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Highlights 

- The influence of graphene oxide (GO) addition on a NHL mortar was studied 

- Better results were obtained with water dispersed GO in comparison to powder GO 

- Mineralogical testing did not identify the GO compounds on mortars  

- GO in 0.05 and 0.1 wt.% lead to a slight improvement of mechanical characteristics  

- GO in 0.1 wt.% provided better durability to liquid or vapour water action 
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Abstract  

Recent studies show the incorporation of graphene oxide (GO) in cement composites. But these composites 

are frequently incompatible with original materials for building rehabilitation. To overcome this limitation, 

natural hydraulic lime mortars were used as matrix, and the influence of GO percentage and type of mixing 

was investigated. The influence on the microstructure, mechanical and physical properties was assessed. The 

best results were obtained with dispersed GO at concentrations of 0.05% and 0.1%. A slight improvement of 

mechanical and physical characteristics was achieved. This could lead to new mortars with improved 

properties that can be used for building rehabilitation. 

 

1. Introduction 

In recent years the development of new materials at nanoscale has undergone great evolution. These new 

nanomaterials have the potential to be applied in several fields, including the construction industry. Among the 

many types of nanomaterials studied for potential application in construction carbon-based materials are ones 

the most studied particularly carbon nanotubes (CNT), carbon nanofibers (CNF) and graphene oxide (GO).  

Recent studies have shown that small amounts of carbon nanomaterial contribute to the increase of 

mechanical properties of cementitious composites, being applied as a reinforced material to cement matrix in 

pastes and mortars, differing by the inclusion of sand (see Table 1). Notably, GO has attracted enormous 

attention due its high specific surface area, high strength, flexibility and hydrophilic character [1,2]. 

 

Table 1.  Mechanical properties of cement composites with carbon-based nanomaterial 

Ref Matrix Nanomaterial  
[wt.% cement] 

Dispersion method 
Results 

(improvement compared to the reference 
composite) 

[5] Paste 
MWCNT 

(0.15/0.045) 
Sonication with polyacrylic acid 

Flexural strength: 16% (with 0.15 wt.%) 

Compressive strength: 50% (with 0.045 

wt.%) 

[6] Paste 
MWCNT 

(0.2/0.1) 

Ultrasonication, centrifugation and 

sonication with TNWDIS 

Flexural strength: 40% (with 0.2 wt.%) 

Compressive strength: 15% (with 0.1 

wt.%) 

[9] Mortar MWCNT (0.5) 
Sonication and carboxylation with 

sulfuric and nitric acid 

Flexural strength: 25% 

Compressive strength: 19% 

[10] Mortar CNF (2.0) Sonication 
Flexural strength: 11% 

Compressive strength: 10% 

[1] Paste GO (0.04/0.06) Sonication 

Flexural strength: 67% (with 0.04 wt.%) 

Compressive strength: 59% (with 0.06 

wt.%) 
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[3] Paste GO (0.08) 
Sonication with silica fume and 

centrifugation 

Flexural strength: 30% 

Compressive strength: 12% 

[4] Paste GO (0.05) Ultrasonication Compressive strength: 19% 

[11] Mortar GO (0.05) Supplied already dispersed 
Flexural strength: 71% 

Compressive strength: 24% 

[12] Mortar GO (0.4) 
Sonication and electrophoretic 

deposition (in carbon fibre) 

Flexural strength: 6% 

Compressive strength: 5% 

[8] Mortar GO (0.03) Ultrasonication Flexural strength: 78.6% 

[7] Mortar GO (2.0) Ultrasonication Flexural strength: 24.7% 

 

In prior studies very small amounts of GO has been added to cement pastes (from 0.04 to 0.08 wt.%) with 

remarkable enhancement in both flexural and compressive strengths, up to 67% and 59% respectively [1,3,4], 

when compared to cementitious pastes containing multi-walled carbon nanotubes (MWCNT) [5,6]. An 

increase in the mechanical properties of hardened cement mortars incorporating GO nanosheets has also 

been observed. The most significant improvements in mortars occur with the addition of GO in small amounts 

(0.03 wt.% to 0.05 wt). Adding MWCNT or CNF lead to minor improvements in the mechanical properties of 

cementitious mortars [7-12]. 

