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Abstract 
Human Neutrophil Elastase (HNE) is a serine protease responsible for cleavage 

of peptide bonds conferring elasticity to the connecting tissues. For this reason, this 

enzyme is mainly found in the lungs, arteries and ligaments [1-2]. In case of over-

expression, HNE enables the appearance of some diseases, such as Chronic Obstructive 

Pulmonary Disease (COPD), Rheumatoid Arthritis, Psoriasis and Arteriosclerosis [3-4]. 

Currently, diseases affecting the respiratory tract are one of the major causes of death 

in the world, so HNE is a potential drug target of considerable interest [4]. 

Porcine Pancreatic Elastase (PPE) is commonly used as a model for HNE, sharing 

37% of amino acid sequence identity [5]. According to previous studies, the catalytic 

serine performs a nucleophilic attack on a carbonyl group present in the inhibitors [6].  

The focus of this work was the three-dimensional structure determination of 

elastases (PPE and HNE) in complex with inhibitors by X-ray crystallography to 

characterize their interactions at atomic level. The rational is to correlate structure and 

function and contribute to the design of more potent and specific inhibitors. These 

newly synthetic compounds were provided by the group of Prof. Rui Moreira, Instituto 

de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa. 

X-ray diffraction data of PPE crystals were collected at a synchrotron source and 

three 3D-structures of PPE in complex with inhibitors were determined at resolutions 

around 1.4 Ǻ. Analysis of the electron density maps revealed that the nucleophilic 

attack occurred at the sulfonyl group of the inhibitors, contrary to what was initially 

expected (which would be in the carbonyl group). 

In silico energy minimization studies of the docked ligand structure into the 

active site of HNE, show no relevant structural modifications of the protein structure 

upon ligand binding.  

Finally, crystals of HNE have already been obtained and experiments are 

ongoing to grow complexes of HNE with various inhibitors. 
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Resumo 
Elastase Neutrófila Humana (HNE) é uma protease de serina responsável pela 

clivagem das ligações peptídicas que conferem elasticidade aos tecidos de conexão. Por 

esta razão, esta enzima é encontrada principalmente nos pulmões, artérias e ligamentos 

[1-2]. Em casos de sobre-expressão, esta permite o aparecimento de algumas doenças, 

como Doença Pulmonar Obstrutiva Crónica (DPOC), Artrite Reumatóide, Psoríase e 

Arteriosclerose [3-4]. Atualmente, as doenças que afetam o trato respiratório são uma 

das principais causas de morte no mundo, sendo então a HNE um potencial alvo 

terapêutico de considerável interesse [4]. 

A Elastase Pancreática Suína (PPE) é normalmente usada como modelo para 

HNE, compartilhando 37% de identidade de sequência primária [5]. De acordo com 

estudos anteriores, a serina catalítica realiza um ataque nucleofílico ao grupo carbonilo 

presente nos inibidores [6]. 

O foco deste trabalho foi a determinação por cristalografia de raios-X da 

estrutura tridimensional de elastases (HNE e PPE) complexadas com inibidores, de 

modo a caracterizar as respetivas interações a nível atómico. O racional é correlacionar 

a estrutura com a função e contribuir para o desenho de inibidores mais fortes e mais 

específicos. Estes novos compostos sintéticos foram fornecidos pelo grupo do Prof. Rui 

Moreira, Instituto de Investigação do Medicamento, Faculdade de Farmácia, 

Universidade de Lisboa.  

Os dados de difração de raios-X dos cristais de PPE foram recolhidos numa fonte 

de sincrotrão e três estruturas 3D de três complexos da PPE com inibidores foram 

determinadas com resoluções em torno dos 1,4 Å. A análise dos mapas de densidade 

eletrónica revelaram que o ataque nucleofílico ocorreu no grupo sulfonilo dos 

inibidores ao contrário do que era inicialmente esperado (que seria no grupo 

carbonilo). 

A minimização de energia in silico da estrutura do ligando acoplado no centro 

ativo da HNE não mostra modificações relevantes na estrutura da proteína após a 

ligação do ligando. 

Finalmente, já foram obtidos cristais de HNE, estando já em curso experiencias para o 

crescimento de cristais de complexos de HNE com vários inibidores. 
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1. Introduction 

 

Since the XVIII century, with the development of the knowledge on the biological cell, 

biochemical reactions proved to be quite important in the functioning of the living organism. 

Such reactions were shown to be involved in many biological processes like regulation of the 

cellular growth and division, energy generation and storage, catalysis, stimuli response, 

transport of small biomolecules, etc. 

These reactions occur through the action of macromolecules known as proteins, which 

comprise 20-30% of the cytoplasm mass and 60-80% of the dry weight of the cellular 

membrane [7]. Its production starts with transcription and translation of a gene present in 

the cell genome, resulting in a polypeptide chain (primary structure of the protein, Figure 

1.1).  In order to achieve stability, the amino acids of this chain organize themselves 

structurally, being this three-dimensional arrangement intimately connected with the 

protein’s function [8].  

 

Figure 1.1.1- Structure levels of a protein [9]. 

Due to their great importance at the biological level, these macromolecules are often 

the main research target of several scientific areas (pharmaceutical, medical, agricultural, 

food, cosmetic and technological sciences). Lately, for the development of new products, 

these areas use structural biology and biochemical techniques to understand the function, 

activity and affinities of the target proteins [10–12]. These studies can be accomplished 

through some techniques, namely X-ray diffraction (macromolecular crystallography), 

nuclear magnetic resonance (NMR), small angle X-ray scattering (SAXS), cryo-electron 

microscopy (Cryo-EM), isothermal titration calorimetry (ITC), microscale thermophoresis 
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(MST), thermal shift assays (TSA),  surface plasmon resonance (SPR) and dual polarization 

interferometry (DPI) [13- 15].   Typically, the most commonly used technique is X-ray 

diffraction which, as the name implies, results from the diffraction of incident X-ray 

radiation, when it interacts with the electron cloud of the atoms of a crystallized 

macromolecule (see details below)  [15], [16].  

 

1.1 Enzymes 
 

As explained above, the proteins can exhibit various functions, depending on their 

three-dimensional structure. 

Proteins that catalyze the biochemical reactions present in organisms are called 

enzymes. Their purpose is to accelerate the chemical reaction (by decreasing its activation 

energy, Figure 1.1.1), controlling its equilibrium and specifying the products that are formed, 

without being consumed by the reaction [17], [18]. 

 

Figure 1.1.1 - Energetic profile of enzymatic and non-enzymatic reactions [17]. 

The blue diagram corresponds to the non-enzymatic reaction and the orange diagram to the enzymatic reaction. 

 

The origin of its production may be intercellular [inside the cell) or extracellular 

(excreted into the outer environment), depending on its target. According to their mode of 

action, these types of proteins can be divided into two categories: Endoenzymes or 

Exoenzymes. Endoenzymes only cleave the chemical bonds that are found in the inner 
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regions of the target molecule, whereas Exoenzymes only act on chemical bonds at the 

extreme of the molecule of interest, generating dimers or trimers. Because of their high 

specificity to the substrate and the promotion of a particular reaction, each enzyme is only 

able to recognize and act on a specific chemical group as well as to produce a specific 

product without the formation of co-products [19]. The efficiency of its activity is dependent 

on the optimization of two major factors: Temperature and pH [17]. 

Initially, the name of the enzymes derived from the name of their substrate with the 

addition of the suffix "-ase" (eg urease, an enzyme that catalyzes the hydrolysis of urea, 

resulting from the name urea with the suffix "ase"). With the advancement of the enzymatic 

discoveries, it was necessary to create a classification system capable of differentiating even 

better the various types of biological enzymes. In 1961, a numerical classification system was 

created by the Enzymatic Commission of the International Union of Biochemistry and 

Molecular Biology (IUBMB). In this system, each enzyme receives a classification number 

(known as "E.C.") composed of four digits. The first digit refers to the number of the 6 main 

classes (Table 1.1.1) to which the enzyme belongs. The next two numbers are associated, 

respectively, with the class and subclass of the substrate. Finally, the fourth number 

represents the serial number of the respective enzyme [17]. 

Table 1.1.1 - Classes of enzymes [17]. 

Class Reaction Enzymes 

1. Oxidoreductases 𝐴𝑟𝑒𝑑 + 𝐵𝑜𝑥 → 𝐴𝑜𝑥 + 𝐵𝑟𝑒𝑑 
Dehydrogenases, 

peroxidases 

2. Transferases 𝐴 − 𝐵  +  𝐶 → 𝐴 +   𝐵 − 𝐶 
Hexokinase, 

transaminases 

3. Hydrolases 𝐴 − 𝐵  +  𝐻2𝑂 → 𝐴 − 𝐻 +   𝐵 − 𝑂𝐻 
Alkaline phosphatase, 

trypsin 

4. Liases (synthase) 𝑋 − 𝐴 − 𝐵 − 𝑌 → 𝐴 = 𝐵 + 𝑋𝑌 Fumarase, dehydratase 

5. Isomerases 𝐴 ⇌ 𝑖𝑠𝑜𝐴 

Triose phosphate 

isomerase, 

phosphoglycerone 

6. Ligases 

(synthetases) 
𝐴 + 𝐵 + 𝐴𝑇𝑃 → 𝐴 − 𝐵 + 𝐴𝐷𝑃 + 𝑃𝑖 

Pyruvate Carboxylase, 

DNA Ligases 
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1.2 Proteases 
 

Proteases, as the name infers, are enzymes that break down proteins by hydrolyzing 

their peptide bond. These type of enzymes can also be named as Proteolytic enzymes and its 

general term are coded by EC 3.4.X.X [20]. 

These enzymes are ubiquitous in nature because of their involvement in various 

physiological processes of living organisms. For this reason, they are present in a wide 

variety of sources (such as plants, animals and microorganisms) [20], [21]. 

Its action at the extracellular level essentially consists of promoting the breaking of 

large proteins into small molecules in order to make them more absorbable by the cell. At the 

intracellular level, the main goal is to regulate cell metabolism. 

Like all enzymes, proteases are divided into two major groups, according to their place 

of action: Exopeptidases (exoenzymes) and Endopeptidases (endoenzymes). 

Since exopeptidases act at the ends of proteins, they can be classified as 

aminopeptidases (proteases that attack the N-terminal of the protein) or carboxypeptidases 

(proteases that attack the C-terminal of the protein) [21]. 

In the aminoprotease group there are enzymes capable of removing a dipeptide or a 

tripeptide from the protein (EC 3.4.14) as well as enzymes capable of removing only one 

amino acid from the protein (EC 3.4.11). 

