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Abstract

We examine the effect of natural resources on the social and political fabric of low-
income communities. We combine geospatial data on mining activity with household
surveys we conducted in Northern Mozambique. We find that mines decrease the level
of trust, especially in neighbors, local and national leaders. In the same direction,
households living in mining areas contribute less to public goods. A significant negative
effect on participation to local community groups only emerges when using matching
methods. On the political side, mineral endowments lead to institutional degradation in
the form of lower level of democratic decision-making in the community, lower preference
for democratic decisions by the households and increased corruption in the allocation
of public funds, which suggest rent-seeking behavior of both the political elite and the
population. We also document weak evidence of violence within and around mining
areas. These results unveil the presence of both social and political mechanisms behind
the natural resource curse and call for carefully monitoring the ongoing expansion of
the extractive industries in Africa.
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1 Introduction

Since the dawn of time, the discovery of valuable natural resources, such as oil, gas, or

minerals, has attracted the desire and longing of human beings, who see in those assets a fast

and easy path to prosperity. However, resource-rich regions have been repeatedly shown to

enjoy lower growth rates than resource-poor ones. In particular, in countries with a fragile

institutional framework, natural resource abundance turns out to be a curse, rather than a

blessing, for their economic and institutional prospects.

In this paper, we contend that the existing literature misses to discern between different

mechanisms and channels through which natural resource wealth may be deleterious for

underdeveloped economies. We aim to partially fill this gap by exploring how individual

behavior relates to resource riches at the microeconomic level. Using observational cross-

sectional data allows us to draw stronger inferences in comparison to cross-country variations,

which may suffer of omitted variable bias and within-country unobserved heterogeneity.

In our work, we investigate the effect of natural resources, namely mineral assets, on

the social and political fabric of low-income communities. In particular, we examine the

impact of mines on a wide range of outcomes, such as trust, social capital, democracy in

local institutions, demand for political accountability, and rent-seeking behavior.1

We use household surveys we conducted in Cabo Delgado, Northern Mozambique. Cabo

Delgado is a province with substantial natural resource endowments, which have started to be

exploited only recently. Its subsoil hides many valuable assets, which may prove to be crucial

(or prejudicial) to its future economic development. According to Foreign Policy, the district

of Montepuez is thought to hold some 40 percent of the world’s known supply of ruby, one of

the most precious colored gemstones.2 Also reserves of gold, graphite and marble are present

in the region. This makes of Cabo Delgado an ideal context for investigating the interplay

between society, politics and valuable natural assets in economically and institutionally weak

1Ross (1999) critically explained the prevalence of economic theories regarding the problems related to
natural resources with �the failure of political scientists to carefully test their own theories� (p. 297). To
some extent, our paper aims to address this deficiency.

2See two reportages on the discovery of the allegedly largest ruby deposit in the world and the spi-
ral of violence that has arisen, especially against local villagers and illegal miners, in the areas con-
cerned, here http://foreignpolicy.com/2016/05/03/the-blood-rubies-of-montepuez-mozambique-

gemfields-illegal-mining/ and here https://www.youtube.com/watch?v=-wRNT5dl0pw&t=261s.
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communities. Moreover, we argue that our findings may apply to several African regions,

which share with Cabo Delgado similar features in terms of poverty, quality of institutions,

and recent discovery of natural resources.

We estimate OLS regressions on several survey outcomes of interest, both from the social

and political sphere. In particular, we distinguish the heterogeneous effect in areas with

ongoing mineral exploration from the one in sites already subject to extraction activity. As

robustness checks, we apply matching methods, we interact the main explanatory variable

with migration, in order to control for household selection to mining areas, we vary the

geographic unit of observation, and we restrict the sample to bordering locations.3 We also

employ alternative behavioral measures as a way to reduce measurement error bias stemming

from self-reported survey data.

We find that mines decrease the level of trust, especially in neighbors, local and na-

tional leaders. This confirms the so-called “Pearl Hypothesis” (Kolstad and Wiig, 2012),

according to which windfall gains and increased stakes may trigger greed and undermine co-

operative behavior and norms.4 In the same direction, contribution to public goods decreases

with mines.5 A significant negative effect on participation to local community groups only

emerges when using matching methods. On the political side, mining areas are associated

with institutional degradation in the form of lower level of democratic decision-making in the

community and lower preference for democratic decisions by the households, which suggest

rent-seeking behavior of both the political elite and the citizenry, as predicted by theoretical

models of Robinson et al. (2006) and Tornell and Lane (1999). We also find an increase in

corruption in the allocation of public funds in line with empirical evidence by Vicente (2010)

and Knutsen et al. (2017). Finally, more violent events are reported within and in the imme-

diate proximity to mining areas: this finding tallies with empirical evidence by Couttenier et

al. (2017), who document interpersonal violence as a dimension of the resource curse.

The remainder of the paper is organized as follows. Section 2 provides a brief literature

review on the “natural resource curse”, with a particular emphasis on studies on mines.

3Further sensitivity analysis is shown in the Annex.
4Johansson-Stenman et al. (2005) present experimental evidence that increasing stakes significantly de-

crease money sent in trust games.
5A similar finding was also reached by Couttenier and Sangnier (2015), who document that mineral

resources foster individualism.
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Section 3 describes the data collection and structure. Section 4 presents the estimation

strategy, and Section 5 reports the main econometric results and the related sensitivity tests.

Section 6 concludes by suggesting some policy implications arising from our findings.