Mohammed et al. [2] explored the impact of GO on other properties of cement. The researchers proved that 

the addition of GO to cement composite can improve the cement matrix transport properties by performing 

water sorptivity and chloride penetration tests. But studies have been mainly performed only with cement-

based composites and these are frequently incompatible with original materials of existing and historic 

buildings. 

Natural hydraulic limes (NHL) are binders in conformity with the EN 459-1:2010 [13]. This type of binder is 

obtained by firing marly limestone at a temperature similar to the one used to produce air lime, and consists of 

calcium silicates, calcium aluminates and calcium hydroxide. It is classified as a binder with hydraulic 

properties [13], having not only a hydraulic curing but also an aerial curing obtained by carbonation with 

atmospheric carbon dioxide. This double type of curing can be very beneficial for a variety of applications, 

particularly in conservation or rehabilitation interventions of existent and historic buildings [14,15]. There are 

three different classes of NHL, each one with a minimal amount of Ca(OH)2 [13]. NHL composites are suitable 

and compatible with different types of supports, being used as grouts to consolidate thick old masonries [16], 

as renders and plasters [15]. 

For these reasons, the incorporation of GO on natural hydraulic lime mortars was investigated in this study for 

the first time, driven by the demand for the enhancement of the properties of the traditional materials used in 

the rehabilitation of buildings. 
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2. Experimental details 

2.1. Materials 

The mortars produced in this research are composed by lime, sand, graphene oxide and water. The binder 

used was a natural hydraulic lime NHL3.5 produced by SECIL Argamassas in accordance with EN 459-

1:2010 [13]. Its chemical composition determined by X-ray fluorescence and mineralogical phases determined 

by XRD were assessed elsewhere [15]. The chemical composition is shown in Table 2. The main 

mineralogical phases present are calcite (C), portlandite (CH) and larnite (C2S). Minor phases detected 

include quartz (SiO2), tricalcium aluminate (C3A) and bassanite (CaSO4 0.5H2O) [15]. A fine siliceous sand, 

with particle size distribution given in Figure 1, was used.  

 

Table 2. Chemical composition of natural hydraulic lime NHL3.5 [15] 

Content [wt.%] 

SiO2 Al2O3 Fe2O3 MnO MgO Na2O K2O TiO2 P2O5 SO3 CaO 
Loss on 
ignition 

5.70 1.84 1.22 0.02 1.00 0.08 0.49 0.14 0.03 1.00 62.00 26.00 

 

 

Figure 1. Particle size distribution of fine siliceous sand 

 

The loose bulk density of the lime and sand are 0.709 g/cm
3
 and 1.46 g/cm

3
, respectively, assessed by the 

mass of the material filling a known volume. GO was synthesized from pyrolytic graphite (a waste of the high 

temperature furnaces of the metallurgy industry) using the modified Hummers method as described elsewhere 

[17]. Briefly, 4g of pyrolytic graphite powder were mixed together with 2g of sodium nitrate in 92 mL of 

sulphuric acid. After 1 hour, 12g of potassium permanganate were added slowly and stirred for 12 hours 
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before the addition of 2 L of water and 20 mL of hydrogen peroxide. The suspension was washed with 

hydrochloric acid and water by filtration. The final GO powder was obtained by freeze drying for 48 hours 

(Figure 2a). 

 

Figure 2. a) GO in powder and b) Dispersed GO by sonication 

2.2. Preparation of GO and mortars 

Three types of NHL3.5 mortars have been prepared: reference mortar (R), without nanomaterial; mortar 

containing aqueous dispersion of GO (D); mortar with powder GO (P). The ratio of binder:aggregate was 1:3, 

in volume, corresponding to a ratio of 1:6.2 in weight and the water/binder ratio was 1.27. The content of 

binder, aggregate and water were held constant, varying only the amount of nanomaterial. For the D samples, 

four percentages of GO (0.05%, 0.1%, 0.5% and 1% - weight of NHL) were prepared, dispersed in 200 ml of 

deionized water and sonicated for 20 min with 10 min ON/10 min OFF cycles to create stable dispersions, and 

are shown in Figure 2b). For the P samples, GO in powder was directly incorporated with the mortar dry 

components at two different percentages, 0.05% and 0.5% by weight of NHL. The identification of mortar 

mixes and its composition are presented in Table 3. 