In contrast, the carboxypeptidase group can only remove a dipeptide (EC 3.4.15) or 

only an amino acid from the protein. The grouping enzymes that enter into the release 

reactions of only one amino acid are differentiated according to the nature of their catalytic 

center (Serin-type EC 3.4.16; Cysteine-type EC 3.4.18 and metallocarboxypeptidase EC 

3.4.17). 

However, there are exopeptidases that are not specific to one end of the protein (eg: 

Dipeptidases EC 3.4.13 and Omega EC 3.4.99). 

In the major group of endopeptidases, also known as proteinases, there is only 

differentiation between enzymes according to the nature of the active center of the same, 

composing 5 different families: Aspartic, Cysteine, Metallo, Threonine and serine 

endopeptidases (Table 1.2.1).  Nowadays, there are still endopeptidases whose catalytic 

mechanism remains unknown (Unknown proteases, EC 3.4.99) [20]. 
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There are also proteases with an unspecific activity (Mixed proteases). As the name 

implies, they can act as endopeptidases as well as exopeptides (eg: pronase) [22]. 

 

    Table 1.2.1 - Protease classification according to their place of action [23]. 

Protease Enzyme 

commission 

(EC) code 

Mechanism 

Aminopeptidases 3.4.11 Release N-terminal amino acid residues 

from polypeptides and protein 

Dipeptidyl peptidase 3.4.14 Release of an N-terminal dipeptide from 

a polypeptide 

Tripeptidyl peptidases 3.4.14 Release of an N-terminal tripeptide from 

a polypeptide 

Peptidyl dipeptidases 3.4.15 Release of free C-terminus liberate a 

dipeptide 

Serine-type 

carboxypeptidases 

3.4.16 Release of a single residue C-terminal 

from a polypeptide and have an active 

center serine involved in the catalytic 

process  

Metallocarboxypeptidases 3.4.17 Release of a single residue C-terminal 

from a polypeptide using a metal ion in 

the catalytic mechanism 

Cysteine-type 

carboxypeptidases 

3.4.18 Release of a single residue C-terminal 

from a polypeptide and have a cysteine 

in the active center 

Omega peptidases 3.4.19 Remove terminal residues that are 

linked by isopeptide bonds 

Dipeptidases 3.4.13 Exopeptidases specific for dipeptides 

Aspartic endopeptidases 2.4.23 Cleave internal bonds in polypeptide 

chains having an aspartic acid residue 

for their catalytic activity 
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Cysteine endopeptidases 3.4.22 Cleave internal bonds in polypeptide 

chains. Have a cysteine in the active 

center 

Metalloendopeptidases 3.4.24 A metal ion (often, but not always, Zn2+) 

is involved in the catalytic mechanism 

for cleaving internal bonds in 

polypeptide chains 

Threonine endopeptidases 3.4.25 Cleave internal bonds in polypeptide 

chains having a threonine residue for 

their catalytic activity 

Serine endopeptidases 3.4.21 Cleave internal bonds in polypeptide 

chains. Have an active center serine 

involved in the catalytic process 

Endopeptidases of 

unknown catalytic 

mechanism 

3.4.99 Acting on peptide bonds (peptide 

hydrolases) 

 

As there are structural similarities between proteolytic enzymes, a new classification 

emerged in 1993, the MEROPS classification, which takes into account the homology 

between proteases and their molecular structures, dividing them by families and clans (Table 

1.2.2).  

Each family brings together the enzymes which show homology according to a 

comparison of their amino acid sequence. Its MEROPS ID is initialized by a letter that 

represents the catalytic type (S for serine, C for cysteine, T for threonine, A for aspartic, G for 

glutamic, M for metallo, N for asparagine, P for mixed and U for unknown) followed of an 

arbitrary number.  

A clan assembles the enzymes with similar three-dimensional structures (taking into 

account the arrangement and similarities in the amino acid sequence around the active 

center). The only difference in its MEROPS ID, compared to the ID of families, is that the 

letter that represents the active center instead of being followed by a random number is 

followed by a random letter [24]. 
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The graphic in Figure 1.2.1 was constructed according to the total grouping of 

proteases identified until 2017, according to the entries in the PDB (Protein Data Bank). In the 

same case, serine proteases were the proteases that presented the highest number of entries 

in the PDB, according to the MEROPS ID classification (37%) [20]. 

Table 1.2.2 - Protease families [25]. 

Family Example Catalytic center Favorable pH 

Serine protease I Chymotrypsin 

Trypsin 

Elastase 

Asp102,Ser195,His57 Neutral 

Serine protease II Subtilisin Asp32,Ser221,His158 

Cysteine protease Papain Cys25,His159,Asp158 

Aspartic protease Penicilopepsin 

Renin 

Chymosin 

Asp33,Asp213 Acidic 

Metalloprotease I Carboxypeptidase A 

bovine 

Zn,Glu270,Try248 Neutral or 

alkaline 

Metalloprotease II Thermolysin Zn,Glu145,His231 
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Figure 1.2.1 - Statistical results of the identification of each protease family in the total number of proteases, according to 

the entries of the PDB (Protein Data Bank) by 2017 [20]. 

1.3 Serine proteases 
 

Serine proteases are a set of enzymes present in various biological processes, which 

presents an active site with an aspartic acid, a histidine and a serine (catalytic triad) [17], [20]. 

After several inhibition studies, it was found that, out of the three amino acid residues of the 

active site, serine would be the most reactive, naming this type of enzymes as serine 

proteases[26]. 

With the approach of the carbonyl group of the peptide bond to the serine of the 

catalytic center of the enzyme, the catalytic mechanism of the enzyme is started (Figure 

1.3.1). 

This mechanism is divided into two stages: acylation and deacylation. 

The first stage (acylation) occurs through a nucleophilic attack of the catalytic serine 

oxygen on the carbon of the carbonyl group of the peptide bond. Through it, a covalent bond 

is formed between both elements which in turn causes the breaking of the peptide bond with 

the release of an amino acid or a small peptide. The final complex of this stage is called acyl-

enzyme intermediate. 

After the breakdown of the peptide bond, to separate the substrate from the enzyme, 

the second phase (deacylation) is carried out. This results from a nucleophilic attack, this 

time by a water molecule on carbon which at this stage is bound to the serine. In this way the 

hydrolysis of the peptide bond is terminated.  
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As can be seen in Figure 1.3.1, all reactions of the mechanism are reversible, so they can 

occur in both directions [20], [27]. 

 

Figure 1.3.1 - Catalytic mechanism of serine proteases [27]. 
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1.4 Elastases 
 

Elastases are Serine proteases whose main function is the cleavage of peptide bonds of 

many proteins (Figure 1.4.1) such as elastin, which is responsible for the elasticity of the 

connective tissues, being mainly located in the lungs, arteries and ligaments [1], [2], [28].  

 

Figure 1.4.1 - Action of catalytic serine on peptide bonds [29]. 

Neutrophilic elastases (HNE) and pancreatic elastases (HPE) are the most abundant 

serine proteases in humans. As the names indicate, pancreatic elastases are stored in the 

pancreas in their inactive zymogenic form, being only activated by the action of trypsin 

when they are released into the intestine, improving the digestive process; neutrophil 

elastases are produced in neutrophils with the main objective of defending the organism 

against invasive microorganisms that cause infections, facilitating phagocytosis [28].  

Under normal conditions, both elastases are well regulated through specific inhibitors 

present in plasma (α1-antitrypsin for HPE and α2-macroglobin for HNE). However, in cases 

of deregulation by over-expression, severe permanent damages are observed like liver 

failure, rheumatoid arthritis, psoriasis, arteriosclerosis, emphysema, cystic fibrosis and 

asthma [11], [26], [27]. At present, several diseases affecting the respiratory tract are one of 

the major causes of death in the world, so HNE is a therapeutic target with considerable 

interest [30].  

Great efforts have been applied over the last three decades to the development of 

innovative elastase inhibitors.  As can be seen from the various structures of elastase-

inhibitor complexes present in PDB, a number of novel synthesized compounds (peptidic 

and non-peptidic derivatives) have been studied. However, there is currently only one non-

peptidic drug available in Japan and Korea used for the treatment of acute lung injury (ALI) 

and adult respiratory distress syndrome (ARDS). As promising drugs, AZD9668 (Alveltat, 

Astra Zeneca, Cambrige, UK) and Bay 85-8501 (Bayer HealthCare, Leverkusen, Germany) are 
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already in Phase II of the clinical trials for patients with bronchiectasis, cystic fibrosis, COPS 

and lung diseases [31]. However, the synthesis of new compounds that have more specificity 

and more efficacy for elastase is still being studied. 

Because of its difficult purification and crystallization processes, it is usual to use 

Porcine Pancreatic Elastase (PPE) as a model protein for HNE. PPE is a serine protease with 

240 amino acids that shares 37% amino acid sequence identity (Figure 1.4.2) with HNE (218 

amino acids) [5]. As explained above, since they are from the same protease family (serine 

proteases), they both share the same catalytic center constituted by Ser-195, His-57 and Asp-

102 (catalytic triad, Figure 1.4.4). Despite the similarity, HNE is more hydrophobic and more 

basic than PPE (Figure 1.4.3). This is because its amino acid sequence has a greater number of 

hydrophobic components (> 40% compared to 30% of PPE) and its surface is constituted by a 

greater number of basic than acidic amino acids (19 arginines versus 9 acidic residues). One 

of the structural advantages of PPE is that its catalytic center is more accessible than HNE, 

which is surrounded by 18 arginines, making it difficult for non-linear ligands to enter [28].  

 

     Figure 1.4.2 - Amino acid sequence alingment: PPE (PDB:3EST) vs. HNE (PDB: 3Q76) [5]. 

  

Figure 1.4.3 -Electrostatic potential map of  HNE (Figure a, PDB: 3EST) vs PPE (Figure b, PDB:3EST) 

(a) (b) 
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Figure 1.4.4 - Structure superposition of PPE (PDB: 3EST, green) and HNE (PDB: 3Q76, orange), with an expansion of the 

active sites (rmsd=1.2774Å), [32], [33]. 

 

1.5 Crystallography 
 

X-ray diffraction analysis by macromolecular crystallography requires the 

presence of a vast number of molecules of the protein under study in the crystalline 

state in order to amplify the generated signal [15]. 

The crystallization of a protein is based on the slow precipitation of each 

individual molecule, in order to facilitate its ordering into a crystalline lattice. During 

this procedure, there is the formation of hydrogen bonds between the side chain of 

surface amino acids, and sometimes with water molecules/ions present in the 

solvent, keeping most of the molecules (>1015) in the same orientation. By presenting 

20-80% of the volume in the form of solvent channels, the crystal is shown to be a 

sensitive structure but, on the other hand, it allows the interaction between the 

protein and small molecules by the soaking technique (see details below) [15], [17], 

[18]. 

