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PLAYING THE ONLINE WORD-OF-MOUTH SYSTEM 

 

ABSTRACT 

The video game market is one of the most important in the entertainment industry and is 

intrinsically tied to the online world. This work project evaluates the causal relationship 

between online user reviews of video games and their number of owners, via a kernel propensity 

score matching difference-in-differences regression. It concludes that no causal relationship can 

be established because the average treatment effect is statistically non-significant. Robustness 

checks are conducted, changing the time period analysed and the definition of the treatment 

variable, and the results remain unchanged. Policy implications for video game companies are 

discussed, incentivising better brand power management. 

Keywords: Online user reviews; Word-of-mouth; Difference-in-differences; Propensity score 

matching. 

I. Introduction 

While most of the computer industry has been shrinking, over the past few years, the 

video game industry has actually grown rapidly, with growth rates of 5% per annum, making it 

the fastest growing entertainment medium. It has surpassed the movie industry to become the 

fourth biggest entertainment industry, only behind gambling, reading and TV. In 2016, it 

registered an estimated $91 billion in revenues worldwide, with a projected $108.9 billion for 

2017. 

The most likely factor behind this growth is the range of technological advances in 

hardware, offering various options for different budgets and tastes. One may think of the recent 

surge in Virtual Reality (VR) systems as well as in the soon-to-become dominant mobile 

gaming sector, which is expected to represent over half of the industry’s revenue by 2020. 

Moreover, the development of internet services worldwide should also be considered. It enabled 

larger gaming communities and engagement between players, besides facilitating the access to 

digital content, which represented 74% of the sector’s revenue in the US, in 2016. Should the 

current trend continue, brick-and-mortar video game shops which only sell discs are predicted 

to have completely disappeared by 2020.  
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Computer-based games still account for the largest share of the industry, representing 

37% in 2015. The largest PC-gaming platform is Steam, by Valve, which has reached over 14 

million concurrent users in January 2017, less than two years after having first reached 9 

million. Since 2013, it has implemented a user review system, which enables all of the owners 

of a game to write an either positive or negative review for said game. It then produces a score 

from 0 to 100, where 100 is the highest, by calculating the percentage of positive reviews. 

The origin of online user review systems (URSy) can be traced back to as early as 1999, 

with the website Epinions.com, aimed at general consumer reviews. Nowadays, there are 

several review websites and many of the online sales platforms have an URSy, enabling 

customers to provide feedback while subjecting their own reviews to grading according to 

usefulness by other users. However, one of the main concerns with review systems has always 

been their reliability. Excessive favourable reviews from the seller or negative reviews from 

competitors may distort the signal provided by the user reviews.  

Therefore, the aim of this work project is to assess the impact of user review systems in 

the sale of digital products. This specific kind of product is particularly subject to two of the 

Image 1 - Evolution of Digital and Physical Sales in the US Video Game Industry 



3 
 

three kinds of search costs described by Stiglitz (1989): search costs for quality information, 

especially for experience goods (experience goods are goods in which quality is only known to 

customers when they have actually experienced them) and search costs to identify a product 

that fits them when products are imperfect substitutes; the third search cost is related to finding 

the lowest price, in a world where there is no Walrasian auction ensuring that the same good is 

sold at the same price by all agents. The existence of URSy may off-set some of these costs and 

contribute to the growth of this sector, particularly in the time of the information economy. 

II. Literature Review 

Given their existence for nearly 20 years, the impact of online user reviews has already 

been studied on some occasions. Due to their characteristics and effects, researchers have begun 

to call them the modern iteration of word-of-mouth (WOM): online word-of-mouth. 

Nevertheless, their focus so far has covered a small range of goods, considering the amount of 

products that can be affected by URSy. 

The importance of WOM was first analysed in Katz and Lazarsfeld (1955), which showed 

how it was the most important source of information when deciding to buy certain household 

items. The credibility of a personal recommendation from someone the buyer knows and trusts 

about a product is virtually impossible to be matched by any other source of information. 

However, the effects do not necessarily hold when the interpersonal interaction is mediated by 

websites and computers, as the personal trust and touch may be lost. 

