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ABSTRACT

Neurological disorders, in particular Stroke, have an impact on many individuals
worldwide. These individuals are often left with residual motor control in their upper
limbs. Although conventional therapy can aid in recovery, it is not always accessible, and
the procedures are dull for the patient. Novel methods of therapy are being developed,
including Brain-Computer Interfaces (BCls). Although BCI research has been flourishing in
the past few years, most rehabilitation applications are not yet suitable for clinical practice.
This is due to the fact that BCI reliability and validation has not yet been achieved, and few
clinical trials have been done with BCIs. Another crucial factor, is that modern BClIs are
often comprised of inconvenient hardware and software. This is a major factor of aversion
from both patients and clinicians.

This Master Dissertation introduces the EmotivBCI: an easy to use platform for Elec-
troencephalogram acquisition, processing and classification of sensorimotor rhythms with
respect to motor action and motor imagery. The acquisition of EEG is done through 8
channels of the Emotiv Epoc wireless headset. Signals are pre-processed, and the 2 best
combinations of channel/frequency pairs that exhibit the greatest spectral variation be-
tween the rest and action conditions are extracted for different time frames. These features
are then used to build a feature matrix with 2 sets of attributes and 2 class labels. Finally
the resulting feature matrix is used to train 3 different classifiers, in which the best is
selected. The EmotivBCI enables users to keep record of their performances, and provides
additional features to further examine training sessions. To assess the performance of the
EmotivBClI, two studies were conducted with healthy individuals. The first study com-
pares classification accuracies between two different training paradigms. The second study
evaluates the progress in performance of a group of individuals after several training

sessions.

Keywords: Brain-Computer Interface, Emotiv, Neurorehabilitation, Signal Processing,
Feature Extraction and Classification, Stroke.
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RESUMO

As doencas neuroldgicas, em particular o acidente vascular cerebral (AVC), tém um
impacto em muitos individuos por todo o mundo. Alguns individuos ficam com controlo
residual dos membros superiores. A terapia convencional ajuda a recuperar algum do mo-
vimento perdido, mas nem sempre é acessivel e os procedimentos sio monétonos. Novos
métodos de terapia estdo a ser desenvolvidos, incluindo Interfaces Cérebro-Computador
(BCIs). A Investigagdo nesta drea tem vindo a aumentar nos taltimos anos, mas as apli-
cagoes relacionadas com reabilitacdo ainda nao estdo adequadas para a prética clinica.
As BClIs ainda ndo alcangaram até a data um nivel aceitdvel de confianga, além de que
poucos estudos clinicos foram conduzidos. Outro factor crucial, é que BCIs modernos sdo
compostos por equipamento e programas complexos, causando aversdo por parte dos
doentes e clinicos.

Esta Dissertagdo de Mestrado apresenta o EmotivBCI: Uma plataforma pratica de
aquisicdo, processamento e classificagdo de sinais de electroencefalografia (EEG), baseada
em ritmos senso-motores com respeito a acgdo motora e imagética motora. A aquisi¢do
de EEG é feita a partir de 8 canais do equipamento wireless Emotiv Epoc. Os sinais sdo
pré-processados e as duas combinagdes do par canal/frequéncia que exibem a maior
variacdo espectral entre a condi¢do de descanso e acgdo sdo extraidas em diferentes
intervalos temporais. Estas caracteristicas sdo depois usadas para construir uma matriz
com dois conjuntos de atributos e duas classes. Finalmente, a matriz é usada para treinar
trés classificadores diferentes, do qual o melhor é seleccionado. O EmotivBCI permite
aos utilizadores manter um registo do seu desempenho e tem fung¢des adicionais de
analise. Para avaliar o desempenho do EmotivBCI foram conduzidos dois estudos com
individuos sauddveis: o primeiro estudo compara a precisdo de classificagdes entre dois
paradigmas de treino e o segundo estudo avalia o progresso no desempenho de um grupo
de individuos ap6s varias sessdes de treino.

Palavras-chave: Interface Cérebro-Computador, Emotiv, EEG, Neuro-reabilitacdo, Imagé-
tica motora, Processamento de Sinal, Extrac¢do de caracteristicas e Classificacdo, AVC.
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CHAPTER

INTRODUCTION

1.1 Motivation and Context

In the past, the idea of carrying actions only through the power of the mind was thought
of absurd, even preposterous. However, about fifty years ago, a revolutionary idea was
proposed, in which brain signals could be captured to trigger actions [1]. The idea showed
promise, but the equipment and technology weren’t appropriate at the time to show
conclusive results. It has been in the past twenty years that more attention has been drown
to Brain-Computer interfaces and their applications in gaming and entertainment, but
above all else in Rehabilitation [2]-[4].

A Brain-Computer Interface (BCI) is a system that enables brain activity to manipulate
external devices. The range of applications of BCls is extraordinarily wide, going all the
way from leisure to rehabilitation, with hybrids of both in between [5]-[9]. The scope of
this work focuses mainly on neurorehabilitation. There is a significant number of disabled
people worldwide that have lost function of one limb, or the ability to walk or speak due
to neurological disorders. Amyotrophic Lateral Sclerosis (ALS) and Spinal Chord Injury
(SCI) are prime examples of such disorders.

This section, however, will focus on one disorder that has the greatest impact world-
wide: Stroke. Moreover, conventional methods of therapy will be discussed followed by a
look at the future direction of these methods. Finally, the role of BCIs in stroke rehabilita-
tion will be addressed, including what aspects need to be improved in order to make BCIs

a legitimate rehabilitation tool in the future.

1.1.1 Stroke

Stroke is the second largest cause of death in the world and is also one of the leading
causes of disability in adults [10], [11]. In the United States approximately 795000 people
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CHAPTER 1. INTRODUCTION

are affected every year [12]. In Portugal, from 2007 to 2011, the record of deceased people
due to stroke was over 68500 [13];

Stroke, or cerebro-vascular accident (CVA), is defined as the abrupt onset of a non
convulsive and focal neurologic deficit. There is a deep categorization of stroke types, but
they fall under two main ones: Ischemic stroke or Hemorrhagic stroke. Cerebral ischemia
can be caused by reduction in blood flow (hypoperfusion), by blockage of a blood vessel
via thrombosis or arterial embolism. In the case of hypoperfusion, when blood flow is
finally restored within several seconds to a few minutes then the symptoms are said to
be transient. If hypoperfusion lasts more than a few minutes then infaction, or death of
brain tissue, can occur. Cerebral hemorrhage is characterized by the accumulation of blood
within neural structures [14].

The occurrence of stroke is characterized by several risk factors, some that are fixed,
others that are modified[15], [16]. Examples of fixed risk factors are:

e Old age.
e Diabetes.

e Arterial fibrillation.
Modifiable risk factors include:
e High blood pressure.

e Tobacco smoking.

One of the most common non-hemorrhagic stroke is the middle cerebral artery stroke,
which mainly affects the upper limb. Although available rehabilitation therapies help the
limb regain some function, many individuals are still left with chronic hand paralysis [17]-
[19]. It can also result in speech formulation or visual impairment due to the malfunction in
the brain where the stroke occurred [10], [20]. Treatment to recover lost function is termed
Stroke rehabilitation. The following section will discuss some conventional techniques
and procedures to rehabilitate lost limb function due to Stroke.

1.1.2 Conventional Stroke Therapy

Recovery from stroke is a rather complex process that is thought to occur through the
combination of spontaneous and learning-dependent processes [21], [22]:

e Restitution: Restoration of functionality of damaged neural tissue.
e Substitution: Reorganization of neural pathways to relearn lost functions.

e Compensation: Patient improves other skills to meet demands of their environment.

2



1.1. MOTIVATION AND CONTEXT

Stroke recovery and treatment depend on the individual, and has to be carefully
assessed by specialists. The participation in formal rehabilitative therapy has been shown
to improve stroke patients” ability over time. However, not all patients have access to
therapy because of geographic or socio-economic status [23]-[25]. There are different types
of strokes that lead to different consequences. Patients that are unable to walk and require
more human assistance and are more dependent in other self-care tasks are often admitted
in hospitals. If patients have a certain degree of self-care, therapy is carried at home
simply to refine the skills that can improve their functional independence at home and
community where they live [21]. There are specific therapists for the different skills that
need to be improved. Some of these can be physical, occupational and speech therapists
[10], [23]. Their role is to promote the practice of specific tasks that are important to the
recovery of the patient. They do this by setting realistic goals within the limitations of
residual reflexive and voluntary neural control. Moreover, they plan a regimen of daily
skills practice of progressive intensity and difficulty [23], [26].

Therapy for upper limb disabilities vary depending on severity [10]. The therapy for
the hemiparetic arm or hand involves at an early stage the attempted movement of single
joints, and then it proceeds to more complex, multi-joint actions [23]. Finally, the patient
engages in task-specific movements, known as shaping, which could be the grasping of a
coffee cup [23]. Another popular technique is called constraint-induced movement therapy
(CIMT) [27], and it consists of restraining the unaffected limb to promote the use of the
affected one. This can ultimately lead to faster and improved movement of the affected
limb.

The previous mentioned interventions have shown to be efficient only in patients that
have a high enough degree of residual control in their affected limbs. For patients that
have very weak hand movement and control, other methods of therapy are applied. These
mainly consist of the use of commercially available forearm-hand orthotic devices with
functional electric stimulation that can enable the grasping of the hand or finger pinch
[23], [28], [29]. Mechanical devices are currently used as a supplement to standard care,
and they have shown to be beneficial [30]. However, standard therapies with equivalent
intensity can achieve the same outcome, and the use of these devices is more of a luxury,
since they are generally expensive [23]. Ongoing research focuses on the use of mechanical
devices with other rehabilitative therapies like non-invasive brain stimulation to achieve a
higher efficacy in rehabilitation of patients after stroke [23].

1.1.3 Outlook of Stroke Therapy

As mentioned before, stroke therapy is highly specialized for a given patient and the
severity of his condition. The neuronal mechanisms behind stroke recovery are still poorly
understood, however, research in this field is prominent. It's a matter of time until the
scientific community reaches conclusive results, which will result in better rehabilitation

planning and consequently in better patient recovery.
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Ideally, stroke therapy should rely less on therapists, and more on technology to
achieve the same end. This is mainly due to the high number of stroke patients in com-
parison to the limited number of therapists [23], [24], [31]. Therapy itself should also be
more engaging to the patient, instead of the conventional dull exercises. Motivation and
engagement have been shown to be an important aspect in recovery success [32]-[34].
Fortunately, new approaches to therapy have surfaced in the last decade that have helped
face this challenges.

The following sections will address a few of the new facets of stroke therapy, namely
Virtual Reality (VR), Robotics and Functional Electrical Stimulation (FES). Finally, the
current, and future, role of BCIs in stroke rehabilitation will be discussed, addressing its
advantages and limitations.

1.1.3.1 Virtual Reality

Although Virtual Reality (VR) is often associated with gaming and entertainment, it has
shown promise in helping to rehabilitate stroke patients [35], [36]. VR is a computer
interface that allows individuals to interact with a three-dimensional (3D) environment by
presenting simulated or artificially generated sensory information [37]. This interaction is
made possible by the movement of the user/patient, which is captured through proper
motion tracking equipment.

There are two main types of VR: Immersive and Nonimmersive. Immersion VR is char-
acterized by the environment being viewed using a head-mounted display (HMD) with
tracking systems [37]. This makes the user feel like he is within the virtual enviornment,
with all the images being updated according to the movement of the user’s head. Some-
times this results in what is called simulator sickness. Nonimmersive VR can be viewed in a
computer monitor which projects a wide field of view, giving the perception of looking
through a window. There are a variety of devices that allow interaction with the VR
environment like data gloves, joysticks and force feedback technology [37].

The main focus of a VR rehabilitation system is to simulate real world tasks into a
virtual platform so that stroke patients with motor impairments can practice such tasks
safely and transfer the performance of the virtual task onto the real world. One example
stated by Glendinning et al. [37] consisted of mailing an envelope into a "mailbox slot".
The patient did this by matching the hand trajectory that was presented in the virtual
environment, performing the delivery. Another forthcoming application involving a VR
system is driving simulators. This will allow patients to practice safe driving trips, while
the therapist can oversee and grade the task. There are plenty other applications and
real-world task related activities being simulated on VR systems [38], [39].

Although VR systems show a lot of potential, there are still some factors that hinder
its usage in clinical practice. Some virtual tasks, if not properly implemented may not
help patients in the long run, and may actually delay recovery. Also, clinicians may be

interested in developing specific programs, but so far it is time consuming and requires a
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high degree of expertise to develop such programs in a VR environment. Moreover, older
people may have some reluctance in utilizing this technology [40]. All of these drawbacks,
however, can be overcome in the future after further research and assessment. Ultimately
VR can provide a cost-effective way of rehabilitation for patients with motor impairments,
being convenient for both the patients and the therapist.

1.1.3.2 Robotics

Robotic systems have an important role in the rehabilitation of patients with stroke. Budget
cuts and a limited number of physical therapists have propelled the development of new
technologies to provide the same intensity of rehabilitation sessions to stroke patients
[31]. Robot training can provide therapists the tools to increase productivity of training
sessions, maintaining the same quality of care [41].

There is a deep categorization for upper limb robotic systems. There are robots de-
signed for shoulder, elbow, wrist, and hand movement. According to their mechanical
characteristics, robotic systems can be classified into Exoskeletons and End-effectors [31].
Exoskeletons have robot axes aligned with the anatomical axes of the user. They provide
direct control of individual joints, which can correct abnormal posture and movement.
End-effector type devices work by applying mechanical movement to the distal segments
of the limbs. Even though they are easy to set-up, they offer limited control of proximal
joints of the limb, and can result in abnormal movement patterns [42].