 

Table 3. Mortars identification, composition and consistency 

Mortar* 
GO 
[%] 

GO 
[mg] 

Consistency 
[mm] 

Without GO R - - 166 

Dispersed 
GO  

0.05D 0.05 149 161 

0.1D 0.1 299 169 

0.5D 0.5 1494 162 

1D 1 2989 154 

GO in 
powder 

0.05P 0.05 149 161 

0.5P 0.5 1494 170 

* Each of the mortar mixes had 298.9g of NHL and 1846.4g of sand  
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2.3. Specimen preparations and curing 

The production of the mortars was based on EN 1015-2:1998/A1:2006 [18]. First of all, dry constituents 

(binder and aggregate) were manually homogenized and then placed in the rotary mixer container. The 

equipment was operated for 150 seconds at low speed of rotation, stopped for 30 seconds to scrape the 

mortar on the container edges and finished with an additional 30 seconds of mechanical mixing. The mixing 

water was added in the first 20 seconds of mechanical mixing. In mortars with addition of dispersed GO, the 

container containing dispersion was stirred and then poured into a graduated cylinder, adding water to make 

the amount initially defined of mixing water. In mortars containing GO on powder, it was directly added to the 

homogenized the dry constituents. 

The mortars were then cast in two layers, each one with mechanical compaction trough vibration table, into 

metallic prismatic moulds of 40 mm x 40 mm x 160 mm. The moulds with the specimen were conditioned 

inside polyethylene bags for initial curing with high relative humidity. At the second day of curing mortar 

specimen were demoulded and continued inside the bags until completing 7 days. Afterwards the specimens 

were cured in a conditioned room with 20±2°C and 65±5% HR and tested at the age of 28 days. 

 

2.4. Testing procedures 

2.4.1.  Flow table consistency and general remarks 

The consistency of fresh mortars was determined by flow table test based on EN 1015-3:1999 [19]. All the test 

on hardened mortars were performed at 28 days of age. Except when mentioned, all the results are an 

average of at least three tests. Standard deviation is presented whenever possible. 

2.4.2. Fourier Transform Infrared Spectroscopy, X-ray Diffraction and Scanning Electron 

Microscopy 

Fourier transform infrared spectroscopy (FTIR) was carried out using a Thermo-Nicolet 6700 

spectrophotometer from Thermo Electron Corporation in attenuated total reflection mode (ATR). The spectra 

were recorded based on 32 scans, performed in the mid-infrared range (500-4000cm
−1

) adopting a resolution 

of 4cm
−1

.  

The structural analysis of the samples was performed by X-ray diffraction (XRD) using a X’Pert Pro X-ray 

diffractometer from PANalytical, equipped with an X’Celerator detector, in a Bragg-Brentano geometry with 

CuK line radiation (=1.5406Å). The 2 scans were performed from 10º to 60º, with a step size of 0.001º. 
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Both these tests were performed with the GO and the mortars. Mortars were ground to powder and only one 

sample of each was tested. 

The morphology of GO was analysed by Scanning Electron Microscopy (SEM) using a Carl Zeiss AURIGA 

Crossbeam SEM- FIB (Oberkochen, Germany). 

2.4.3. Mechanical strength of hardened mortar 

Flexural strength (FS) and compressive strength (CS) tests were conducted in accordance with EN 1015-

11:1999 [20]. The flexural action was imposed using a three-point flexure testing apparatus, ZWICK Z050, 

with a 2 kN load cell. For the compressive test the action was imposed in an area of 40 mm x 40 mm in the 

same apparatus, but with a load cell of 50 kN. 