Nevertheless, according to the literature, the effects still hold. Godes and Mayzlin (2004) 

finds a positive relationship between online word-of-mouth and TV show viewership, using a 

show fixed-effects model. Liu (2006) studies movie reviews and finds that online movie 

reviews offer significant explanatory power for both aggregate and weekly box office revenues. 

Regarding the behaviour of the reviewers, it also finds that WOM activities are most frequent 



4 
 

during a movie’s pre-release and opening week. Moreover, the audience becomes more critical 

in the latter, following the higher expectations in the previous weeks.  Furthermore, Dellarocas 

et al. (2010) explores a crucial difference between offline and online WOM. While the former 

is typically fleeting, the latter leads to the creation of public repositories of users’ opinions. Due 

to this availability of others’ opinions, it concludes that users are more likely to review lesser 

known movies as people wish to have a significant and unique contribution, which makes them 

look more intelligent and helpful in the eyes of others. Simultaneously, they are also more likely 

to review popular movies with a lot of existing reviews, due to the sense of inclusion, creating 

a U-shaped curve. The probability of contributing to online WOM is higher for lesser-known 

movies and for blockbusters. 

Dellarocas et al. (2007) finds that adding online movie ratings to their revenue-forecasting 

model significantly improves the model’s predictive power. Zhu and Zhang (2010) discusses 

the product- and consumer-specific characteristics that affect consumers’ reliance on online 

consumer reviews when buying video games offline and are thus important factors governing 

the efficacy of online reviews. It concludes that more Internet-savvy players are more 

influenced by online reviews, which have an even larger effect in the sales of less popular 

games. In addition, the impact of online WOM increases a few months after the game’s release. 

Anderson and Magruder (2012) introduces a more sophisticated analysis of the effect of 

URSy by using a regression discontinuity design to assess how online reviews in Yelp! affect 

the reservation availability of restaurants. According to its findings, an extra half-star rating 

causes restaurants to sell out 19 percentage points more frequently. The effect increases when 

alternative information on the restaurant is not easily available. Nevertheless, it seems that 

restaurant owners do not manipulate ratings in a deceitful fashion. 

On one hand, the main contribution of this paper is the novel regression method that will 

be used. While most of the papers cited above used simple OLS regressions to reach their 
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conclusions, a propensity score matching difference-in-differences model will be developed in 

the next sections. On the other hand, it will also analyse digital products; due to their intangible 

and experiential nature, it might be the case that online user reviews affect them differently. 

Ideally, this model will allow the author to draw causal conclusions regarding the true impact 

of the user review scores on the sales of digital products.  

III. Data 

Due to Steam’s size and relevance in the gaming industry, several attempts were made to 

obtain data directly from Valve. However, no answer was given to these requests and a second-

best alternative was chosen. The website SteamSpy.com has access to the official Steam API, 

which enables access to the information of all the individual user profiles on Steam, including 

the owned games. By taking daily samples and combining them, the website obtains an 

estimation of the number of users who own the game on Steam. 

It is important to distinguish between the number of owners and sales. Games are often 

on sale, sold in bundles and game developers and publishers may provide keys to whomever 

they wish, granting free access to the game. Therefore, estimating the games’ sales figures is 

not straight forward. However, this issue may be surpassed by using a proxy and seeing how 

many people have the game in their accounts, i.e., are owners. This is the measure that will be 

used as the dependent variable in the model that will be discussed in section IV. Methodology. 

The fact that the data on owners is the result of extrapolation leads to some degree of 

noise. This concern may be extenuated by the trust that the industry press places in the values, 

frequently referring to them in articles. Moreover, a robustness check for the data acquired was 

performed. Steam presented at the end of the 2016 Winter Sale a list of the 100 top selling 

games, based on the total revenues during the calendar year. Comparing the games on this 

official list and the games with the most new owners in 2016 according to the data collected, 
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the quality of the data can be evaluated. While performing this comparison, one must bear in 

mind the difference between sales and owners and that the first day for which data was collected 

was April 25, 2016. It turns out that 55 out of the 100 top selling games were on the first 100 

games, in terms of the owners variation between April 25 and December 31, 2016. If we expand 

the list to the first 200 games in the data, we identify 67 of the 100 best-selling games in 2016. 