The use of robotic systems for rehabilitation has positively influenced the motor
outcome of upper limbs in patients with stroke [41]. Their main advantage is that they can
provide therapy for long periods of time, in a very consistent and precise manner. They
can be designed to perform almost any type of functional therapy. This is highly beneficial
for both the patient and the therapist, who has more time to assist other patients, without
jeopardizing their rehabilitation process [31].

Ongoing research of robotic technology for neurorehabititation focus not only on
enhancing their efficacy, but also in reducing the cost of these devices [42]. It is unlikely
that robotic systems will ever replace therapists, but they have proven to be a useful
support in the rehabilitation of stroke patients.

1.1.3.3 Functional Electrical Stimulation

Functional electrical stimulation, or FES, is a novel treatment that can be used to help
chronic stroke patients with motor impairments to improve motor function [43]-[46]. FES
consists in using electrical currents for stimulating nerves connected to the paralysed
muscles with precise sequence and magnitude in order to emulate a real nervous impulse
and facilitate movement of a paretic muscle. The frequency range of FES is between 10 and
50 Hz, and it directly stimulates nerves rather than muscle fibers [47]. The combination
of FES and manual assistance allows the patient to feel and execute the desired muscle

contractions and the associated arm motion [48].
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There are several upper extremity FES devices available and the use of these devices
have shown to have a positive effect in stroke therapy, specially when administered within
the first 6 months after onset [46], [49]. The improvements in motor function due to FES
have been attributed to a better ability of patients to voluntarily contract impaired muscles.
Reduced spasticity, improved muscle tone in stimulated muscles and increase in joint
range of motion were also resulting factors of FES therapy [46].

Besides the discussed functional effects, FES is believed to facilitate neural plasticity by
increasing the strength of afferent inputs [49]. FES therapy can be even more advantageous
when complemented with other therapies and devices. Particularly, FES used simultane-
ously with an EMG sensor as feedback, has shown that it can promote motor learning
[49]. Thus, patients can actively participate in intensive and repetitive task-specific train-
ing, which is essential for recovery. The neural mechanisms underlying improvement in

sensorimotor function by FES are still not fully understood [48].

1.1.4 BClIs in Rehabilitation

Brain-Computer Interfaces (BCls) are emerging as a novel tool for rehabilitation therapy.
There is growing interest and curiosity, not only restricted to the scientific community, but
the public in general that soon this technology may improve the lives of many disabled
people all over the world [50]. The primary goal of BCI technology is to establish a di-
rect communication pathway between the brain and external devices, thereby enabling
faster and more intuitive communication and control for individuals with motor disabili-
ties caused by neurological disorders, namely stroke [51]. BCIs differ from the methods
mentioned in the previous sections in that they can modulate brain signals to control
an interface, without the need for users to execute any kind of muscular activity. In the
Background Chapter (Chapter 2) a deeper review of how a BCI works will be presented.

A large number of BCI applications from varying complexity have been developed [50].
From basic control of cursors being displayed on a computer screen [52]-[54] to robotic
arms [55], prosthesis [56] and even wheelchairs [57], [58]. Depending on the application of
the BCI, different neural-recording techniques can be used. These include microelectrode
recording of a single neuron activity [59], [60], Electrocorticogram (ECoG) [61], [62],
Electroencephalogram (EEG) [63], Magnetoencephalogram (MEG) [64] and Functional
Magnetic Resonance Imaging (fMRI) [65], all of which have their own advantages and
drawbacks. For example, a BCI that serves as an assistive device would benefit from being
highly portable, implantable, and capable of recording highly specific neural activity from
a certain cortical area. In this sense, a micro-ECoG has the capability to decode hand
movements in order to provide control signals for prosthetic hands or functional electrical
stimulator to restore function of impaired limbs, enabling a user to easily perform basic
daily tasks, that were difficult, or even impossible, before [51]. For BCIs that serve more as
rehabilitation tools than assistive devices, portability is not so crucial, but they should be
non-invasive and practical [50], [51], [66].
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The main principle behind the use of BCI as a rehabilitation tool is that it can induce
cortical plasticity by training through feedback [50], [51], [67]. When subjects are trained to
operate a BCI system, visual or other sensory feedback is presented to subjects in real-time.
Over time, subjects improve their performance in controlling the BCI system, and this is
correlated with an enhanced modulation of the recorded brain signals. Moreover, there
is evidence that combining BCI with functional electrical stimulation (FES) or assistive
robotics may aid motor relearning in stroke patients [55], [68].

In particular, some research groups are focused on the feasibility and effectiveness of
BCI systems that combine action observation and motor imagery to enhance neuroplas-
ticity and facilitate motor recovery of disabled patients [69]-[71]. In essence, both action
observation and motor imagery can induce a certain degree of motor cortical activity,
even in the absence of actual movement. This way, BCI systems could better optimize
their decoding algorithm to extract motor-related information from the patient’s cortical
activity, therefore allowing them to intuitively learn how to control and operate the BCI.
Ultimately, the enhanced performance of the patient would translate into an improvement
in motor function recovery, while keeping the patient engaged through real-time feedback
of his or her actions. Additionally, BCI systems can also be used as a monitoring tool.
Clinicians can monitor the level of attention directed towards the different tasks and the
level of inter-hemispheric balance, which is an indicator of stroke recovery [67].

In spite of the groundbreaking achievements of BCI research, most of the applications
are still limited to public demonstrations and laboratory settings [50]. Most studies and
gathered data are often from healthy individuals or animals, and studies with disabled
people have been limited to a few trials, closely supervised by research personnel. The use

of BCI technology in a clinical setting is just beginning.

1.1.4.1 Current Limitations of BCIs in Rehabilitation

Shih et al. [50] clearly elaborates the three major areas that need improvement in order for
BClIs to become a legitimate rehabilitation tool in the future. Summarily, they are:

1. Development of comfortable, convenient and stable signal-acquisition hardware;
2. BCI validation and dissemination;
3. Proven BCl reliability and adaptable for different user populations;

In fact, current BCI applications contain a high degree of technicality, that most clini-
cians and patients are not comfortable with. Also, current non-invasive BCIs are comprised
of inconvenient and expensive hardware that takes a long time to set up and is not suitable
for clinical settings. In the perspective of the patient there are also some aspects that need
improvement. Most non-invasive BCIs use non-practical acquisition systems. These are
generally electrode caps, which require conducting gel, and are comprised of one or more

wires (Figure 1.1). Besides being a gruelling task putting it on and making sure all the

7



CHAPTER 1. INTRODUCTION

electrodes are aligned, they are aesthetically displeasing and mildly uncomfortable. The
present dissertation presents a new BCI prototype which tackles some of these drawbacks
by using a commercially available wireless EEG headset: Emotiv EPOC. As this prototype
undergoes further development, it may potentially become part of a clinical rehabilitation
system in the future.

Figure 1.1: Conventional BCI system comprised of wired electrode cap and amplifier.
Adapted from [1].

1.2 Objectives

This project has been conducted at the Instituto de Biofisica e Engenharia Biomédica and

it consists of a proof-of-concept non-invasive Brain-Computer Interface: EmotivBCI.

The EmotivBCl is a simple, yet robust, BCI platform for EEG acquisition, processing
and classification of sensorymotor rhythmical activity in the central to frontal cortex of the
brain with respect to motor action and motor imagery of the upper limbs: in particular the
Left and Right hands. The signal acquisition is done through the commercially available
EEG headset: Emotiv Epoc. Moreover, the EmotivBCI provides additional features to

analyse acquired data, and keeps record of users” performances.

In this Dissertation two studies will be presented to provide a general assessment of
the EmotivBClI. The first aims at comparing two different training paradigms, and the
second study aims at analysing the evolution in performance of a particular set of users
after several sessions of training using the EmotivBCL

The objective of this Master Dissertation is to provide the foundation of what can
become a new methodology for rehabilitation of patients with motor impairment, after
Stroke or other neurodegenerative disorders.
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1.3. DISSERTATION OVERVIEW

1.3

Dissertation Overview

The present dissertation is structured as follows:

Chapter 1: Presents the motivation and context behind the topic, followed by the
objectives and outline of this dissertation.

Chapter 2: Provides the general background on the concepts that are closely tied to
the scope of this dissertation.

Chapter 3: Introduces the EmotivBCI and describes the materials and methods used
to develop it.

Chapter 4: Presents two different studies that were conducted to assess the perfor-

mance of the EmotivBCI and summarizes relevant results.

Chapter 5: States the conclusion and the direction of future work.






CHAPTER

BACKGROUND

The field of Brain-Computer Interfaces (BCIs) embraces a myriad of different scientific
areas ranging from brain physiology to electronic hardware and signal processing al-
gorithms. Throughout this chapter, the most relevant concepts surrounding the scope
of this dissertation will be reviewed. It will start by introducing the Human Nervous
system, the Brain, and one of its most fundamental properties: Neuroplasticity. Next, the
most common non-invasive technique to assess brain activity will be discussed, the EEG.
Particular attention will be given to sensorimotor rhythms in the cerebral cortex, which
is detected by EEG and that is tightly correlated to motor activity and motor planning.
Finally, a detailed review of Brain-Computer Interfaces will be provided, as well as Signal
Processing, Feature Extraction and Classification techniques which are an integral part of
this project.

2.1 Nervous System and the Brain

The nervous system is responsible for communicating and processing information from
the various body parts. It is divided into the Central Nervous System (CNS), which
consists of the brain and the spinal chord, and the Peripheral Nervous System (PNS),
which connects the brain and spinal cord to all the body organs and sensory systems.
These systems work closely together since the sensory input from the PNS is processed
by the CNS, and the responses are sent back by the PNS to the organs of the body. There
is another important distinction within the nervous system based on functionality. The
somatic nervous system and the autonomic nervous system. The somatic nervous system
controls muscle activity in response to conscious commands and relays physical sensations.
On the other hand, the autonomic nervous system regulates activities that are beyond
conscious control, like cardiac activity. The autonomatic nervous system is further divided

into the sympathetic and parasympathetic nervous system which dominate during physical
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activity and relaxation respectively [72].

2.1.1 Cerebral Cortex

From all the parts that compose the CNS, the cerebral cortex is by far the most important.
Different regions of the cortex are responsible for processing different functions, such
as sensation, learning, voluntary movement, speech and perception. The cortex is the
outermost layer of the cerebrum and has a thickness of 2-3 mm. The cortical surface is
characterized by having multiple ridges and valleys of different sizes that increase the
neuronal area, which is comprised of about 10 billion neurons [72].

The cortex is separated by a deep sagittal fissure, called the central sulcus, into two
symmetrical hemispheres: left and right. Each hemisphere is further divided into four
lobes: the frontal, temporal, parietal and occipital lobes [72], [73].

The motor cortex, located in the frontal lobe, is the main responsible for voluntary
movement. Sensory information is processed in other parts of the remaining lobes [73].

2.1.2 Neurons

The building block of the nervous system is a specific type of cell called neuron. Neurons
are insulated, supported and nourished by another type of cells, called Glia [74]. There
are many different types of neurons that differ in morphology and function, but the main
types are sensory neurons, motor neurons and interneurons [72]. These are composed of a
body, denominated soma, in which two structures extend: the dendrites and axon. The
dendrites are the extension of a nerve cell, in the form of a branch that carries impulses
to the cell body. The axon is the long projection of a nerve cell that conducts impulses
from the cell body to other cells. The transmission of information from neuron to neuron
takes place at the junction where a terminal part of the axon contacts another neuron, the
synapse. The information is passed across neurons in the form of electrical impulses, which

propagate along the axon membrane through ion-gated channel mechanisms [74].

2.1.2.1 Mirror neurons

Recently a new and special kind of neurons have been first found in monkeys and later in
humans, called Mirror Neurons [75]. These are a particular kind of neurons that discharge
not only when an individual performs an action, but also when he or she observes a
similar action done by another individual [75]. The existence of mirror neurons was
demonstrated in humans using non-invasive methods. It has been shown that other
people’s action triggers the activation of several cerebral regions. EEG studies showed
that mere observation triggers the desynchronization of cortical motor rhythms, with less
intensity than during active movement [76]. The EEG and sensorimotor rhythms will be
discussed a few sections below.

These findings opened a new pathway for treatment of stroke patients, using mirror

therapy and motion imagery. The idea behind it is that coupling motor imagery from the
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patient, meanwhile observing actual movement from another individual or segments of
their own body, will promote the recruitment of mirror neurons and cortical reorganization
that can reactivate motor neurons, resulting in the subsequent learning of new motor skills
[77]. This is still a premature field, but the application of mirror therapies has shown good
results when combined with other therapies showing promise in the better recovery of
post-stroke patients [77], [78].

This is a key idea for the future of BCI rehabilitation techniques. Although the present
project does not yet incorporate visual stimulus, it is a feature that is deemed essential in

the future.

2.1.3 Neuroplasticity

The Central Nervous System (CNS) has a fundamental property that is responsible for
its normal functioning, and how it responds to injury: Plasticity [79]-[81]. In simple
terms, plasticity can be defined as the brain’s capacity to adapt to changing circumstances
throughout the lifespan of any individual. More specifically, it comprises all the structural
and functional changes in the nervous system that occur due to a myriad of actions and
experience of any individual [80].