2.4.4.  Porosity 

Samples with dimensions 20 mm x 40 mm x 40 mm resulting from the prismatic specimen were used for the 

determination of open porosity and hardened bulk density by hydrostatic method, based on EN 1936:2008 

[21]. The mortar samples were previously placed in an oven at 60±5°C for a minimum of 24 hours for mass 

stabilization. The samples were kept dry and under vacuum for 24 hours on a desiccator. Then water was 

slowly introduced into the desiccator until all samples are fully immersed and maintained under vacuum for 

another 24 hours and, finally, the samples were kept immersed but at ambiance pressure for more 24 hours. 

After this process they were hydrostatically and saturated weighed. 

For mercury intrusion porosimetry (MIP) a Micromeritics Autopore IV was used for determination of volume 

and distribution of pores by applying different levels of pressure to a sample immersed in mercury: low 

pressures ranging from 0.01 MPa to 0.21 MPa, followed by high-pressures from 0.28 MPa to 206.84 MPa: 

The required pressure to intrude mercury into the samples’ pores is proportional to the size of pores. The 

samples used in this test were first prepared in order to occupy a great part of the MIP penetrometer (5 cm
3
) 

and placed in a ventilated oven at 40°C until reach constant mass. One sample of each mortar was tested. 

2.4.5.  Water absorption by capillarity and drying tests 

The water absorption by capillarity and drying tests were performed with a half sample resulting from the 

specimen tested for the flexural test. Capillary absorption test was based on EN 1015-18:2002 [22] and EN 

15801:2009 [23]. First, the specimens were placed in an oven at 60±5°C for about 48 hours until constant 

mass was reached. An epoxy resin was used to seal the side surfaces of the specimen. The capillary water 

absorption curves, with the water absorption by contact area with water function of the square root of time, are 

determined. Based on these curves the capillary coefficient (CC) is calculated by the slope of the initial 
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segment of the curve, and the asymptotic value (AV) represents the total amount of absorbed water by 

contact area. 

The drying test was started when the water absorption test by capillarity lead samples to saturation. But 

previously the base of the specimens was wrapped in cling film (with a rubber band) so that there was a 

unidirectional drying process, only by the top free section. This test was based on EN 16322:2013 [24]. The 

drying curves are determined by the residual amount of water present in the specimen (M) reported as a 

function of time (showing the first phase of drying) or the square root of time (showing the second phase of 

draying). The drying rates of the two initial phases are defined: DR1 and DR2, corresponding to the first or the 

second drying phases, respectively, are determinate by the negative slopes of the linear parts of the drying 

curves. The drying index (DI) is also determined, corresponding to a weighted ratio of the area of the drying 

curve function of time and its total area. 

 

3. Experimental results and analysis 

3.1. SEM images, FTIR spectra and XRD patterns 

The morphology of GO powder was investigated by SEM (Figure 3). The average particle size of GO is about 

6 m (Figure 3a). With a higher magnification, it is possible to see the GO sheets that form these particles 

(Figure 3b), showing the successful exfoliation of the pyrolytic graphite by modified Hummers method.    

 

Figure 3. SEM images of GO powder 

 

The FTIR spectra of GO is presented in Figure 4a). The results confirm the presence of main oxygen-

containing groups, indicated by the absorption peaks at 3153 cm
-1

 (-OH), 1716 cm
-1

 (-COOH), 1334 cm
-1

, 

1170 cm
-1

 and 1039 cm
-1

 (-O-), and 974 cm
-1

 (-SO3) [1,17]. 
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Figure 4. FTIR spectra of a) graphene oxide (GO) produced and b) reference (R), dispersed (0.05D) or powder (0.05P) 

GO mortars at 28 days  

  

The FTIR spectra of reference mortar (R) and mortars incorporating 0.05 wt.% dispersed GO (D) or powder 

GO (P) are shown in Figure 4b). For both mortars, with dispersed GO and powder GO, the spectra are very 

similar to the reference mortar. Two distinct groups of bands can be identified: in the range 1280-1580 cm
-1

 

and in 900-1120 cm
-1

. The first band is assigned to carbonate phases and the second band is assigned to C-