This result is quite satisfactory, considering the way the data was generated and its collection. 

It shows a solid estimation process and that the web scraping gathered the relevant information. 

Lastly, the estimation model used, presented in the next section, will also bypass the issue. 

Moreover, SteamSpy.com’s creator keeps an archive of all the information he gathered 

over the years, including the games’ user review score (URSc). Steam has a user review system, 

in which all members may write a positive or negative review of a game they own. From the 

percentage of positive reviews, Steam creates a user review score for each game. This will be 

the variable of interest in the model that follows. 

All the data apart from the one referring to the URSc is presented in the website, after the 

payment of a fee. Therefore, web scraping techniques were used to get it from the website and 

into a malleable format, for processing and later estimation. The data was collected on April 

27, 2017 and contained daily data since April 25, 2016, as was already mentioned above. As 

for the URSc, it was given directly to the author after contacting the website’s creator, who had 

stored the information over time. In accordance to the author’s request, he sent data concerning 

the user scores from August 1 till October 31, 2016. 

The time period of interest surrounds September 13, 2016 due to a sudden change in 

Steam’s URSy algorithm, which will be further discussed in IV. Methodology. For the main 

regression, the time period that was considered was the month of September 2016. This decision 

is justified by wanting to eliminate possible biases arising from an overextended timeframe, 
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since the games are more prone to be affected by unobservables if the time period is too long. 

This means that, out of the 846,681 observations resulting from the merge of the data collected 

via web scrapping and sent by the website’s owner, 305,170 observations were used in the main 

regression. Possible concerns for sample selection are unfounded as these observations 

represent all the games available on Steam during September 2016. 

Based on the previously referred event, a treatment and a control group were created 

depending on whether after September 13, 2016 the URSc of the game had changed. The 

treatment group is composed by 168,079 observations and the control group by 137,091 

observations, making up 55.08% and 44.92% of the total observations, respectively. The 

average number of owners per game is approximately 212,000, with a maximum above 83 

million owners. The average URSc is approximately 73%, which also matches the average 

metascore (the critics score), being 100% the maximum of both scores. The average change in 

user scores was a decrease in 0.48 percentage points (pp), which becomes a fall in 1.82pp when 

we only consider the treatment group, i.e., the games whose score change was different from 

zero. Lastly, on average, the games were released on June 6, 2014. Complete summary statistics 

are presented in Table CA.1, alongside the correlation matrix in Table CA.2, in the 

Complementary Appendices. 

IV. Methodology 

There is a chronic endogeneity problem when measuring the pure effect of reviews on 

sales caused by the inherent quality of goods which are reviewed in a certain way. For example, 

when one decides to go watch a movie which is highly reviewed, does he or she select that 

specific movie based solely on the rating or because it stars a very famous cast, which could 

justify the high rating? Thus, in most situations, it is hard to know whether the purchase was 

motivated simply by the review or by some (un)observable characteristic of the good.  
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However, on September 13, 2016, the algorithm that Steam uses to compute the URSc 

was modified. According to information divulged by the organization, it was detected that some 

games had a disproportional amount of positive or negative reviews coming from users who 

had been given keys to the games they wrote reviews about, comparing to owners who had paid 

to acquire the game. As a result, from that day on, Steam no longer used those reviews to 

calculate the URSc. Such decision lead to abrupt changes in the games’ URSc. This episode 

enables a quasi-experimental design, as it randomly divided the games into two groups: those 

whose URSc was altered and those who were not affected. The former can be seen as the 

treatment group, while the latter will be the control group. 

Performing a difference-in-differences analysis between comparable games in the 

treatment and in the control group enables conclusions to be drawn on the causal effect that the 

URSc has on the decision to buy a game. Propensity score matching enables the creation of 

these comparable subgroups, like it is discussed in Stuart et al (2014). 