The nervous system is dynamic, and it is constantly modifying associations among
neuronal elements in response to changing stimuli and learning [73]. There are multiple
complex mechanisms that mediate plasticity, including changes in synaptic strength,
axon sprouting, neurogenesis, unmasking of latent neural assemblies and modulation
of inhibitory circuits [49], [82]. All these processes occur in accordance to homoeostatic
balance. In neurological disorders, this balance shifts in favour of plastic changes, resulting
in the reorganization of network connectivity [49], [80], [83].

Practice is an underlying factor for the acquisition of motor skills. It’s through repetition
that movements are executed faster and more accurately [84]. Several animal studies have
shown that motor learning leads to neuroplastic changes [81], [85], more specifically to
long term potentiation in the primary motor cortex, also referred to as M1 [84]. Through
non-invasive techniques, the same kind of neuroplastic changes after motor learning have
been suggested in humans [84].

Motor Imagery (MI), can promote motor learning, through mirror neurons, as dis-
cussed before. Moreover, recent studies have shown that MI increases M1 excitability,
resulting in motor learning by mental practice [84], [86], [87]. In other words, motor learn-
ing can be achieved by MI practice, leading to the development of neuroplasticity in the
human primary cortex (M1). This knowledge can facilitate the development of pioneering
techniques for neurorehabilitation.

All the mechanisms associated with neuroplasticity, and how they behave after injury
of the CNS, like stroke, are still subjects under much research [22], [88]. Although animal
studies have helped demistifying some of their behavioral patterns, it's more difficult,
for ethnic reasons, to apply the same methodology in humans. Studies conducted with
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stroke patients, however, have shown that there is an optimal time frame of two to three
months after injury where neuroplastic changes are more accentuated [85], [88], [89].
Therefore rehabilitation strategies should focus on this time window to capitalize on

optimal plasticity recovery.

2.2 Electroencephalogram (EEG)

Electroencephalograms (EEGs) are recordings of electrical potentials produced in the
brain with high temporal resolution. The EEG is able to record rhythmic electrical activity
from the human scalp, and it is mainly used in clinical settings to detect pathologies and
epilepsies. It can also be used in research facilities to quantify and evaluate effects of new
pharmacologic agents [90]. In the past, the EEG was analysed visually by a specialized
individual, but with the advancement of technology, there are now computerized and
more efficient methods of quantifying EEG changes. New methods for analysing EEGs are
emerging on a regular basis [91]-[93], resulting in a better understanding of how the brain
works.

EEG acquisition systems vary in quality and complexity, but a basic system consists
of electrodes, amplifiers and respective filters, and lastly a recording device. The signal
obtained from the EEG comes from the potential changes over time between a signal
electrode and a reference electrode. Unlike other biosignal measurements like the Electro-
cardiogram (ECG), the readings from the EEG are relatively more abstract and harder to
interpret at the naked eye. This is due to the spontaneous neuronal activity in the brain
that is recorded at the level of the scalp. The signal from the EEG is highly dependent on
the positioning of the electrodes in the scalp. A slight misplacement may completely fail
to detect certain patterns. To establish some consensus between the scientific community,
a 10-20 electrode placement (Figure 2.1) system was adopted [90].

Figure 2.1: Diagrammatic representation of 10-20 electrode settings for 75 electrodes.
Adapted from [94].
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An EEG is mainly characterized by frequency and amplitude. These are highly diverse
and depend mainly on the mental state of the subject [90]. The amplitude of the EEG is
related to the degree of synchrony with which the cortical neurons interact, so a high
amplitude signal is produced by a synchronous excitation of a group of neurons [74]. The
frequency, or the oscillatory rate, of an EEG is partially sustained by the input activity
from the thalamus. This part of the brain has neurons which possess pacemaker properties,
so they have the ability to generate a self-sustained rhythmic firing pattern. Coordinated
interactions between cortical neurons in specific regions of the cortex can also induce a
rhythmic behaviour. Rhythms that have a high-frequency and low amplitude reflect an
active brain (alertness or dream sleep). Low frequency and large amplitude rhythms are,
on the other hand, associated with drowsiness and nondreaming sleep states [74], [90].

2.21 Desynchronization of Sensorimotor Rhythms

Two particular rhythms found in the central region of the frontal cortex are associated
with sensorimotor activity: Mu rhythm (7-13 Hz) and Beta rhythm (15-30 Hz) [95], [96]. The
planning and execution of limb movement has been shown to attenuate the spectral power
in these frequencies. This phenomenon is designated Event-Related Desynchronization
(ERD). Going from movement back to an idle state, the amplitude of the spectral power in
these frequencies increase back to its previous intensity i.e. Event-Related Synchroniza-
tion (ERS) [96], [97]. Event-Related Desynchronization/ Event-Related Synchronization
(ERD/ERS) phenomena have also been observed during motor imagery and action obser-
vation [98], [99].

It has been demonstrated for quite a while that any given limb is mainly controlled
by the contralateral hemisphere of the brain. Similarly, ERD/ERS is often stronger in the
contralateral hemisphere of the brain as well. There is also some degree of activation on the
other hemisphere also i.e. ipsilateral, which can be observed through imaging techniques
and ERD/ERS. This knowledge makes it possible to detect the intention of moving each
of the limbs, even if one hemisphere of the brain is lesioned.

ERD/ERS of sensorimotor rhythms, caused by motor imagery or actual movement can
sometimes be difficult to observe in the EEG due to several factors. In particular, signal
processing algorithms have to be efficient at capturing this change, while disregarding
possible unwanted artefacts. Also, motor imagery detection depends greatly on the user’s
capacity to produce valid signals. Moreover, the brain’s morphology varies slightly from
individual to individual, therefore electrode placement may also be a factor preventing a
clear detection of ERD/ERS in EEG signals [96].

Over time, the challenges have been surpassed due to advances not only in signal
processing algorithms, but also in acquisition equipment, making it extremely convenient

to use ERD/ERS of Mu and Beta rhythms to develop a BCI controlled by motor imagery
[95], [99], [100].
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2.3 Brain-Computer Interface

The human brain is the main organ responsible for coordination and movement, through
electric impulses that travel from the brain to the peripheral nerves and back. When
movement loss occurs due to stroke or other neurological disorders, the electric impulses
are no longer propelled correctly. However, electrical activity of the brain can be acquired
through the scalp and processed to trigger actions, through a BCI. A BCI, sometimes also
referred as Brain-Machine Interface (BMI), is a set of hardware and software commu-
nications system that enables humans to interact with their surroundings, without the
involvement of peripheral nerves and muscles, by using control signals generated from
the brain’s electric activity [96].

Brain-Computer Interface

Digital Signal Processing

Feature
Extraction

Preprocessing Classification

Signal Application
Acguisition Interface

Applications
such as Spelling

Feedback
programs,

N | Prosthesis, VR

Figure 2.2: Block Diagram of a BCI system. Adapted and modified from [72].

A conventional BCI system is comprised of five consecutive stages:
1. Signal acquisition;

2. Pre-processing or signal enhancement;

3. Feature extraction;

4. Classification;

5. Control interface;

The signal acquisition stage records the brain signals, and depending on the acqui-
sition system it may also perform some noise reduction and artefact processing. The
pre-processing stage enhances the signal further so it is suitable for the feature extraction
stage. This stage is where discriminative information is identified in the brain signals’
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recording. Afterwards, the signal is mapped onto a vector containing effective and discrim-
inant features from the observed signals. This feature vector must be of low dimension,
so that fast processing can be achieved with acceptable efficiency. The classification stage
classifies the signals based on the feature vectors. Finally the control interface is where
the classified signals are translated into actions and commands [96]. Figure 2.2 shows a
diagram with the main building blocks of a standard BCI.

2.3.1 BCI: Synchronous and Asynchronous interfaces

A BCI can be generally categorized into two main types: Synchronous and Asynchronous
interfaces. A Synchronous interface analyses EEG evoked potential signal resulting from
stimuli received by the user from the system [101]. These can be visual, auditory or tactile
stimuli. The processing consists of detecting responses from the brain activity to the
stimuli, later transforming them into commands. An Asynchronous interfaces analyses
the user voluntary activity in contrast to the user receiving any stimuli. In this case, the
system continuously analyses the signals from the user’s brain activity and classifies the
mental state periodically [96], [101].

2.3.2 BCI: Invasive and non-Invasive

BClIs are also categorized according to invasiveness [1], [96]. If the electrical activity is
acquired from the surface of the scalp using the EEG they are said to be non-invasive.
Invasive interfaces require the installation of electrodes inside the skull, like electrocor-
ticogram (ECoG) [61], [62], or the implementation of electrodes directly to a neuron [59],
[60]. Non-invasive interfaces have a wider range of applications, in spite of being slightly
harder to analyse and process EEG data due to the abundance of undesired artefacts and
low Signal-to-Noise (SNR) ratio.

2.3.3 Performance of BCI systems

As it has been described throughout this document, BCIs are a groundbreaking technology.
Enabling a user to interact with his or her environment through shear mind power is
only possible because of BCI systems. However, even BCIs have limitations that are
fundamentally derived from their nature. The whole range of motion an individual has of
his or her body is virtually impossible to achieve through a BCI because they have low
dimensional control [102]. This is mainly due to the complexity of the human brain and
the limitations of an EEG acquisition system. Several studies have been able to successfully
distinguish between two mental conditions using non-invasive BCls i.e. two classes [4],
[103], [104]. Current research is focused on distinguishing more than two mental conditions
with an acceptable efficiency, usually 3 or 4 different classes [54]. Furthermore, research
groups aim at being able to distinguish different mental intentions of the same limb [102],
[105], [106]. For example, distinguishing different finger movements or distinguishing

different arm movements, like elbow movement and hand grasping. This is especially
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more challenging, because this information reveals itself in the same regions of the brain
[102]. BClIs that deal with 2 classes, for example rest condition versus imagined hand
movement, classification accuracies should be higher than 70% [107]. State-of-art BClIs,
however, can achieve accuracies above 90% for most test subjects with minimal training
[63]. BCIs with more than two classes have accuracy ranges between 60% and 80%, with
lower chance levels [102]. However, as it was mentioned before, some individuals have
a greater ability to generate signals reflective of their motor imagery, therefore they can
accomplish better classification accuracies. Consequently individuals that can naturally
modulate their mental states can control devices more efficiently.

It’s imperative for any worthy to mention BCI to have a decent acquisition system,
be it EEG or any other acquisition techniques mentioned above, and also a meaningful
teedback or control interface. However, it’s the signal processing component of a BCI that
dictates the overall performance of the BCI, including feature extraction and classification.
The following section will discuss the importance of these two stages and give a brief
overview of the techniques that are used to develop the current project.

2.4 Signal Processing and Feature Extraction

Signal processing and feature extraction are essential subjects in the field of BCI. As
described earlier, the EEG is prone to many unwanted artefacts, and collecting valid
information from it can be challenging. To acquire valid data, the equipment has to be
proven efficient and the user must carefully follow the paradigms proposed. Besides, signal
processing on the computer can take time, therefore analysis on real-time acquisition may
be delayed and non-functional. Because of this, feature selection is a way to minimize the
time and operations done while processing, by selecting only relevant portions of data.
This greatly reduces processing time and makes it possible for real-time BCI applications
to work.

Typically, the acquired EEG signals are pre-processed by a bandpass filter in the first
stage, to obtain signals in the band of interest. Afterwards there is the feature selection
phase in order to represent the vital components of the signal, or the features. The extracted
features are then used to train a classifier in an offline phase. During the online phase, the
trained classifier can identify the user’s intent and output a command signal [108]. The
objective of feature selection is to improve the prediction performance of the predictors,
provide faster and more cost-effective predictors, and provide a better understanding of
the underlying process that generated the data [109].

For a BCI to work efficiently, the mental state of the subject has to be recognized
by the machine using a classifier. The optimal recognition process has to occur at high
classification rates and be the least time consuming [110]. Therefore, the features and
algorithms used have to simultaneously obey these two criteria. Another important aspect

that should be considered is the individual particularities, such as native talent or sustained
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training of the user using the BCI. Classification accuracies vary significantly from user to

user due to different individual cortical patterns for the same cognitive tasks [110].

There are a myriad of techniques used for processing, depending on the type of BCI
and applications to be used on [111]. An extensive review of all of these techniques is
beyond the scope of this project, however, all feature selection techniques and algorithms
in EEG-based BCI aim at representing the EEG data in feature space, which can be later
used to train the classifier [96]. The next subsections will review a few of the techniques
and algorithms related to signal processing and feature extraction, which are used for the
development of the proposed BCI system, the EmotivBCI.

2.4.1 Artefact Reduction

EEG signals are often contaminated with noise and artefacts. It is necessary to develop
methods for detection and objective quantification of signal characteristics to minimize

the influence of noise and artefacts to facilitate interpretation of relevant information [72].

One way to reduce artefacts is linear filtering. Linear, time-invariant filtering can be
used for reduction of Electromyography (EMG) artefacts, and the 40/60 Hz power-line
interference [72]. Filtering also allows to express a EEG signals in the frequency ranges
where the relevant information is found. For example, ERD/ERS is observed in the Mu
(7-13 Hz) and Beta (15-30 Hz) frequency ranges.

Although filtering can help in minimizing noise and artefacts, it is not bulletproof.

Some artefacts due to muscular activity still overlap in EEG spectra.

