

decade new evidence have pointed to the importance of this miRNA in the regulation of cell death and 

inflammatory processes, resulting in neuroprotection in PD (Kanagaraj et al. 2014; Wang et al. 2015a; 

Gong et al. 2016), alleviation of cell death in Alzheimer’s disease (Fang et al. 2012) or reduction of 

infarct volume in stroke (Doeppner et al. 2013; Sun et al. 2013a), among others, reviewed at (Sun et al. 

2015b). Microglia cells are the first line of defense in the brain and in a physiological situation they show 

an active but ramified morphology (resting state). Upon injury, these cells become stimulated either in a 

classical way, M1 state, perpetuating inflammation, or in an alternative pattern, M2 state, with anti-

inflammatory properties. Ponomarev and others showed that miR-124 was expressed in resting 

microglia, but it was undetectable in peripheral monocytes and macrophages. However, in a mouse 

model of autoimmune encephalomyelitis, characterized by activation of microglia and the infiltration of 

peripheral macrophages in the brain parenchyma, miR-124 expression was reduced approximately 70% 

in microglia and it was slightly expressed in the infiltrated macrophages during the disease onset and 

recovery, indicating a role of miR-124 in the maintenance of microglia quiescent state (Ponomarev et 

al. 2011). Moreover, administration of exogenous miR-124 into macrophages decreased pro-

inflammatory markers and increased anti-inflammatory ones through downregulation of the C/EBP-α-

PU.1 pathway. As so, miR-124 showed to be a key regulator of microglia quiescent state and a 

modulator of peripheral monocytes/macrophages (Ponomarev et al. 2011; Ponomarev et al. 2013; 

Veremeyko et al. 2013). In human intermediate monocytes, obtained from patients with allergies and 

bronchial asthma, miR-124 expression levels were also elevated and cells presented M2 characteristics 

(Veremeyko et al. 2013). In fact, reduction of miR-124 expression levels was shown to be needed to 

induce microglial reactivity (Freilich et al. 2013), while its overexpression results in lower levels of TNF-

α in reactive macrophages (Sun et al. 2016). miR-124 mediates repression of ubiquitin-specific protease 

2 (USP2) and USP14, and the modulation of toll-like receptor (TLR) signaling (Figure 1.3; e.g. STAT3, 

TNF-α converting enzyme (TACE), necrosis factor (NF)-κB p65 and TNF receptor-associated factor 6 

(TRAF6)) that facilitates its anti-inflammatory properties (Sun et al. 2013b; Qiu et al. 2015).  

The miR-124 is also involved in brain disorders such as PD and stroke. In fact, from all the miR-

124 validated targets 25% are altered in PD (Sonntag 2010). Expression levels of miR-124 were 

decreased not only in cell lines of dopaminergic neurons (MN9D and SH-SY5Y) subjected to a methyl 

phenyl pyridinium (MPP) iodide or MPTP insult (in vitro models of PD), but also in the SN of a MPTP 

PD mouse model (Kanagaraj et al. 2014; Wang et al. 2015a; Gong et al. 2016). In vitro, miR-124 

knockdown resulted in augmented oxidative stress, autophagy and apoptosis, while its overexpression 

had the opposite effect. These effects were associated with the modulation of calpain/cyclin-dependent 

kinase 5 (cdk5) pathway, 5' AMP-activated protein kinase and mechanistic target of rapamycin 

(AMPK/mTOR) signaling pathway and Bim (B-cell lymphoma (Bcl)-2-like protein 11; an apoptotic 

regulator) (Kanagaraj et al. 2014; Wang et al. 2015a; Gong et al. 2016). Wang and colleagues also 

reported that mice treated with miR-124 agomiR in the lateral ventricle, 2 days before the MPTP 

intoxication, had lower dopaminergic neurodegeneration in the SN and higher dopamine levels in the 

striatum when compared with non-treated MPTP-mice. The neuroprotective role of miR-124 was 

explained by the inhibition of the autophagic and apoptotic processes due to downregulation of the Bim 
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protein and a consequent reduction of translocation of Bcl-2-associated X protein (Bax) to the 

mitochondria (Figure 1.3) (Wang et al. 2015a). 

In stroke, miR-124 was found to be decreased in the serum of patients within the first 24 h and 

correlated with a worse stroke prognosis (Liu et al. 2015). Nevertheless, Ji and others reported 

increased levels of miR-124 in exosomes obtained from serum of a stroke patient (Ji et al. 2016). In the 

ischemic brain of rodents, miR-124 is decreased in neural progenitors cells of the SVZ and in the 

ischemic core (Liu et al. 2011; Sun et al. 2013a). There is some controversy regarding miR-124 functions 

in stroke. Some studies reported that the downregulation of miR-124 resulted in a reduction of infarct 

volumes in rodent MCAO models of stroke (Liu et al. 2013; Zhu et al. 2014). Others observed that miR-

124 overexpression previous to the MCAO insult in mice resulted in neuroprotection, reduced 

inflammation and increased neurogenesis leading ultimately to amelioration of stroke-induced 

neurological deficits (Doeppner et al. 2013; Sun et al. 2013a). More recently, Hamzei Taj and colleagues 

reported that mice subjected to MCAO benefited from an injection of a miR-124 mimic into the striatum 

two days after the lesion. The miR-124 treatment resulted in lower infarct volumes and behavior deficits 

together with the regulation of the inflammatory response by shifting the microglia from a more pro-

inflammatory state (ionized calcium binding adaptor molecule 1 and cluster of differentiation 16/36 

(Iba1/CD16/32)-positive cells) to an anti-inflammatory state (Iba1/CD206-positive cells) (Hamzei Taj et 

al. 2016b; Hamzei Taj et al. 2016a). It is of importance to notice that miR-124 functions may vary 

dependent of the context. For example, in a rat model of epilepsy miR-124 led to a robust increase of 

microglia (CD11b-positive cells), a slight increase of astrocytes (GFAP-positive cells), and higher levels 

of inflammatory cytokines including IL-1β, TNF-α, and IL-6 (Brennan et al. 2016).  

Altogether, these studies point towards the use of miR-124 as a broad therapeutic molecule in 

neurodegenerative disorders and acute brain pathologies, where it may act as neuroprotectant, anti-

inflammatory mediator and enhancer of endogenous brain repair mechanisms.  

 

1.5 Nanoparticles for drug/genetic material delivery 
The unique features of miRNA make them valuable and versatile tools for clinical applications as 

biomarkers for diagnosis and prognosis of pathologies and/or therapeutic molecules that can act on 

diverse key targets or even pathways that are disease-related. miRNA are hydrophilic, negatively 

charged molecules with high molecular weight. These features make them extremely unstable in vivo 

(low half-life time in plasma and high clearance rate) and hamper the uptake of miRNA into target cells. 

Another important aspect to consider in miRNA-based therapeutics is dosage. High dosages of miRNA 

can result in saturation of the miRNA machinery leading to cellular toxicity, off-target effects that can 

cause toxicity in non-target tissues, and immunological response that can be harmful for the recipient 

(Chen et al. 2015). As so, improvement of brain delivery vehicles is of major importance.  

Several micro- and nanomaterials have been developed over the last decades to carry therapeutic 

molecules into the brain parenchyma. Lipid-based carriers, polymeric NPs, inorganic NPs, viral vectors, 

micelles, nanofibers, among others are examples of therapeutic carriers that have been intensively 

studied to improve drug delivery into the brain and reduce peripheral accumulation. 
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NPs are colloidal carriers that can have a natural (e.g. Albumin, chitosan) or synthetic origin. 

Synthetic NPs can be polymeric (e.g. poly(ethylenimine) (PEI), poly(lactic-co-glycolic acid) (PLGA), 

poly(lactic acid) (PLA)) or inorganic (e.g. gold, silica). NPs can vary in size from 1 to 1000 nm and in 

shape from spherical, cubic, rod-like, among other forms. Moreover, NPs transport their cargo 

entrapped, adsorbed or covalently bound to the surface and can be positively or negatively charged or 

zwitterionic (Figure 1.4). Cationic NPs (positively charged) are commonly used for genetic material 

delivery, since they can interact with DNA and/or RNA (negatively charged) and still present a positive 

net charge, which allow them to bind the negatively charged plasma membrane of the target cell in a 

higher extent than their negative or neutral counterparts (Lorenz et al. 2006). However, positively 

charged NPs seem to be more toxic than neutral and anionic ones (Goodman et al. 2004; Schaeublin 

et al. 2011). Interestingly, NPs with high positive charges seem to cause membrane damage and, 

eventually toxicity to the BBB (Lockman et al. 2004). Yet, some NP formulations with moderate positive 

charge (up to 15 mV) have been reported as efficient vehicles to cross the BBB (Jallouli et al. 2007; Gao 

et al. 2014). On the other hand, negative NPs tend to cause intracellular damage. Cellular uptake is 

usually more efficient for spherical small NPs (from 20 nm to 50 nm), although studies suggest that small 

NPs are more toxic than larger ones (Jiang et al. 2008). Also for systemic delivery, a clear inverse 

relationship between NP size and BBB penetration has been showed. For example, low size gold NPs 

(15 nm) accumulate 3- and 250-times more in the mouse brain than 100 nm and 200 nm gold NPs, 

respectively. However, low size NPs (< 15 nm) can be disadvantaged, since 4 nm NPs are rapidly taken 

up by the reticuloendothelial system or transported across the endothelium of major arteries before 

reaching the brain (Sonavane et al. 2008). 

The attachment of functional groups and coatings into NPs can be advantageous to improve cellular 

uptake, to prevent endolysosomal degradation or to enhance specificity of the NPs to the target cell, 

decreasing off-target effects (Figure 1.4). The use of diverse surfactants and/or ligands/receptors is also 

essential for systemic applications, since they can be recognized and interact directly or indirectly with 

brain endothelial cells or increase blood time circulation improving the passage of NPs through the BBB. 

For example, the use of peptides, proteins, antibodies against specific receptors or transporters of the 

brain endothelium (e.g. transferrin receptor, lactoferrin receptor) improve brain penetration by direct 

contact with the BBB (Wiley et al. 2013; Gromnicova et al. 2013; Shilo et al. 2014). In addition, the use 

of specific ligands in NPs can improve specificity of the NPs to the cell population of interest. For 

example, delivery of monoclonal anti-CD15 antibody conjugated superparamagnetic iron oxide NPs is 

able to specifically bind to NSCs and can be used as a probe to monitor endogenous NSCs in the rat 

brain (Jiang et al. 2008). Anti-fouling molecules such as poly(ethylene glycol) (PEG) are also important 

coating molecules for NPs. PEGylated NPs present minimal surface charge leading to lower NP 

opsonization and lower reticuloendothelial system uptake (Li and Huang 2009). Grafting NPs with PEG 

decreases protein adsorption and slows down their clearance (Lee et al. 2009; Walkey et al. 2012). 

Moreover, due to its improved blood circulation time, PEGylated NPs accumulate more efficiently in the 

brain (Martinez-Veracoechea and Frenkel 2011; Nance et al. 2012). In addition, the use of amphiphilic 

ligands/peptides increases hydrophobicity of NPs and therefore, is also used to improve NPs ability to 

cross lipid membranes or the BBB (Guerrero et al. 2010). Taken together, the advantages of NPs are a 
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high load of cargo, the ability to protect the cargo, a high stability both in vivo and storage, and easiness 

to be modulated in terms of size, shape, surface and chemistry. Thus, NPs are attractive vehicles to 

transport molecules into the CNS. 

 

 
Figure 1.44 Main nanoparticle (NP) features. 
NPs can be classified into natural, when molecules such as proteins (albumin), polysaccharides, chitosan, among 
others are used, or synthetic. Synthetic NPs can be made of very common polymers such as poly(lactic-co-glycolic 
acid) (PLGA), poly(ethylenimine) (PEI), polyesters (poly(lactic acid) (PLA), or from inorganic agents like gold, silica 
or alumina. NPs can vary in size (1-1000 nm) and are able to deliver drugs into cells by entrapping, adsorbing or 
covalently binding them. NPs can assume different shapes (spherical, cubic, rod-like) and charges (negative, 
zwitterionic, positive). Another important feature of NPs is the possibility of functionalization with different types of 
ligands. Ligands are distributed into four major categories: i) capable of mediating protein adsorption (e.g. 
poly(sorbate) 80 (P-80)); ii) able to interact directly with the BBB (e.g. transferrin proteins, antibody or peptides); iii) 
capable of increasing hydrophobicity (e.g. amphiphilic peptides); and iv) able to improve blood circulation (e.g. 
poly(ethylene glycol) (PEG)). 
 

NPs can be used not only as vehicles to deliver therapeutic agents but also as imaging agents or 

both. The so called theranostic agents confer diagnosis and therapy at once and normally take 

advantage of nanosystems that are by themselves imaging agents, such as gold, silica, iron oxide NPs, 

quantum dots and carbon nanotubes (Xie et al. 2010). For example, liposomes encapsulating citicoline 

(an inherent chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) signal) 

can be detected in the brain following transient MCAO in rats in a label-free fashion, namely in the areas 

where BBB was disrupted (Liu et al. 2016). In fact, we have developed a NP formulation composed of 

material approved for other applications by the Food and Drug Administration (FDA): a polymeric agent, 

PLGA; a cationic peptide, protamine sulfate, which allows an efficient complexation of negatively 

charged molecules, namely miRNA; and perfluoro-1,5-crown ether (PFCE), a compound detectable by 

19F MRI. This formulation showed to be very effective in promoting intracellular delivery of miR-132 into 

endothelial cells, which subsequently exerted a pro-survival and pro-angiogenic effect in these cells 

when exposed to hypoxic conditions both in vitro and in vivo. Moreover, transplanted cells previously 

transfected with this NP formulation were tracked by 19F MRI in vivo in an ischemic limb mouse model 

(Gomes et al. 2013). 19F MRI is the ideal tool for non-invasive repeated imaging in a living organism, 

providing high resolution and contrast and quantitative analysis of target cells. 
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1.5.1 Brain delivery routes 
Brain delivery of NPs can be achieved by different types of administration being the most commonly 

used in research the intracerebral, intranasal and/or systemic administrations (Figure 1.5). Even though, 

intracerebral administration is a highly invasive procedure, it guarantees delivery of high dosages of 

therapeutic molecules in a precise way for a long period of time. Moreover, intracerebral injections 

bypass issues such as immunogenicity, biodistribution, pharmacodynamics, and failure in crossing the 

BBB. As so, this route of administration is of major importance in pre-clinical studies specially for proof-

of-principle studies. Intranasal administration has been highly studied since it is a method that 

circumvents the BBB. Intranasal delivery is also rapidly absorbed, non-invasive and non-destructive 

method of drug administration. Nevertheless, dosage, physicochemical properties of the therapeutic 

formulation and surface area of the nasal cavity (50% in rodents and 5% in humans) hamper the delivery 

of effective dosages of pharmaceuticals in most brain regions (Zhang et al. 2016c). Moreover, in 

pathologies such as PD, patients may present several alterations in nasal cycle, nasal mucosa pH and 

mucociliary clearance time (Kotan et al. 2013) that may account for reduced biodistribution and 

bioavailability of NPs. Systemic administration, namely intravenous injection, is much less invasive 

compared to intracerebral administration. Systemic delivery also allows the delivery of higher dosages 

of drug than the intranasal strategy, since it is a compartment with higher extent. Nevertheless, the BBB, 

which is a very selective barrier involved in the complex mechanisms of brain homeostasis and 

protection, represents the major obstacle for the passage of novel drugs targeting the brain parenchyma 

(Almutairi et al. 2016). Although some molecules with appropriate lipophilicity, size and charge can 

diffuse from blood into the brain, most molecules, both large (e.g. polypeptides, antibodies, interference 

RNA, miRNA) and small, are unable to overcame the BBB. As abovementioned, the use of NPs, 

especially when functionalized with diverse ligands can improve brain delivery through the BBB. 

Beside all the efforts made in the development of NPs for brain delivery, further research is needed 

to clarify the differences in the transport of NPs in healthy and disease animal models, always bearing 

in mind the limitations of an experimental model which cannot fully mimic a given human disease. 

Indeed, no systematic studies have been performed to elucidate how the physicochemical properties of 

NPs may affect its transport across the BBB and brain localization in PD and stroke models. However, 

recent successes using antibodies to cross the BBB (Zhou et al. 2011; Yu et al. 2011; Niewoehner et 

al. 2014) might inspire NP bioengineers to design new formulations with enhanced properties. 

Addressing safety issues is also very important to translate this research area into potential clinical 

therapies. For example, systemic delivery of NP formulations targeting the brain still accumulate 

significantly in other regions of the body, such as liver, spleen, kidney among other organs/tissues, 

before being eliminated. Thus, it is important to design nanoformulations that only after reaching the 

brain are remotely triggered to release the drug instead of doing so in other places of the body (Li et al. 

2015). It is expected that future developments in triggerable nanoformulations will facilitate the clinical 

translation of NPs. Another important issue that deserves further investigation is the development of 

NPs that can target specific brain cells. For instance, in neurodegenerative disorders targeting specific 

brain cells, such as dopaminergic neurons (main target in PD), microglia (neuroinflammation), or neural 
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stem cells (neuronal repair), might enhance its potential therapeutic value. In conclusion, the 

development of new platforms that are able to exploit brain alterations occurring in these disorders in 

combination with promising therapeutic and/or imaging agents is essential to develop more efficient non-

invasive and brain-directed therapies able to reach the clinic.  

 

Figure 1.55 Administration of nanostructured materials to target the brain. 
A) intranasal, (B) intracerebral and (C) intravenous or intraperitoneal delivery pathways. Nanomaterials delivered 
by the intranasal route (A) target several brain regions, including neurogenic and non-neurogenic regions. 
Intracerebral injections (B) maximize the amount of materials and their cargo that interact locally with cellular 
components of the neurogenic niche, such as the subventricular zone (SVZ) or other relevant areas. The 
intravenous or intraperitoneal administration (C) may require additional coatings of the surface of nanoparticles to 
allow an efficient passage through the blood brain barrier (BBB). Nanomaterials are shown in green; figure 
represents a rodent model. 
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1.6 Objectives 
To date, no causative therapies are available in common acute and neurodegenerative CNS 

disorders that can restore lost neurological function. Several regenerative medicine approaches address 

this issue i.e. by the use of stem cells therapies (Schapira 2009). Indeed, NSCs can be an inexhaustible 

source of neurons that can be recruited and/or transplanted to promote brain repair (Pluchino et al. 

2003; Lindvall and Kokaia 2010). miR-124 has been described as a key neuronal fate determinant and, 

more recently, it has been identified as anti-apoptotic and anti-inflammatory molecule. Intracellular 

delivery of miRNA may be accomplished by chemical modification, liposome/microvesicle 

encapsulation, viral infection and electroporation. However, these strategies raise safety issues, 

limitations in stability and versatility, and do not allow an accurate non-invasive imaging of the 

reprogramming factors’ spatial release within cells. The use of NPs constitutes a powerful platform to 

overcome these limitations by allowing protection, stability and spatio-temporal control of pro-

neurogenic factors. To overcome these limitations, we proposed to use novel biodegradable NPs, 

developed by the Lino Ferreira lab that have already given proofs of an efficiently intracellular release 

of miRNA and can be monitored by MRI (Gomes et al. 2013). 