Following the process described in Villa (2012), in a first stage, the identification model 

has to be defined. The outcome variable is the logarithm of the number of owners, the variable 

of interest is the URSc and a range of control variables follows: 

𝑙𝑜𝑔𝑜𝑤𝑛𝑒𝑟𝑠𝑖;𝑡 = 𝛽0 + 𝛽1𝑈𝑅𝑆𝑐𝑖;𝑡 + 𝛽2𝑙𝑜𝑔𝑟𝑒𝑣𝑖𝑒𝑤𝑠𝑖;𝑡 + 𝛽3𝑙𝑜𝑔𝑛𝑒𝑤𝑟𝑒𝑣𝑖𝑒𝑤𝑠𝑖;𝑡

+ 𝛽4𝑙𝑜𝑔𝑝𝑟𝑖𝑐𝑒𝑖;𝑡 + 𝛽5𝑙𝑜𝑔𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑝𝑟𝑖𝑐𝑒𝑖;𝑡 + 𝛽6𝑙𝑜𝑔𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒𝑝𝑙𝑎𝑦𝑒𝑑𝑖;𝑡

+ 𝛽7𝑙𝑜𝑔𝑚𝑒𝑑𝑖𝑎𝑛𝑡𝑖𝑚𝑒𝑝𝑙𝑎𝑦𝑒𝑑𝑖;𝑡  + 𝛽8𝑙𝑜𝑔𝑝𝑙𝑎𝑦𝑒𝑟𝑠𝑖;𝑡 + 𝛽9𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝑎𝑡𝑒𝑖;𝑡

+ ∑ 𝛽𝑗𝑤𝑒𝑒𝑘𝑖;𝑡;𝑗

17

𝑗=10

+ 𝛽18𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝑠𝑖 + 𝛽19𝑚𝑒𝑡𝑎𝑠𝑐𝑜𝑟𝑒𝑖 + ∑ 𝛽𝑙𝑡𝑎𝑔𝑠𝑖;𝑙

33

𝑙=20

+ ∑ 𝛽𝑚𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑖;𝑚

44

𝑚=34

+ ∑ 𝛽𝑠𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑖;𝑠

63

𝑠=45

+ 𝜀𝑖;𝑡 

(1) 
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The variables 𝑙𝑜𝑔𝑟𝑒𝑣𝑖𝑒𝑤𝑠𝑖;𝑡, 𝑙𝑜𝑔𝑛𝑒𝑤𝑟𝑒𝑣𝑖𝑒𝑤𝑠𝑖;𝑡, 𝑙𝑜𝑔𝑝𝑟𝑖𝑐𝑒𝑖;𝑡 and 𝑙𝑜𝑔𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑝𝑟𝑖𝑐𝑒𝑖;𝑡 

are the logarithm of the total number of user reviews, the reviews that were not dismissed by 

the change in the URSy and are used to calculate the score after the treatment, the price of the 

game and the square of the game price, respectively. As for 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑡𝑖𝑚𝑒𝑝𝑙𝑎𝑦𝑒𝑑𝑖;𝑡 and 

𝑚𝑒𝑑𝑖𝑎𝑛𝑡𝑖𝑚𝑒𝑝𝑙𝑎𝑦𝑒𝑑𝑖;𝑡, they represent the average and median time played per owner ever 

since the game was released, respectively, while 𝑙𝑜𝑔𝑝𝑙𝑎𝑦𝑒𝑟𝑠𝑖;𝑡 is the logarithm of the number 

of users who have played the game at least once. To account for time effects, 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝑎𝑡𝑒𝑖 and 

𝑤𝑒𝑒𝑘𝑖;𝑡;𝑗 were included. The former states how many days have passed since the game was 

released and the latter represents a group of j dummy variables, showing if, at the time, the 

game had been released between 1 and 8 weeks before, one dummy per week. Lastly, the 

remaining variables control for time-invariant game-specific characteristics. First, 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝑠𝑖 

is the number of languages the game supports and 𝑚𝑒𝑡𝑎𝑠𝑐𝑜𝑟𝑒𝑖 is a critics review score. Then, 

𝑡𝑎𝑔𝑠𝑖;𝑙, 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟𝑖;𝑚 and 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑖;𝑠 are sets of l, m and s dummy variables, identifying the 

first six tags of each game, i.e., the six most popular categories to include each game in, and 

publishers and developers selected based on reputation, respectively. 