S-H phases. Starting with the identification of carbonates, the band of 1410 cm
-1

 can be attributed to calcite in 

all spectra. The C-S-H phases can be identified in bands around 970 cm
-1

 to the reference and 0.05D mortars, 

and in bands around 1070 cm
-1 

for the 0.05P mortar. Small variations in the range 900-1120 cm
-1

 confirm the 

presence of silica compounds in the sand [25]. Comparing the FTIR spectra of GO and the spectra shown in 

Figure 4b), it is concluded that is not possible to verify the presence of GO in produced mortars probably due 

to the small amounts of GO in the samples, when compared to the quantities of all other constituents. 
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Figure 5a) show the XRD pattern of GO, where the three main peaks of this material can be observed around 

10°, 26° and 42° (2θ) [1,26]. The XRD diffractograms of reference mortar (R) and mortars incorporating 0.05 

wt.% of dispersed GO (D) or powder GO (P) are shown in Figure 5b), wherein was detected calcite (C), belite 

(L), quartz (Q) and feldspar (F) [25]. Only in R mortar peaks were classified as unknown because it was not 

possible to identify the compound, concluding that there may have been some outside contamination that 

influenced the respective diffractogram. 

The peaks identifying the GO are not visible in any of the XRD diffractograms, since the intensity of crystalline 

phase components of the mixture (lime and sand) is so high when compared to the amount of GO. Due to 

this, XRD measurement does not allow to understand if the incorporation of GO was effective. 

 

 

Figure 5. XRD diffractogram of a) graphene oxide (GO) and b) reference (R), dispersed (0.05D) or powder 

(0.05P) GO mortars at 28 days (C – calcite; F – feldspar; L – belite; Q – quartz) 
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3.2. Fresh mortar consistency 

Mortars consistency determined by flow table test is presented in Table 3. It is an indirect way of assessing 

workability. The amount of water necessary to obtain adequate workability for application as rendering mortars 

was initially defined for the reference mortar. The addition of GO in NHL mortars does not have a significant 

influence on the mortars consistency. 

In cement composites with the incorporation of GO, a more significant decrease of flow occurred. Pan et al. [4] 

produced Portland cement paste with 0.05 wt.% of GO and observed that slump diameter is reduced by 

41.7%. The large surface area of GO sheets may be the cause for the respective decrease because when GO 

comes into contact with available water in fresh mixture wets its surface [4]. Babak et al. [7] observed that the 

increase of GO percentage into cement mortars while maintaining the water/cement ratio of matrix, diminished 

workability, maybe due to the presence of hydrophilic groups on the GO surfaces. 

3.3. Mechanical strength 

Results of flexural and compressive strength of mortars at 28 days are presented in Table 4. For mortars with 

0.05 wt.% and 0.1 wt.% of dispersed GO the flexural strength was maintained and the compressive strength 

slightly increased relative to the reference mortar. For higher additions of dispersed GO in general the flexural 

and compressive strength slightly reduces. With powder GO the flexural strength of mortars slightly reduces 

while the compressive strength slightly increases. 

 

Table 4.  Flexural and compressive strength, open porosity and bulk density of mortars 

Mortar 
Flexural 

strength [MPa] 
Compressive 

strength [MPa] 
Porosity 

[%] 
Bulk density 

[kg/m
3
] 

Without GO R 0.25 ± 0.01 0.56 ± 0.04 25.9 ± 0.1 1809 ± 2 

Dispersed 
GO  

0.05D 0.24 ± 0.04 0.59 ± 0.01 25.7 ± 0.4 1791 ± 8 

0.1D 0.25 ± 0.04 0.63 ± 0.03 26.1 ± 0.1 1781 ± 7 

0.5D 0.19 ± 0.04 0.55 ± 0.05 27.0 ± 0.0 1784 ± 11 

1D 0.22 ± 0.02 0.51 ± 0.04 26.8 ± 0.2 1784 ± 10 

GO in 
powder 

0.05P 0.22 ± 0.03 0.59 ± 0.05 26.0 ± 0.6 1810 ± 4 

0.5P 0.21 ± 0.04 0.57 ± 0.04 26.7 ± 0.2 1791 ± 1 

 

