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Abstract

The abundance and ubiquity of user-generated content has opened horizons when it

comes to the organization and analysis of vast and heterogeneous data, especially with

the increase of quality of the recording devices witnessed nowadays. Most of the activity

experienced in social networks today contains audio excerpts, either by belonging to a

certain video file or an actual audio clip, therefore the analysis of the audio features

present in such content is of extreme importance in order to better understand it. Such

understanding would lead to a better handling of ubiquity data and would ultimately

provide a better experience to the end-user.

The work discussed in this thesis revolves around using audio features to organize

and retrieve meaningful insights from user-generated content crawled from social me-

dia websites, more particularly data related to concert clips. From its redundancy and

abundance (i.e., for the existence of several recordings of a given event), recordings from

musical shows represent a very good use case to derive useful and practical conclusions

around the scope of this thesis.

Mechanisms that provide a better understanding of such content are presented and al-

ready partly implemented, such as audio clustering based on the existence of overlapping

audio segments between different audio clips, audio segmentation that synchronizes and

relates the different cluster’s clips in time, and techniques to infer audio quality of such

clips. All the proposed methods use information retrieved from an audio fingerprinting

algorithm, used for the synchronization of the different audio files, with methods for

filtering possible false positives of the algorithm being also presented.

For the evaluation and validation of the proposed methods, we used one dataset

made of several audio recordings regarding different concert clips manually crawled

from YouTube.

Keywords: User-generated content, Audio fingerprinting, Audio clustering, Audio seg-

mentation, Audio quality, Supervised learning
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Resumo

A abundância e ubiquidade de conteúdo gerado por utilizadores tem aberto novos

horizontes na organização e análise de grandes quantidades de dados heterogéneos, es-

pecialmente com o aumento da qualidade dos dispositivos de gravação observada hoje

em dia. A maior parte da atividade experienciada nas redes sociais hoje contém excertos

de áudio, quer provenientes de ficheiros de vídeo, quer de clips áudio. Assim, a análise

das características do áudio presente nesse conteúdo é de extrema importância para o

seu melhor entendimento. Tal compreensão levaria a uma melhor manipulação de dados

ubíquos e providenciaria uma melhor experiência de utilização para o consumidor final.

O trabalho discutido nesta tese consiste em usar características de áudio para organi-

zar e derivar perceções significativas de conteúdo gerado por utilizadores tirado de redes

sociais, mais especificamente dados relativos a concertos musicais. Tendo em conta a sua

redundância e abundância (i.e., por haver várias gravações relativas a um dado evento),

gravações de concertos representam um bom caso de uso para derivar conclusões úteis,

num contexto prático, no âmbito desta tese.

Mecanismos que providenciam um melhor conhecimento de tal conteúdo são apresen-

tados, como, por exemplo, o agrupamento baseado em segmentos sobrepostos entre clips

diferentes de áudio, segmentação do áudio baseado em como esses clips se relacionam

em termos de tempo, e técnicas para inferir a qualidade das amostras. Todos os métodos

propostos usam informação retornada por um algoritmo de audio fingerprinting, usado

para a sincronização dos diferentes ficheiros, com métodos de filtragem de possíveis falsos

positivos por parte do algoritmo sendo também apresentados.

Os diferentes métodos propostos pela nossa solução foram testados e validados usando

um conjunto de dados construído a partir de gravações de áudio de diferentes músicas de

concertos, retirados manualmente do YouTube.

Palavras-chave: Conteúdo gerado pelo utilizador, Audio fingerprinting, Agrupamento

baseado em áudio, Sincronização de áudio, Qualidade de áudio, Aprendizagem supervi-

sionada
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1
Introduction

In this dissertation we propose mechanisms to achieve a better understanding of user-

generated content by the analysis of their correspondent audio signals. The different

methods permit the grouping of the different audio files by events, with supplementary

information about how the different files synchronise with each other in terms of the

event’s timeline. Since these organisation methods use solely the information retrieved

by an audio fingerprinting algorithm, we also propose two novel methods for filtering

possible false positives from the algorithm. Furthermore, we propose one novel method

to infer the audio quality of the different files relative to the rest of the files in their cluster,

achieving more promising results in our test setup than the current state-of-the-art.

In this first chapter, we briefly described the main objectives of this work (section 1.1),

introduce the project that motivated this thesis’ goals (section 1.2), give an overview of

the proposed methods (section 1.3), and, finally, we summarise the overall document

structure (section 1.4)

1.1 Objectives

The abundance and ubiquity of user-generated content experienced in social networks

nowadays (figures 1.1 and 1.2), generated the need to organise and analyse such vast and

heterogeneous content. Such properties are fuelled by the increasingly need of sharing

events in social media, together with the technology advancements that made all of this

high-quality sharing possible in the first place. In this work, we focus on the audio con-

tent of several user and professional recordings of different concert songs from different

festivals. Concert recordings represent a good use case for testing and validating the

different proposed methods in this thesis since there are several recordings reporting the

same event at a given time. Such redundancy enables the audio synchronisation between
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the different samples, which consecutively allows their grouping and quality inference

by the execution of the proposed methods in this thesis.

User-generated content often contains audio cues, either by belonging to a certain

video file or audio clip, and therefore the analysis of the audio features might promote

a better understanding of that content. Such understanding would then lead to a better

handling of ubiquity data and would ultimately provide a better experience to the end-

user, which in our use case could be seen in the availability of a full length recording of

a given concert song composed by joining different smaller length existing recordings

together, or by only presenting the higher quality recording to the user at a given time.

Figure 1.1: Smartphone video capture in a music act. Source: [8]

Figure 1.2: User-generated Content creation. Source: [8]

The objective of this research work is to analyse audio data derived from content

uploaded by end-users on social media platforms and derive insights of the investigated

data, such as for example performing audio clustering based on the existence of over-

lapped audio segments between different audio files, with each cluster representing an

event that is reported by several audio recordings.The work to be developed is meant to

consider only features obtained directly from the audio signal itself to organise and de-

rive important information of the analysed data, such as audio quality. Such information

would then be used for an application that enables the broadcasting of user-generated
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content that will be further implemented in COGNITUS [8], a European project that pro-

vided the main background and motivation for this thesis’ work, which will be described

in the next section.

1.2 COGNITUS project

The research of this thesis started from a research grant under the European Union’s

Horizon 2020 funded project COGNITUS. This project involves eight European partners,

both from the industry and academics, namely BBC R&D, Queen Mary University of

London, FORTH, Forthnet, Arris, VITEC, and Faculdade de Ciências e Tecnologia da

Universidade Nova de Lisboa, with each of the partners having both individual and

collaborative tasks.

The main aim of the project is to provide ultra-high definition (UHD) broadcasting

generated from user-generated content, given its abundance in the social networks activi-

ties. This quantity and ubiquity of information allied with the high-quality of recording

now possible with the current state of the broadcasting devices (e.g., smart phones, tablets)

served as basis for the project’s objectives. Therefore, the end goal of COGNITUS is to de-

liver the proof of concept of a solution that supports high-quality and enables the upload

of user-generated content, while promoting the enrichment of the end user’s broadcasting

experience in form of an application.

In this vast and collaborative process, FCT/UNL efforts are spread across several

intimately related topics such as video annotation and analysis, event summarization,

data quality inference, and collaborative audio composition. In order to integrate all

these processes, an abstract view over the different assignments shall be made.

Given the need to handle the vast and heterogeneous social media data, stream in-

dexing and searching is an essential starting point of the whole procedure. Next, some

filtering is necessary to exclude the data that is not a good representative of a certain

event. To achieve this, some quality control has to be performed, which, in the scope of

this thesis, can be made through audio inference of a given clip. The end point of this pro-

cess is to perform data summarization, where high-quality data related to a certain event

must be gathered. For this, temporal alignment is essential since it is the starting point to

perform the clustering based on audio cues (i.e., audio clustering). These different steps

are illustrated in figure 1.3.

Throughout this thesis we will propose methods that will enabled the quality control

step, by inferring the quality of the audio files in a given dataset, and also the semantic

and temporal alignment set, by clustering the different audio files in the different existing

events, and by additionally representing how they related with each other in terms of

their time offset. A more detailed explanation of this integration steps is further given in

Chapter 4.

3
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Figure 1.3: Overview of the main project steps, concerning the FCT/UNL work plan.

1.3 Proposed solution

As mentioned above our goal is to analyse and organise user-generated content contain-

ing audio cues. Hence, this dissertation focuses on the organisation of different audio

recordings that are relative (i.e., report) a given event. Considering the use case of this

thesis being concert recordings, an event is considered to be a certain concert song. Since

it is very likely to exist different recordings of the same concert song, the audio files are

clustered by having common audio segments, with all recordings relative to a given con-

cert song belonging to the same cluster in the end. Moreover, the distribution in terms of

time of the different recordings throughout the overall event’s timeline is also retrieved.

We also focus on audio quality inference by attributing to each recording a quality score

relative to the other recordings in its cluster.

Since the treated audio files are generated from user recordings, some challenges need

to be tackled such as the different recording devices possibly used, and the different

qualities inherent to each device. Moreover, it is very unlikely that two recordings are

time synchronised and have the same duration. Thus, the development of this work will

enable a better comprehension and management of a possibly large dataset of audio files

by performing audio clustering and how the different audio files inside each cluster are

distributed over time, as well as a better retrieval of information based on each file’s

quality inference.

In practical terms, the quality and clustering information retrieved by our method

can be used to organise a list of audio files into the different events represented by the

different clusters (figure 1.4), and further aid in the choice of which overlapped recordings

to play to the end-user at a given time based on their quality scores (figure 1.5).

Several steps must be followed in order to perform such grouping and quality analysis

over a database of audio files. First, the user generated files must be crawled from social

media websites, then, to promote a better comparison between the different files, their
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Figure 1.4: Grouping of different audio files. Source: [44].

Figure 1.5: Time-aligned audio files. Information about the quality of each file is very useful to
choose which one of the audio clips should be played. Source: [9].

synchronisation is required (i.e., if they are relative to the same event). In our approach,

the synchronisation results will serve as the basis to perform the grouping of the files

in the different clusters, and enable to know how the different files are distributed over

time in the respective clusters. The audio features used to cluster the data will ultimately

help in deriving the quality of each file inside a given cluster. The detailed description

of each one of these proposed methods is further presented in sub-sections 4.3, 4.5, and

4.4, respectively. However, since the synchronisation results that all these methods rely

upon might contain false positives, two different filtering approaches are proposed to

filter such false positive matches in sub-section 4.6.

Figure 1.6 describes these methods in a diagram-like view. Starting with a dataset of

user-generated audio files, we perform their synchronisation whilst filtering the false pos-

itives matches, and we proceed on using the information on the true positive matches to

perform the clustering and segmentation of the different files inside each cluster. Finally,

we infer the quality of the different audio files both relative to the rest of the files in their

clusters, and as well of the different audio files with the same overlapped common audio

5
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segments (sub-section 4.5.2). The validation of the different proposed methods is given

in Chapter 5.

Figure 1.6: Diagram of the different methods needed to achieve the organisation, segmentation,
and quality analysis of a large dataset of audio files.

The proposed work will be integrated with other COGNITUS’ working components,

more particularly for the ranking of the audio files based on quality score and the group-

ing of different audio files representing different events. Important to notice that such

integration mechanisms must be incorporated and developed in the future but are not

part of the work presented in this thesis.

Summary of contributions

The main novel contributions of the presented work are considered to be the following:

• Proposal and implementation of two new approaches to detect and filter false posi-

tives matches from the audio synchronisation phase. The first proposed approach

analyses the derivatives of features derived from the synchronised matches to try to

detect sudden drops that might indicate a false positives match, whilst the second

uses traditional machine learning classification techniques to classify a match as a

false positive or true positive.

• A novel way of inferring audio quality inference of the different audio files relative

to the rest of the files in their cluster and overlapped segments that outperforms

the current state-of-the-art.

• The creation of a considerably large dataset of different concert recordings manually

crawled from YouTube containing about 200 recordings across 23 concert songs

from different festivals. This dataset was used to further validate and evaluate the

different methods proposed throughout this thesis.

The proposed methods were presented in two different (accepted) scientific papers,

with their content and further information found in Appendix A.
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1.4 Document outline

This thesis is composed of four chapters: Introduction (chapter 1) provides an overview

of the objectives and the motivation for the work presented in the upcoming chapters;

Fundamental Concepts (chapter 2) introduces some of the concepts that are important to

be aware of in order to fully understand the presented work, namely the basics of sound

and an introduction to hierarchical clustering; State-of-the-art (chapter 3) presents some

of the current research state of concerning audio synchronisation and audio clustering;

Proposed solution (chapter 4) gives an outlook of the research proposal as well as a

detailed description of the algorithms proposed for the different methods; Evaluation

and results (chapter 5) presents the validation tests made for each one of the proposed

methods; and, finally, Conclusion (chapter 6) overviews the developed methods and

elaborates on possible future work.
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Fundamental concepts

In order to promote a better understanding of the work and research of this thesis, some

concepts are reviewed in this chapter. All the presented information in this chapter can

be viewed as a survey of both Yost’s book Fundamental of Hearing [56], serving as an

introduction to sound, and the lecture notes of the Machine Learning course lectured

at FCT/UNL [23], promoting a better comprehension of the machine learning concepts

used throughout this thesis. Hence, readers who are familiar with the concepts described

bellow can safely skip to chapter 3.

2.1 The basics of sound

In order to produce sound, an object must simply have the ability to vibrate. This ability

depends on the properties of inertia and elasticity of each object, that are defined by the

force that must be exerted in a given object for it to move and by the ability of that given

object to return to its initial state, respectively.

These are the only prerequisites for possible sound production by the direct analysis

of the physical definition of sound [56]. In order to achieve actually hearing, the sound

wave needs a medium to propagate itself to ultimately be received as input to our auditory

system. The pressure changes in the sound wave makes us witness and recognise different

sounds.

2.1.1 Sinusoids

The most simple type of vibration is a sinusoid or sine wave, that is used to describe the

continuous and regular displacement (i.e., the distance an object moves) of a vibrating

object. In this particular case, a sinusoid is symmetric in terms of the resting point and

repeats perfectly over time. Figure 2.1 displays a complete transition (i.e., a cycle) of
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a sinusoid. This particular type of vibration is extremely important since all complex

vibrations can be represented as a sum of sinusoids (and therefore also defined as a

composition of simple vibrations).

Figure 2.1: Sinusoid relation between displacement and time. Source: [3]

A particular sinusoid is specified by three parameters - amplitude, frequency and

starting phase, and, given all vibrations can be defined as a sum of sinusoids, the same

parameters apply. Unless all parameters are specified, there is ambiguity since the repre-

sentation can correspond to more than one wave.

2.1.2 Sound wave properties

Now, we briefly describe the different parameters that characterise a sinusoid: amplitude,

frequency, and starting phase.

2.1.2.1 Amplitude

Amplitude can be simply described as a measure of displacement (i.e., how far a certain

object moves). Figure 2.2 shows this measure as simply being the height of the wave.

Figure 2.2: Amplitude representation on a waveform. Source: [28]

Amplitude can be specified in several forms. It can be displayed in an equation

that varies over time, which enables the calculation of instantaneous amplitude. When

temporal information is not relevant, as in periodic and continuous waves, some other

types of amplitude metrics that do not rely on time are enough to describe the amplitude.

Namely, peak amplitude describes the maximum positive displacement distance of a

10
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waveform, whilst peak-to-peak amplitude refers to the distance between the maximum

positive and maximum negative displacement. These values may be enough in many

situations when analysing the amplitude of a given waveform, particularly in the case of

periodic waves.

Even though these metrics are useful in some cases, they may give insufficient infor-

mation when analysing the behaviour of complex waves, as the instantaneous amplitude

variations cannot be represented in such manner. Root-mean-square amplitude enables

the retrieval of more information about the wave behaviour, by squaring all amplitude

values (to turn the negative amplitude values to positives), taking the mean of the squared

values, and then taking the square root of the mean in order to go back to the original

amplitude scale [54]. Thus, root-mean-square amplitude is widely used as an amplitude

measure since it enables the representation of amplitude in both simple and complex

wave forms, like noise. One drawback of this approach is that the calculation of the

amplitude in a given moment of time (i.e., instantaneous amplitude) is not possible.

2.1.2.2 Frequency

Frequency can generally be referred to the measure of how often an object oscillates. This

is practically observed as the number of cycles a waveform completes per second, and it

is represented by hertz (Hz). Thus, a vibration with frequency equal to 1 Hz means that it

takes 1 sec for a wave to complete 1 cycle.

Theoretically, a complete cycle is defined when a vibratory patterns begins and ends

at the same point after taking all possible values. The amount of time (in seconds) a

vibration takes to achieve a complete cycle is called period. Therefore, frequency and

period are intrinsically related as seen in the following equation:

f requency =
1

period

These concepts can also be used to describe complex vibrations, under the condition

that they contain some sort of periodic pattern that is repeated. Figure 2.3 shows an

example of frequency variation in a sound wave.

Figure 2.3: Frequency variations on a waveform. Source: [28]
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2.1.2.3 Starting phase

Starting phase refers to the initial position of the object relative to the rest position. This

is the initial phase of the sinusoid that describes the periodic movement of the object, that

is the angle of the sinusoid at time 0 s. The measure is made in terms of degrees of angle

and they are all relative to the state observed in the zero degree phase.

Figure 2.4: Sinusoid split in sections of phase in degrees. Source: [41]

When considering a sinusoid, by combining it with trigonometry as explained in [56],

a complete cycle can be also represented as 360º. Figure 2.4 shows how a sinusoid is

divided in different phases. Following this principle, a sinusoid with a phase angle of

270º, starts in the three-quarters before completion of the complete cycle of a zero degree

phase sinusoid. This situation is illustrated in figure 2.5.

Figure 2.5: Representation of a zero-phase sinusoid (in blue) and a 270º angle phased
sinusoid (in pink). Source: [1]

The notion of what the phase would be in any moment of time is called instantaneous

phase, being the starting phase a particular value of it when t = 0.

2.1.3 Fast Fourier Transform

The Fast Fourier Transform (FFT) algorithm serves as a basis to compute the Fourier

Transform of a (digital) audio signal with a faster and computationally less expensive
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algorithm than the Discrete Fourier Transform (DFT). Its main practicality is the ability

to convert a signal from time-domain to frequency-domain. The inverse can also be done

by using the Inverse Fast Fourier Transform (IFFT) algorithm.

FFT serves as the basis for sound processing, since a lot of our perception of sound

comes from its frequency-domain representation [56]. This can be easily observed by

the ability of humans to identify and be extremely sensitive to changes of the pitch of

musical songs, and, consecutively, to changes in the frequency of the audio signal. Pitch

is a perceptual measure related to the fundamental frequency, which is the inverse of the

period of repetition of complex waves.

2.1.4 Spectrogram

A spectrogram is built from a series of spectra that represent the frequency and amplitude

of a signal in a moment of time. The stacking of several spectra over a period of time,

provide the reasoning behind the creation of a spectrogram. A spectrogram, which

is obtained with the Short Time Fourier Transform (STFT), is then a representation of

how the spectrum of a certain signal changes over time. Even though STFT retrieves

how the phase and magnitude of the signal varies over time and frequency, we will give

more focus in the magnitude in this thesis since it consists of one of the features used in

relation to frequency in the audio fingerprinting algorithm that will be later described in

sub-section 3.1.6.

Additionally to the frequency being represented along the vertical axis and time along

the horizontal axis, a spectrogram also represents energy in terms of magnitude at a given

time and frequency. This is accomplished by a contour map drawn behind the axis nor-

mally varying within a colour or grey scale, that is generated from the magnitude valued

matrix that represents the magnitude spectrogram. Thus, variations in the energy will

produce variations in the background colour, creating a third dimension in the graphic

representing the magnitude. Figure 2.6 shows an example of a spectrogram.

Figure 2.6: Spectrogram captured of a recording of some words. Source: [53].
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2.2 Classification techniques

The process of predicting the class or category of an example from a finite set of samples

is defined as a classification problem in Machine Learning, as illustrate in figure 2.7.

This process can either be done by learning from a given set of samples to which the

corresponding class is known (i.e., the training data is labelled), or by predicting the

classes of new samples without any ground-truth. The first approach is called supervised

learning whilst the second is described as unsupervised learning. A merge of the two

approaches can also occur, where there is both labelled and unlabelled samples in the

training set; this approach is called semi-supervised learning.

Figure 2.7: Example of two classification problems. The samples of each class are rep-
resented with different colours. On the left, the problem is linearly separable since all
samples of each class can be separated by a line. On the right, the problem is non-linearly
separable and another approach had to be used to separate both classes (a circle with
radius r). Source: [42]

These different types of learning are closely dependant on the type of problem we are

trying to solve and the type of data we are dealing with. For example, if we have access

to a large amount of labelled data and the set of possible labels is known a priori and is

static, following a supervised learning approach might suffice to achieve good prediction

in the newly classified samples. On the other hand, if we want to derive new conclusions

about a large set of unlabelled data, following an unsupervised learning approach suits

best our needs.

In the scope of this thesis’ problem we will focus on supervised learning. The features

of our data are given as input to the classifier , which will use such features to predict

the classes of new samples. Moreover, since we are dealing with labelled data, we can

optimise our learning process by making the classifier predict some of the labels of our

training samples and compare the its predictions with the corresponding ground-truth

label of each sample. However, optimising our classifier to fit and adjust to our training

samples might cause overfitting, which is undesirable since it prevents our classifier to

generalise to new samples that were not learned in the training phase.

One simple way of preventing overfitting is to split the dataset in 3 separate sets: a

training set, used solely to fit our model, a validation set, to select the best hypothesis

that minimises the error (i.e., a measure of wrongly predicting the labels of samples of
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this set), and a test set, to estimate the true error of our model. Since none of the samples

in the testing set is used to train our model, we can assume that this estimate is unbiased

and therefore a valid measure of evaluation of our predictions. The next subsection (2.2.1)

presents a more elegant and better approach to prevent overfitting, and it is followed up

by 3 subsections that explain three of the most used methods in the context of solving

classification problems with supervised learning.

2.2.1 Cross-Validation

Using the approach of splitting the dataset in training, validation, and testing sets to

prevent overfitting is not ideal since it only takes into account one iteration over the ran-

domly chosen samples in the different sets, affecting the modelling capability compared

if done iteratively and with a larger amount of samples per set. Moreover, using this ap-

proach would also only take into consideration one hypothesis over the several possible

hypothesises of our model.

With cross-validation, the samples in the dataset are randomly split into k disjoint

folds (being k a number from 2 to the number of samples) and the model is trained with

all folds except one, being the left out fold used for validation. This process is repeated for

all folds and in the end the average of the validation error of all hypothesis is considered

to be the true error of our model. The separation of the samples over the different folds

should preserve the percentage of samples of each class in the original dataset, meaning

the folds are stratified. This is important since it maintains the information of the original

dataset, that therefore should reflect the real context of our problem.

Using cross-validation is a better approach than simply separating the dataset in 3

(i.e., training, validation, and test set) since it tests different hypothesis of the model, by

performing several iterations, and therefore by using more data to both train and validate

the model since no samples were put aside for the test set. Thus, cross-validation is

more likely to produce better predictions and to better generalise our model in the end

since different training and validation sets were taken into consideration over the several

iterations.

2.2.2 Logistic Regression

Despite being a regression model, logistic regression can also be used to solve classifica-

tion problems. This is easily achieved by finding an hyperplane that separates the two

classes where finding an example x of any of the classes lying in that hyperplane has

equal probability in both cases.

P (C1|x) = P (C0|x). (2.1)

This goes against the nature of a regression model, where the decision boundary is set

to approximate the probability of every point to be in a certain class C [23]. Note that for
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handling multiple classes one would need to generalise this solution and use Multinomial

Logistic Regression but since the problem we tackle in this thesis is a binary classification

problem, only two classes will be used and therefore the notions presented will suffice.

This modification is essential when dealing with classification problems since it makes

the isolated points located further from the decision boundary to not have a big effect in

its overall position. Thus, the ultimate goal when trying to classify a sample is to simply

put it in the correct side of the decision frontier, that will consequently correspond to a

correct prediction of its class.

The function used to differentiate the classes is a logistic function, and it can be

directly obtained by the rearrangement of the conditional probabilities based equation

(2.1), with its final form being given by:

g(−→x ,w̃) =
1

1 + e−(
−−−−−−→
wT −→x +w0)

(2.2)

By being able to receive any real number as input, and outputting a value between

0 and 1, logistic functions are a good way of obtaining a probability of an example pre-

viously served as input. Furthermore, logistic functions have the property of varying a

lot around a threshold but being nearly constant away from that threshold, as shown in

figure 2.8. This is a good feature when dealing with the most further away points and

how they affect the output and consecutively the decision boundary position.

Figure 2.8: Example of a Logistic function. Source: [18]

Estimation using a Logistic Regression classifier is made by choosing the function

parameters that maximise the likelihood of observing the expected sample values in our

hypothesis [27]. This way we ensure that the chosen hypothesis fits well our training data,

while concerns about possible overfitting are handled by fine tuning the regularisation

parameter c. This parameter directly influences the slope of the logistic function, with a

low value of cmeaning less regularisation, and an increase of probability of overfitting the
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training data. In practical terms, the parameter c influences the weights of the coefficients

of the chosen hyperplane that separates both classes, as follows:

1
c

m∑
j=i

w2
j (2.3)

meaning that bigger vector weights will cause a higher slope, while decreasing the weights

will cause a smoother logistic function and therefore less overfitting.

One can use cross-validation to estimate the best value of this parameter c by see-

ing which model achieves best predictions (i.e., lowest validation error) over the several

iterations.

It is important to notice that this is a linear classifier, since it simply tries to find an

hyperplane that divides the two classes. Therefore, if the classes are not linearly separable

by default this classifier will suffice in correctly setting its decision boundary. To handle

this problem we can increase the dimensions of our features (i.e., we can either try to

find more independent features of our samples or combine the existing features into

new, dependant, ones). By increasing the feature space and consecutively increasing the

computational power as a drawback, it is then possible for our linear classifier to correctly

separate our training data.

2.2.3 K-Nearest Neighbours

Instead of fitting a model based on the samples in the training set, the K-Nearest Neigh-

bours classifier simply compares never seen samples to the samples of the training set.

The basic idea is that a new sample is given the same class of the majority of the k nearest

samples in the training set (being k an odd number between 1 and the number of samples

in the training dataset). A small k is more likely to promote overfitting, whereas a large

k promotes underfitting (see figure 2.9). Thus, it is important to find the best number of

neighbours by applying cross-validation, similarly to what was already described when

choosing the c parameter of the Logistic Regression classifier.

Figure 2.9: Comparison of using a different number of neighbours for the classifier (1, 13
and 25, respectively). Source: [23]
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Since this is a distance-based method, a distance function must be chosen to calculate

the closest training sample points to the new sample point in the feature space. Euclidean

distance is the most used but another distance metrics might produce better results in

specific problems, such as the Minkowsky distance for continuous numerical features,

and the Hamming distance for categorical features [23].

Unlike the logistic regression classifier, increasing the dimensional space of our fea-

tures will not necessarily produce better predictions when using the K-Nearest Neigh-

bours classifier. This is inherent to any distance-based classification method since more

dimensions normally mean points are more distant of each other and so are their neigh-

bours, meaning that the class of the majority might be incorrect and wrongly predicted

for a new sample. Thus, when dealing with high dimensional feature spaces and a high

value of k, it might be better to analyse the distance of the points, by introducing a weight

based on the distance metric [43]. This way closer neighbours would influence more the

class prediction than the furthest neighbours.

2.2.4 Support Vector Machines

Similarly to the Logistic Regression classifier, Support Vector Machines (SVM) finds a

hyperplane that separates two classes, assuming that the classes are indeed linearly sepa-

rable. The main difference, however, is that with SVM the chosen hyperplane is the one

that maximises the distance between the two classes. This solves an important problem

of Logistic Regression, that consists of allowing the frontier to be closer to some points of

a given class than the others. This is originated by the logistic function being almost flat

away from the frontier, making small differences in the position of the decision boundary

to not make any difference in the overall result. This results in the frontier being placed

in a different position when we run the Logistic Regression Classifier several times, as

shown in figure 2.10.