24.11 Chebyshev Type 1 Filter

Chebyshev filters are used to separated one band of frequencies from another. The primary
attribute of Chebyshev filters is their speed, since they are carried out by recursion. Unlike
Butterworth filters, Chebyshev filters can maintain a constant amplitude value at cutoff
frequency, which is beneficial to preserve the desired frequency content of the signal. The
design of Chebyshev filters is based on a mathematical technique, the z-transform. The
Chebyshev Type 1 Filter has the following transfer function:

|Hy(je)| = ! . @.1)

1+ 2T2 (w%)

The ¢ is the ripple factor, wy is the cutoff frequency, and T}, is a Chebbyshev polynomial
of the nth order, which can be defined as:

Ty(x) = cos(ncos™1x) |x] <1 22)
" Y cosh(ncosh ) |x| > 1 '
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2.4.2 Power Spectral Density

Considering the oscillatory behaviour of EEG rhythms, including Mu and Beta, signal
decomposition in terms of sine and cosine functions is extremely convenient. The Fourier
Transform correlates the signal with sines and cosines of different frequencies, and produces
a set of coefficients that define the power spectrum. From this spectrum, any particular
frequency band can be readily obtained. The Power Spectral Density (PSD) is a natural
quantity for characterizing a stationary signal. Therefore, spectral analysis is generally
applicable to EEG signals of short durations (about 10 s), i.e. without major temporal
changes [72].

2.4.2.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier Trans-
form for signals known only at N instants. The discrete-time Fourier transform (DTFT) of

a signal x,, is:

N-1 ‘
X(k)= Y xy-e Nk € Z (integers). (2.3)
n=0

The simplest power spectral density estimate is the modulus squared of the DFT,

known as Periodogram:

N-1 2

2 Xy - e—kan/N
n=0

S(k) = — |X(k)[* = k € Z (integers). (2.4)

1
N

2.4.2.2 Welch Estimation Method

The periodogram not always produces a consistent estimate of the power spectrum. This
is mainly due to the fact that the variance of the periodogram does not decrease with the
number of samples. Because of this, modifications have been applied to the periodogram,
which consists of windowing and averaging. These techniques aim at reducing the variance
of the periodogram [72].

Windowing is an operation in which a rectangular window w(#) is applied to extract
the segment of a signal that extends over a longer interval. There are different designs of
windows. The most common are Hanning, Hamming, and Blackman. Windowing provides
a trade-off between leakage and spectral resolution of the power spectrum estimate.

Variance reduction consists first of separating the signal x(n) into K non-overlapping

segments of length L:

xi(n) =x(n+il),n=0,..,.L—-1,i=0,..,K—1. (2.5)

Then, the resulting periodograms resulting from each of the segments x;(n) is averaged.

There is often a overlap between the segments.
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The Welch’s method is a nonparametric spectrum estimation technique that combines

both of the above mentioned techniques: Windowing and averaging;:

1 K-1|L-1 ion KL 2
S0 = g L | sl ¢ - 20

U is a normalization factor related to the characteristics of the window w(n),
u=-1 Y- w?(n). (2.7)
L

2.5 Classification Algorithms

The classification stage is critical to guarantee the efficiency of a BCI system. The aim of the
classification step is to recognize the user’s intentions with respect to a feature vector that
characterizes the brain activity [96]. Classification algorithms use the features extracted as
independent variables that define the boundaries between the different classes in feature
space [96].

The feature vector is extracted from training trials, which are then used to train a

classifier.

2.5.1 Naive Bayes

The Naive Bayes (NB) classifier is a probablistic algorithm based on applying the Bayes’
theorem with naive independence assumptions. The Naive Bayes classifier can proba-
bilistically predict the class of an unknown trial using the available training trial set to
calculate the most probable output. The most probable class Cyp of an unknown trial with
the conjunction A = a1, ay, ..., a,, is calculated by:

Cnp = argmaxp(c/A). (2.8)

ceC

Where m is the number of discrete-valued features and C is the class.

2.5.2 Gaussian Support Vector Machine

The Support Vector Machine (SVM) classifier performs classification tasks by constructing
the best hyperplane in a multidimensional space by finding the maximum possible margin,
defined as:

fx)=w'x+b. (2.9)

where w is the weight vector, and b is the bias. In this case, the decision boundary defined
by the hyperplane is said to be linear. Sometimes, non-linear classifiers provide better
accuracies, depending on the input data. Support vector machines can be transformed into

a non-linear method by using a non-linear kernel function. A kernel function defines a new
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vector for a given set of data x by calculating the similarity between the x and another set
of data y. One particular kernel function is the Gaussian kernel, defined as:

2
K(x,y) = exp(—W). (2.10)

This function takes values between 0 and 1. If x = y then k = 1. The parameter ¢ is the
standard deviation, and it controls the width of the kernel function.

2.5.3 Decision Tree

The Decision Tree (DT) algorithm constructs a decision tree with branches and nodes
based on a feature vector set. The decision tree begins with a root node r derived from
whichever variable in the feature space minimizes a measure of the impurity of the two
sibling nodes. The measure of the impurity at node r, denoted by im(r), is defined as
follows:

im(r) = —) p(w;/r)logp(w;/r)). (2.11)

M

Il
—_

1
where p(w;/r) is the proportion of patterns x; allocated to class w; at node r. Each none-
terminal node is then divided into two further nodes, r; and r; such that p;, p, are the
proportions of entities passed to new nodes 1, r2 respectively. The most appropriate

division is that which maximizes the difference:
Aim(d,r) = im(r) — prim(r1) — paim(ra). (2.12)

The decision tree grows until a phase is reached in which there is no significant decrease
in the measure of impurity when a further additional division d is implemented. When
this phase is reached, the node r is not sub-divided further, and automatically becomes a
terminal node. The class w;, associated with the terminal node r is that which maximizes
the conditional probability p(w;/r). Eventually, in testing phase, test samples are classified

using the calculated optimal decision tree model.
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DEVELOPMENT OF EMOTIVBCI

The present chapter will cover the development of the project that is the topic of this
Master dissertation: EmotivBCI. A full guide of usage will be provided in Appendix A. All
the methods and algorithms that are not defined in this section, have been described in

the section above.

3.1 Overview

The EmotivBCI (Figure 3.1) is a proof-of-concept BCI console platform developed in C#
programming language. It acquires EEG signals from 8 electrode channels in the central
and frontal cortices of the brain through the commercially available EEG headset: Emotiv
Epoc.

EmotivBCl

e EEG Processing
e Feature Extraction
e (Classification

e Real-Time BCI

Figure 3.1: Visual representation of the EmotivBCI and the main features it comprises.

The acquired signals are processed and relevant features are extracted to build a
classifier based on ERD/ERS due to movement or imagery of upper limbs (left and right
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hands). It also implements real-time testing with the built-in classifiers. The EmotivBCI
comes with a number of features, which will be described in the following sections.

3.1.1 Materials

The main core of the EmotivBCl is the software that was developed on the computer. For
that, several other programs were used, which will be mentioned below.

3.1.1.1 Emotiv Epoc

The Emotiv Epoc is a wireless headset equipped with 14 sensors, and two reference channels
(Figure 3.2). Prior to its usage, the electrode pads have to be moisturized with a saline
solution. The battery duration is about 12 hours. The raw data from the headset can be
accessed from the supplied SDK* [112].

(a) Emotiv Epoc wireless headset. (b) Emotiv Epoc standard
electrode placement.

Figure 3.2: The Emotiv Epoc: hardware and electrode positions. Adapted from [112].

The Emotiv Epoc internally samples at a frequency of 2048 Hz, and then it is down-
sampled to 128 Hz. Moreover, the data is pre-processed in the hardware, with a low-pass
filter with cutoff frequency at 85 Hz, a high-pass filter with cutoff at 0.16 Hz and a notch
filter at 50 Hz and 60 Hz. The signal is then available through the API? [113].

3.1.1.2 Visual Studio Community 2013

Visual Studio Community is a free Integrated Development Environment (IDE) to create
applications in various operating systems [114]. It allows to write and test code in a pleni-
tude of languages. The EmotivBCI was developed in C#: An object oriented programming
language. The class diagram of the EmotivBCl is illustrated in Figure 3.3.

ISDK - Software Development Kit
2 API - Application Programming Interface
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3.1. OVERVIEW

| TrainingSession v | EmotivEPOC v | Classifier ¥ | | signalProcessing %
Interface Interface Interface Interface

| TrainingSessionClass ¥ | | EmotivEPOCClass ¥ | | ClassifierClass ¥ | | signalProcessingClass % |
Class Class Class Class

[ EEGRecord ¥ | [ EmotivBCIUser ¥ | [ EmotivBCI ¥ |
Interface Interface Interface

[ EEGRecordClass % | [ EmotivBCIUserClass % | | EmotivBCIClass % | | EmobivBCI_Main % |
Class Class Class Class

Figure 3.3: Class diagram of the EmotivBCL

3.1.1.3 Matlab 2015

Matlab is a high-level programming language and interface developed by MathWorks?.
Matlab is specially useful to develop signal processing algorithms, since it has imple-
mented various functions to meet the users’ needs. It is also extremely convenient to plot
data and perform statistical analysis.

Throughout the development of the EmotivBCI, Matlab was an essential tool to de-
velop some of the functions used for signal processing. Functions developed in Matlab
were converted to a C# component in the form of dll (Dynamic Link Library), and then
implemented in the main program developed in C#.

Table 3.1 summarizes the functions developed in Matlab.

Table 3.1: Functions developed in Matlab and used in the EmotivBClI for analysis and
processing.

‘ Function

Description |

CalculatePowerValue Calculates the logarithmic band power value for a
band length of 1 Hz centered at the frequency given,
for a single frame.

ExtractFeatures Extracts the two best combinations of channel/fre-
quency that exhibit the greatest action difference be-
tween the action and rest states.

GenerateFeatMap Plots the power differences for each channel with re-
spect to the frequency.

ChannelPSD Plots the Periodogram and Welch Power Estimation
for a given channel.

GenerateClassifierData Plots the feature attributes used to build the classifier.

3.1.1.4 Accord.NET Framework

The Accord.NET Framework is a .NET machine-learning framework which is comprised
of signal processing and classification libraries written in C# [115].

3The MathWorks Inc., Natick, MA, 2000
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The classification algorithms used in EmotivBCI were implemented from the Ac-
cord.NET libraries. These algorithms yield a classification accuracy based on the respective

input data: attributes and classes.

3.1.2 Getting Started

EmotivBCI was developed with the intent of serving as a personal platform, where users
can register their personal information, perform tests, and keep track of their own progress.
That being the case, a new user first has to register, by providing the name, age, a user-
name and a password. After successfully logging in with the created user-name and
password, the user can perform training sessions, and has at his or her disposition an
array of commands to further analyse acquired data. In order to perform BCI tests, the
user must be wearing the Emotiv headset. It is advised that the position of the headset is
adjusted so the FC5 and FC6 channels are closer to the central cortex of the brain, in the
C5 and C6 positions of the 10-20 EEG electrode system (Figure 3.4).

Figure 3.4: Adjustment of electrodes from the standard Emotiv position. The red circles
mark the original positions, and the green circles mark the adjusted positions. Adapted
and modified from [116], [117].

3.2 Training Session

The main feature of the EmotivBClI is the ability for a user to perform training sessions.
They consist of two-minute EEG acquisitions, in which the user performs the action the
screen display prompts him to do. At the end of the acquisition, a classification accuracy is
given according to how well the classifier distinguished between the two tested conditions.
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3.2.1 Training options

The EmotivBCI provides four different training options:
1. Left hand motor action: User repeatedly clenches left hand when prompted;
2. Left hand motor action: User repeatedly clenches right hand when prompted;
3. Left hand motor action: User imagines left hand movement when prompted;
4. Left hand motor action: User imagines right hand movement when prompted;

Depending on the selected option, the user will perform the respective action (Action
condition) intercalated with an idle state, which from this point forward will be referred

to as the Rest condition.

3.2.2 Training paradigms

Complementary to the training options, the EmotivBCI also offers two different training

paradigms:
1. Training Paradigm 1 - TP-1: 5-second-rest-5-second-action;
2. Training Paradigm 2 - TP-2: 2-second-rest-2-second-action;

The training paradigm dictates the frequency at which the user is prompted to perform
the chosen training option. The total time of the training session does not change (2
minutes). However, the number of repetitions change according to the paradigm. Table 3.2
summarizes the the parameters of both training paradigms. Both paradigms come with

advantages and disadvantages, but these will be discussed in the next chapter.

Table 3.2: Comparison between TP-1 and TP-2. Repetitions represent the number of times
a user has to perform the rest condition and action condition during the 2-minute training
session. The number of features represents the total number of values available to train a
classifier.

Training Paradigm Repetitions Number of Features

TP-1 12 48
TP-2 30 120

3.3 Processing Cascade

From the raw EEG data that was acquired through a training session, until a final classifi-
cation is attributed, the signals from all the channels undergo a comprehensive processing
cascade. From this cascade, the relevant features are extracted, and used to construct a
feature matrix, which will then be fed to the classifier. Figure 3.5 gives a simple illustration

of the processing cascade.
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Normalized channel EEG data:
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Figure 3.5: Diagram of the Feature Extraction processing cascade. Note that only one
channel is represented for simplicity, however, all data from every channel is processed
the same way.

3.3.1 Signal Processing

The signal processing is carried out with the support of Matlab wrapped functions in a
non-parametric fashion. Once acquired, signals from each channel are pre-processed with
the C# built functions that remove the DC component and normalize the signal for each of
the channels. The offset of the signal is removed by subtracting the average over the time
domain of the signal. The signal x(k), in which k is the time instant, is then normalized
between [—1, 1] through:

Xy (k) = 1/max(|x(k)|) = x(k). (3.1)

Next, each of the channels is separated into the rest and action conditions, but only
the initial number of samples is selected, which corresponds to the initial instances of each
condition (Figure 3.5). The reasoning behind this is further explained later, but essentially
the initial instances of each condition are more likely to carry the greatest information

value for feature extraction. There are 5 established number of samples that are selected:
e 13 samples ~100 ms;
e 26 samples ~200 ms;
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¢ 39 samples ~300 ms;
e 69 samples = 500 ms;
e 128 samples =1s;

For each number of samples, the feature extraction cascade is the same.