 

The main goal of this project was to study the inductive effect of NPs loaded with miR-124 (miR-

124 NPs) in terms of differentiation of SVZ stem/progenitor cells in vitro and to evaluate their therapeutic 

potential in vivo, namely in mouse models of PD and stroke. To achieve the main goal of the project we 

performed studies to: 

 

1) Evaluate the effects of miR-124 NPs on SVZ NSCs in vitro, namely on cell survival, differentiation, 

proliferation, axonogenesis, as well as the identification of putative miR-124 molecular targets; 

 

2) Disclose the neurogenic and functional effects of miR-124 NPs in a pre-clinical mouse model of 

PD; 

 

3) Unravel the effects of miR-124 NPs on cell viability, proliferation and neurogenic potential of SVZ 

cultures exposed to glucose and oxygen deprivation (in vitro model of stroke); 

 

4) Assess the role of miR-124 NPs in the modulation of stroke outcome in vivo.  

 





 

Chapter 2 
 

 

 

MATERIALS AND METHODS 

Chapter 2 – MATERIALS AND METHODS 
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2.1 Synthesis of PLGA nanoparticles 
Poly(lactic-co-glycolic acid) (PLGA) NPs were prepared as described by Gomes and colleagues 

(Gomes et al. 2013). Briefly, PLGA (Resomers 502 H; 50:50 lactic acid/glycolic acid; Boehringer 

Ingelheim Lda, Ingelheim, Germany) was covalently conjugated to fluoresceinamine (Sigma-Aldrich, 

Taufkirchen, Germany). NPs were prepared by dissolving PLGA (100 mg) in a solution of 

dichloromethane/trifluoro-ethanol (1:8) containing PFCE (100 mg, Fluorochem, Derbyshire, UK). This 

solution was then added dropwise to a poly(vinyl) alcohol (PVA) solution (5% w/v in water), stirred and 

sonicated using ultrasonicated probe. Immediately after the solution was added dropwise in 40 mL Milli-

Q water under stirring condition and left to stir for 3 h. NP suspension was dialyzed using dialysis 

membrane (MWCO of 50 kDa) for 3 days against Milli-Q water. NPs were coated with protamine sulfate 

(PS) in 1:1 (w/w) ratio by agitation at room temperature (RT) for 1 h. After this incubation period, NPs 

were dialyzed (MWCO of 12 kDa) against Milli-Q water for 3 days, followed by freezing and lyophilization 

to obtain a dry powder that was stored in a desiccator at RT. 

 

2.2 Complexation of nanoparticles and microRNAs 
NPs were weighed and sterilized under ultraviolet light before being resuspended in SVZ cell culture 

medium devoid of growth factors (in vitro experiments) and sonicated (Transsonic T460/HH, Elma 

Schmidbauer GmbH, Singen, Germany). To this suspension (1 to 20 µg/mL final concentration, 

specified in the text) a total of 200 nM of microRNA (miRNA or miR; 50 pmol of miR-124 or scramble-

miR, both from GE Healthcare Dharmacon Inc., Chicago, USA) were added and allowed to complex for 

45 min at 37 ºC with intermittent agitation. Void NPs were prepared using the same procedure but 

without adding miRNA. For in vivo experiments complexation of NPs was done in a similar manner, but 

using saline solution instead of SVZ cell culture medium to suspend the NPs. All miRNA were purchased 

from GE Healthcare Dharmacon Inc. and were provided annealed, desalted and in the 2’-hydroxyl form 

and were resuspended in sterile RNA free water. miR-124 mature sequence is 

5’UAAGGCACGCGGUGAAUGCC3’.  

 

2.3 Characterization of nanoparticles 
Particle size and zeta potential of NP suspensions were determined using light scattering via a Zeta 

PALS zeta potential analyzer and ZetaPlus Particle Sizing Software (Brookhaven Instruments 

Corporation, NY, USA). Size measurements were performed at 25 ºC, and data were recorded at a 90º 

angle, with an equilibration time of 2.5 min and individual run times of 60 s. The diameters described 

are number-weighted average diameters. The zeta potential of NPs was determined in aqueous 

solutions at 25 ºC. 

 

2.4 Subventricular zone cell culture 
One to three day-old C57BL/6 mice were used to obtain subventricular zone (SVZ) cell cultures as 

described previously (Agasse et al. 2008b). SVZ fragments were dissected from 450 µm-thick coronal 

brain sections and placed into Hank's Balanced Salt Solution (HBSS) solution supplemented with 100 
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U/mL penicillin and 100 μg/mL streptomycin (all from Life Technologies, Carlsbad, CA, USA) and 

digested in 0.025% trypsin, 0.265 mM EDTA (all from Life Technologies), followed by mechanical 

dissociation. The single cell suspension was diluted in serum-free medium (SFM) composed of 

Dulbecco's modified Eagle medium [(DMEM)/F12 + GlutaMAX™-l)] supplemented with 100 U/mL 

penicillin, 100 μg/mL streptomycin, 1% B27 supplement, 10 ng/mL epidermal growth factor (EGF), and 

5 ng/mL basic fibroblast growth factor-2 (FGF)-2 (all from Life Technologies) and plated onto uncoated 

petri dishes (Corning Life Science, NY, USA). Cells were allowed to develop in an incubator with 5% 

CO2 and 95% atmospheric air at 37 ºC for five to six days. In these conditions, SVZ cells grow in 

suspension and generate neurospheres that are rich in neural and progenitor stem cells at distinct 

stages of differentiation and with proliferative and self-renewing abilities (Agasse et al. 2008b; 

Bernardino et al. 2008; Maia et al. 2011; Santos et al. 2012a). Neurospheres were then seeded onto 

0.1 mg/mL poly-D-lysine- (PDL, Sigma-Aldrich) coated plates in SFM devoid of growth factors to induce 

cell differentiation. 

 

2.5 Cell transfection 
Five to six-day-old neurospheres were seeded onto 0.1 mg/mL PDL coated 6-well plates for 

quantitative (q)PCR analysis or in PDL-coated glass coverslips in 24-well plates for all the remaining 

experiments, in SFM medium devoid of growth factors. SVZ cells were allowed to form a cell monolayer 

for two days before testing the experimental conditions used. SVZ cell monolayer was then incubated 

with 1 to 20 µg/mL of void NPs or NPs complexed with 200 nM of miR-124 (miR-124 NPs) or scramble-

miR (scramble-miR NPs) for 4 h in SFM devoid of growth factors at 37 ºC in an incubator with 5% CO2 

and 95% atmospheric air. Then, non-internalized NPs were washed out and SVZ cells were allowed to 

grow as a monolayer for different timepoints according to the parameter evaluated – Chapter 3.   

 

2.6 Oxygen and glucose deprivation and experimental 

treatments 
In Chapter 4, 2-days-old cell monolayer cultures were exposed to oxygen and glucose deprivation 

(OGD) for 1 h by replacing the SFM devoid of growth factors by 0.15 M phosphate-buffered saline (PBS) 

and incubating the cells in a MIC-101 modular incubator chamber (Billups-Rothenberg Inc., Del Mar, 

CA, USA) at 37 °C in a 5% CO2 and 95% N2 gas environment (0.1% O2). SVZ cell cultures were then 

incubated in fresh medium (OGD non-treated cells) or transfected with 1 µg/mL of NPs alone or 

complexed with 200 nM of miR-124 or scramble-miR (under reoxygenation) in SFM devoid of growth 

factors for 24 h. A non-OGD control was used to compare the response of SVZ cells in normoxic versus 

OGD conditions. SVZ cells were then allowed to grow as monolayer for two or seven days to analyze 

cell death and proliferation or neuronal differentiation, respectively. 

 

2.7 Internalization studies of miRNA NPs  
SVZ cells were transfected with 10 µg/mL of fluorescein isothiocyanate-labeled NPs (FITC-NPs) 

complexed with 400 nM of miR-Dy547 (GE Healthcare Dharmacon Inc.) for 4 h at 37 ºC, rinsed and 

maintained in SFM medium devoid of growth factors for 24 h. Thereafter, cells were fixed with 4% 
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paraformaldehyde (PFA), permeabilized and blocked with 6% bovine serum albumin (BSA; Amresco 

LLC, Solon, USA) and 0.5% Triton X-100 (Fisher Scientific, Pittsburgh, PA, USA) in 0.1 M of PBS for 1 

h at RT. SVZ cells were then incubated at 4ºC overnight (ON) with primary antibodies all prepared in 

0.3% BSA and 0.1% Triton X-100 solution: anti-FITC, anti-nestin, anti-glial fibrillary acidic protein (anti-

GFAP) and anti-doublecortin (DCX) (Table 2.1). After rinsing with PBS the respective Alexa Fluor-

conjugated secondary antibodies were used (Table 2.2). Whenever appropriated, nuclei were stained 

with Hoechst-33342 (4 µg/mL in PBS, Life Technologies) for 5 min at RT. Thereafter, cells were mounted 

in Fluoroshield Mounting Medium (Abcam Plc.) and photomicrographs were taken using a confocal 

microscope (AxioObserver LSM 710, Carl Zeiss, Jena, Germany). 

 

2.8 Immunocytochemistry 
SVZ cultures were fixed with 4% PFA at different timepoints: 48 h for cell commitment or 7 days for 

SVZ differentiation and miR-124 targets expression (sox9 and jagged1). Cells were then permeabilized 

and blocked against non-specific binding sites for 1 h with 0.25% Triton X-100 and 3% BSA (cytoplasmic 

staining) or 6% BSA (nuclear staining). Cells were subsequently incubated ON at 4 ºC with a primary 

antibody (Table 2.1). Cells were then incubated for 1 h with the corresponding secondary antibody 

(Table 2.2) followed by Hoechst-33342 nuclear staining and mounted in Fluoroshield Mounting Medium 

(Abcam Plc.). Photomicrographs were taken using an AxioImager microscope or AxioObserver LSM 

710 confocal microscope (both from Carl Zeiss). 

 

Table 2.11Primary antibodies used for immunostaining. 

REACTIVITY HOST SUPLIER DILUTION 

Nestin Mouse monoclonal Abcam Plc 1:100 

GFAP Rabbit polyclonal Abcam Plc 1:200 

FITC Goat polyclonal Abcam Plc 1:200 

FITC Mouse monoclonal Sigma-Aldrich 1:100 

DCX Goat polyclonal Santa Cruz Biotechnology 1:200 

Ki67 Rabbit polyclonal Abcam Plc 1:50 

GFAP Mouse monoclonal Abcam Plc 1:200 

NeuN Mouse monoclonal Merck Millipore 1:100 

Olig2 Rabbit polyclonal Merck Millipore 1:200 

Phospho-JNK Rabbit polyclonal Cell Signaling 1:100 

Tau Mouse polyclonal Cell Signaling 1:200 

Sox9 Rabbit polyclonal  Merck Millipore 1:200 

Jagged1 Goat polyclonal Santa Cruz Biotechnology 1:100 

GFAP, glial fibrillary acidic protein; FITC, fluorescein isothiocyanate; DCX, doublecortin; NeuN, neuronal nuclei; 

Olig2, oligodendrocyte transcription factor 2; JNK, c-Jun N-terminal kinase. 
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Table 2.22Secondary antibodies (Alexa-Fluor conjugated) used for immunostaining.  

 

 

2.9 Cell Survival studies 

2.9.1 Propidium iodide incorporation 
SVZ cells were treated with NPs and maintained in culture for 48 h after transfection. Propidium 

iodide (PI; 5 µg/mL; Sigma-Aldrich) was added in the last 10 min of the experimental protocol. 

Subsequently, cells were fixed with 4% PFA for 10 min, stained with Hoechst-33342 (4 µg/mL, Life 

Technologies) for 5 min at RT and mounted in Fluoroshield Mounting Medium (Abcam Plc.). 

Photomicrographs of PI incorporation were taken using an AxioImager microscope (Carl Zeiss, 

Göttingen, Germany). 

 

2.9.2 TUNEL assay 
SVZ cells were fixed with 4% PFA and permeabilized in 0.25% Triton X-100 for 30 min at RT. After 

permeabilization cells were incubated for 10 min with 3% H2O2. Cells were then allowed to react for 

terminal transferase (0.25 U/L) biotinylated dUTP (6 M) nick-end labeling of fragmented DNA in TdT 

buffer (pH 7.5) (all from Roche, Basel, Switzerland) for 1 h at 37 ºC in a humidified chamber. The 

enzymatic reaction was stopped by rinsing with PBS. Cells were then incubated for 1 h with rhodamine 

(1:200, Vector Laboratories, Burlingame, CA, USA), rinsed and stained with Hoechst-33342 (4 µg/mL 

in PBS; Life Technologies) as described previously. Then, cells were mounted in Fluoroshield Mounting 

Medium (Abcam Plc.). Photomicrographs were obtained using an AxioImager microscope (Carl Zeiss). 

 

2.10 BrdU incorporation 
5-bromo-2'-deoxyuridine (BrdU; 10µM, Sigma-Aldrich) was added to cultures 4 h before the end of 

the experiment. Thereafter, cells were fixed in 4% PFA and BrdU was exposed following 

permeabilization with 1% Triton X-100 for 30 min at RT and an incubation with 1 M HCL for 40 min at 

37 ºC. Nonspecific binding sites were blocked with 6% BSA and 0.3% Triton X-100 for 1 h, followed by 

incubation with anti-BrdU Alexa-Fluor 594 conjugated antibody (Life Technologies) in 0.3% BSA and 

0.3% Triton X-100 for 2 h at RT. Cells where then stained with Hoechst-33342 and mounted in 

Fluoroshield Mounting Medium (Abcam Plc.). Photomicrographs of BrdU incorporation were taken using 

a confocal microscope (AxioObserver LSM 710, Carl Zeiss). 

REACTIVITY HOST - ALEXA SUPLIER DILUTION 

Anti-goat Donkey – Alexa 488 Life Technologies 1:200 

Anti-goat Donkey – Alexa 647 Life Technologies 1:200 

Anti-goat Donkey – Alexa 546 Life Technologies 1:200 

Anti-mouse Donkey – Alexa 647 Life Technologies 1:200 

Anti-mouse Donkey – Alexa 488 Life Technologies 1:200 

Anti-mouse Donkey – Alexa 546 Life Technologies 1:200 

Anti-rabbit Goat – Alexa 350 Life Technologies 1:200 

Anti-rabbit Donkey – Alexa 488 Life Technologies 1:200 

Anti-rabbit Donkey – Alexa 546 Life Technologies 1:200 
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2.11 Quantitative PCR analysis 
Total RNA was isolated from SVZ cell cultures according to the illustra RNAspin mini RNA isolation 

kit manufacturer’s instructions (GE Healthcare Life Sciences, Cleveland, OH, USA). cDNA was prepared 

from 1 µg total RNA using the iScript cDNA synthesis kit (Bio-Rad Laboratories, Inc., Hercules, CA, 

USA). Briefly, 1 µg of RNA was mixed with 4 µL of 5x reaction mix and 1 µL of reverse transcriptase 

followed by the reaction in a T100 thermal cycler (Bio-Rad Laboratories, Inc.): 5 min at 25 ºC, 30 min at 

42 ºC and 5 min at 85 ºC. qPCR was performed by adding 0.5 µL of sample cDNA to 5 µL SYBR Green 

PCR master mix (Bio-Rad Laboratories, Inc.) and 1 µL of GAPDH, Sox9 or Jag1 primers (all Qiagen, 

Austin, TX, USA) in a total volume of 10 µL. The thermocycling reaction was performed in a CFX 

Connect real-time system (Bio-Rad Laboratories, Inc.): 3 min at 94 ºC followed by 40 cycles of 15 s at 

94 ºC denaturation step, 30 s at 60 ºC annealing and elongation step. Quantification of target genes 

was performed relative to the reference gene GAPDH using the comparative Ct method, as previously 

reported by us (Santos et al. 2012a; Bernardino et al. 2012).  

 

2.12 In vivo studies 
All animal experimental procedures were performed in accordance with institutional approved 

guidelines for the care and use of laboratory animals: Malmö/Lund Ethical Committee for Animal 

Research and European Community guidelines (86/609/EEC; 2010/63/EU). Adult male C57BL/6 mice 

with 10-12-week-old (Harlan Laboratories Models, SL, Castellar, Spain) were used for the experiments 

performed in Chapter 3 while 9-week-old C57BL/6 J male mice (Charles River, Sulzfeld, Germany) were 

used in Chapter 4. For each experimental setting mice were housed in the same room and in similar 

cages under controlled conditions: 12 h light/dark cycle in RT (22 ºC) and ad libitum access to food and 

water. All animals were assigned to experimental groups before entering study. 

 

2.13 Animal models of disease and treatments 

2.13.1 6-OHDA model of Parkinson’s disease and miRNA-loaded 

NPs treatments (intraventricular administration) – Chapter 3 
Mice were anesthetized with an intraperitoneal (i.p.) injection of ketamine (90 mg/kg of mouse 

weight; Imalgene 1000, Merial, Lyon, France) and xylazine (10 mg/kg of mouse weight; Rompun 2%, 

Bayer, Leverkusen, Germany) before placing them in the digital stereotaxic frame (51900 Stoelting, 

Dublin, Ireland). An incision was performed with a scalpel to expose the mouse skull and scales were 

defined after setting the zero at the bregma point. In order to mimic Parkinson’s disease (PD) phenotype 

a total of 10 µg of 6-hydroxydomine (6-OHDA; Sigma-Aldrich) dissolved in 0.02% of ascorbic acid 

(Fagron, Inc., St. Paul, MN, USA) was injected per animal in the right striatum (Anterior-posterior: −0.6 

mm, Medial-lateral: −2.0 mm, Dorsoventral: −3.0 mm) (Virgone-Carlotta et al. 2013) with a Hamilton 

syringe at a speed of 0.2 µL/min. After injections, mice were kept warm (37 ºC) until they recovered from 

surgery. In sham-operated animals (healthy animals) the same procedure was performed but a saline 

solution (2 µL at 0.2 µL/min of 0.9% NaCl) was used instead of 6-OHDA.  
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To unveil the effect of our NP formulation in a mouse model for PD, mice were subjected to a double 

stereotaxic injection to deliver the 6-OHDA toxin into the right striatum, as described previously, and the 

NP formulations into the right lateral ventricle. As so, an intraventricular injection of 2.5 µL of miR-124 

NPs (1 µg/mL of NPs loaded with 0.5 pmol miR-124) or saline solution (0.9% NaCl) was performed in 

the right hemisphere (Anterior-posterior: −0.5 mm, Medial-lateral: −0.7 mm, Dorsoventral: −2.9 mm) 

(Eiriz et al. 2014) using a Hamilton syringe at a speed of 0.5 µL/min. Four experimental groups were 

tested: 1) mice injected with saline both in the striatum and in the lateral ventricle – “Healthy Saline” 

(n=5, 0.9% NaCl); 2) mice injected with saline in the striatum and miR-124 NPs in the lateral ventricle- 

“Healthy miR-124 NP” (n=5, 2.5 ng NPs and 0.5 pmol miR-124); 3) mice injected with 6-OHDA in the 

striatum and saline in the lateral ventricle- “6-OHDA Saline” (n=4, 0.9% NaCl); 4) mice injected with 6-

OHDA in the striatum and miR-124 NPs in the lateral ventricle- “6-OHDA miR-124 NP” (n=4, 2.5 ng NPs 

and 0.5 pmol miR-124). Mice were maintained in controlled conditions during the four weeks of 

experimental procedure before being euthanized. For internalization studies 3 µL of 10 µg/mL of FITC-

NPs complexed with 1 pmol of miR-Dy547 (dissolved in saline solution) were injected into the lateral 

ventricle of 2 mice as described above. Twenty-four hours after injection mice were euthanized by 

perfusion and penetration of NPs evaluated in coronal sections by fluorescence microscopy. 