Figure 2.10: Different runs of the Logistic Regression classifier result in different positions
of the frontier that separates both classes. Source: [23]
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To maximise the margin between the frontier and classes, we look in the distance

between the closest points of each class and the frontier (such points are represented in

a vector form and described as support vectors). The goal is therefore to maximise the

distance between the support vectors and the decision hyperplane, as demonstrated in

figure 2.11. The chosen hyperplane can be formally defined as:

g(−→x ) = −→w T −→x +w0 (2.4)

where −→w represents a vector of weights and w0 the bias. This function, when served with

an input vector (i.e., one sample), returns values greater or equal than 1 for one class and

values smaller or equal to -1 for the samples of the other class.

Figure 2.11: On the left, different possible hyper planes that successfully separate both classes
are shown. On the right, only the hyperplane that had the maximum margin from the closest
points of each class (denoted as support vectors). Source: [37]

The absolute value of the output of the function represents the distance from the input

vector to the hyperplane, being this distance equal to 1 if the input vector is a support

vector. Since the shortest distance between a point and a hyperplane is defined by:

d =
|g(−→x )|
||−→w ||

(2.5)

and for support vectors |g(−→x )| is equal to 1, one can maximise the margin between the

frontier and the support vectors by minimising ||−→w ||. This is a non-linear optimisation

task that can be solved by using Lagrange Multipliers [45].

This process only gives a solution (i.e., finding the hyperplane that maximises the

distance) if the two classes are linearly separable, which might not always be the case.

To fix this problem, a slack variable must be added to each weight vector, representing

weather the point is on the right or wrong side of the margin, enabling this way a solution

to our problem by loosen up the initial constraints. If the corresponding vector of the

point is inside the margin, a value between 0 and 1 (exclusive) is given, whereas if the

point lies in the wrong side of the hyperplane, a value greater than 1 is given. This
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slack variable then represents the distance between a vector and the inside margin of the

hyperplane.

By introducing the slack variables to each vector, we allow some points to fall on

the wrong side of the margin by introducing a certain penalty to them. These penalties

are upper bounded by the regularisation parameter c, meaning a high value of c a high

penalty for margin violation, with no support vectors being placed inside the margins,

whereas a low value of c will allow several points to be placed in the wrong side of the

hyperplane. This idea is illustrated in figure 2.12.

Figure 2.12: Different values of c were used for different runs of the SVM. For the left image a
c value of 1 was used, where it is visible several support vectors being placed inside the margins
(outlined with red circles), whilst in the right image c was equal to 1000 and no margin violations
are observed. Source: [23]

Allowing some errors in the decision frontier might not work if there is too much

overlap between both classes. In this case it is preferred to increase the dimensions of

the feature space, as previously discussed. Increasing the number of features in SVM

is considerably easy since we are only concerned about performing the inner product

operations between the extended featured vectors. This operations can be done by using

kernel functions, that return the inner product of the transformed vectors as a function

of the original dimensional vectors. This is done by using an auxiliary function that adds

dimensions to the original vectors (e.g., receives a 2-dimensional vector and returns a

4-dimensional vector).

Different kernel functions (e.g., linear, polynomial, Gaussian) can be used and tested,

with the Gaussian Radial Basis Function (RBF) being normally set as the default kernel to

use in non-linear solutions, since it maps the training examples into a higher dimensional

space. Important to notice that this kernel has the same performance as a linear kernel

using the right combination of parameters, and it is less complex than the polynomial

kernel, since it uses less hyper parameters to select the best model [20].

Using the RBF kernel then gives the chance of tuning one more parameter, γ , that

defines how far the influence of each training example reaches [24], and, consecutively,

of each support vector. Thus, a high value of γ will make the kernel weight nearby points

more heavily, influencing on the decision frontier to be placed closer to the example

points and possibly promoting overfitting. A low value of γ will smooth and expand the

20



2.3. HIERARCHICAL CLUSTERING

decision frontier [23]. A good way of finding the right combination of this two parameters

(i.e., c and γ) is to execute an exhaustive search over all possible combinations of a subset

of possible values for each parameter, also described as grid-search. This process can be

optimised by using cross-validation, choosing the pair of parameters’ values that had the

highest mean accuracy in the different folds.

2.3 Hierarchical Clustering

If we wish to organise and group samples together based on a certain similarity, we are

dealing with a Clustering problem. One approach to decide the right number of clusters

in a big dataset, is to do it in an iterative manner by joining first the samples that are more

similar and then gradually merging similar clusters. This approach is called hierarchical

clustering and is illustrated in figure 2.13, where the letters "a" to "f" are isolated and then

are iteratively combined to form the combination "abcdef".

Figure 2.13: Example of hierarchical clustering. Source: [52]

This type of clustering suggests that is not only needed to find measures of similarity

between samples, but also between clusters, so they are rightfully merged. These cluster

measures can be represented by a simple Boolean value, where 1 indicates that two clus-

ters are similar and 0 the opposite, or by more complex measurements like the distance

between clusters. There are a lot of ways to perform the calculation of this distance (for

more details see [23]). In this work the measure of similarity is set to be a Boolean, since

that is what suits the best to our problem and presented solution.

Hierarchical clustering can be done by either starting with singleton clusters and

proceed on merging similar clusters (i.e., agglomerative clustering) or by following a top-

down approach, where a single cluster with all examples is formed and then iteratively

split into smaller clusters (i.e., divisive clustering). Figure 2.14 shows an example of

agglomerative clustering, where initially all samples are separated (i.e., forming singleton

clusters), and then are grouped together until they are all gathered in the same cluster.

Our proposed solution uses an adaptation of agglomerative clustering to group audio

samples from music concerts into different clusters (section 4.3). It is an adaptation

since the measure of similarity used is not by evaluation of cluster distance but from

metrics retrieved by the audio synchronisation phase, more concretely from the audio
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fingerprinting algorithm described in subsection 3.1.6. This idea of the audio clustering

process will be firstly introduced in section 3.2 and practically described with detail in

chapter 4.

Figure 2.14: Example of agglomerative clustering. Source: [51]

Concluding remarks

In this chapter we introduced some basic concepts of sound that will enable a better

understanding of the features used by the audio fingerprinting techniques that will be

further explained in the next chapter. Moreover, machine learning methods together with

some important supervised learning notions were also introduced. All the introduced

concepts in this chapter create an important basis for the formulation of the different

methods proposed throughout this thesis.
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3
State-of-the-art

In this chapter we present the state-of-the-art work by the time this research work be-

gan. We survey the different processes inherent to an audio fingerprinting algorithm,

(section 3.1) and give more detailed information about the algorithm that was used in

the actual implementation phase of this work. Furthermore, we introduce previous work

that served as the basis of the different proposed methods in this thesis, focusing mainly

on audio clustering (section 3.2).

3.1 Audio fingerprinting

The synchronisation of different audio files is an essential step to perform the audio clus-

tering, since it is the mechanism used to group different files with common overlapping

segments. Moreover, the information about the different audio files are distributed over-

time inside a given cluster is made through the offset between the different samples. To

derive the quality of the different files inside a given cluster, information about how the

synchronisation process happened is also essential for the proposed method. The detailed

explanation of these processes, and the different approaches that can be followed, can be

found in sections 4.3, 4.5, and 4.4, respectively.

Audio Fingerprinting techniques are often used to perform the synchronisation be-

tween audio files by the usage of audio features that are relatively resistant to noise. This

represents an ideal background to perform the synchronisation of our data since it en-

ables to synchronise noisy samples against possibly less noisy audio files in the database,

while only needing possibly short length common segments to synchronise both clips.

While audio fingerprinting has traditionally been used for song recognition, as made

famous by Shazam but also other existing applications, such as Midomi [30], Chromaprint
[29], and ACRCloud [2], its usage to perform grouping of a large set of audio files is still

23



CHAPTER 3. STATE-OF-THE-ART

relatively new ([22] is further analysed in section 3.2). In the latter case, instead of using

the offset retrieved from the audio fingerprinting to align the audio files, that offset will

serve to conclude that the files have a common segment and therefore should be simply

put in the same cluster.

Fingerprint generation over any kind of data is an efficient mechanism to characterise

possibly large data with a small representation. More explicitly, as an alternative to rep-

resentations that involve large amounts of data, fingerprints are compact representations

of the data that can be used for purposes that do not require dealing with all the intrinsic

details of the data. This technique promotes a fast way of comparing the quality of two

entities by trying to diminish the need to compare irrelevant features.

Any audio fingerprinting technique involves an extraction mechanism to generate the

fingerprints of data and then a searching mechanism that looks for matching fingerprints

in a pre-generated database. Different audio fingerprinting algorithms (such as [13, 16,

50]) can be compared based on their robustness (i.e., how well the algorithm performs

with additive noise), reliability (i.e., the probability of having false positives), search

speed (i.e., how fast the algorithm can identify a match) and scalability (i.e., how well

the algorithm performs with a large database).

The variety of these benchmarks differ on how the algorithm is implemented and

how the fingerprints are generated. Therefore, they are intrinsically associated with the

chosen size of the fingerprints used, since it will directly influence the storage needed and

search speed of the algorithm, and how many seconds are needed to identify a certain

song (i.e., granularity).

There are several steps inherent that have to be complete to achieve the match between

two audio files. First, an extraction of some of the features present in the audio clip has

to be done; second, those features, or a combination of them, are then used to generate

a fingerprint that will characterise the audio clip in question; then, searching processes

must be applied to access the fingerprints of the other files in the database; and finally

matching mechanisms have to be performed to compare pairs of fingerprints and generate

a match. Each one of these steps is explained with more detail over the next subsections.

3.1.1 Features extraction

How the fingerprints are generated from the features extracted from the audio signal

is one of the main points of the choice of the audio fingerprinting algorithm to use.

Some principals are inherent to almost every existing fingerprinting algorithm, such as

splitting the audio signal in smaller pieces, and then proceed to extract features of such

smaller sized portions. Regarding the first step, the splitting decision is on how tiny such

frames will be, since excessive divisions can put an unnecessary computing power on

the creation of the fingerprints, and a low number of divisions can suffice to create an

efficient fingerprint representation.

Regarding the features to be extracted, the goal is to use features that are somehow
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invariant to signal degradation such as: Fourier coefficients, with different and less com-

putational expensive ways of calculating the Fast Fourier Transform (FFT) over the same

samples [15]; Mel-Frequency Cepstral Coefficients (MFFC) [25], that have into the con-

sideration the energy representation of the audio signal; statistics of features retrieved

from Discrete Fourier Transform at each instant of time [4]; and several others amplitude

driven methods as referred in [12].

Although each one of the extraction methods could be more beneficial to use depend-

ing on the context, it is known that most important features used by the auditory system

to perceive sounds live in the frequency domain, as stated in [16] and already mentioned

in subsection 2.1.3. Thus, algorithms that use Fourier Transform are preferable in the

majority of the cases.

In order to illustrate an example of the features extraction process and how it simpli-

fies the data representation, figure 3.1 represents the output of the features extraction

used in Shazam [50]. In this case, the extraction is made through the selection of frequency

peaks in the spectrogram of a given audio signal. This procedure is better explained in

subsection 3.1.6, since the fingerprinting algorithm that ended up being used in the

implementation phase is also inspired in this peak extraction concept.

Figure 3.1: A spectrogram (in the left) with the correspondent extracted features on the right.
Source: [50]

3.1.2 Fingerprint generation

After extracting the features from the data, the next step in any fingerprinting algorithm

is to use such features to produce the hopefully correct and singular representation of

the respective audio file. This generation process varies from different algorithms but in

order to increase its singularity, it is important to combine multiple features previously

extracted. This happens because single features from a certain moment of time normally

do not have enough information to uniquely characterise an audio file. The set of all the

information derived directly from the features that is needed to form the final fingerprint
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of an audio clip is called sub-fingerprint, as introduced in [16]. Thus, one fingerprint can

be seen as an aggregation of several sub-fingerprints.

These sub-fingerprints can be calculated not only using the raw values of the extracted

features but also by performing combinations between such features, in order to promote

a more unique representation of a given file. The way to relate features is therefore

extremely important, since it might reduce the need of consider all extracted features but

simply focus on their relation during certain periods of time.

One effective way of performing these combinations between single features was pro-

posed by Shazam in [50]. Considering the peaks extracted in figure 3.1, the algorithm

makes combinations between them to produce more detailed information about that au-

dio file. This process is accomplished by choosing anchor points, that consists of a subset

of points uniformly distributed in the set of the extracted peaks, and then combining

each anchor point with other peaks inside a target zone, in a sequential way. This first

part of the overall fingerprint generation process is illustrated in the left part of figure

3.2.

Since these peaks were retrieved from spectrogram, information about their frequency

in a given moment of time is available. Thus, this combination is passed as input to a

hash function, by giving the frequencies of both peaks and the time difference between

them. This will result in a hash representation of that information (32-bit), ultimately

consisting the sub-fingerprints of an audio file. This is demonstrated in the right part of

figure 3.2. This whole process is then repeated for each anchor point, and then the list of

all hashes will be used to characterise an audio clip, forming its fingerprint.

Figure 3.2: Description of the hash generation process in Shazam. Source: [50]

3.1.3 Robust audio hashing

The hash functions used in summarising audio data are based on a different notion than

the ones used in cryptography. In cryptography, the hash value associated with certain
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data is extremely fragile in the meanings of a very subtle difference on the content will

result in a completely different hash value.

In the case of audio, there is a need to use a threshold since the audio files can be sub-

ject to degradation factors possibly originated by compression or conversion mechanisms.

Thus, hashes of audio content imply that different quality versions of a given audio clip

are given the same hash, as stated in [38] and [48]. This type of hashes are called robust

hashes.

This is practically observed in the output of the fingerprinting algorithm described

in subsection 3.1.6, where different versions of audio files are matched depending on the

query file to match. This is shown by the display of how that version ranks in all hashes

of that song.

This method of hashing audio content is widely used in audio fingerprinting, as op-

posed to audio watermarking [11] where some kind of signature is embedded in the

original content before its release. Even though this technique is very useful in detecting

copyright problems [17], it suffices to work in the context of our problem.

3.1.4 Searching process

Giving the likely abundance of audio files in the database, both when dealing with mu-

sic recognition applications and data retrieved from social media websites, an efficient

way of searching must be implemented. The size of the database is even more problem-

atic considering that each song’s fingerprint is composed by several bits of information

representing the sub-fingerprints.

An extensive search of the entire database is not practical [16], especially when the

response time matters which is a common requirement in most real-world applications.

Thus, approaches for reducing the number of records to be accessed and/or strategies to

optimise the way the information is saved and accessed must take place.

Such approaches vary in whether the information is indexed based on sub-fingerprints,

which usually infers an exact match from the database (e.g., searching of hash matches),

or based on fingerprint-blocks, that consist of the whole information that characterises

a given clip. This last approach normally infers that a similar match is needed and not

an exact match, since two different clips with exactly the same fingerprint are unlikely to

happen even if they represent different recordings of the same song.

When considering sub-fingerprint indexing, data structures used to store the infor-

mation normally consist of hash tables ([16]), inverted index hash tables ([10]) or tree-

structured based representations ([55]). These ways of representing the sub-fingerprints

enable for a sparse representation of the information, therefore promoting practicability

and an efficient way of searching [16].

When handling indexing of fingerprint-blocks, a reduction of the matching candidates

is important to be implemented since the interest relies on finding similarities instead

of exact matches. Thus, techniques to select the best candidates can take place, such as
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building classes to group similar fingerprints ([7]) or inferring the similarity probability

of a candidate ([16]).

3.1.5 Matching process

After obtaining the fingerprints, it is important to understand whether a match between

two different clips is found or not. This decision process can be easily performed by

following the methodology that if two clips have common sub-fingerprints (e.g., hashes),

then there exists a match between them. A minimum amount of matching hashes is

normally taking into account to prevent false positives.

The matching process can be generalised as simply analysing the offset between the

matching hashes of the clips that are being compared. This is done for every clip in the

database, and clips with a sufficient number of matching hashes (usually a small number

since the unlikeliness of false matches) over a given offset are considered to be a match

relative to the query song.

This process can be practically achieved by the creation of bins for each audio file

matched, with the added information of the offset between the two files. Thus, a bin is a

representation of all the different matching hashes of a certain song in the database over

several offsets. To identify the most frequent offsets of the different hash matches, one

can generate a scatter plot of the different matches over time and check for diagonal lines

as they indicate the same offset over different matches. This is illustrated in figure 3.3.

Another way of identifying that frequency is simply by using a histogram and proceed to

find relevant peaks (figure 3.4).

Figure 3.3: Scatter plot of the timestamps of the different matches. Source: [49]

This is the basis for the matching process used in the fingerprinting algorithm ex-

plained in subsection 3.1.6 and also commonly used in query-by-example (QBE) applica-

tions (term introduced by Shazam in [49]), common in all music recognition applications.
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Figure 3.4: Histogram of the offsets of all matches. The real offset between the two clips is around
40 seconds, indicated by the peak in the histogram. Source: [49]

3.1.6 Landmark-based audio fingerprinting

Considering the accuracy of the Shazam algorithm, an approach based on the theoretical

overview of their methodology used to perform audio fingerprinting (presented in [50])

will now be detailed explained. This algorithm is accessible in [13]. The system is set to

be resistant against noise because the landmarks that characterise each track are created

using frequencies, which are likely to be preserved under noisy situations. This is a very

important property since the samples that will be fed into the algorithm in the later

phases will be recorded from smartphones on overly crowded environments (e.g., musical

acts).

To better understand the system used, firstly we shall discuss the audio fingerprinting

technique employed and what it involves. In this system, a fingerprint consists of a

multiple number of landmarks, and its length is dependent on how long a song is and

how many onsets (i.e., the beginning of a musical note) are found. Each landmark consists

of a pair of two peaks, similarly to the notion of anchor points and target zone already

described in subsection 3.1.2.

The landmarks of a certain query song are presented in figure 3.5 as the red connect

pairs of circles. Practically, each landmark contains the time stamp of when the first peak

occurs, the frequency of the first and second peak, and the time difference between the

two peaks.

To better understand the extraction of one or several peaks, figure 3.6 represents a

frequency over magnitude graphic generated from a specific timestamp of the track used,

more specifically frame 8817. A frame is represented as a column in the spectrogram

showed in figure 3.5. Note that both of these figures were manually generated by us.

A song is then characterised by all the landmarks it contains, forming its fingerprint.

To find if a query song matches a certain song in the database, the searching process has to

take place, and only a small number of landmarks must match between the fingerprints of

both songs in order to retrieve a match, due the unlikeliness of false landmarks matches.
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Figure 3.5: Spectrogram containing the landmarks of a query song.

Figure 3.6: Spectrograms of a query song an a reference song with the matching landmarks
highlighted.

The offset between the two clips is then the most frequent time difference between the

landmarks, similarly of what already explained in subsection 3.1.5. Figure 3.7 shows

the spectrograms of both a query song served as input to the system and a database

song. Landmarks of both clips are represented as the red connections, with the matching

landmarks being highlighted in green.

3.1.7 Possible applications

The use of audio fingerprint algorithms can lead to several benefits in various topics

[6]. Identifying broadcast music is probably the most direct one, since it enables song

recognition in a song database. The most known example of this is the mobile appli-

cation Shazam, that practically incorporates the fingerprinting algorithm described in

[50]. Audio fingerprinting can also be extremely useful on finding duplicates over a large

database, promoting a better organisation and filtering over a possibly large set of files.
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Figure 3.7: Spectrograms of both a query song and a song present in the database. The matching
landmarks are highlighted in green.

The rich information obtained from each audio signal might also enable to retrieve musi-

cal features over a sound file (e.g., estimated tempo, average spectrum, rhythm and tone

inference), which can serve as input to enhance that file’s metadata.

As previously mentioned, fingerprinting is also a good candidate for copyrighting de-

tection since it does not implicate adding extra information to the original content prior

release. Following the same concept it also enables content monitoring and tracking both

in the end-user as in the distribution channel, which contributes greatly to understand

users’ behaviours. Audio fingerprinting can be additionally used for detecting repeti-

tive sounds inherent of broadcasting music systems, such as jingles and advertisements

detection [26, 35].

Another important application, and the one that we focus in this thesis, is the ability of

performing clustering of audio data that contains the same audio segments. Concerning

the enormous and heterogeneous amount of data experienced nowadays, organising such

data is of extremely importance and it is one of the major things we plan to tackle with

this work.

3.2 Audio Clustering

The main work presented in this thesis is related to the clustering of information based

on audio cues. Thus, some research was made regarding the techniques used to group

information retrieved from social media. The grouping of user-generated content lying

upon audio features and audio fingerprinting in particular, can be considered a recent

topic since it is a direct cause of the increase of the heterogeneous data now experienced
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in almost every online platform. Moreover, to come across with this thesis objective,

emphasis was given in data originated from musical concerts, which narrowed even more

the current state-of-the-art.

3.2.1 Graph structure using fingerprinting

Kennedy and Naamnan proposed an approach to perform automated organisation of

concert videos described in [22]. The linking and clustering described is made through

connecting overlapping clips, and the cluster is formed in a graph-based structure where

nodes are concert clips and edges represent that two clips have a common segment. In

order to detect overlapping, the fingerprinting algorithm presented in [16] was used.

3.2.2 Interest inference

Performing this grouping over different recordings of the same concert also enabled to

identify possible moments of interests from the audience that happened during the show.

This was inferred simply by analysing over-populated clusters under the assumption that

the most interesting moments cause a higher number of recordings, being that easily

observed in the graph by a big number of clips overlapping in that section of time.

3.2.3 Higher quality audio selection

Audio fingerprinting techniques seem to work less efficiently when used to perform a

match between two less-quality and more noisy clips [22]. Thus, fingerprinting algo-

rithms tend to correctly identify matches when at least one of the clips is clean or with

much less noise. This means a matching between a clean clip and a very noisy version of

that clip is more likely to happen than when only two noisy versions are compared. This

specific insight lead to the idea of selecting the nodes with more edges (i.e., the clips that

were matched more times against others) as the nodes with more quality in the graph, as

stated in [22].

This work served as a basis for the work further developed and described in the section

4 of this thesis with the difference of not performing the grouping of clips of a given

concert but from clips originated from different concerts. Moreover, it also served as

a starting point to follow another approach that could eventually perform better when

inferring audio quality inference presented in section 4.4.

Concluding remarks

In this chapter some state-of-the-art literature was presented and further explained con-

cerning audio fingerprinting and audio clustering. Since all the proposed methods in the

next chapter rely solely on the information retrieved by the audio fingerprinting algo-

rithm used (audfprint), it is important to understand how such information is generated
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internally. Furthermore, the work proposed for audio clustering and quality inference

in [22] motivated the work presented in this thesis.
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4
Proposed solution

In this chapter we present the different methods proposed to achieve the organisation,

segmentation, and quality inference of a dataset of audio files all relative to certain events.

We also present two different approaches to filter the false positives retrieved by the audio

fingerprinting algorithm used as the basis to perform all of the proposed methods bellow.

This chapter is divided in several sections: section 4.1 describes with more detail

the nature of the proposed methods already introduced in section 1.3, the following

sections describe the specific algorithms used to accomplish this thesis’ goals , with the

exception of section 4.7 that suggests how the overall output of the different methods

can be practically used by the final COGNITUS’ application. All the different proposed

methods were further presented in two different accepted scientific papers that can be

consulted in appendix A.

4.1 Proposal

In this dissertation we propose to explore techniques to organise and determine the

quality of user-generated audio content retrieved from social media platforms. These

mechanisms shall act as a way to better visualise and deal with extensive datasets of

audio files. Moreover, the inference of the quality of each file within a given group of files

has the ultimate goal of promoting a better user experience, since only the high-quality

clips should be shown to the end-user.

As already briefly stated in Section 1.3, the proposed work can be seen as an inte-

gration of several modules or steps: the crawling of user-generated content from social

media websites (e.g., YouTube [57]), proceeding with the audio synchronisation of the

files, grouping them in the different events and their respective timeline (i.e., perform

audio clustering and audio segmentation), whilst filtering possible false positives (i.e.,
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matches filtering), and finally inferring audio quality of the different files. Figure 4.1

revisits how these different steps relate with one another. The focus of this chapter will

be on explaining the different proposed methods (represented as boxes in the figure).

Important to notice that a dataset with multiple user and professional recordings of

different concerts song was manually crawled from YouTube was further used to validate

and evaluate the proposed methods, with the respective metrics about the dataset being

presented in section 5.1.

Figure 4.1: Diagram representing the relation between the proposed methods.

The algorithm presented by Haitsma and Kalker for audio synchronisation is widely

used and would possibly be a good approach to synchronise our data, but after care-

ful analysis of its extraction method we concluded its computational weight is too high

(more detail in section 4.2) [16]. The extraction process consists of creating 32-bit sub-

fingerprints every 11.6 milliseconds, which could be problematic in the creation of fin-

gerprints for an extensive database of files. Therefore, we use audfprint [14], an imple-

mentation of the algorithm described in subsection 3.1.6, to get the time-alignment offset

of the different audio files.

The information retrieved by the matches of the audio fingerprinting algorithm when

synchronising the different songs consist of the only information needed to perform all

of the proposed methods in this thesis. Since the implementation used is landmark-

based, the information of how many matching landmarks a given song has, or how many

landmarks were matched at a given offset between two songs, represent the basis to

perform the filtering of false positive matches, audio clustering, and the segmentation

and audio quality inference of the different songs inside each cluster.

The audio clustering phase is made according to whether it exists at least a common

audio segment between the different files (i.e., two files will belong to the same cluster

if they have a common excerpt, even if they are not time-aligned). Thus, the grouping

of files is made with the information directly retrieved from the audio fingerprinting

algorithm used for audio synchronisation. Different approaches on how to perform the

clustering with the matching information are described in section 4.3, and an approach to

filtering the false positives possibly returned from the audio fingerprinting algorithm is

presented in section 4.6, for better clustering results (i.e., avoiding clusters from different

events to be merged).

The output matches retrieved by the audio fingerprinting algorithm is further used
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to derive how the different samples are distributed over time (i.e., Audio Segmentation).

This enables segmenting according to the time intervals where there is overlap (i.e., where

various samples are relative to the same moment of time of the event). The inference of

the audio files’ quality can be done either by comparing the quality of the files within a

cluster or the different segments where a given audio file belongs. The proposed quality

scoring method is presented in section 4.4 and it is similar for both situations.

4.2 Audio synchronisation

The first phase of our proposed solution is to perform the synchronisation of the different

files in the dataset. We used the fingerprinting algorithm audfprint to perform the audio

synchronisation and therefore retrieve information about the time-alignment between

audio clips. The algorithm is explained in detail in section 3.1.6. This is a crucial phase

since it is from the synchronisation information, more concretely to the output of the

audio fingerprinting algorithm, that the rest of the proposed methods will be based on.

For each query sample, the audio fingerprinting algorithm retrieved the different

matches that that sample had when comparing its fingerprint to the fingerprints of all

samples present in a pre-existing database. For each match, there is information about

how many matching landmarks there is between the two samples, and more specifically

the number of matched landmarks of the most likely offset (i.e., the offset that has the

highest number of matched landmarks). Intuitively, the value of that offset is also re-

trieved. There is further information about the number of landmarks of both the query

and matched samples. This different information obtained by the each match will be fur-

ther used by each one of the proposed methods in different ways, as it will be discussed

in the next sections.

As an example, table 4.1 shows the offset of a set of 4 chosen query songs that got

matched with different offsets to a given song in the database (the same for all 4 queries

in this case). The offset of each query represents the time displacement between both

samples, i.e., the amount of time that one should forward the reference track to achieve

total audio synchronisation, given that the query song is played from the start. It is

important to note that the chosen offsets for each query were the ones that had the highest

number of matching landmarks, with the rest of the offsets not being considered.