Serine 
195 

Aspartate 

102 

Histidine 

57 
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Of all the crystallization methods (vapour diffusion, microbatch, free-interface 

diffusion and microdialysis), vapour diffusion is the most commonly used. It consists 

in the equilibrium of concentrations between two solutions in a closed system, 

through evaporation of water from the less concentrated solution (drop) to the more 

concentrated solution (reservoir). In this method, there are various possible 

techniques having as a variant the shape of the drop. This variation will alter the 

drop’s superficial area and tension, which will ultimately affect the equilibrium of 

the system and the number of nuclei formed. Hanging and sitting drop are two of the 

most widely used systems of the Vapor Diffusion method (Figure 1.5.1) [15]. 

 

Figure 1.5.1 - Representation of the vapour diffusion hanging drop and sitting drop methods [15]. 

For the formation of good quality crystals (large, single and with well-defined faces), it 

is necessary to optimize the crystallization condition, in order to reach the Supersaturation 

State. This state is divided into three zones: the Metastable Zone, the Nucleation Zone and 

the Precipitation Zone (Figure 1.5.2). In the crystallization process, the drop needs to form 

the first ordered aggregates in the Nucleation Zone (also known as Labile Zone), by the 

increase of protein and precipitate concentration in the drop, during the evaporation. Then, 

by the decrease of free protein concentration in the drop solution, crystal growth occurs in 

the Metastable Zone [34].  

At an initial stage, a crystallization screening is performed, varying the parameters of 

the crystallization solutions that influence the appearance of crystals like: protein 

concentration, precipitant type and concentration, pH and temperature. Commonly used 

solutions as precipitants are salts, low molecular weight alcohols and polyethylene glycol 

molecules (PEG) with molecular weight varying between 400 and 10000 g/mol. 
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Figure 1.5.2-  Phase diagram for crystallization [35]. 

When the crystallization conditions are not optimal, the time required for the 

equilibrium between concentrations will be different than ideal. Lower equilibration times 

tend to form amorphous precipitate, while longer equilibration times tend to form micro-

crystals[36]. 

In cases of clear drops (where the nucleation does not occur spontaneously), it is 

necessary to promote nucleation by adding nuclei from protein crystals of previous assays 

under similar conditions, that are already in the metastable state [15]. This technique is called 

seeding and can be performed in three different ways:  

 Streak seeding: Based on touching the crystal already formed with a cat 

mustache, passing it quickly by at least three protein:precipitant clear drops 

(without crystals or precipitate), promoting this way nucleation (Figure 1.5.3)[15]. 

 

Figure 1.5.3 - Illustration of the streak seeding technique [37]. 

 Microseeding: For this technique (Figure 1.5.4), previous grown crystals are 

crushed in a crystallization solution, to generate a solution of microseeds. Then, this 

same solution, or one of its dilutions (1:10, 1:100, 1:1000 or even 1:10000), is added to 

a protein:precipitant clear drop (in different volume ratios) to promote nucleation.   
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 Macroseeding: Although it is a technique to promote the nucleation of the 

drop, the main objective of this one is the increase of the crystal size. For that, a 

protein crystal is collect and directly added to a new clear drop (Figure 1.5.5). 

 

Figure 1.5.5 - Illustration of the Macroseeding technique. 

After knowing the optimized crystallization conditions of a protein, it is possible to 

advance with studies of complexes. There are two possible techniques for the crystallization 

of complexes: 

 Soaking: It is based on the diffusion of small ligands (size usually varies 

between 20 and 100 Å) through the solvent channels in the crystal of the native 

protein (Figure 1.5.6) [15].  

 

Figure 1.5.6 - Illustration of the Soaking technique. 

Drop with Native Protein Crystals 

Drop With Complex Crystals 

Ligand Solution 

Drop with Native 

Protein Crystals 

Microseeds Solution 

Drop with Native 

Protein Crystals 

Drop of Crystallization 

Solution 

Seed Bead  Drop of Crystallization 

Solution 

Figure 1.5.4 - Illustration of the Microseeding technique by Seed Bead®. 
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 Co-crystallization: This technique requires the pre-incubation of the protein 

with the ligand, in order to promote the formation of the complex prior to crystal 

formation (Figure 1.5.7) [15]. This technique is most useful when the ligand of 

interest is too big to diffuse through the solvent channels and its binding promotes 

structural arrangements that might disrupt the crystals lattice or access to the active 

site is limited by crystals contacts. 

 

 

Figure 1.5.7 - Illustration of the Co-crystallization technique. 

With the growth of a crystal from the macromolecule of interest, one essential step for 

its structural analysis by X-ray diffraction is overcome. 

The drying of the crystal causes the loss of the three-dimensional structure of the 

macromolecule, which in turn affects its diffraction. There are several ways to prevent crystal 

drying by keeping it surrounded with crystallization solution, right after its acquisition: in 

quartz capillary (at room temperature), with a flash-cooled in liquid nitrogen (77K), in liquid 

propane (150K) or with cryogenic nitrogen gas stream (100K) [15]. 

Keeping the crystal at low temperatures is one way to prevent the degradation by the 

free radicals formed by the interaction of the X-ray beam with the crystal in the data 

collection, which makes freezing techniques more advantageous [15]. 

To avoid the destruction of the internal order of the crystal by freezing the water 

molecules present in the buffer solution, the crystal needs to be involved in a solution 

containing cryo-protectors such as glycerol, PEG, sucrose or salts in an appropriate 

concentration, so that a vitrification, rather than freezing, process occurs [13, [34]. 

 

 

Drop of Crystallization Solution 

Complex Solution 

Drop With Complex Crystals 
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1.6  X-ray diffraction 
 

Electromagnetic radiation is diffracted when it intersects with an object larger than its 

wavelength. This is what happens when X-rays (0.1-100Ǻ) interact with electron clouds from 

the atoms of a molecule (1 Ǻ) in their crystalline state, resulting in a diffraction pattern 

(Figure 1.6.1).  

 

Figure 1.6.1 - Illustration of a data collection [34]. 

All spots in a diffraction pattern (reciprocal space lattice) are characterized by an intensity 

(Ihkl), a direction (Miller Indices: h,k,l) and a phase (α). Each spot corresponds to a Fourier 

summation of the scattered waves with constructive interference, in phase with each other 

(Bragg’s Law, Figure 1.6.2). Within this mathematical formulation, only a few directions of 

the diffracted beams are detected, which makes the diffraction pattern dependent on the 

orientation of the crystal and the unit cell dimensions [34].  

The unit cell (Figure 1.6.3) is the subunit that repeats along the crystal through  

translational processes, maintaining the number and the arrangements of the asymmetric 

unit (smaller fraction of the crystal) [15]. 

 

A B 

Detector 

Figure 1.6.2 - Conditions for diffraction [67]-[68]. 
(A - Constructive interference between radiation.  B-  Application of Bragg's Law.) 
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Figure 1.6.3 - Crystal Packing [34]. 

This way, to start a data collection it is necessary to first characterize an orientation 

matrix, by the determination of the parameters and the direction of the reciprocal unit cell 

axes. For this, two or more images are indexed at 0 ° and 90°, relative to the axis 

perpendicular to the X-ray beam. Through the resulting information, it is possible to identify 

the Laue symmetry and the space group, which determine the three-dimensional 

arrangement of the crystal (Bravais Lattice). After obtaining the orientation matrix, it is 

possible to calculate the best strategy to collect a complete dataset with the smallest crystal 

rotation avoiding radiation damage by overexposing the crystal. 

Once calculated, the best strategy obtained is applied (Figure 1.6.4). The resulting 

images from the diffraction patterns of all the unique orientations of the crystal are then 

integrated and scaled together (data processing). Through the following parameters obtained 

in this step, it is possible to perform a first analysis of data quality:  

 Resolution: Associated with the level of detail reached in the electron density 

maps. 

 Completeness: Percentage of the unique reflections (theoretically estimated) 

that were obtained experimentally. 

 Multiplicity: Estimation of the number of independent measurements for each 

reflection. 

 Signal to noise ratio (
I

σ(I)
): Percentage of intensity obtained above noise level. 

 Merging R-factor (Rmerge): Agreement between the several independent 

observations of the same reflection. 

At this stage, we can obtain the information about the directions, the intensities and 

hence calculate the amplitude of the structure factors (Equation 1.6.1).  

Translation of the unit cell 

Assymetric Unit Unit Cell 
Crystal 

Crystallographic Symetry 
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|𝐹𝑜𝑏𝑠|2 = 𝐼ℎ𝑘𝑙 

Equation 1.6.1 - Mathematical equation to obtain the structural factors amplitude from the intensities [34]. 

 

 

Figure 1.6.4 - Expected result in a crystallographic data collection for a three-dimensional analysis [34].                       

By measuring the diffraction in more than one orientation, it is possible to obtain a sphere of results, obtaining three-

dimensional coordinates for each reflection (h, k and l). 

The equation to calculate an electronic density map is obtained by applying a Fourier 

Transform to the structure factors equation (Equations 1.6.2). But for this, in addition to the 

intensities, it is necessary to measure the phases of individual diffracted X-ray waves, 

information which is lost during the data collection process (the so-called “Phase Problem”) 

[34]. 

ρ(x, y, z) =
1

V
∑ |Fhkl| × e−2πi(hx+ky+lz−αhkl)

hkl ⇔ 

⇔  ρ(x, y, z) =
1

V
∑ √Ihkl × e−2πi(hx+ky+lz−αhkl)

hkl

 

Equation 1.6.2 - Mathematical equation used to calculate the electronic density map [34]. 

In order to solve this problem, there are several methods for the estimation, or close 

inference, of the phases. The choice of method to be used depends on the protein under 

study: 

 In cases where an available structure of a homologous or similar protein 

already exists in the PDB, a Molecular Replacement (MR) procedure may be used; 

this method is based on the initial phase estimation of a new structure from a 

known structure model. For this, it is necessary to perform the best match between 

observed diffraction and the calculated diffraction, by testing all possible positions 

and orientations of the known structure model. Since, in the asymmetric unit, each 

Detector 
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molecule is defined by six parameters (a, b and c related to rotation and d, and 

related to the translation), in order to make this search less exhaustive, most of the 

programs divides this process into two steps: first, the best solutions for the rotation 

function are search and then with these results, the search for solutions to the 

translation function.  After obtaining the best possible parameters, the resulting 

phases of the known structure model and the amplitudes obtained in the data 

collection are used to calculate the initial electronic density map. 

 In cases where the phases of some reflections already have starting values 

associated or are already known, ab initio phase determination is used to deduce the 

phases of the remaining reflections. For this method, widely used as a complement 

to other methods to find the atomic substructures of heavy atoms, it is necessary to 

obtain an atomic resolution better than 1.2 Å. 