 

2.13.2 Photothrombotic model of stroke and miRNA-loaded NPs 

treatments (intravenous administration) – Chapter 4 
Unilateral photothrombotic (PT) cortical ischemia in the right primary motor cortex (Tennant et al. 

2011) was performed as described previously (Walter et al. 2015). Briefly, animals were anesthetized 

with isoflurane (1.5 to 2% during surgery; Isobeta vet 100%, MSD, AN Boxmeer, The Netherlands) and 

placed into a stereotaxic frame. The local analgesic Marcain (AstraZeneca, Södertälje, Sweden) was 

injected followed by a scalp incision exposing the mouse skull. The subcutaneous connective tissue 

was remo ved and the skull bone was dried. An optic fiber with an aperture of 2 mm per 4 mm was 

placed in the right hemisphere (center +1.5 mm lateral and +0.5 mm anterior related to Bregma) and it 

was illuminated with a cold light source (Schott KL 1500 LCD, intensity: 3200 K/5D) for 20 min. A 

photosensitizing dye, Rose Bengal (0.1 mL at 10 mg/mL; Sigma-Aldrich), was injected intraperitoneally 

5 min before the illumination. After illumination, the scalp incision was sutured and the mice were allowed 

to recover in their home cages. In sham-operated mice, the same procedure was performed but mice 

were injected with saline solution (0.1 mL of 0.9% NaCl) instead of the photosensitizer. Body 

temperature was monitored during the surgery and kept between 36 ºC and 37.5 ºC using a self-

regulating heating pad. After surgery, mice temperature and body weight were monitored daily during 

the experiments and were not altered outside physiological ranges (data not shown). 

After surgery, mice were allowed to wake up from anesthesia. Immediately after, mice were placed 

in a restrainer and injected in the tail vein with a total volume of 150 µL of either saline solution, void 

NPs, scramble-miR NPs or miR-124 NPs, respectively. Mice were divided into 8 different experimental 

groups: i) Sham-operated saline mice (n = 6, 0.9% NaCl); ii) Sham-operated void NPs mice (n = 5, 1 

mg NPs); iii) Sham-operated scramble-miR NPs mice (n = 6, 1 mg NPs and 4 nmol scramble-miR); iv) 

Sham-operated miR-124 NPs mice (n = 5, 1 mg NPs and 4 nmol miR-124); v) PT-operated saline mice 
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(n = 16, 0.9% NaCl); vi) PT-operated void NPs mice (n = 11, 1 mg NPs); vii) PT-operated scramble-miR 

NPs mice (n = 12, 1 mg NPs and 4 nmol scramble-miR); viii) PT-operated miR-124 NPs mice (n = 12, 

1 mg NPs and 4 nmol miR-124). Mice were maintained in controlled conditions during the 48 h or 14 

days of experimental procedure before being euthanized. To reveal whether the NPs used in the study 

reached the brain parenchyma, pilot experiments were carried out. After PT, 3 mice were injected either 

with 1 mg, 5 mg or twice in intervals of 6 h with a dosage of 5 mg of FITC-NPs as described above. After 

4 or 24 h, mice were perfused with 4% PFA and penetration of NPs was evaluated in coronal sections 

by fluorescence microscopy.  

 

2.13.3 Proliferating cell labelling – BrdU incorporation 
To label dividing cells, BrdU dissolved in a sterile solution of 0.9% NaCl was administered 

intraperitoneal (i.p.), at 50 mg per kg of animal body weight, in the three days (every 12 h) following the 

stereotaxic procedure (Chapter 3) or the intravenous injections (14 days protocol, Chapter 4).  

 

2.14 Behavior analysis 

2.14.1 Apomorphine-induced rotation test 
At week 2 post-stereotaxic injections, mice (from section 2.13.1) received in the neck a 

subcutaneous injection of 0.5 mg/kg of apomorphine hydrochloride (Sigma-Aldrich) dissolved in 1% 

ascorbic acid and 0.9% NaCl. Mice were placed in round testing bowls for 45 min and their rotation 

behavior was recorded using a digital camera. Number of net contralateral turns = contralateral turns − 

ipsilateral turns; data are presented as percentage of 6-OHDA saline mice.  

 

2.14.2 Rotating pole test 
Rotating pole test was performed as described previously (Ruscher et al. 2009). Mice (from section 

2.13.2) were trained for 2 days to traverse an elevated wooden pole (750 mm above ground, diameter 

15 mm, length 1,500 mm) that was rotating at 0, 3 or 10 rotations per min (rpm) to the right or left. Mice 

were evaluated on the day before surgery (day -1) and on days 2, 7 and 14 after surgery. Mice were 

attributed a score from 0 to 6: 0, the mouse falls off the pole immediately upon placement of the pole; 

1, the mouse is unable to traverse the pole remaining sitting or trying to go backwards; 2, the mouse 

falls off the pole while crossing or the hind limbs do not contribute to forward movement; 3, the mouse 

manages to reach the platform but it is constantly slipping with the fore- and/or hind limbs; 4, the mouse 

traverses the pole with more than four slips; 5, the mouse crosses the pole with one to three slips; 6, 

the mouse traverses the pole with no foot slips.  

 

2.14.3 Grid test  
Mice (from section 2.11.2) were trained to cross a grid (600 mm length) before surgery. Each mouse 

was evaluated before surgery (day 0) and at days 2, 7 and 14 after surgery. Each misstep of the paretic 

paws was counted as one fault and the number of faults was scored from 0 to 6: 0 – 6 and more faults; 

1 – 5 faults; 2 – 4 faults; 3 – 3 faults; 4 – 2 faults; 5 – 1 fault; 6 – no fault. 
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2.15 Tissue collection 
Mice were euthanized at different timepoints: 4 weeks after 6-OHDA lesion for 

immunohistochemistry analysis (dopaminergic lesion evaluation and neurogenesis, total of 18 mice) – 

Chapter 3; 2 days after PT for protein extraction and serum collection (analysis of pro-inflammatory 

cytokines, total of 27 mice) and 14 days after stroke for immunohistochemistry (infarct volume and 

neurogenesis, total of 46 mice) – Chapter 4. At 2 days after surgery, animals were deeply anesthetized 

with isoflurane and subjected to a thoracotomy to expose the heart to collect a blood sample from the 

left ventricle. Samples were centrifuged at 10,600 g for 5 min and serum was stored at -80 ºC until 

further use. After blood collection, mice were decapitated and the brain was dissected and immediately 

frozen in isopentane (Sigma-Aldrich) on dry ice. The ischemic territory (infarct core and proximal peri-

infarct tissue) was then dissected from the mice brains in a glove box at -20 ºC to avoid protein 

degradation. Thereafter, brain tissue was stored at -80 ºC until further processing. At 4 weeks and 14 

days after surgery mice were deeply anesthetized with either a mixture of ketamine and xylazine or 

pentobarbital, respectively, and perfused intracardially with saline solution followed by ice cold 4% PFA 

(pH 7.4, Sigma-Aldrich). Brains were removed and post-fixed with 4% PFA for 24 h, followed by 

immersion in a 30% or 25% sucrose solution (Sigma-Aldrich). Thereafter, brains collected from 4-week-

old mice were cryopreserved and 40 µm-thick coronal sections from the olfactory bulb (OB) or 

SVZ/striatum and substantia nigra (SN) regions were collected in series of six slices (spaced 240 µm 

from each other), using a cryostat (CM 3050S, Leica Microsystems, Wetzlar, Germany). On the other 

hand, brains collected from 14-day-old mice were sectioned on a microtome (SM 2000R, Leica 

Microsystems, Wetzlar, Germany) at 30 µm-thick coronal sections. For infarct volume measurement 

sections spaced 460 µm to each other were collected from the start until the end of the lesion. Sections 

were stored at -20 °C in an antifreeze solution made in PBS containing 30% glycerol and 30% ethylene 

glycol. To analyze the penetration of NPs into the brain parenchyma mice were euthanized 4 or 24 h 

after injection of FITC-NPs and fixed in 4% PFA as described above.  

 

2.16 Lesion evaluation 

2.16.1 Dopaminergic neurons evaluation 
For each animal subjected to stereotaxic injection (Chapter 3), eight consecutives 40 µm-thick 

coronal sections containing the SN, distanced 260 µm from each, were stained against tyrosine 

hydroxylase (TH), a marker of dopaminergic neurons. Photomicrographs of the whole SN regions were 

obtained in a AxioImager microscope (Carl Zeiss) under a 4x and 10x objective, respectively. ImageJ 

software (National Institute of Health, USA) was used to calculate the number of TH-positive (TH+) cells 

in the SN. Data are presented as a percentage of the contralateral (non-lesioned) hemisphere. 

 

2.16.2 Infarct volume measurements 
For each PT operated animal, the 30 µm-thick coronal sections, distanced 460 µm from each other 

were stained against the neuronal marker NeuN (neuronal nuclei). Stained sections were digitalized at 

9600 dpi (CanoScan 8800F, Canon, Tokyo, Japan) and processed with the ImageJ software (National 
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Institute of Health, USA). For each animal, the infarct volume (mm3) was calculated by subtracting the 

area of the non-lesioned ipsilateral hemisphere from the area of the intact contralateral hemisphere 

followed by their volumetric integration. Mice whose infarct volume was lower than 0.2 mm3 or higher 

than 6.0 mm3 were excluded from the study. 

 

2.17 Immunohistochemistry 
Free-floating brain sections were rinsed three times in PBS followed by the quenching of the 

endogenous peroxidases activity with 3% H2O2 (Sigma-Aldrich) for 20 min at RT. Slices were then rinsed 

three times for 10 min each with PBS followed by permeabilization and blocking using 5% normal donkey 

serum (Jackson ImmunoResearch Laboratories Inc., Suffolk, UK)  dissolved in PBS-T (PBS with 0.25% 

of Triton X-100) for 1h at RT. Sections were incubated ON at 4 ºC with either an anti-TH or an anti-NeuN 

antibody (Table 2.3) in PBS-T with 3% normal donkey serum. Thereafter, sections were rinsed in PBS-

T three times and incubated with the respective biotinylated secondary antibody (Table 2.4) in PBS-T 

with 2% normal donkey serum for 90 min at RT. Visualization was achieved via the Vectorstain ABC kit 

(Vector) using either 3, 3′-diaminobenzidine (DAB) (Sigma-Aldrich) in Tris buffer saline (TBS: 20 mM 

Tris and 137 mM NaCl solution, pH 7.6) containing 0.08% H2O2 or 3,3-diaminobenzidine-

tetrahydrochloride (DabSafe, Saveen Werner, Sweden), 8% NiCl2 and 3% H2O2. Sections were 

dehydrated in consecutive higher concentrations of ethanol, 2 min in 70% ethanol, two times 2 min in 

95% ethanol, 2 times 2 min in absolute ethanol, followed by two times 2 min in xylol and mounted using 

Pertex (Histolab AB, Gothenburg, Sweden).  

For fluorescence stainings, an adapted experimental protocol described elsewhere was used 

(Wojtowicz and Kee 2006). Briefly, free-floating sections were rinsed three times in PBS and incubated 

with 2 M HCl for 25 min at 37 ºC to induce DNA denaturation and exposure of BrdU. Sections were then 

incubated in blocking solution – 2% of normal donkey serum and 0.3% Triton X-100 in PBS – for 2 h at 

RT, followed by a 48 h incubation ON at 4 ºC using the primary antibodies described in Table 2.3. 

Thereafter, sections from 6-OHDA mice were incubated for 2 h at RT with Hoechst (1:10,000) and the 

respective secondary antibodies (Table 2.4). On the other hand, sections from PT mice were incubated 

with biotin-streptavidin secondary antibody and DAPI (4’,6-diamidino-2-phenylindole; 1:10,000) for 1 h 

at RT followed by incubation with streptavidin Alexa Fluor 488 and Cy3 anti-goat for 2 h.  

Then, a simplified version of this protocol was used to study penetration of NPs into brain 

parenchyma. Briefly, brain coronal sections were incubated in blocking solution for 1 h at RT and then 

incubated with the anti-FITC in combination with anti-CD31 or anti-NeuN or anti-GFAP (Table 2.3) for 

48 h at 4 ºC. Thereafter, sections were incubated with Hoechst-33342 (1:10,000) and the respective 

secondary antibodies (Table 2.4) for 2 h at RT. Finally, sections were mounted in Fluoroshield Mounting 

Medium (Abcam Plc.). Photomicrographs were obtained using an LSM 510 or AxioObserver LSM 710 

confocal microscope (Carl Zeiss). 
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Table 2.33Primary antibodies used for immunohistochemistry of coronal brain sections. 

REACTIVITY HOST SUPLIER DILUTION 

TH Mouse monoclonal Transduction Laboratories 1:1000 

NeuN Rabbit polyclonal Merck Millipore 1:5000 

NeuN Mouse monoclonal Merck Millipore 1:1000 

DCX Goat polyclonal Santa Cruz Biotechnology 1:1000 

BrdU Rat monoclonal AbD Serotec 1:500 

FITC Goat polyclonal Abcam Plc 1:500 

CD31 Mouse monoclonal Abcam Plc 1:1000 

NeuN Rabbit monoclonal Cell Signaling Technology 1:1000 

GFAP Rabbit polyclonal Dako 1:20000 

BrdU, 5-bromo-2'-deoxyuridine; DCX, doublecortin; CD31, cluster of differentiation 31; FITC, fluorescein 

isothiocyanate; GFAP, glial fibrillary acidic protein; NeuN, neuronal nuclei; TH, tyrosine hydroxylase. 

 

Table 2.44Secondary antibodies (biotinylated or fluorescent) used for immunohistochemistry in coronal 
brain slices. 

REACTIVITY HOST SUPLIER DILUTION 

Anti-mouse Goat biotinylated Vector Laboratories 1:200 

Anti-rabbit Donkey biotinylated Jackson ImmunoResearch Laboratories 1:400 

Anti-mouse Donkey – Alexa 546 Life Technologies 1:1000 

Anti-goat Donkey – Alexa 546 Life Technologies 1:1000 

Anti-rat Donkey – Alexa 546 Life Technologies 1:1000 

Anti-rat Biotin- streptavidin Jackson ImmunoResearch Laboratories 1:200 

Anti- streptavidin Donkey – Alexa 488 Jackson ImmunoResearch Laboratories 1:200 

Anti-goat Donkey – Cy3  Jackson ImmunoResearch Laboratories 1:200 

Anti-goat Donkey – Alexa 488 Life Technologies 1:1000 

 

2.18 Preparation of protein extracts 
Whole protein extracts were obtained from the ischemic territory and corresponding regions in sham 

animals. Tissue homogenization was done by sonication (Cole Parmer Instruments Co., Chicago, 

U.S.A.) in lysis buffer containing 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM ethylene glycol 

tetraacetic acid (EGTA), 1 mM phenylmethanesulfonyl fluoride (PMSF), 2.5 mM sodium pyrophosphate, 

1 mM β-glycerolphosphate, 1 mM sodium orthovanadate supplemented with protease inhibitor cocktail. 

Thereafter, tissue was incubated on ice for 10 min followed by a centrifugation (20,000 g at 4 ºC for 20 

min) and the supernatant was collected for further analysis. Concentration of the whole protein collected 

was done by the Bradford assay using BSA (Sigma-Aldrich) dissolved in lysis buffer as standard.  

 

2.19 Cytokine analysis from brain extracts and serum 

samples 
The levels of different cytokines – namely interferon-gamma (IFNγ), interleukin-1beta (IL-1β), IL-6 

and tumor necrosis factor-alpha (TNF-α) – were evaluated using a multiplex immunoassay kit according 

to the manufacturer’s protocol (MesoScale Diagnostics, Gaithersburg, MD, USA) in the eight 

experimental groups tested. For this evaluation 50 µg of total protein from the protein extracts and 50 
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µL of serum collected from the same mice were used. Briefly, samples and calibrators were added to 

the 10-spot MULTI-SPOT® 96-well plate (a pre-coated plate with capture antibodies on independent 

and well-defined spots) and incubated at RT with shaking for 2 h. Thereafter, wells were rinsed with 

PBS with 0.05% of Tween-20 followed for 2 h incubation with shaking with the detection antibody 

solution. Then, after rinsed, 2x read buffer T was added to the wells and the plate analyzed on the MSD 

instrument. 

 

2.20 Statistical analysis 
Analysis of immunocytochemistry experiments were performed at the border of seeded 

neurospheres, where cells formed a pseudo-monolayer. The experiments were performed in three 

independent cultures, unless stated otherwise, and for each experimental condition at least 2 coverslips 

were assayed per culture. Percentage of fragmented nuclei, TUNEL+, PI+, BrdU+, Ki67+, Ki67/DCX--

double positive (Ki67+/DCX+), Ki67+/GFAP+, NeuN+, GFAP+, oligodendrocyte transcription factor 2 

(Olig2)+, Sox9+ and Jagged1+ was calculated from cell counts in five independent microscopic fields 

(approximately 150 cells per field) from each coverslip with a 40x magnification. Quantification of neurite 

ramification number and total neurite length positive for phospho-c-Jun N-terminal kinase (P-JNK) was 

performed in 4 independent cultures, with at least 2 coverslips per condition, in approximately 20 non-

overlapping fields per coverslip (40x magnification).  

In chapter 3 the quantification of DCX+, DCX+/BrdU+ and NeuN+/BrdU+ cell number was performed 

in the SVZ, OB (granule (GCL) and glomerular (GL) layers) and striatum of at least 3 animals, as 

described previously by us (Eiriz et al. 2014). For the SVZ, 5 slices spaced by 240 µm each were used. 

Cells were counted along the ventricle lateral wall from three different Z-axis-positions per field in a 40x 

magnification (totaling approximately 35 fields per mouse hemisphere). To obtain an unbiased density 

estimate, fields with the same mean total volume and total number of SVZ cells were selected. In the 

OB, two fields of GCL and six fields of GL from three different Z-axis-positions per field from 4 slices 

spaced by 240 µm each were counted per animal. In the striatum, two different Z-axis-positions from 

nine fields from 5 slices spaced by 240 µm each were counted per animal. A simplified version of the 

above-mentioned protocol was used to evaluate neurogenesis in the PT mouse model, Chapter 4. 

Briefly, quantification of DCX+, BrdU+ and DCX+/BrdU+ cell number was performed in the SVZ and in the 

peri-infarct cortex of at least 2 animals, in 30 µm coronal sections located +1 mm to bregma. Cells were 

counted along the slice thickness obtained by Z-stacks (40x magnification). To obtain an unbiased 

density estimate, fields with the same mean total volume and similar total number of SVZ cells were 

selected. 