2 Literature Review

Over the last years, economists and development practitioners alike have been more and

more interested about natural resources. This concern arose from the first osbervation of

a negative correlation between economic growth and the ratio of natural resource exports

to GDP, in Sachs and Warner’s (1995) seminal cross-country study. Many theoretical hy-

potheses were raised in order to explain the “natural resource curse”, defined by Caselli and

Cunningham (2009) as a decrease in income following a resource boom. The initial attempt

was purely economic: resource discoveries lead to a boom in the resource sector matched

by a decline in the primary and manufacturing sectors through an appreciation of the real

exchange rate (i.e., imports become cheaper and make tradable goods less competitive in

international markets). Deindustrialization is then likely to have negative externalities on

the whole economy, especially in the aftermath of an adverse shock.6

Later studies suggested that the key issue is political (Auty, 2001; Mehlum et al., 2006;

Cabrales and Hauk, 2011): institutional arrangements are decisive for the existence of a curse

as they determine the extent to which politicians and entrepreneurs find attractive to spe-

cialize in renting. In particular, scholars have divided between centralized and decentralized

theories of rent-seeking. According to the former type of models, political elites react to

resource booms by decreasing their propensity to share resources and increasing their invest-

ment in patronage in order to hold on to power (Robinson et al., 2006). Moreover, resource

revenues allow “rentier governments” to escape accountability and thwart democratization

by providing low tax rates (Ross, 2001). On the other hand, resource discoveries make rent-

seeking more attractive also for private agents and thus diminish the number of entrepreneurs

running a productive business.7

6The “Dutch Disease” model dates back at least to Corden and Neary (1982). Further contributions were
made by Van Wijnbergen (1984), Krugman (1987), Gylfason et al. (1999), Torvik (2001).

7See Tornell and Lane (1999) for the so-called “voracity effect”; Baland and Francois (2000) and Torvik
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These theoretical mechanisms have been supported by empirical evidence. Leite and Wei-

dmann (1999) study cross-country variations in corruption and find a negative association

with natural resource abundance. Drawing on panel data, Bhattacharyya and Hodler (2010)

contend that this relationship depends on the quality of democratic institutions. Vicente

(2010) exploits oil discovery announcements in São Tomé and Pŕıncipe, as a natural ex-

periment, documenting increases in perceived corruption in a variety of public services and

allocations. Monteiro and Ferraz (2010) and Caselli and Michaels (2013) use geographic vari-

ation in oil windfalls among Brazilian municipalities and present some evidence of patronage

spending, rent sharing and embezzlement by top municipal officials following resource booms.

Other research has investigated the adverse consequences of natural riches on democratic

institutions. Ross (2001) finds that oil wealth hinders democracy and nurtures autocratic rule

in poor countries. Jensen and Wantchekon (2004) also associate natural resource dependence

to authoritarianism, higher levels of government spending and worse governance. Using

information on dictators, Crespo Cuaresma et al. (2011) indicate that oil endowment is

related with higher duration in power of autocratic leaders, while Andersen and Aslaksen

(2013) show that natural resources support political stability and survival of intermediate

and autocratic regimes. On the contrary, Haber and Menaldo (2011) do not find any long-

run relationship between resource reliance and regime type within countries over time.

Natural riches have also been linked to violence.8 A growing body of literature, both

theoretical and empirical, presents evidence that natural resources raise the risk of conflict

by making rebellion financially feasible for the fighting groups, by raising the rent that can

be captured through the control of the state, by providing incentives for separatism of ethnic

minorities, by hindering the formation of state capacity, and by provoking grievances.9 More

recent studies associate natural resource endowments with surges in violence by focusing on

particular countries, e.g., Colombia (Dube and Vargas, 2013) and the Democratic Republic

of Congo (Maystadt et al., 2014; Sánchez de la Sierra, 2017).

While most of the economic literature has focused on oil, diamonds, or aggregate measures

(2002) for alternative approaches to rent-seeking.
8This strand of research was pioneered by Collier and Hoeffler (2004), who find primary commodities to

be the single most powerful predictor of the outbreak of civil wars.
9A relevant survey of the literature can be found in Ross (2015).
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of natural resources, the recent availability of large datasets on the mining sector has allowed

researchers to empirically explore the impact of nonfuel mineral discovery and mines opening

on the political and economic fabric of developing countries. Although early evidence by

Davis (1995) suggested that the resource curse did not concern mineral-based economies,

later studies found less optimistic results. The emergence (and persistence) of the Sicilian

Mafia have been attributed to abundance in sulfur, Sicily’s most valuable export commodity

(Buonanno et al., 2015). Using Afrobarometer surveys, Knutsen et al. (2017) find that

extraction activity increases bribe payments and that mining locations turn more corrupt

after the opening of industrial mines. Berman et al. (2017) combine information on conflict

events with georeferenced data on mining activity for all Africa and find that mines fuel

armed fighting at the local level and across territory and time. The latter two studies are the

ones that relate more closely to our paper as they use georeferenced local level data in order

to explore subnational heterogeneity. Yet, the main singularity of our approach consists in

employing a wide range of cross-sectional survey and behavioral measures.

3 Data Description

The data we use in this paper come from household surveys that were conducted by field

teams, recruited and trained by the author and colleagues, in Cabo Delgado during the period

5 August to 17 September 2016. The survey was administered to 2070 households, in 207

enumeration areas.10

We combine our surveys with geospatial data on mining areas. Namely, we employ the

Mozambique Mining Cadastre Portal, which is developed by the Mozambique Ministry of

Mineral Resources (MIREM) and Trimble Land Administration, in partnership with the

Extractive Industries Transparency Initiative (EITI), �in order to improve transparency and

promote investment in the Mozambique mining sector�.11 It provides location and shape of

10For information about the main research project behind the data collection, visit http:

//novafrica.org/research/on-the-mechanics-of-the-natural-resource-curse-information-

and-local-elite-behavior-in-mozambique/ or http://www.theigc.org/project/on-the-mechanics-

of-the-political-resource-curse-behavioural-measurements-of-information-and-local-elite-

behaviour-in-mozambique/.
11The database is publicly visible at http://portals.flexicadastre.com/Mozambique/EN/. MIREM

owns the intellectual property rights to the data.
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every area on which mineral tenure and state mining contracts are enforced, in the whole

Mozambican territory. This, in turn, allows us to identify whether a household from our

sample lives, or not, in any of these areas and to create a “mining” dummy variable that will

serve us as main explanatory variable in the regression analysis.