 For the cases of proteins without known struturally homologous proteins, the 

Multiple Isomorphous Replacement (MIR) and the Single Isomorphous 

Replacement (SIR) are methods that can be used. These ones require the isomorphic 

addition of heavy metals (Hg, Pt, Au, Pb or Ag) to the protein of interest, that is, 

without interfering with neither its three-dimensional structure nor the dimensions 

of the unit cell. Through the difference in the intensity of the diffracted beams in the 

presence of heavy atoms compared to the native protein, it is possible to perform a 

phase angles estimation. 

 In the case of metalloproteins or proteins with added metals (e.g. Fe, Cu, Mo, 

Zn, or Ni), the methods of phase determination through anomalous scattering are 

the most advisable. These include the single wavelength anomalous dispersion 

(SAD) and the multiple wavelength anomalous dispersion (MAD). These use a 

radiation with one (SAD) or more (MAD) wavelengths near the absorption edges of 

the metal present in the protein, which causes a breakdown in Friedel's law (same 

intensity for reflections with symmetric miller indices, hkl and –h-k-l), but also an 

anomalous X-ray diffraction (with different phase and amplitude). From these 

differences it is possible to determine the atomic substructure, from which the phase 

can be estimated computationally for all the amplitude factors of the whole 

structure. Since they only need to collect data from a single crystal, the methods of 
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anomalous dispersion can overcome the problems presented by the isomorphous 

replacement methods. But on the other hand these have as a disadvantage the decay 

of the crystal due to radiation damage. After obtaining the phases, the electron 

density map is calculated (through Equation 1.6.3), followed by the model building 

process. 

ρ (x, y, z) =  
1

V
∑ ∑ ∑ Fhkle

−2πi(hx+ky+lz)

lkh

 

Equation 1.6.3 - Equation for the calculation of the electron density maps [34]. 

In the case of proteins whose phase was determined by the MR method, a previous 

model is already available and model building is carried out to adjust/fit it into the electron 

density maps. 

If the obtained phases were obtained by one of the other methods (Anomalous 

Scattering or Isomorphous replacement), the model has to start from scratch, according to 

the electronic density map, since it has no model structure to follow. 

After its construction by either methods, the model needs to be refined in order to 

make it more consistent with the experimental data. 

The refinement programs serve to optimize the agreement between the observed and 

calculated structural factors amplitudes by the following parameters: three dimensional 

coordinates, scaling factor, atomic occupation (fraction of crystal molecules in which a 

certain atom occupies the position determined by the model) and atomic displacement 

parameters, or B-factor, which correlates with the degree of mobility of an atom. 

After each refinement cycle several validation parameters are obtained and used to 

analyze the results: 

 RWork: percentage of the general relative discrepancy between the structure 

factor amplitudes (observed and calculated). 

 Rfree: percentage of the relative discrepancy between the structure factor 

amplitudes (observed and calculated), in a set that have never participated in the 

calculation of the refinement (test set). 

 Model geometry: error identification related to stereochemistry, chemical 

environments, bond angles and distances, chirality and planarity restraints, torsion 
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angles (Ramachandran plot), rotamer collection, among others, based on 

comparison with dictionaries of standard geometrical data. 

With the refinement process we intend to see an improvement of the model, which in 

turn improves the phases and consequently the electronic density map. When, after the 

application of several iterative refinement cycles, there are no longer significant changes for 

the improvement of the model and the parameters of validation are of good quality (e.g. by 

benchmarking with statistics of known structures with similar resolution), the three-

dimensional structure of the protein under study is terminated and then the structural 

analysis of the protein can be started. 

 

1.7 Synchrotron 
 

There are currently several sources of X-rays: the sealed tube, rotating anode, liquid 

anode, micro-source and synchrotron radiation source [7].  

In comparison to the other sources, the synchrotron source (Figure 1.7.1) uses a very 

small beam in an ultra-high vacuum environment with less divergence, more intensity, 

highest polimerization and more brightness [38]. With these characteristics, the data 

collection process is faster and more efficient, which makes it possible to analyze small 

and/or weakly scattering crystals. Another advantage of this source is the possibility of 

selecting a specific wavelength of the incident X-rays, which allows the application of more 

specific studies such as anomalous dispersion experiments. As a disadvantage, by using a 

more intense X-ray beam one has a greater chance of causing radiation damage in the sample 

[15].   
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Figure 1.7.2 - Photographs of synchrotrons from where data were collected for this work [69], [70]. 

 

Figure 1.7.1 – General scheme of operation of a Synchrotron [39]. 

E-gun – Linear accelerator of emission electrons from a cathode. In this the electrons are accelerated up to a speed close to 

the speed of light; Booster Ring - Circular accelerator that realizes a boost of energy of the electrons so that they arrive to a 

Giga electron volts (GeV); Storage Ring – Uses the path shift of the high-speed electrons (by magnetic fields) for the 

production of sinchrotron light; Beamline - Where the samples under study are analyzed [40]. 
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2. Materials and Methods 

2.1 Crystallization of PPE in the native state 
 

 Before initiating the structural characterization of elastase with inhibitors, it is 

necessary to optimize the crystallization conditions in order to ensure that good quality 

crystals of protein are obtained. For this, six different crystallization conditions, based on 

previous reports ([30], [41]–[47]), were tested with the protein in the native state. 

 PPE (lyophilized) was purchased from SERVA Electrophoresis GmbH (Heidelberg, 

Germany), and dissolved in double-distilled water to a concentration of 40 mg/mL, without 

further purification. Since not all the reported conditions used the same concentrations of 

protein, it was necessary to dilute the sample to the concentrations mentioned in Table 2.1.1. 

All conditions were tested with both techniques (hanging and siting drop). In each well 

500 µL of crystallization solution were added and a drop of 1 μL of PPE mixed with 1 μL of 

reservoir solution was dispensed using the hanging and sitting drop techniques. 

 

 

 

 

 

 

 

 

Technique Hanging drop and Siting drop Vapour diffusion 

Temperature (°C) 20 

Protein Protein Buffer ddH2O ( Bidestilated water) 

Reservoir Volume ( µL) 500 

Crystallization  

Solution 1 

100 mM Sodium Acetate pH 5.2 

200 mM Sodium Sulfate 

Protein concentration (mg/mL) 20, 30 and 40  

 

2 

100 mM Sodium Acetate pH 5.2 

50 mM Sodium Citrate 

5 mM Calcium Chloride 

 Protein concentration (mg/mL) 12 and 30 

 
3 

50 mM Sodium Citrate Buffer pH 6 

 Protein concentration  40 

  

4 

300 mM Sodium Chloride 

50 mM Tris-HCl pH 7 

 Protein concentration (mg/mL) 30 and 40 

 

5 

70% (v/v)  2-Methyl-2,4-pentanediol (MPD) 

10 mM Sodium Phosphate Buffer pH 5.9 

 Protein concentration (mg/mL) 20 

 

6 

17% (w/v) PEG 3350 

200 mM Bicine pH 8.1 

60 mM Sodium Citrate 

Protein concentration (mg/mL) 12, 20 and 30 

Drop ratio ( µL) 1 protein + 1 reservoir  

Table 2.1.1 - Summary of Porcine Pancreatic Elastase (PPE) crystallization conditions. 
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2.2  Crystallization of HNE in the native state 
 

Similar to PPE, five crystallization conditions, inferred from previous reports ([6], [48]–

[50]), were tested with the protein in its native state, in order to obtain an initial 

crystallization condition. HNE (lyophilized) purchased from Elastin Products Company 

(Owensville, Missouri, USA) was dissolved in 20 mM Tris-HCl (pH 7.5) with 50 mM Sodium 

Chloride (again based on the same literature information), for a concentration of 20 mg/mL, 

without further purification. During this test, the concentrations of protein used (10-20 mg 

/mL), the ratios of the drops (1:1 and 2:1) and the technique used (hanging or sitting drop), 

were varied as mentioned in Table 2.2.1. 

 

 

Table 2.2.1 - Summary of Human Neutrophilic Elastase (HNE) crystallization conditions. 

Temperature (°C) 20 

Protein 
Protein Buffer 

20 mM Trid-HCl (pH 7.5) 

50 mM Sodium Chloride 

Reservoir Volume ( µL) 500 

Crystallization  

Solution 

  1 

1.5 M Ammonium Phosphate (pH 7) 

Protein concentration (mg/mL) 10, 15 and 20 

Technique HD 

Drop Ratio  (µL) : 0.5 protein + 0.5 reservoir  and  1 protein + 0.5 reservoir 

2 

20% (w/v) PEG8000 

0.1 M HEPES (pH 7.5) 

Protein concentration (mg/mL) 10, 15 and 20 

Technique HD 

Drop Ratio  (µL) : 0.5 protein + 0.5 reservoir  and  1 protein + 0.5 reservoir 

3 

2 M Sodium Formate (pH 4.5) 

Protein concentration (mg/mL) 10, 15 and 20 

Technique HD 

Drop Ratio  (µL) : 0.5 protein + 0.5 reservoir  and  1 protein + 0.5 reservoir 

4 

28% (w/v) PEG4K 

0.1 M Tris-HCl (pH 8.2) 

0.7 M Lithium chloride 

Protein concentration (mg/mL) 20 

Technique HD and SD 

Drop Ratio  (µL) : 1 protein + 0.5 reservoir 

5 

Drop: 0.6 M Sodium Phosphate (pH 5) 

            70 mM Sodium Chloride 

Reservoir: 1.5 M  Sodium Phosphate (pH 5) 

Protein concentration (mg/mL) 20 

Technique HD 

Drop Ratio  (µL) : 1 protein + 0.5 reservoir 
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In order to increase the stability of the protein, reducing the possibility of undergoing 

inactivation by autolysis and / or proteolysis, another protein batch was dissolved in 20 mM 

Bis-Tris (pH 6) with 50 mM sodium chloride, to a concentration of 15 mg /ml. With this 

sample, four crystallization screens were carried out: Salt Rx (from Hampton Research), 

ShotGun, PACTPremier and BCS (all from Molecular Dimention). 

 

2.3 Biochemical characterization 
 

Determination of the final concentration of HNE was performed by the Bradford 

method and analysis of its purity by SDS-PAGE. 

 

2.3.1 Bradford method 
 

This procedure was started with the determination of a calibration curve. For this, 

several dilutions of a standard protein (Bovine Serum Albumin, BSA) were performed in the 

buffer of the protein under study. For each of them triplicates were prepared in a 96-well 

immune flat-bottom plate, each with 150 μl Coomassie plus (Bradford) assay reagent (from 

Thermo Fisher Scientific) and 5 μl of the respective dilution. After 30 minutes of incubation, 

the absorbances of the resulting samples from each well were measured at 595 nm using a 

BMG FluoSTAR Optima plate reader. Data were processed in the equipment's data analysis 

software (MARS Data Analyse Software version 2.10), obtaining, with the averages of the 

triplicates of each solution, the calibration curve. 