Minor variations were observed in the mechanical properties of mortars produced in this study maybe 

because NHL have smaller amounts of hydraulic components compared to a cement. According to Diekamp 

et al. [25], this may result in a weaker bond between the GO and the lime matrix. The type of sand, that is a 

major component of the mortars, may have contributed to these results because a poorly graded sand (with 
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an almost vertical particle size distribution - Figure 1) was used. Grilo et al. [15] used the same binder in the 

production of NHL mortars but with a mixture of three washed siliceous sands. By comparing both reference 

mortars, it was found that higher mechanical properties were obtained. However, for application as rendering 

or plastering replacement mortars for historic buildings conservation and repair it is necessary to have low 

mechanical properties; so these results may be positive. 

3.4. Open porosity and bulk density  

The results obtained of open porosity and hardened bulk density are presented in Table 4. It can be seen that 

with the addition of GO, dispersed or in powder, the open porosity tends to slightly increase. Moreover, with 

increasing dosages of GO, hardened bulk density tends to slightly decrease. 

As it has been seen before, with 0.05 wt.% and 0.1 wt.% of dispersed GO the flexural strength is maintained 

and the compressive strength slightly increased in comparison to the reference mortar. This increase, 

although slight, was not related to the open porosity or bulk density. 

3.5. Pore size distribution  

Figure 6 show the relationship between the cumulative intrusion pressure (ml/g) and pore diameter (μm) of 

mortars produced with dispersed GO and powder GO.  
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Figure 6. Mercury intrusion porosimetry of: a) reference mortar (R); b) mortars with dispersed GO (0.05D, 0.1D, 0.5D, 
1D); c) mortars with powder GO (0.05P, 0.5P) 

 

Figure 6b) shows little difference exists between the pore structure of the reference mortar and the mortar 

with GO addition; however, NHL-GO mortars present a higher intrusion at pore diameters around 1.5 µm in 

comparison with the reference mortar, and a tendency to decrease the porosity around 2-4 μm of diameter 

when GO percentages increase, as well as porous in the range of 5-10 m increase. 

With respect to Figure 6c) it can be seen that the addition of GO directly into powder also leads to little 

variation in the pore size distribution of the produced mortars. A similar trend is detected with this type of 

addition wherein an increase of pores of 2 μm occurs with increasing dosage of GO powder. On the one hand 

there is a reduction of the amount of pores around 5 μm in 0.05P mortar when compared to the reference 

mortar, and on the other, there is an increase of pores with about 7 μm. At the range of 4–7 μm for 0.5P 

mortar a small decrease of pores´ amount occurs. 
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3.6. Water absorption by capillarity 

The capillary water absorption curves are shown in Figure 7 and the values of capillary coefficient (CC) and 

the asymptotic value (AV) are presented in Table 5. It can be seen that 0.05D and 0.1D mortars are the ones 

that absorb water slightly faster than the reference mortar. According with the Table 5, a lower CC means that 

mortar initially absorbs water more slowly than reference mortar and a low AV means that absorbs less water 

in total. These results indicate that NHL-GO mortars have reduced capillary water absorption particularly for 

lower dosages of the dispersed GO. 

 

Figure 7. Capillary water absorption curves of mortars 

 

Table 3.  Capillary coefficient, asymptotic value, drying rates of phases 1 and 2 and drying index 

Mortar 
CC 

[kg/(m
2
.min

1/2
)] 

AV 
[kg/m

2
] 

DR1 
[kg/(m

2
.h)] 

DR2 
[kg/(m

2
.h

1/2
)] 

DI 
[-] 