3.1 Sampling

The data collection process employed a standard two-stage sampling design, which al-

lows us to have a representative sample of households of Cabo Delgado. First, we randomly

selected 205 communities, which include rural villages and urban neighborhoods, in Cabo Del-

gado province.12 Communities were identified by the corresponding catchment area of polling

places, which were registered in both 2009 and 2014 Mozambique general elections.13 Sur-

veys were randomly submitted to 10 adults in each community: we stratified on households,

by choosing one adult per household, and followed a “random walk” sampling procedure.

Namely, enumerators departed from the center of the village, which was often the polling

location itself (typically, a primary school or meeting room), and headed in 5 different direc-

tions.14 Households were then sought following an interval that was previously determined

based on the registered voting population of each enumeration area, in order to guarantee an

equal likelihood of visit to all households within the enumeration area, independently from

their position in the village. Each selected subject was required to be the household head,

to be 18 years or older, and to be available for an interview in the following year.15 If one of

these conditions was not fulfilled, enumerators moved to the next house.16

12The sample we use in the paper is of 207 enumeration areas because 2 more communities were accidentally
surveyed and then substituted with the correct locations. Results are robust to the exclusion of these
enumeration areas.

13These data were provided by the Technical Secretariat for Election Management (STAE) of the National
Electoral Commission (CNE) of Mozambique. The decision of selecting polling places, which existed in both
elections, is explained by the fact that they are more likely to exist also in the future elections; this, in turn,
makes it more likely that we obtain electoral data from the same communities for further research.

14The fieldwork was carried out by 4 teams, each with 5 enumerators and one supervisor (26 enumer-
ators in total). These teams were contemporaneously distributed across the 16 districts of Cabo Delgado,
excluding Ibo island. The surveys were submitted in the local dialect (Makua, Makonde, or Mwani) or in
Portuguese, and the answers were recorded mainly using tablets. In addition, field operations were assisted
and coordinated by the author or by other colleagues mentioned in the acknowledgments.

15The latter requirement is explained by the fact that this survey will serve as baseline for a randomized
control trial (RCT). Therefore, post-treatment surveys will seek the same respondents as the baseline.

16Only 97 invited households did not meet the required conditions.
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Moreover, a community survey was administered to a group of people that typically

included the political establishment of the village and other available respondents, who con-

tended to know in great detail the history and the characteristics of the community. This

survey allows us to detect the presence of a wide range of public infrastructures and services

(school, electricity and water supply, sewage, etc.), which we will use as enumeration area

controls in the main regressions.

3.2 Survey Design

The survey was tailored to measure aspirations, trust, social capital, democracy in local

institutions, demand for political accountability, and rent-seeking behavior. Most of the

questions use a subjective scale (e.g., 0 to 3 for trust): interviewers referred to this scale by

using precise language qualifiers (e.g., ‘Not at all’, ‘a little’, ‘yes’, ‘a lot’) but never mentioned

the underlying numerical scale. Some questions were asked following a two-stage iterative

process in order to elicit the attitudes or preferences of the respondent with more accuracy.

First, the enumerator employed the basic scale options 1-2, 3, and 4-5 (e.g., ‘disagree’ 1-2,

‘neither disagree nor agree’ 3, ‘agree’ 4-5); after the interviewee had chosen one of these

options, the interviewer, in the first and last cases, asked about the two different alternatives

within the class previously identified by the interviewee (respectively, ‘strongly disagree’ or

‘partly disagree’, and ‘partly agree’ or ‘strongly agree’).

We standardize survey-question measures, by subtracting the mean and dividing by the

standard deviation, in order to compute z-scores. Thus, we combine them in summary

indices by taking the equally weighted average of the normalized variables, with the sign of

each component oriented consistently with the corresponding index label.17 As suggested by

Kling et al. (2007), this aggregation implies significant gains in statistical power to detect

effects that go in the same direction within a domain. We prefer this methodology to other

techniques for building composite indices, such as principal component analysis, since it

allows us to be more transparent about the index construction, namely about the weight

given to each survey question.18 Moreover, the magnitude of the effects on z-score indices

17Please refer to Table A1 in the Annex for the construction of each index that we employ as dependent
variable in the next section.

18The baseline results shown in Section 5 are robust to using principal component analysis indices. All
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are comparable across outcomes, as they are expressed in standard deviation units.

3.3 Behavioral Measures

We also collected behavioral measures of participation, cooperation, and power of the

village chief in the communities.19 In particular, we designed a “contribution game” in all

the enumeration areas of our sample. A community meeting was organized in order to decide

about the collection of a fund to be used for small-scale community improvements. If the

community decided to gather a fund, it would be assigned an extra value equal to half of

the amount collected.20 The field teams took note about the participation of the population

to the activity, the preference for contribution by the leader and the citizens, the formation

of the decision during the meeting, and the final decision. Particular attention was given to

the behavior of the village chief and to the level of discussion during the meeting. As with

survey questions, we standardize behavioral measures and create a battery of z-score indices,

which are analyzed in the robustness section.21

4 Estimation Strategy

In this section, we describe our estimation strategy regarding the impact of mines on a

set of social and political attitudes measured through survey and behavioral measures. We

begin with the following multiple OLS regression,

yild = α + β ×mineild + W ′
dδ + Z ′

ldλ+ X ′
ildγ + εild (1)

where y is the outcome of interest (trust, social capital, democracy, corruption, violence), i, l, d

are identifiers of individual/household, enumeration area and district, mineild is a dummy

coefficients have the same direction and significance with the exception of contribution at the intensive margin,
which is not statistically significant at the 10% level, because of the large number of missing values in this
variable (see Tables A7-A8 in the Annex).