3.3.2 Feature Extraction

After the signal is pre-processed and segmented into two distinct signal vectors: Rest and
Action, the EmotivBCI extracts the 2 best combinations of channel/frequency that exhibit
the greatest ERD/ERS over the respective number of trials between these two conditions.
The first step in the feature extraction cascade involves filtering the signal. The filter used
is a 10th-order double bandpass Chebyshev Type 1 filter (refer to 2.4.1.1) in the frequency
bands that may exhibit ERD/ERS: 7 Hz to 13 Hz (Mu) and 15 Hz to 30 Hz (Beta).

Once filtered, the Power spectrum density (PSD) is estimated using the Welch method
(Chapter 2.4.2.2) for each of the conditions in every channel: PSD(rest) and PSD (action).

The difference PSD(rest) — PSD(action) is calculated to identify the channel and
frequency pairs that show the greatest difference, hence the greatest ERD/ERS.

The two best combinations of channel/frequency are used to build the feature matrix
to train the classifier. The best channels may be the same. If so they exhibit ERD/ERS in
two distinct frequencies.

3.3.3 Feature Matrix Construction
The feature matrix is calculated for the best channels, by computing the logarithmic band
power centered in the respective best frequency. The band power is computed as follows:

2
f-05 f-05 H

(3.2)
In this equation, X (k) is the FFT coefficients between the delimited frequencies.

The data from each of the 2 best channels is again separated into rest and action
conditions (this step is now computed in the C# framework), and buffered into frames of
the same size as the respective number of samples.

For each frame, the logarithmic band power centered in the best frequency, with the
range of 1 Hz, is computed.

The resulting matrix consists of a set of band power values for the rest state, which
corresponds to output —1, and a set of band power values for the action state, which
corresponds to output +1 (Figure 3.6).

Depending on the previously selected training paradigm, the number of values for the
classes rest and action are different:

Training Paradigm 1: 12 repetitions x 2 conditions = 24 values per attribute;

Training Paradigm 2: 30 repetitions x 2 conditions = 60 values per attribute;
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The resulting feature matrix will therefore consist of 2 sets of attributes: band power
values for combination channel/frequency number 1, and band power values for combi-

nation of channel/frequency number 2.

Channel selected from Feature Extraction:

FREIBREEREBEEE

J 6,63 5,84
Class 2: action  — 13,22 11,36
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the extracted frequency
range Y Y
Sample size
S |
) A o .
J 8,88 13,32 § ’
Class 1: rest 12,15 12,09 S:
1 15,61 18,42 H o
.
:

il
a
-1
-1
il
i
1
i
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Figure 3.6: Diagram of the Feature Matrix construction. The features have been extracted
prior to this stage. Both channel/frequency pairs go through this processing.

3.3.4 Classification
The feature matrix is used to train 3 different classifiers implemented using the Accord
Framework:

¢ Naive Bayes

e Gaussian Support Vector Machine

e Decision Tree

The resulting classification accuracy represents the number of correctly classified samples
over the total number of samples multiplied by 100%. The random classification accuracy
is 50%.

The processing cascade will result in 3 classifiers for each number of samples, so in
total 15 different classification values are computed. From these 15, only the one that
yields the best accuracy is selected, along with the number of samples, to validate the
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training session, and posteriorly be used for real-time BCI processing. The relevant features
extracted (2 best channel/frequency pairs)in respect to the best classification are registered

for that training session as well.

3.4 Other Features

The ability to perform training sessions and subsequently classify data is the main feature
of the EmotivBCI. It does, however, offer a few more features to round out and come close
to a what a real BCI platform should be like (Figure 3.7). The next subsections will give a

brief overview of such features.
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Figure 3.7: Features of the EmotivBCI.

3.4.1 Online BCI - Real-time Testing

One of the most promising features of the EmotivBClI is the ability to perform BCI tests
with live feedback. In order to perform real-time testing, a user has to first perform a
training session, choosing the appropriate option for which he or she wants to test. During
the training session, the appropriate features are extracted and a classifier model is built,
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so that it can classify incoming data from live acquisition. With classification accuracies
above 90% it has yielded acceptable responses. With classification accuracies lower than
90% there seems to be no sufficiently adequate response. The way it is implemented,
it computes a band power value (based on the respective features acquired from the
training session) every 1 second, or 128 samples. The computed value is then classified as
Rest or Action based on the training set. Because the features are extracted based on the
initial samples, usually lower than 128, the data from live acquisition may not be fully
compatible. This is an issue which should be addressed in further development of the
EmotivBCI.

3.4.2 Generate Feature Map

Feature maps are density charts that show the activity of the channels with respect to
frequency (Figure 3.7(a)). It is based on these charts that the features for a given training
session are extracted i.e. 2 channel/frequency pairs. The user has the ability to visualize
these feature maps and analyse the areas of the brain that showed grater variation between
the rest and action conditions. The feature maps are generated according to the processing

algorithms described above.

3.4.3 Generate Channel PSD

Although the feature map can show the power variation in all the channels, it is not very
detailed. For this reason, the user can visualize the power spectrum of both the rest and
action condition for any given channel. This command generates 2 power spectrum density
plots: Periodogram (Figure 3.7(b)) and Welch Method Estimation (Figure 3.7(c)). Through

these plots it is often possible to observe a clear desynchronization of the action condition.

3.4.4 Generate Classification Data

This command plots the attribute values used to train the classifiers in a plane i.e the
values from the feature matrix. The y axis consists of the power values of the first chan-
nel/frequency pair, and the x axis consists of the second. The colors refer to the condition:
blue is rest, and red is action. Through this plot it is possible to predict the accuracy of the
classification (Figure 3.7(d)).

3.4.5 Miscellaneous

The EmotivBCI has a few other options that may be useful. Among these are the ability to
export and import EEG data in CSV format, the ability to check previous training sessions
and respective performances and other implemented functions that provide assistance on
the usage of the platform. Aside from these, there are a few functions under progress to
provide even more angles of analysis of acquired data, but that are not yet perfected to be
mentioned.
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3.5 EmotivBCI: Wrap-up

The EmotivBCI was developed in different stages. The signal processing stage was devel-
oped mostly in Matlab, with the support of a public available EEG dataset from Physionet
[116], [117], which contains EEG data from motor action and motor imagery tests for 109
different subjects. During this stage different processing techniques were experimented in
order to achieve the optimal processing algorithm used in this project. Meanwhile, the
platform was being developed in C#. The final stage consisted of seamlessly implementing
EEG data acquisition from the Emotiv Epoc and the functions developed in Matlab into
the platform. Subsequently various tests were performed to validate if all the components
were running smoothly. Throughout the development of the EmotivBCl, different methods
and tests were conducted to reach the best performance possible. Special attention was
given to speed and robustness of processing, not only so the user doesn’t have to wait
a considerable amount of time for his or her classification results, but so that real-time
testing could then be feasible. The real-time testing functionality of the EmotivBCI is
rudimentary at the time of this document. Different approaches should be taken in order
to make it a viable feature. Further suggestions and commentary will be elaborated in the

Conclusion chapter.

33






CHAPTER

ASSESSMENT OF EMOTIVBCI

In order to validate and analyse the efficiency of the EmotivBCI, two studies were con-
ducted with a different number of volunteers. The participants consisted of healthy
individuals between the ages of 23 to 37, who had no previous experience with BCIs. The
aim of the first study was to analyse the performance of the EmotivBCI using the two
training paradigms. The aim of the second study was to determine the evolution of the
performance with continuous usage. With a few minor differences which will be men-
tioned below, the task formulation for both studies was similar. The group of individuals

were different for each study.

4.1 Task Formulation

Although the group of individuals was different depending on the study, the task for-
mulation was the same. Both studies consisted of the subjects performing the 4 different
training options one after another. The subjects were asked to hand over their mobile
phones, and then moved into a Faraday cage at the research center to perform the test.
They were asked to sit on a wooden chair in front of a laptop. The Emotiv headset was
placed on their head, with the electrode channels carefully located in the correct positions
(the position of the electrodes was slightly different than the standard Emotiv channel
position - Chapter 3.1.2).

It was certified that all the signals from every channel were being acquired with suitable
quality using the Emotiv software TestBench, and by visual assessment. The subjects were
then told to register in the EmotivBCI application and login. Before performing the training
sessions, they were told to keep still as much as possible, including blinking, and just
perform the movements indicated by the application. During every training session the

subjects were alone in the Faraday cage. For both studies, the subject answered 4 survey
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questions after the test for futher analysis. The answers were to be given using a scale
from 1 to 5, except for question 3. The questions were:

1. "How would you rate your mood?": 1 (very bad/exhausted) -> 5 (excellent);

2. "How comfortable was the Emotiv headset?": 1 (very uncomfortable) -> 5 (very

comfortable);

3. "Which training paradigm did you consider less exhausting?"; 1 (TP-1), 2 (TP-2) and
3 (no difference);

4. "How hard was it to perform motor imagery?": 1 (very easy) -> 5 (very hard);

4.2 Study 1: Training Paradigm 1 Vs. Training Paradigm 2

The objective of this study was to assess the performances of 4 different subjects doing
both training paradigms. For this, they performed all the training options twice, according
to the task formulation. The first time they performed the training sessions using Train-
ing Paradigm 1 - TP-1: 5-second-rest-5-second-action. Shortly after they performed the
training sessions using the Training Paradigm 2 - TP-2: 2-second-rest-2-second-action.

421 Motor Action Results and Analysis

The results from motor action performance are presented in Table 4.1, in which the
channels correspond to the adjusted position, and not the standard Emotiv Epoc position.
The channel positions are based on the 10-20 system. The features represent the two
channel/frequency pairs which exhibited greater activity, and the samples used (Chapter
3.3.1). T.O stands for Training Option!. The classifier? used is displayed as well as the
classification accuracy, which is the criterion for performance.

There is a clear variation in performance not only between the two training paradigms,
but also from subject to subject. Among the 8 different tests, only two tests showed a
better performance using the Training Paradigm 2. Figure 4.1 shows a box plot for each of
the Training Paradigms with respect to motor action. Subject 2 reached a 100% accuracy
in the left-hand motor action option, which enabled him to asynchronously control the
BCI flawlessly in real-time. In most cases, the extracted channels are FC5 and FC4, which

correspond to the pre-motor cortex on both hemispheres.

1LH - left hand; RH - right hand.
2 NB - Naive Bayes; GSVM - Gaussian Support Vector Machine; DT - Decision Tree.
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Table 4.1: Study 1: Motor Action Classifications between TP-1 and TP-2 for 4 subjects. T.O:
Training Option; LH: Left Hand; RH: Right Hand; NB: Naive Bayes; GSVM: Gaussian
Support Vector Machine; DT: Decision Tree.

‘ Training Paradigm 1: 5-second-rest-5-second-action Training Paradigm 2: 2-second-rest-2-second-action
Subjects ' T.O
‘ ‘ Features Classifier Classification (%) Features Classifier Classification (%)
5 ‘ LH | FC5/24Hz, F4/24Hz, 13s. DT 91.2% FC5/10Hz, FC4/10Hz, 69 s. DT 79.2%
‘ RH ‘ FC5/9Hz, FC4/9Hz, 39s. NB 83.3% F3/9Hz, C6/9Hz, 39 s. DT 70.8%
o ‘ LH | FC3/29Hz, FC6/29Hz, 128 s. DT 75.0% FC3/9Hz, FC6/9Hz, 39 s. DT 83.3%
‘ RH ‘ FC3/8Hz, FC6/8Hz, 39 s. DT 100.0% FC3/9Hz, FC6/9Hz, 26 s. DT 79.2%
s ‘ LH | FC3/10Hz, FC6/10Hz, 128 s. DT 83.3% FC5/9Hz, FC4/9Hz, 13 s. GSVM 83.3%
‘ RH ‘ F3/10Hz, FC6/10Hz, 128 s. DT 87.5% FC5/9Hz, FC4/9Hz, 39 s. DT 79.2%
s ‘ LH FC5/8Hz, FC4/8Hz, 26 s. GSVM 79.2% C5/9Hz, F4/9Hz, 69 s. DT 83.3%
‘ RH | FC5/13Hz, FC4/13Hz, 13 s. GSVM 70.8% FC5/9Hz, FC4/9Hz, 13 s. DT 70.8%

Motor Action Classification Accuracies
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|
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Figure 4.1: Box plot analysis between TP-1 and TP-2 for Motor Action: TP-1 shows overall
better performance than TP-2.

4.2.2 Motor Imagery Results and Analysis

In a similar fashion to the Motor Action tests, Table 4.2 displays the results for the same
subjects, but this time for Motor Imagery tests.
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Table 4.2: Study 1: Motor Imagery Classifications between TP-1 and TP-2 for 4 subjects.
T.O: Training Option; LH: Left Hand; RH: Right Hand; NB: Naive Bayes; GSVM: Gaussian
Support Vector Machine; DT: Decision Tree.