The software used for cell countings was ImageJ (NIH Image, Bethesda, MD, USA). Data are 

expressed as mean ± standard error of mean (SEM) or as medians with the 1st and 3rd quartile and 

whiskers. Statistical analyses have been performed with GraphPad Prism 6 software (GraphPad, San 

Diego, CA, USA) by using: unpaired two tailed Student's t test or ANOVA followed by Dunnett's or 

Bonferroni's or Tukey multiple comparison test (parametric values); or by Kruskal Wallis analysis 

followed by Dunn´s post hoc evaluation (non-parametric values), with P < 0.05 considered to represent 

statistical significance. 
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3.1 Introduction 
Neurogenesis occurs constitutively in the subventricular zone (SVZ) of the adult mammalian brain, 

including in humans (Gage 2000). Within this region, neural stem cells (NSCs) can self-renew, 

proliferate and give rise to new neurons, astrocytes and oligodendrocytes. In rodents, newborn neurons 

generated in the SVZ migrate through the rostral migratory stream (RMS) towards the olfactory bulb 

(OB) where they fully differentiate as mature interneurons (Ming and Song 2011). Adult neurogenesis 

homeostasis is altered in several brain disorders including Parkinson’s disease (PD) (Sun et al. 2015b). 

PD is characterized by the loss of dopaminergic neurons present in the substantia nigra (SN) and 

degeneration of dopaminergic terminals in the striatum, leading to movement coordination impairments 

and cognitive deficits. Several factors have already been reported to improve functional recovery in PD 

animals models by increasing endogenous neurogenesis and migration of newly born neurons into the 

lesioned striatum (Kadota et al. 2009; Jing et al. 2012). However, an efficient therapy aiming at full 

regeneration has not yet been found. Therefore, it is imperative to develop new strategies to efficiently 

deliver pro-neurogenic factors to NSCs and to boost the endogenous regenerative capacity of adult 

brain.  

A tightly controlled network of intrinsic and extrinsic signals, including small non-coding RNAs (e.g. 

microRNAs) (Santos et al. 2012a; Faigle and Song 2013; Eiriz et al. 2014; Zeng et al. 2014) regulate 

the neurogenic niche. MicroRNAs (miRNA or miR) have the ability to regulate hundreds of genes (Lim 

et al. 2005) due to inhibition of mRNA translation or induction of mRNA degradation (Bartel 2004). miR-

124 is one of the most abundant miRNA in the adult brain (Lagos-Quintana et al. 2002). The expression 

of miR-124 is initiated during the transition from NSC to progenitor cell and it is enhanced with neuronal 

maturation (Cheng et al. 2009; Akerblom et al. 2012). Several studies have shown that the 

overexpression of miR-124 induces neuronal differentiation of both progenitor cells (Visvanathan et al. 

2007; Yu et al. 2008) and HeLa cells (Lim et al. 2005). More recently, lentiviral overexpression of the 

miR-124 precursor (among other factors) was capable of inducing the differentiation of human neonatal 

foreskin fibroblasts into functional mature neurons (Yoo et al. 2011; Xue et al. 2013). In vivo, miR-124 

overexpression in the SVZ niche increased the number of newborn neurons without affecting their 

migratory capability (Cheng et al. 2009; Akerblom et al. 2012). Additionally, miR-124 is intimately 

associated with brain pathologies and neurodegenerative disorders, such as PD. Indeed, within the miR-

124 validated targets, one-fourth are de-regulated in PD (49 genes out of 202, MIRECORDS database) 

(Sonntag 2010). Significant decrease of miR-124 was described in the SN of 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-intoxicated mice (PD mouse model) as well as in SH-SY5Y and MN9D 

dopaminergic neurons treated with methyl phenyl pyridinium (MPP) iodide, while its overexpression 

improved cell survival (Kanagaraj et al. 2014; Wang et al. 2015a; Gong et al. 2016). Therefore, 

increasing miR-124 intracellular levels likely stands for a novel therapeutic strategy to improve functional 

outcome in PD, reviewed at (Sun et al. 2015b). 

Due to the short half-life and poor stability of miRNA, their efficient delivery into cells in a safe and 

controlled way remains a challenge (Chen et al. 2015). Viral vectors have a high capacity to deliver 

miRNA, however safety issues such as immunogenicity and the risk of triggering oncogenic 

transformation limits its translation potential (Guzman-Villanueva et al. 2012). Non-viral vectors such as 
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polymeric nanoparticles (NPs), which avoid these safety issues, have been used by us and others to 

efficiently deliver proneurogenic molecules, including miRNA, into cells (Maia et al. 2011; Santos et al. 

2012a; Bernardino et al. 2012; Guzman-Villanueva et al. 2012). As so, we hypothesized that the use of 

polymeric NPs to deliver miR-124 could promote neurogenesis of SVZ NSCs both in vitro and in vivo 

and ultimately promote brain repair. To confirm this hypothesis we used a NP formulation formed by 

poly(lactic acid-co-glycolic acid) (PLGA) and perfluoro-1,5-crown ether (PFCE), a fluorine compound 

that can be tracked non-invasively by  fluorine magnetic resonance imaging (19F-MRI), and coated with 

protamine sulfate to complex miR-124 (Gomes et al. 2013). The neurogenic potential of this NP 

formulation was assessed both in physiologic conditions and in a 6-hydroxydopamine (6-OHDA) mouse 

model for PD. 

 

3.2 Results 

3.2.1 miRNA-loaded NPs are efficiently internalized by SVZ cells 
Novel polymeric PLGA-based NPs developed by us were used to deliver miR-124 into SVZ cells 

(Figure 3.1 A). These NPs have an average size of ~210 nm and are coated with protamine sulfate, a 

cationic peptide that confers a positive surface charge (+5.7 ± 1.2 mV, n=3) to the NPs, allowing their 

complexation with miRNA (negatively charged molecule) (+1.7 ±0.7 mV, n=3). Moreover, NPs have in 

their core PFCE, a nontoxic fluorine compound commonly used in nuclear magnetic resonance (NMR) 

imaging applications, allowing in vivo non-invasive tracking of NPs (Figure 3.1 A) (Ruiz-Cabello et al. 

2011; Gomes et al. 2013). First, the ability of distinct SVZ cell phenotypes to internalize NPs was 

evaluated by confocal analysis. SVZ cells were treated with 10 µg/mL of fluorescein isothiocyanate 

(FITC)-labeled NPs complexed with Dy547-labeled miRNA mimic (a fluorescent scramble-miR) for 4 h, 

washed out to remove non-internalized NPs, and maintained in culture for additional 24 h. A 

fluorescence scramble-miR was used since it does not alter significantly the formulation characteristics, 

such as size, zeta potential, complexation, and it is easier to track. The intracellular uptake of miRNA 

NPs by neural stem/progenitor cells and neuroblasts was evaluated by co-staining doublecortin (DCX), 

glial fibrillary acidic protein (GFAP) or nestin (Figure 3.1 B, C, D). At this timepoint, primary SVZ cultures 

contain approximately 10-20% neurons, 15-20% astrocytes and 70-80% immature cells (nestin- positive 

and GFAP-negative, nestin+/GFAP-, data not shown). We have found that miR-Dy547 NPs were 

efficiently internalized by neuroblasts (DCX+; Figure 3.1 B), type B cells (GFAP+/nestin+; Figure 3.1 C, 

D), immature progenitor cells (nestin+ cells; Figure 3.1 C arrow), and by astrocytes (GFAP+; Figure 3.1 

D arrowhead).  

miR-Dy547 and FITC-NPs labeling was located preferentially in aggregates during the initial hours 

but at 24 h post-transfection it was found spread all over the cell cytoplasm including in the cellular 

processes of type B cells, immature progenitor cells and new neurons (Figure 3.1 B-D). The huge 

heterogeneity in cell phenotypes and density found in SVZ cultures hamper an extensive tracking of 

miR-Dy547 FITC-NPs inside SVZ cells. Nevertheless, miR-Dy547 FITC-NPs were found internalized in 

all SVZ cell types analyzed suggesting that this formulation represents an efficient miRNA delivery 

vector. Importantly, our formulation was efficiently internalized and able to deliver miR-124 into 

stem/progenitor and immature cells, the cell population that in response to increased levels of miR-124 
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may differentiate into mature neurons. In accordance, internalization in mature neurons was not 

analyzed due to its already high basal expression of miR-124 (Cheng et al. 2009).  

 

Figure 3.16 miRNA loaded NPs are internalized by SVZ stem/progenitor cells. 
(A) Composition and physical properties of miRNA NPs. (B, C, D) Photomicrographs of SVZ stem/progenitor cells 
after transfection with 10 µg/mL of FITC-NPs (green) complexed with miR-Dy547 (red) and stained against 
immature neuronal marker DCX (white), and nuclear marker Hoechst (blue) (B) or the immature progenitor marker 
nestin (white) and the glial marker GFAP (blue) (C, D). FITC-NPs and miR-Dy547 were found internalized in all cell 
types analyzed. White arrow shows a cell that is only positive for nestin (immature cell) and arrowhead shows a cell 
exclusively positive for GFAP (astrocyte). Cells positive for both nestin and GFAP markers (type B cells) are also 
observed (C, D). Scale bar: 10 µm. Abbreviations: FITC, fluorescein isothiocyanate; DCX, doublecortin; GFAP, glial 
fibrillary acidic protein; NPs, nanoparticles; SVZ, subventricular zone. 

 

3.2.2 Cellular toxicity of NPs 
Next, the toxic effect of NPs on SVZ cells was assessed by nuclear condensation/fragmentation 

(Figure 3.2 A), terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL; Figure 

3.2 B, D) and propidium iodide (PI) incorporation (Figure 3.2 C, E) analysis, using different 
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concentrations of NPs 1, 10 and 20 µg/mL either complexed with 200nM of miR-124 or not (void NPs). 

A first screening in terms of cell toxicity was performed by quantifying the number of 

fragmented/condensed nuclei (labeled with Hoechst). Concentrations up to 1 µg/mL of void NPs (12.4 

± 1.3) and up to 10 µg/mL of miR-124 NPs (10.8 ± 0.2) did not induce significant nuclear 

condensation/fragmentation as compared with non-treated cells (Figure 3.2 A, 9.1 ± 0.9, **P < 0.01, 

***P < 0.001). Scramble-miR NPs at 10 µg/mL were nontoxic as well (10.6 ± 1.4, n=3).  

Figure 3.27 Viability studies in SVZ cells treated with NPs.  
SVZ stem/progenitor cells were treated for 4 h with NPs and then maintained in culture for 2 days. Percentage of 
(A) cells with nuclear condensation/fragmentation, (B) TUNEL+ apoptotic cells and (C) propidium iodide (PI)+ 
necrotic cells. Representative confocal digital images of (D) TUNEL, (E) PI, and Hoechst (blue) stainings in control 
cultures and in miR-124 NPs-treated cultures. Both TUNEL and PI stainings are shown in red. Scale bar: 20 µm. 
Data are expressed as mean ± SEM (n=3-13). **P < 0.01, ***P < 0.001 using Dunnett’s multiple comparison test 
and compared with control. (B, C) Data are presented as percentage of control (set to 100%). ns, non-significant. 
Abbreviations: NPs, nanoparticles; TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling; SVZ, 
subventricular zone.  

 

Parameters such as composition, size, and superficial charge among other factors influence NP 

toxicity. NPs with higher surface charge generally present higher toxicity (Fröhlich 2012), which may 
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explain the highest cytotoxicity of void (+5.7 ± 1.2 mV) versus miRNA NPs (+1.7 ±0.7 mV). Importantly, 

1 µg/mL NPs either complexed or not with miRNA revealed no cytotoxicity. This concentration was then 

used to evaluate apoptosis and necrosis in SVZ cells treated with void NPs or miRNA NPs (scramble-

miR or miR-124) by TUNEL and PI staining, respectively. We have found that 1 µg/mL NPs (void, 

scramble-miR or miR-124) did not induce apoptosis (Figure 3.2 B, D) or necrosis/late-apoptosis (Figure 

3.2 C, E). Based on these results, 1 µg/mL NPs complexed with miR-124 was selected to perform the 

subsequent experiments. 

 

3.2.3 miR-124 NPs prompt neuroblasts proliferation 
Next, we examined the effect of miR-124 NPs in cell proliferation by analyzing 5-bromo-2'-

deoxyuridine (BrdU) and Ki67 staining 48 h after cell treatments. BrdU is a marker for cells undergoing 

S phase of the cell cycle, while all cycling cells (G1, S, G2 and M phases) express the Ki67 marker. 

Overall, total cell proliferation was not affected as compared with control cultures (Figure 3.3 A, B). 

However, cells treated with miR-124 NPs showed a higher number of proliferating neuroblasts 

(Ki67+/DCX+; Figure 3.3 C, E; control 100.0 ± 9.8, miR-124 NPs 196.0 ± 32.0, *P < 0.05, **P < 0.01) and 

a lower number of proliferating astrocyte-like cells (Ki67+/GFAP+; Figure 3.3 D, F; scramble-miR NPs 

125.4 ± 10.5, miR-124 NPs 52.9 ± 13.2, *P < 0.05) when compared with the respective controls. Thus, 

our results indicate that miR-124 NPs favor neuroblast proliferation while decreasing the proliferation of 

astrocytic-like cells. 
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Figure 3.38 miR-124 NPs favor neuroblast proliferation. 
SVZ stem/progenitor cells were treated for 4 h with NPs and then maintained in culture for 48 h. (A, B) Bar graphs 
depict the percentage of BrdU+ and Ki67+ cells, respectively. Percentage of (C) DCX+ or (D) GFAP+ cells co-labeled 
with Ki67 staining. Representative fluorescence photomicrographs of (E) DCX/Ki67 and (F) GFAP/Ki67 
immunostainings in control cultures and in miR-124 NPs-treated cultures. Nuclei are shown in blue, Ki67 in green 
and, DCX and GFAP in red. Scale bar: 20 µm. White arrows depict double-positive cells. Data are expressed as 
mean ± SEM (n=2-3). *P < 0.05, **P < 0.01 using Bonferroni's multiple comparison test. (A, C, D) Data are presented 
as percentage of control (set to 100%). Abbreviations: BrdU, 5-bromo-2'-deoxyuridine; DCX, doublecortin; GFAP, 
glial fibrillary acidic protein; NPs, nanoparticles; SVZ, subventricular zone. 

 

3.2.4 miR-124 NPs induce neuronal differentiation by repressing 

key non-neuronal genes 
The ability of miR-124 NPs to induce neuronal differentiation was then assessed. As shown in 

Figure 3.4, miR-124 NPs led to a 2.5-fold increase in the number of mature neurons (NeuN; Figure 3.4 

A, B; scramble-miR NPs 135.0 ± 11.8, miR-124 NPs 243.6 ± 20.2, ***P < 0.001) while reducing to 

approximately 25% the number of astrocytes (GFAP; Figure 3.4 C, E; scramble-miR NPs 45.8 ± 1.1, 

miR-124 NPs 34.2 ± 2.2, *P < 0.05) as compared with scramble-miR NPs-treated cells. No effects were 
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found in terms of oligodendrocyte differentiation (oligodendrocytes transcription factor 2, Olig2; Figure 

3.4 D, F). Although the oligodendrocytic lineage is dependent on Olig2 expression, a subpopulation of 

stem/progenitor cells also express Olig2 (Menn et al. 2006). These data are in accordance with the 

results shown in Figure 3.3.  

 

Figure 3.49 miR-124 NPs promotes neuronal differentiation over glial differentiation. 
SVZ stem/progenitor cells were treated for 4 h with NPs and then maintained in culture for 7 days. (A) 
Representative fluorescence photomicrographs of NeuN immunostaining (red) in control cultures and cultures 
transfected with 1 µg/mL of miR-124 NPs. Hoechst was used for nuclear staining (blue); scale bar: 20 µm. (B) 
Percentage of NeuN-immunostained neurons, (C) GFAP-immunostained astrocytes and (D) Olig2-immunostained 
oligodendrocytes in SVZ cultures. Representative fluorescence photomicrographs of (E) GFAP (green) and (F) 
Olig2 (red) immunostainings in control cultures and in miR-124 NPs-treated cultures. Nuclei are shown in blue. 
Scale bar: 20 µm. Data are expressed as mean ± SEM (n=3-6). *P < 0.05, ***P < 0.001 using Bonferroni's multiple 
comparison test. In (B) data are presented as relative to control (set to 100%) and the statistics compares miR-124 
NPs against all other experimental conditions (control, void and scramble-miR NPs). Abbreviations: GFAP, glial 
fibrillary acidic protein; NeuN, neuronal nuclei; NPs, nanoparticles; Olig2, oligodendrocyte transcription factor 2; 
SVZ, subventricular zone. 
 

Sox9 and jagged1 are validated miR-124 targets and seem to play a role in neurogenesis 

regulation. Therefore, the mRNA and protein levels of Sox9 and Jagged1 (Jag1) were evaluated by 
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qPCR and immunocytochemistry, respectively. As expected, miR-124 NPs induced a reduction of 

approximately 30% in mRNA (Figure 3.5 A; SOX9: control 1.0 ± 0.0, miR-124 NPs 0.7 ± 0.1; JAG1: 

control 1.0 ± 0.0, miR-124 NPs 0.6 ± 0.1, **P < 0.01, ***P < 0.001) and a reduction of almost 50% in 

protein levels (Figure 3.5 B-E; Sox9: control 100.0 ± 0.1, miR-124 NPs 55.4 ± 7.0; Jagged1: control 

100.0 ± 0.1, miR-124 NPs 51.8 ± 15.4) of both Sox9 and Jagged1. Altogether, our results indicate that 

miR-124 NPs modulate SVZ cells fate and downregulate Sox9 and Jagged1, leading to a robust 

enhancement of neurogenesis and a slight reduction in the number of astrocytes. 

Figure 3.510miR-124 NPs target Sox9 and Jagged1 mRNA and protein levels. 
SVZ cells were treated for 4 h with NPs and maintained in culture for 5 or 7 days. (A) Sox9 and Jag1 mRNA 
expression 5 days after NPs treatment. Gene expression was normalized to GAPDH. Data are expressed as mean 
± SEM (n=3-6). All data are presented as fold increase of control (set to 1). Percentage of (B) Jagged1+ and (C) 
Sox9+ cells in SVZ cultures 7 days after treatment with 1µg/mL miR-124 NPs. Representative fluorescence 
photomicrographs of (D) Jagged1 and (E) Sox9 immunostainings in control cultures and in miR-124 NPs-treated 
cultures. Nuclei are shown in blue. Scale bar: 20 µm. Data are expressed as mean ± SEM (n=3-6). **P < 0.01, ***P 
< 0.001 using Bonferroni's multiple comparison test and compared with control. (B, C) Data are presented as 
percentage of control (set to 100%). Abbreviations: NPs, nanoparticles; SVZ, subventricular zone. 
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3.2.5 miR-124 NPs promote axonogenesis 
To evaluate the effect of miR-124 NPs on neuronal maturation and axonogenesis, SVZ cells were 

transfected with miR-124 NPs for 4 h and the activation of stress-activated protein kinases (SAPK)/Jun 

amino-terminal kinases (JNK) pathway was analyzed 24 h post-transfection by immunocytochemistry 

against phospho (P)-JNK, the JNK active form. miR-124 NPs induced a 1.6 and 2-fold increase in the 

number (Figure 3.6 A; control 1.5 ± 0.1, miR-124 NPs 2.4 ± 0.4, *P < 0.05, **P < 0.01) and length (Figure 

3.6 B; control 78.2 ± 9.6, miR-124 NPs 153.8 ± 31.5) of P-JNK+ axons emerging out of the neurospheres, 

respectively. Accordingly, in miR-124 NPs-treated cultures P-JNK immunoreactivity was robust while 

control cultures showed a more diffuse and weak staining. Also, as reported previously by us, the P-

JNK staining co-localized with Tau, a microtubule-associated protein able to modulate the stability of 

axonal microtubules in mature and immature neurons (Agasse et al. 2008a; Bernardino et al. 2008) 

(Figure 3.6 C). 