At the same time, similar procedure was applied to the dilutions of the protein under 

study (dilution of 1:5, 1:10 and 1:100). Using the average of the three results obtained for each 

dilution, it was possible to estimate, from the calibration curve, the total concentration of the 

protein in the sample. 

 

 

 

 

https://en.wikipedia.org/wiki/Bovine_serum_albumin
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2.3.2 Electrophoresis (SDS-PAGE) 
 

In the sample preparation process, the HNE solution was centrifuged for 15 minutes at 

15000 rpm in a 5424 R centrifuge (Eppendorf). As a result the formation of a pellet was 

observed. 

For the SDS-PAGE procedure it was prepared: one sample of 20 µL with  0.15 mg/ml of 

HNE in 1x Loadding Buffer solution (50 mM Tris-HCL, pH 6.8; 2% SDS; 0.025% 

Bromophenol Blue; 10% Glycerol and 12.5% β-mercaptoethanol) and one sample of 20 µL 

with 1uL of the pellet dissolution (in 50 µL of protein buffer) in 1x Loading buffer solution. 

Before being loaded onto Amersham ECL Gel 8-16%, (of 10 wells), both solutions were 

subjected to 6 minutes of incubation at 95° C.  

In addition, the same gel was also loaded with 5 μl of PageRuler Plus Prestained 

Protein Ladder (marker from Figure 2.3.2.1). 

 

Figure 2.3.2.1 - PageRuler Plus Prestained Protein Ladder (marker) [51]. 

After loading, the gel was run at a constant voltage of 160 V. Then, two gel washes of 

the 10 minute in bi-distilled water were performed, followed by a 30 minute with Coomassie 

(from Biorad) staining and another two washes of 10 minutes in bi-distilled water. Finally, a 

scanner was run through the ImageScanner III, using the Coomassie filter of LabScan 6.0 

program. 
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2.4 Micro-seeding with native crystals 
 

Some native crystals of PPE were collected from crystallization dropplets (Figure 

3.1.1.3(a) and 3.1.1.8(a)) with a micro-pipette into 50 μl of crystallization solution in an 

eppendorf with a Seed Bead® (Molecular Dimensions), in order to prepare the seeds for 

microseeding. Then the solution was vortexed twice for 40 seconds, with an interval of 10 

seconds of incubation on ice between them. From the resulting solution, various dilutions 

were prepared (1:102, 1:103, 1:104 and 1:105). New drops were prepared in a sitting drop vapor 

diffusion experiment, using 1 μL of PPE, 0.8 μL crystallization solution and 0.2 μL of 

microseeds dilution solution. 

2.5 Soaking of the native crystals with the Inhibitors  
 

The best native crystals of PPE were obtained in condition 5 composed of 70% MPD 

and 10 mM Sodium Phosphate Buffer pH 5.9. To some of these drops 1 μL of solution with 

100 mM of Ligand (Figure 2.5.1) dissolved in 100% (v/v) Dimethylsulfoxide (DMSO) was 

added, to obtain around 5X of molar excess ([PPE] ~7,69 × 10−4 M). After the ligand 

addition, the drop was left overnight at room temperature, in order to allow the ligand to 

diffuse through the solvent channels present in the crystal. 

  

     

Figure 2.5.1 - Ligands synthesized by the group of Rui Moreira, Faculdade de Farmácia, for Pancreatic Porcine Elastase, used 
in the technique of soaking. 
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2.6 Co-crystallization with the inhibitors 
 

In parallel with the soaking experiments, several co-crystallization tests were carried 

out for PPE. During these assays two different molar excess (4X and 6X) of ligands (Figure 

2.6.1) were incubated with the protein for 45 min at a room temperature (with a final DMSO 

concentration of 5%) prior to the crystallization experiments. 

For the assays with HNE, only a molar excess of 7X was tested with the ligand 

displayed in Figure 2.6.2. Here, the ligand solution (final concentration around 5 mM in 5% 

DMSO) was added to 20 mg/mL HNE solution.  

After an incubation of approximately one hour, at room temperature, the 

crystallization drops were prepared with several ratios between the incubated sample 

(protein + ligand) and crystallization solutions (1:1, 1:2 and 2:1) for a hanging and a sitting 

drop vapor diffusion experiments.  

 

Figure 2.6.1 - Ligands synthesized by the group of Rui Moreira, Faculdade de Farmácia, for Pancreatic Porcine Elastase, used 
in the method of co-crystallization. 

 

Figure 2.6.2 - All the ligands synthesized by the group of Rui Moreira, Faculdade de Farmácia, for Human Neutrophil 
Elastase. 

2.7 X-ray diffraction Data Collection and Processing 
 

In this work, the X-ray diffraction experiments were only performed with the crystals 

of the PPE complexes. 

In order to carry out the data collection process, the crystals were removed from the 

crystallization drop with a loop and then frozen and stored in liquid nitrogen (100K). For the 

crystals of PPE crystallized under condition 5, no cryoprotective solution was required since 

70% MPD is already a cryoprotectant. However, the crystals of condition 1 (100 mM Sodium 

Acetate pH 5.2 and 200 mM Sodium Sulfate) required the supplementation of the 

crystallization solution with 30% glycerol. 
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X-ray data for this study were collected on ID23-1 and ID30A-3 beamlines at the 

European Synchrotron Radiation Facility (ESRF) in Grenoble (France) and beamline I03 of 

Diamond Light Source in Didcot (Oxforshire - United Kingdom).  

The data collected at ESRF were processed through the autoPROC pipeline [52] using 

the programs XDS,  for the indexing and integration [53], SCALA/AIMLESS for the scaling 

[54] and POINTLESS for space-group determination [55]. The data collected at Diamond 

were processed with the  Xia2 3dii pipeline [56] which also uses the program XDS to index 

each measured reflections, but for scaling uses the XSCALE program [57]. 

 The structures were determined by molecular replacement performed with PHASER 

as implemented in the PHENIX suite of programs [58], using the coordinates of the complex 

PPE-JM102 (PDB entry 4YM9 [59]) devoid of any solvent or ligand molecules. Iterative cycles 

of model building and refinement with COOT [60], [61] and phenix.refine, also from the 

same suite of programs, were performed until convergence. MolProbity [47], as implemented 

in PHENIX, together with PROCHECK [62], and WHATCHECK [63], from the CCP4 suite 

programs[64], were used for model validation. 
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3. Results and Discussion 

3.1 Structural analysis of PPE complexes  
 

3.1.1 Crystallography, Data collection and Processing 
 

The crystallization process, as already mentioned in the working methods, started with 

the attempt to reproduce six crystallization conditions that had already been reported in the 

literature for this protein. Several drops were made under these conditions varying the 

method used (hanging or sitting drop), protein concentration (ranging from 12-40 mg/mL), 

maintaining the drop ratio (1:1) and the crystallization temperature (20 °C). 

After 5 days of incubation, it was possible to observe a crystalline material in condition 

5 (70% MPD with 10 mM Sodium Phosphate Buffer pH 5.9, in a sitting drop format using 

PPE at 20 mg/mL - Figure 3.1.1.1(a)) and, after 14 days in condition 2 (100 mM Sodium 

Acetate pH 5.2 with 50 mM Sodium Citrate and 5 mM Calcium Chloride in Sitting drop with 

30 mg/mL of protein – Figure 3.1.1.1(b)). 

 

Figure 3.1.1.1 - Native PPE crystals obtained in a screen of conditions (Vapour Diffusion Sitting Drop). 

 (a) - Crystal of condition 5 with a drop ratio of 1:1, 20 mg/mL of protein, at 20°C; (b) - Crystal of condition 2 with a drop 
ratio of 1:1, 30 mg/mL of protein, at 20°C. 

 

After careful analysis, it was decided to purpose the work with condition 5, being the 

least aqueous solution of all, facilitating the solubility of the compounds in question 

(hydrophobic compounds) for the complex crystallization. Since the parameters of the 

protein concentration and the crystallization method had already been optimized with the 

first assay, only the optimization of the precipitant percentage of the condition was required. 

(a) (b) 
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Figure 3.1.1.2 - Precipitant percentage optimization assay.  
(a) - Condition 5 with 65% of MPD; (b) - Condition 5 with 75% MPD. 

 

After crystals of appearance (Figure 3.1.1.2), it was possible to verify that the optimal 

percentage of MPD for the crystallization of this protein is the one initially used (70%). 

Streak seeding was performed on the remaining drops of the same condition using a 

seed the crystal of Figure 3.1.1.1(a), in order to promote nucleation. The grown crystals 

(Figure 3.1.1.3) are intended to apply the soaking technique or to serve as the seed source for 

the following tests. 

 

Figure 3.1.1.3 – Native crystals obtain in Condition 5 by Streak seeding. 

Once native crystals were obtained, the crystallization of the complexes was 

performed. For crystals of the complex, both possible techniques were tested (Soaking and 

Co-crystallization). 

As previously mentioned, the crystalline matrixes are extremely sensitive, which 

means that in the soaking technique, when adding a solution to the drop different from the 

crystallization solution, the equilibrium of the system is distrurbed. As a consequence, this 

perturbation may affect the crystal in the drop, which can also cause the reduction of the X-

ray diffracting signal. Another aspect of this technique is that the ligand can change the 

(a) (b) 

(a) (b) 
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conformation of the protein, which in turn can destruct the crystal upon ligand addition. 

Therefore, we first tested the “resistance” of the native crystals in the soaking process with 

two ligands (LMC188 in Figure 3.1.1.4(b) and LMC100 in Figure 3.1.1.4(d)). As hydrophobic 

compounds the inhibitors were dissolved in 100% of the organic solvent DMSO 

(dimethylsufoxide) in stock solution. To each drop with native crystals (Figure 3.1.1.4 (a) and 

(c)) 1uL of a 1:10 ligand dilution was added, leaving each drop with 3% DMSO and 3 mM 

ligand, during 6 days. 

 

 

Figure 3.1.1.4 - Soaking experiments. 

(a) and (c) - Crystals of native PPE after 6 days of incubation; (b) - Crystal (a)  soaked with 1 µL of a 1:10 dilution of the 
ligand LMC188 in 85% MPD with 10 mM of Phosphate Buffer pH 5.9; (d) - Crystal (c) soaked with 1 µL of a 1:10 dilution 
of the ligand LMC100 in 85% MPD with 10 mM of Phosphate Buffer pH 5.9; 

 

As we can observe, after soaking, the crystals presented a slight rounding in their 

edges, but no crash, which made us decide to proceed with this technique and further soak 

crystals of Figure 3.1.1.3(a) with LMC211, for 24 hours. The soaked crystals were frozen 

without any addition of cryo solution and X-ray diffraction were measured at in beamline 

ID23-1, ESRF.  