19These data were collected during the treatment of the RCT, mentioned in Footnote 10, between 31
March and 30 April 2017.

20The amount collected was kept by a committee of villagers. The field team would go back to the
community in order to deliver the bonus. The maximum value of this bonus was set to 2,500 MZN, i.e., 39.05
USD, per village.

21The composition of these indices is summarized in Table A2 in the Annex.
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variable equal to one if the household lives in a mining area and zero otherwise, W ′
d is a

vector of 16 district dummies, Z ′
ld is a vector of enumeration area characteristics and X ′

ild

of socio-demographic individual characteristics. εild is the error term. Our coefficient of

interest is β, which represents the effect of mines on the dependent variable. As we are using

z-score indices as explained variables, we obtain the average effect for the family of outcomes

instead of for each selected outcome.22 Standard errors are clustered at the enumeration area

– in all OLS regressions presented in the remainder of the paper – in order to accommodate

correlation within each cluster.

The structure of the geospatial data we employ allows us to differentiate between the

effect of mining areas where the extraction is already under way and locations where only the

exploration process (prospection or recognition) has started.23 Thus, we distinguish between

two more rigorous specifications of the variable mine in order to disclose heterogeneous effects

arising from the presence of different mining licenses in the community.

5 Econometric Results

5.1 Descriptive Statistics

Descriptive statistics on a wide variety of characteristics are depicted in Table A5. 73.4%

of the interviewed population was male, due to the sampling method we used, which required

the respondent to be the head of the household. The average age of the recruited respondent

was 44.84 years, and the average size of the household was 1.74 adults (besides the head)

and 2.92 children. The vast majority of the households were couples – 51.2% married and

33.7% unmarried. The average level of education of the household head was 3.67 years of

schooling completed. The sample interviewed mainly belongs to 2 ethnicities, 62.7% Makua

and 27% Makonde, and 2 religions, 56.7% Muslim and 37.5% Catholic. Finally, 41.2% of the

households were not native of the community but migrated there afterward. This represents

22As in Kling and Liebman (2004) and Clingingsmith et al. (2009), we also estimate the average effect for
the family of outcomes by using a seemingly unrelated regression system, which accounts for correlation across
outcomes. We find very similar results, both in terms of sign and magnitude, and confirm the consistency of
our estimates. We describe this method in Section A3.2 and show the related results in Tables A9-A10 in
the Annex.

23Summary statistics on mining areas are displayed in Table A3 in the Annex.
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a possible source of endogeneity that we will explore in the sensitivity tests of our baseline

specification.

We also gathered information about occupation, property and income of the respondents.

74.9% of the sample are farmers, while other represented occupations are vendors (4.2%),

artisans (3.8%), manual workers (3.4%), and public officials (2.9%). Most of the population

possesses land, whereas the ownership of assets is very diversified across households and

types of item: on average, 55.5% own a cell phone, 49.9% a radio, 48% a bicycle, 14.6% a

motorcycle, 13.7% a television, and 6.4% a fridge. The average monthly expenditures of a

household are equal to 2,161.78 MZN, i.e., 33.77 USD, while the reported monthly income is

4,862.99 MZN, i.e., 75.96 USD.

5.2 OLS Results

This section reports OLS estimates of the effect that living in a mining area has on a set

of social and political survey outcomes. Namely, Table 1 displays results on trust and social

capital, and Table 2 on democracy, corruption and violence. For each dependent variable, the

estimates in the first column are obtained by controlling for 16 district dummies, while in the

rest of the columns we control also for characteristics of the enumeration area, which include a

wide range of public infrastructures and services (school, electricity and water supply, sewage,

etc.), and individual socio-demographic characteristics of the household, such as gender and

age of the household head, years of completed schooling, number of adults and children

belonging to the household, ethnic and religion dummies, occupation, assets, expenditure,

and income.24

Results in Table 1 suggest that mines do not affect the level of generalized trust but

decrease our index of particularized trust by 0.08 standard deviations (significant at the 5%

level). In particular, living in a mining area is associated with lower trust in neighbors,

local leaders and national leaders – see Table 3 for the decomposition of the effect on trust.

Participation to local community groups, such as religious groups (e.g., church or mosque),

trade unions or professional associations, local associations (e.g., community solidarity), local

24Note that enumeration area controls are presented in Table A4, and individual/household controls in
Table A5 in the Annex.

11



committees (e.g., water management), is not affected by mines at standard significance levels.

On the other hand, people living in mining areas contribute less to public goods, in the form

of monetary value or hours of work for community improvements. This effect is statistically

significant both at the extensive margin (10% level), i.e., whether people contribute or not,

and at the intensive margin (5% level), i.e., how much they contribute in total. The magnitude

of this effect is, respectively, of 0.09 and 0.15 standard deviations. In particular, the results on

contributions at the extensive margin are driven by areas with mining concessions or licenses,

and, at the intensive margin, by areas with mineral exploration, prospection or recognition.