Figure 3.611miR-124 NPs activate the SAPK/JNK pathway in Tau+ axons. 
SVZ stem/progenitor cells were treated for 4 h with NPs and then maintained in culture for 24 h. Bar graphs display 
(A) number of ramifications and (B) the total ramification length (µm) of P-JNK+ fibers per neurosphere. (C) 
Representative fluorescence photomicrographs of P-SAPK/JNK (green), Tau (red), and Hoechst (blue) staining in 
control cultures and in miR-124 NPs-treated cultures; scale bar: 20 µm. Data are expressed as mean ± SEM (n=3-
5). *P < 0.05, ** P < 0.01 using Bonferroni's multiple comparison test. Abbreviations: NPs, nanoparticles; P-
SAPK/JNK, phospho- stress-activated protein kinase/Jun amino-terminal kinase; SVZ, subventricular zone. 
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3.2.6 miR-124 NPs increase the number of migrating neuroblasts 

that reach the OB and the lesioned striatum leading to motor 

amelioration of the PD symptoms 
Next, we evaluated the effect of miR-124 NPs in SVZ neurogenesis in physiological conditions 

(healthy mice) and in a mouse model for PD obtained by unilateral injection into the striatum of the toxin 

6-OHDA (6-OHDA-challenged mice).  For that purpose, miR-124 NPs were unilaterally injected into the 

lateral ventricle, followed by 3 days of intraperitoneal injections with BrdU (every 12h) (Figure 3.7 A). 

miR-124 NPs were injected into the right lateral ventricle to facilitate the interaction with type B cells, 

which project one cilium each into the ventricle lumen (Santos et al. 2012b); alternatively, miR-124 NPs 

may interact with ependymal cells to induce a paracrine effect over SVZ stem/progenitor cells. Indeed, 

miR-Dy547 loaded FITC-NPs delivered into the ventricular lumen were easily detected, lining the lateral 

ventricle of the SVZ, at 24 h after administration (Figure 3.7 B). Then, to unveil the effect of our NP 

formulation in a pre-clinical mouse model for PD, mice were subjected to a double stereotaxic injection 

to deliver 6-OHDA into the right striatum and the NPs into the right lateral ventricle (Figure 3.7 A). 

Unilateral injections of 6-OHDA in mice and/or rats is known to be advantageous when compared with 

other PD mice models, due to the presence of side-biased motor impairments (Ungerstedt and 

Arbuthnott 1970; Iancu et al. 2005). Moreover, this mouse model for PD (10 µg 6-OHDA in the striatum) 

was chosen based in the following parameters: reduced SVZ neurogenesis (about 40% reduction in 

DCX+/BrdU+ cells in the SVZ, Figure 3.7 D); dopaminergic degeneration (about 50% dopaminergic death 

in the SN: 48.1 ± 6.1, n=10 mice); functional motor deficits (Figure 3.11 D); and low mortality rates (in 

opposite to models such as involving injections in the SN or in the medial forebrain bundle).   

Mice were euthanized 4 weeks after stereotaxic surgeries and the number of neuroblasts (DCX+), 

and proliferating neuroblasts (DCX+/BrdU+) were quantified in the SVZ (Figure 3.7) and in the Granular 

cell layer (GCL) and glomerular layer (GL) of the OB (Figure 3.8). First, we found that miR-124 NPs 

were not able to alter the total number of DCX+ (Figure 3.7 C) and DCX+/BrdU+ cells (Figure 3.7 D, E-

H) in the SVZ of both healthy and 6-OHDA-challenged mice as compared with the respective saline 

group. Nevertheless, the levels of proliferating neuroblasts (DCX+/BrdU+ cells) in 6-OHDA-challenged 

mice were approximately 50% lower than in healthy mice, suggesting a negative influence of striatal 

dopamine depletion over neuroblast proliferation and/or migration into lesioned regions (striatum) or into 

the OB. However, the total number of neuroblasts (DCX+; Figure 3.7 C) was not affected by dopamine 

depletion. 
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 Figure 3.712miR-124 NPs do not affect the number of proliferating SVZ neuroblasts both in the healthy and 
in a 6-OHDA-challenged mouse model of PD. 
(A) Experimental design for the in vivo experiments consisting in an intracerebroventricular injection with miR-124 
NPs or saline solution followed by the injection of 6-OHDA into the right striatum. Then, mice received BrdU 
injections (every 12 h) during the following 3-day upon surgery. After 4 weeks mice brains were collected for 
processing. (B) Representative photomicrographs of SVZ 24 h after injection, into the lumen of the lateral ventricle 
of mice, of 10 µg/mL of FITC-NPs (green) complexed with miR-Dy547 (red) and stained against the nuclear marker 
Hoechst (blue). (C, D) Bar graphs depict total (C) DCX+ and (D) DCX+/BrdU+ cells counted in the SVZ. Data are 
expressed as mean ± SEM (n=3–5 mice) *P < 0.05 using Student’s unpaired t-test as compared with saline healthy 
mice. (E-H) Representative confocal digital images of BrdU (green), DCX (red) and Hoechst (blue) staining 
observed in the SVZ of healthy (saline (D) or miR-124 NPs (E)) and 6-OHDA-injected mice (saline (F) or miR-124 
NPs (G), respectively). Scale bar: 20 µm; white arrows indicate DCX+/BrdU+ cells. Abbreviations: 6-OHDA, 6-
hydroxidopamine; BrdU, 5-bromo-2'-deoxyuridine; DCX, doublecortin; FITC, fluorescein isothiocyanate; NPs, 
nanoparticles; PD, Parkinson’s disease; SVZ, subventricular zone. 
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Figure 3.813miR-124 NPs induce migration of SVZ-derived neuroblasts towards the granule cell layer (GCL). 
(A, B) Bar graphs depict the effect of miR-124 NPs in the total number of (A) DCX+ and (B) DCX+/BrdU+ cells in the 
granule cell layer (GCL) and glomerular layer (GL) of healthy or 6-OHDA-challenged mice. Data are expressed as 
mean ± SEM (n=3–5 mice) *P <0.05, **P < 0.01, ***P < 0.001 using Bonferroni's multiple comparison test. (C-F) 
Representative confocal digital images of BrdU (green), Hoechst (blue) and DCX (red) staining observed in the 
GCL of healthy mice (saline (C) or miR-124 NPs (D)) or 6-OHDA-challenged mice (saline (E) or miR-124 NPs (F)), 
respectively. Scale bar: 20µm; white arrows indicate DCX+/BrdU+ cells. Abbreviations: 6-OHDA, 6-
hydroxidopamine; BrdU, 5-bromo-2'-deoxyuridine; DCX, doublecortin; NPs, nanoparticles; SVZ, subventricular 
zone. 
 

Figure 3.914miR-124 NPs induce integration of mature neurons in the granule cell layer (GCL) of the 
olfactory bulb (OB).  
Representative confocal digital images of BrdU (green), Hoechst (blue) and NeuN (red) staining observed in the 
GCL of healthy mice (saline (A) or miR-124 NPs (B)) or 6-OHDA-injected mice (saline (C) or miR-124 NPs (D)), 
respectively. Scale bar: 20µm; white arrows indicate NeuN+/BrdU+ cells. Abbreviations: 6-OHDA, 6-
hydroxidopamine; BrdU, 5-bromo-2'-deoxyuridine; NeuN, neuronal nuclei; NPs, nanoparticles. 

 

Granular cell layer and glomerular layer of the OB are the endpoint of SVZ-derived cells. In healthy 

animals, a significant increase in the number of DCX+ (Figure 3.8 A; GCL healthy mice: saline 426.4 ± 

22.6, miR-124 NPs 769.5 ± 91.22, *p<0.05, ***p<0.001) and DCX+/BrdU+ (Figure 3.8 B-D; saline 5.0 ± 

0.5, miR-124 NPs 12.0 ± 1.5, *p<0.05, **p<0.01) cells was found in the GCL of mice treated with miR-

124 NPs as compared with saline animals. Then, we found that the number of DCX+ and DCX+/BrdU+ 
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cells was not significantly different between healthy saline and 6-OHDA saline mice (without miR-124 

NPs treatment). Interestingly, miR-124 NPs increased the number of DCX+ (Figure 3.8 A, C, D; GCL 6-

OHDA mice: saline 687.3 ± 61.2, miR-124 NPs 1379.0 ± 101.7) and DCX+/BrdU+ (Figure 3.8 B, E, F; 

GCL 6-OHDA mice: saline 6.5 ± 1.7, miR-124 NPs 14.3 ± 2.3) cells found in the GCL of 6-OHDA-

challenged animals as compared with miR-124 NPs-treated healthy mice. We also observed migrating 

neuroblasts that fully differentiated into mature neurons (NeuN+/BrdU+; Figure 3.9). 

In physiological conditions SVZ neuroblasts migrate through the rostral migratory stream towards 

the OB; however, upon injury these neuroblats can migrate through the lesion to minimize the damage 

(Santos et al. 2012b). Accordingly, some proliferating neuroblasts (DCX+/BrdU+) as well as mature 

neurons (NeuN+/BrdU+; Figure 3.10 A-C) were found in the striatum of 6-OHDA-challenged mice, 

demonstrating that dopaminergic depletion per se activated endogenous brain repair mechanisms. 

Importantly, miR-124 NPs further increased the number of mature neurons found in the lesioned striatum 

of 6-OHDA-challenged mice (Figure 3.10 A-C). As expected, the levels of NeuN+/BrdU+ cells in the 

striatum were almost inexistent in healthy mice. 

To unveil if our treatment has any impact into the amelioration of PD symptoms in the 6-OHDA-

challenged mice we performed a behavioral analysis based on the apomorphine-rotation test (Figure 

3.9 D), a classical test used to characterize PD lesion extent and therapeutic effects. Two weeks after 

the stereotaxic injections, apomorphine was administrated subcutaneously and rotation to the 

contralateral or ipsilateral side registered for 45 min. As expected, healthy mice, both saline and miR-

124 NPs-treated mice, exhibited a net rotation near zero, while 6-OHDA-challenged saline mice 

presented a significant increase in the net contralateral rotations that was reversed at some extent in 

miR-124 NPs-treated mice (Figure 3.10 D; 6-OHDA mice: 100.0 ± 4.9, miR-124 NPs 33.6 ± 22.4, *P < 

0.05, #P < 0.05). Although any significant differences were found in the levels of dopaminergic neurons 

in the SN (saline 33.3 ± 1.5, miR-124 NPs 28.9 ± 3.4) and in the amount of dopaminergic fibers in the 

striatum of 6-OHDA-challenged mice (percentage of area occupied by tyrosine hydroxylase fibers: 

saline 12.2 ± 1.2; miR-124 NPs 16.2 ± 7.1), the boost of neurogenesis caused by our formulation seems 

to partly rescue the motor impairments of 6-OHDA-challenged mice. 
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Figure 3.1015miR-124 NPs induce integration of mature neurons into the lesioned striatum of 6-OHDA-
challenged mice and ameliorate the PD phenotype. 
(A) Bar graph depict the effect of miR-124 NPs on the total number of NeuN+/BrdU+ cells found in healthy or 6-
OHDA-challenged mice. (B, C) Representative confocal digital images of BrdU (green), Hoechst (blue) and NeuN 
(red) staining observed in the striatum of 6-OHDA-challenged mice (saline (B) or miR-124 NPs (C). Scale bar: 20 
µm; white arrows highlight NeuN+/BrdU+ cells. (D) Bar graph illustrates the net rotation to the contralateral side of 
healthy or 6-OHDA-challenged mice. Data are expressed as mean ± SEM (n=4-6 mice) #P<0.05, **P < 0.01, ***P 
< 0.001 using Bonferroni's multiple comparison test. (D) Results are set to 100%; # displays the difference between 
6-OHDA-lesioned saline and miR-124 NPs mice. Abbreviations: 6-OHDA, 6-hydroxidopamine; BrdU, 5-bromo-2'-
deoxyuridine; NeuN, neuronal nuclei; NPs, nanoparticles; PD, Parkinson’s disease. 

 

3.3 Discussion 
In this study, we unveil the effect of miR-124 NPs as a possible therapeutic strategy to improve PD 

outcome in 6-OHDA mice. In vitro, we observed that miR-124 NPs were efficiently internalized by neural 

stem/progenitors cells and neuroblasts and promoted their neuronal commitment and maturation. 

Expression of Sox9 and Jagged1, two miR-124 targets and stemness-related genes, were also 

decreased upon miR-124 NPs treatment. In vivo, and to the best of our knowledge, we were the first 

showing not only the ability of a NP formulation to modulate the endogenous neurogenic niche in PD 

but also its ability to ameliorate PD motor symptoms. Notably, we were able to demonstrate the pro-

neurogenic potential of miR-124 NPs both in physiologic conditions and in a pre-clinical mouse model 

for PD.   
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miRNA-based therapies have been emerging in the last few years. Indeed, some clinical trials using 

miRNA-based therapies are being performed (e.g. MRX34 from Mirna Therapeutics) (Wahid et al. 2014). 

Nevertheless, one of the major concerns in the translation of miRNA-based therapies to the clinic is the 

efficient delivery of these molecules into cells. The physicochemical properties of miRNA (hydrophilic 

nature and negative charge) as well as their easy cleavage by nucleases make the transfection 

efficiency a challenge by itself (Guzman-Villanueva et al. 2012; Chen et al. 2015). Primary SVZ cell 

cultures contain a mixture of stem (type B cells) and progenitor cells (type C cells) able to proliferate 

and generate neurons and glial cells (Santos et al. 2012b). In this study, we showed that our NP 

formulation is able to efficiently protect and deliver miRNA into SVZ cells, specifically into 

stem/progenitor and immature cells, the cell population that can differentiate into mature neurons in 

response to increased levels of miR-124. In fact, we showed recently that the same NP formulation was 

able to rapidly release miRNA in human umbilical vein endothelial cells (HUVEC), with only 50% of miR-

Dy547 co-localizing with FITC-NPs at 24 h post-transfection (Gomes et al. 2013). Moreover, the 

retention of about 30% of NPs or miR-Dy547 within the endolysossomal compartments was associated 

with the ability of the NP formulation to present miRNA to the RNA-induced silencing complex (miRISC) 

machinery. This characteristic culminated in a higher biologic effect than the commercial transfection 

system SIPORT, either in normoxia or hypoxia conditions (Gomes et al. 2013). miR-124 NPs did not 

cause any toxic effect in the SVZ cells at the concentration used – 1 μg/mL – neither in terms of 

apoptosis nor in terms of necrosis/late apoptosis.  Besides, our polymeric NP formulation can be traced 

by 19F MRI technique due to the presence of a nontoxic fluorine compound – PFCE (Gomes et al. 2013). 

The theranostic feature of our NPs makes it an attractive model to future clinical studies and an 

alternative to the NPs being currently used for MRI clinical application, such as superparamagnetic iron 

oxide NPs. Other important feature is the use of Food and Drug Administration (FDA)-approved 

materials in its composition (Gomes et al. 2013), which can be engineered in terms of surface ligands 

making its delivery more specific and facilitating the translation to the clinic. Altogether, the NP 

formulation developed by us can overcome issues related with safety and traceability that other miRNA-

delivery agents such as viral vectors and liposomes cannot (Guzman-Villanueva et al. 2012; Chen et al. 

2015).  

Herein, we also showed that miR-124 NPs favor neuroblast proliferation while decreasing the 

proliferation of astrocytic-like cells. In accordance, others have showed that viral overexpression of miR-

124 is able to promote the commitment of type C progenitor cells towards a neuronal fate while reducing 

the stem/progenitor cell pool (Cheng et al. 2009; Akerblom et al. 2012). In physiological conditions, the 

expression of miR-124 is also increased during the transition from progenitors towards mature neuronal 

cells (Cheng et al. 2009; Akerblom et al. 2012). As hypothesized by us, our formulation was able to 

efficiently increase neuronal differentiation as compared with control cultures while it slight reduce the 

astrocytic population and maintain the oligodendrocyte population. In accordance, Akerblom and 

colleagues reported an increased number of astrocytes after miR-124 inhibition (Akerblom et al. 2012) 

and Neo and colleagues showed that miR-124 was able to control the choice between neuronal or 

astrocytic differentiation (Neo et al. 2014). 
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miR-124 targets include several non-neuronal-related genes including Sox9 (Notch downstream 

effector involved in glial fate specification and in the maintenance of stem cells in an undifferentiated 

state) (Stolt et al. 2003; Cheng et al. 2009; Åkerblom and Jakobsson 2014) and jagged1 (Notch1 ligand 

involved in stem cell self-renewal) (Nyfeler et al. 2005; Cheng et al. 2009; Åkerblom and Jakobsson 

2014), among others. We observed that miR-124 NPs were able to reduce both mRNA and protein 

levels of Sox9 and Jag1, indicating a role of these miR-124 targets in the robust enhancement of 

neurogenesis.  

Axon formation and neurite outgrowth are essential processes for the maturation and integration of 

newborn neurons; these processes are dependent on JNK pathway activation (Oliva et al. 2006). We 

demonstrated that miR-124 NPs are able to promote axonogenesis by increasing both the number of 

ramifications and length of P-JNK positive neuritis. JNK can phosphorylate and activate several 

transcription factors in the nucleus, including c-Jun, which may transduce cell death signals (Weston 

2002; Varfolomeev and Ashkenazi 2004; Bode and Dong 2007). However, P-JNK immunoreactivity was 

localized in Tau+ axons, but not in the nucleus, suggesting that miR-124 NPs promote axonogenesis 

instead of inducing apoptosis. Additionally, neither apoptosis nor late-apoptosis/necrosis was induced 

by 1 µg/mL miR-124 NPs. Indeed, growing literature supports a role of JNK in cell proliferation, survival, 

and differentiation. For instance, it was shown that JNK1 and the JNK pathway-specific scaffold protein, 

JSAP1, promote neural differentiation of embryonic stem cells (Xu et al. 2003; Amura et al. 2005). 

Activated JNK may also foster axonogenesis and neuronal polarization by targeting cytoskeletal 

proteins, such as the Tau protein (Yoshida et al. 2004; Oliva et al. 2006). Our results are also in 

accordance with a previous report showing that miR-124 is able to control neurite outgrowth during 

neuronal differentiation presumably by regulating cytoskeleton proteins (Yu et al. 2008). Additionally, it 

has been shown by others that miR-124 promotes neurite elongation in human neuroblastoma and 

mouse P19 cell lines by repressing Rho-associated coiled-coil forming protein kinase 1 (ROCK1), an 

upstream repressor of the phosphoinositide 3-kinase (PI3K)/Akt pathway (Gu et al. 2014). In sum, the 

activation of the SAPK/JNK pathway found in Tau-expressing axons suggests that miR-124 NPs 

enhance axonogenesis and neuronal maturation in SVZ cells. 