(a) (b) 

(c) (d) 
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In parallel with the soaking tests, co-crystallizations experiments were performed with 

the ligands as well, using the same conditions (Figure 3.1.1.5). This technique is widely used 

in cases where one of the two elements of the complex easily aggregates.  

 

 

Figure 3.1.1.5 - Crystals obtained by co-crystallization (Sitting Drop).  

Incubation for 15-30 minutes with a 5-fold molar excess at a room temperature. (a) – LMC188 ligand with a drop ratio of 
1:2; (b) – LMC100 ligand with a microseeding of a 10−4 seeds dilution; (c) – LMC240 ligand with a drop ratio of 1:1; (d) –
LMC269 ligand with a microseeding of a 10−4 seeds dilution. 

 

Like the crystals obtained by soaking, these crystals were also directly frozen in 

liquid Nitrogen and studied using Synchrotron radiation (Figure 3.1.1.5(a) on the 

ESRF Beamline ID23, (b-c) on the Diamond Beamline IO3 and (d) on the ESRF 

Beamline ID30A-3). 

After all beamline ID-23 data sets were processed, scaled and merged through the 

autoPROC pipeline, the molecular replacement method was applied for phase determination, 

having as search model the PPE structure with a PDB code of 4YM9 [59]. With these, it was 

possible to compute an electronic density map with a preliminary model in order to analyze 

possible blobs corresponding to the electronic density of the ligand. Statistics for data 

(a) (b) 

(c) (d) 
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collection and processing of each complex are shown in Table A.1 (in appendix) and in 

summary with the most relevant parameters in Table 3.1.1.1. 

 

 

 

The data obtained in the Beamline ID-23 were important to choose the best method of 

crystallization for the study of these complexes (soaking or co-crystallization). 

In the analysis of the electron density maps of the soaking complexes, it was not 

possible to observe any positive density blob (Fo-Fc) near the active center of the protein. One 

of the possible reasons for this is that the ligand is too large to enter and reach the active 

center of the protein through the solvent channels of the native crystal. 

On the contrary, in the electron density map of the crystal obtained by co-

crystallization with LMC188, it was possible to observe a positive density (Fo-Fc), near the 

active center corresponding to the structure of the ligand (Figure 3.1.1.6).  

Ligand 
LMC 188                                 

(Co-Crystallization) 

LMC188 

(Soaking) 

LMC 100 

(Soaking) 

LMC 211 

(Soaking) 

Space Group 𝑃 21 21 21 𝑃 21 21 2 

Unit cell (Å) 

a=50.56  

b=57.56 

 c=74.60 

(α=β=γ= 90°) 

a=74.20  

b=49.97  

c=57.81 

(α=β=γ= 90°) 

a=57.73 

b=74.64 

c=50.30 

(α=β=γ= 90°) 

a=50.51 

b=57.85 

c=74.82 

(α=β=γ= 90°) 

Resolution (Å) 
45.57 – 1.33 

(1.40 – 1.33) 

41.45 – 1.25 

(1.28 – 1.25) 

45.67 – 1.17 

(1.19 – 1.17) 

45.77 – 1.27 

(1.29 – 1.27) 

Completeness (%) 90.1 (58.3) 97.9(97) 97.7 (98.1) 90.6 (54.5) 

<I/σ(I)> 10.2 (0.8) 11.8 (2.2) 11.1 (2.1) 13.3 (2.2) 

Multiplicity 3.7 (2.6) 4.2 (4.1) 3.6 (3.3) 4.0 (3.7) 

CC1/2 1 (0.38) 1 (0.73) 1 (0.72) 1 (0.81) 

Matthews coeficiente 

(A3/Da)  
2.10 2.03 2.09 2.10 

Crystal solvent (%) 41 39 41 41 

Number of molecules 

in asymmetric unit  1 1 1 1 

Table 3.1.1.1 - Data collection and processed data of ESRF (ID23-1) 

*Values between parentheses correspond to the values of the highest resolution 

shell 
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Figure 3.1.1.6 - Electronic density map around the active site with co-crystallized LMC188. 2FO-FC maps are contored at 1σ 

level (blue) and Fo-Fc maps are contoured at 2.5σ and colored green (positive) or red (negative). 

These results, show that the most successful technique, for the interaction study of 

these ligands with PPE is the co-crystallization, being decided to proceed similarly for the 

remainders assays. 

All data of the other complexes were also collected in synchrotron, at a beamline I03 of 

Diamond and ID30A-3 of ESRF. For these data sets, the procedure as described above was 

followed (the data obtained in beamline I03 was processed, scaled and merged through the 

Xia2 3dii pipeline), obtaining as preliminary results the electronic density maps of the Figure 

3.1.1.7. Statistics for the data collection and processing are shown in Table A.2 (in appendix) 

and in summary with the most relevant parameters in Table 3.1.1.2 and the Table 3.1.1.3. 
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Table 3.1.1.2 - Data collection and reprocessed synchrotron data (Diamond - Beamline I03). 

Ligand 
LMC 100 

(Co-crystallization) 

LMC211 

(Co-crystallization) 

LMC 240 

(Co-crystallization) 

Space Group 𝑃 21 21 21 

Unit cell (Å) 
a=51.63 b=57.31 c=74.54 

(α=β=γ= 90°) 

a=51.61 b=57.38 c=74.62 

(α=β=γ= 90°) 

a=51.10 ; b=57.71 ; c=74.64 

(α=β=γ= 90°) 

Resolution (Å) 
38.36 – 1.22 

(1.24 – 1.22) 

37.31 – 1.30  

(1.32  1.30) 

31.34 – 1.28 

(1.30 – 1.28) 

Completeness (%) 99,4 (95.5) 99.7 (99.9) 99.6 (99.6) 

<I/σ(I)> 13.2 (1) 12.2 (1.4) 14.8 (1.2) 

Multiplicity 4.7 (2.8) 5.2 (5.3) 3.9 (3.6) 

CC1/2 1 (0.48) 1 (0.7) 1 (0.5) 

Matthews 

coeficiente (A3/Da)  
2.13 2.13 2.12 

Crystal solvent (%) 42 42 42 

Number of 

molecules in 

asymmetric unit  

1 1 1 

 

 

Table 3.1.1.3 - Data collection and reprocessed synchrotron data (ESRF - Beamline ID30A-3). 

Ligand 
LMC 269 

(Co-crystallization) 
  

Space Group 𝑃 21 21 21 

Unit cell (Å) a= 57.74 ; b= 57.71 ; c= 74.65  (α=β=γ= 90°) 

Resolution (Å) 
30.07 – 1.38 

(1.40 – 1.38) Matthews coeficiente (A3/Da) 2.40 

Completeness (%) 96.8 (79.2) 

<I/σ(I)> 16.3 (2.3) Crystal solvent (%) 49 

Multiplicity 4.4 (3.2) Number of molecules in 

asymmetric unit 
1 

CC1/2 1 (0.82) 

    

*Values between parentheses correspond to the values of the high resolution shell 

 

*Values between parentheses correspond to the values of the high resolution shell 
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Figure 3.1.1.7 - Electronic density map around the active site of the putative complexes formed by Co-crystallization. 

(a) – Complex with LMC100; (b) - Complex with LMC211; (c) - Complex with LMC240; (d) - Complex with LMC269. 
 

As observed in Figure 3.1.1.7, the electron density map of the complexes with LMC240 

and LMC269 (Figure 3.1.1.7-C and 3.1.1.7-D) had a good positive density at the active site 

sufficient to cover the entire test compound. In contrast, the electron density maps of the 

LMC100 and LMC211 complexes only showed a small positive density at the serine 195 

(Figure 3.1.1.7-A and 3.1.1.7-B), not sufficient to cover the compound in its entirety. 

In order to solve the problem of the appearance of a weak positive density near the 

active center in the PPE-LMC100 and PPE-LMC211 complexes, the second promising 

condition of crystallization (Condition 2 – 100 mM Sodium Acetate pH 5.2 with 50 mM 

Sodium Citrate and 5 mM Calcium Chloride) was used in the following studies. 

The crystal initially obtained of the condition 2 (Figure 3.1.1.1(b)) was used as seed 

source to perform streak seeding on the remaining drops of equal (condition 2) or similar 

(condition 1) conditions (Figure 3.1.1.8). 

(a) (b) 

(c) (d) 
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Figure 3.1.1.8 - Streak seeding in the Sodium Acetate Conditions. 

 

Based on previous results, co-crystallization droplets were performed with ligands 

LMC211 and LMC100. In order to achieve the nucleation of the drop more quickly, after 

overnight equilibration of the drop, microseeding and streak seeding were applied, 

obtaining the co-crystals shown in Figure 3.1.1.9. 

 

 

(a – b) – Condition 2: 100 mM Sodium Acetate pH 5.2 with 50 mM Sodium Citrate and 5 mM Calcium Chloride;  
(c – d) – Condition 1: 100 mM Sodium Acetate pH 5.2 with 50 mM Sodium Sulfate. 

(a) (b) 

(c) (d) 

(a) 
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Figure 3.1.1.9 - Crystals of condition 1 obtained by co-crystallization. (a) – Microseeding nd (b-c)- Streakseeding. 

Since condition 1 (100 mM Sodium Acetate pH 5.2 with 200 mM Sodium Sulfate) did 

not show characteristics of a cryo solution, the crystals had to be first cryo-protected with 0.1 

M Sodium Acetate, 0.25 M Sodium Sulphate and 30% Glycerol, before being flash-cooled in 

liquid nitrogen. However, these crystals did not diffract at Diamond I03 beamline, which 

may be related with the choice of the cryo solution, since they were not previously tested. 

 

3.1.2 Model building and refinement 
 

According to the initial electron density map, changes were made (with the program 

COOT [60], [61]) to the final model used in the molecular replacement procedure, in order to 

make it more in accordance with the results of observed X-ray diffraction.  

After model building, it was carried out a refinement cycle that computed an improved 

electronic density map. This procedure was repeated until convergence between the model 

and the map was obtained (Figures 3.1.2.7 (a-c) and Table 3.1.2.1 (a-c)). 

As previously mentioned, in all co-crystallization experiments, the protein had a 

positive density corresponding to the density of the ligand at its catalytic center. This 

density, in all the refined models obtained, presented two blobs near the oxygen of the 

catalytic serine (Ser195), which did not agree with the expected results (Figure 3.1.2.3).  

According to previous studies [6], the protease would break the inhibitor β-Sultam ring 

(Figure 3.1.2.1) through a serine 195 nucleophilic attack on its carbonyl group (Figure 3.1.2.2) 

[6]. Analyzing the resulting positive density (Figure 3.1.2.3), it is found that, contrary to what 

was expected under this mechanism, there are two blobs instead of just one next to the 

catalytic serine (Figure 3.1.2.4). 