This divergence means that households living in areas where the extraction process is already

ongoing tend to not contribute at all to public goods; on the other hand, in locations still

under mineral exploration, a significant negative effect emerges only by looking at the size of

the contributions.

This array of findings has a counterpart in the political life of communities. Table 2 shows

that the presence of a mining concession or license in the village leads to lower level of demo-

cratic decision-making in the community and reduced preference for democratic decisions

by the households (respectively, at the 10% and 1% levels of statistical significance). The

magnitude of these effects is larger than the one on social outcomes (respectively, 0.21 and

0.15 standard deviations). However, these results do not hold in areas where the exploration

process is still under way, presumably because rents are not existent yet and local institu-

tions may take a longer time to change. The evidence of decentralized rent-seeking behavior

is reinforced by the positive coefficient on corruption in the allocation of public funds. Mines

increase the bribery level by 0.23 standard deviations (significant at the 5% level). This effect

is the largest in magnitude of our analysis, but it should be noted that this outcome variable

was measured only on the sample of 504 households that applied to public funds (e.g., the

national program known as “7 milhões”).

Moreover, households living in a mining area report to have been involved in more violent

events. In particular, mining areas increase the probability of physical violence involvement

by 2.2 percentage points. This effect is significant at the 5% level – see Table 4 for the

decomposition of the effect on violence.25 This increase in violence may be due to criminality

25Consistently, logit and probit regressions yield marginal effects equal to 2.6 pp. See Table A11 in the

12



within the community or to clashes between newcomers and existing residents. We try to

disentangle the two hypotheses by interacting mine with survey measures of migration in the

final part of the paper.

5.3 Robustness

In this subsection, we run a battery of consistency checks, relating to selection bias, defi-

nition of mining area and survey-based measurement error. Some of the tables are relegated

to the Annex for the sake of brevity.26

5.3.1 Propensity Score Matching

We use an alternative control strategy for minimizing the possibility of selection bias and

mimic random allocation of mines to households.27 Instead of employing a linear model of

the effect of the covariates, we predict the probability of treatment, i.e., living in a mining

area, conditional on a set of observable confounders, P (Xi) = Pr(minei = 1|Xi). In partic-

ular, we assume that the outcome, y, is independent of treatment exposure (unconfounded),

conditional on observed characteristics, X.28

y(0), y(1) ⊥ (mine|X)

We estimate a series of matching regressions with different specifications: namely, we use

nearest neighbor matching, radius matching and kernel matching. Despite what is common

in applied work, Abadie and Imbens (2008) have shown that bootstrap estimators do not

provide reliable standard errors with nearest neighbor and radius matching due to the non-

smoothness of the estimators. On the contrary, we follow the method derived by Abadie and

Imbens (2011, 2012) in order to estimate correct standard errors of the coefficients. On the

Annex.
26All the estimation results not shown in the paper nor in the supplementary annex are available upon

request from the author.
27We attempt to develop a counterfactual or control group that resembles as much as possible the treatment

group in terms of observed characteristics. Given the non-experimental nature of the data, this is the best
approach we have to improve on causality.

28We match for age, gender, household size, marital status, religion, education, farmer dummy, radio,
motorbike, bicycle, and expenditures (in log) as to have a substantial region of common support and satisfy
the balancing property, P̂ (X|mine = 0) = P̂ (X|mine = 1).
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other hand, in kernel-based matching methods, the number of matches increases with the

sample size: as these methods are asymptotically linear, bootstrap provides valid inference.

The average treatment effect estimates are reported in Table 5.

Most results are in line with OLS. The effect on particularized trust loses statistical

significance, but a negative impact on group participation arises after matching for household

characteristics.29 The effect on contribution to public goods is now significant only at the

intensive margin. On the political side, there is robust indication of lower democratic decision-

making in the community, lower preference for democratic decisions by the households, and

higher level of bribery in mining areas. Finally, the impact on violence is not statistically

significant at conventional levels.

5.3.2 Migration

We are concerned that our baseline results are driven by selection. In particular, it is

conceivable that households with certain attitudes move to mining areas and thus affect our

outcomes of interest. For instance, selfish people may be more likely to move to mining loca-

tions, and the increase in violence may be induced by migration of crime-prone individuals

from neighboring villages – or even from adjacent countries – in the search of more lucra-

tive occupations than farming. In this case, the interpretation of our estimates would bear

different policy implications.

Therefore, we control for migration, and we interact mine with a dummy variable equal to

one if the household is a migrant household and to zero if its head was born in the community.

yild = α+β1×mineild+β2×migrantild+β3×mineild ·migrantild+W ′
dδ+Z ′

ldλ+X ′
ildγ+εild (2)

We also use different specifications of migration (if the subject moved there in the last 10, 20,

or 40 years, if he/she moved there in adulthood, the average of the “migration variable” for

the village) and consistently find that the interaction term, β3, is not statistically different

29We consider membership in organizations to be a better measurement of social capital and community
participation, as it is less likely to suffer of hypothetical or “cheap-talk” biases (Barr et al., 2014). These
survey questions, differently from the ones on trust, which concern perceptions by individuals, regard actions
from everyday life, and thus should not vary with the interpretation of the question.
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from zero.30 We conclude that the effect of mines on our social and political outcomes does

not seem to be explained by self-selection to mining locations. There is no evidence of a

“migration mechanism” behind the local resource curse found in our data.

5.3.3 Buffer Analysis

In this subsection, we conduct robustness analysis on the size of our units of observation. If

the real mining areas are on average larger than in our definition, we may be underestimating

the spatial extent of the impact that mines have on our outcomes of interest. We create buffers

of different lengths around the mine location, by enlarging the nodes of mining area polygons,

as defined in the geographic database we use in the paper.31 We find that most of the OLS

estimates with the specification in Equation (1) are not robust to buffering, suggesting that

the effect may be limited to the mining area and not affect neighboring villages.32 We

interpret these results as confirming that mining areas, as defined in our data, are generally

not smaller than the actual ones.