In a second stage, in order to assure a comparable control group, a Kernel Propensity 

Score Matching process was used. First, a probit model was run, where the outcome variable is 

the binary variable that states whether the game is in the control or treatment group, with the 

identification strategy described above. It estimates the propensity scores of each of the games. 

Following this step, the games were matched by weighing said propensity scores, using the 

kernel density function. 

Finally, in the third stage, the difference-in-differences regression is estimated. The 

equation shown on the next page is used, which weighs the outcome variable by the Kernel 

density function and uses 𝑋𝑖;𝑘 to represent the kth covariate. 
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𝑙𝑜𝑔𝑜𝑤𝑛𝑒𝑟𝑠𝑖 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖

= 𝜃0 + 𝜃1𝑎𝑓𝑡𝑒𝑟𝑖 + 𝜃2𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝜃3𝑎𝑓𝑡𝑒𝑟𝑖 ∗ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝜃𝑘𝑋𝑖;𝑘

+ 𝜀𝑖 

(2) 

Naturally, the use of the difference-in-differences method requires that the Common 

Trends assumption is verified. The aim of the matching process is precisely to ensure that both 

groups are as similar as possible in observables. Without significant differences between the 

two, there should be no reason to contest the validity of the Common Trends assumption. 

Regarding the requirement of common support to conduct the estimation following the 

matching, it is ensured as the estimation was only done with the observations which were 

included in the common support. 

V. Results 

In this section, the results of each of the three stages described in the previous section will 

be discussed: beginning with the probit, followed by the kernel propensity score matching and, 

finally, the difference-in-differences to get the average treatment effect (ATE). 

The first stage is the probit estimation of the propensity score. The probability of being 

in the treatment group is positively correlated with factors such as low URSc or metascore and 

is also higher for more recent games. The complete results are shown in Table CA.3, in the 

Complementary Appendices. 

After having estimated the propensity scores, the kernel propensity score matching was 

performed. The common support comprehends 43,567 observations, which are distributed 

among the treatment and control groups and before and after the treatment event as Table 1 

shows, in the next page. 
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The benefits of the matching process can be seen at this stage. Upon closer inspection of 

the distribution of the variables from observations in the treatment and control groups in the 

baseline time period, significant differences can be identified. However, when only the common 

support is compared, the differences are in most cases eliminated since these observations are 

selected on these same observables. There are still some differences but such is the handicap of 

not having a truly random experiment.  

The following graphs provide examples of the outcome of the matching on three selected 

variables. The pairs of graphs on the right side show the distributions in the common support, 

while on the left the whole sample is displayed. When the binary variable 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 takes 

the value of 1, it means that it is in the treatment group, i.e., the game’s URSc changed. 

 

The logarithm of the owners shows a remarkable improvement in terms of the similarity 

of the distribution between both groups, in the baseline period. Moreover the concentration that 

can be seen in Graph 1 on the left tail has disappeared. 

Number of observations in the DIFF-IN-DIFF: 43567 

 Before After  

Control: 12024 15578 27602 

Treated: 6947 9018 15965 

 18971 24596  

Table 1 – Common Support 
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Regarding the URSc, in the common support, there are still some differences, mainly in 

the number of very highly rated games. Nevertheless, the control group no longer has a cluster 

of games with around 100% user score and they resemble each other more, as intended. 

 

The pattern repeats itself once again when it comes to the logarithm of the number of 

reviews. The distributions are not exactly equal but the disparity in terms of the left tail vastly 

decreases and they are both skewed to the left. 

Ultimately, the purpose of the propensity score matching is achieved and the treatment 

and control groups are as similar as possible on observables in the baseline period. Given the 

similarities between the two groups, it can be assumed that both have common trends. The 
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starting point is essentially the same and even the variables in which some difference persists 

do not raise any plausible reason for the Common Trends assumption not to hold. 

Lastly, the difference-in-differences is conducted and the average treatment effect is 

calculated. The ATE is computed as the coefficient of the interaction variable, composed by 

the two dummies that identify the treatment group and the time period after the treatment. The 

complete results can be seen in column (1) Main Regression of Table A.1, in section IX. 