4.3 Audio clustering

Given the data used in COGNITUS being heterogeneous and so vast, the clustering of

information based on audio seemed a necessary and very useful approach, since it enables

the grouping of recordings relative to a given event (e.g., a certain song being played in a

concert). Thus, in this system the ideal situation would be that all recordings of a given

song would be put in the same cluster. This grouping approach is even more useful
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Query songs
Query Name Query Length

(mm:ss)
# Matching Land-
marks

Offset (s)

Radiohead Creep
live at Reading
festival 2009

01:54 24 171.0720

Radiohead -
Creep (whole) -
Reading Festival
2009

04:36 54 16.8320

RADIOHEAD -
CREEP @ READ-
ING FESTIVAL
(30 AUGUST
2009)

04:15 13 37.1520

Radiohead Creep,
Reading 2009

03:39 119 67.9360

Table 4.1: Query songs’ offsets.

when also considering the quality inference of the different recordings of a given event,

enabling only the best quality recordings inside a certain cluster to be chosen.

To group the different clips, we used the Audio Fingerprinting algorithm to find out

which samples (i.e., audio clips) have the same excerpts (i.e., are matched by the algo-

rithm) and, if so, they should belong to the same cluster. Thus, for this audio clustering

phase we only check if there is a match between two different samples, meaning that

those samples have at least 5 matching landmarks at a certain offset. This process is

made through agglomerative clustering, where we start with singleton clusters (i.e., each

sample represents a cluster), and then clusters are merged if two samples belonging to

different clusters were matched by the algorithm. Clusters that remained with only one

element after this process are considered unmatched since no match was found in the

database.

Graph-Based representation

In order to represent the matching between different samples, a graph-based approach

was used. Thus, the different samples represent the nodes and an edge represents a match-

ing between two samples, with the edge’s weight being the offset (in seconds) between

both files. Important to notice that the offset information between two samples is given

by the audio fingerprinting algorithm itself.If there is a path between two nodes, then

the samples representing those nodes are in the same cluster. Isolated nodes represent

unmatched samples, since the algorithm could not find any match in the database for

that specific sample. Figure 4.2 illustrates an example of this process.
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Figure 4.2: Graph representation of a database with 3 different samples, with song1sample1.mp3
and song1sample2.mp3 representing recordings of the same song (with a time offset of 67.9 sec-
onds between them) and song2sample1.mp3 being an unmatched sample by the audio finger-
printing algorithm.

This allowed to easily represent all the matches retrieved from the database when

matching a song, and also to easily perform the grouping of the different samples simply

by seeing that if two nodes have a path (i.e., are linked by a sequence of edges), they shall

belong to the same cluster.

The clustering program receives a list of sound file paths as input, that will be firstly

used to form the database created by the Audio Fingerprinting algorithm. Then, each

path in the text file is removed from the database, served as input to the fingerprinting

algorithm (query sample) to see if it has a match with any of the files in the database,

and then added again to the database. The program then outputs the different clusters,

represented by incremental id’s, with the audio files of corresponded to each cluster.

Both the input and output are read/written to text files. An example of both an input and

output file is presented in listings 4.1 and 4.2, representing the list of paths of the audio

files, and the clusters id’s followed by the respective file paths in each cluster, respectively.

1 sounds/file1.mp3

2 sounds/file2.mp3

3 sounds/file3.mp3

4 sounds/file4.mp3

5 sounds/file5.mp3

6 sounds/file6.mp3

7 sounds/file7.mp3

Listing 4.1: Input file example with the paths of the sound files.

1 Cluster 1

2 sounds/file1.mp3

3 sounds/file4.mp3

4 Cluster 2

5 sounds/file3.mp3

6 sounds/file6.mp3

7 sounds/file7.mp3

8 unmatched
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9 sounds/file2.mp3

10 sounds/file5.mp3

Listing 4.2: Output file example. Two clusters were formed, and 2 samples were con-

sidered unmatched. Cluster are represented by incremental id’s (starting at 1), and the

different files of each cluster are represented by their file paths.

One simple approach to perform the clustering is to consider only the file that is

matched more often (i.e., the sample in the database with the biggest number of matching

landmarks to the query sample). Even though this technique would promote the correct

grouping of the samples, it would also have some drawbacks since only one of several

sample matches are considered. This would generate a large number of small clusters,

which would not suffice to complete our goal of grouping all samples of a given concert

song. Another approach would be to consider all matching samples of a given query sam-

ple. This way, we would use all of the information retrieved by the audio fingerprinting

algorithm meaning that more samples would be grouped together, and larger clusters

would be formed, resulting in a better clustering result in the end considering our goal.

4.4 Quality inference

As seen in the previous section, the output of the clustering phase consists of a set of

clusters, represented by graph G, that organises the data according to events (samples

with a common segment of audio belong to the same cluster). The vertices within a

component of G may have a different number of neighbours as not all pairs of vertices

within a component are adjacent. For instance, let s1, s2 and s3 be vertices in G. If s1 and

s2 are adjacent, and s2 and s3 are adjacent, all three vertices belong to the same component

of G (same cluster) but this does not mean that there is an edge between s1 and s3: s1 and

s2 can have a common excerpt, s2 and s3 can have another common excerpt, and s1 and

s3 may lack common excerpts.

Kennedy and Naaman [22] propose to derive the quality of samples by the direct

analysis of G, where a sample’s quality is proportional to the number of neighbours of

that sample’s vertex, that is, the number of adjacent vertices. In the example above, s1
and s2 are neighbours, s2 and s3 are neighbours but s1 and s3 are not neighbours. Samples

with more neighbours, that is, samples that got matched the most by the fingerprinting

algorithm, are considered as those with better quality. This is supported by the idea that

any two low-quality samples are less likely to match each other than when at least one of

the samples has good quality.

Even though this is a suitable approach, it only considers the number of matches of

a given sample, ignoring how the sample ranks in terms of matching landmarks in the

overall list of matched samples. A sample with many matching landmarks is likely to

have better quality than a sample with less matching landmarks. Thus, our proposed
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solution considers that the score of a sample, si , depends on the total number of match-

ing landmarks of that given sample against all the other samples in the database. Let

s1, s2, . . . , sN be the samples in the database. Assume si (for 1 6 i 6 N ) has l1i matching

landmarks to sample s1, l2i matching landmarks to sample s2, etc. Then the score of si is

calculated as follows:

score(si) =
N∑
j=1

lji . (4.1)

In chapter 5 we compare both of these approaches using our manually crawled record-

ings dataset. It is visible that our novel approach outperforms the latter, given the assump-

tion that professional recorded samples should have higher quality than user-recorded

samples in each cluster. Thus, our method always classifies the professional recordings

equally, or in some cases even better than the method proposed in [22]. More details of

this discussion will be given further ahead.

4.5 Audio segmentation

Analysing how the different samples of each event are scattered over each event’s time-

line is of extreme importance to better manage the different audio files. Therefore this

section focus on finding in which time intervals (i.e., segments) the different samples

are distributed inside each cluster regarding their content. An important aspect of this

synchronisation task is that it only requires information already obtained from the audio

fingerprinting algorithm that was used to perform the clustering described in section 4.3.

The synchronisation in terms of offset returned by the audio fingerprinting algorithm

(introduced in section 4.2) was further used to perform the alignment of the audio sam-

ples. Considering the graph-based representation of our samples described in section 4.3,

by including the offset between two samples as the weight of the edge of their respective

nodes, we can simply derive the offset between any two samples in the same cluster by

adding the weights of all edges that are in their path (i.e., by calculating the cost of the

path). Important to notice that this only works because if there is a positive edge in the

graph connecting two nodes, a negative edge on the opposite direction was further added

as well. This two-way edges are not shown in figure 4.2 but it is how the graph was built

in practice. We can then represent the offset o between two nodes i and j of any event’s

graph G as oij = cost(G,i, j).

The actual way the synchronisation of all samples inside a cluster is made is by electing

a representative sample and by getting the offset of all the other samples relative to this

one. Note that the representative sample can be any of the cluster samples, since all

samples of a given event are connected in the graph. After all offsets are obtained, if the

representative sample is not the recording that has the earliest starting timestamp, the

offset values are updated according to the sample with the earliest timestamp (i.e., sample

that starts first in the event’s timeline).
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We can then define the earliest starting sample e as the sample i that satisfies:

oer =min(oir ) ,

with r being the representative sample and i ∈ V , with G = (V ,E), being V the set of

vertices and E the set of edges. This minimum value can either be 0, if the representative

sample is indeed the earliest starting sample (since orr = cost(G,r, r) = 0), or a negative

number, that would mean there is at least a sample i that starts before sample r. We

finally proceed in updating all offsets oir to oie, by adding the value of oer to the offsets of

all samples i in the graph G:

for each i ∈ G : oir := oir + oer

Using this approach, all offsets are greater or equal than 0 and correctly aligned in

terms of their starting point along the event’s timeline, since all offsets are now relative

to the earliest starting sample.

4.5.1 Time-based segmentation

By having the overall offsets of all samples of a given cluster, together with having the

respective duration of each one of those samples, one has the knowledge of which samples

exist in a given moment of time. We encapsulate this information in a segment, that

contains an initial and final timestamp, and all samples that overlap between that period

of time. Each cluster or event is then composed by several segments, that give information

on which samples are available in the different time intervals and therefore at any moment

of time in the event’s timeline.

Considering the offsets of all samples of a given event relative to the earliest starting

sample e ({oie : ∀i ∈ V }) and their respective duration ({d(i) : ∀i ∈ V }), a new segment

starting at ts is created when one of the following situations occur:

• At the moment of time ts in the overall event’s timeline, there is a sample i with

oie = ts (i.e., a new sample starts).

• When there is a sample i with oie + d(i) = ts (i.e., a sample ends).

As a consequence, whenever a new segment starts at ts, there is a segment ending at ts −1,

except when ts = 0 meaning that it is the first segment of that event.

More than simply synchronising all samples in a cluster, this step provides the knowl-

edge of which samples exist in a given moment of time. This is achieved by calculating the

time segments where samples overlap, taking into consideration their starting timestamp

relative to the first encountered sample, and their duration. All samples are then cut to

generate various audio files, one for each segment that the given segment is part of. This

is really important regarding the COGNITUS’ perspective, since it allows the system to

know which samples can be shown to the final user in a given moment of time. However
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this process would be even more enriching if such samples were ordered by quality inside

each segment; this way only the highest quality sample would be played in each segment.

4.5.2 Segmented quality inference

To perform such quality inference, we propose to use the same process as presented in

section 4.4. However, given the possible small duration of the time segments together

with the small number of segment’s cut samples, make matches in such cases unlikely to

happen. Thus, there is the need of increasing the number of hashes/sec performed by the

Audio Fingerprinting algorithm. This increase can generate a higher number of matching

landmarks between samples (as shown in figure 4.3 and 4.4) and in some cases retrieve

matches on segments that previously had no matches (as observed in figure 4.5).

The lower number of matches also led to update the minimum number of landmarks

matches to 1 to be considered an actual match by the algorithm, instead of 5 (as previously

mentioned). This does not consist of a problem since the prior run of the algorithm

and the consequence filtering process (explained in the next section) already assured the

correctness of the matches by the filtering and removal of the false positive matches. Thus,

since all samples were cut accordingly to the synchronisation results (offsets), only the

matches with an offset of 0 seconds are considered and all the rest discarded. Important

to notice that for actually inferring the quality of each file in the segment one has to

call the audio fingerprinting algorithm again using each of the segment’s files as a query

sample against the rest of the files in the segment.

Figure 4.3: The number of matching landmarks obtained increases with the hashes/sec used in
the Audio Fingerprinting algorithm.

The output of the audio segmentation process is shown in listing 4.3, where the

different segments found for cluster 1 are presented, together with the list of all audio

samples in each segment ordered descending by quality. It is observable that in some
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Figure 4.4: As we increase the number of hashes/sec, the number of samples with no matches
returned by the Audio Fingerprinting algorithm decreases.

Figure 4.5: Distribution of the number of non-zero matches according to the segment duration.
With 20 hashes/sec all segments between 1-2 seconds and 5-6 seconds had no match, but some
matches occurred when using 100 hashes/sec.

segments the quality could not be inferred, more concretely in the earlier and latest

segments. This can be explained by the already mentioned small length of the segments

and the small number of samples they contain. One possible way of handling these cases

is to consider the overall quality inference of the tied samples, and proceed to choose the

ones with higher quality score.

1 Cluster 1

2 00:00:0-00:04:3
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3 sounds_cut/6/0.0/song1sample1.mp3 0

4 00:04:3-00:11:3

5 sounds_cut/6/4.3/song1sample1.mp3 0

6 sounds_cut/6/4.3/song1sample4.mp3 0

7 00:11:3-00:18:3

8 sounds_cut/6/11.3/song1sample5.mp3 7.0

9 sounds_cut/6/11.3/song1sample4.mp3 6.0

10 sounds_cut/6/11.3/song1sample1.mp3 0

11 00:18:3-00:48:8

12 sounds_cut/6/18.3/song1sample5.mp3 83.0

13 sounds_cut/6/18.3/song1sample3.mp3 66.0

14 sounds_cut/6/18.3/song1sample4.mp3 44.0

15 sounds_cut/6/18.3/song1sample1.mp3 19.0

16 00:48:8-01:40:769

17 sounds_cut/6/48.8/song1sample3.mp3 108.0

18 sounds_cut/6/48.8/song1sample5.mp3 85.0

19 sounds_cut/6/48.8/song1sample4.mp3 82.0

20 sounds_cut/6/48.8/song1sample2.mp3 55.0

21 sounds_cut/6/48.8/song1sample1.mp3 42.0

22 01:40:769-04:40:832

23 sounds_cut/6/100.769/song1sample5.mp3 250.0

24 sounds_cut/6/100.769/song1sample4.mp3 165.0

25 sounds_cut/6/100.769/song1sample2.mp3 161.0

26 sounds_cut/6/100.769/song1sample1.mp3 54.0

27 04:40:832-04:40:924

28 sounds_cut/6/280.832/song1sample2.mp3 0

29 sounds_cut/6/280.832/song1sample5.mp3 0

30 sounds_cut/6/280.832/song1sample1.mp3 0

31 04:40:924-04:45:283

32 sounds_cut/6/280.924/song1sample1.mp3 0

33 sounds_cut/6/280.924/song1sample5.mp3 0

34 04:45:283-04:47:362

35 sounds_cut/6/285.283/song1sample5.mp3 0

Listing 4.3: Example of output file with the different segments of cluster 1.

4.6 Matches filtering

Considering all the matches retrieved from the audio fingerprinting algorithm would be

ideal if false positives did not occur. These false positives can happen in landmark-level

(i.e., when several landmarks are matched with different offsets over just two samples), or

in sample-level (i.e., samples not referring to recordings of the same song were matched).

In the first case, it is important to notice that only one of the retrieve offsets is correct,

since two clips can only have one offset. Thus, all the other offsets can be considered false

positives.

The first problem, where different landmarks are matched in more than one offset,

can be easily observed by the repetition of a sample in another’s matching list (i.e., the
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song5sample2.mp3’s matching list
Sample name Offset (s) # Matching Landmarks # Total Land-

marks
song5sample5.mp3 4.7 167 1202
song5sample3.mp3 21.2 88 429
song5sample6.mp3 -8.8 50 132
song5sample1.mp3 22.2 41 188
song5sample4.mp3 71.1 17 557
song5sample5.mp3 2.0 12 1202
song5sample5.mp3 15.6 7 1202

Table 4.2: Example of sample repetition in the matching list (song5sample5.mp3 appears 3
times).

list of samples that share some of their landmarks with the query sample). Such situation

can be observed in table 4.2, where the output information of the number of matching

samples and their offset of a given sample of the database was put in table format for

easier comprehension. In this example, song5sample5.mp3 appears three times in the list

because it was matched to song5sample2 with three different offsets: 4.7 s, 2.0 s and 15.6 s.

By direct analysis of the number of matching landmarks of the repeated sample (167, 12,

and 7, respectively), we can conclude that only the first match should be considered as

the right match due to having the highest number of matched landmarks, whilst the

rest should be discarded. Thus, to tackle this problem, any repetitions included in the

matching list of a given sample are eliminated and only the match with higher number

of matching landmarks is considered.

In order to handle the situation where samples from different events are matched

together (i.e., sample-level), it is important to observe in which context they appear. Even

though unlikely, the probability of their appearance is greater than zero and this was

observed in some of the tests made being one of them illustrated in table 4.3. In this work

we present two different approaches to tackle the filtering of the false positives matches:

a derivatives approach (section 4.6.1) that consist of the analysis of significant drops

in the percentage of matching landmarks of the matching list’s samples and a learning

approach (subsection 4.6.2) that uses classification techniques to assign a match as a true

or false positive.

4.6.1 Derivatives approach

From the analysis of figure 4.3, it is clear that song2sample5.mp3 belongs to a different

song than song8sample7.mp3 and therefore represents a false positive. The analysis

of this and more situations, showed that false positives of samples that are not meant

to match do not happen often and when they do it is with a low number of matching

landmarks. As can be observed in table 4.3, the number of matching landmarks for false

positive sample is 7. While this number does not seem much lower than the number of
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song8sample7.mp3’s matching list
Sample name Offset (s) # Matching

Landmarks
# Total
Landmarks

% Match-
ing Land-
marks

song8sample2.mp3 -309.8 77 1283 6.0
song8sample3.mp3 -116.0 71 1433 4.95
song8sample8.mp3 -72.3 55 3035 1.81
song8sample6.mp3 -328.4 50 1305 3.83
song8sample1.mp3 -292.6 42 1886 2.23
song8sample5.mp3 -326.7 30 1934 1.55
song8sample4.mp3 -421.5 12 308 3.90
song2sample5.mp3 -398.1 7 1392 0.5

Table 4.3: Example of a false positive sample (song2sample5.mp3) in the matching list. The
number of matching landmarks of that sample (7) and percentage (0.5 %) are the lowest in all
matches.

matching landmarks for some of the other samples (like 12 for sample song8sample4),

we must also take into account the number of total landmarks. Thus, by observing the

column with the percentage of matching landmarks, we observe a slightly bigger decrease

when analysing the difference between the matched landmarks in a false and a true

positive.

The ideal situation would be to discard all the wrong matches in the matching list and

to utilise all the correct matches. An approach that would possibly achieve this is by stop

considering matches as soon as the percentage matching landmarks significantly drops.

In order to achieve this, one could analyse the derivative on all consecutive pairs of points

in the graphic (considering the percentage of matching landmarks of each file/point) and

stop when the derivative is lower than a certain value. This approach could possibly be

done by performing the following steps:

1. Sort the percentage of landmarks of each all samples in the matching list (in de-

scending order);

2. Calculating the derivative between all consecutive pair of points;

3. Find the first point where derivative is lower than a certain value (-0.07 by default);

4. Discard all samples positioned after that point.

This would be a reasonable approach to follow if the difference between the number

of landmarks in correct matches would never decrease significantly, similarly to what is

observed in the wrong matches. If that happens, the proposed algorithm will discard a

high number of correct matches. Thus, this approach has to take into consideration more

parameters to better choose when to filter matches.
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One strong candidate is to only filter matches when they are bellow the average of

the percentage of matching landmarks in the matching sample’s list. By adding this sim-

ple parameter, the number of correct matches discarded will decrease, whilst hopefully

maintaining the right discarding of the wrong matches since they will almost certainly

always have a percentage of matching landmarks lower than the average. Thus, the step

4 of the previously filtering process would be changed to:

4. Find the first point where derivative is lower than a certain value (-0.07 by default)

and the percentage of matching landmarks is lower than the average percentage of

matching landmarks in the list.

For an easier analysis of the retrieved results presented in table 4.3, the information

is displayed in a graphic that shows the distribution of the percentage of matching land-

marks over the total number of landmarks of each sample (figure 4.6). The ideal situation

would be to only exclude the last file since it is the only one wrongly matched, and, for

this situation, following this refined approach correctly achieves that.

Figure 4.6: Distribution of matching landmarks between the matching samples. The breaking
point indicates the last sample to be accepted as a true match, being all the files with lower
percentage of matching landmarks than that sample discarded (in this case the 8th sample).

Important to notice that this filtering process will increase the number of false neg-

atives (by filter some true positives as well) but would certainly decrease the number

of false positives, which is extremely important to prevent clusters without matching

segments to merge. Furthermore, the derivative threshold used (-0.07) was obtained by

the analysis of the derivatives of the false matches present in the dataset used to validate

and test our methods further described in chapter 5, with its value being fine-tuned ac-

cordingly in order to filter all of them. This discussion is further presented in our paper

in [31].
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4.6.2 Learning approach

Even though the approach presented above achieves good results (as will be described

further in chapter 5), it might not be good enough on generalising to different datasets.

Therefore, an approach that considers machine learning may be more advantageous and

more suitable once the dataset is extended. The main goal using this learning filtering

approach is then to correctly predict if a never seen match (i.e., a match not present in

the training set) is a false positive or a true positive.

We used three different methods to solve this classification problem: Logistic Regres-

sion, k-Nearest Neighbours (KNN), and Support Vector Machines (SVM). The purpose

of using different classifiers is to have a broader way of comparison on how the different

features used influence the outcome of the overall predictions of the different methods.

All the used classifiers were already introduced and overviewed in chapter 2.

We used double cross-validation to retrieve the model with lowest validation error for

each classifier’s parameters: we start by performing leave-one-song-out cross-validation,

in which all songs in the training set except one are used to train the model with k-fold

cross-validation, whilst the left-out song is used to test the model; this process is then

repeated until all songs have been left-out and repeated in every combination of possible

parameters assigned for each classifier. Note that leaving one song out of the training set

means leaving all samples from that song out of this set. The training and validation error

of each model is the average of the error occurred in all the leave-one-song-out iterations,

with the accuracy of the model being tested on the overall predictions of all left-out songs’

samples.

Following these steps for all designated ranges of possible values for the different

classifiers’ parameters (further described in sub-subsection 4.6.2.3), we assign the model

with lowest validation error in the k-fold validation for each classifier as the most suit-

able model, with its accuracy being the accuracy of its prediction when performing the

leave-one-song-out cross-validation. This discussion is further presented in our second

paper [32].

4.6.2.1 Training data

Since the goal of our models is to predict whether a sample is a false match or a true match,

there is only two classes possible - 0 and 1, respectively. Matches are considered false

positives if the two matched songs do not have any common audio segment (retrieved as

no match by the audio fingerprinting algorithm), or if they have indeed a common part

but the assigned offset is not correct. The latter case can be easily detected by some songs

appearing in the matching list of a query several times with different offsets, described as

repetitions. Therefore, only the matched song’s sample with highest number of matching

landmarks of a given offset is considered a true match (i.e., assigned to class 1), whilst all

the other samples relative to that song are considered false matches (i.e., assigned to class

0).
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4.6.2.2 Feature selection

Choosing the right features for our samples is essential to construct any good model,

since a bad choice of features can influence in whether our classes are linearly separable

or intensively overlapped, increase training times, and overly complicating the problem.

Using the most relevant and essential properties, and excluding the rest, helps the model

to achieve better accuracy in the end, even with less training data [5]. Using only the

necessary features also avoids the Curse of Dimensionality, that it is a consequence of using

too many features and therefore increasing the feature space dimensions, resulting in the

data becoming more sparse than needed in the feature space, increasing the risk of wrong

classifications.

In the context of our problem, a (training/test) sample contains information about the

similarity between two audio clips. The feature vector representing a training/test sample

is derived from the output matches retrieved by the Audio Fingerprinting algorithm. If

we ask the algorithm to match a query song against the other songs in the database, the

algorithm returns: the number of landmarks of the query song (#QSL), the offset (in

seconds) between the two songs (O), the number of matching landmarks with that offset

(#ML), and the number of total matching landmarks in all offsets (#TML). Since the

offset does not directly influence a false or positive match, it is not considered to enter the

feature space, however, all the other features might be a good indicator of a false and true

positive. Important to notice that when songs are added in the database, the number of

matching landmarks computed for that song is also retrieved from the algorithm, hence

the number of landmarks of all songs are known, including the number of landmarks of

the matched song (#MSL).

The set of available and possibly relevant features is then the following: F = {#ML,

DML, #TML, #QSL, #MSL}. We tested our models with several sub-sets of F, more specif-

ically {#ML, #TML}, {#ML, #TML, #QSL}, {#ML, #QSL, #MSL}, {#ML, #TML, #QSL,

#MSL}. Each classifier was trained with all these features sub-sets to assign which combi-

nation generated the best model.

4.6.2.3 Parameters setting

For Logistic Regression, we doubled the value of the regularisation parameter c during

20 iterations (with its initial value being set to 1.0), whereas for k-Nearest Neighbours,

the number of neighbours k ranged between all odd numbers between 1 and 39. For

each iteration of both classifiers, we used leave-one-song-out and k-fold cross-validation,

which led to the following error graphics 4.7 and 4.8, that represent the validation and

training error of the different range of parameters regarding a randomly chosen iteration

of Logistic Regression and KNN, respectively, when using the 2-feature combination

(i.e., the number of matching landmarks with the highest number of matched landmarks

offset, and the number of total matching landmarks in all offsets) with the dataset further

described in section 5.1 as an example.
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Figure 4.7: The variation of the regularisation parameter c is represented in a logarithmic scale in
the x-axis to promote an easier visualisation. From the different c values, c = 8 (with log(c) = 2.079)
was the one who achieved the lowest validation error (≈ 0.0316), representing the best parameter
value for our model when using ({#ML, #TML}) as features.

Regarding SVM, we used the RBF kernel and the optimal values for c and γ were

obtained by executing an exhaustive search over all possible combinations of a subset

of possible values for each parameter following the methodology of using exponentially

growing sequences suggested in [19]. More specifically varying c to the following values

2−5, 2−3, ... , 215, 217 and γ to 2−15, 2−13, ... , 23, 25. This searching process is often

described as Grid-search, and it returns the best value of each parameter of a given model

(i.e., the hypothesis that achieves the highest accuracy).

Grid-search was performed for each possible training set when performing leave-

one-song-out cross-validation, that corresponds to the number of different songs in the

dataset. Since repetitions of the same combinations of parameter values are eliminated,

a set of possibly good pairs of values concerning our dataset (with length between 1 and

the number of songs), were used to train the different SVMs.

Continuing with the plotting of our different models’ error when using the 2-feature

combination {#ML, #TML}, the set of best parameter values for SVM retrieved after

the grid-search process were the following: {(c = 0.125,γ = 32), (c = 32,γ = 0.5), (c =

0.5,γ = 2), (c = 8,γ = 0.125), (c = 2048,γ = 0.0078125), (c = 32,γ = 2), (c = 2,γ = 32), (c =

8192,γ = 2), (c = 0.125,γ = 8), (c = 0.5,γ = 8)}, being this a sub-set of all possible com-

binations of all parameter values presented above. Figure 4.9 plots both training and

validation errors of each pair of values of this set. Note that the plot of the errors concern-

ing the all classifiers and feature combinations are further presented in chapter 5.
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Figure 4.8: As the number of neighbours increases after a certain threshold, we also notice a
slightly increase on both validation and training error, meaning that the model is less restrained
by local conditions but is more susceptible to producing wrong predictions. The k value that
achieved the lowest validation error (≈ 0.0315) is when k = 15, being this the number of neighbours
considered when dealing with the 2-feature combination.

4.6.2.4 Extended learning

The training set can be further expanded by the analysis of the information retrieved

from the audio fingerprint algorithm combined with our model predictions. Such ex-

tension would augment the training data of our models and could ultimately lead to

better predictions. This extension can occur in two stages: during the audio clustering

phase (subsection 4.3), and by the analysis of the matches between the cut samples when

performing the audio quality inference inside each segment (subsection 4.5.2).

Concerning the first presented stage, one can consider all repetitions of a given

matched song in another’s matching list as false positives and update the training set

by retrieving the features of the matches repetitions and assign it to class 0. This is sup-

ported by the assumption that since only one offset is possible between two songs, the

correct offset is the one that generated more matching landmarks, whilst the others are

discarded.