As can be seen in Table A3, some of these areas are extremely wide. Namely, areas subject

to exploration, prospection or recognition have an average surface of 93.82 km². Given this

feature of the data, our measures of mines may fail to identify the villages that benefit (or

are damaged) the most from resource endowments but provide a general proxy of where

mineral resources are located. This may lead to some attenuation bias in our estimates,

but it should not affect the sign of the effect.33 Overall, we believe that our results are

conservative estimates of the effect of mineral endowments.

The only effect that seems to consistently diffuse to the surrounding villages is the one

on violence (see Table 6 ). This is mainly driven by the higher levels of violence in locations

around areas with mining concessions or licenses. These areas are precisely delimited – the

average surface is 19.08 km² – as the extractive process is already under way. Therefore,

30The different definitions of the migrant variable used for the sake of this analysis are described in Section
A3.4 in the Annex. Estimation results are shown in Tables A12-A17.

31The buffers are of 1, 2.5, 5, and 10 kilometers.
32The same results are found if we use, as regressor of interest, a discrete variable of “mining intensity”,

i.e., the number of (buffered) mining areas per community.
33Note that our database regards not only large-scale mines, operated by multinational companies or by

the central government, but also small-scale extraction sites. The fact of having wide mining areas makes it
likely that we are also capturing the effect of illegally-operated mines.

15



these estimates should suffer of minor attenuation bias.

5.3.4 Restricted Sample

Given the results found in the last subsection, we believe that the definition of mining

areas we start with is a good proxy of natural resource endowments and we do not need to

enlarge its size. In order to minimize the potential bias stemming from confounding factors

and to approximate a natural experiment framework, we restrict the sample to households

that live in mining areas or at least at 10 km from a mining area, in the spirit of Acemoglu et

al. (2012). Then, we re-estimate Equation (1) in the reduced sample.34 The results, reported

in Table 7, are consistent with the regressions run on the whole sample.35 Again, this confirms

the robustness of the baseline-model estimates.

5.3.5 Behavioral Measures

The outputs shown in this paper are mainly measured through self-reported information.

Thus, we are concerned that our estimates are biased by measurement error. In order to cope

with this issue, we analyze behavioral measures that were collected in order to observe unbi-

ased behavior, unlike typical survey measurements. We estimate OLS regressions with robust

standard errors.36 We control for district dummies and enumeration area characteristics.37

Results are reported in Table 8.

We find that villages in mining areas had lower participation to the community meeting,

and lower preference for contributions, confirming the results found with survey measures.

Moreover, the coefficient on democracy in the meeting decision is negative and statistically

significant only for areas with mining concessions or licenses, in line with our baseline results.

34With this method, we aim to compare neighboring villages, which share common geographic and socio-
economic characteristics but diverge in mining endowments and contracts enforced in the territory.

35Table A18-A19 in the Annex show estimates with smaller and larger samples (i.e., 5- and 20-km bordering
areas). Results are consistent with the ones displayed in the paper.

36We also estimate these equations allowing for spatial correlation, following the method developed by
Conley (1999). The use of spatially HAC standard errors – with different levels of radius – yields very similar
results in terms of statistical significance. See Table A20 in the Annex.

37We also control for a “treatment variable” as these measures were collected during the (randomized)
intervention related to the research project mentioned in Footnote 10 and thus may already be capturing the
effect of the treatment.
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6 Concluding Remarks

Economists have been wondering about the sources of the natural resource curse for a

long time. In this paper, we address this question by using micro-level data, and we find a

remarkable effect of mines on the social and political fabric of communities, which suggests

the existence of a “local resource curse”. Given the fact that resource endowments are often

spatially concentrated within a country, subnational variation is shown to play a relevant

role on household behavior. Future research should not overlook this local dimension when

studying the consequences of resource discoveries.

Our analysis yields results in line with both centralized and decentralized theories of rent-

seeking. Mines shrink trust and social capital among communities, determine institutional

degradation in the form of lower level of democratic decision-making in the community, lower

preference for democratic decisions by the households and increased corruption, and trigger

violence events within the mining area and in the neighboring locations. In particular, the

results on trust and social capital are novel to the literature, to the extent of our knowledge.

We are aware that our approach faces some noteworthy limitations. First, the analysis

is merely static as we are using cross-sectional data on households. On the contrary, the

dynamic dimension is particularly relevant to natural resources, as it captures the reaction of

communities to new discoveries. Moreover, the use of survey measures suffers of shortcomings

in terms of internal and external validity.

However, the fact that our study has a microeconomic framework, as it inspects the

attitudes and preferences of households by using disaggregated data, makes it less dependent

on the specific features of Cabo Delgado. The findings we document are likely to be applicable

to several resource-rich regions, which share with Cabo Delgado fragile economic systems

and political institutions. We consider our paper particularly relevant in the light of the

ongoing expansion of extractive industries in Africa, which draws on vast and still unexploited

mineral endowments. We suggest that transparency and regulatory efforts are extremely

needed in order to leverage mineral resource wealth and foster African social and economic

development.38 On the other hand, law enforcement by the state is crucial in order to avoid

38Future research should focus not only on the role of local institutions on the resource curse but also
on the impact of extractive firms’ characteristics and practices. A first attempt in this direction was done
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mining-induced violence, which may escalate into local organized crime and political rebellion.
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Appendix

Table 1: OLS regressions on social survey outcomes

Panel A – Trust and social capital
Generalized trust Particularized trust Group participation