(b) (c) 
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Figure 3.1.2.2 - Mechanism of action 1 - With nucleophilic attack on the carbonyl group. 

 

 

Figure 3.1.2.3 - Illustration of the blobs obtained around the catalytic center. 

Figure 3.1.2.1 - Inhibitor β-Sultam 
ring [65].  

Serine 

195 

Two blobs 

Serine 

195 

Serine 

195 

Two blobs 

Serine 

195 

LMC188 

LMC100 

LMC240 

LMC269 



44 
 

 

 
Figure 3.1.2.4- Fit of the ligand resulting from the mechanism of action 1 at the resulting Fo-Fc density, near the catalytic 

center of the enzyme. 

 

Given this, it was found that the resulting positive density would only be fully justified 

if the inhibitor β-Sultam ring were opened through a nucleophilic attack on the sulfonyl 

group by the catalytic serine of PPE (Figure 3.1.2.5), as described in previous studies with β-

Sultam inhibitors without the carbonyl group [65]. As a result a covalent bond is formed 

between the 𝑂𝛾  of serine 195 and the sulfur atom of the inhibitor.  

  

Figure 3.1.2.5 - Mechanism of action 2 - With nucleophilic attack on the sulfur group. 

After this analysis, the ligands resulting from the nucleophilic attack on the sulfonyl 

group were drawn through the JLigand of COOT. The refinement of the designed ligands 

covalently bound into PPE active site showed good agreement with the electron density 

maps (Figure 3.1.2.6), confirming the mechanism 2 (Figure 3.1.2.5) predominance for this 

type of ligands.  
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Figure 3.1.2.6 - Fit of the ligand resulting from the mechanism of action 2 at the resulting Fo-Fc density, near the catalytic 
center of the enzyme. 

In smaller compounds (LMC240 and LMC188), only incomplete occupancy at the 

terminal atom (bromine with an occupation of 0.73 and chlorine with one of 0.57) removes 

the appearance of negative density. Low occupancies indicates that not all molecules present 

in the crystal contains the respective atom. Because they are atoms present at the end of the 

ligand, one of the possible reasons for the low occupation of bromine and chlorine will be 

radiation damage. 

For larger compounds (LMC269 and LMC100), electronic density is not observed for 

the whole ligand, being most emphasized in the PPE-LMC100 complex, with only density at 

the interface between the protein and the ligand (Figure 3.1.1.7(a)). That is, as the ligand 

increases in size, its mobility also increases, causing a fading of the observed electron 

density. 

The validation parameters of the refined models are presented in the Tables 3.1.2.1 (a-

c). Comparing the structure of PPE in its “apo” and complexed forms show that the binding 

of the ligands under study did not cause significant conformational changes in the protein. 
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Figure 3.1.2.7 - Electron density (2Fo-Fc) around the ligands after refinement at 1 sigma level. 

 

(a) PPE-LMC188 Refinement (cycle number 43) 

R-work (%) 13.75 No. of molecules: 

R-free (%) 16.25 - Water 213 

Angles (°) 1.002 -DMSO 0 

Bonds (Å) 0.008 - Phosphate 2 

Ramachandran: - MPD 3 

   -Prefered Regions (%) 97.30 No. of solvent atoms: 

   -Allowed Regions (%) 2.3 - Sodium 1 

   -Outliers (%) 0.4   

Table 3.1.2.1 - Validation parameters obtained in the final refinement. 

(b) PPE-LMC240 Refinement (cycle number 19) 

R-work (%) 14.57 No. of molecules: 

R-free (%) 16.23 - Water 236 

Angles (°) 1.087 -DMSO 0 

Bonds (Å) 0.009 - Phosphate 1 

Ramachandran: - MPD 1 

   -Prefered Regions (%) 96.60 No. of solvent atoms: 

   -Allowed Regions (%) 2.98 - Sodium 0 

   -Outliers (%) 0.43   

(c) PPE-LMC269 Refinement (cycle number 19) 

R-work (%) 12.77 No. of molecules: 

R-free (%) 15.77 - Water 268 

Angles (°) 1.000 -DMSO 0 

Bonds (Å) 0.007 - Phosphate 2 

Ramachandran: - MPD 2 

   -Prefered Regions (%) 97.00 No. of solvent atoms: 

   -Allowed Regions (%) 2.6 - Sodium 1 

   -Outliers (%) 0.4   

(a) 

(b) 

(c) 
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3.2 Structural analysis of HNE complexes  
 

3.2.1 Energy Minimization 
 

In order to analyse the structure of the complexes between HNE and the ligands under 

study, the technique of energy minimization was used. For this, through the tools available 

in COOT program, structures of the native HNE and the PPE-inhibitor complexes were 

superimposed based on their highly similar fold (Figure 3.2.1.1). 

  
 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1.1 - PPE and HNE structure alignment [5]. 

After superposition, the inhibitor was fitted into HNE active site. Before proceeding for 

the energy minimization itself, the ligand was bound to serine 195, forming a covalent 

complex. Through the application of the REFMAC5 [66] “energy minimization” module, 

within the CCP4 suit programs [64], it is possible to obtain an energy minimized model of 

this complex that simulates the actual model. 

In order to compare HNE and PPE complexes, the resulting minimization models were 

overlaid with the electronic density maps of the final refinement of the PPE complexes 

(Figure 3.2.1.2). 

Sequence  

   - Homology 23% 

   - Identity 37% 
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Figure 3.2.1.2 - Minimization models overlaid with the electronic density maps of the final refinement of the PPE complexes. 

(a - b) – With LMC188; (c - d) – With LMC240; (e) – With LMC269.   

(a) (b) 

(c) (d) 

(e) 
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As can be seen in the figures above, according to this prediction, the orientation of the 

ligand in the HNE-inhibitor complexes will be quite similar to the orientation present in the 

PPE-inhibitor complexes, as expected. 

3.2.2 Protein Crystallization 
 

Like the previous study, the crystallization process for HNE protein started with the 

attempt to reproduce five crystallization conditions, already described in the literature. For 

this, the lyophilized protein was dissolved in a buffer most used therein, composed of 20 

mM Tris-HCl (pH7.5) with 50 mM NaCl. 

Several drops of the native protein were made under these conditions varying the 

protein concentration (between 10 and 20 mg/mL), the drop volume (2 µL or 1.5 µL) and the 

drop ratio (1:1 or 2:1), using the Tableing drop method at 20 °C.  

After 1 month, it was possible to observe a crystalline material in condition 4 (Figure 

3.2.2.1) obtained through the hanging drop method with 20 mg/mL of HNE. 

 

Figure 3.2.2.1 - HNE crystal obtained in condition 4, by the hanging drop method, with 20 mg/mL, at 20⁰C. 

Since these were small and few crystals, it was tried to reproduce the condition with its 

original composition, as well as the same condition with a small increase in the amount of 

precipitant (from 28% of PEG4000 to 30 %). 

At the same time, both conditions were used for the co-crystallization of HNE with 

ligands LMC223 and LMC249 (ligands with best inhibition results in the activity assays 

performed for HNE inhibition). For this purpose, the protein was incubated with each of the 

ligands for 45 minutes at room temperature and hanging and sitting drop drops were 

prepared with a drop ratio, incubated protein / reservoir, of 2:1. 
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After one day, it was decided to proceed to the microseeding and streak seeding of the 

drops in question, using the crystals initially obtained, in order to try to promote nucleation. 

During one month of equilibrium, no crystals appeared in these drops. It was also decided to 

test the macroseeding technique in drops of this condition, using crystals of PPE, which 

resulted in the dissolution of the crystal in the drop. 

Because elastase seems to be more stable in buffers with pH close to 5 (previously the 

protein buffer was at pH 7.5). A new protein batch was prepared in 20 mM Bis-Tris (pH 6) 

and 50 mM NaCl. 

The Bradford method was used to confirm the protein concentration, with a calibration 

curve with an 𝑅2of 0.9938, obtaining a concentration of 15.3 mg/mL. 

Then, to check the protein purity, an SDS-Page was performed. As shown in Figure 

3.2.2.2 – well 1, a band was found around 30 kDa, corresponding to the molecular weight of 

HNE (29.5 kDa) and small bands of higher molecular weight and low intensity, 

corresponding to contaminations. Through these data it is verified that the sample is in good 

conditions for crystallization trials. The dissolution of the pellet resulting from the 

centrifugation (15000 rpm during 15 min) carried out in the sample preparation step in 

protein buffer was also analyzed by SDS-PAGE on this gel. As shown in Figure 3.2.2.2-2, the 

same bands appeared, slightly more intense, which means that the protein is also present in 

the pellet. 

 

Figure 3.2.2.2 - SDS-PAGE for the HNE 

(1 – Protein solution; 2 – Pellet dilution; 3 – Another protein; 4 – Marker) 
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After verification of the protein purity, two crystallization screens were done: Salt Rx 

(from Hampton) and ShotGun (from Molecular Dimensions). Of both screens, crystals only 

appeared in two conditions of the ShotGun screen (Figure 3.2.2.3). 

 

Figure 3.2.2.3 - Crystals of HNE obtained in ShotGun screen. 

((a) – 0.2 M Sodium Sulfate with 20% PEG 3350 (ShotGun G2); (b) – 0.2 M Potassium/Sodium Tartrare Tetrahydrate with 
20% PEG 3350 (ShotGun C4)) 

 

 Through these, it was observed that the protein had a preference for conditions whose 

precipitant are PEGs, followed by the study of two other screens (PACT Premier and BCS, 

Molecular Dimension). These screens were chosen because they are specific to PEG and 

because they have a large number of conditions involving PEG3350 (precipitant of the 

conditions that obtained crystals with ShotGun. After six days of equilibration, it was 

possible to observe crystals under some conditions (Figure 3.2.2.4). 

 

 

(a) (b) 

(a) (b) 
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Figure 3.2.2.4 - Crystals of HNE obtained in the crystallization screens 

((a – b) – 0.1 M Sodium Citrate (pH 4.5) with 20 % PEG smear high (BCS A7); (c) – 0.1 M Sodium Acetate (pH 4.5) with 22% 
PEG smear broad (BCS A10); (d) – 0.1 M Sodium Citrate (pH 5), 15% PEG Smear high with 0.15 M Ammonium Acetate (BCS 
C7); (e) – 0.1 M PIPES (pH 7), 20% PEG smear medium, 0.1 M Magnesium Chloride Hexa hydrate with 0.1 M Potassium 
Chloride (BCS E4); (f) – 0.1 M PIPES (pH 7), 25% PEG smear high, 0.1 M Magnesium Formate Dihydrate with 0.1 M Rubidium 
Chloride (BCS E7); (g) – 0.1M Bis-Tris Propane (pH 7.5), 20% PEG 3350 with 0.2 M Potassium Thiocyanate (Premier F4)). 
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4. Conclusions and future perspectives 

 

The work carried out in this thesis had as main objective the structural analysis of the 

interaction between elastase (PPE and HNE) and several inhibitors, synthesized by group of 

Prof. Rui Moreira, Instituto de Investigação do Medicamento, Faculdade de Farmácia, 

Universidade de Lisboa.  