Appendices. However, for ease of reference and to focus on the matter, please refer to Table 

2, which has the relevant information and also p-values for easier interpretation. In both tables, 

the ATE is presented in the row Diff-in-Diff. 

According to the estimation, the treatment effect is negative. Given that the treatment 

caused, on average, a fall of the URSc of 1.8pp, it can be said that the number of owners of a 

game is expected to decrease by approximately 1% per each 1.8pp decrease in its user review 

score, on average, ceteris paribus. 

 

Outcomevar. Log(Owners) Std.Err. t P>|t| 

Before     
    Control 14.655    
    Treated 14.862    
    Diff(T-C) 0.207 0.01 20.46 0.000*** 

After     
    Control 14.752    
    Treated 14.949    
    Diff(T-C) 0.198 0.009 22.29 0.000*** 

     

Diff-in-Diff -0.009 0.013 0.69 0.493 

R-square:    0.85 

* Means and Standard Errors are estimated by linear regression 

**Robust Std. Errors 

**Inference: *** p<0.01; ** p<0.05; * p<0.1 

Table 2 – Difference-in-differences Estimation Results 



14 
 

Nevertheless, the effect is not statistically significant as the p-value is 49%, far above the 

commonly used 5% significance-level. Therefore, the data does not provide any evidence that 

the user reviews have a causal impact on a game’s owners. Moreover, a poor specification is 

not to blame, as the R-square is 85%. The result may seem odd but there are some possible 

explanations: 

Hypothesis 1: Due to possible user score manipulation by companies, consumers didn’t care 

about the score in the first place and did not react to the treatment. 

Publishers and developers can offer keys to games, which enables people who did not 

buy them to write reviews on them. This can influence the user review score and was one of the 

motives Steam reworked the user review system. As can be read on their website:  

“[…] the review score has also become a point of fixation for many developers, to 

the point where some developers are willing to employ deceptive tactics to generate 

a more positive review score. 

The majority of review score manipulation we're seeing by developers is through 

the process of giving out Steam keys to their game, which are then used to generate 

positive reviews. Some developers organize their own system using Steam keys on 

alternate accounts. Some organizations even offer paid services to write positive 

reviews.” 

(http://store.steampowered.com/news/24155/, written on September 12, 2016) 

The statement evidences a major distinction between the video game industry and other 

industries. As was already mentioned, Anderson and Magruder (2012) shows a causal 

relationship between user restaurant ratings and reservation rates. Furthermore, they also 

showed that despite having incentives to tamper with the scores, restaurant owners did not do 

it. Evidently, the same cannot be said of game developers, strengthening the argument to treat 

the video game sector and possibly the whole digital product market in a different fashion. 

Therefore, since gamers could be aware of these practices, they might have become 

suspicious of the URSc and no longer be influenced by it, when making their purchase 

decisions. 
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Hypothesis 2: Users have certain opinions regarding the games, which are not sensitive to 

changes in the URSc, since all other aspects of the game remain unchanged. 

An alternative explanation to the estimated statistically insignificantly different from zero 

impact of user reviews on the number of a video game’s owners is the characteristic inertia of 

people’s beliefs. Already subject of academic research, on numerous occasions, people do not 

update their beliefs, even when given new information. See, for example, Nassar et al (2010). 

Potential buyers create an opinion about a game from the moment they become aware of 

its existence. They base it on multiple elements, some of which were extensively included in 

the control variables, such as the developer, publisher and genre, but also a friend’s 

recommendation or the quality of the trailers, screenshots and marketing strategy, in general. It 

is plausible that once an opinion is formed, it will hardly be modified. Hence, if someone set 

his or her mind on buying the game, he or she won’t change their decision due to a relatively 

small average change of the user review score of 1.8 points out of possible 100. 

VI. Robustness 

The purpose of this section is to modify some elements of the estimation, in order to 

assess how sensitive the conclusions reached are. Specifically, three new specification 

strategies will be presented: two of them where the threshold for the treatment variable is made 

increasingly stricter and the third will change the timespan of the analysis. 