Mining area -0.017 -0.002 -0.091*** -0.077** 0.032 -0.008
(0.032) (0.034) (0.035) (0.038) (0.029) (0.032)

Mining concession or license 0.037 -0.043 -0.048
(0.102) (0.120) (0.067)

Mineral exploration, prospection or recognition -0.008 -0.066* -0.000
(0.033) (0.036) (0.030)

Observations 2070 1930 1930 1930 2070 1930 1930 1930 2070 1930 1930 1930
R2 adjusted 0.073 0.107 0.107 0.107 0.071 0.097 0.096 0.097 0.040 0.128 0.128 0.128

District dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes

Panel B – Contribution to public goods
Contribution (yes/no) Contribution (amount of money or hours)

Mining area -0.092* -0.093* -0.107* -0.145**
(0.023) (0.022) (0.059) (0.058)

Mining concession or license -0.234*** -0.072
(0.041) (0.078)

Mineral exploration, prospection or recognition -0.051 -0.131**
(0.023) (0.056)

Observations 2070 1930 1930 1930 1186 1136 1136 1136
R2 adjusted 0.050 0.091 0.091 0.089 0.015 0.052 0.048 0.052

District dummies Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes Yes Yes No Yes Yes Yes

Note: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household. Sample includes all households surveyed at
baseline. All regressions are OLS. Dependent variables are equally weighted indices of z-scores. Controls include enumeration area characteristics, as
public infrastructure and services, and individual socio-demographic characteristics, as gender, age, household size, marital status, years of schooling,
ethnicity and religion dummies, occupation, assets, expenditure, and income. Standard errors are clustered at the enumeration area (i.e., polling place)
in every specification and reported in parentheses.
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Table 2: OLS regressions on political survey outcomes

Panel C – Democracy
Democracy in the community decisions Preference for democracy by the households

Mining area -0.038 -0.020 -0.003 0.010
(0.046) (0.047) (0.037) (0.037)

Mining concession or license -0.208* -0.151***
(0.110) (0.055)

Mineral exploration, prospection or recognition 0.014 0.034
(0.046) (0.036)

Observations 2031 1894 1894 1894 2055 1919 1919 1919
R2 adjusted 0.102 0.099 0.101 0.099 0.140 0.158 0.159 0.158

District dummies Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes Yes Yes No Yes Yes Yes

Panel D – Corruption and violence
Corruption on public funds allocation Violence involvement

Mining area 0.176** 0.233** 0.045 0.059*
(0.085) (0.092) (0.033) (0.035)

Mining concession or license -0.149 0.117
(0.222) (0.096)

Mineral exploration, prospection or recognition 0.250*** 0.037
(0.096) (0.034)

Observations 504 474 474 474 2070 1930 1930 1930
R2 adjusted 0.085 0.124 0.114 0.126 0.009 0.017 0.017 0.016

District dummies Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes Yes Yes No Yes Yes Yes

Note: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household. Sample includes all households surveyed at
baseline. All regressions are OLS. Dependent variables are equally weighted indices of z-scores. Controls include enumeration area characteristics, as
public infrastructure and services, and individual socio-demographic characteristics, as gender, age, household size, marital status, years of schooling,
ethnicity and religion dummies, occupation, assets, expenditure, and income. Corruption was measured only on the sample of 504 households that
apply to public funds (e.g., the national program known “as 7 milhões”). Standard errors are clustered at the enumeration area (i.e., polling place) in
every specification and reported in parentheses.
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Table 3: Decomposition of the effect on trust

Trust in:

Family Neighbors
Local

leaders
Local people

District
government

Province
government

Mozambi-
cans

National
leaders

Mining area -0.089 -0.119* -0.117* -0.064 -0.068 -0.052 0.013 -0.109**
(0.055) (0.062) (0.060) (0.054) (0.049) (0.050) (0.060) (0.054)

Observations 1926 1929 1924 1903 1917 1915 1866 1916
R2 adjusted 0.053 0.067 0.066 0.094 0.085 0.078 0.050 0.065

Note: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household. Sample includes all households surveyed
at baseline. All regressions are OLS. Dependent variables are z-scores of trust in different groups (original scale 0 to 3). We control for 16 district
dummies, enumeration area and individual socio-demographic characteristics. Standard errors are clustered at the enumeration area (i.e., polling
place) and reported in parentheses.

Table 4: Decomposition of the effect on violence

Verbal violence Physical violence Violence against women Theft Property destruction

Mining area 0.014 0.022** 0.007 0.014 0.007
(0.012) (0.010) (0.011) (0.022) (0.012)

Observations 1926 1928 1924 1920 1926
R2 adjusted 0.011 0.013 0.012 0.035 0.026

Note: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household. Sample includes all households surveyed
at baseline. All regressions use a linear probability model. Dependent variables are binary variables for different types of violence. We control for
16 district dummies, enumeration area and individual socio-demographic characteristics. Standard errors are clustered at the enumeration area (i.e.,
polling place) and reported in parentheses. Results are robust to logit and probit regressions.
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Table 5: Matching regressions

Panel A – Social outcomes

Generalized trust Particularized trust Group participation
Contribution

(yes/no)

Contribution
(amount of money or

hours)

Nearest neighbor matching -0.029 0.051 -0.072** 0.006 -0.170***
(0.035) (0.040) (0.029) (0.045) (0.042)

Observations 1971 1971 1971 1971 1159

Caliper=0.005 -0.067* -0.014 -0.060** -0.047 -0.165***
(0.036) (0.041) (0.029) (0.045) (0.044)