The latter stage can serve as a confirmation for some of the samples that were pre-

dicted true positive matches as result of the filtering method. Since all false positive

matches are filtered in the audio clustering phase (section 4.3), either by the discarding of

the repetitions or by false matches classifications, all the samples of the songs present in

the audio segmentation phase (section 4.5) were therefore predicted as positive matches

by our model. Hence, after cutting each song according to the different segments they

appear, and by matching all cut songs with one another inside a segment to infer the

quality, all matches should be assigned to offset 0.0 seconds since all the cut songs are
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Figure 4.9: Each parameter combination presented in the x-axis was returned at least once as
the best parameters from performing grid-search using leave-one-song-out cross-validation. All
retrieved pairs are then compared in terms of their model’s validation error, with the combination
(c = 0.125,γ = 8) presenting the lowest validation error (≈ 0.0279).

meant to be synchronised in time.

Let us define the function offset(M,s1,S) as returning the list of offsets values of the

different matches between s1 and each song in list S in the overall list of matches M,

function count(L,v) retrieves the number of occurrences of the actual number v in list L,

len(L) retrieves the length of list L, and T P (m) assigns the features of sample match m to

class 1 in the training set. Moreover, representing all filtered matches (i.e., samples) of

all songs of a given cluster c as Mc, Sc as the set of segments of cluster c, Ss as the set of

songs in segment s, andMs as the set of matches of segment s, we can define the following

expression for a given cluster c:

(∀s ∈ Sc ∀s1 ∈ Ss count(offset(Ms, s1,Ss \ {s1}),0.0) = len(Ss)) ⇒ ∀m ∈ Mc : T P (m)

To sum up, one can then assume that, if for each cut song inside each cluster’s seg-

ments there is a match with offset of 0.0 seconds against all the other cut songs, then all

samples that previously contributed in the formation of that given cluster are considered

true positives.
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4.7 Component integration

Considering the several and variety of the components of COGNITUS, some work has to

be followed to surpass integration issues that may arise when dealing with the joining of

the different project components. For instance, we had to change the programming lan-

guage of the clustering algorithm from MATLAB to Python, as well as the fingerprinting

algorithm’s implementation (from MATLAB’s version [13] to Python’s version [14]) for an

easier server integration.

Several libraries were used in the programming of the different methods, namely

mutagen.mp3 [33], for the retrieval of MPEG metadata from the audio files, pydub’s Audio
Segment [21], to cut the different audio files accordingly to the segments they are part of

inside the cluster, NumPy [36] for array and matrix operations, NetworkX [34] for plotting

the overall samples graph derived from the audio clustering phase, and Plotly [39] for

the making of some of the result graphics presented in this thesis. From all the libraries,

the latter two can be dispensed since they are only used for informational purposes and

do not compromise the overall execution of the implemented methods. These libraries

were chosen not only based on their utility but also on their licensing properties to avoid

further copyright problems down the line.

Considering the overall COGNITUS goal of converging user-generated content in a

UHD (Ultra-High Definition) broadcast, the methods proposed in this thesis can be seen

as facilitators for this end goal (revisit figure 1.3 for a reminder of the different project’s

steps). Assuming a already existing database of user-generated recordings, our algorithm

has the ability of clustering such files based on a given event by the analysis of overlapped

audio sections, whilst additionally giving information and synchronising the different

files inside a given event in time.

The quality control step can be seen as a simple analysis of the quality score of each file

made by the proposed Audio Quality Inference method, where each audio file’s quality

score being relative to the other audio files inside its cluster or segments. Ideally, all low

quality samples would be filtered and only the high-quality files would be played for the

end-user of the final application. Furthermore, since our method also infer the relative

quality of the audio files inside each segment, one can then only play the top-ranked

audio file inside each cluster. However, some segments are of very short duration and

it might not be efficient to perform this approach on every single segment, being only

suitable switching the currently played song if the new segment duration is greater than

a given time threshold or if the quality score of the audio files differ by a given amount.

Nevertheless, our methods provide all the detailed information that will aid the final

application in choosing the right audio files to be played at any given time.
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Concluding remarks

The overall proposal of this thesis is revisited and various methods to achieve the correct

organisation and quality inference of user-generated content are proposed in this chapter.

Moreover, an overview of how such methods could be practically integrated in the overall

COGNITUS architecture is also presented. The validation and evaluation of the proposed

methods are further described in the next chapter.
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5
Evaluation and results

This chapter represents the validation and evaluation of the different methods proposed

in the previous chapter. The results of our solution were obtained by using recordings

manually crawled from YouTube and are further presented and discussed.

5.1 Test setup

In order to test the proposed methods, a realistic testbed was designed by manually

collecting a dataset made of several concert clips of various songs from YouTube, con-

sisting of one professional recording of a certain song in a specific concert and several

user recordings of the same song captured with different devices. This dataset was made

keeping in mind the project’s goals, so it could possibly be used in the different project

components, therefore each song has a sample of a professional recording from BBC.

Originally, the dataset consisted of 90 recordings of 10 concert songs all retrieved

from different acts and editions of the Reading Festival. Apart from the 10 professional

recorded samples, all samples were recorded by users, which means different recording

devices with different qualities apply. Table 5.1 shows the diversity when it comes to

number of clips retrieved from each concert song and average length of the subset of clips.

The distribution of all clip lengths in the original dataset is shown in figure 5.1. Efforts

were made to have recordings with lengths across a larger scope in order to promote a

more diverse dataset but most of the recordings crawled were within the 5 minutes range.

Although this dataset sufficed to test and validate the previously proposed methods -

Audio Clustering (section 4.3), Audio Segmentation (section 4.5), Audio Quality Inference

(section 4.4), and Matches Filtering using derivatives (section 4.6) - with the further

results discussed in the sections bellow, an extension of the crawled songs could be used

to better train our models when using the machine learning approach when performing
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Original Dataset
Band/Song Name Festival #

clips
Average
clip length
(mm:ss)

Arctic Monkeys - Do I Wanna Know Reading 2014 8 3:04
blink-182 - All The Small Things Reading 2010 8 2:31
Foo Fighters - Times Like These Reading 2012 8 5:50
Green Day - Boulevard of Broken Dreams Reading 2013 11 2:41
Metallica - Enter Sandman Reading 2015 11 3:55
My Chemical Romance - Na Na Na Reading 2011 6 2:54
Panic! at the Disco - Bohemian Rhapsody
(cover)

Reading 2015 11 3:58

Queens of the Stone Age - No One Knows Reading 2014 5 3:50
Radiohead - Creep Reading 2009 15 2:40
Red Hot Chili Peppers - Under the Bridge Reading 2016 7 3:49

Table 5.1: Extended dataset information. A different number of samples and recording lengths
was crawled for each song.

Figure 5.1: Distribution of the various clip lengths of our dataset.

the matches filtering.

Therefore, 13 more songs were crawled, which led to 107 new recordings being added

to the original dataset, with their metadata information being presented in table 5.2 and

the overall length distribution (i.e., concerning the total of the 23 songs now presented

in this extended dataset) being illustrated in figure 5.2. Important to notice that this

extended dataset was only used to train and validate our models in the matches filtering

using machine learning approach, since it enabled our system to train with more data

and therefore increasing its overall prediction accuracy.
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Extended Dataset
Band/Song Name Festival #

clips
Average
clip length
(mm:ss)

Alicia Keys - Empire State of Mind Big Weekend 2010 7 3:54
Bruno Mars - Just The Way You Are Big Weekend 2013 6 2:42
Coldplay - Yellow Big Weekend 2014 10 3:51
Coldplay - Clocks Glastonbury 2011 11 4:01
Coldplay - The Scientist Glastonbury 2011 12 4:26
Coldplay - Viva La Vida Glastonbury 2011 13 3:14
Ed Sheeran - Sing Glastonbury 2014 6 3:39
Franz Ferdinand - Take Me Out Glastonbury 2009 7 2:24
Hozier - Take Me To Church Glastonbury 2015 6 1:16
Lady Gaga - Born This Way Big Weekend 2011 6 5:39
Of Monsters & Men - Little Talks Glastonbury 2013 6 2:49
Rihanna - Love The Way You Lie Big Weekend 2012 8 3:43
Vampire Weekend - A-Punk Glastonbury 2010 9 1:40

Table 5.2: Extended dataset information.

Figure 5.2: Distribution of the various clip lengths on the extended dataset.

5.2 Audio clustering

The original dataset with 10 songs was used to evaluate the method proposed to perform

the grouping (clustering) of the different audio files described in section 4.3. Since our

goal is to cluster the different samples in the different events (i.e., songs), the number of
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clusters retrieved should equal to the number of existing songs (10). Listing 5.1 repre-

sents the output of our algorithm, without performing any filtering of the false positives

matches retrieved by the audio fingerprinting algorithm.

1 Cluster 1

2 sounds_my_dataset/song6sample5.mp3

3 sounds_my_dataset/song10sample1.mp3

4 sounds_my_dataset/song10sample9.mp3

5 sounds_my_dataset/song6sample1.mp3

6 sounds_my_dataset/song6sample10.mp3

7 sounds_my_dataset/song6sample7.mp3

8 sounds_my_dataset/song6sample6.mp3

9 sounds_my_dataset/song10sample3.mp3

10 sounds_my_dataset/song10sample10.mp3

11 sounds_my_dataset/song10sample6.mp3

12 sounds_my_dataset/song8sample2.mp3

13 sounds_my_dataset/song10sample8.mp3

14 sounds_my_dataset/song2sample3.mp3

15 sounds_my_dataset/song8sample6.mp3

16 sounds_my_dataset/song8sample3.mp3

17 sounds_my_dataset/song8sample1.mp3

18 sounds_my_dataset/song8sample8.mp3

19 sounds_my_dataset/song6sample11.mp3

20 sounds_my_dataset/song8sample7.mp3

21 sounds_my_dataset/song8sample5.mp3

22 sounds_my_dataset/song6sample4.mp3

23 sounds_my_dataset/song2sample8.mp3

24 sounds_my_dataset/song10sample11.mp3

25 sounds_my_dataset/song2sample5.mp3

26 sounds_my_dataset/song2sample7.mp3

27 sounds_my_dataset/song2sample4.mp3

28 sounds_my_dataset/song10sample2.mp3

29 sounds_my_dataset/song2sample1.mp3

30 sounds_my_dataset/song2sample2.mp3

31 sounds_my_dataset/song6sample8.mp3

32 sounds_my_dataset/song10sample7.mp3

33 sounds_my_dataset/song6sample2.mp3

34 sounds_my_dataset/song8sample4.mp3

35 sounds_my_dataset/song10sample5.mp3

36 sounds_my_dataset/song10sample4.mp3

37 sounds_my_dataset/song2sample6.mp

38 sounds_my_dataset/song6sample3.mp3

39 sounds_my_dataset/song6sample9.mp3

40 Cluster 2

41 sounds_my_dataset/song7sample3.mp3

42 sounds_my_dataset/song7sample4.mp3

43 sounds_my_dataset/song7sample5.mp3

44 sounds_my_dataset/song7sample1.mp3

45 sounds_my_dataset/song7sample2.mp3

46 sounds_my_dataset/song9sample5.mp3
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47 sounds_my_dataset/song9sample4.mp3

48 sounds_my_dataset/song7sample6.mp3

49 sounds_my_dataset/song9sample2.mp3

50 sounds_my_dataset/song9sample1.mp3

51 sounds_my_dataset/song7sample7.mp3

52 sounds_my_dataset/song9sample3.mp3

53 sounds_my_dataset/song7sample8.mp3

54 Cluster 3

55 sounds_my_dataset/song5sample5.mp3

56 sounds_my_dataset/song5sample2.mp3

57 sounds_my_dataset/song5sample3.mp3

58 sounds_my_dataset/song5sample6.mp3

59 sounds_my_dataset/song5sample1.mp3

60 sounds_my_dataset/song5sample4.mp3

61 Cluster 4

62 sounds_my_dataset/song1sample9.mp3

63 sounds_my_dataset/song1sample4.mp3

64 sounds_my_dataset/song1sample1.mp3

65 sounds_my_dataset/song1sample6.mp3

66 sounds_my_dataset/song1sample3.mp3

67 sounds_my_dataset/song1sample7.mp3

68 sounds_my_dataset/song1sample13.mp3

69 sounds_my_dataset/song1sample14.mp3

70 sounds_my_dataset/song1sample15.mp3

71 sounds_my_dataset/song1sample2.mp3

72 sounds_my_dataset/song1sample11.mp3

73 sounds_my_dataset/song1sample8.mp3

74 sounds_my_dataset/song1sample12.mp3

75 sounds_my_dataset/song1sample5.mp3

76 Cluster 5

77 sounds_my_dataset/song4sample1.mp3

78 sounds_my_dataset/song4sample9.mp3

79 sounds_my_dataset/song4sample8.mp3

80 sounds_my_dataset/song4sample5.mp3

81 sounds_my_dataset/song4sample6.mp3

82 sounds_my_dataset/song4sample2.mp3

83 sounds_my_dataset/song4sample11.mp3

84 sounds_my_dataset/song4sample3.mp3

85 sounds_my_dataset/song4sample4.mp3

86 sounds_my_dataset/song4sample7.mp3

87 Cluster 6

88 sounds_my_dataset/song3sample1.mp3

89 sounds_my_dataset/song3sample2.mp3

90 sounds_my_dataset/song3sample6.mp3

91 sounds_my_dataset/song3sample7.mp3

92 sounds_my_dataset/song3sample4.mp3

93 sounds_my_dataset/song3sample3.mp3

94 sounds_my_dataset/song3sample5.mp3

95 unmatched

96 sounds_my_dataset/song1sample10.mp3
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97 sounds_my_dataset/song4sample10.mp3

Listing 5.1: Output clusters file without filtering. Clusters which correctly grouped only

recordings from the same song/event are underlined.

Directly analysing listing 5.1, it is visible that 6 clusters were retrieved instead of

the 10 expected from having 10 different songs in our dataset. However, this only oc-

curred because there was no filtering of the wrong matches, meaning that clusters were

wrongly merged at some point. Moreover, the audio fingerprinting algorithm failed to

find matches in the database for 3 recordings, more concretely in:

• sounds_my_dataset/song1sample10.mp3

• sounds_my_dataset/song4sample10.mp3

• sounds_my_dataset/song1sample12.mp3

but since the latter was present in another sample’s matching list, more concretely in

sounds_my_dataset/song1sample1.mp3, it was put in that song’s cluster (by the exis-

tence of a path between the two nodes) and therefore was not assigned as unmatched by

our algorithm.

Regarding the incorrect merging of clusters generated from false positives matches,

one can then try to filter them with the derivatives approach from the matches filtering

method described in subsection 4.6. The clustering result after the matches filtering is

shown in listing 5.2. From its analysis, we can see that now the algorithm returns the

right number of clusters (10) with all samples from the same songs being put in the same

cluster. More detailed information about the filtering process results is further discussed

in section 5.3.

1 Cluster 1

2 sounds_my_dataset/song2sample3.mp3

3 sounds_my_dataset/song2sample8.mp3

4 sounds_my_dataset/song2sample5.mp3

5 sounds_my_dataset/song2sample4.mp3

6 sounds_my_dataset/song2sample1.mp3

7 sounds_my_dataset/song2sample6.mp3

8 sounds_my_dataset/song2sample2.mp3

9 sounds_my_dataset/song2sample7.mp3

10 Cluster 2

11 sounds_my_dataset/song7sample3.mp3

12 sounds_my_dataset/song7sample4.mp3

13 sounds_my_dataset/song7sample5.mp3

14 sounds_my_dataset/song7sample1.mp3

15 sounds_my_dataset/song7sample2.mp3

16 sounds_my_dataset/song7sample6.mp3

17 sounds_my_dataset/song7sample7.mp3

18 sounds_my_dataset/song7sample8.mp3

19 Cluster 3
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20 sounds_my_dataset/song5sample2.mp3

21 sounds_my_dataset/song5sample5.mp3

22 sounds_my_dataset/song5sample3.mp3

23 sounds_my_dataset/song5sample6.mp3

24 sounds_my_dataset/song5sample1.mp3

25 sounds_my_dataset/song5sample4.mp3

26 Cluster 4

27 sounds_my_dataset/song1sample9.mp3

28 sounds_my_dataset/song1sample1.mp3

29 sounds_my_dataset/song1sample4.mp3

30 sounds_my_dataset/song1sample3.mp3

31 sounds_my_dataset/song1sample7.mp3

32 sounds_my_dataset/song1sample6.mp3

33 sounds_my_dataset/song1sample14.mp3

34 sounds_my_dataset/song1sample15.mp3

35 sounds_my_dataset/song1sample13.mp3

36 sounds_my_dataset/song1sample2.mp3

37 sounds_my_dataset/song1sample11.mp3

38 sounds_my_dataset/song1sample8.mp34

39 sounds_my_dataset/song1sample12.mp3

40 sounds_my_dataset/song1sample5.mp3

41 Cluster 5

42 sounds_my_dataset/song10sample1.mp3

43 sounds_my_dataset/song10sample9.mp3

44 sounds_my_dataset/song10sample3.mp3

45 sounds_my_dataset/song10sample10.mp3

46 sounds_my_dataset/song10sample8.mp3

47 sounds_my_dataset/song10sample6.mp3

48 sounds_my_dataset/song10sample11.mp3

49 sounds_my_dataset/song10sample2.mp3

50 sounds_my_dataset/song10sample5.mp3

51 sounds_my_dataset/song10sample4.mp3

52 sounds_my_dataset/song10sample7.mp3

53 Cluster 6

54 sounds_my_dataset/song9sample5.mp3

55 sounds_my_dataset/song9sample4.mp3

56 sounds_my_dataset/song9sample2.mp3

57 sounds_my_dataset/song9sample1.mp3

58 sounds_my_dataset/song9sample3.mp3

59 Cluster 7

60 sounds_my_dataset/song8sample2.mp3

61 sounds_my_dataset/song8sample6.mp3

62 sounds_my_dataset/song8sample3.mp3

63 sounds_my_dataset/song8sample1.mp3

64 sounds_my_dataset/song8sample5.mp3

65 sounds_my_dataset/song8sample8.mp3

66 sounds_my_dataset/song8sample7.mp3

67 sounds_my_dataset/song8sample4.mp3

68 Cluster 8

69 sounds_my_dataset/song4sample1.mp3
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70 sounds_my_dataset/song4sample9.mp3

71 sounds_my_dataset/song4sample8.mp3

72 sounds_my_dataset/song4sample6.mp3

73 sounds_my_dataset/song4sample5.mp3

74 sounds_my_dataset/song4sample2.mp3

75 sounds_my_dataset/song4sample11.mp3

76 sounds_my_dataset/song4sample3.mp3

77 sounds_my_dataset/song4sample4.mp3

78 sounds_my_dataset/song4sample7.mp3

79 Cluster 9

80 sounds_my_dataset/song6sample5.mp3

81 sounds_my_dataset/song6sample10.mp3

82 sounds_my_dataset/song6sample7.mp3

83 sounds_my_dataset/song6sample6.mp3

84 sounds_my_dataset/song6sample1.mp3

85 sounds_my_dataset/song6sample11.mp3

86 sounds_my_dataset/song6sample4.mp3

87 sounds_my_dataset/song6sample2.mp3

88 sounds_my_dataset/song6sample3.mp3

89 sounds_my_dataset/song6sample9.mp3

90 sounds_my_dataset/song6sample8.mp3

91 Cluster 10

92 sounds_my_dataset/song3sample1.mp3

93 sounds_my_dataset/song3sample2.mp3

94 sounds_my_dataset/song3sample6.mp3

95 sounds_my_dataset/song3sample4.mp3

96 sounds_my_dataset/song3sample7.mp3

97 sounds_my_dataset/song3sample3.mp3

98 sounds_my_dataset/song3sample5.mp3

99 unmatched

100 sounds_my_dataset/song1sample10.mp3

101 sounds_my_dataset/song4sample10.mp3

Listing 5.2: Output clusters file.

The audio clustering method proposed can then be evaluated by the number of clus-

ters formed and by the number of samples unable to be assigned to any cluster (un-

matched samples). Table 5.3 provides the benchmarks of our clustering approach when

performing filtering or not regarding the ground-truth of our dataset. The number of

retrieved clusters when considering all matches and performing filtering is correct (that

is, it is the same as for the ground-truth), whereas without the filtering process clusters

were wrongly merged, making the system only retrieve 6 clusters instead of 10.

5.3 Matches filtering - Derivatives approach

Following the successful clustering results enabled by the correct filtering of the wrong

matches, we will now discuss the metrics details of the overall filtering process. By analy-

sis of table 5.4, we can see that the analysis of derivative drops succeeded in detecting all
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# Clusters # Unmatched samples
Ground-truth 10 0
Clustering (no filtering) 6 2
Clustering (filtering) 10 2

Table 5.3: Clustering benchmarks.

# Instances % Instances # Filtered % Filtered
Total matches 620 100.00% 70 11.29%
False positives 5 0.81% 5 100.00%
(landmark-level)
False positives 4 4.40% 4 100.00%
(sample-level)
False negatives - - 65 10.48%
(landmark-level)

Table 5.4: Filtering benchmarks using the derivatives analysis approach.

false positives retrieved by the audio fingerprinting algorithm – 1 out of the 5 landmark-

level false positives was discarded by eliminating repetitions whilst the rest were detected

by the analysis of the derivative values. It is important to notice that even though there

were occurrences of false negatives (10.48 % of the overall retrieved landmarks), this

does not affect the clustering results, as presented in table 5.3 by the retrieval of the right

number of clusters.

The derivative analysis of the 4 sample-level wrong matches, and the consecutive

discarded samples, are illustrated in figure 5.3. Note that all wrong matches are the

last positioned sample in all matching lists, and, thence, the last x value of the graphics.

Considering the top graphics, we can see that some true positives matches were also

discarded whereas in the bottom graphs only the false positive match was discarded.

Each graphic in figure 5.3 is related to the information about each sample in the

matching list of the following samples:

• sounds_my_dataset/song6sample1.mp3

• sounds_my_dataset/song8sample3.mp3

• sounds_my_dataset/song9sample2.mp3

• sounds_my_dataset/song10sample8.mp3

and that were matched with samples belonging to different events (i.e., songs) as their

own, more specifically to:

• sounds_my_dataset/song8sample2.mp3

• sounds_my_dataset/song10sample8.mp3
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Figure 5.3: Analysis of the percentage of matching landmarks of the different matches infor-
mation in the matching lists where a false positive match was present. The derivatives that are
lower than the derivative threshold (set to -0.07) are represented as yellow diamonds, whereas the
effectively discarded samples are represented with red squares. Important to notice that samples
can only be discarded if their percentage of matching landmarks is lower than the average of
all samples’ matching landmarks in the matching list (represented as the blue dotted line in the
graphs).

• sounds_my_dataset/song7sample4.mp3

• sounds_my_dataset/song2sample2.mp3

5.4 Audio segmentation

Following the Audio Segmentation approach proposed in section 4.5, it is possible to

know how the different samples of a given cluster are spread across that cluster’s timeline.

Our algorithm gives this information by the form of segments, that contain two times-

tamps, concerning a given time range, and a list of samples that are available in that time.

The different segments found for each of the 10 clusters are presented in listing B.1 in

appendix B.

The samples inside each segment are represented with their respective file path, since

new samples were generated by cutting the original sample audio file for all segments
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that audio file is part of. This is one of the key aspects to perform the audio quality

inference inside a given segment, since it allow us to match the correct intervals of the

different samples. Furthermore it allows the extension of the training set described in

subsection 4.6.2.4 by the analysis of the different matched offsets - 0.0 sec is the expected

offset for all matches since they are all time synchronised.

Additionally, the audio quality score of each sample (presented in section 4.4) is

also represented, being the samples listed in descending order of their quality score.

Important to notice, however, that in the cases where the time interval of the segments

or the number of samples present in a given segment is considerably small, such quality

inference cannot be assigned, being the score set to 0, meaning that such audio sample

did not have matched landmarks with any of the other samples inside its segment.

5.5 Audio quality inference

To evaluate the quality inference of our solution, we analysed the position of the pro-

fessional recording (consisting of all sample1 of each song in our dataset) relative to

the position of all the other samples in the cluster using our method and Kennedy and

Naaman’s method in [22] (K.M. method). This approach considers the nodes with more

edges in the samples graph as the ones with higher quality. Listing 5.2 already presented

information about each sample’s quality, since all samples inside each cluster are in de-

scending order based on their score. Nevertheless, for this evaluation step, we are only

concerned how the sample1 of each cluster ranks in the overall sample list, by checking

its position.

This evaluation assumes that the professional recordings represents one of the highest

quality recordings in any cluster, and, therefore, should be placed at the top of the ranking

list. Table 5.5 shows the comparison between the two methods. The second column

indicates the number of samples in the cluster, the third and fourth columns show the

position of the professional recording in the ranking list with our method and the K.M.

method, respectively. The first position in the ranking list corresponds to the highest

score.

It is important to note that there may be ambiguity on the quality scores of the K.M.

method, because several samples can have the same score. This is observed in table 5.5

by the range of positions of the professional sample. Such ambiguity does not appear

with our approach, which is essential for aiding the end-users on the decision of which

samples to use. The table also shows that the score of the professional track with our

method is always the same or better than with the K.M method, as it is either included

within the range given by the K.M method or it is even ranked better (clusters 5 and 8).
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Cluster # Samples Proposed method K.M. method
1 8 5th 3th-5th
2 8 4th 1st-4th
3 6 5th 3th-5th
4 14 2nd 3th-4th
5 11 1st 2nd-4th
6 5 4th 1st-5th
7 8 4th 1st-4th
8 10 1st 2nd-4th
9 11 5th 3th-5th
10 7 1st 1st-4th

Table 5.5: Quality inference. Position of the professional recording in the ranking list with our
method (third column) and Kennedy and Naaman’s method (fourth column).

5.6 Matches filtering - Learning approach

Even though the derivative approach for filtering the false positive matches succeeded

in filtering all false positive of the original dataset, it only sufficed to filter 4 out of the

6 wrong matches present in the extended dataset (as shown in figure 5.4). This came to

prove the possible lack of generalisation inherent to the derivatives approach, since the

threshold used was fine-tuned after the analysis of the derivatives of all the false matches

returned by the audio fingerprinting algorithm in order to filter all the wrong matches

whilst minimising the number of true positives also filtered.

Figure 5.4: In these two examples of the matching lists of two different songs, since no derivative
lower than the threshold was found bellow the average percentage of matching landmarks of the
matching list (represented as the blue dotted line) no sample was discarded even though the last
samples of each graphs were false positive matches (i.e., 5’th and 4’th sample, for the left-side and
the right-side graphic respectively).

One possible modification to the derivatives approach would be to exclude the con-

straint of only discarding samples when derivatives are from samples that have the per-

centage of matching landmarks lower than the average of the matching list. This would
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suffice to filter the wrong matched samples present in both graphs of figure 5.4. How-

ever, this would implicate that a lot more true positive samples would be considered

false positives and therefore discarded, which could affect the overall creation of the clus-

ters. Thence, the next subsections will then focus on performing the matches filtering

using machine learning techniques in order to allow more generalisation in terms of the

datasets used.

5.6.1 Training set

The extended 23-song dataset previously referred in section 5.1, generated 3098 matches

(referred as training/test samples) by the audio fingerprinting algorithm, and that con-

sisted of the actual dataset used to both train, validate, and test our models. The number

of true matched samples were 1071 whereas the number of false matched samples (e.g.,
class 1) were 2027, from which 2021 were repetition samples and 6 were false matches

(i.e., recordings from different events were retrieved as a match by the audio fingerprint-

ing algorithm). Important to notice that every time a new model was trained, the training

set was balanced, meaning that the number of samples of class 0 was equal to the number

of samples of class 1.

5.6.2 Parameters setting

In order to select the best models for the different classifiers (Logistic Regression, K-

Nearest Neighbours, and Support-Vector Machines), the parameters used in the models

with lowest validation error during the leave-one-song-out cross-validation were assigned

as the most suitable parameters, as previously discussed in subsection 4.6.2. Since we

wanted to also test which feature combinations would be more relevant, this process

was made for each feature sub-set presented in subsection 4.6.2.2. The model errors,

more concretely the training and validation error, for each classifier’s parameter values

tested are presented in figures 5.5, 5.6, 5.7, and 5.8, with each one of the figures repre-

senting the results obtained for each sub-set of feature spaces previously described in

sub-subsection 4.6.2.2.