‘ Training Paradigm 1: 5-second-rest-5-second-action Training Paradigm 2: 2-second-rest-2-second-action
Subjects ' T.O
‘ ‘ Features Classifier Classification (%) Features Classifier Classification (%)
51 ‘ LH | FC5/24Hz, C6/24Hz, 13s. DT 79.2% F3/11Hz, C6/11Hz, 69 s. GSVM 70.8%
‘ RH ‘ FC5/9Hz, AF4/9Hz, 39s. DT 75.0% F7/11,F4/11,128s. GSVM 79.2%
o ‘ LH F3/9Hz, C6/9Hz, 128 s. DT 87.5% C5/27Hz, F4/27Hz, 69 s. DT 83.3%
‘ RH ‘ FC3/9Hz, FC6/9Hz, 69 s. DT 83.3% FC3/9Hz, FC6/9Hz, 26 s. GSVM 79.2%
- ‘ LH | FC3/11Hz, FC6/11Hz, 128 s. ~ GSVM 83.3% F3/12Hz, C6/12Hz, 39 s. DT 79.2%
‘ RH ‘ F3/12Hz, C6/12Hz, 128 s. DT 87.5% FC5/12Hz, FC4/12Hz, 39 s. DT 83.3%
o ‘ LH C5/8Hz, F4/8Hz, 26 s. NB 70.8% FC3/14Hz, FC6/14Hz, 13s.  GSVM 70.8%
‘ RH C5/9Hz, F4/9Hz, 128 s. DT 79.2% FC5/9Hz, FC4/9Hz, 128 s. DT 79.2%

The results from motor imagery are more balanced between training paradigms than
testing motor action. Motor imagery is more challenging to perform, and therefore perfor-
mances were slightly lower than motor action also. However, there were some exceptions,
namely subject 2 and subject 4 achieved a higher performance in certain tests. It is impor-
tant to note that different features were extracted from motor imagery tests in relation
to motor action. Yet, the channels still correspond to the two hemispheres of the brain.
Overall, subjects performed better under training paradigm 1 than training paradigm 2.
Figure 4.2 shows a box plot analysis between the two training paradigms, this time for

motor imagery.
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Figure 4.2: Box plot analysis between TP-1 and TP-2 for Motor Imagery: TP-1 shows
overall better performance than TP-2.

4.3 Study 2: Evolution of Performance with Practice

The objective of this study was to evaluate if a group of four subjects improved classi-
fications after several sessions of usage of the EmotivBCI. For this study, every subject
performed 3 sessions of tests. Unlike the first study, where the subject performed each of
the training options for both training paradigms, this time around the subjects performed
each of the training options, with intercalated training paradigms. The training paradigms
were intercalated between subjects too, therefore two of the subjects started with TP-1,
and the other two with TP-2. Subjects 5 and 8 performed the tests in the span of 3 weeks,
as subjects 6 and 7 performed the tests in 3 consecutive days.
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Figure 4.3: Study 2: Motor Action classification accuracies of 4 subjects over 3 training

sessions.
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Figure 4.4: Study 2: Motor Imagery classification accuracies of 4 subjects over 3 training
sessions.
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Figure 4.5: Study 2: Average subject performance over the 3 training sessions.

The results of the motor action and motor imagery tests for each subject are presented
in Figures 4.3 and 4.4 respectively. Their average performance is showed in Figure 4.5.
Subject 5 showed an improvement in performance between the first and last training
session across all categories. His best performance, however, was the second training
session, where he achieved a 100% accuracy in the left hand motor action test. Subject 7
reported he was tired and with few hours of sleep during his last two training sessions.
Likewise, his performances were poorer. On the other hand, subject 6 reported to be light
spirited and energetic during his second training session, in which he achieved his best
performance. Due to these observations, a statistical analysis was done to observe how
classifications changed with respect to mood, which will be presented in the following
section. Only subject 8 showed a continuous improvement across all training sessions.

The details of each training session are presented on the next page in Tables 4.3 and
4.4. As in the first study, the extracted channels for each of the subjects correspond to the
two hemispheres. As expected, most of the features are similar within the same training

option over the 3 training sessions, however it is not always the case. This may be due to a
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slightly different placement of the headset from session to session.
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CHAPTER 4. ASSESSMENT OF EMOTIVBCI

Table 4.3: Study 2 - Motor Action classification accuracies across 3 training sessions for 4 subjects. T.O: Training Option; LH: Left Hand; RH:
Right Hand; NB: Naive Bayes; GSVM: Gaussian Support Vector Machine; DT: Decision Tree; TP1: Training Paradigm 1; TP2: Training Paradigm

2.
Training Session 1 Training Session 2 Training Session 3
Subjects T.O
Features Classifier | Classification (%) Features Classifier | Classification (%) Features Classifier | Classification (%)
o5 LH-TP1 | FC5/9Hz, FC4/9Hz, 128 s. GSVM 79.2% FC5/11Hz, FC4/11Hz, 69 s. DT 100.0% FC5/8Hz, FC4/8Hz, 69 s. DT 83.3%
RH-TP2 | FC5/9Hz, FC4/9Hz, 26's. DT 75.0% FC5/8Hz, FC4/8Hz, 13 s. GSVM 79.2% C5/9Hz, F4/9Hz, 26 s. DT 79.2%
s LH-TP2 | FC5/9Hz, FC4/9Hz, 69 s. GSVM 75.0% FC5/9Hz, FC4/9Hz, 39 s. GSVM 87.5% F3/10Hz, C6/10Hz, 13s. | GSVM 83.3%
RH-TP1 C5/8Hz, F4/8Hz, 26 s. GSVM 79.2% C5/9Hz, F4/9Hz, 39 s. GSVM 79.2% FC5/9Hz, FC4/9Hz, 69 s. DT 75.0%
- LH-TP1 | FC5/9Hz, FC4/9Hz, 128 s. GSVM 79.2% F3/13Hz, C6/29Hz, 39 s. NB 75.0% F3/29Hz, C6/29Hz, 39 s. DT 83.3%
RH-TP2 C5/9Hz, F4/9Hz, 39 s. DT 79.2% F3/29Hz, C6/29Hz, 39 s. GSVM 75.0% F3/29Hz, C6/29Hz, 39s. | GSVM 79.2%
s LH-TP2 | FC5/30Hz, FC4/30Hz, 69 s. DT 75.0% FC5/9Hz, FC4/9Hz, 39 s. DT 83.3% FC5/8Hz, FC4/8Hz, 26 s. DT 87.5%
RH-TP1 F3/9Hz, C6/9Hz, 26 s. DT 75.0% C5/12Hz, F4/12Hz, 26 s. DT 87.5% F3/9Hz, C6/9Hz, 128 s. DT 83.3%

Table 4.4: Study 2 - Motor Imagery classification accuracies across 3 training sessions for 4 subjects. T.O: Training Option; LH: Left Hand;
RH: Right Hand; NB: Naive Bayes; GSVM: Gaussian Support Vector Machine; DT: Decision Tree; TP1: Training Paradigm 1; TP2: Training

Paradigm 2.
Training Session 1 Training Session 2 Training Session 3
Subjects T.O
Features Classifier | Classification (%) Features Classifier | Classification (%) Features Classifier | Classification (%)

- LH-TP1 | FC3/10Hz, FC6/10Hz, 128 s. DT 75.0% FC5/10Hz, FC4/10Hz, 128 s. DT 75.0% FC3/10Hz, FC6/10Hz, 39 s. DT 79.2%
RH-TP2 | FC5/9Hz, FC4/9Hz, 26 s. DT 79.2% F3/9Hz, C6/9Hz, 39 s. DT 75.0% C5/9Hz, F4/9Hz, 13 s. GSVM 79.2%
s LH-TP2 C5/9Hz, F4/9Hz, 39 s. DT 75.0% FC5/27Hz, FC4/27Hz, 39 s. DT 70.8% FC3/10Hz, FC6/10Hz, 69s. | GSVM 79.2%
RH-TP1 C5/9Hz, F4/9Hz, 128 s. GSVM 75.0% FC5/9Hz, FC4/9Hz, 39 s. DT 79.2% C5/9,F4/9Hz, 13 s. GSVM 70.8%
- LH-TP1 | C5/11Hz, F4/11Hz, 128 s. GSVM 83.3% F3/13Hz, C6/13Hz, 26 s. DT 75.0% F3/27Hz, C6/27Hz, 26 s. DT 75.0%
RH-TP2 C5/11Hz, F4/9Hz, 128 s. DT 79.2% FC5/9Hz, FC4/9Hz, 39 s. GSVM 70.8% FC5/25Hz, FC4/25Hz,13s. | GSVM 79.2%
s LH-TP2 FC5/11Hz, FC4/11, 69 s. DT 79.2% C5/30Hz, F4/30Hz, 128 s. GSVM 75.0% C5/11Hz, F4/11Hz, 128 s. DT 83.3%
RH-TP1 F3/9Hz, C6/9Hz, 39 s. NB 70.8% C5/24Hz, F4/24Hz, 13 s. GSVM 75.0% F3/9Hz, C6/9Hz, 128 s. DT 79.2%
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4.4. MISCELLANEOUS ANALYSIS

4.4 Miscellaneous Analysis

This section is devoted to provide further analysis, including data from all subjects, and
also to present the results of the surveys. Figure 4.6 shows the overall performances with
respect to each of the training options. As expected motor action tests yielded slightly
better classification accuracies than motor imagery. This is due to the fact that motor
imagery is generally challenging to perform.

Classifications with respect to Training Option
100 + + T T
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|
85 !
1

80
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MA - Left Hand ~ MA - Right Hand ~ MI - LeftHand  MI - Right Hand

Figure 4.6: Performance with respect to training option for both studies.

Data from study 2 suggested that performance may be related to the mood and
alertness of the subject, therefore a plot of classification accuracies with respect to mood
is presented in Figure 4.7. The mood was assessed after every training session with the
first question of the survey. It should be noted that data is distributed differently across
mood, since most subjects reported to be "Just Fine" and "Good". Yet it is possible to see

that classification accuracies were poorer when the mood was lower.
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Figure 4.7: Performance with respect to mood.

Statistical information regarding the answers for questions 2 to 4 of the survey are
displayed on Figure 4.8. No subjects reported that the Emotiv headset was uncomfortable
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CHAPTER 4. ASSESSMENT OF EMOTIVBCI

(Figure 4.8(a)). Most subjects considered training paradigm 1 to be less exhausting to
perform (Figure 4.8(b)). Motor imagery was considered "hard" and "very hard" to perform
according to most subjects. Only one subject considered it very easy to perform (Figure
4.8(c)).

How comfortable was the Emotiv headset?
T T

Number of users

very mildly niortabl very conforiabl

(a) Question 2 - Emotiv Comfortability.

s Which training paradigm did you consider less exhausting? How hard was it to perform motor imagery?

Number of users
~
T

Number of users

-
T

0 0
TP1 P2 No difference Very Easy Easy Intermediate Hard Very Hard

(b) Question 3 - Training Paradigm. (c) Question 4 - Motor Imagery.

Figure 4.8: Results from survey.

Finally, Figure 4.9 shows a pie chart representing the best performing classifiers in
all training sessions. Decision Tree was by far the most frequently selected as optimal, as

opposed to Naive Bayes, which was seldom used.

Naive Bayes

Gaussian Support Ve

cision Tree

Figure 4.9: Pie chart of classifier usage.
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4.5 Discussion

The presented data suggests the EmotivBCI can classify motor action and motor imagery
up to an acceptable performance. Theoretically, the random accuracy of a 2-class problem
is 50%, and the lower classification accuracy yielded by the EmotivBCl is 70.8%. However,
it is important to mention that given the number of attributes used in classification, the
practical random accuracy is around 70%, as suggested by Mueller-Putz et. al. [107]. Also,
the way the EmotivBCI processes and classifies the signals is highly selective for patterns,
which may not be directly linked to motor actions and imagery. The EmotivBCI generates
15 different classifiers based on different time frames as explained before, and selects
the best one. This can sometimes lead to a dubious classification, specially if the time
window is small (for example, 13 samples). However, it is possible to distinguish and
observe patterns related to each individual. Based on the first study, it is clear that there is a
difference in classification between both training paradigms. Subjects had generally better
performances in TP-1 than in TP-2. Reasons for this may be that training paradigm 1 has
less attributes to classify than TP-2, therefore classifications are slightly better. However,
most users claimed TP-1 to be less exhaustive, and that may also contribute to better
classifications.

It is difficult to take significant conclusions from the second study, which evaluates
performance with respect to practice. This is mainly due to the limited number of subjects
and training sessions. However, based on this study, 3 out of 4 subjects improved perfor-
mance between the first and last training session. The subject which showed a drop in
performance claimed to be exhausted and fairly inattentive during the last two sessions,
which may have had an impact in performance. Based on this, a statistical study was
made to assess user performance with respect to mood using data from all participants.
The number of participants is not high enough to make a general conclusion, but based
on the results, classification accuracies were worse under the intermediate level of mood
("Just Fine"), and constantly better above that.

Based on the survey, most subjects considered motor imagery to be hard to perform.
They were told before training sessions to imagine movement to the best of their ability,
be it visual imagination or tactile imagination. Some subjects imagined activities with
their hands, like playing a musical instrument or playing with a gamepad or joystick. As
mentioned in Chapter 2 motor imagery is an innate ability of an individual, and can be
improved with practice. As such, some of the participants had better performances than
others in the motor imagery sessions.