Observations 1956 1956 1956 1956 1140

Caliper=0.0005 -0.042 0.066 -0.081*** 0.006 -0.149***
(0.040) (0.040) (0.031) (0.047) (0.046)

Observations 1645 1645 1645 1645 800

Kernel matching -0.050 0.036 -0.066** -0.021 -0.141***
(0.032) (0.035) (0.025) (0.037) (0.042)

Observations 1971 1971 1971 1971 1159

Panel B – Political outcomes

Democracy in the
community decisions

Preference for
democracy by the

households

Corruption on public
funds allocation

Violence involvement

Nearest neighbor matching -0.093** -0.175*** 0.360*** 0.036
(0.047) (0.039) (0.103) (0.032)

Observations 1935 1959 484 1971

Caliper=0.005 -0.140*** -0.154*** 0.339*** 0.014
(0.049) (0.042) (0.111) (0.031)

Observations 1920 1944 449 1956

Caliper=0.0005 -0.091* -0.198*** 0.245** 0.036
(0.053) (0.048) (0.124) (0.032)

Observations 1609 1627 188 1645

Kernel matching -0.102** -0.167*** 0.282*** 0.026
(0.043) (0.036) (0.085) (0.027)

Observations 1935 1959 484 1971

Note: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household. Sample includes all households surveyed at
baseline. Regressions are nearest neighbor matching, radius matching (with replacement) and Epanechnikov kernel matching, where a logistic model
is employed to predict each subject’s propensity score. Dependent variables are equally weighted indices of z-scores. Coefficients reported are average
treatment effects of the “mine” dummy. Standard errors, reported in parentheses, are adjusted following Abadie and Imbens (2011, 2012) for nearest
neighbor and radius matching, whereas we use bootstrap for kernel matching (500 replications).

23



Table 6: Buffer analysis on violence

Buffer length Mining area Mining concession or license
Mineral exploration, prospection or

recognition

1 km 0.059* 0.139*** 0.018
(0.033) (0.050) (0.034)

2.5 km 0.044 0.082** 0.001
(0.031) (0.040) (0.032)

5 km 0.047 0.048 0.026
(0.031) (0.038) (0.033)

10 km 0.059* 0.057* 0.023
(0.035) (0.034) (0.033)

Observations 1930 1930 1930 1930 1930 1930 1930 1930 1930 1930 1930 1930
R2 adjusted 0.017 0.016 0.017 0.016 0.009 0.017 0.016 0.016 0.009 0.017 0.017 0.016

Note: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household. Sample includes all households surveyed at
baseline. All regressions are OLS. The dependent variable is a equally weighted z-score index of violence involvement, which includes threats or verbal
violence, phyisical violence, violence against women, theft, property destruction or vandalism. We control for 16 district dummies, enumeration area
and individual socio-demographic characteristics. Standard errors are clustered at the enumeration area (i.e., polling place) in every specification and
reported in parentheses. Results are robust to using, as regressor of interest, a discrete variable of “mining intensity”, i.e., the number of (buffered)
mining areas per community.
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Table 7: OLS regressions on restricted sample (10-km bordering areas)

Panel A – Social outcomes

Generalized trust Particularized trust
Group

participation
Contribution

(yes/no)

Contribution
(amount of money

or hours)

Mining area -0.010 -0.006 -0.116*** -0.102*** 0.034 -0.002 -0.124** -0.122** -0.078 -0.072*
(0.034) (0.037) (0.037) (0.038) (0.032) (0.035) (0.051) (0.051) (0.052) (0.038)

Observations 1337 1239 1337 1239 1337 1239 1337 1239 771 738
R2 adjusted 0.087 0.121 0.072 0.107 0.032 0.119 0.043 0.097 0.066 0.077

District dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes No Yes

Panel B – Political outcomes
Democracy in the

community
decisions

Preference for
democracy by the

households

Corruption on
public funds

allocation

Violence
involvement

Mining area -0.047 -0.002 0.011 0.020 0.228** 0.309*** 0.041 0.048
(0.049) (0.051) (0.038) (0.042) (0.094) (0.094) (0.035) (0.039)

Observations 1316 1220 1326 1230 302 283 1337 1239
R2 adjusted 0.139 0.127 0.129 0.143 0.064 0.087 0.011 0.022

District dummies Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes

Note: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household. Sample includes households surveyed at
baseline, which live within or at maximum 10 km from a mining area. All regressions are OLS. Dependent variables are equally weighted indices of
z-scores. Controls include enumeration area and individual socio-demographic characteristics. Standard errors are clustered at the enumeration area
(i.e., polling place) in every specification and reported in parentheses. Results are robust to using 5 and 20 km as maximum distance from the mining
area.

25



Table 8: OLS regressions on behavioral outcomes

Participation Contribution Democracy in the decision formation

Mining area -0.194** -0.228* -0.119* -0.134* -0.050 -0.030
(0.089) (0.123) (0.069) (0.071) (0.058) (0.065)

Mining concession or license 0.014 -0.201 -0.311**
(0.188) (0.261) (0.153)

Mineral exploration, prospection or recognition -0.218* -0.091 0.026
(0.115) (0.073) (0.068)

Observations 203 203 203 203 203 203 203 203 203 203 203 203
R2 adjusted 0.067 0.081 0.073 0.081 -0.018 -0.015 -0.024 -0.023 0.039 0.012 0.026 0.012

District dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes

Note: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: village. Sample includes all villages, which participated to
the “contribution game”. All regressions are OLS. Dependent variables are equally weighted indices of z-scores, constructed with behavioral measures.
Controls include enumeration area characteristics. White-Huber heteroskedasticity robust standard errors in parentheses. Results are robust to
allowing for spatial correlation through Conley (1999) standard errors.
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