In vivo we proved that miR-Dy547 FITC-NPs injected into the lateral ventricle could reach and be 

internalized by SVZ cells. This interaction could occur through direct interaction with type B cells that 

project a cilium into the ventricle (Santos et al. 2012b) or by paracrine effect via ependymal cells. After, 

the effects of miR-124 NPs in a 6-OHDA-based pre-clinical mouse model for PD was assessed by 

double stereotaxic injections to deliver 6-OHDA into the right striatum and NPs into the right lateral 

ventricle.  

Under physiologic conditions SVZ-derived neuroblasts migrate towards the GCL and GL of the OB, 

where they integrate as mature interneurons (Ming and Song 2011). However, neurogenesis rate may 

fluctuate in response to brain injury or degeneration. Previous reports showed that miR-124 

overexpression promotes neurogenesis and decreases SVZ proliferation in physiological conditions. 

Moreover, it does not interfere with migration nor OB integration (Cheng et al. 2009; Akerblom et al. 

2012), but it endorses a preferential integration of new neurons into the GCL rather than the GL 

(Akerblom et al. 2012). Accordingly, we showed that a single intracerebroventricular administration of 
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miR-124 NPs is able to modulate SVZ neurogenesis, culminating in the enrichment of new neurons in 

the GCL of the OB. Importantly, migrating neuroblasts that reach the GCL fully differentiated into mature 

neurons. Although we do not know the neuronal phenotype generated by DCX+ neuroblasts found in 

the GCL, we do know that the GCL contains mostly SVZ-derived GABAergic interneurons (Bédard and 

Parent 2004; De Marchis et al. 2004). 

Then, we hypothesized that miR-124 NPs are also able to boost neurogenesis in a mouse model 

of PD. Inconsistent data have been reported over the last years showing decrease, maintenance or 

even increase of neurogenesis in PD models and PD patients, reviewed at (van den Berge et al. 2013). 

The differential activation of dopaminergic receptors in NSCs (Höglinger et al. 2004; Coronas et al. 2004; 

Kippin et al. 2005) together with a high diversity of PD models (transgenic or toxin based models, acute 

or chronic administrations, different dosages and different spatial administration of toxins (Dauer and 

Przedborski 2003) may explain distinct outcomes. Having in mind these limitations, herein we showed 

that the 6-OHDA mouse model for PD developed by us is in accordance with the reports showing 

impaired SVZ neurogenesis. Some reports showed that injection of 6-OHDA in mice led to a reduction 

in SVZ proliferation (Baker et al. 2004; Sui et al. 2012), yet the levels of neuroblasts in SVZ and RMS 

were not affected and a higher survival of neurons in the OB was detected (Sui et al. 2012; Fricke et al. 

2016). We also observed a reduction in SVZ proliferation caused by 6-OHDA that did not interfere with 

the number of DCX+ cells at the SVZ, nor with the migration or OB integration. Nevertheless, more 

studies are needed to hamper our knowledge regarding the neurogenesis process in PD to improve 

future therapeutic regenerative strategies. 

Even in pathological conditions, a single dose of miR-124 NPs was able to efficiently increase the 

number of migrating neuroblasts reaching the GCL to levels higher than the ones obtained when miR-

124 NPs were administered in healthy animals. Importantly, miR-124 NPs potentiated the migration of 

SVZ-derived neurons towards the striatal damaged area. The above-mentioned alterations culminated 

with the amelioration of the behavior of PD mice treated with miR-124 NPs, seen by the apomorphine-

induced rotation test. For this behavior analysis we took advantage of the  side-biased motor 

impairments obtain from unilateral injection of 6-OHDA to induce a PD mouse models (Ungerstedt and 

Arbuthnott 1970; Iancu et al. 2005). Apomorphine is a dopamine receptor agonist that at low doses 

causes contralateral turning by stimulating both supersensitive D1 and D2 receptors preferentially on 

the denervated side of mice, allowing not only to characterize lesion extension but also to detect 

therapeutic effects (Millan et al. 2002). As so, we did observe a significant decrease of the net 

contralateral rotation induced by the apomorphine of 6-OHDA-challenged mice treated with miR-124 

NPs when compared with saline, despite the levels of dopaminergic neurons in the SN of 6-OHDA-

challenged mice were similar between the two groups. We anticipate that the higher levels of new 

neurons found in the striatum of 6-OHDA-challenged miR-124 NPs-treated mice may contribute to the 

recovery outcome.  

 

3.4 Conclusions 
In sum, we proved that the uptake of miR-124 NPs by SVZ stem/progenitor cells resulted in the 

repression of Sox9 and Jagged1 proteins and the activation of SAPK/JNK pathway, promoting an 
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increase in neurogenesis and axonogenesis. In vivo, a single administration of a small amount of miR-

124 (0.5 pmol) delivered by our NP formulation increased the number of migrating SVZ-derived 

neuroblasts that reached the GCL of the OB, both in healthy and a PD mouse model. Importantly, miR-

124 NPs also potentiated the migration of SVZ-derived neurons into the 6-OHDA lesioned striatum. The 

formulation promoted not only neurogenesis at the SVZ-OB axis but also the migration and maturation 

of new neurons into the lesioned striatum, indicating its value as a strategy to improve brain repair for 

PD. Moreover, our formulation also leads to motor amelioration of the PD symptoms found in 6-OHDA-

challenged mice (see Figure 3.11 for a summary of the results obtained). As so, evidence of behavior 

improvement in pre-clinical models of PD can open new avenues in the development of novel 

therapeutic approaches. The systemic delivery of miR-124 NPs by intravenous or intraperitoneal 

injections should be considered in future studies to circumvent the need of an invasive stereotaxic 

surgery.  

Figure 3.1116miR-124 loaded nanoparticles (miR-124 NPs) boost neuronal differentiation of neural 
stem/progenitors cells (NSPCs) from the subventricular zone (SVZ) in vitro and in vivo, ultimately leading 
to motor symptoms amelioration in a Parkinson’s disease (PD) mice model.  
Left panel (In vitro): SVZ NSPCs cultures treated with miR-124 NPs showed a shift from glial (Ki67+/GFAP+) to a 
neuronal fate (Ki67+/DCX+) culminating in a robust enhancement in the number of mature neurons (NeuN+) and a 
slight decrease of astrocytes (GFAP+). This neurogenic shift seems to be related with the downregulation of two 
miR-124 targets Sox9 and Jagged1. Right panel (In vivo): miR-124 NPs were injected in the lateral ventricles of 
healthy and 6-OHDA-challenged mice followed by intraperitoneal administration of BrdU. The number of 
proliferating neuroblats (DCX+/BrdU+) in the olfactory bulb, the end-point of the SVZ-derived neuroblasts, was 
increased both in healthy and in 6-OHDA-challenged mice when compared with the saline counterparts. Moreover, 
levels of new neurons (NeuN+/BrdU+) found in the 6-OHDA-lesioned striatum were significantly increased by miR-
124 NPs. Importantly, this enhancement of neurogenesis is accompanied by an amelioration of PD motor 
symptoms. In particular, 6-OHDA-challenged mice treated with miR-124 NPs showed a reduction in the net 
contralateral rotations upon subcutaneous administration of apomorphine. Abbreviations: 6-OHDA, 6-
hydroxidopamine; BrdU, 5-bromo-2'-deoxyuridine; CL, contralateral side; DCX, doublecortin; GFAP, glial fibrillary 
acidic protein; NeuN, neuronal nuclei; OB, olfactory bulb; NPs, nanoparticles; PD, Parkinson’s disease; s.c., 
subcutaneous. 
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4.1 Introduction 
After stroke, the adult brain attempts to compensate lost function by reorganizing itself, an action 

that involves multiple interconnected mechanisms such as cell genesis, astrogliosis, inflammation and 

neuronal plasticity. The proliferation and differentiation of cells derived from neural stem cells (NSCs) 

may replace lost neurons and thereby contribute to improve functional deficits (Lagace 2012; Lindvall 

and Kokaia 2015; Marlier et al. 2015). In addition, inflammatory cascades, either detrimental or 

beneficial, significantly contribute to acute tissue demise. However, an increased activation of immune 

cells as well as inflammatory molecules can be observed weeks after the insult and may contribute to 

restoration of brain function (Kuric and Ruscher 2014). Interestingly, therapeutic experimental 

approaches targeting detrimental inflammatory cascades have been translated into clinical trials aiming 

at improving neurological outcome of stroke patients, reviewed at (Lakhan et al. 2009; Simats et al. 

2016).  

MicroRNAs (miRNA or miR) are small endogenous, non-coding RNAs able to regulate hundreds of 

genes at the post-transcriptional level by inhibiting mRNA translation or inducing mRNA degradation 

(Bartel 2004). Previous reports showed that miR-124 levels were decreased in neural progenitor cells 

of the subventricular zone (SVZ) and in the ischemic core (Liu et al. 2011; Sun et al. 2013a), but seemed 

to be elevated in the plasma of rodents subjected to permanent occlusion of the middle cerebral artery 

(MCAO) (Laterza et al. 2009; Weng et al. 2011). In stroke patients, downregulation of plasma levels of 

miR-124 within the first 24 h was negatively associated with infarct size (Liu et al. 2015). In contrast, 

another study showed increased plasma levels of miR-124 and those were correlated with higher 

mortality during the first 3 months after stroke and a worse outcome based on post-stroke modified 

Rankin Score (mRS) (Rainer et al. 2016). In stroke models, overexpression of miR-124 prior to stroke 

decreased infarct volume, reduced microglial activation and improved neurogenesis via ubiquitin-

specific protease (Usp)14-dependent REST degradation (Zhao et al. 2010; Doeppner et al. 2013). In 

addition to protective effects, injection of liposomated miR-124 into the striatum of mice two days after 

transient MCAO promoted an anti-inflammatory state (M2 state) of microglia/macrophages and 

conversely reduced their pro-inflammatory state (M1 state), which correlated with a better functional 

outcome during the first week after stroke onset (Hamzei Taj et al. 2016b; Hamzei Taj et al. 2016a). In 

contrast, others have demonstrated that downregulation of miR-124 resulted in lower infarct volumes 

while no changes in terms of infarct volumes have been observed after overexpression of miR-124 (Liu 

et al. 2013; Zhu et al. 2014). 

MicroRNAs are small molecules with short half-life and poor stability. To overcome this issue we 

have developed ~210 nm-size polymeric NPs with a fluorine compound that can be tracked by fluorine 

(19F) magnetic resonance imaging (MRI) (Gomes et al. 2013). This system has already proven efficacy 

in miRNA delivery into cells both in vitro and in vivo. For example, we demonstrated, using this 

formulation, that intracerebroventricular delivery of miR-124-loaded NPs (miR-124 NPs) promotes SVZ 

neurogenesis in mice both in physiological conditions and after 6-hydroxydopamine (6-OHDA) lesions. 

We have also shown that administration of miR-124 NPs increased the number of new neurons in the 

lesioned area associated with amelioration of Parkinson’s disease-related motor deficits (Chapter 3).  
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The present study has been conducted to evaluate if exposure of miR-124 NPs affects survival and 

differentiation of SVZ derived NSCs after exposure to oxygen and glucose deprivation (OGD). Positive 

results from these experiments prompted us to hypothesize that systemic administration of miR-124 

affects stroke outcome measures, namely neurological functions during the first 14 days after 

photothrombotic stroke (PT). Moreover, we sought to identify the role of miR-124 on post-stroke 

inflammatory response and neurogenesis. 

 

4.2. Results 

4.2.1 miR-124 NPs protect SVZ cells and stimulate their 

differentiation after OGD 
SVZ cells have been isolated and grown in vitro as neurospheres (cell suspensions) that are mostly 

stem/progenitors cells. A polymeric NP formulation was used as a carrier to deliver miR-124 into SVZ 

cells. These NPs have a MRI tracer (perfluoro-1,5-crown ether) in their core and are mainly constituted 

of a polymer – PLGA – that is coated with a cationic agent, protamine sulfate, to allow the complexation 

of negatively charged miRNA molecules. Based on our previous studies demonstrating that 1 µg/mL of 

NPs complexed with 200 nM (50 pmol) of miR-124 induced neuronal differentiation of SVZ cells in vitro 

without cytotoxic effects (Chapter 3), we applied these conditions to evaluate if miR-124 NPs have a 

beneficial effect on SVZ cells exposed to a combined oxygen and glucose deprivation. SVZ cultures 

obtained from post-natal C57BL/6 mice were exposed to OGD for 1 h followed by a reoxygenation period 

of 24 h with either fresh medium (non-treated cells) or fresh medium containing miR-124 NPs or 

scramble-miR NPs or void NPs. Control cells were not subjected to OGD (normoxic non-OGD control). 

Exposure to OGD for 1 h led to a significant 1.7-fold increase in the cell death of SVZ cultures, being 

this effect reverted in cultures transfected with miR-124 NPs after the OGD insult (Figure 4.1 B; non-

control OGD 8.8 ± 0.8, non-treated cells 1 h OGD 15.4 ± 1.2, miR-124 NPs 1 h OGD 9.1 ± 0.7, ***P < 

0.001, ###P < 0.001). To measure cell proliferation 5-bromo-2'-deoxyuridine (BrdU) was added to SVZ 

cells for the last 4 h of the 48 h post-OGD incubation period. BrdU is a thymidine analog that incorporates 

into the DNA of cells during the S phase of the mitotic process. The total levels of BrdU+ cells were not 

altered by the exposure to OGD per se nor by the presence of miR-124 NPs after OGD (Figure 4.1 C). 

Finally, we studied the miR-124 NPs neurogenic potential after OGD by staining the cultures with the 

mature neuronal marker NeuN (neuronal nuclei; Figure 4.1 D, E). Surprisingly, OGD exposure did not 

alter the levels of neurons obtained from a SVZ cultures when compared with non-OGD basal 

conditions. Nevertheless, the presence of miR-124 NPs after the OGD insult resulted in a 1.6-fold 

increase in the NeuN+ cells compared with non-OGD control (Figure 4.1 D, E; non-OGD control 23.0 ± 

3.1, miR-124 NPs 1h OGD 37.7 ± 1.1, ***P < 0.001). These results indicate that miR-124 NPs may not 

only have a neurogenic potential but are also neuroprotective after OGD in vitro. 
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Figure 4.117Effect of miR-124 NPs treatment on SVZ cell cultures after OGD.  
(A) Experimental design of in vitro experiments. NSCs where isolated from the SVZ of C57BL/6 1 to 3 days-old 
pups and grown in suspension for 5 or 6 days to obtain neurospheres. Neurospheres were seeded and allowed to 
grow as monolayer for 2 days before being stimulated with OGD for 1 h. Cells were then incubated with void NPs, 
scramble-miR NPs or miR-124 NPs for 24 h. Cells were maintained in culture according to the parameters 
evaluated: 48 h for cell viability and proliferation assays and 7 days for neuronal differentiation. (B) Cell viability 
assessed by incorporation of propidium iodide (PI) into dead cells and presented as percentage of PI+ cells in 
cultures stimulated with OGD and either non-treated or treated with void NPs, scramble-miR NPs or miR-124 NPs, 
respectively. PI+ cells quantified in normoxic cultures (non-OGD control) served as controls. (C) Proliferation of SVZ 
cultures after OGD followed by different treatments. Graphs show the percentage of BrdU+ cells of total cell counts. 
(D) Neuronal differentiation of the cultures measured by the percentage of NeuN+ cells in NSC monolayer cultures. 
(E) Representative fluorescence photomicrographs of NeuN immunostainings in non-OGD control cultures, OGD 
non-treated and OGD miR-124 NPs treated cultures 7 days after treatment. Nuclei are shown in blue and NeuN in 
red. Scale bar: 20 µm. Data are expressed as means ± SEM (n = 3). Statistical analysis was performed using one-
way ANOVA and Tukey multiple comparison. ***P < 0.001 versus non-OGD control; ###P < 0.001 versus 1h OGD 
non-treated cell condition. Abbreviations: NeuN, neuronal nuclei; NPs, nanoparticles; NSCs, neural stem cells; 
OGD, oxygen and glucose deprivation; SVZ, subventricular zone. 
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4.2.2 Treatment with miR-124 NPs does not affect lesion volume 

and functional outcome after photothrombosis 
Next, we aimed at evaluating if administration of miR-124 NPs could modulate processes in the 

post-ischemic brain contributing to recovery of lost neurological function. For that, we evaluated 

sensorimotor function, the inflammatory response (pro-inflammatory cytokine levels in the ischemic 

territory and periphery) and neurogenesis (doublecortin (DCX) and BrdU cell number in SVZ and peri-

infarcted area) in mice subjected to PT or sham operation. Behavioral tests were performed on day -1 

and day 2, day 7 and day 14 after surgery. Following PT or sham surgery, the inflammatory response 

was studied on day 2 post-stroke while neurogenesis was evaluated on day 14 in mice that were 

intravenously injected with miR-124 NPs, scramble-miR NPs, void NPs or saline, respectively (Figure 

4.2 A).  

In pilot experiments, we observed that NPs were able to penetrate into the brain parenchyma by 

injecting 1 mg of fluorescein isothiocyanate (FITC)-NPs to mice immediately after PT. Co-staining of the 

FITC-NPs with the marker for endothelial cells CD31 clearly showed a wide distribution of FITC 

immunoreactivity throughout the brain parenchyma 4 h after intravenous injection. Signals were 

observed in brain microvessels as expected indicating that there was not a complete penetration of NPs 

(Figure 4.2 B). Importantly, FITC-NPs were found in the striatum and cortex, including the peri-infarcted 

area; in addition, significant accumulation of FITC-NPs was observed in white mater, namely the corpus 

callosum and taken up by astrocytes (Figure 4.2 C) and neurons (Figure 4.2 D). Administration of higher 

dosages (5 and 10 mg) of FITC-NPs showed similar results at 4 and 24 h following intravenous injection 

(data not shown). 

Evaluation of infarct volumes revealed no differences between all treatment groups: PT saline 0.9 ± 0.1; 

PT void NPs 0.8 ± 0.2; PT scramble-miR NPs 0.7 ± 0.1; PT miR-124 NPs 0.8 ± 0.1 (Figure 4.2 E).  As 

shown in Figure 4.2 F representative coronal sections show similar infarct areas in mice treated either 

with saline or miR-124 NPs, indicating that miR-124 NPs do not contribute to a reduction of the ischemic 

lesion. From these results, we can exclude that differences in lesion volumes did not influence outcome 

measures. 