In the first case, a game only belongs to the treatment group if the URSc varies by more 

than 2pp, in absolute value. Remember that, in the main regression, only those whose score did 

not change are considered part of the control group. This new setting leads to an average change 

in the treatment group of the URSc of approximately 3.8pp. It also decreases the common 

support to 31,665 observations, since the treatment group has shrunk and new propensity scores 

have to be calculated, which affects the matching. The complete results of the difference-in-
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differences are shown in column (2) Treatment -2;2 of Table A.1, in section IX. Appendices. 

Nevertheless, for similar reasons to the ones presented in V. Results, please refer to Table 3. 

The results are akin to the ones presented in Table 2. A slightly more negative ATE but 

the p-value now reaches 61.7%, maintaining the statistical insignificance at a 5% significance-

level, and the R-square falls 2pp to 83%. Thus, it seems that more has to be done to try and 

change the results. 

In the second attempt, the treatment variable takes the value of 1 only for games whose 

URSc varied by more than 5pp, in absolute terms. The average change in the treatment group 

becomes -6.5pp and the common support shrinks even more, to 17,327 observations. The 

complete results of the estimation are in column (3) of Table A.1, in section IX. Appendices, 

but please refer to Table 4, which is on the next page. 

Although the ATE now is approximately -4%, once again, the ATE is statistically 

insignificant at a 5% significance-level, as the p-value is 53.8%, and the R-square falls to 77%. 

Therefore, it seems that conclusions are not affected by the threshold that defines the 

treatment and control groups, nor the magnitude of the average URSc change in the treatment. 

 
Outcomevar. Log(Owners) Std.Err. t P>|t| 

Before     
    Control 16.919    
    Treated 17.222    
    Diff(T-C) 0.303 0.027 11.19 0.000*** 

After     
    Control 17.075    
    Treated 17.360    
    Diff(T-C) 0.285 0.024 11.99 0.000*** 

     

Diff-in-Diff -0.018 0.036 0.50 0.617 

R-square:    0.83 

* Means and Standard Errors are estimated by linear regression 

**Robust Std. Errors 

**Inference: *** p<0.01; ** p<0.05; * p<0.1 

Table 3 – Difference-in-differences Estimation Results for Treatment -2;2 
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For the final robustness test, the time period used to compute the ATE was shortened, 

while returning to the original definition of the treatment variable. The goal was to check 

whether focusing on more immediate effects would translate into different results. Thus, only 

data from one week before and after September 13, 2016 was used. Consequently, the number 

of observations in the common support becomes 21,824. The results of the estimation are in 

column (4) of Table A.1, in section IX. Appendices, but please refer to Table 5. 

 
Outcomevar. Log(Owners) Std.Err. t P>|t| 

Before     
    Control 14.770    
    Treated 14.980    
    Diff(T-C) 0.210 0.014 15.30 0.000*** 

After     
    Control 14.810    
    Treated 15.008    
    Diff(T-C) 0.198 0.013 15.34 0.000*** 

     

Diff-in-Diff -0.012 0.019 0.64 0.519 

R-square:    0.85 

* Means and Standard Errors are estimated by linear regression 

**Robust Std. Errors 

**Inference: *** p<0.01; ** p<0.05; * p<0.1 

 
Outcomevar. Log(Owners) Std.Err. t P>|t| 

Before     
    Control 19.234    
    Treated 19.655    
    Diff(T-C) 0.421 0.045 9.43 0.000*** 

After     
    Control 19.470    
    Treated 19.854    
    Diff(T-C) 0.384 0.041 9.44 0.000*** 

     

Diff-in-Diff -0.037 0.060 0.62 0.538 

R-square:    0.77 

* Means and Standard Errors are estimated by linear regression 

**Robust Std. Errors 

**Inference: *** p<0.01; ** p<0.05; * p<0.1 

Table 4 – Difference-in-differences Estimation Results for Treatment -5;5 

Table 5 – Difference-in-differences Estimation Results for 2 Weeks 
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The results are very similar to the ones of the main regression. The ATE is approximately 

-1%, while remaining statistically insignificant at the 5% significance-level due to a p-value of 

51.9%, and the R-square is the same, at 85%. In conclusion, the results are not affected by 

changes in the chosen time period. 