It is important to notice that the different parameter combinations used for each

SVM is different for each sub-set of features used since these values were obtained by

performing Grid-Search for all the different training sets used whilst doing leave-one-

song-out cross-validation. Moreover, the leave-one-song-out cross-validation is what

allowed us to test the different models considering the whole dataset, enabling to get the

prediction accuracy of the different models. This analysis is further discussed in the next

subsection 5.6.3.
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Figure 5.5: Model errors of the different classifiers using the number of matching landmarks of
the right offset (#ML) and the total number of matching landmarks in all offsets found (total#ML)
as features. The parameter values with lowest validation errors (va) for each classifier are: LR (c =
8, log(c) = 2.079, va ≈ 0.0316), KNN (k = 15, va ≈ 0.0315), SVM (c = 0.125,γ = 8, va ≈ 0.0279).

5.6.3 Prediction results

The results in terms of the accuracy of the predictions of the different classifier’s models

for the respective sub-set of features (previously described in sub-subsection 4.6.2.2) is

shown in Figure 5.9. The SVM showed better results across the different feature combina-

tions (98.23%, 97.22%„ 96.12%, and 97.68% respectively) but was closely followed by the

other classifiers with the exception of when using Logistic Regression with the number of

matching landmarks, and the overall number of landmarks of the query and the match

song, that achieved considerably lower accuracy (82.07%).

Despite the high accuracy, false positives in the scope of our problem implicates songs

of different events to be assigned to the same cluster, leading ultimately the merge of

clusters of different events. Therefore, instead of simply choosing the model with lowest
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Figure 5.6: Model errors of the different classifiers using the number of matching landmarks of
the right offset (#ML), the total number of matching landmarks in all offsets found (total#ML),
and the number of landmarks of the query song (query#ML) as features. The parameter values
with lowest validation errors (va) for each classifier are: LR (c = 8, log(c) = 2.079, va ≈ 0.0342),
KNN (k = 3, va ≈ 0.0347), SVM (c = 8,γ = 2, va ≈ 0.0279).

validation error for each classifier, we can discard all models that wrongly classified the

false positives and choose the lower validation error model of the remaining. Figure 5.10

shows the updated classifiers results adding this constraint.

Even though the accuracy slightly decreased, we managed to find new models for KNN

and SVM that satisfy our condition of not allowing false positives, whilst maintaining a

high accuracy (97.12% and 97.49%, respectively). The Logistic Regression models already

presented in Figure 5.9 remained intact since there was no wrong classification of false

positives, except when using the feature combination (#ML, total#ML, match#ML), with

their accuracy of 97.40% for the first presented feature combination, and 97.21% for the

latter.

In sum, we managed to achieve high accuracy results in most of the situations, with the
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Figure 5.7: Model errors of the different classifiers using the number of matching landmarks of
the right offset (#ML), the number of landmarks of the query song (query#ML) and matched song
(match#ML) as features. The parameter values with lowest validation errors (va) for each classifier
are: LR (c = 1, log(c) = 0, va ≈ 0.1582), KNN (k = 3, va ≈ 0.0454), SVM (c = 8,γ = 32, va ≈ 0.0410).

context of using 4 features with SVM representing a slight advantage when considering

only the models with no wrong classification of false positives since their filtering is

crucial in the proposed solution. However, using Logistic Regression and KNN with

the features set as the matching landmarks in the right offset and the total number of

matching landmarks in all detected offsets, as well as using Logistic Regression with the

4 feature-combination, would also represent practically viable options for the presented

filtering approach.

Concluding remarks

The results retrieved by our solution when using an implementation of the previously

proposed methods are presented in this chapter. Such evaluation was made using two

different datasets of concert recordings crawled from YouTube, with the extended version
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Figure 5.8: Model errors of the different classifiers using the number of matching landmarks of
the right offset (#ML), the total number of matching landmarks in all offsets found (total#ML), the
number of landmarks of the query song (query#ML) and matched song (match#ML) as features.
The parameter values with lowest validation errors (va) for each classifier are: LR (c = 16384,
log(c) = 9.704, va ≈ 0.0269), KNN (k = 3, va ≈ 0.0.0380), SVM (c = 215,γ = 2−11, va ≈ 0.0243).

being only used to validate the matches filtering learning approach. The results obtained

proved that the different methods of our solution work even when dealing with real-

world data, and that the proposed method for inferring the audio quality of the audio

files outperforms the current state-of-the-art.
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Figure 5.9: Accuracy of the best models (i.e., with lowest validation error) of each classifier for
the different combination of features, with the respective parameter values described inside each
bar. The numbers placed on top of each bar represent the number of false positives retrieved by
each model.

Figure 5.10: Accuracy of the models with lowest validation error that did not retrieved any
false positives. The missing models represent that all retrieved models classified at least one
false positive, with no classifier being able to surpass this constraint when using the features
combination (#ML, total#ML, query#L). New models with different parameter values were found
for both KNN and SVM whilst respecting this condition.

74



C
h
a
p
t
e
r

6
Conclusion

In this thesis we propose methods that enable a better understanding of user-generated

audio recordings from various concert songs. This chapter will give an overview of all the

different proposed methodologies, including the insights derived from doing this thesis

and possible future work.

For a better comprehension and management of large datasets of audio files, we pro-

pose a method that clusters the data relative to certain events by the analysis of over-

lapping audio intervals between the different files retrieved by the audio fingerprinting

algorithm. While performing audio clustering using audio fingerprinting was previ-

ously proposed in [22], we propose relevant improvements to their methodology, more

specifically the detection and filtering of possible false positives retrieved by the audio fin-

gerprinting algorithm. We thereby present two different approaches to achieve this. The

first is based on the analysis of relevant drops in the percentage of matching landmarks

of all non-repetitive samples in the matching list (section 4.6.1). The second involves

classification techniques commonly used in machine learning in order to classify matches

as true positives or false positives (subsection 4.6.2), whilst ensuring that the trained

classifiers learn from previous predictions by extending the training set with further runs

of our algorithm (sub-subsection 4.6.2.4).

In addition, we also propose a concrete method that retrieves how the different audio

files inside a cluster are distributed over time (section 4.5). Since the offset information

between all matches made by the audio fingerprinting algorithm is represented as the

edges weights in a graph where the nodes are all existing samples in the database, this

method only needs to calculate the cost of the path between the different nodes to get

the offset between them. This synchronisation of all samples in a cluster is effectively

accomplished by retrieving all offsets of all audio files relative to the earliest starting

cluster sample.
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Moreover, we propose a novel quality inference method that attributes a quality score

to the different samples, both cluster-wise (i.e., relative to all the other samples in the

cluster) and segment-wise (i.e., relative to the rest of the samples in the respective seg-

ment). The proposed scoring method is relative to the number of matching landmarks a

given song had, when matched against all the other songs in the original database. This is

based not only in the notion that higher-quality audio files will produce more matches by

the audio fingerprinting algorithm, since the lower-quality files will most likely match in

their less noisy sections to those files, but also that those matches will be more accurate,

meaning that they will produce more landmark matches. Thus, instead of only counting

the matches a given audio file had, as mentioned by Kennedy and Naaman in [22], we

further look at how those matches were obtained by looking at the number of matching

landmarks of the higher matched offset.

The proposed methods were further validated and evaluated by the 10-song test setup

described in chapter 5. In terms of the organisation of the different samples, the cluster-

ing method proposed in section 4.3 succeeded in correctly identifying the right number of

clusters, whilst grouping correctly the samples in the respective clusters, with exception

of 2 audio files that could not be matched by the audio fingerprinting algorithm itself.

Important to notice that these clustering results were only obtained by accomplishing

the filtering of all false positives matches by the derivatives approach presented in sub-

section 4.6.1. Furthermore, the synchronisation of the different files of each one of the

clusters was also performed correctly. In terms of quality inference, the proposed method

succeeded in either classifying equally, and even better the professional recordings in

some cases, to when compared to the method proposed in [22], whilst also avoiding

ambiguity in the quality scores of the audio files.

Furthermore, the test setup was extended in order to evaluate the learning approach

presented in subsection 4.6.2 to classify and consecutively filter the false positives classi-

fied matches, promoting a better training process for the different classifiers due to the in-

crease of the original dataset. Several feature combinations were evaluated, together with

several parameter values for each classifier (i.e., Logistic Regression, K-Nearest Neigh-

bours and Support-Vector Machines). Performing leave-one-song-out cross-validation,

that consists of leaving out of the training set all matches relative to all samples of a

given song and use such samples as the test set and repeating this process until all songs

were left-out, we managed to evaluate the accuracy of the predictions of each classifier’s

models.

By looking solely at the percentage of correct predictions of the different models, we

managed to achieve high accuracy for the best models of each classifier (above 95 % in all

cases except for Logistic Regression when using the number of matching landmarks at

the right offset, and the total number of the query and matched sample as features that

obtained an accuracy of 82.07%). By considering only the models with optimal filtering

results (i.e., that successfully filtered all false positives in the dataset) we maintained

high accuracy values, achieving 97.49% of correct predictions when using SVM with 4
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features. Thus, the learning approach might be more suitable in most cases than the

derivatives approach since it will most likely classify less false negatives, enabling the

correct formation of all clusters, and it empowers more generalisation of the dataset by

not having the need to fine tune threshold values like the derivatives threshold inherent

to the derivatives approach. Moreover, the extension of the training set described in

subsection 4.6.2 enables our models to be continuously learning with the usage of our

algorithm.

6.1 Future work

One possible way of improving the learning process would be to add features inherent

of the audio signal itself, more particularly high-level features retrieved directly from

the spectrogram. This way, by merging this information with the output of the audio

fingerprinting algorithm (by maintaining the set of features used in this work), one could

better represent the audio files that were part of each match which could be a good

indicator for separating noisy files from good quality files in the feature space. Such

separation would hopefully mean an easier separation of both classes by the classifiers

and better prediction results. However, one would have to be cautious about the Curse
of Dimensionality, since there would be an increase in the number of features used and

therefore the dimension of the feature space.

Instead of evaluating the audio quality inference methods by the rank quality scores

of the professional recordings, assuming therefore that they have always higher quality

than the user-generated recordings (which might not necessarily be the case given the

high-quality devices in the market), one could perform subjective listening tests, where

a large amount of participants is asked questions regarding the sound quality of several

songs. Even though these types of tests can produce good results when adapted to better

match some human listening capabilities (as discussed in [40]), it would not only be

impractical, since our dataset is considerably big, but also very time consuming.

On the other hand, one could use an objective testing approach. These could rely

upon using audio features from the signal itself (i.e., operating in the time and spectral

domain [47]) to derive the audio quality of a given audio file, or even using techniques in

the perceptual domain (i.e., based on models of the human auditory system) to infer such

audio quality such as PEAQ ([46]). Although objective score measurements might not

always reflect real world subjective opinions, it still proves to be a reliable version given

their ability to perform a large number of tests that would not be practical to perform

otherwise and therefore could consist of a good approach to follow to further evaluate

the proposed quality inference method.
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NOVA LINCS, Departamento de Informática
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Abstract—The increase of the quantity of user-generated con-
tent experienced in social media has boosted the importance of
analysing and organising the content by its quality. Here, we
propose a method that uses audio fingerprinting to organise and
infer the quality of user-generated audio content. The proposed
method detects the overlapping segments between different audio
clips to organise and cluster the data according to events, and to
infer the audio quality of the samples. A test setup with concert
recordings manually crawled from YouTube is used to validate
the presented method. The results show that the proposed method
achieves better results than previous methods.

I. INTRODUCTION

The abundance and ubiquity of user-generated content has
increased the demand for tools for the organisation and
analysis of vast and heterogeneous data. Most of the activity
experienced in social networks today contains audio excerpts,
either from video files or actual audio clips. Therefore, the
analysis of the audio features present in such content can
contribute with relevant information for managing the data
and ultimately provide a better experience to the end-user.

We propose a method that uses audio features to organise
and determine the quality of user-generated audio content
crawled from social media websites. In particular, we focus
on data related to concert clips. The existence of several
recordings of a given event, creates an abundant and redundant
pool of recordings. As such, musical shows represent a very
good use case for the presented work. The proposed method
shall act as a way to better understand and deal with extensive
datasets of audio files. The inference of the quality of each
file within a given group of files has the ultimate goal of
promoting a better user experience, since only the high-quality
clips should be shown to the end-user.

The proposed method detects the overlapping sections be-
tween different audio clips to organise and group (i.e. cluster)
the data. It then infers the audio quality of the samples directly
from the features used to perform the clustering. The method
uses an audio fingerprinting algorithm to this end.

Audio fingerprinting algorithms have traditionally been used
for music recognition as made famous by Shazam, where a
query sample is matched against other samples in a database
of audio files [1, 2, 7, 9]. Here we use this technique for a
different purpose, more specifically to synchronise different
samples and use the synchronisation information to perform

their clustering and infer their quality. In fact, other authors
have shown that audio fingerprinting can be used to perform
the synchronisation between different samples from the same
event that are not time aligned [3, 5, 6, 8].

While Kennedy and Naaman have also used audio finger-
printing to this end [6], we propose two important improve-
ments: (1) our clustering phase includes a filtering approach
to avoid false positives, and (2) the proposed technique to
infer the samples quality uses information from the audio
fingerprinting algorithm that was not used before. Conse-
quently, the analysis of the ranking of the samples in terms of
quality achieves better results with the proposed method than
with previous methods, with the assumption that professional
edited recordings should have higher quality scores than user-
generated recordings.

II. THE DATA ORGANISATION METHOD

The proposed method can be used to organise multiple
concert recordings, which here we call samples. There may be
several samples from the same music. More specifically, the
method focuses on the grouping of the audio samples, based on
them having a common segment of audio, and on their relative
quality inference. Since these samples are generated from user
recordings, some challenges need to be tackled such as those
related to the audio recording qualities inherent to each device.
Moreover, it is very unlikely that any two recordings are time
synchronised and have the same duration.

In practical terms, the information retrieved by our method
can be used to organise and aid with the choice of which
overlapped recordings to use at a given time based on their
quality (figure 1). Several steps must be followed to perform
the grouping and quality analysis of the different audio sam-
ples.

To promote a better comparison between the different
samples, their (1) synchronisation is required (for recordings
of the same song or event). The synchronisation results will
serve as the basis to perform the (2) grouping of the samples:
recordings of the same song will be clustered together. The
clustering information will ultimately help in deriving the

2Image from: COGNITUS,
http://cognitus-h2020.eu/index.php/2017/01/06/two-open-access-datasets-
with-user-generated-audio-recordings/



Fig. 1. Time-aligned audio clips2. Information about the quality of the clips
is very useful to choose which clip should be played.

Fig. 2. Diagram of the different proposed steps.

(3) quality of each sample within a cluster. Evaluation and
analysis of the attributed cluster and quality score of each
sound clip must be also performed to validate the proposed
system. Figure 2 illustrates how the different steps are executed
in chronological order. These steps are described in detail in
sections II-A, II-B, and II-C, with further validation being
presented in section III.

A. Audio Synchronisation

The synchronisation of the samples is an essential step to
perform the audio clustering, since its information is used
to group different samples with common overlapping audio
segments. Moreover, such information is also used to derive
the quality of the different samples inside a given cluster.

Fingerprinting techniques’ resistance to noise is particularly
relevant when dealing with low quality music recordings.
This characteristic is ideal for our method since it enables to
synchronise noisy samples against possibly less noisy samples
in the database, while only needing possibly short length
common segments to synchronise different clips.

Fingerprint generation over any kind of data is an efficient
mechanism to characterise possibly large data with a small rep-
resentation. More explicitly, as an alternative to representations
that involve large amounts of data, fingerprints are compact
representations of the data that can be used for purposes that
do not require dealing with all the intrinsic details of the data.
This technique promotes a fast way of comparing the quality
of two entities by trying to diminish the need to compare
irrelevant features.

There are several steps commonly inherent to any audio
fingerprint technique: first, an extraction of some of the fea-
tures present in the audio clip is done; second, those features,
or a combination of them, are used to generate a fingerprint
that will characterise the audio clip; then, searching processes
are applied to access the fingerprints of the other clips in the
database; and finally matching mechanisms compare pairs of
fingerprints and generate matches.

While other fingerprinting algorithms are compatible with
our method, we used Cotton and Ellis fingerprinting algorithm

Python implementation3 based on the methodologies proposed
by Wang [4, 9]. The fingerprint generation proposed in this
approach is landmark-based (i.e. fingerprints are composed by
several landmarks). A landmark is created by the analysis of
frequency peaks with high energy, since these high spectral
energy characteristics of the songs are likely to be resistant to
noise and distortion [4]. A landmark is a pair of two peaks,
and contains information about each peak frequency, the time
at which the first peak occurred, and the time offset between
them.

Two samples are considered to match if they have more than
tl common landmarks. Since false matches are unlikely (i.e.
have a low probability of occurrence but still greater than 0),
this threshold can have a small value (such as tl = 5, being
this the default value in the audio fingerprinting algorithm
used). For each sample s in a database of previously added
samples, the audio fingerprinting phase finds the matching list
for sample s, that is, all samples that match s. This is done by
taking into account the number of common landmarks between
query sample s and each of the other samples in the database.
The common landmarks are called matching landmarks.

B. Audio Clustering

Since we are dealing with several concert recordings as the
context of our problem, events can be characterised as the
different songs played in the different concerts. Thus, the goal
of the clustering phase is to group all recordings of a given
concert’s song in the same cluster by the analysis of common
audio segments.

1) Audio samples grouping: As proposed by Kennedy and
Naaman, the results from the audio fingerprinting algorithm
can be used to cluster the samples in events [6]. The matched
samples have some matching landmarks, which is an indi-
cation that, potentially, the samples have a common excerpt
and thus are recordings of the same song. The clustering
phase uses this information to cluster together the samples
that are matched in the audio fingerprinting phase. Therefore,
we consider all database matches retrieved by the audio
fingerprinting algorithm (i.e. all samples si, . . . , sj matching
a given query sample s).

To find the clusters, we represent the matches between
different samples with a graph, G [6]. Each sample in the
database is represented by a vertex in G. The edges represent
the matches between samples. In other words, if sample s1
matches sample s2, then there is an edge between vertex s1
and vertex s2

4. The edge weight is the offset (in seconds)
between the two samples. The whole graph can have several
components. Each component of G corresponds to a different
cluster. If there is a path between two vertices, then the
corresponding samples are in the same cluster. Isolated vertices

3https://github.com/dpwe/audfprint
4While samples and vertices are different entities, here there is a one-to-

one relationship between them. Thus, to simplify the notation, we will use the
same name to represent samples and vertices. For instance, si can represent
sample si and vertex si. Also, to simplify the explanations in the paper, we
may refer to the vertices in G as samples.



represent unmatched samples, for which the algorithm could
not find any match in the database.

Even though unlikely, the probability of false positives sam-
ples retrieved by the algorithm is greater than zero, leading to
the merging clusters that should not be merged. For example,
if sample s1 from song 1 and sample s2 from song 2 are
incorrectly matched, their clusters will be wrongly merged.
In order to overcome this drawback, we introduced a filtering
stage to the clustering algorithm (section II-B2). This filtering
approach aims to optimise the clustering results.

2) Matches filtering: Considering all the matches retrieved
by the audio fingerprinting algorithm would be ideal if false
positives did not occur. These false positives can be sample-
level or landmark-level. The first case happens when samples
not referring to recordings of the same song are matched. The
latter case happens when several landmarks are matched with
different offsets over just two samples. For example, samples
s1 and s2 from the same song have l1 matching landmarks
with offset o1, l2 matching landmarks with offset o2, etc. It is
important to notice that only one of the retrieve offsets may
be correct, since two samples can only have one offset. Thus,
all the other offsets shall be considered false positives.

Landmark-level false positives are easily detected by the
repetition of a sample in a query sample’s matching list (output
from the audio fingerprinting phase). To tackle this problem,
only the match with higher number of matching landmarks is
considered while any other sample repetitions in the list are
eliminated. In the example above, the match considered is the
match with offset oi such that li = max(l1, ..., lk).

To handle sample-level false positives, it is important to
understand in which context they appear because, even though
unlikely, their probability is greater than zero. The analysis
of such cases, showed that false positives have a lower
number of matching landmarks than the true positives in the
same matching list. This also applies when comparing the
percentage, p, of matched landmarks in the overall number of
landmarks of false and true positives. That is, ∀st,sf pt > pf ,
where st is a true positive and sf is a false positive, pt and
pf are the percentages of matching landmarks of samples st
and sf , respectively, and p is defined as follows

pi =
li
ti
, (1)

where li is the number of matching landmarks between sample
si and query sample s, and ti is the total number of landmarks
of sample si. It was also observed that when we consider
the percentage of matching landmarks in decreasing order, the
slope that leads to a false positive (i.e. to pf ) is steeper. Fol-
lowing this analysis, an appropriate filtering approach would
be:

For each sample s in the database, consider all the
samples si that match s as retrieved from the audio
fingerprinting phase. Let us assume we have n such
samples.

1. For all those matching samples, consider the per-
centage of matching landmarks in decreasing order:
(p1, p2, . . . , pn), where p1 > p2 > . . . > pn.

2. Analyse the derivative on all consecutive pairs of
points (p1, p2, . . . , pn) in the graph of the percentage
of matching landmarks.

3. Finally, consider as matches all the samples s1 to
sj up to a point where the derivative of this graph
is higher than a certain value. In other words, stop
considering matches as soon as the percentage of
matching landmarks significantly drops.

In order to achieve this, one can use a threshold, td, and
the graph’s slope: ∆i = pi+1 − pi . If ∆j 6 td and ∆i > td
for i ∈ {1, . . . , j − 1}, then the algorithm considers that
only the samples up to sample sj are matches to s. That
is, only samples s1, s2, . . . , sj are considered as matches.
All remaining samples sj+1, . . . , sn are considered as false
positives. Our algorithm is using td = −0.07, as a result of
fine-tuning this parameter to exclude all false positives in our
dataset described in sub-section III-A.

This would be a reasonable approach to follow if the differ-
ence between the percentage of matching landmarks between
consecutive true positives would never decrease significantly.
Yet, due to the variety in quality and duration of user-generated
content, such situation can occur and would cause a high
number of true positives to be discarded. Thus, the filtering
approach has to take into consideration more parameters to
better choose when to filter the returned matches. Since the
probability of finding false matches is low and so is their
percentage of matched landmarks, a sample should only be
considered a false positive if its percentage of matched land-
marks is lower than the average for all the retrieved matching
samples. Thus, the algorithm’s step 3 can be changed to:

3. Consider as matches (1) all the samples s1 to sk such that
∀16i6k pi > avg(p1, p2, . . . , pn) and (2) all the samples
sk+1 to sj such that ∆j 6 td and ∀k+16i6j−1 ∆i > td.

For an easier analysis of the filtering process, figure 3
displays an example of a matching list with 8 samples in
form of a graph with the distribution of the percentage of
matching landmarks over the total number of landmarks of
each matched sample. In this example, there is only one false
positive, which is sample 8. Therefore, ideally this should
be the only discarded sample. As observed, the proposed
approach achieves this by considering the low slope point
(sample 7) under the average of the percentage of landmarks
(marked with the dashed line) as the last accepted match, and
discarding all samples after it (i.e. sample 8). While there are
other low gradient points (marked with a diamond) and some
have slopes lower than td, the samples at these positions are
not discarded because they are above the average line.

C. Audio Quality Inference

The output of the clustering phase consists of a set of
clusters, represented by graph G, that organises the data
according to events (samples with a common segment of audio



Fig. 3. Distribution of matching landmarks from the matching samples. The
only false positive in the matching list (sample 8) is successfully discarded
by our approach.

belong to the same cluster). The vertices within a component
of G may have a different number of neighbours as not all
pairs of vertices within a component are adjacent. For instance,
let s1, s2 and s3 be vertices in G. If s1 and s2 are adjacent,
and s2 and s3 are adjacent, all three vertices belong to the
same component of G (same cluster) but this does not mean
that there is an edge between s1 and s3: s1 and s2 can have a
common excerpt, s2 and s3 can have another common excerpt,
and s1 and s3 may lack common excerpts.

Kennedy and Naaman propose to derive the quality of
samples by the direct analysis of G, where a sample’s quality
is proportional to the number of neighbours of that sample’s
vertex, that is, the number of adjacent vertices [6]. In the
example above, s1 and s2 are neighbours, s2 and s3 are
neighbours but s1 and s3 are not neighbours. Samples with
more neighbours, that is, samples that got matched the most
by the fingerprinting algorithm, are considered as those with
better quality. This is supported by the idea that any two low-
quality samples are less likely to match each other than when
at least one of the samples has good quality.

Even though this is a suitable approach, it only considers
the number of matches of a given sample, ignoring how the
sample ranks in terms of matching landmarks in the overall list
of matched samples. A sample with many matching landmarks
is likely to have better quality than a sample with less matching
landmarks. Thus, our proposed solution considers that the
score of a sample, si, depends on the total number of matching
landmarks of that given sample against all the other samples in
the database. Let s1, s2, . . . , sN be the samples in the database.
Assume si (for 1 6 i 6 N ) has l1i matching landmarks to
sample s1, l2i matching landmarks to sample s2, etc. Then the
score of si is calculated as follows:

score(si) =

N∑

j=1

lji . (2)

#Instances %Instances #Filtered %Filtered
Total matches 620 100.00% 70 11.29%
False positives 5 0.81% 5 100.00%
(landmark-level)
False positives 4 4.40% 4 100.00%
(sample-level)
False negatives - - 65 10.48%
(landmark-level)

TABLE I
FILTERING BENCHMARKS.

# Clusters # Unmatched samples
Ground-truth 10 0
All matches (no filtering) 6 2
All matches (filtering) 10 2

TABLE II
CLUSTERING BENCHMARKS.

III. EVALUATION AND ANALYSIS

A. Test setup

To test the proposed algorithm, a realistic testbed was
designed by manually collecting from YouTube several concert
clips of various songs captured with different devices. For each
song we collected one professional recording and several user
recordings of the same song in the same concert.

The dataset5 consists of 91 samples of 10 different songs,
all part of different editions of the Reading Festival. Apart
from the 10 professional recorded samples, all samples were
recorded by users, which means different recording devices
with different qualities apply. Moreover, the number of record-
ings retrieved for each song, as well as their respective
lengths, differ between each cluster. Efforts were made to
have recordings with lengths across a large scope in order
to promote a more diverse dataset. Nonetheless most of the
recordings crawled were within the 5 minutes range.

B. Results

Using the dataset described in III-A, we validated the
proposed method, namely the filtering and clustering phases.
By analysis of table I, we can see that our filtering method
succeeded in filtering all false positives retrieved by the audio
fingerprinting algorithm – 1 out of the 5 landmark-level false
positives were discarded by eliminating repetitions whilst the
rest were detected by the analysis of the derivative values.

It is important to notice that even though there were
occurrences of false negatives (i.e. 10.48 % of the overall
retrieved landmarks), this does not affect the clustering results,
as presented in table II. The number of retrieved clusters when
considering all matches and performing filtering is correct (that
is, it is the same as for the ground-truth), whereas without the
filtering process clusters were wrongly merged, making the
system only retrieve 6 clusters instead of 10.

To evaluate the quality inference of our solution, we anal-
ysed the score of the professional recording relative to the
scores of the other samples in the cluster using our method

5The dataset is available at http://novasearch.org/datasets/



Cluster # Samples Proposed method K.M. method
1 8 5th 3th-5th
2 8 4th 1st-4th
3 6 5th 3th-5th
4 15 3th 3th-4th
5 11 1st 2nd-4th
6 5 4th 1st-5th
7 8 4th 1st-4th
8 10 1st 2nd-4th
9 11 5th 3th-5th
10 7 1st 1st-4th

TABLE III
QUALITY INFERENCE. POSITION OF THE PROFESSIONAL RECORDING IN

THE RANKING LIST WITH OUR METHOD (THIRD COLUMN) AND KENNEDY
AND NAAMAN’S METHOD (FOURTH COLUMN).

and Kennedy and Naaman’s method (K.M. method). This
evaluation assumes that the professional recordings represents
one of the highest quality recordings in any cluster, and,
therefore, should be placed at the top of the ranking list.
Table III shows the comparison between the two methods.
The second column indicates the number of samples in the
cluster, the third and fourth columns show the position of the
professional recording in the ranking list with our method and
the K.M. method, respectively. The first position in the ranking
list corresponds to the highest score.