R 2.71 ± 0.03 16.1 ± 0.3 0.13 ± 0.01 1.13 ± 0.05 0.19 ± 0.00 

0.05D 2.63 ± 0.02 15.9 ± 0.1 0.13 ± 0.01 1.10 ± 0.04 0.19 ± 0.00 

0.1D 2.59 ± 0.07 15.7 ± 0.1 0.16 ± 0.01 1.26 ± 0.05 0.17 ± 0.01 

0.5D 2.72 ± 0.02 16.0 ± 0.1 0.14 ± 0.01 1.16 ± 0.06 0.18 ± 0.01 

1D 2.72 ± 0.01 16.3 ± 0.3 0.16 ± 0.02 1.30 ± 0.06 0.17 ± 0.01 

0.05P 2.68 ± 0.01 16.0 ± 0.1 0.17 ± 0.01 1.31 ± 0.09 0.17 ± 0.01 

0.5P 2.70 ± 0.01 15.7 ± 0.1 0.17 ± 0.01 1.33 ± 0.04 0.17 ± 0.00 

CC – capillary coefficient; AV- asymptotic value of capillary absorption; DR1 and DR2 – drying rates of the 1
st
 

and 2
nd

 drying phases; DI – drying index 

 

Mohammed et al. [2] have shown that mortars incorporating 0.03 wt.% of GO have a water absorption 

decrease compared to reference mortar attributing that to the increased amount of smaller pores and 
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reduction of capillary porosity with the addition of GO, according to their pore size distribution results. The 

researchers suggest that GO addition on cement composites can improve its resistance to aggressive 

elements through the interconnection of the GO structure with the cement matrix, which gives rise to a strong 

barrier and allows to reduce the penetration of aggressive agents. Since the MIP results with NHL-GO mortars 

mainly show enhanced nanoporosity, that may justify the positive effect of GO on capillary absorption. 

3.7. Drying capacity 

No significant differences were observed in the drying curves to determine the drying rate corresponding to 

the first drying phase (DR1) of GO mortars (Table 5); for that reason, those drying curves are not presented. 

Nevertheless the first phase of drying presents a tendency to a very slight increase with a addition of GO. The 

drying curves to obtain the drying rate corresponding to the second drying phase are shown in Figure 8 and 

the respective values of DR2 and the drying index (DI) are presented in Table 5. 

 

Figure 8. Drying curves and linear segments corresponding to the second drying phase of mortars 

 

It is observed that increased dosages of GO, dispersed or on powder, lead to a faster drying in the second 

phase in comparison with the reference mortar. Based on Table 5, only 0.05D mortar maintains the calculated 

drying parameters; all the other mortars have drying rates slightly above and a DI slightly below than the 

reference mortar, which is positive. Having a higher drying rate means that the mortar has a faster drying in 

that phase and a lower DI indicates a globally easier drying behaviour. Therefore, all the mortars with more 

than 0.05% GO present less resistance to the drying process in comparison to the reference mortar. 

In this case, the best results are observed for the mortars with dosages greater than 0.1 wt.% dispersed or on 

powder GO. The results are consistent with the open porosity because higher dosages of dispersed or powder 

GO lead to a higher porosity, thereby facilitating the drying process. 
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4. Conclusions 

Natural hydraulic lime mortars incorporating GO sheets were produced and the influence of GO, dispersed or 

in powder, on the fresh mortars consistency, mechanical properties, capillary water absorption, drying and 

microstructure of hardened mortars were investigated. In general, more positive results were obtained for 

mortars containing the water dispersed GO, indicating a better incorporation of GO sheets in comparison with 

GO added in powder. Nevertheless, mineralogical testing did not identify the GO compounds, perhaps 

because of the low GO content. 

GO addition in low weight percentages of 0.05 wt.% and 0.1 wt.% lead to a slight improvement of mechanical 

characteristics compared to reference mortars. Also, mortars incorporating 0.1 wt.% dispersed GO provided 

positive results for water behaviour, in liquid or vapour, as the capillary water absorption is slower and in less 

quantity and the drying is faster.  

Although the overall enhancement is not remarkable, this study gives a good indication that formulated NHL 

mortars may be optimized in terms of durability in humid environments by the addition of GO, varying the 

formulation and/or the type of sand. The fact that mechanical strength does not change much allows to 

maintain compatibility with historic materials, which may be of great interest for rendering, plastering or 

repointing mortars for conservation or rehabilitation interventions on historic buildings. 
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