The Emotiv headset was considered comfortable by all subjects. It requires, however,
frequent attention with regard to electrode pad moisture. In many cases the signals from
the channels were not steady, most likely because of internal issues related to hardware.
This resulted either in random spikes, or in a very attenuated signal at times. Although
signals were normalized during the processing stage, these issues can still contribute to a
wrong manifestation of an EEG signal.
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CHAPTER

CONCLUSION

Neurological disorders have a meaningful impact in people’s quality of life. Specially
stroke, since it affects the greatest number of individuals. Rehabilitation and therapy are
not overlooked. In recent years new methods have been developed and implemented in
clinical settings, each with their own advantages and limitations. Nonetheless they have
shown to have a positive impact. And they are not completely alternative to one another,
but rather complementary. One of these methods is Brain-Computer Interfaces.

A BClI enables a subject to communicate and control the external world by using signals
recorded from the central nervous system. Even though BCls are not a new concept, it’s
undeniable its ongoing growth, as they may become an important asset in people’s quality
of life. Several applications have been developed using BCIs as the core of its functionality.
Moreover, BCIs are continuously being researched as a mean of neurorehabilitation,
showing potential to revolutionize how neurological diseases, mainly stroke, are treated in
the future. Current limitations regarding reliability are being steadily overcome with better
acquisition systems and more sophisticated processing algorithms. At the present time,
non-invasive BCls still suffer from having complex acquisition systems, which would be
generally expensive and troublesome for a normal user, or even for hospitals and clinics.
Therefore, they would benefit from being simple and practical.

This Master Dissertation consisted of the development of a practical, easy-to-use, non-
invasive BCI: the EmotivBCI. The inspiration for the EmotivBCl is to be a user-friendly
platform, not limited to research, in which users can perform BCI tests, based on motor
action and motor imagery, and assess their performance. Furthermore, they can keep
track of their progress and hopefully see a continuous improvement with practice. The
EmotivBClI distinguishes between the idle condition and an action condition, based on the

variation of sensorimotor rhythms.

The two studies conducted in the scope of this project provide a preliminary assessment
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of the EmotivBCI. The first study compares user performance between two training
paradigms. The results suggest that fewer repetitions yield better classification accuracies.
This is expected due to the fact that there are fewer attributes used for classification, and
also most users considered it to be less exhaustive, giving them more time to perform each
of the actions. The second study analyses the progression of performance after several
training sessions. The number of training sessions and the number of users was suboptimal
to take definite conclusions, however, an improvement pattern was recorded for 3 out
of the 4 participants. A few complementary statistical studies were conducted with data
from both groups of subjects. Data showed that motor action tests had higher classification
accuracies than motor imagery, as it would be expected. Also a study of performance with
respect to mood was carried out, and it showed that performance was lower with respect
to lower mood states and exhaustion.

The EmotivBCl is a proof-of-concept BCI, which successfully implements most of the
features it was intended to. There is, however, much room for further improvement, be it
as a part of a doctoral project, or continuous master dissertation projects. The next section
will discuss a few of the areas in which the EmotivBCI can continue to grow as a BCI

platform, until it can be recognized as a legit rehabilitation tool.

5.1 Future Developments

The EmotivBCl is far from reaching its full potential. What was introduced in this Master
Dissertation is the first prototype of what could potentially be an innovative rehabilitation
tool. In this final section, it will be described and suggested a few of the ways in which the

EmotivBClI can improve in respect to different areas:

5.1.1 Emotiv headset and Hardware

One of the innovative concepts developing the EmotivBCI was to use a commercially
available, easy to use headset to perform the EEG acquisition. For this purpose, the Emotiv
headset was selected, and it also gave the inspiration to the name of the BCI. Although
it is aestheticly pleasing, and comfortable on the user, it comes with its drawbacks, as
discussed before. Besides the electrodes not being designed to be placed on the central
cortex, as adjustments were made for the studies, the necessity of constantly wetting the
electrode sponges for acquisition can be a gruelling task for any potential user: a physician,
or worse, the disabled patient. The fact that the electrode knobs are extremely fragile, and
come off easily doesn’t help either. Fortunately, new hardware keeps being launched. It
is also worth noting that the computer where both the software was developed and the
studies were conducted was 6 years old, and it caused the software to be unresponsive at
times. In a couple of occasions, tests had to be repeated due to the computer lagging, and
causing the training paradigms not to be timely. This is easily solvable, due to the fact that

a newer computer could perhaps execute the code faster, without lagging issues.

48



5.1. FUTURE DEVELOPMENTS

5.1.2 Signal Processing

The EmotivBCI uses a simple and straightforward processing cascade, which provided
acceptable results. For some users, it showed a clear distinction between the rest and
action conditions, and for both motor action and motor imagery tests. There was some
degree of correlation between the mood of the users and the results. A state-of-the-art BCI,
however, should be able to classify and clearly distinguish the user’s intent regardless
of their condition, or even environment. To this end, new, and more sophisticated pro-
cessing techniques should be investigated. Parametric techniques are an alternative, or
complementary, approach that can be incorporated in the EmotivBCI. Ideally, it should be
possible to detect patterns in EEG signal behaviour going from one condition to another,
with respect to time. Wavelets and other time-related techniques may provide the means
to study these patterns.

Some developed BClIs have the ability to successfully distinguish between four differ-
ent conditions, while the EmotivBCI only does two: Rest and one action. However, for the
majority of the conducted tests, the EmotivBCI showed different features for the use of Left
and Right hand, for both motor action and imagery. So, theoretically the EmotivBCI could
distinguish between 3 different conditions. But this remains to be tested in a paradigm
where all the actions are involved.

5.1.3 Visual Interface and Visual Stimuli

The creation of a visual interface for the EmotivBCl is of a high degree of priority for two
important reasons. The first is the obvious aesthetic aspect. Any user would prefer having
a friendly interface to navigate through the options, instead of typing commands through a
console. The use of visual cues to display the action the user has to perform would be more
beneficial and be less exhausting than having to read tiny letters on the console display.
The second, and more important reason, would be the incorporation of visual stimuli to
the training paradigms. As mentioned in Chapter 2, mirror neurons have an important
role in cerebral neuroplasticity. By combining visual stimuli with motor imagery, it is
expected that ERD/ERS would be accentuated and hence, better classifications accuracies
would arise. Moreover, most users reported that it was difficult to perform motor imagery,
thereby the use of visual aid could facilitate this task. In the end, the user could perform
motor imagery, and see a virtual hand moving in the computer interface.

Having the EmotivBCI platform built mostly on a C# environment was done intently
for this purpose. A gaming engine software: Unity3D [118], operates by C# scripting, and
it could be a viable option to create a visual interface. It has now been explored as a mean
of Virtual Reality rehabilitation, and it is compatible with biomedical applications. Also,
the creation of a virtual hand that opens and closes can be achieved using this software,
thereby providing the Visual Stimulus mentioned before. Further ahead, it could even
allow the creation of games or other entertaining activities associated with rehabilitation

to captivate the enthusiasm of the patients and therefore promote their recovery.
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5.1.4 Further tests and validation

The number of subjects used to perform the studies presented in this Dissertation was
limited. A greater variety of subjects and studies should be conducted in the future. As
mentioned, a new paradigm involving the use of 3 conditions as opposed to 2 conditions
is fundamental. For example: Rest condition; left hand condition and right hand condition.
Several paradigms should also be tested, with different durations, and triggered at random
times, instead of following a pattern. If these studies show conclusive results in healthy
individuals, then the EmotivBCI can proceed to be tested in real patients. At this point, the
EmotivBCI should have a visual interface and visual stimulus implemented. Hopefully
it should also perform the EEG acquisitions from a newer headset with dry electrodes.
If it is well received by physicians and patients, and it is proven to be a useful tool
in rehabilitation, then it should be disseminated across different clinical settings, and

eventually be commercialized.

5.2 Outputs

The outputs of this dissertation are as follows:

e Participation in the 3rd Worksop on ICTs for improving Patients rehabilitation
Research Techniques, held in Lisbon, on the 1st and 2nd of October of 2015 (workshop
paper submitted and accepted)(Appendix B).

Future work may be prepared and developed for submission in journals and confer-

ences related to BCIs and Neurorehabilitation.
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APPENDIX

EMOTIVBCI USER GUIDE

A.1 Getting started

Before launching the EmotivBCI application, place the Emotiv headset and make sure all
the electrodes are in contact with the scalp. Verify beforehand if all pads on the electrodes
are moisturized with a saline solution. Next, open Testbench and certify that all signals are
steady. Wait a few seconds for the system to stabilize. After you have completed these
steps, open the EmotivBCI application.

A.2 Registering and Logging in

If you have never used the EmotivBCI before, you will have to register. Type in the console
newuser. Fill in your name, age, username and password. After registering you can login
with your new credentials. Simply type login in the console and enter your credentials. If
you had registered before you can skip the first step, and login right away.

A.3 New Training Session

Once you have successfully logged in, you can perform training sessions. Type newtraining
in the console window. There are 4 training options to choose from:

1. Left hand motor action;

2. Right hand motor action;
3. Left hand motor imagery;
4. Right hand motor imagery;
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Type in the number correspondent to the training option you want. Next, you are prompted
to select the training paradigm:

1. 5-second-rest-5-second-action;
2. 2-second-rest-2-second-action;

Likewise, select the number that corresponds to the training paradigm you want. Once
you have selected the training paradigm, sit back, relax, avoid facial movement and
perform the action prompted by the console window. Depending on the training option

and paradigm, the action and the repetitions’ time will vary.

A.3.1 Training Session Performance

After 2 minutes, the training session concludes, and a classification accuracy will be
displayed, along with the features and the classifier used. From here, you have several
options to assess your performance. The following features generate plots in a pdf format.

A.3.2 Generate Feature Map

You can generate a feature map based on the acquisition, which shows the activity of each
channel with respect to frequency. Type generatefeatmap on the console. Wait until the pdf
document is generated displaying the feature map. You can close it whenever you want, it

will be saved in your directory.

A.3.3 Generate Channel Power Spectral Density

You can generate a power spectrum density plot for any of the 8 channels used in the
acquisition. For this, type generatechpsd on the console. You will be asked if you want to
generate a PSD plot for the best channel extracted. Type yes if that is the channel you want.
If not, type no, and type in the number correspondent to the channel you want. Again,
wait until a pdf document is generated. A Periodogram and Welch Power Estimation will

be presented and saved in your directory.

A.3.4 Generate Classifier Data

Finally, you can generate a plot with the data points from the attributes that were used for
classification. Type generateclassdata on the console. As in the previous features, wait for
the pdf document to open. You can close it whenever you wish, since it is saved in your

directory.

A.3.5 Online BCI

If you achieved a classification accuracy greater than 90% you can attempt to perform
real-time BCI testing. For this, type onlinebci. A different text will be displayed on the

console with respect to your action.
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A.4. USEFUL COMMANDS

A.4 Useful commands

Apart from the main features just mentioned, there are a few commands which you may
find useful. You can browse through previous training sessions you performed, and see
your performance. These are listed as records. To do so, type listrecords. If you haven't
already, you can generate any of the plots mentioned for any of the records. To do so, type
loadrecord and enter the ID of the training session you want. The ID is displayed at the top
of each training session, and it specifies the training option and training paradigm you
selected for that session. You can export the EEG data in CSV format by typing exportrecord
on the console window. A CSV file will be generated in your directory, properly labelled.
If you are unsure of any of the commands used to control the EmotivBCI you can simply
type help and a full list of commands and respective descriptions will be displayed.

You can perform a new training session at any time, by typing newtraining. If you have
concluded all the tests you meant to perform, just type logout and to close the application

type quit.
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ABSTRACT

Neurological disorders, in particular Stroke, have a substantial
impact on a great number of individuals worldwide. These
individuals are often left with residual motor control in their upper
limbs. Although conventional therapy can aid in restoring some of
the lost movement, it is not always accessible, and the procedures
are dull and unappealing for the patient. Novel methods of therapy
are being developed, including Brain-Computer Interfaces (BCIs).

This document introduces the EmotivBCl: a simple and accessible
platform for EEG acquisition, processing and classification of brain
signals with respect to motor action and motor imagery. The
acquisition of EEG is done through 8 channels of the Emotiv Epoc
headset. Signals are pre-processed, and the 2 best combinations of
channel/frequency pairs that exhibit the greatest power difference
between the rest and action conditions are extracted. These features
are then used to build a feature matrix with 2 sets of attributes and
2 class labels. Finally this datais used to train 4 different classifiers.

Asan early assessment phase, 6 healthy subjects tested each of the
training paradigms. Although it is a project still in progress, it has
shown promising results.

Keywords
BCI, Emotiv, EEG, Neurorehabilitation, Motor Imagery, Signal
Processing, Feature Extraction and Classification, Stroke.

1. INTRODUCTION

Stroke is the second largest cause of death in the world and is also
one of the leading causes of disability in adults. Inthe United States
approximately 795,000 people are affected every year [1]. One of
the most common non-hemorrhagic stroke is the middle cerebral
artery stroke, which mainly affects the upper limb [2].

The therapy for upper limb disabilities varies depending on
severity. If patients have a high enough degree of residual control,
then techniques like shaping and constraint-induced movement
therapy (CIMT) are applied. Patients that have weaker hand
movement and control often use commercially available forearm-
hand orthotic devices with electric stimulation [3].

Ongoing research focuses on the use of mechanical devices in
combination with other rehabilitative therapies such as non-
invasive brain stimulation to achieve a higher efficacy in
rehabilitation of patients after stroke [1]. Among these, Brain-
Computer Interfaces are also being explored as a mean of
neurorehabilitation [4], showing potential to revolutionize how
neurological diseases, mainly stroke, are treated in the future.