It is important to note that there may be ambiguity on the
quality scores of the K.M. method, because several samples
can have the same score. This is observed in table III by the
range of positions of the professional sample. Such ambiguity
does not appear with our approach, which is essential for
aiding end users on the decision of which samples to use.
The table also shows that the score of the professional track
with our method is always the same or better than with the
K.M method, as it is either included within the range given
by the K.M method or it is even ranked better (clusters 5 and
8).

IV. CONCLUSION

For a better comprehension and management of large
datasets of audio files, we propose a method that clusters the
data according to events and infers the relative quality of audio
files. The method uses audio fingerprints to determine the clus-
ters and quality of the samples. While our method uses some
of the methodology proposed by Kennedy and Naaman [6],
we propose relevant improvements to their methodology.

A major improvement offered by our method consists of
avoiding false positives. On top of eliminating repetitions, our
method uses a filtering approach that looks at the distribution
of the percentage of matching landmarks (sets of fingerprints
common to two samples) and uses the derivative of this
distribution to detect false positives.

In terms of quality inference, by looking at the number of
matching landmarks, instead of only checking if there was a
match between two samples, the proposed method succeeds in
classifying better the professional recordings in some cases to
when compared to the method proposed in [6]. Furthermore,

it also avoids ambiguity quality scores using more detailed
information than the previous method.

The results show that the proposed filtering technique suc-
cessfully avoids false negatives. Also, the quality inference
results from our method show improvements over previous
methods.
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ABSTRACT

Using solely the information retrieved by audio finger-
printing techniques, we propose methods to treat a possibly
large dataset of user-generated audio content, that (1) enable
the grouping of several audio files that contain a common au-
dio excerpt (i.e. are relative to the same event), and (2) give
information about how those files are correlated in terms of
time and quality inside each event. Furthermore, we use su-
pervised learning to detect incorrect matches that may arise
from the audio fingerprinting algorithm itself, whilst ensuring
our model learns with previous predictions. All the presented
methods were further validated by user-generated recordings
of several different concerts manually crawled from YouTube.

Index Terms— audio fingerprinting, user-generated con-
tent, audio synchronisation, supervised learning

1. INTRODUCTION

Given the abundance and ubiquity of video-oriented content
(and, consequently, audio content) experienced in most social
networks nowadays, it is important to understand such large
amount of information in a meaningful way. One important
step to achieve such understanding is to group the content in
several clusters based on similarity, which in the context of
this work is based on events. When we consider several user-
generated recordings of different lengths reporting the same
event, which is very likely to happen due to the nature of
user-generated content, the existence of overlapping sections
between two of such recordings means that they should be-
long to the same cluster/event.

Audio fingerprinting has been primarily used to detect
if a given query song matches other songs in a preexisting
database [1, 2, 6, 8]. Nonetheless, this algorithm retrieves
very valuable information, that can be used for several other
purposes. Here, we propose to use it to perform the organ-
isation (clustering), segmentation and alignment, of audio
recordings of music events.
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The main contributions of this paper are then the organ-
isation of a large dataset of audio recordings into the dif-
ferent events they portrait (section 2), with additional infor-
mation regarding how each event’s recordings are distributed
over time (section 3), and the detection and filtering of incor-
rect matches possibly retrieved from the audio fingerprinting
algorithm using a supervised learning approach (section 4),
whilst ensuring our model learns with previous predictions
(section 5).

Moreover, finding correlations between the content inside
each cluster can also be very beneficial to achieve a better
comprehension of the data. In this work we propose to align
all event’s song clips over time and we further use a quality
inference technique already presented in previous work to or-
der them in terms of their relative quality [7].

2. DATA ORGANISATION

Considering the abundant and ubiquitous nature of user-
generated content, it is very likely to deal with a database of
several different events (e.g. audio recordings of several con-
certs), in which each event has several recordings reporting
it (e.g. relative to a certain concert song). Our goal is then
to gather all song clips of a given event into the same cluster.
Our technique to group clips of a given event is based on them
having common excerpts of audio. Given the likely noisy and
time sparse nature of user-generated content (i.e. the different
recordings capture different parts of the event, with possible
overlaps), we need to use a technique that is resistant to noise
and at the same time can identify overlapping excerpts in
music recordings from the same event.

Audio fingerprinting enables synchronising a query song
sq against several other audio clips present in a formerly cre-
ated database, whilst being relatively resistant to noise. Note
that when we refer to a query song, we do not mean that we
are dealing with the whole song, instead, we are referring to
a portion of the whole song that has been recorded in an au-
dio clip. Section 2.1 explains in more detail why using audio
fingerprinting to characterise and compare the different audio



files (similarly to what already proposed in our previous work
[7]) is appropriate when dealing with possibly very noisy au-
dio files, which is likely to be experienced in the context of
our problem.

Once the audio fingerprints of the different audio files are
compared and possibly matched, we use this information to
identify overlapping excerpts and cluster our data into the dif-
ferent events. Section 2.2 takes a deeper look on how the
grouping of the different recorded clips is indeed achieved
and internally represented.

2.1. Audio Fingerprinting

The first step of our algorithm is to characterise the data with
audio fingerprints. Using a fingerprint to characterise each
recorded clip enables to efficiently represent and compare dif-
ferent clips, which is essential considering the vast occurrence
of user-generated data experienced nowadays. Since the gen-
eration of this fingerprint involves the direct usage, or a com-
bination of features from the audio signal, it is important to
pick the features that are the most representative and, to some
extent, invariant to distortion. Similarities between finger-
prints of different song clips lead to a match of the clips.

Our algorithm uses Cotton and Ellis’ landmark-based
audio fingerprinting algorithm1, which is based in the well-
known approach formerly proposed by Wang [3, 8]. A fin-
gerprint is composed of several landmarks, which in turn are
generated through the analysis of two frequency peaks with
high energy in a small period of time. More specifically, a
landmark is a pair of two peaks, and contains information
about each peak frequency, the time at which the first peak
occurred, and the time offset between them.

Given a query song sq , our algorithm uses the audio fin-
gerprints information to match it against the song clips s in
the database [7]. Since each audio clip’s fingerprints are a list
of landmarks, our algorithm considers that two song clips, sq
and s, contain the same audio excerpt if more than a certain
number of landmarks are equal in both of their fingerprints;
the threshold used is normally a small value (e.g. 5) since
wrong matches are unlikely. To discover the time offset be-
tween the two clips we simply need to analyse the time dif-
ference between the timestamp of the equal landmarks in sq
and s.

2.2. Audio Clustering

The second step of our algorithm is to organise the data into
clusters, such that the clips from the same event (i.e. from the
same whole music) are in the same cluster. This is achieved
using the information retrieved from the fingerprinting stage.
Moreover, since the different recordings will very likely be
in different ranges of quality, from extremely noisy to clean

1This landmark-based audio fingerprinting algorithm is available in
https://github.com/dpwe/audfprint.

recordings, audio fingerprinting permits the synchronisation
of the low-quality recordings against better quality recordings
in the database, conceivably in common audio portions that
might not be too affected by noise in the low-quality record-
ing.

In order to organise the audio clips in the database, we
match each clip to all the other ones present in the database,
ensuring all clips are tested against one another. In other
words, for each clip in the database we consider it as a query
song and use the fingerprints information to match it against
all other clips in the database. Since there may be multiple
clips for the same event (i.e., whole song) each query song
will likely have several song matches, that together compose
the matching list of the query song.

The fingerprints information is used to build a graph,G =
(V,E), with the nodes, V , representing all song clips in our
database and each edge in E representing a match between
two clips. Since each clip is represented by a node, we will
use the same name (s) to refer to song clip s and the node
that represents that clip. Moreover, each edge is assigned a
weight that consists of the offset (in seconds) between the two
connected clips. In other words, if edge (s1, s2, o12) ∈ E,
then there is a match between clips s1 and s2 with offset o12.
Isolated nodes in the graph represent clips that have an empty
matching list and that are not present in any of the other clips’
matching lists. Even though the analysis of the weights of
the paths is not necessary to performing the clustering, it will
be essential to perform the audio segmentation presented in
section 3.

The basis to detect and distribute the clips to the different
clusters resides in the notion that if there is a path between two
clips, then they should belong to the same cluster. This is an
adaptation of Kennedy and Naaman’s algorithm, that uses this
graph-based representation to detect different episodes inside
a given event [5].

3. AUDIO SEGMENTATION

Analysing how the different clips of each event are scattered
over each event’s timeline is of extreme importance to better
manage the different audio files. Therefore this section fo-
cuses on finding the time intervals (i.e. segments) in which the
different clips are distributed inside each cluster. An impor-
tant aspect of this synchronisation task is that it only requires
information already obtained from the audio fingerprinting al-
gorithm that was used to perform the clustering described in
section 2.

3.1. Audio Synchronisation

The offsets returned by the audio fingerprinting algorithm
were further used to perform the alignment of the audio clips.
This task uses the graph-based representation of our clips, G
described in section 2.2. As mentioned above, the weights



of the edges are the offset (returned by the audio fingerprint-
ing) between two clips. Following the paths in G, we can
derive the offsets between any two clips in the same cluster
by adding the weights in the path (i.e., by calculating the
cost of the path). It is important to notice that this only works
because if there is a positive edge in the graph connecting two
nodes, there is also a negative edge in the opposite direction.
We can then represent the offset oij between any two nodes
si and sj that are in the same cluster, as oij = cost(G, si, sj).

The actual way the synchronisation of all clips inside a
cluster is made is by electing a representative song clip and
by getting the offset of all the other clips relative to this one
(that is, oir for every song clip si in the cluster). Note that
the representative clip can be any of the cluster’s clips, since
all clips of a given event (cluster) are connected in the graph.
After all offsets are obtained, if the representative clip is not
the recording that has the earliest starting timestamp, the off-
set values are updated according to the clip with the earliest
timestamp (i.e. the clip that starts first in the event’s timeline).

We can define the earliest starting song clip se as the clip
with the minimum distance to the reference clip sr:

∀si∈V oer ≤ oir .

This minimum distance can either be 0, if the representative
song is indeed the earliest starting clip (since orr = 0), or a
negative number, if se starts before song sr. Afterwards, we
calculate all offsets oie.These can be obtained by adding the
value of oer to the previously calculated offsets oir:

∀si∈V oie = oir + oer

Using this approach, all offsets are greater or equal than
0 and correctly aligned in terms of their starting point along
the event’s timeline, since all offsets are now relative to the
earliest starting clip.

3.2. Time-based Segmentation

By having the overall offsets of all clips of a given cluster,
together with the duration of each clip, one has the knowledge
of which clips exist in a given moment of time. Thus, we can
organise an event with segments, such that segments coincide
with the time interval of overlapping clips.

The overall event’s timeline will be segmented into sev-
eral non-overlapping segments. Given all offsets oie (for all
si in the cluster), a new segment from time tstart to time
tend is created when one of the following situations occurs:
(1) A new song clip si starts at time tstart (oie = tstart).
(2) A clip si with duration d(si) ends at time tend (that is,
oie + d(si) = tend). As a consequence, whenever a new seg-
ment starts at tstart, there is a segment ending at tstart−1,
except when tstart = 0 meaning that it is the first segment of
that event.

The song clips can then be cut according to the times-
tamps of each of the segments they are part of. For instance,

if song s1 belongs to segment A and B, then the song is cut
into song s1A and s1B (s1 is equal to the concatenation of s1A
and s1B).

This information is encapsulated in a tuple that represents
a segment. The tuple contains an initial and final times-
tamp, and all clips that overlap between that period of time,
(tstart, tend, s1A, s2A, . . .). Each cluster, or event, is then
composed by several segments, that give information on
which clips are available in the different time intervals and
therefore at any moment of time in the event’s timeline.

3.3. Quality Inference

In previous work we proposed a method to infer the quality
of each song clip relative to all the other clips inside a given
cluster by analysing the sum of each clip’s number of match-
ing landmarks against the rest of the clips in the database [7].
This method can be further used to infer the quality of the
clips inside each segment by matching them using the audio
fingerprinting algorithm (that is, the algorithm is called once
more but with the clips within the segment and not all clips in
the database).

However, given the possible small time length of the seg-
ments, together with the possible small number of clips within
each segment, matches are less likely to happen. Thus, in-
creasing the number of landmarks by increasing the number
of landmarks/sec performed by the algorithm for each clip,
generates a higher number of matching landmarks between
different song clips and therefore increases the likeliness of
matches to occur.

Since the clusters were formed based on song clips with
common excerpts, and after the filtering of false matches that
will be presented in section 4, we can eliminate the match-
ing landmarks threshold leading a match to be declared even
with only 1 matching landmark between two clips. Since all
clips inside a segment are time-aligned, the expected offset
returned by the algorithm should be 0 seconds, meaning all
the other matching landmarks with different offsets can be
discarded and not considered for the clip’s quality score.

This quality inference step enables ultimately for song
clips to be ordered based on their relative quality inside each
segment. Thus, on top of having information to which clips
are available at a given time in the overall event’s timeline,
we now know how the different song clips inside the segment
relate in terms of their relative quality.

4. FILTERING METHOD

Even though unlikely, the probability of a false match be-
tween two clips from the audio fingerprinting algorithm is
still greater than 0. We propose a method to filter out such
false matches from the clusters.

In previous work, we proposed a filtering approach based
on the analysis of significant drops on the derivatives of the



percentage of matching landmarks between the query and
matched song relative to the overall number of the matched
clip’s landmarks [7]. Here, we present an alternative method
that uses machine learning to detect such false matches.

4.1. Feature Selection

Our samples, or feature vectors, are derived from the finger-
printing algorithm’s output, and every song is represented by
several samples. Each sample corresponds to a match re-
turned by the fingerprinting algorithm.

Given a query song sq , the fingerprinting algorithm re-
turns the following for every song si in the database: (1) the
number of landmarks, #Lsq , of the query song sq , (2) the off-
set between sq and si, that is oqi, (3) the number of matching
landmarks with offset oqi, which we call #MLoqi , and (4) the
number of total matching landmarks in all offsets, #TML.
Note that when a song is added to the database, the number of
landmarks computed for that song is also retrieved from the
algorithm, hence the number of landmarks of all songs are
known. Thus, (5) the number of landmarks , #Lsi , of song
si is also known. Since the actual value of the offset does not
directly influence if a match is correct or incorrect, it is not
considered to enter the feature space. However, all the other
referred features might be a good indicator of a false match.

The set of available and possibly relevant features, for
each pair (sq , si), is then the following:
F = {#MLoqi ,#TML,#Lsq ,#Lsi}. We tested our mod-
els with several subsets of F , more specifically:

• {#MLoqi ,#TML}
• {#MLoqi ,#TML,#Lsq}
• {#MLoqi ,#Lsq ,#Lsi}
• {#MLoqi ,#TML,#Lsq ,#Lsi}

Each one of our classifiers was trained with these features
subsets to access which combination generates the best
model.

4.2. Training Data

Since the goal of our models is to predict whether a sample is
a false match or a true match, there are only two classes: 0 and
1, respectively. False matches are incorrect matches. These
can be wrong matches, if the two matched songs do not have
any common audio excerpt, or repetition matches, if they
have indeed a common excerpt but the assigned offset is not
correct. The latter case can be easily detected as it happens
when a song si appears in the matching list of a query sq
several times with different offsets, described as repetitions.
In this case, the match offset (oqi) with the highest number of
matching landmarks is considered a true match (i.e., assigned
to class 1), whilst all other match offsets (o′qi, o

′′
qi, o

′′′
qi, . . .)

are considered false matches (i.e., assigned to class 0).

A dataset of 198 audio recording files, retrieved from
23 different concert songs from YouTube, was used as the
database of the audio fingerprinting algorithm, which corre-
sponded to an average of 8.6 different recordings per concert
song (i.e. event). This database generated 3098 matches,
which were used to train, validate, and test our models. From
these, there were 1071 true matches (class 1) and 2027 false
matches (class 0) from which 2021 were repetition matches
and 6 were wrong matches. Note that we balanced the train-
ing set every time a new model was trained (i.e. the number
of samples of class 0 was equal to the number of samples of
class 1).

4.3. Model Estimation

We used three different methods to solve this classification
problem: logistic regression, k-nearest neighbours (kNN),
and support vector machines (SVM). The purpose of using
different classifiers is to have a broader way of comparison
on how the different features used influence the outcome of
the overall predictions of the different methods.

Apart from trying different feature vectors, we also varied
the classifiers parameters. For logistic regression, we dou-
bled the value of the regularisation parameter c during 20 it-
erations (with its initial value being set to 1.0). We tried all
odd numbers between 1 and 39 for the number of neighbours
k in the kNN classifier. Regarding the SVM classifier, we
used the RBF kernel and the optimal values for c and γ were
obtained by executing an exhaustive search over all possible
combinations of a subset of possible values for each parame-
ter. For this we followed the methodology of using exponen-
tially growing sequences [4]. More specifically varying c to
the following values 2−5, 2−3, ... , 215, 217 and γ to 2−15,
2−13, ... , 23, 25. This searching process is often described
as Grid-search, and it returns the best value of each parameter
of a given model (i.e. the hypothesis that achieves the highest
accuracy).

We used double cross-validation to retrieve the model
with lowest validation error for each classifier (varying the
parameters as explained above): we start by performing
leave-one-song-out cross-validation, in which every song in
the training set except one are used to train the model with a
k-fold cross-validation, with k = 10, whilst the left-out song
is used to test the model; this process is then repeated until all
songs have been left-out and repeated in every combination of
possible parameters assigned for each classifier. The training
and validation error of each model is the average of the error
occurred in all the leave-one-song-out iterations, with the
accuracy of the model being tested on the overall predictions
of all left-out songs’ samples. Following these steps for all
designated ranges of possible values for the different classi-
fiers’ parameters, we assign the model with lowest validation
error in the 10-fold validation for each classifier as the most
suitable model.



4.4. Prediction Results

The accuracy results for each classifier is shown in fig-
ure 1. The SVM showed better results across the differ-
ent feature combinations (98.23%, 97.22%, 96.12%, and
97.68%, respectively) but was closely followed by the other
classifiers with the exception of logistic regression with
(#MLoqi ,#Lsq ,#Lsi), that achieved a considerably lower
accuracy (82.07%).

Fig. 1. Accuracy of the best models (i.e. with lowest validation
error) of each classifier for the different combination of features. The
parameter values are described inside each bar. The numbers placed
on top of each bar represent the number of false positives for each
model.

Despite their high accuracy, models that incorrectly clas-
sify wrong matches (false positives) have songs of different
events assigned to the same cluster, leading ultimately to the
merge of clusters of different events. Therefore, instead of
simply choosing the model with lowest validation error for
each classifier, we can discard all models that wrongly classi-
fied the wrong matches and choose the lower validation error
model of the remaining. Figure 2 shows the updated classi-
fiers results adding this constraint.

Even though the models’ accuracy slightly decreased, we
managed to find new models for kNN and SVM that satisfy
our condition of classifying wrong matches correctly (that
is, to class 0), whilst maintaining a high accuracy (97.12%
and 97.49%, respectively). The logistic regression models al-
ready presented in figure 1 remained intact since they had no
incorrect classifications of wrong matches, except when us-
ing the feature combination (#MLoqi ,#TML,#Lsq ), with
their accuracy of 97.40% for the first presented feature com-
bination, and 97.21% for the latter.

In sum, there is a slight advantage of considering only
the models with no incorrect classification of wrong matches
since their filtering is crucial in the proposed solution. We
managed to achieve high accuracy results with each of the
three classifiers. Using logistic regression and kNN with
(#MLoqi ,#TML), that is, the matching landmarks in the
right offset and the total number of matching landmarks in all

Fig. 2. The models that are missing in the grah incorrectly classi-
fied at least one wrong match. New models with different parameter
values were found for both kNN and SVM whilst respecting this
condition.

detected offsets, as well as using logistic regression and SVM
with the 4 feature-combination, would represent practically
viable options for the presented filtering approach.

5. LEARNING EXTENSION

The training set can be further expanded by the analysis of
the information retrieved from the audio fingerprint algorithm
combined with our model predictions. This extension can
occur in two stages: during the audio clustering phase (sec-
tion 2.2), and by the analysis of the matches between the cut
samples when performing the audio quality inference inside
each segment (section 3.3).

During the audio clustering phase, all repetition matches
(repetitions of a given matched song in another’s matching
list) can be added to the training set: the feature vectors of the
repetition matches are assigned to class 0. This is supported
by the assumption that since only one offset is possible be-
tween two songs, the correct offset is the one that generated
more matching landmarks, whilst the others are discarded.

The quality inference stage can serve as a confirmation
for some of the samples that were predicted as true matches
after the filtering method. Since all matches classified as
wrong matches are filtered in the Audio Clustering phase
(section 2.2), either by the discarding of the repetitions or
by false matches classifications, all the samples of the songs
present in the Audio Segmentation phase (section 3) were
therefore predicted as true matches by our model (i.e. as-
signed to class 1). Hence, after cutting each song according
to the different segments in which it appears, and by matching
all cut songs with one another inside a segment to infer the
quality, all matches should be assigned to offset 0.0 seconds
since all the cut songs are meant to be synchronised in time.

Let us define the function offset(s, S) as returning the set
of offset values of the different matches between song s and



each song in set S. Function count(A, v) retrieves the number
of occurrences of the real number v in set A, and TM(m)
assigns sample match m to class 1 in the training set. Then,
we can define the following expression for every cluster c:

∀t ∈ Tc ∀s ∈ St count(offset(s, St\{s}), 0) = ‖St\{s}‖
⇒ ∀m ∈Mc : TM(m)

where t is a segment in Tc, which in turn is the set of (time)
segments of cluster c, and St is the set of songs in segment t.
Mc is the set of all matches (i.e. samples) in that cluster.

To sum up, one can then assume that, if for each cut song
inside each cluster’s segments there is a match to each of the
other cut songs with offset of 0 seconds, then all samples that
previously contributed to the formation of that given cluster
are considered true matches and added to the training set with
their class assigned to 1.

6. CONCLUSION

In this work we propose different methods that manipulate
and correlate different user-generated recordings in a possi-
bly large dataset of audio files, contributing ultimately for a
better comprehension of the data. The basis of all presented
work relied upon the direct analysis of the information re-
trieved by the matches of the different audio files from the
audio fingerprinting algorithm.

Although using audio fingerprinting to organise different
audio files with common audio excerpts was initially pro-
posed by Kennedy and Naaman [5] and further extended in
our previous work [7], here we introduced a novel filtering
approach by using machine learning techniques and achieving
optimal filtering results (i.e. successfully filtering all wrong
matches) whilst also achieving high prediction accuracy in
our considerable large test setup (e.g. 97.49% using SVM
and 4 features). Moreover, we introduce the possibility of ex-
tending our learning by increasing the training set in different
possible stages, more concretely in the Audio Organisation
and Audio Segmentation phases, by the detection of repeti-
tions and by the analysis of the previous predictions.

We additionally proposed Audio Segmentation inside
each cluster/event which provides valuable insight on how the
different event’s audio files are correlated in terms of time.
This can be extremely useful since it provides the knowl-
edge of which audio files are available at a given moment of
time. Moreover, using a previously proposed audio inference
approach [7] with parameter adaptations in the audio finger-
printing algorithm, we also represent how the different audio
files relate in terms of their relative audio quality inside each
segment of a given cluster.
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Audio synchronisation output

This appendix exhibits the output file returned by the audio segmentation phase, con-

taining the different segments found for each cluster using the original 10-song dataset.

1 Cluster 1

2 00:00:0-00:20:0

3 sounds_cut/1/0.0/song2sample1.mp3 0

4 00:20:0-00:22:1

5 sounds_cut/1/20.0/song2sample5.mp3 0

6 sounds_cut/1/20.0/song2sample1.mp3 0

7 00:22:1-00:29:3

8 sounds_cut/1/22.1/song2sample1.mp3 0

9 sounds_cut/1/22.1/song2sample5.mp3 0

10 sounds_cut/1/22.1/song2sample7.mp3 0

11 00:29:3-00:32:0

12 sounds_cut/1/29.3/song2sample3.mp3 3.0

13 sounds_cut/1/29.3/song2sample1.mp3 2.0

14 sounds_cut/1/29.3/song2sample7.mp3 0

15 sounds_cut/1/29.3/song2sample5.mp3 0

16 00:32:0-00:38:0

17 sounds_cut/1/32.0/song2sample5.mp3 3.0

18 sounds_cut/1/32.0/song2sample1.mp3 2.0

19 sounds_cut/1/32.0/song2sample7.mp3 0

20 sounds_cut/1/32.0/song2sample8.mp3 0

21 sounds_cut/1/32.0/song2sample3.mp3 0

22 00:38:0-00:48:6

23 sounds_cut/1/38.0/song2sample8.mp3 16.0

24 sounds_cut/1/38.0/song2sample3.mp3 13.0

25 sounds_cut/1/38.0/song2sample5.mp3 9.0

26 sounds_cut/1/38.0/song2sample7.mp3 9.0

27 sounds_cut/1/38.0/song2sample1.mp3 8.0

28 sounds_cut/1/38.0/song2sample4.mp3 6.0
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APPENDIX B. AUDIO SYNCHRONISATION OUTPUT

29 00:48:6-00:58:0

30 sounds_cut/1/48.6/song2sample3.mp3 14.0

31 sounds_cut/1/48.6/song2sample4.mp3 6.0

32 sounds_cut/1/48.6/song2sample7.mp3 5.0

33 sounds_cut/1/48.6/song2sample2.mp3 4.0

34 sounds_cut/1/48.6/song2sample8.mp3 4.0

35 sounds_cut/1/48.6/song2sample5.mp3 2.0

36 sounds_cut/1/48.6/song2sample1.mp3 0

37 00:58:0-02:01:033

38 sounds_cut/1/58.0/song2sample3.mp3 132.0

39 sounds_cut/1/58.0/song2sample8.mp3 88.0

40 sounds_cut/1/58.0/song2sample6.mp3 83.0

41 sounds_cut/1/58.0/song2sample4.mp3 80.0

42 sounds_cut/1/58.0/song2sample5.mp3 73.0

43 sounds_cut/1/58.0/song2sample7.mp3 71.0

44 sounds_cut/1/58.0/song2sample2.mp3 56.0

45 sounds_cut/1/58.0/song2sample1.mp3 34.0

46 02:01:033-02:57:492

47 sounds_cut/1/121.033/song2sample3.mp3 107.0

48 sounds_cut/1/121.033/song2sample5.mp3 85.0

49 sounds_cut/1/121.033/song2sample7.mp3 83.0

50 sounds_cut/1/121.033/song2sample8.mp3 67.0

51 sounds_cut/1/121.033/song2sample4.mp3 50.0

52 sounds_cut/1/121.033/song2sample1.mp3 46.0

53 sounds_cut/1/121.033/song2sample2.mp3 31.0

54 02:57:492-03:06:567

55 sounds_cut/1/177.492/song2sample3.mp3 15.0

56 sounds_cut/1/177.492/song2sample8.mp3 8.0

57 sounds_cut/1/177.492/song2sample1.mp3 3.0

58 sounds_cut/1/177.492/song2sample7.mp3 2.0

59 sounds_cut/1/177.492/song2sample2.mp3 0

60 sounds_cut/1/177.492/song2sample4.mp3 0

61 03:06:567-03:07:376

62 sounds_cut/1/186.567/song2sample3.mp3 12.0

63 sounds_cut/1/186.567/song2sample4.mp3 10.0

64 sounds_cut/1/186.567/song2sample2.mp3 2.0

65 sounds_cut/1/186.567/song2sample8.mp3 0

66 sounds_cut/1/186.567/song2sample1.mp3 0

67 03:07:376-03:08:83

68 sounds_cut/1/187.376/song2sample3.mp3 9.0

69 sounds_cut/1/187.376/song2sample2.mp3 0

70 sounds_cut/1/187.376/song2sample4.mp3 0

71 sounds_cut/1/187.376/song2sample1.mp3 0

72 03:08:83-03:12:384

73 sounds_cut/1/188.83/song2sample1.mp3 0

74 sounds_cut/1/188.83/song2sample4.mp3 0

75 sounds_cut/1/188.83/song2sample2.mp3 0

76 03:12:384-03:15:095

77 sounds_cut/1/192.384/song2sample2.mp3 0

78 sounds_cut/1/192.384/song2sample1.mp3 0
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79 03:15:095-03:30:991