Neurological deficits and their recovery were assessed by two independent behavioral tests: the 

rotating pole test (Figure 4.3 A-F) and the grid test (Figure 4.3 G, H). After PT, mice showed neurological 

deficits that were not evident before PT. Prior to PT, all animals performed the rotating pole test with a 

median of 4 points (Figure 4.3 D). On day 2, the majority of the animals could not traverse the pole, the 

median throughout the groups was 2 (Figure 4.3 E). No difference was observed comparing the four 

treatment groups. A slight but non-significant recovery has been observed 14 days after PT due to 

spontaneous recovery. Similar to day 2, treatment with miR-124 NPs did not improve motor function in 

mice subjected to PT (Figure 4.3 F) compared to the non-treated (saline) mice subjected to PT. Likewise, 

mice subjected to PT made a significant higher number of foot faults in the grid test. Also here, treatment 

did not affect the performance at any timepoint measured (Figure 4.3 H). In both behavioral tests, sham-

operated mice did not show deficits. They had a similar performance throughout the study (Figure 4.3 

A-C, G). 
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Figure 4.218miR-124 NPs do not affect infarct volume of PT mice. A 

(A) Experimental design for the in vivo experiments. Before entering the study, mice were assigned to surgery and 
treatment groups subjecting them either to sham surgery or PT. Each group was then subdivided into 4 subgroups 
in which mice were treated with an intravenous injection in the tail vein of saline, void NPs, scramble-miR NPs or 
miR-124 NPs (total of 8 different groups) immediately after surgery. Pro-inflammatory cytokines from the ischemic 
territory (infarct core and adjacent peri-infarct tissue) and serum have been measured on day 2 after surgery. Infarct 
volume and neurogenesis have been studied 14 days after surgery. These mice received BrdU injections (every 12 
h) during the first 3 days after surgery. After a training period, neurological function was tested on days -1, 2, 7 and 
14, respectively. (B, C, D) Representative photomicrographs of the peri-infarct area 4 h after intravenous injection 
of 1 mg of FITC-NPs (green) and stained against the nuclear marker Hoechst (blue) and either the endothelial 
marker CD31 (red) (B), or the astrocyte marker GFAP (red) (C), or the neuronal marker NeuN (red) (D). Scale bar 
50 µm (B) or 20 µm (C, D). (E) Infarct volume (in mm3) in the 4 different groups following PT. Data are expressed 
as medians with the 1st and 3rd quartile with the following number of animals included in each experimental group: 
PT saline n = 6, PT void NPs n = 6, PT scramble-miR NPs n = 8, PT miR-124 NPs n = 8. F) Representative images 
of the infarct area (white) in coronal sections stained with NeuN of mice treated with saline (left) or miR-124 NPs 
(right). Abbreviations: BrdU, 5-bromo-2'-deoxyuridine; CL, contralateral hemisphere; FITC, fluorescein 
isothiocyanate; GFAP, glial fibrillary acidic protein; IL, ischemic hemisphere; NeuN, neuronal nuclei; NPs, 
nanoparticles; PT, photothrombosis. 
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Figure 4.319miR-124 does not affect neurological function after photothrombosis. 

(A-C) Rotating pole test scores of mice subjected to sham surgery and treated either with saline, void NPs, 
scramble-miR NPs or miR-124 NPs administered intravenously immediately after PT. (D-F) Rotating pole test 
scores from mice subjected to PT and treated with saline, void NPs, scramble-miR NPs or miR-124 NPs 
administered intravenously immediately after PT. Results in (A-F) show the performance at 10 rotations of the pole 
to the left 2 days and 14 days after the insult, respectively. (G, H) Grid test presenting the number of foot faults of 
the left side paws traversing a 60 cm long grid as indicated in the Material and methods section (Chapter 2). Sham-
operated mice (G) and mice subjected to PT (H) of the above-mentioned treatment groups were evaluated at days 
-1 or 0, 2, 7 and 14. All data are represented as medians with the 1st and 3rd quartile with 2 to 8 animals per group: 
sham saline n = 3, sham void NPs n = 3, sham scramble-miR NPs n = 2, sham miR-124 NPs n = 3, PT saline n = 
6, PT void NPs n = 6, PT scramble-miR NPs n = 7, PT miR-124 NPs n = 8. Abbreviations: NPs, nanoparticles; PT, 
photothrombosis. 
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4.2.3 SVZ Neurogenesis after miR-124 NPs treatment in PT mice 
To evaluate neurogenesis, mice were injected intraperitoneally with BrdU for 3 days after surgery 

(every 12 h, Figure 4.2 A) in order to assess dividing cells. The number of cells positive for DCX (DCX+; 

marker of neuroblasts), BrdU+ and double positive for DCX and BrdU (DCX+/BrdU+) were evaluated in 

the SVZ (Figure 4.4 A-E) and peri-infarct area (Figure 4.3 A, F-H). In the SVZ, two weeks after surgery 

and miR-124 NPs injection, we did not observe any differences between the number of DCX+ cells in 

the PT animals when compared with sham-operated mice nor among the different treatment groups 

both in PT and sham animals (Figure 4.4 C). We observed that PT animals tend to have slightly higher 

numbers of BrdU+ cells compared to sham-operated animals. Hence, treatment with miR-124 NPs did 

not change the total number of BrdU stained cells when compared with saline, void NPs or scramble-

miR NPs, respectively (Figure 4.4 D). This increase, however, can be explained by higher levels of non-

neuronal cells that may proliferate, as well as cell death in response to the damage caused by the PT. 

Likewise the number of DCX+ cells and DCX+/BrdU+ cells were also not altered among the eight 

experimental groups (Figure 4.4 B, E). To investigate the number of cells that potentially migrated from 

the SVZ to the lesion area, a region of interest was created located above the SVZ and underneath the 

infarcted area (Figure 4.4 A), or the equivalent region in sham animals, was evaluated. Sham mice did 

not present any DCX+ cells and the number of BrdU+ cells was negligible (Sham saline 1.7 ± 0.9, Sham 

void NPs 1.3 ± 0.9, Sham scramble-miR NPs 2.0 ± 2.0, Sham miR-124 NPs 2.3 ± 2.3). Regarding the 

PT mice, the number of BrdU+ cells was elevated in all the groups independent of the treatment (Figure 

4.4 G; PT saline 91.3 ± 11.9, PT void NPs 94.2 ± 8.8, PT scramble-miR 95.3 ± 8.9, PT miR-124 NPs 

94.8 ± 6.9). Despite some reports suggesting the migration of SVZ neuroblasts into the peri-infarcted 

area (Osman et al. 2011; Diederich et al. 2012) we found very few DCX+ cells in this area (Figure 4.4 H; 

PT saline 0.0 ± 0.0, PT void NPs 1.2 ± 0.8, PT scramble-miR NPs 0.8 ± 0.5, PT miR-124 NPs 0.4 ± 0.4). 

From these results, we conclude that stroke induced neurogenesis does not exist in our 

experimental conditions and that a single intravenous injection of miR-124 NPs was unable to elicit an 

increase in SVZ neurogenesis neither in the healthy nor in post-stroke brain. 
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Figure 4.420Neurogenesis is not affected by miR-124 NPs treatment.  
(A) Illustration of a coronal slice of the mouse brain representing the areas used to evaluate neurogenesis in the 
SVZ (red rectangle 1) and the peri-infarct area (red rectangle 2). (B) Representative confocal images of BrdU 
(green) and DCX (red) staining observed in the SVZ of sham-operated and saline-treated animal, a mouse 
subjected to PT and saline-treated and a mouse subjected to PT miR-124 NPs-treated, respectively. Scale bar: 20 
µm. Total number of (C, F) DCX+ cells, (D, G) BrdU+ cells and (E, H) DCX+/BrdU+ cells in the SVZ (C-E) and peri-
infarct area (F-H) of mice after sham surgery or PT and indicated treatment conditions. All data are expressed as 
medians with the 1st and 3rd quartile values, with the following number of animals included in each experimental 
group: sham saline n = 3, sham void NPs n = 3, sham scramble-miR NPs n = 2, sham miR-124 NPs n = 3, PT 
saline n = 6, PT void NPs n = 6, PT scramble-miR NPs n = 8, PT miR-124 NPs n = 8. Abbreviations: BrdU, 5-bromo-
2'-deoxyuridine; DCX, doublecortin; NPs, nanoparticles; PT, photothrombosis; SVZ, subventricular zone. 

 

4.2.4 Effects of miR-124 NPs on the post-ischemic inflammatory 

response 
miR-124 is predicted to attenuate inflammatory pathways, since a reduction in the miR-124 is 

needed to obtain a reactive microglial state (Freilich et al. 2013). We measured the levels of pro-

inflammatory cytokines, namely interferon-gamma (IFNγ), interleukin-1beta (IL-1β), IL-6 and tumor 

necrosis factor-alpha (TNF-α) 48 h after PT (Figure 4.5). The levels of these four cytokines were 

measured in the ischemic territory (infarct core and peri-infarct area) to evaluate the local inflammatory 

response as well as in the serum of the same mice. In the brain, we found an elevation of all four 
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cytokines after PT compared to sham-operated mice, however, only IL-6 reached statistically significant 

levels. Animals subjected to PT treated with miR-124 NPs showed significantly higher levels of IL-6 

compared to all experimental groups following sham surgery. In addition, the IL-6 levels of miR-124 NPs 

mice after PT were significantly higher compared to all other groups after PT (Figure 4.5 C). Regarding 

the peripheral response, there was no difference between any of the eight experimental groups (Figure 

4.5 E-H), supporting previous studies that a peripheral immune response may be transient and limited 

to the first hours after stroke onset (Chapman et al. 2009; Ruscher et al. 2013). Once again, in contrary 

to our hypothesis treatment with miR-124 NPs did not reduce elevated levels of pro-inflammatory 

cytokines after PT.  

 
Figure 4.521Effects of miR-124 NPs on levels of pro-inflammatory cytokines in the ischemic territory and 
serum.  
(A-D) Levels of IFN-γ, IL-1β, IL-6 and TNF-α in the ischemic territory (infarct core and adjacent peri-infarct tissue) 
2 days following PT. (E-H) Serum levels of the above-mentioned cytokines from the same animals. Data are shown 
as mean ± SEM with the following number of animals included in each experimental group: sham saline n = 3, sham 
void NPs n = 2, sham scramble-miR NPs n = 3, sham miR-124 NPs n = 2, PT saline n = 4, PT void NPs n = 4, PT 
scramble-miR NPs n = 3, PT miR-124 NPs n = 4. ***P < 0.001 versus all experimental groups subjected to sham 
surgery, **P < 0.01 versus all other experimental conditions after PT. Abbreviations: IFNγ interferon-gamma; IL, 
interleukin; NPs, nanoparticles; PT, photothrombosis; TNF-α, tumor necrosis factor-alpha. 

 

4.3 Discussion 
In this study, we investigated the effect of intravenous administration of miR-124 NPs as a possible 

therapeutic strategy to improve stroke outcome following permanent focal ischemia induced by 

photothrombosis. Experiments have been carried out based on in vitro studies showing an increased 

survival and differentiation of NSC following OGD. In contrast to in vitro experiments, administration of 

miR-124 NPs did not affect functional outcome following PT. In particular, we did not observe beneficial 

effects on lesion size, pro-inflammatory molecules or the number of neuronal progenitor cells in the SVZ 

and ischemic territory, respectively. Throughout the discussion, we will elaborate on our findings in the 

context of biological functions of miR-124 on mechanisms relevant for recovery of function after stroke.  
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NSCs are a self-renewing cell population that is also multipotent (Gage 2000). Endogenous NSCs 

participate in neural regeneration after injuries, namely in cerebral ischemia (Macas et al. 2006). 

However, NSCs have a limited repair potential due to low survival and neuronal differentiation. 

Strategies improving NSCs ability to contribute to repair lesioned areas can be seen as a promising tool 

to treat brain pathologies. miR-124 is the most abundant miRNA in the adult brain (Lagos-Quintana et 

al. 2002)  and it is a well described inductor of SVZ neurogenesis with no effects on neuroblast migration 

capability (Cheng et al. 2009; Akerblom et al. 2012). More recently miR-124 has been associated with 

brain pathologies such as stroke, brain tumors and neurodegenerative disorders (Sun et al. 2015b). 

Indeed, we have recently shown that miR-124 might be a good candidate as a novel therapeutic 

molecule, since delivery of this miRNA using NPs led to amelioration of Parkinson’s disease symptoms 

in mice lesioned with 6-OHDA. Treatment resulted in promotion of neurogenesis and the presence of 

new neurons in the lesioned striatum (Chapter 3). Here we showed that SVZ cells, which were exposed 

to OGD, and then treated with miR-124 NPs not only were protected but also more prone to differentiate 

towards a neuronal phenotype. In contrast, we observed a significant decrease of cell viability of control 

cultures exposed to OGD. Also, these cells did not show an alteration in terms of proliferation. This goes 

along with previous studies demonstrating that NSCs cultures exposed to long OGD intervals (> 4 h) 

show increased cell death and a reduction of cell proliferation (Park et al. 2012; Choi et al. 2014; Wang 

et al. 2015b; Bak et al. 2016) while shorter periods promoted NSCs survival (Wang et al. 2015b). 

Obviously, differences in NSCs culture sources and experimental conditions can explain these 

differences and lethal stimuli cause cell death. Importantly, we observed neuroprotection in SVZ cultures 

stimulated with miR-124 NPs after OGD. Moreover, treatment stimulated differentiation of progenitor 

cells. These results prompted us to test the efficacy of miR-124 NPs in vivo in a permanent focal 

photothrombosis mouse model for ischemia.  

Stroke is the leading cause of disability worldwide. Current treatments are limited, only a narrow 

number of patients are eligible for the treatment and not all of these patients benefit from it. To date, for 

the majority of patients there is no and there will be no foreseeable treatment available in the near future. 

Development of new treatments, therefore, is timely. Hence, understanding the complex mechanisms 

contributing to tissue demise and recovery of function remains the first obligatory step in this process. 

We previously have shown that local administration of miR-124 NPs into the lateral ventricles were not 

only efficiently internalized by SVZ cells, but they also modulated SVZ neurogenic potential both in 

physiological and pathological conditions. Since intracerebroventricular injection of drugs is not a viable 

option for the majority of stroke patients, miR-124 NPs were administered systemically. This strategy is 

of higher clinical relevance. One of the major problems with this delivery route is the penetration into 

brain parenchyma through the blood brain barrier (BBB) (Saraiva et al. 2016). Nevertheless, here we 

show the internalization of NPs into brain resident cells. These proof-of-principle experiments 

unequivocally demonstrate the delivery of miR-124 NPs into the post-ischemic brain.  

To reiterate we showed that a single intravenous injection of miR-124 NPs was not only able to 

reach the brain parenchyma of mice subjected to PT, but also was delivered into brain resident cells, 

namely astrocytes and neurons. However, miR-124 NPs did not improve functional outcome after the 
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insult. We observed similar infarct volumes between the experimental groups, which allow us to exclude 

infarct volume as a possible confounding variable for outcome measures, and the total number of 

DCX+/BrdU+ cells was also not altered in the SVZ. In addition, almost none of the DCX+/BrdU+ cells 

were detected in the ischemic core and peri-infarct tissue. Previously, it has been shown that viral 

administration of miR-124 for 21 days prior to MCAO resulted in a decrease of infarct volumes, reduced 

microglial activation and enhanced motor behavior (Doeppner et al. 2013). Neuroprotective effects were 

observed 4 and 8 weeks following transient MCAO being those a result of REST degradation mediated 

by USP-14, a miR-124 target. This study also showed increased neurogenesis in the SVZ (higher levels 

of DCX+/BrdU+ and NeuN+/BrdU+) in miR-124-treated mice (Doeppner et al. 2013). Moreover, local 

injection of miR-124 in the striatum of mice subjected to transient MCAO, two days after stroke, resulted 

in the reduction of the lesion, with higher neuronal survival within the first week after stroke, and was 

also associated with a better functional outcome (Hamzei Taj et al. 2016b).  

On the other hand, infusion of an inhibitor of miR-124 (antagomiR) into the lateral ventricle of rats 

prior to transient MCAO resulted in smaller infarct volumes with a significant reduction of terminal 

deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)+ cells due to the upregulation 

of Ku70, a miR-124 target (Zhu et al. 2014). Another study even reports that intraventricular 

administration of miR-124 in mice immediately after MCAO resulted in a non-significant increase of 

infarct volumes 24 h after stroke. This study also shows that the administration of a miR-124 inhibitor 

reduced the ischemic lesion through upregulation of iASPP, the inhibitory member of the apoptosis-

stimulating proteins of p53 family (Liu et al. 2013). Summarizing these studies in view of our results it 

seems that the route of administration of miR-124 is critical to achieve biological effects of miR-124 in 

the post-ischemic brain. Also, it needs to be considered that at an early time point following an ischemic 

insult the infarct has not been subsided. Therefore, effects of miR-124 on lesion volumes at an early 

stage following stroke i.e. 24 h might be due to effects on multiple processes i.e. brain edema without 

consequences for the final ischemic lesion and function (van der Maten et al. 2017). Also, differences 

in results might be due to different experimental stroke models. With some reservations, it seems that 

miR-124 is rather efficient in transient stroke models than in permanent models. Also, further studies 

need to elucidate the exact role of miR-124 antagonism in the post-ischemic brain. Our results do not 

support our initial hypothesis that miR-124 NPs could improve functional outcome following PT, with no 

changes in behavioral tests observed in this study. 

 

Several processes have been discerned to contribute to brain tissue loss and reorganization of the 

post-ischemic brain including an inflammatory response but also cell genesis (Zhang et al. 2016b). The 

SVZ is the major neurogenic niche of rodents from where newborn neurons can migrate through the 

rostral migratory stream (RMS) towards the olfactory bulb where they differentiate into mature 

interneurons (Ming and Song 2011). DCX, a microtubule binding protein, is expressed in migrating 

neuroblasts and in adulthood it is mostly expressed in the neurogenic regions. Expression of DCX 

seems to be specific of newly generated neurons and does not occur during neuronal regeneration or 

gliogenesis (Nacher et al. 2001; Brown et al. 2003; Couillard-Despres et al. 2005). Moreover, DCX levels 

translate, in an accurate way, neurogenic changes in the SVZ and subgranular zone caused by external 
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cues and/or pathology (Couillard-Despres et al. 2005). The expression of DCX occurs for approximately 

30 days with a maximum expression in the second week, thereafter reducing while NeuN expression 

increases (Brown et al. 2003). As so, DCX is widely accepted has a marker of neurogenesis per se. 

Strategies using expression of DCX and BrdU (administrated after the stimuli) allow a precise evaluation 

of the neurogenic response. Indeed, numerous studies using this strategy present the idea of migrating 

endogenous SVZ derived neurons reaching lesioned brain areas (Diederich et al., 2012; Osman et al., 

2011; Lindvall and Kokaia, 2015). Hence, results have to be interpreted with caution. The actual 

migration process towards lesioned brain areas has not been unequivocally shown yet (Sullivan et al. 

2015). In addition, BrdU incorporation also occurs in dying cells (Taupin 2007; Lehner et al. 2011). Cell 

death after ischemia is obvious and dying BrdU+ cells in the ischemic territory should not be mistaken 

as newly formed neurons. We also found an increased number of BrdU+ cells in the ischemic territory. 

However, almost none of these cells expressed DCX. Likewise, no differences in the number of 

differentiating cells have been found in the SVZ. On the other hand, lack of efficiency might be due to 

dosage, timing and route of administration of miR-124 important for its bioavailability and need. In fact, 

as mentioned before we have observed that a intracerebroventricular injection of miR-124 NPs results 

in enhancement of olfactory bulb neuroblasts under physiological conditions in mice four weeks after 

injection (Chapter 3).  