Hugo Alexandre Ferreira
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Fac. Sciences Univ. Lisbon
Lisboa, Portugal
+351 217500177
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Brain-Computer interfaces (BCls) are systems that enable brain
activity to manipulate external devices. One type of BCI is the non-
invasive BCIl, which acquires brain signals from scalp
Electroencephalography (EEG), for example [5]. EEG is a
technique in which electrical potentials produced in the brain are
recorded with high temporal resolution. The EEG is able to record
rhythmic electrical activity from the human scalp. There are
particular ranges of frequencies that are associated with sensory
motor actions namely the Mu (8Hz-12Hz) and Beta (15Hz-30Hz)
rhythms. The planning and execution of hand movement can be
observed within these frequencies in the form of Event-Related
Desynchronization/ Event-Related Synchronization (ERD/ERS)
signals [6]. These consist of a difference in power in the Mu and
Beta frequencies. Although these phenomena can be difficult to
observe in EEG, due to the abundance of unwanted artefacts,
advances in equipment and signal processing algorithms have made
it extremely convenient to use ERD/ERS of Muand Beta rhythms
to develop BCls controlled by motor actions, including motor
imagery i.e. imagination of the movement of a limb.

To further validate the use of BCI in neurorehabilitation, studies
have shown that motor imagery activates sensorimotor regions
similarly to actual task performance, and repeated practice of motor
imagery can induce plasticity changes in the brain [7]. This may be
the key to a new rehabilitation methodology that aims at restoring
lost function in a limb due to neurological disorders, such as Stroke.

There are, however, several factors that hinder the usage of BCI
systems in clinical settings. M ost non-invasive BClIs acquire EEG
data from electrode caps with multiple wires, which are unattractive
and uncomfortable. They also come with extra hardware for signal
amplification, and take too much time to set up. Although these
systems provide high resolution, they are often expensive, and end
up disregarded as a rehabilitative solution. The EmotivBCl tackles
these drawbacks by designing a highly portable, easy toset up BCI
thanks to the Emotiv Epoc headset.

2. RELATED WORK

The following subsections describe a successful BCI application
and the role of Virtual reality in rehabilitation.

2.1 Mechanic hand BCI

Fok et al, [8] designed an EEG-based BCI that drives a hand
orthotic that opens and closes a patient’s hand using ipsilateral
activity of the brain. The purpose of the device is to aid in
rehabilitation of stroke patients that are left with residual motor
function in one hand.



The signals from the scalp were acquired through a portable EEG
headset: Emotiv Epoc. After a calibration phase, we were able to
determine relevant EEG features to distinguish movement from
rest, and reducing the number of electrode channels and frequency
bins to undergo further processing. Finally a pre-fabricated orthotic
hand was modified to be controlled by the output of the
classification algorithms, opening and closing depending on the
output signal.

Through 10 sets of trials, consisting of moving a cursor toa target
by imagining left hand movement, with healthy individuals, we
were able to achieve an 81.3% success rate.

2.2 Virtual Reality

Virtual Reality (VR) is a computer interface that allows individuals
to interact with a 3D environment by presenting stimulated or
artificially generated sensory information [9]. Virtual Reality is an
alternate or complementary rehabilitation method to BCI, which
also promises to help rehabilitate Stroke patients. It differs from
BCI because it doesn’t usually take brain signals as an input, but
rather movement that is captured through proper motion tracking
equipment.

The main focus of VR rehabilitation is to simulate real world tasks
into a virtual platform, so that stroke patients with motor
impairments can practice such tasks safely and transfer the
performance of the virtual task onto the real world.

3. TECHINAL DETAILS

3.1 Overview

The EmotivBCl is essentially a proof-of-concept of a simple BCI
console platform developed in C# programming language. It
acquires EEG signals from 8 electrode channels in the central and
frontal cortices of the brain according to the 10-20 system (AF3,
F7,F3,FC5, FC6, F4, F8, AF4) through the commercially available
EEG headset: Emotiv Epoc. The Emotiv Epoc has 14 electrode
channels, and a sampling frequency of 128 Hz. It also has built-in
filters at 50 and 60Hz. Its wireless connectivity with a 2.4 GHz
band makes it extremely portable and simple to use.

The acquired signals are processed and relevant features are
extracted to build a classifier based on ERD/ERS due to movement
or imagery of upper limbs (left and right hands). It also implements
real-time testing with the built-in classifiers.

The EmotivBCI comes with a number of features, some of which
will be described in the subsequent sections.

3.2 Operation

The way the EmotivBCl works is the following: A user registers
and logs in with his credentials. Afterwards he or she can perform
atraining session.

3.2.1 Training Sessions
The EmotivBClI provides four different training paradigms: Left
hand motor action, right hand motor action, left hand motor
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imagery and right hand motor imagery. All paradigms follow the
same procedure: It’s a 2-minute long run. Each run has 12 trials,
which are 10 seconds long: 5 seconds of rest plus 5 seconds of
action. The action is dictated by the chosen training paradigm. The
user is prompted to follow the instructions that are displayed on the
console.

3.2.2 Signal Processing

Signal processing is carried out with the support of Matlab wrapped
functions in a non-parametric fashion. Once acquired, signals from
each channel are pre-processed with C# built functions that remove
the DC component and normalize the signal. The signal is then

ready for feature extraction.

3.2.2.1 Processing Methods

The EmotivBCl has two different methods of processing the data.
The first method uses the entire time interval (5 seconds) of each
condition. The second method of processing consists of selecting
only the initial number of samples for each condition, in contrast to
the whole 5 seconds of method 1.

The number of samples implemented for extraction are:

e 13 samples ~ 100 ms.
e 26 samples ~ 200 ms.
e 39 samples ~ 300 ms.
e 69 samples =500 ms.
e 128 samples=1s.

For each number of samples, the feature extraction cascade is the
same as method 1.

3.2.3 Feature Extraction

The EmotivBCl extracts the 2 best combinations of
channel/frequency that exhibit the greatest ERD over the 12 trials.
For each channel the pre-processed EEG signal is segmented into
two distinct signals for each condition: Rest and Action. Depending
on the processing method the number of samples in the Rest and
Action vectors are different.

The signals are then filtered using a 10"-order double bandpass
Chebyshev Type 1filter in the frequency bands that exhibit ERD:
7Hz to 13Hz (Mu) and 15Hz to 30Hz (Beta).

Once filtered, the Power spectrumdensity (PSD) is estimated using
the Welch method for each of the conditions in every channel:
PSD(rest) and PSD(action).

The difference PSD(rest)-PSD(action) is calculated to predict the
channel and frequency that show the greatest difference, hence the
greatest ERD.

The two best combinations of channel/frequency are used to build
the feature matrix for the classifier. The best channels may be the
same. If so it exhibits ERD in two distinct frequencies.

3.2.4 Feature Matrix

The feature matrix is calculated for the best channels, by computing
the band power centered in the respective best frequency. The data
from each of the 2 best channels is again separated into rest and
action conditions, and buffered into frames.

For each frame, the band power centered in the best frequency, with
the range of 1 Hz, is computed.

The resulting matrix consists of a set of band power values for the
rest state, which corresponds to output -1, and a set of band power
values for the action state, which corresponds to output +1.



In the case of the first method of processing, the data after
separation is buffered into 128 samples — 1 second. Since each trial
has 5 seconds of each condition (rest and action), then the resulting
feature matrix will have 60 band power values (12 trials x 5 band
power values) for each condition, 120 total.

In the case of the second method of processing, the rest and action
conditions are separated using the stipulated number of samples,
and buffered into the same amount. It will therefore result in less
number of inputs. 12 for each condition, and 24 total.

The resulting feature matrix will therefore consist of 2 sets of
attributes:  band  power values for combination of
channel/frequency number 1, and band power values for
combination of channel/frequency number 2.

3.25 Classification

The feature matrix is used to train 4 different classifiers,
implemented using the Accord Framework [10]. Accord
Framework provides machine-learning libraries available for C#:

e Linear Support Vector Machine

e  Gaussian Support Vector Machine
e Naive Bayes

e  Decision Tree

The resulting classification accuracy represents the number of
correctly classified samples over the total number of samples
multiplied by 100%.

3.2.6 End of training session

The processing cascade will result in a large number of classifiers
built for each method: 4 for method 1, and 20 (5 sample sizes x 4
classifiers) for method 2. From these 24, only the one that yields
the best accuracy is selected to validate the training session and
posteriorly to be used for real-time BCI. The relevant features
extracted and processing method are registered for that training
session based on the classifier as well.

3.2.7 Real-time BCI

EmotivBCl offers the functionality of real-time BCI after a user has
performed a training session. The data being acquired is processed
every second, by computing the band power value in the channel
and frequency extracted from the training session, and classified as
rest or action, based on the selected classifier. In case of processing
method 2, the data is still processed every second, but it’s only
selected the number of samples stipulated. At the moment, the
EmotivBCI will disp lay a different message based on the action the
user is attempting to perform.

3.2.8 Other features

Besides classification of signals and real-time time testing, the
EmotivBCl platform offers more features, some of which are worth
mentioning:

e Feature map generation: Plot that shows the Power
difference in each channel with respect to frequency. The
extracted features are based on this feature map.

e  Channel PSD generation: For any given channel, a Fast-
Fourier, Burg PSD estimate, and Welch PSD plots are
generated for conditions rest and action. These often
show a clear representation of the ERD.

e  Classifier data plot generation: Generates a scatter plot
based on the feature matrix with the 2 classes used for
classification.

4. EVALUATION AND RESULTS

In order to access the current state of the EmotivBCl, 6 healthy
subjects, between the ages of 22 to 37, conducted a training session
for each of the 4 training paradigms. The respective classification
accuracies are presented below:

Table 1. Classification accuracies (%) of 6 different subjects
for each training option. Avg = average

Training | Sub | Sub | Sub | Sub | Sub | Sub

Option 1 2 3 4 5 6 | A%
Lefthand | ¢33 1 750 | 750 | 83.3 | 91.6 | 792 | 812
motor
Right

hand 750 | 79.2 | 75.0 | 70.8 | 833 | 79.2 | 77.1
motor

Left hand

- 79.2 | 75.0 | 875 | 833 | 79.2 | 70.8 | 79.2
imagery

Right
hand 750 79.2 | 875 | 75.0 | 833 | 75.0 | 79.2
imagery

For subject 4 that achieved an 83.3% accuracy in left hand motor
classification, the typical Power Spectrum Density plot of the
channel that was used for feature extraction is presented:
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Figure 1: PSD plot for channel F3 of Subject 4

5. DISCUSSION

From the 2 processing methods implemented, all the best
classification accuracies resulted from the second one, even though
the number of samples varied within subjects and training options.
This suggests that ERD is greatest at the start of the action
condition. This may be due to the inability of the subjects to
maintain a steady state of concentration during rest and action.

EmotivBCIl can generate the PSD plot of any channel. This
represents the Power characteristics of the rest and action
conditions for the entire duration of the training session. Figure 1
shows the PSD plot for one of the subjects that achieved an 83.3%




classification accuracy. It can be observed from the plot a clear
difference in the Mu frequency band between the rest and action
conditions i.e. ERD.

Thereal-time BCI functionality has not been proven to be coherent
as of this moment. The subject that achieved the classification
accuracy of 91.6%, in the left motor action training, was able to
successfully control the interface almost flawlessly for the first 10
to 15 seconds, becoming less responsive in the following instances.

The EmotivBCl is a work in progress, and several aspects are due
tobe improved. EEG signals are noisy and complex by nature, due
to spontaneous firing of neurons in various directions. Because of
this, event-related desynchronization is very subtleto observe, and
can sometimes pass unnoticed. Muscular activity or natural
reflexes, like blinking can greatly influence the results. M oreover,
Event-Related desynchronization detection due to motor imagery
depends a great deal on the individual. Fatigue and lack of
concentration can significantly affect the results as well.

In order to overcome some of these obstacles, it is prudent to
incorporate new training paradigms, in contrast to the 5-second-
rest-5-second-action paradigm. These novel paradigms would
consist of random cues, so the subject would not know what to
expect, and shorter trial time, resulting in more data available to
train the classifiers.

Even though the EEG signal is filtered to remove several unwanted
artefacts, there are some that are still present, like blinking and
other muscular activities. To prevent this it would be ideal to
incorporate specific algorithms that recognize such irregularities
and remove them.

Theapproach to signal processing has been mostly non-parametric.
It would be interesting to couple this approach with parametric
methods. Examining how the signal changes from rest to action in
respect to time could provide invaluable information that could be
used to help differentiate between the two states.

6. CONCLUSION

The EmotivBCl is a simple, accessible and yet robust platform for
acquisition and processing of EEG data acquired from the Emotiv
Epoc. It is now presented as a console application, but it can be the
backbone to a more elegant graphic interface with a greater array
of features.

Virtual reality and motor imagery show promise of a novel method
of rehabilitation. Integrating the EmotivBCl in a virtual reality
environment, like a virtual hand that opens and closes can be
immensely beneficial. Not only by being more esthetically pleasing
to the subjects, but more importantly by providing the visual
stimulus that can better emphasize ERD/ERS and thereby improve
classifications.

The long-term goal of the EmotivBCl would lie in
neurorehabilitation. More specifically, in aiding to restore motor

function of patients with neurological disorders such as stroke or
ALS, by promoting the development of new cerebral cortex
pathways through practice and observation. Ultimately giving
autonomy to the patient, and be more engaging than conventional
therapy. Unlike the common BCI systems comprised of multiple
wires and complicated hardware, the EmotivBClI could one day be
provide an affordable user-friendly systemthat can be incorporated
in a clinical setting.
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