80 sounds_cut/1/195.095/song2sample1.mp3 0

81

82 Cluster 2

83 00:00:0-00:00:5

84 sounds_cut/2/0.0/song7sample2.mp3 0

85 00:00:5-00:13:0

86 sounds_cut/2/0.5/song7sample3.mp3 0

87 sounds_cut/2/0.5/song7sample2.mp3 0

88 00:13:0-00:18:9

89 sounds_cut/2/13.0/song7sample1.mp3 4.0

90 sounds_cut/2/13.0/song7sample3.mp3 0

91 sounds_cut/2/13.0/song7sample2.mp3 0

92 00:18:9-00:19:7

93 sounds_cut/2/18.9/song7sample5.mp3 0

94 sounds_cut/2/18.9/song7sample2.mp3 0

95 sounds_cut/2/18.9/song7sample1.mp3 0

96 sounds_cut/2/18.9/song7sample3.mp3 0

97 00:19:7-00:21:4

98 sounds_cut/2/19.7/song7sample4.mp3 0

99 sounds_cut/2/19.7/song7sample1.mp3 0

100 sounds_cut/2/19.7/song7sample3.mp3 0

101 sounds_cut/2/19.7/song7sample5.mp3 0

102 sounds_cut/2/19.7/song7sample2.mp3 0

103 00:21:4-00:39:5

104 sounds_cut/2/21.4/song7sample3.mp3 11.0

105 sounds_cut/2/21.4/song7sample4.mp3 4.0

106 sounds_cut/2/21.4/song7sample5.mp3 3.0

107 sounds_cut/2/21.4/song7sample1.mp3 2.0

108 sounds_cut/2/21.4/song7sample8.mp3 0

109 sounds_cut/2/21.4/song7sample2.mp3 0

110 00:39:5-00:41:5

111 sounds_cut/2/39.5/song7sample5.mp3 0

112 sounds_cut/2/39.5/song7sample2.mp3 0

113 sounds_cut/2/39.5/song7sample4.mp3 0

114 sounds_cut/2/39.5/song7sample6.mp3 0

115 sounds_cut/2/39.5/song7sample8.mp3 0

116 sounds_cut/2/39.5/song7sample1.mp3 0

117 sounds_cut/2/39.5/song7sample3.mp3 0

118 00:41:5-01:07:741

119 sounds_cut/2/41.5/song7sample1.mp3 88.0

120 sounds_cut/2/41.5/song7sample6.mp3 86.0

121 sounds_cut/2/41.5/song7sample4.mp3 74.0

122 sounds_cut/2/41.5/song7sample5.mp3 71.0

123 sounds_cut/2/41.5/song7sample7.mp3 55.0

124 sounds_cut/2/41.5/song7sample3.mp3 54.0

125 sounds_cut/2/41.5/song7sample8.mp3 43.0

126 sounds_cut/2/41.5/song7sample2.mp3 11.0

127 01:07:741-01:54:08

128 sounds_cut/2/67.741/song7sample3.mp3 126.0
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129 sounds_cut/2/67.741/song7sample6.mp3 123.0

130 sounds_cut/2/67.741/song7sample4.mp3 114.0

131 sounds_cut/2/67.741/song7sample5.mp3 104.0

132 sounds_cut/2/67.741/song7sample1.mp3 90.0

133 sounds_cut/2/67.741/song7sample7.mp3 69.0

134 sounds_cut/2/67.741/song7sample2.mp3 15.0

135 01:54:08-02:09:298

136 sounds_cut/2/114.08/song7sample3.mp3 38.0

137 sounds_cut/2/114.08/song7sample4.mp3 29.0

138 sounds_cut/2/114.08/song7sample7.mp3 26.0

139 sounds_cut/2/114.08/song7sample5.mp3 18.0

140 sounds_cut/2/114.08/song7sample1.mp3 9.0

141 sounds_cut/2/114.08/song7sample2.mp3 6.0

142 02:09:298-03:35:85

143 sounds_cut/2/129.298/song7sample3.mp3 185.0

144 sounds_cut/2/129.298/song7sample4.mp3 183.0

145 sounds_cut/2/129.298/song7sample5.mp3 160.0

146 sounds_cut/2/129.298/song7sample1.mp3 140.0

147 sounds_cut/2/129.298/song7sample2.mp3 33.0

148 03:35:85-04:32:706

149 sounds_cut/2/215.85/song7sample3.mp3 78.0

150 sounds_cut/2/215.85/song7sample4.mp3 69.0

151 sounds_cut/2/215.85/song7sample1.mp3 52.0

152 sounds_cut/2/215.85/song7sample5.mp3 44.0

153 04:32:706-04:34:812

154 sounds_cut/2/272.706/song7sample3.mp3 0

155 sounds_cut/2/272.706/song7sample4.mp3 0

156 sounds_cut/2/272.706/song7sample1.mp3 0

157 04:34:812-04:37:516

158 sounds_cut/2/274.812/song7sample4.mp3 0

159 sounds_cut/2/274.812/song7sample1.mp3 0

160 04:37:516-04:40:977

161 sounds_cut/2/277.516/song7sample4.mp3 0

162

163 Cluster 3

164 00:00:0-00:48:8

165 sounds_cut/3/0.0/song5sample4.mp3 0

166 00:48:8-00:49:8

167 sounds_cut/3/48.8/song5sample4.mp3 0

168 sounds_cut/3/48.8/song5sample1.mp3 0

169 00:49:8-01:06:3

170 sounds_cut/3/49.8/song5sample3.mp3 0

171 sounds_cut/3/49.8/song5sample1.mp3 0

172 sounds_cut/3/49.8/song5sample4.mp3 0

173 01:06:3-01:11:0

174 sounds_cut/3/66.3/song5sample4.mp3 4.0

175 sounds_cut/3/66.3/song5sample5.mp3 0

176 sounds_cut/3/66.3/song5sample1.mp3 0

177 sounds_cut/3/66.3/song5sample3.mp3 0

178 01:11:0-01:19:9
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179 sounds_cut/3/71.0/song5sample4.mp3 15.0

180 sounds_cut/3/71.0/song5sample2.mp3 13.0

181 sounds_cut/3/71.0/song5sample5.mp3 9.0

182 sounds_cut/3/71.0/song5sample1.mp3 2.0

183 sounds_cut/3/71.0/song5sample3.mp3 0

184 01:19:9-01:28:216

185 sounds_cut/3/79.9/song5sample2.mp3 20.0

186 sounds_cut/3/79.9/song5sample4.mp3 14.0

187 sounds_cut/3/79.9/song5sample5.mp3 6.0

188 sounds_cut/3/79.9/song5sample3.mp3 2.0

189 sounds_cut/3/79.9/song5sample6.mp3 0

190 sounds_cut/3/79.9/song5sample1.mp3 0

191 01:28:216-04:09:547

192 sounds_cut/3/88.216/song5sample5.mp3 176.0

193 sounds_cut/3/88.216/song5sample2.mp3 175.0

194 sounds_cut/3/88.216/song5sample1.mp3 97.0

195 sounds_cut/3/88.216/song5sample6.mp3 88.0

196 sounds_cut/3/88.216/song5sample3.mp3 0

197 04:09:547-04:13:79

198 sounds_cut/3/249.547/song5sample5.mp3 0

199 sounds_cut/3/249.547/song5sample1.mp3 0

200 sounds_cut/3/249.547/song5sample6.mp3 0

201 sounds_cut/3/249.547/song5sample3.mp3 0

202 04:13:79-04:15:871

203 sounds_cut/3/253.79/song5sample1.mp3 0

204 sounds_cut/3/253.79/song5sample6.mp3 0

205 sounds_cut/3/253.79/song5sample5.mp3 0

206 04:15:871-04:16:604

207 sounds_cut/3/255.871/song5sample6.mp3 0

208 sounds_cut/3/255.871/song5sample1.mp3 0

209 04:16:604-04:17:376

210 sounds_cut/3/256.604/song5sample6.mp3 0

211

212 Cluster 4

213 00:00:0-00:33:5

214 sounds_cut/4/0.0/song1sample6.mp3 0

215 00:33:5-00:50:2

216 sounds_cut/4/33.5/song1sample6.mp3 0

217 sounds_cut/4/33.5/song1sample1.mp3 0

218 00:50:2-01:10:6

219 sounds_cut/4/50.2/song1sample4.mp3 0

220 sounds_cut/4/50.2/song1sample1.mp3 0

221 sounds_cut/4/50.2/song1sample6.mp3 0

222 01:10:6-01:14:2

223 sounds_cut/4/70.6/song1sample5.mp3 0

224 sounds_cut/4/70.6/song1sample6.mp3 0

225 sounds_cut/4/70.6/song1sample4.mp3 0

226 sounds_cut/4/70.6/song1sample1.mp3 0

227 01:14:2-01:26:4

228 sounds_cut/4/74.2/song1sample12.mp3 0
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229 sounds_cut/4/74.2/song1sample5.mp3 0

230 sounds_cut/4/74.2/song1sample6.mp3 0

231 sounds_cut/4/74.2/song1sample4.mp3 0

232 sounds_cut/4/74.2/song1sample1.mp3 0

233 01:26:4-01:27:9

234 sounds_cut/4/86.4/song1sample4.mp3 0

235 sounds_cut/4/86.4/song1sample6.mp3 0

236 sounds_cut/4/86.4/song1sample5.mp3 0

237 sounds_cut/4/86.4/song1sample14.mp3 0

238 sounds_cut/4/86.4/song1sample1.mp3 0

239 sounds_cut/4/86.4/song1sample12.mp3 0

240 01:27:9-01:44:9

241 sounds_cut/4/87.9/song1sample1.mp3 16.0

242 sounds_cut/4/87.9/song1sample14.mp3 10.0

243 sounds_cut/4/87.9/song1sample4.mp3 10.0

244 sounds_cut/4/87.9/song1sample6.mp3 9.0

245 sounds_cut/4/87.9/song1sample5.mp3 7.0

246 sounds_cut/4/87.9/song1sample12.mp3 3.0

247 sounds_cut/4/87.9/song1sample7.mp3 0

248 01:44:9-01:46:9

249 sounds_cut/4/104.9/song1sample4.mp3 0

250 sounds_cut/4/104.9/song1sample6.mp3 0

251 sounds_cut/4/104.9/song1sample5.mp3 0

252 sounds_cut/4/104.9/song1sample12.mp3 0

253 sounds_cut/4/104.9/song1sample7.mp3 0

254 sounds_cut/4/104.9/song1sample14.mp3 0

255 sounds_cut/4/104.9/song1sample1.mp3 0

256 sounds_cut/4/104.9/song1sample11.mp3 0

257 01:46:9-01:47:7

258 sounds_cut/4/106.9/song1sample6.mp3 0

259 sounds_cut/4/106.9/song1sample4.mp3 0

260 sounds_cut/4/106.9/song1sample9.mp3 0

261 sounds_cut/4/106.9/song1sample7.mp3 0

262 sounds_cut/4/106.9/song1sample5.mp3 0

263 sounds_cut/4/106.9/song1sample1.mp3 0

264 sounds_cut/4/106.9/song1sample12.mp3 0

265 sounds_cut/4/106.9/song1sample14.mp3 0

266 sounds_cut/4/106.9/song1sample11.mp3 0

267 01:47:7-02:09:867

268 sounds_cut/4/107.7/song1sample4.mp3 39.0

269 sounds_cut/4/107.7/song1sample7.mp3 30.0

270 sounds_cut/4/107.7/song1sample9.mp3 29.0

271 sounds_cut/4/107.7/song1sample14.mp3 29.0

272 sounds_cut/4/107.7/song1sample1.mp3 22.0

273 sounds_cut/4/107.7/song1sample13.mp3 10.0

274 sounds_cut/4/107.7/song1sample6.mp3 7.0

275 sounds_cut/4/107.7/song1sample12.mp3 3.0

276 sounds_cut/4/107.7/song1sample11.mp3 0

277 sounds_cut/4/107.7/song1sample5.mp3 0

278 02:09:867-02:33:77

100



279 sounds_cut/4/129.867/song1sample9.mp3 24.0

280 sounds_cut/4/129.867/song1sample4.mp3 16.0

281 sounds_cut/4/129.867/song1sample13.mp3 11.0

282 sounds_cut/4/129.867/song1sample1.mp3 9.0

283 sounds_cut/4/129.867/song1sample6.mp3 9.0

284 sounds_cut/4/129.867/song1sample7.mp3 8.0

285 sounds_cut/4/129.867/song1sample14.mp3 6.0

286 sounds_cut/4/129.867/song1sample11.mp3 5.0

287 sounds_cut/4/129.867/song1sample5.mp3 0

288 02:33:77-02:34:2

289 sounds_cut/4/153.77/song1sample13.mp3 0

290 sounds_cut/4/153.77/song1sample11.mp3 0

291 sounds_cut/4/153.77/song1sample7.mp3 0

292 sounds_cut/4/153.77/song1sample5.mp3 0

293 sounds_cut/4/153.77/song1sample9.mp3 0

294 sounds_cut/4/153.77/song1sample6.mp3 0

295 sounds_cut/4/153.77/song1sample4.mp3 0

296 sounds_cut/4/153.77/song1sample1.mp3 0

297 02:34:2-02:37:7

298 sounds_cut/4/154.2/song1sample9.mp3 2.0

299 sounds_cut/4/154.2/song1sample4.mp3 0

300 sounds_cut/4/154.2/song1sample6.mp3 0

301 sounds_cut/4/154.2/song1sample5.mp3 0

302 sounds_cut/4/154.2/song1sample7.mp3 0

303 sounds_cut/4/154.2/song1sample1.mp3 0

304 sounds_cut/4/154.2/song1sample13.mp3 0

305 sounds_cut/4/154.2/song1sample8.mp3 0

306 sounds_cut/4/154.2/song1sample11.mp3 0

307 02:37:7-03:22:735

308 sounds_cut/4/157.7/song1sample9.mp3 78.0

309 sounds_cut/4/157.7/song1sample4.mp3 58.0

310 sounds_cut/4/157.7/song1sample6.mp3 57.0

311 sounds_cut/4/157.7/song1sample2.mp3 38.0

312 sounds_cut/4/157.7/song1sample8.mp3 31.0

313 sounds_cut/4/157.7/song1sample13.mp3 25.0

314 sounds_cut/4/157.7/song1sample7.mp3 22.0

315 sounds_cut/4/157.7/song1sample1.mp3 20.0

316 sounds_cut/4/157.7/song1sample11.mp3 15.0

317 sounds_cut/4/157.7/song1sample5.mp3 8.0

318 03:22:735-03:23:728

319 sounds_cut/4/202.735/song1sample8.mp3 0

320 sounds_cut/4/202.735/song1sample9.mp3 0

321 sounds_cut/4/202.735/song1sample7.mp3 0

322 sounds_cut/4/202.735/song1sample5.mp3 0

323 sounds_cut/4/202.735/song1sample11.mp3 0

324 sounds_cut/4/202.735/song1sample13.mp3 0

325 sounds_cut/4/202.735/song1sample6.mp3 0

326 sounds_cut/4/202.735/song1sample1.mp3 0

327 sounds_cut/4/202.735/song1sample4.mp3 0

328 03:23:728-03:24:5
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329 sounds_cut/4/203.728/song1sample13.mp3 0

330 sounds_cut/4/203.728/song1sample9.mp3 0

331 sounds_cut/4/203.728/song1sample6.mp3 0

332 sounds_cut/4/203.728/song1sample4.mp3 0

333 sounds_cut/4/203.728/song1sample1.mp3 0

334 sounds_cut/4/203.728/song1sample7.mp3 0

335 sounds_cut/4/203.728/song1sample11.mp3 0

336 sounds_cut/4/203.728/song1sample5.mp3 0

337 03:24:5-03:45:8

338 sounds_cut/4/204.5/song1sample9.mp3 30.0

339 sounds_cut/4/204.5/song1sample3.mp3 23.0

340 sounds_cut/4/204.5/song1sample13.mp3 22.0

341 sounds_cut/4/204.5/song1sample6.mp3 18.0

342 sounds_cut/4/204.5/song1sample5.mp3 15.0

343 sounds_cut/4/204.5/song1sample7.mp3 14.0

344 sounds_cut/4/204.5/song1sample4.mp3 10.0

345 sounds_cut/4/204.5/song1sample11.mp3 0

346 sounds_cut/4/204.5/song1sample1.mp3 0

347 03:45:8-04:17:747

348 sounds_cut/4/225.8/song1sample9.mp3 56.0

349 sounds_cut/4/225.8/song1sample3.mp3 50.0

350 sounds_cut/4/225.8/song1sample13.mp3 34.0

351 sounds_cut/4/225.8/song1sample15.mp3 30.0

352 sounds_cut/4/225.8/song1sample7.mp3 17.0

353 sounds_cut/4/225.8/song1sample4.mp3 16.0

354 sounds_cut/4/225.8/song1sample1.mp3 13.0

355 sounds_cut/4/225.8/song1sample11.mp3 12.0

356 sounds_cut/4/225.8/song1sample6.mp3 10.0

357 sounds_cut/4/225.8/song1sample5.mp3 0

358 04:17:747-04:27:309

359 sounds_cut/4/257.747/song1sample5.mp3 0

360 sounds_cut/4/257.747/song1sample15.mp3 0

361 sounds_cut/4/257.747/song1sample7.mp3 0

362 sounds_cut/4/257.747/song1sample4.mp3 0

363 sounds_cut/4/257.747/song1sample1.mp3 0

364 sounds_cut/4/257.747/song1sample6.mp3 0

365 sounds_cut/4/257.747/song1sample3.mp3 0

366 sounds_cut/4/257.747/song1sample11.mp3 0

367 sounds_cut/4/257.747/song1sample9.mp3 0

368 04:27:309-05:18:916

369 sounds_cut/4/267.309/song1sample9.mp3 18.0

370 sounds_cut/4/267.309/song1sample6.mp3 16.0

371 sounds_cut/4/267.309/song1sample7.mp3 14.0

372 sounds_cut/4/267.309/song1sample1.mp3 13.0

373 sounds_cut/4/267.309/song1sample11.mp3 11.0

374 sounds_cut/4/267.309/song1sample5.mp3 8.0

375 sounds_cut/4/267.309/song1sample3.mp3 6.0

376 sounds_cut/4/267.309/song1sample4.mp3 0

377 05:18:916-05:19:458

378 sounds_cut/4/318.916/song1sample7.mp3 0
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379 sounds_cut/4/318.916/song1sample5.mp3 0

380 sounds_cut/4/318.916/song1sample6.mp3 0

381 sounds_cut/4/318.916/song1sample4.mp3 0

382 sounds_cut/4/318.916/song1sample1.mp3 0

383 sounds_cut/4/318.916/song1sample9.mp3 0

384 sounds_cut/4/318.916/song1sample11.mp3 0

385 05:19:458-05:19:893

386 sounds_cut/4/319.458/song1sample11.mp3 0

387 sounds_cut/4/319.458/song1sample5.mp3 0

388 sounds_cut/4/319.458/song1sample7.mp3 0

389 sounds_cut/4/319.458/song1sample4.mp3 0

390 sounds_cut/4/319.458/song1sample1.mp3 0

391 sounds_cut/4/319.458/song1sample6.mp3 0

392 05:19:893-05:20:679

393 sounds_cut/4/319.893/song1sample5.mp3 0

394 sounds_cut/4/319.893/song1sample1.mp3 0

395 sounds_cut/4/319.893/song1sample4.mp3 0

396 sounds_cut/4/319.893/song1sample11.mp3 0

397 sounds_cut/4/319.893/song1sample6.mp3 0

398 05:20:679-05:21:134

399 sounds_cut/4/320.679/song1sample11.mp3 0

400 sounds_cut/4/320.679/song1sample5.mp3 0

401 sounds_cut/4/320.679/song1sample1.mp3 0

402 sounds_cut/4/320.679/song1sample4.mp3 0

403 05:21:134-05:26:182

404 sounds_cut/4/321.134/song1sample11.mp3 0

405 sounds_cut/4/321.134/song1sample5.mp3 0

406 sounds_cut/4/321.134/song1sample4.mp3 0

407 05:26:182-05:26:262

408 sounds_cut/4/326.182/song1sample11.mp3 0

409 sounds_cut/4/326.182/song1sample4.mp3 0

410 05:26:262-05:31:956

411 sounds_cut/4/326.262/song1sample11.mp3 0

412

413 Cluster 5

414 00:00:0-00:12:4

415 sounds_cut/5/0.0/song10sample1.mp3 0

416 00:12:4-00:19:7

417 sounds_cut/5/12.4/song10sample2.mp3 0

418 sounds_cut/5/12.4/song10sample1.mp3 0

419 00:19:7-00:27:5

420 sounds_cut/5/19.7/song10sample1.mp3 0

421 sounds_cut/5/19.7/song10sample11.mp3 0

422 sounds_cut/5/19.7/song10sample2.mp3 0

423 00:27:5-00:31:2

424 sounds_cut/5/27.5/song10sample1.mp3 0

425 sounds_cut/5/27.5/song10sample11.mp3 0

426 sounds_cut/5/27.5/song10sample8.mp3 0

427 sounds_cut/5/27.5/song10sample2.mp3 0

428 00:31:2-00:41:3

103



APPENDIX B. AUDIO SYNCHRONISATION OUTPUT

429 sounds_cut/5/31.2/song10sample2.mp3 8.0

430 sounds_cut/5/31.2/song10sample1.mp3 7.0

431 sounds_cut/5/31.2/song10sample8.mp3 3.0

432 sounds_cut/5/31.2/song10sample11.mp3 0

433 sounds_cut/5/31.2/song10sample10.mp3 0

434 00:41:3-01:16:9

435 sounds_cut/5/41.3/song10sample2.mp3 41.0

436 sounds_cut/5/41.3/song10sample1.mp3 24.0

437 sounds_cut/5/41.3/song10sample11.mp3 12.0

438 sounds_cut/5/41.3/song10sample10.mp3 11.0

439 sounds_cut/5/41.3/song10sample8.mp3 8.0

440 sounds_cut/5/41.3/song10sample7.mp3 2.0

441 01:16:9-01:26:9

442 sounds_cut/5/76.9/song10sample1.mp3 11.0

443 sounds_cut/5/76.9/song10sample2.mp3 6.0

444 sounds_cut/5/76.9/song10sample3.mp3 5.0

445 sounds_cut/5/76.9/song10sample8.mp3 3.0

446 sounds_cut/5/76.9/song10sample10.mp3 2.0

447 sounds_cut/5/76.9/song10sample11.mp3 0

448 sounds_cut/5/76.9/song10sample7.mp3 0

449 01:26:9-01:50:5

450 sounds_cut/5/86.9/song10sample1.mp3 50.0

451 sounds_cut/5/86.9/song10sample2.mp3 47.0

452 sounds_cut/5/86.9/song10sample10.mp3 36.0

453 sounds_cut/5/86.9/song10sample9.mp3 36.0

454 sounds_cut/5/86.9/song10sample8.mp3 24.0

455 sounds_cut/5/86.9/song10sample3.mp3 21.0

456 sounds_cut/5/86.9/song10sample7.mp3 9.0

457 sounds_cut/5/86.9/song10sample11.mp3 5.0

458 01:50:5-02:13:53

459 sounds_cut/5/110.5/song10sample1.mp3 96.0

460 sounds_cut/5/110.5/song10sample9.mp3 71.0

461 sounds_cut/5/110.5/song10sample3.mp3 68.0

462 sounds_cut/5/110.5/song10sample2.mp3 58.0

463 sounds_cut/5/110.5/song10sample10.mp3 55.0

464 sounds_cut/5/110.5/song10sample6.mp3 46.0

465 sounds_cut/5/110.5/song10sample8.mp3 37.0

466 sounds_cut/5/110.5/song10sample11.mp3 27.0

467 sounds_cut/5/110.5/song10sample7.mp3 15.0

468 02:13:53-03:10:3

469 sounds_cut/5/133.53/song10sample1.mp3 309.0

470 sounds_cut/5/133.53/song10sample8.mp3 212.0

471 sounds_cut/5/133.53/song10sample9.mp3 171.0

472 sounds_cut/5/133.53/song10sample3.mp3 127.0

473 sounds_cut/5/133.53/song10sample6.mp3 115.0

474 sounds_cut/5/133.53/song10sample10.mp3 71.0

475 sounds_cut/5/133.53/song10sample7.mp3 47.0

476 sounds_cut/5/133.53/song10sample11.mp3 43.0

477 03:10:3-03:26:0

478 sounds_cut/5/190.3/song10sample1.mp3 26.0
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479 sounds_cut/5/190.3/song10sample9.mp3 20.0

480 sounds_cut/5/190.3/song10sample3.mp3 8.0

481 sounds_cut/5/190.3/song10sample8.mp3 6.0

482 sounds_cut/5/190.3/song10sample6.mp3 4.0

483 sounds_cut/5/190.3/song10sample10.mp3 2.0

484 sounds_cut/5/190.3/song10sample7.mp3 0

485 sounds_cut/5/190.3/song10sample5.mp3 0

486 sounds_cut/5/190.3/song10sample11.mp3 0

487 03:26:0-04:34:364

488 sounds_cut/5/206.0/song10sample9.mp3 108.0

489 sounds_cut/5/206.0/song10sample1.mp3 96.0

490 sounds_cut/5/206.0/song10sample3.mp3 68.0

491 sounds_cut/5/206.0/song10sample6.mp3 59.0

492 sounds_cut/5/206.0/song10sample4.mp3 54.0

493 sounds_cut/5/206.0/song10sample5.mp3 27.0

494 sounds_cut/5/206.0/song10sample10.mp3 26.0

495 sounds_cut/5/206.0/song10sample11.mp3 23.0

496 sounds_cut/5/206.0/song10sample7.mp3 18.0

497 sounds_cut/5/206.0/song10sample8.mp3 12.0

498 04:34:364-04:55:44

499 sounds_cut/5/274.364/song10sample1.mp3 46.0

500 sounds_cut/5/274.364/song10sample9.mp3 28.0

501 sounds_cut/5/274.364/song10sample4.mp3 24.0

502 sounds_cut/5/274.364/song10sample3.mp3 22.0

503 sounds_cut/5/274.364/song10sample10.mp3 11.0

504 sounds_cut/5/274.364/song10sample11.mp3 10.0

505 sounds_cut/5/274.364/song10sample8.mp3 2.0

506 sounds_cut/5/274.364/song10sample5.mp3 0

507 sounds_cut/5/274.364/song10sample6.mp3 0

508 04:55:44-04:58:056

509 sounds_cut/5/295.44/song10sample6.mp3 0

510 sounds_cut/5/295.44/song10sample4.mp3 0

511 sounds_cut/5/295.44/song10sample5.mp3 0

512 sounds_cut/5/295.44/song10sample10.mp3 0

513 sounds_cut/5/295.44/song10sample11.mp3 0

514 sounds_cut/5/295.44/song10sample9.mp3 0

515 sounds_cut/5/295.44/song10sample1.mp3 0

516 sounds_cut/5/295.44/song10sample8.mp3 0

517 04:58:056-04:58:238

518 sounds_cut/5/298.056/song10sample8.mp3 0

519 sounds_cut/5/298.056/song10sample9.mp3 0

520 sounds_cut/5/298.056/song10sample5.mp3 0

521 sounds_cut/5/298.056/song10sample11.mp3 0

522 sounds_cut/5/298.056/song10sample10.mp3 0

523 sounds_cut/5/298.056/song10sample1.mp3 0

524 sounds_cut/5/298.056/song10sample6.mp3 0

525 04:58:238-05:21:192

526 sounds_cut/5/298.238/song10sample1.mp3 65.0

527 sounds_cut/5/298.238/song10sample6.mp3 37.0

528 sounds_cut/5/298.238/song10sample9.mp3 24.0
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529 sounds_cut/5/298.238/song10sample10.mp3 14.0