The inflammatory response is a consequence of stroke and it contains well-orchestrated cascades 

involving resident and peripheral immune cells together with the expression and release of inflammatory 

molecules (Anrather and Iadecola 2016). miR-124 reduction is needed in order to shift the resting state 

of microglia to a reactive state (Freilich et al. 2013). miR-124 seems to be essential for the activation 

and maintenance of the M2 inflammatory state of microglia in the central nervous system, through 

downregulation of the C/EBP-α-PU.1 pathway (Ponomarev et al. 2007; Ponomarev et al. 2011; 

Ponomarev et al. 2013; Veremeyko et al. 2013). Overexpression of miR-124 in a macrophage cell line 

reduced the levels of TNF-α induced by lipopolysaccharide (LPS) via repression of the USP2 and USP14 

(Sun et al. 2016). It may also modulate toll-like receptor (TLR) signaling by targeting proteins such as 

signal transducer and activator of transcription 3 (STAT3), TNF-α converting enzyme (TACE), necrosis 

factor (NF)-κB p65 and TNF receptor-associated factor 6 (TRAF6), culminating in reduction of pro-

inflammatory cytokines (Sun et al. 2013b; Qiu et al. 2015). In addition, miR-124 can mediate the 

cholinergic anti-inflammatory pathway by targeting STAT3 and TACE reducing the release of IL-6 and 

TNF-α (Sun et al. 2013b).  

Similar to other types of injury, injury induced by photothrombosis initiated an inflammatory 

response including the accumulation of immune cells and the release of inflammatory molecules in the 

ischemic territory. This is confirmed in the present study. Importantly, the only pro-inflammatory cytokine 

modulated by miR-124 NPs after PT was IL-6. Elevated levels were exclusively found in miR-124 NPs 

animals following PT suggesting a specific miR-124 mediated effect. This is in contrast to what has been 

observed before and may rather support a pro-inflammatory role of miR-124 as reported in models of 

epilepsy (Brennan et al. 2016). On the other hand, administration of miR-124 to mice subjected to PT 

did not affect the levels of IL-1β, IFNγ and TNF-α. Therefore, it is likely that miR-124 NPs were inefficient 

in modulating the central inflammatory response. Also, no significant peripheral inflammatory response 
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was seen among sham- and PT-operated animals nor among the different treatments. This goes along 

with previous studies questioning a prolonged upregulation of pro-inflammatory cytokines in rodents 

following stroke (Chapman et al. 2009; Ruscher et al. 2013). 

 

Since miR-124 has a short half-life and poor stability in vivo, we developed a NP formulation that 

efficiently complexes and delivers miRNA into cells and that can be tracked non-invasively by 19F MRI 

(Gomes et al. 2013). This overcomes safety issues, such as immunogenicity and oncogenic potential of 

viral vectors (Guzman-Villanueva et al. 2012). Our NP formulation was developed with components that 

had already been approved by the Food and Drug Administration (FDA) as biocompatible in other 

applications. The NPs were also optimized for in vitro delivery of miRNA and in vivo application based 

on local delivery of miRNA or tracking of injected cells previously transfected with NPs (Chapter 

3)(Gomes et al. 2013). In fact, we showed previously that miRNA NPs were efficiently internalized by 

neural/progenitor cells, neuroblasts and endothelial cells. Internalization analysis showed that 24 h after 

transfection both miRNA and NPs could be found throughout the cytoplasm with about 50% of the 

miRNA co-localizing with NPs (Chapter 3)(Gomes et al. 2013). Interesting, at this timepoint around 35% 

of the miRNA were associated with early endosome vesicles, while only 5% were located in late 

endosome and lysosome vesicles. miRNA was also efficiently localized with the Argonaute 2 protein, 

an essential component of the microRNA-mediated silencing complex (miRISC) (Gomes et al. 2013), 

indicating that our formulation allows miRNA release inside the cells and avoids endolysosomal 

degradation. In non-viral delivery systems, such as polymeric NPs, endocytosis is the most common 

mechanism of internalization, with escape of the lysosomal degradation being a major concern in the 

design of these formulations (Liang and W. Lam 2012). It is also generally accepted that miRNA 

released into the cytoplasm is needed in order to be assembled into the miRISC. The mechanism behind 

miRNA escape from the endolysosomal pathway of our formulation was not addressed in this work. 

Nevertheless, we believed that cationic features of NPs helped the release into the cytoplasm, since 

they have the capacity to form transient holes in the membrane due to the proton sponge effect, 

therefore, escaping the endolysosomal pathway (Liang and W. Lam 2012). Another possibility is the 

Ago-chaperone heat shock proteins (HSPs) transportation, namely HSP90 and Hsc70 (important for 

loading miRNA in the miRISC). These proteins can interact with lipid membranes generating ATP-

dependent pathways for cations (Arispe and De Maio 2000; Iwasaki et al. 2010). Notwithstanding, miR-

124 NPs already showed the ability to deliver functional miR-124 into cells both in vitro and in vivo 

(Chapter 3). 

Herein, we did not observe changes in terms of neurogenesis in the SVZ in either sham- or PT-

operated mice treated with miR-124 NPs. This may suggest that only a suboptimal dose of miR-124 

reached the brain parenchyma. Hence, immunofluorescence analysis of NPs and the increase of IL-6 

levels in the post-ischemic brain strongly corroborate penetration of NPs and delivery of miRNA into 

brain cells. Therefore, modifications that improve the blood circulation time, increase cargo protection 

(mainly against RNases), reduce opsonization, decrease peripheral accumulation and enhance delivery 

of miRNA into the brain parenchyma, such as addiction of polyethylene glycol, surfactant agents or even 

a targeting molecule, may increase bioavailability of the miR-124 (Saraiva et al. 2016).  
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4.4. Conclusions 
In the present study, we showed that a single intravenous injection of miR-124 NPs immediately 

after PT does not affect neurological deficits 14 days following the insult. In addition, no effects have 

been observed on the number of neuronal progenitor cells in the subventricular zone and ischemic 

territory despite positive results from in vitro experiments. Further evaluation studies will be required to 

investigate bioavailability of miR-124 NPs in brain parenchyma, the immunogenic role of miR-124 NPs 

and its effect in different rodent stroke models.  
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The discovery of neural stem cells (NSCs) in the adult mammalian brain opened new avenues in 

understanding brain plasticity. Adult neurogenesis seems to be mainly restricted to areas of the brain 

that display a specific microenvironment, being the major neurogenic niche the subventricular zone 

(SVZ). Studies on the composition and function of these neurogenic regions increased our 

understanding about adult neurogenesis and its involvement in brain functions. Remarkably, 

neurogenesis is enhanced in response to brain lesions. The multipotent and self-renewing abilities of 

NSCs together with their ability to integrate pre-established circuits make them good candidates for 

possible interventions in neurodegenerative disorders. Rrecruitment of endogenous NSCs sources to 

the site of lesion may be a good strategy to improve brain repair. Many pro-neurogenic factors have 

been implicated in controlling NSCs activity, including miR-124, extensively described as a pro-

neurogenic molecule. Moreover, recent developments in the field of nanomedicine highlighted 

nanoparticles (NPs) as one of the best options not only to enhance the delivery of drugs into the brain, 

but also to act as scaffolds to improve survival and adaptation of new cells into damaged areas.  

In this work, polymeric NPs to deliver miR-124 were used due to their ability to protect and increase 

miR-124 stability, as well as for their capability to deliver intracellularly higher concentrations of miR-

124. The use of NPs to induce neuronal differentiation of endogenous adult NSCs is relatively recent 

and our laboratory was the first to establish it (Maia et al. 2011; Santos et al. 2012a). However, previous 

formulations could not be tracked in a temporal and spatial frame in living animals and were not used in 

a context of brain pathology. In Chapter 3 we used polymeric NPs that can be tracked non-invasively in 

vivo, by magnetic resonance imaging (MRI), due to the presence of perfluoro-1,5-crown ether (PFCE). 

These NPs have also in its composition poly(lactic acid-co-glycolic acid) (PLGA) and a cationic peptide, 

protamine sulfate that allows an efficient complexation of miRNA (Gomes et al. 2013). It is also important 

to notice that all NPs components were already approved by the Food and Drug Administration (FDA) 

in other applications. This NP formulation was able to efficiently deliver miR-132 into endothelial cells 

that afterwards exerted pro-survival and pro-angiogenic effects in an ischemic limb mouse model 

(Gomes et al. 2013). Herein, we showed that miR-124 NPs promote a robust enrichment in the number 

of mature neurons in SVZ NSCs cultures in vitro, while it decreases the number of astrocytic cells. 

miRNA-loaded NPs were efficiently internalized by cells able to differentiate in response to miR-124 

overexpression such as stem/progenitor and immature cells. miR-124 NPs shift the profile of SVZ NSCs 

cultures from an undifferentiated and/or glial fate into a neuronal commitment fate by targeting Jagged1 

and Sox9 (Nyfeler et al. 2005; Cheng et al. 2009; Åkerblom and Jakobsson 2014). It also enhanced 

axonogenesis a crucial process for the maturation and integration of newborn neurons. Accordingly, 

previous evidence showed that miR-124 overexpression not only promotes a neuronal commitment of 

progenitor cells (Cheng et al. 2009; Akerblom et al. 2012), but also controls cell fate either into neuronal 

or astrocytic differentiation (Neo et al. 2014). In addition, miR-124 enhances axonogenesis by regulating 

cytoskeleton proteins levels (Yu et al. 2008; Gu et al. 2014). In vivo, a single intracerebroventricular 

administration of miR-124 resulted in increased levels of migrating neuroblasts reaching the olfactory 

bulb (OB; the endpoint of SVZ-derived neurons) of healthy and 6-hydroxydopamine-challenged mice (6-

OHDA; Parkinson’s disease (PD) mouse model), where they fully differentiated into mature neurons. 

miR-124-induced neurogenesis at the SVZ-OB axis was most probably due to the division of 
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stem/progenitor cells into neuronal progenitors (doublecortin/5-bromo-2'-deoxyuridine-double positive 

cells; DCX+/BrdU+), but also from neuronal commitment of NSCs that have not undergone mitosis, or 

from late dividing cells generated after the BrdU pulse (total DCX+ cells). Based on our in vitro and in 

vivo data, we may also speculate that miR-124 NPs triggered a shift from astrocytic-like cells to neurons 

without causing depletion in the NSCs pool, allowing the maintenance of the neurogenic niche and 

consequently, the continuous generation of new neurons. Nevertheless, others have shown that in 

physiological conditions miR-124 overexpression by viral vectors promotes neurogenesis in SVZ that 

does not interfere with migration nor OB integration, while it leads to a decrease in the levels of dividing 

precursor cells (Cheng et al. 2009; Akerblom et al. 2012). Therefore, additional studies are needed to 

address NSCs dynamics upon miR-124 treatment. Recent studies also showed that miR-124 

upregulation is associated with protection of dopaminergic neurons by regulating apoptosis and 

autophagy processes (Wang et al. 2015a; Gong et al. 2016). Notably, in 6-OHDA-challenged mice, miR-

124 NPs administration substantially enhanced maturation of SVZ-derived neurons into the lesioned 

striatum leading to amelioration of motor deficits. Nevertheless, it is essential to further study the 

underlying mechanisms in detail and/or cells involved in miR-124-induced motor recovery. Accordingly, 

besides neuronal differentiation, miR-124 seems to regulate cell death and inflammatory responses, 

resulting in neuroprotection in PD (Kanagaraj et al. 2014; Wang et al. 2015a; Gong et al. 2016) or 

reduction of infarct volume in stroke (Doeppner et al. 2013; Sun et al. 2013a). Therefore, broader 

applications of our formulation to other brain pathologies, such as ischemic stroke, are also anticipated.  

Considering the previous work, in Chapter 4, we hypothesized that miR-124 NPs could be also of 

great value for recovery of lost function after stroke. First, we observed that miR-124 NPs protect SVZ 

cultures from oxygen and glucose deprivation (OGD; in vitro model of stroke). Moreover, even after 

OGD miR-124 NPs could trigger neuronal differentiation of SVZ NSCs. Based on these experiments we 

hypothesized that the in vivo administration unveils therapeutic effects of miR-124 NPs in a 

photothrombotic (PT) mouse model of stroke in terms of functional recovery, looking for possible effects 

on neurogenesis and neuroinflammation. Nevertheless, in contrary to our hypothesis a single 

intravenous injection of miR-124 NPs after PT stroke was unable to improve functional outcome of mice. 

Although we have observed FITC-NPs in the brain parenchyma of PT mice 4 h after intravenous 

administration of the NPs, we did not observe any differences in behavioral tests performed 14 days 

after the PT lesion. Also in terms of neurogenesis no alterations in the amount of newborn neurons were 

found in the SVZ nor in the ischemic territory of both PT and sham mice. Since we showed in Chapter 

3 that miR-124 NPs increase SVZ-OB axis neurogenesis, we may speculate that lack of efficiency of 

miR-124 NPs in modulating neurogenesis might be due to low bioavailability caused either by dosage, 

route of administration or timing of the administration. Some studies showed that miR-124 

downregulation were needed to decrease the infarct volume in middle cerebral arterial occlusion 

(MCAO) rodents, while miR-124 upregulation had no impact in the outcome (Liu et al. 2013; Zhu et al. 

2014). Nevertheless, contrary to our findings others reported that overexpression of miR-124 previous 

(protective effect) or after a MCAO insult results in lower infarct volumes and functional improvement 

(Doeppner et al. 2013; Sun et al. 2013a; Hamzei Taj et al. 2016b). It is also important to consider that 

only a small portion of patients with ischemic stroke are treated with tissue plasminogen activator within 
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the first hours after symptom onset, showing the need for novel therapeutic strategies for stroke. As so, 

the study presented in Chapter 4 was performed to evaluate the effect of miRNA-124 NPs on the 

functional outcome as well as in the post-stroke neurogenesis and inflammation. Therefore, the PT 

stroke model has been chosen to assure low interindividual variability in infarct volumes and functional 

outcomes and low mortality. However, this model is not the most suitable to study acute processes of 

cell death and survival, since the brain supplying branches of the MCA are permanently occluded. 

Consequently, this model presents smaller penumbras preventing in this way reperfusion mechanisms 

observed in transient focal stroke models. 

 

Regulation of inflammation through shifting the microglia reactivity from a pro-inflammatory state to 

an anti-inflammatory one was also achieved by miR-124 overexpression in MCAO mice (Hamzei Taj et 

al. 2016a). Changes in cytokines expression levels in the ischemic territory between sham- and PT-

operated mice confirm the presence of an inflammatory response caused by the PT procedure. 

Nevertheless, we also did not find relevant differences among the different treatments (saline, void NPs, 

scramble-miR NPs or miR-124 NPs) within the PT mice, except for the increase of the levels of 

interleukin (IL)-6 in PT miR-124 NPs-treated mice. This result corroborate that miR-124 NPs are 

reaching the brain parenchyma and being uptaken. IL-6 is a pro-inflammatory cytokine indicating that in 

the experimental conditions tested miR-124 NPs appears to have a pro-inflammatory action rather than 

an anti-inflammatory one. Hence, an isolated increase of a cytokine suggests functions of this molecule 

beyond its involvement in post-stroke inflammation. Previous studies have demonstrated that elevated 

levels of the pro-inflammatory cytokine TNF-α is involved in mechanisms of neuronal plasticity 

(Stellwagen and Malenka 2006). Even though most of the data points to an anti-inflammatory role of 

miR-124 in microglia and monocytes/macrophages (Ponomarev et al. 2011; Jakus et al. 2013; Sun et 

al. 2013b), miR-124 was also reported as an activator of M1 state of microglia in epilepsy (Brennan et 

al. 2016). Furthermore, research on miR-124 NPs bioavailability in the brain, role of miR-124 NPs in the 

immune response, miR-124 NPs response in other models of stroke, such as transient MCAO, is still 

needed for a better understanding of the functions of miR-124 after stroke. In Chapter 4 we observed 

that miR-124 NPs are able to improve survival and increase neuronal differentiation of SVZ cultures 

after OGD insult, but they were unable to improve functional deficits of PT mice, reduce infarct volume, 

increase neurogenesis or decrease inflammation.  

 

The ability of active molecules to cross the blood-brain barrier (BBB) into the brain parenchyma is 

a vital aspect for brain repair therapies. In Chapter 3, miR-124 NPs were delivered into the lateral 

ventricles by an intracerebral injection. This procedure, although highly invasive, permits to unveil the 

miR-124 NPs effect on SVZ neurogenesis without the biodistribution or bioavailability issues, allowing 

us to demonstrate the relevance of miR-124 NPs in brain repair strategies. Systemic delivery of miR-

124 NPs by intravenous injections was then considered as a deliver strategy in Chapter 4 in order to 

circumvent the need of an invasive stereotaxic surgery and due to its higher clinical relevance. 

Overcoming the BBB is a great concern in delivering drugs to the brain; however, PT stroke causes BBB 

breakdown that could facilitate the passage of miR-124 NPs into the brain (Hoff et al. 2005; Piao et al. 
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2009; Nahirney et al. 2015). Although we found NPs in the brain parenchyma of PT mice, neither PT 

nor sham mice treated with miR-124 NPs were able to increase SVZ neurogenesis, indicative for a low 

bioavailability of the miR-124. We might also speculate that in sham-operated animals, since the BBB 

remain intact, lower amount of miR-124 NPs reached the NSCs explaining in part the lack of 

enhancement of SVZ neurogenesis, contrary to the increase of SVZ neurogenesis seen previously in 

healthy animals when miR-124 NPs were injected into the ventricle lumen. Nevertheless, improvement 

of our NP formulation is needed to increase efficacy of our treatment in systemic applications. The 

physicochemical characteristics of NPs make them versatile vehicles that can be easily modified in 

terms of size, charge, shape and surface ligands to better direct them across the BBB. As so, coating 

of NPs with ligands or antibodies that are recognized by receptors/transporters or epitopes on brain 

endothelial cells (Saraiva et al. 2016) to facilitate its passage to the brain parenchyma may be of great 

use to improve brain passage of NPs. Coating of NPs with lactoferrin (Hu et al. 2011) or transferrin 

antibodies (Yemisci et al. 2015) are examples of formulations that show increased brain accumulation 

in pathological situations. Blood clearance by the reticuloendothelial system may also limit the amount 

of NPs that reaches the brain. The use of poly(ethylene glycol) (PEG) increases NPs blood circulation 

time and consequently their brain accumulation (Saraiva et al. 2016). We anticipate that our polymeric 

NPs could be coated with PEG and specific ligands, such as transferrin, allowing us to improve efficacy 

in brain delivery after intravenous administration and reducing peripheral accumulation. The 

combination of the NP system with specific molecular cues to increase the targeting to specific sub-

populations of the SVZ niche could also be beneficial to improve the neurogenic response and decrease 

off-target effects. For example, coating of NPs with epidermal growth factor receptor (EGFR)-binding 

peptides or Notch-1 ligands could trigger an increased uptake by proliferative progenitor cells forcing 

cell cycle exit and promoting subsequent neuronal differentiation. Yet, pharmacokinetics and 

biodistribution studies, central and peripheral toxicity analysis, mechanisms of BBB transport 

investigation and functional recovery evaluation in vivo are essential before conducting clinical studies. 

 

Altogether, we showed that miR-124 NPs are able to modulate NSCs both in vitro and in vivo. 

Moreover, we prove that when delivered intracerebrally miR-124 NPs can ameliorate functional damage 

in a PD mouse model caused by 6-OHDA. miR-124 NPs also demonstrated efficacy in improving SVZ 

cultures survival and neuronal differentiation after OGD, despite intravenous injection of miR-124 NPs 

seemed to be incapable to improve stroke outcome in a PT mouse model. Notwithstanding, all these 

data evidence the fact that miR-124 NPs may represent a novel therapeutic approach for brain repair 

strategies based on the enhancement of the endogenous NSCs repair mechanisms. 
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