In a first step, crystals of the PPE-inhibitor complexes were obtained under two 

different conditions. Of these, only the crystals grown in 70% MPD and 10 mM Sodium 

Phosphate Buffer (pH 5.9) diffracted, close to atomic resolution. Co-crystallization technique 

was more suitable for the analysis of these complexes, obtaining crystals whose electron 

density maps, resulting from X-ray diffraction, presented density 2Fo-Fc near the catalytic 

center corresponding to the inhibitor. As this technique promotes the formation of the 

complex before the drop equilibrium, the probability of the ligand remaining bound in the 

catalytic center of the protein increases. Three-dimensional structures of PPE in complex 

with inhibitors LMC188, LMC240 and LMC269, were obtained by X-ray Crystallography. 

Analysis of the electron density around the active center of the protein, it was possible to 

conclude that the nucleophilic attack performed by the catalytic serine is not on the carbonyl 

group present in the inhibitor β-Sultam ring, but rather on the group Sulfonyl.  

In a second phase, computational studies of HNE-inhibitor complexes were carried out 

to dock PPE inhibitors into the HNE active site, followed by energy minimization. No 

significant differences with the structure of PPE-inhibitor complexes was found, 

corroborating the use of porcine elastase as a model for the human one. Crystallization tests 

were started with the protein in its native state. It was concluded that the protein crystallizes 

more easily when dissolved in acid buffer (pH 6) than in basic buffer (pH 7.5). Several hits 

appeared in crystallization screens of HNE, so the optimization of these initial conditions is 

on-going. 

As future work we intend to conclude the structural studies of HNE-inhibitor 

complexes, as well as to carry out structural analyzes of complexes between other serine 

proteases with this type of ligands, in order to verify if the mechanism of nucleophilic attack 

is maintained. 
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6. Appendix 

Table A. 1 - Total data collection and Processing ESRF (ID23-1) 

Inhibitor LMC188 (Co-crystallization) 

Detector Pilatus 6M 

Beam wavelength (Ǻ) 0.9763 

Number of images 1100 

Oscillation range (o) 0.1 

Exposure Time (s) 0.037 

Space Group 𝑃 21 21 21  (16) 

Unit cell 

a = 50.56 Å 
b = 57.56 Å 
c= 74.60 Å 
α=β=γ= 90° 

 

 

 

 

 

 

 

 

 

 

 

 

Inhibitor LMC188 (Soaking) 

Detector Pilatus 6M 

Beam wavelength (Ǻ) 0.9763 

Number of images 580 

Oscillation range (o) 0.2 

Exposure Time (s) 0.037 

Space Group 𝑃 21 21 2  (16) 

Unit cell 

a = 74.20 Å 
b = 49.97 Å 
c=  57.81 Å 
α=β=γ= 90° 

 Overall Inner 

Shell 

Outer 

Shell 

Low resolution limit (Å) 45.570 45.570 1.400 

High resolution limit (Å) 1.330 4.200 1.330 

Rmerge 0.059 0.031 0.915 

Rmeas 0.068 0.035 1.130 

Rpim 0.032 0.016 0.649 

Total number of 

observations 

171207 6227 10971 

Total number of unique 

reflection 

45719 1599 4259 

<I/σ(I)> 10.2 34.8 0.8 

Completeness (%) 90.1 93.2 58.3 

Multiplicity 3.7 3.9 2.6 

CC1/2 0.998 0.998 0.375 

 Overall Inner 

Shell 

Outer 

Shell 

Low resolution limit (Å) 41.447 41.447 1.276 

High resolution limit (Å) 1.254 3.403 1.254 

Rmerge 0.059 0.034 0.707 

Rmeas 0.067 0.039 0.805 

Rpim 0.030 0.017 0.375 

Total number of 

observations 

243845 12325 11646 

Total number of unique 

reflection 

58376 2932 2833 

<I/σ(I)> 11.8 32.3 2.2 

Completeness (%) 97.9 91.5 97.0 

Multiplicity 4.2 4.2 4.1 

CC1/2 0.998 0.998 0.728 
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Inhibitor LMC211 (Soaking) 

Detector Pilatus 6M 

Beam wavelength (Ǻ) 0.9763 

Number of images 734 

Oscillation range (o) 0.15 

Exposure Time (s) 0.037 

Space Group 𝑃 21 21 2   (16) 

Unit cell 

a = 50.51 Å 
b = 57.85 Å 
c=  74.82 Å 
α=β=γ= 90° 

 Overall Inner 

Shell 

Outer 

Shell 

Low resolution limit (Å) 45.665 45.665 1.187 

High resolution limit (Å) 1.167 3.167 1.167 

Rmerge 0.051 0.033 0.5311 

Rmeas 0.059 0.038 0.627 

Rpim 0.028 0.018 0.324 

Total number of 

observations 

263237 13288 11995 

Total number of unique 

reflection 

72862 3661 3611 

<I/σ(I)> 11.1 30.6 2.1 

Completeness (%) 97.7 91.5 98.1 

Multiplicity 3.6 3.6 3.3 

CC1/2 0.999 0.998 0.722 

 Overall Inner 

Shell 

Outer 

Shell 

Low resolution limit (Å) 45.766 45.766 1.288 

High resolution limit (Å) 1.266 3.436 1.266 

Rmerge 0.046 0.032 0.476 

Rmeas 0.052 0.037 0.552 

Rpim 0.025 0.018 0.272 

Total number of 

observations 

217043 11273 5837 

Total number of unique 

reflection 

53621 2888 1595 

<I/σ(I)> 13.3 32.2 2.2 

Completeness (%) 90.6 90.3 54.5 

Multiplicity 4.0 3.9 3.7 

CC1/2 0.999 0.998 0.807 

Inhibitor LMC100 (Soaking) 

Detector Pilatus 6M 

Beam wavelength (Ǻ) 0.9763 

Number of images 990 

Oscillation range (o) 0.1 

Exposure Time (s) 0.037 

Space Group 𝑃 21 21 2  (16) 

Unit cell 

a = 57.73 Å 
b = 74.64 Å 
c= 50.30 Å 
α=β=γ= 90° 
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Table A. 2 -Total data collection Diamond (Beamline I03) and ESRF (ID30A-3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inhibitor LMC100 (Co-crystallization) 

Detector Pilatus3 6M 

Beam wavelength (Ǻ) 0.9762 

Number of images 2780 

Oscillation range (o) 0.05 

Exposure Time (s) 0.01 

Space Group 𝑃 21 21 21  (16) 

Unit cell 

a = 51.63 Å 
b = 57.31 Å 
c= 74.54 Å 
α=β=γ= 90° 

Inhibitor LMC211 (Co-crystallization) 

Detector Pilatus3 6M 

Beam wavelength (Ǻ) 0.9762 

Number of images 2980 

Oscillation range (o) 0.05 

Exposure Time (s) 0.02 

Space Group 𝑃 21 21 21  (16) 

Unit cell 

a = 50.61 Å 
b = 57.38 Å 
c=  74.62 Å 
α=β=γ= 90° 

 Overall Inner 

Shell 

Outer 

Shell 

Low resolution limit (Å) 38.360 38.380 1.220 

High resolution limit (Å) 1.220 3.310 1.240 

Rmerge    

Rmeas 0.058 0.021 1.125 

Rpim 0.025 0.009 0.621 

Total number of 

observations 

312466 16993 8843 

Total number of unique 

reflection 

66074 3552 3117 

<I/σ(I)> 13.2 63.4 1 

Completeness (%) 99.4 99.5 95.5 

Multiplicity 4.7 4.8 2.8 

CC1/2 0.999 0.999 0.484 

 Overall Inner 

Shell 

Outer 

Shell 

Low resolution limit (Å) 37.310 37.330 1.320 

High resolution limit (Å) 1.300 3.530 1.300 

Rmerge    

Rmeas 0.066 0.045 1.278 

Rpim    

Total number of 

observations 

287678 15042 14364 

Total number of unique 

reflection 

55054 2967 2722 

<I/σ(I)> 12.2 36.6 1.4 

Completeness (%) 99.7 99.9 99.9 

Multiplicity 5.2 5.1 5.3 

CC1/2 1 1 0.7 
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Inhibitor LMC240 (Co-crystallization) 

Detector Pilatus3 6M 

Beam wavelength (Ǻ) 0.9762 

Number of images 1090 

Oscillation range (o) 0.1 

Exposure Time (s) 0.029 

Space Group 𝑃 21 21 21  (16) 

Unit cell 

a = 51.10 Å 
b = 57.71 Å 
c= 74.64 Å 
α=β=γ= 90° 

Inhibitor LMC269 (Co-crystallization) 

Detector Eiger 4M 

Beam wavelength (Ǻ) 0.9677 

Number of images 600 

Oscillation range (o) 0.2 

Exposure Time (s) 0.01 

Space Group 𝑃 21 21 21  (16) 

Unit cell 

a = 50.74 Å 
b = 57.71 Å 
c=  74.65 Å 
α=β=γ= 90° 

 Overall Inner 

Shell 

Outer 

Shell 

Low resolution limit (Å) 31.340 31.350 1.300 

High resolution limit (Å) 1.280 3.470 1.280 

Rmerge    

Rmeas 0.041 0.025 1.115 

Rpim    

Total number of 

observations 

221694 11400 9997 

Total number of unique 

reflection 

57349 3068 2813 

<I/σ(I)> 14.8 51.9 1.2 

Completeness (%) 99.6 99.1 99.6 

Multiplicity 3.9 3.7 3.6 

CC1/2 1 1 0.5 

 Overall Inner 

Shell 

Outer 

Shell 

Low resolution limit (Å) 30.066 30.066 1.402 

High resolution limit (Å) 1.378 3.739 1.378 

Rmerge 0.042 0.022 0.451 

Rmeas 0.047 0.024 0.534 

Rpim 0.022 0.011 0.276 

Total number of 

observations 

197062 10453 5795 

Total number of unique 

reflection 

44471 2342 1802 

<I/σ(I)> 16.3 50.1 2.3 

Completeness (%) 96.8 94.2 79.2 

Multiplicity 4.4 4.5 3.2 

CC1/2 0.999 0.999 0.822 