530 sounds_cut/5/298.238/song10sample11.mp3 11.0

531 sounds_cut/5/298.238/song10sample8.mp3 0

532 05:21:192-05:44:261

533 sounds_cut/5/321.192/song10sample1.mp3 7.0

534 sounds_cut/5/321.192/song10sample6.mp3 4.0

535 sounds_cut/5/321.192/song10sample10.mp3 3.0

536 sounds_cut/5/321.192/song10sample8.mp3 0

537 sounds_cut/5/321.192/song10sample11.mp3 0

538 05:44:261-05:59:893

539 sounds_cut/5/344.261/song10sample10.mp3 0

540 sounds_cut/5/344.261/song10sample1.mp3 0

541 sounds_cut/5/344.261/song10sample6.mp3 0

542 sounds_cut/5/344.261/song10sample11.mp3 0

543 05:59:893-06:01:388

544 sounds_cut/5/359.893/song10sample1.mp3 0

545 sounds_cut/5/359.893/song10sample10.mp3 0

546 sounds_cut/5/359.893/song10sample6.mp3 0

547 06:01:388-06:04:985

548 sounds_cut/5/361.388/song10sample1.mp3 3.0

549 sounds_cut/5/361.388/song10sample6.mp3 0

550 06:04:985-06:11:592

551 sounds_cut/5/364.985/song10sample1.mp3 0

552

553 Cluster 6

554 00:00:0-00:04:3

555 sounds_cut/6/0.0/song9sample1.mp3 0

556 00:04:3-00:11:3

557 sounds_cut/6/4.3/song9sample1.mp3 0

558 sounds_cut/6/4.3/song9sample4.mp3 0

559 00:11:3-00:18:3

560 sounds_cut/6/11.3/song9sample4.mp3 5.0

561 sounds_cut/6/11.3/song9sample5.mp3 0

562 sounds_cut/6/11.3/song9sample1.mp3 0

563 00:18:3-00:48:8

564 sounds_cut/6/18.3/song9sample5.mp3 53.0

565 sounds_cut/6/18.3/song9sample3.mp3 40.0

566 sounds_cut/6/18.3/song9sample4.mp3 28.0

567 sounds_cut/6/18.3/song9sample1.mp3 11.0

568 00:48:8-01:40:769

569 sounds_cut/6/48.8/song9sample3.mp3 57.0

570 sounds_cut/6/48.8/song9sample5.mp3 48.0

571 sounds_cut/6/48.8/song9sample2.mp3 43.0

572 sounds_cut/6/48.8/song9sample4.mp3 41.0

573 sounds_cut/6/48.8/song9sample1.mp3 32.0

574 01:40:769-04:40:832

575 sounds_cut/6/100.769/song9sample5.mp3 172.0

576 sounds_cut/6/100.769/song9sample4.mp3 161.0

577 sounds_cut/6/100.769/song9sample2.mp3 107.0

578 sounds_cut/6/100.769/song9sample1.mp3 72.0
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579 04:40:832-04:40:924

580 sounds_cut/6/280.832/song9sample2.mp3 0

581 sounds_cut/6/280.832/song9sample5.mp3 0

582 sounds_cut/6/280.832/song9sample1.mp3 0

583 04:40:924-04:45:283

584 sounds_cut/6/280.924/song9sample1.mp3 0

585 sounds_cut/6/280.924/song9sample5.mp3 0

586 04:45:283-04:47:362

587 sounds_cut/6/285.283/song9sample5.mp3 0

588

589 Cluster 7

590 00:00:0-01:12:4

591 sounds_cut/7/0.0/song8sample7.mp3 0

592 01:12:4-01:56:1

593 sounds_cut/7/72.4/song8sample7.mp3 0

594 sounds_cut/7/72.4/song8sample8.mp3 0

595 01:56:1-04:52:6

596 sounds_cut/7/116.1/song8sample7.mp3 44.0

597 sounds_cut/7/116.1/song8sample8.mp3 29.0

598 sounds_cut/7/116.1/song8sample3.mp3 23.0

599 04:52:6-05:09:8

600 sounds_cut/7/292.6/song8sample1.mp3 7.0

601 sounds_cut/7/292.6/song8sample3.mp3 6.0

602 sounds_cut/7/292.6/song8sample8.mp3 0

603 sounds_cut/7/292.6/song8sample7.mp3 0

604 05:09:8-05:28:4

605 sounds_cut/7/309.8/song8sample2.mp3 13.0

606 sounds_cut/7/309.8/song8sample7.mp3 5.0

607 sounds_cut/7/309.8/song8sample3.mp3 2.0

608 sounds_cut/7/309.8/song8sample8.mp3 0

609 sounds_cut/7/309.8/song8sample1.mp3 0

610 05:28:4-05:53:6

611 sounds_cut/7/328.4/song8sample3.mp3 33.0

612 sounds_cut/7/328.4/song8sample7.mp3 26.0

613 sounds_cut/7/328.4/song8sample6.mp3 22.0

614 sounds_cut/7/328.4/song8sample2.mp3 22.0

615 sounds_cut/7/328.4/song8sample8.mp3 21.0

616 sounds_cut/7/328.4/song8sample1.mp3 17.0

617 05:53:6-07:01:4

618 sounds_cut/7/353.6/song8sample2.mp3 117.0

619 sounds_cut/7/353.6/song8sample8.mp3 108.0

620 sounds_cut/7/353.6/song8sample1.mp3 102.0

621 sounds_cut/7/353.6/song8sample3.mp3 87.0

622 sounds_cut/7/353.6/song8sample7.mp3 67.0

623 sounds_cut/7/353.6/song8sample6.mp3 65.0

624 sounds_cut/7/353.6/song8sample5.mp3 0

625 07:01:4-07:47:63

626 sounds_cut/7/421.4/song8sample2.mp3 88.0

627 sounds_cut/7/421.4/song8sample6.mp3 70.0

628 sounds_cut/7/421.4/song8sample8.mp3 68.0
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629 sounds_cut/7/421.4/song8sample3.mp3 54.0

630 sounds_cut/7/421.4/song8sample1.mp3 53.0

631 sounds_cut/7/421.4/song8sample7.mp3 45.0

632 sounds_cut/7/421.4/song8sample4.mp3 30.0

633 sounds_cut/7/421.4/song8sample5.mp3 0

634 07:47:63-08:23:137

635 sounds_cut/7/467.63/song8sample6.mp3 43.0

636 sounds_cut/7/467.63/song8sample2.mp3 33.0

637 sounds_cut/7/467.63/song8sample8.mp3 26.0

638 sounds_cut/7/467.63/song8sample4.mp3 17.0

639 sounds_cut/7/467.63/song8sample7.mp3 8.0

640 sounds_cut/7/467.63/song8sample1.mp3 7.0

641 sounds_cut/7/467.63/song8sample5.mp3 0

642 08:23:137-10:06:317

643 sounds_cut/7/503.137/song8sample8.mp3 150.0

644 sounds_cut/7/503.137/song8sample6.mp3 133.0

645 sounds_cut/7/503.137/song8sample5.mp3 133.0

646 sounds_cut/7/503.137/song8sample2.mp3 128.0

647 sounds_cut/7/503.137/song8sample1.mp3 80.0

648 sounds_cut/7/503.137/song8sample7.mp3 77.0

649 10:06:317-10:08:98

650 sounds_cut/7/606.317/song8sample5.mp3 0

651 sounds_cut/7/606.317/song8sample8.mp3 0

652 sounds_cut/7/606.317/song8sample7.mp3 0

653 sounds_cut/7/606.317/song8sample2.mp3 0

654 sounds_cut/7/606.317/song8sample1.mp3 0

655 10:08:98-10:10:653

656 sounds_cut/7/608.98/song8sample1.mp3 0

657 sounds_cut/7/608.98/song8sample7.mp3 0

658 sounds_cut/7/608.98/song8sample8.mp3 0

659 sounds_cut/7/608.98/song8sample5.mp3 0

660 10:10:653-10:11:869

661 sounds_cut/7/610.653/song8sample1.mp3 0

662 sounds_cut/7/610.653/song8sample5.mp3 0

663 sounds_cut/7/610.653/song8sample7.mp3 0

664 10:11:869-10:17:273

665 sounds_cut/7/611.869/song8sample5.mp3 0

666 sounds_cut/7/611.869/song8sample7.mp3 0

667 10:17:273-11:11:275

668 sounds_cut/7/617.273/song8sample5.mp3 0

669

670 Cluster 8

671 00:00:0-00:06:0

672 sounds_cut/8/0.0/song4sample1.mp3 0

673 00:06:0-00:06:9

674 sounds_cut/8/6.0/song4sample7.mp3 0

675 sounds_cut/8/6.0/song4sample1.mp3 0

676 00:06:9-00:12:5

677 sounds_cut/8/6.9/song4sample1.mp3 0

678 sounds_cut/8/6.9/song4sample6.mp3 0
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679 sounds_cut/8/6.9/song4sample7.mp3 0

680 00:12:5-00:14:5

681 sounds_cut/8/12.5/song4sample1.mp3 3.0

682 sounds_cut/8/12.5/song4sample6.mp3 0

683 sounds_cut/8/12.5/song4sample8.mp3 0

684 sounds_cut/8/12.5/song4sample7.mp3 0

685 00:14:5-00:18:2

686 sounds_cut/8/14.5/song4sample6.mp3 0

687 sounds_cut/8/14.5/song4sample1.mp3 0

688 sounds_cut/8/14.5/song4sample7.mp3 0

689 sounds_cut/8/14.5/song4sample8.mp3 0

690 sounds_cut/8/14.5/song4sample9.mp3 0

691 00:18:2-00:23:1

692 sounds_cut/8/18.2/song4sample6.mp3 0

693 sounds_cut/8/18.2/song4sample1.mp3 0

694 sounds_cut/8/18.2/song4sample4.mp3 0

695 sounds_cut/8/18.2/song4sample7.mp3 0

696 sounds_cut/8/18.2/song4sample8.mp3 0

697 sounds_cut/8/18.2/song4sample9.mp3 0

698 00:23:1-00:40:3

699 sounds_cut/8/23.1/song4sample9.mp3 14.0

700 sounds_cut/8/23.1/song4sample4.mp3 10.0

701 sounds_cut/8/23.1/song4sample8.mp3 9.0

702 sounds_cut/8/23.1/song4sample1.mp3 8.0

703 sounds_cut/8/23.1/song4sample5.mp3 5.0

704 sounds_cut/8/23.1/song4sample7.mp3 2.0

705 sounds_cut/8/23.1/song4sample6.mp3 0

706 00:40:3-01:51:562

707 sounds_cut/8/40.3/song4sample1.mp3 113.0

708 sounds_cut/8/40.3/song4sample3.mp3 71.0

709 sounds_cut/8/40.3/song4sample9.mp3 67.0

710 sounds_cut/8/40.3/song4sample8.mp3 63.0

711 sounds_cut/8/40.3/song4sample4.mp3 60.0

712 sounds_cut/8/40.3/song4sample6.mp3 53.0

713 sounds_cut/8/40.3/song4sample7.mp3 44.0

714 sounds_cut/8/40.3/song4sample5.mp3 43.0

715 01:51:562-01:53:051

716 sounds_cut/8/111.562/song4sample6.mp3 0

717 sounds_cut/8/111.562/song4sample7.mp3 0

718 sounds_cut/8/111.562/song4sample5.mp3 0

719 sounds_cut/8/111.562/song4sample9.mp3 0

720 sounds_cut/8/111.562/song4sample3.mp3 0

721 sounds_cut/8/111.562/song4sample1.mp3 0

722 sounds_cut/8/111.562/song4sample8.mp3 0

723 01:53:051-01:56:498

724 sounds_cut/8/113.051/song4sample6.mp3 2.0

725 sounds_cut/8/113.051/song4sample9.mp3 0

726 sounds_cut/8/113.051/song4sample8.mp3 0

727 sounds_cut/8/113.051/song4sample5.mp3 0

728 sounds_cut/8/113.051/song4sample7.mp3 0
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729 sounds_cut/8/113.051/song4sample1.mp3 0

730 01:56:498-02:43:4

731 sounds_cut/8/116.498/song4sample1.mp3 18.0

732 sounds_cut/8/116.498/song4sample9.mp3 18.0

733 sounds_cut/8/116.498/song4sample8.mp3 16.0

734 sounds_cut/8/116.498/song4sample5.mp3 14.0

735 sounds_cut/8/116.498/song4sample6.mp3 13.0

736 02:43:4-02:58:0

737 sounds_cut/8/163.4/song4sample8.mp3 22.0

738 sounds_cut/8/163.4/song4sample9.mp3 21.0

739 sounds_cut/8/163.4/song4sample1.mp3 18.0

740 sounds_cut/8/163.4/song4sample5.mp3 11.0

741 sounds_cut/8/163.4/song4sample6.mp3 8.0

742 sounds_cut/8/163.4/song4sample2.mp3 0

743 02:58:0-03:38:516

744 sounds_cut/8/178.0/song4sample9.mp3 99.0

745 sounds_cut/8/178.0/song4sample5.mp3 83.0

746 sounds_cut/8/178.0/song4sample11.mp3 79.0

747 sounds_cut/8/178.0/song4sample6.mp3 77.0

748 sounds_cut/8/178.0/song4sample1.mp3 74.0

749 sounds_cut/8/178.0/song4sample8.mp3 70.0

750 sounds_cut/8/178.0/song4sample2.mp3 34.0

751 03:38:516-03:48:971

752 sounds_cut/8/218.516/song4sample9.mp3 23.0

753 sounds_cut/8/218.516/song4sample8.mp3 11.0

754 sounds_cut/8/218.516/song4sample2.mp3 9.0

755 sounds_cut/8/218.516/song4sample1.mp3 4.0

756 sounds_cut/8/218.516/song4sample5.mp3 0

757 sounds_cut/8/218.516/song4sample6.mp3 0

758 03:48:971-03:49:238

759 sounds_cut/8/228.971/song4sample6.mp3 0

760 sounds_cut/8/228.971/song4sample1.mp3 0

761 sounds_cut/8/228.971/song4sample2.mp3 0

762 sounds_cut/8/228.971/song4sample8.mp3 0

763 sounds_cut/8/228.971/song4sample9.mp3 0

764 03:49:238-04:15:847

765 sounds_cut/8/229.238/song4sample9.mp3 15.0

766 sounds_cut/8/229.238/song4sample1.mp3 15.0

767 sounds_cut/8/229.238/song4sample6.mp3 14.0

768 sounds_cut/8/229.238/song4sample2.mp3 4.0

769 04:15:847-04:16:474

770 sounds_cut/8/255.847/song4sample1.mp3 0

771 sounds_cut/8/255.847/song4sample6.mp3 0

772 sounds_cut/8/255.847/song4sample9.mp3 0

773 04:16:474-05:37:87

774 sounds_cut/8/256.474/song4sample1.mp3 31.0

775 sounds_cut/8/256.474/song4sample9.mp3 21.0

776 05:37:87-05:45:469

777 sounds_cut/8/337.87/song4sample1.mp3 0

778

110



779 Cluster 9

780 00:00:0-00:01:3

781 sounds_cut/9/0.0/song6sample6.mp3 0

782 00:01:3-00:04:6

783 sounds_cut/9/1.3/song6sample6.mp3 0

784 sounds_cut/9/1.3/song6sample1.mp3 0

785 00:04:6-00:10:7

786 sounds_cut/9/4.6/song6sample5.mp3 3.0

787 sounds_cut/9/4.6/song6sample1.mp3 3.0

788 sounds_cut/9/4.6/song6sample6.mp3 0

789 00:10:7-00:27:7

790 sounds_cut/9/10.7/song6sample5.mp3 14.0

791 sounds_cut/9/10.7/song6sample1.mp3 14.0

792 sounds_cut/9/10.7/song6sample6.mp3 10.0

793 sounds_cut/9/10.7/song6sample4.mp3 3.0

794 00:27:7-00:42:7

795 sounds_cut/9/27.7/song6sample4.mp3 7.0

796 sounds_cut/9/27.7/song6sample6.mp3 7.0

797 sounds_cut/9/27.7/song6sample5.mp3 3.0

798 sounds_cut/9/27.7/song6sample10.mp3 3.0

799 sounds_cut/9/27.7/song6sample1.mp3 0

800 00:42:7-01:40:2

801 sounds_cut/9/42.7/song6sample11.mp3 63.0

802 sounds_cut/9/42.7/song6sample5.mp3 48.0

803 sounds_cut/9/42.7/song6sample1.mp3 46.0

804 sounds_cut/9/42.7/song6sample10.mp3 31.0

805 sounds_cut/9/42.7/song6sample4.mp3 18.0

806 sounds_cut/9/42.7/song6sample6.mp3 17.0

807 01:40:2-01:44:3

808 sounds_cut/9/100.2/song6sample11.mp3 12.0

809 sounds_cut/9/100.2/song6sample10.mp3 6.0

810 sounds_cut/9/100.2/song6sample5.mp3 4.0

811 sounds_cut/9/100.2/song6sample6.mp3 2.0

812 sounds_cut/9/100.2/song6sample1.mp3 2.0

813 sounds_cut/9/100.2/song6sample4.mp3 2.0

814 sounds_cut/9/100.2/song6sample3.mp3 0

815 01:44:3-01:48:9

816 sounds_cut/9/104.3/song6sample11.mp3 13.0

817 sounds_cut/9/104.3/song6sample1.mp3 4.0

818 sounds_cut/9/104.3/song6sample10.mp3 4.0

819 sounds_cut/9/104.3/song6sample3.mp3 3.0

820 sounds_cut/9/104.3/song6sample6.mp3 2.0

821 sounds_cut/9/104.3/song6sample5.mp3 0

822 sounds_cut/9/104.3/song6sample8.mp3 0

823 sounds_cut/9/104.3/song6sample4.mp3 0

824 01:48:9-01:51:2

825 sounds_cut/9/108.9/song6sample11.mp3 5.0

826 sounds_cut/9/108.9/song6sample7.mp3 4.0

827 sounds_cut/9/108.9/song6sample10.mp3 3.0

828 sounds_cut/9/108.9/song6sample3.mp3 2.0
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829 sounds_cut/9/108.9/song6sample6.mp3 0

830 sounds_cut/9/108.9/song6sample4.mp3 0

831 sounds_cut/9/108.9/song6sample1.mp3 0

832 sounds_cut/9/108.9/song6sample8.mp3 0

833 sounds_cut/9/108.9/song6sample5.mp3 0

834 01:51:2-02:20:063

835 sounds_cut/9/111.2/song6sample7.mp3 83.0

836 sounds_cut/9/111.2/song6sample1.mp3 72.0

837 sounds_cut/9/111.2/song6sample3.mp3 71.0

838 sounds_cut/9/111.2/song6sample11.mp3 69.0

839 sounds_cut/9/111.2/song6sample5.mp3 67.0

840 sounds_cut/9/111.2/song6sample6.mp3 67.0

841 sounds_cut/9/111.2/song6sample2.mp3 60.0

842 sounds_cut/9/111.2/song6sample10.mp3 60.0

843 sounds_cut/9/111.2/song6sample4.mp3 23.0

844 sounds_cut/9/111.2/song6sample8.mp3 0

845 02:20:063-02:31:533

846 sounds_cut/9/140.063/song6sample7.mp3 59.0

847 sounds_cut/9/140.063/song6sample11.mp3 42.0

848 sounds_cut/9/140.063/song6sample1.mp3 40.0

849 sounds_cut/9/140.063/song6sample6.mp3 30.0

850 sounds_cut/9/140.063/song6sample10.mp3 28.0

851 sounds_cut/9/140.063/song6sample5.mp3 26.0

852 sounds_cut/9/140.063/song6sample2.mp3 22.0

853 sounds_cut/9/140.063/song6sample4.mp3 10.0

854 sounds_cut/9/140.063/song6sample8.mp3 8.0

855 02:31:533-02:58:772

856 sounds_cut/9/151.533/song6sample1.mp3 75.0

857 sounds_cut/9/151.533/song6sample7.mp3 70.0

858 sounds_cut/9/151.533/song6sample6.mp3 69.0

859 sounds_cut/9/151.533/song6sample5.mp3 64.0

860 sounds_cut/9/151.533/song6sample11.mp3 57.0

861 sounds_cut/9/151.533/song6sample10.mp3 42.0

862 sounds_cut/9/151.533/song6sample4.mp3 36.0

863 sounds_cut/9/151.533/song6sample8.mp3 28.0

864 02:58:772-04:07:3

865 sounds_cut/9/178.772/song6sample7.mp3 277.0

866 sounds_cut/9/178.772/song6sample1.mp3 241.0

867 sounds_cut/9/178.772/song6sample6.mp3 219.0

868 sounds_cut/9/178.772/song6sample5.mp3 174.0

869 sounds_cut/9/178.772/song6sample10.mp3 158.0

870 sounds_cut/9/178.772/song6sample8.mp3 24.0

871 sounds_cut/9/178.772/song6sample4.mp3 4.0

872 04:07:3-04:33:617

873 sounds_cut/9/247.3/song6sample5.mp3 47.0

874 sounds_cut/9/247.3/song6sample7.mp3 47.0

875 sounds_cut/9/247.3/song6sample1.mp3 39.0

876 sounds_cut/9/247.3/song6sample10.mp3 32.0

877 sounds_cut/9/247.3/song6sample6.mp3 24.0

878 sounds_cut/9/247.3/song6sample8.mp3 10.0
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879 sounds_cut/9/247.3/song6sample9.mp3 10.0

880 sounds_cut/9/247.3/song6sample4.mp3 0

881 04:33:617-05:03:491

882 sounds_cut/9/273.617/song6sample5.mp3 43.0

883 sounds_cut/9/273.617/song6sample7.mp3 34.0

884 sounds_cut/9/273.617/song6sample9.mp3 22.0

885 sounds_cut/9/273.617/song6sample6.mp3 15.0

886 sounds_cut/9/273.617/song6sample1.mp3 14.0

887 sounds_cut/9/273.617/song6sample8.mp3 4.0

888 sounds_cut/9/273.617/song6sample4.mp3 0

889 05:03:491-05:14:409

890 sounds_cut/9/303.491/song6sample7.mp3 16.0

891 sounds_cut/9/303.491/song6sample9.mp3 11.0

892 sounds_cut/9/303.491/song6sample5.mp3 3.0

893 sounds_cut/9/303.491/song6sample1.mp3 2.0

894 sounds_cut/9/303.491/song6sample8.mp3 0

895 sounds_cut/9/303.491/song6sample4.mp3 0

896 05:14:409-06:03:902

897 sounds_cut/9/314.409/song6sample7.mp3 35.0

898 sounds_cut/9/314.409/song6sample5.mp3 35.0

899 sounds_cut/9/314.409/song6sample1.mp3 29.0

900 sounds_cut/9/314.409/song6sample8.mp3 0

901 sounds_cut/9/314.409/song6sample4.mp3 0

902 06:03:902-06:31:63

903 sounds_cut/9/363.902/song6sample7.mp3 14.0

904 sounds_cut/9/363.902/song6sample1.mp3 10.0

905 sounds_cut/9/363.902/song6sample5.mp3 7.0

906 sounds_cut/9/363.902/song6sample8.mp3 5.0

907 06:31:63-06:36:717

908 sounds_cut/9/391.63/song6sample1.mp3 0

909 sounds_cut/9/391.63/song6sample7.mp3 0

910 sounds_cut/9/391.63/song6sample8.mp3 0

911 06:36:717-06:48:313

912 sounds_cut/9/396.717/song6sample1.mp3 0

913 sounds_cut/9/396.717/song6sample8.mp3 0

914 06:48:313-07:11:955

915 sounds_cut/9/408.313/song6sample1.mp3 0

916

917 Cluster 10

918 00:00:0-00:10:6

919 sounds_cut/10/0.0/song3sample1.mp3 0

920 00:10:6-00:10:7

921 sounds_cut/10/10.6/song3sample1.mp3 0

922 sounds_cut/10/10.6/song3sample6.mp3 0

923 00:10:7-00:13:8

924 sounds_cut/10/10.7/song3sample2.mp3 0

925 sounds_cut/10/10.7/song3sample6.mp3 0

926 sounds_cut/10/10.7/song3sample1.mp3 0

927 00:13:8-00:16:3

928 sounds_cut/10/13.8/song3sample2.mp3 0
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929 sounds_cut/10/13.8/song3sample3.mp3 0

930 sounds_cut/10/13.8/song3sample6.mp3 0

931 sounds_cut/10/13.8/song3sample1.mp3 0

932 00:16:3-00:18:1

933 sounds_cut/10/16.3/song3sample1.mp3 0

934 sounds_cut/10/16.3/song3sample3.mp3 0

935 sounds_cut/10/16.3/song3sample6.mp3 0

936 sounds_cut/10/16.3/song3sample7.mp3 0

937 sounds_cut/10/16.3/song3sample2.mp3 0

938 00:18:1-01:01:0

939 sounds_cut/10/18.1/song3sample6.mp3 29.0

940 sounds_cut/10/18.1/song3sample1.mp3 25.0

941 sounds_cut/10/18.1/song3sample7.mp3 16.0

942 sounds_cut/10/18.1/song3sample4.mp3 16.0

943 sounds_cut/10/18.1/song3sample2.mp3 15.0

944 sounds_cut/10/18.1/song3sample3.mp3 12.0

945 01:01:0-02:03:746

946 sounds_cut/10/61.0/song3sample1.mp3 141.0

947 sounds_cut/10/61.0/song3sample3.mp3 124.0

948 sounds_cut/10/61.0/song3sample6.mp3 118.0

949 sounds_cut/10/61.0/song3sample2.mp3 83.0

950 sounds_cut/10/61.0/song3sample4.mp3 78.0

951 sounds_cut/10/61.0/song3sample5.mp3 74.0

952 sounds_cut/10/61.0/song3sample7.mp3 62.0

953 02:03:746-04:00:909

954 sounds_cut/10/123.746/song3sample2.mp3 206.0

955 sounds_cut/10/123.746/song3sample6.mp3 199.0

956 sounds_cut/10/123.746/song3sample1.mp3 191.0

957 sounds_cut/10/123.746/song3sample3.mp3 157.0

958 sounds_cut/10/123.746/song3sample4.mp3 143.0

959 sounds_cut/10/123.746/song3sample7.mp3 133.0

960 04:00:909-04:30:775

961 sounds_cut/10/240.909/song3sample1.mp3 49.0

962 sounds_cut/10/240.909/song3sample6.mp3 40.0

963 sounds_cut/10/240.909/song3sample7.mp3 24.0

964 sounds_cut/10/240.909/song3sample2.mp3 18.0

965 sounds_cut/10/240.909/song3sample4.mp3 13.0

966 04:30:775-04:32:507

967 sounds_cut/10/270.775/song3sample7.mp3 0

968 sounds_cut/10/270.775/song3sample6.mp3 0

969 sounds_cut/10/270.775/song3sample4.mp3 0

970 sounds_cut/10/270.775/song3sample1.mp3 0

971 04:32:507-04:35:173

972 sounds_cut/10/272.507/song3sample6.mp3 0

973 sounds_cut/10/272.507/song3sample1.mp3 0

974 sounds_cut/10/272.507/song3sample7.mp3 0

975 04:35:173-04:35:357

976 sounds_cut/10/275.173/song3sample1.mp3 0

977 sounds_cut/10/275.173/song3sample6.mp3 0

978 04:35:357-04:37:519
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979 sounds_cut/10/275.357/song3sample6.mp3 0

Listing B.1: Output clusters’ segments file representing the different segments of each

cluster. Each segment contains the file paths of the different files it contains, ordered by

their quality scores (presented on the right end of each path).
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