VII. Policy Implications 

The conclusions of this work project are of great importance. No causal relationship 

between the changes on the number of a game’s owners and the changes on their online user 

review scores was found. This shows how different markets need to be approached differently. 

Although the reach of online word-of-mouth has been verified in many industries, it seems that 

in certain cases it is not so influential. 

One possible avenue for video game publishers and developers to increase sales is to 

invest on their brand power. Perhaps their goal should be to construct a solid fandom, i.e., a 

group of fans. These will most likely buy their games, regardless of factors such as other users’ 

opinions, due to their personal relationship with the brand. Consequently, the initial contact 

with new customers and their initial opinions of the games must be carefully looked into. For 

example, greater relevance could be given to other sorts of more personal online WOM, as 

sponsored video game blog posts or known Youtubers’ videos. The multitude of WOM that can 

be created online and its different effects should be the subject of further research. 

In conclusion, video game publishers and developers should disregard marketing 

strategies that aim to manipulate the user review systems. Besides not being able to find any 

consequential benefit, to try to deceive customers can have harmful effects in the long run. It 

might get them high sales in early stages but gamers will eventually lose their trust in the 

companies behind the games. A recent and famous example in the gaming industry is the game 

No Man’s Sky, which had a brilliant pre-release marketing campaign and generated very high 
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expectations, due to its ground-breaking procedurally generated open universe, having over 18 

quintillion (1.8x1019) planets embedded in the game’s code, instead of already being written 

and stored in the game’s files or servers. However, it failed to deliver, as it was plagued by 

crashes and bugs and the possibilities were not as immense as initially marketed. As a result, a 

lot of refund requests were made and the creators lost most of the credibility and good-faith 

they had gained. Another example of the prejudicial effects of lying to the customers, from a 

different industry, is the September 2015 Volkswagen emission scandal, which lead the German 

group to lose its leader status in some key markets around the world, facing nowadays very 

strong competition from Toyota and Renault-Nissan in the global market. 
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IX. Appendices 

Table A.1 – Difference-in-Differences Estimation Results 

 (1) (2) (3) (4) 

VARIABLES Main Regression Treatment -2;2 Treatment -5;5 2 Weeks 

     

after 0.0964*** 0.156*** 0.236*** 0.0429 

 (0.0313) (0.0346) (0.0539) (0.0442) 

treatment 0.207***   0.210*** 

 (0.0101)   (0.0137) 

treatment22  0.303***   

  (0.0271)   

treatment55   0.421***  

   (0.0447)  

Diff-in-Diff -0.00905 -0.0178 -0.0368 -0.0121 

 (0.0132) (0.0355) (0.0598) (0.0185) 

userscore -0.00881*** -0.00975*** -0.00771*** -0.00907*** 

 (0.000285) (0.000338) (0.000467) (0.000403) 

lreviews 0.758*** 0.791*** 0.810*** 0.759*** 

 (0.00498) (0.00570) (0.00883) (0.00701) 

lnewvotes -0.00983** -0.0184*** -0.0322*** -0.00459 

 (0.00408) (0.00483) (0.00839) (0.00577) 

price -0.0211*** -0.0220*** -0.0286*** -0.0221*** 

 (0.000891) (0.000915) (0.00142) (0.00126) 

sqprice 0.000228*** 0.000224*** 0.000258*** 0.000238*** 

 (1.51e-05) (1.50e-05) (2.43e-05) (2.13e-05) 

laverage -0.0202*** -0.0596*** -0.111*** -0.0268*** 

 (0.00710) (0.00834) (0.0130) (0.0102) 

lmedian 0.00487 0.0499*** 0.0977*** 0.00637 

 (0.00662) (0.00782) (0.0121) (0.00944) 

lplayers 0.137*** 0.171*** 0.268*** 0.137*** 

 (0.00498) (0.00586) (0.00856) (0.00707) 

releasedate -0.000562*** -0.000736*** -0.000929*** -0.000562*** 

 (4.71e-06) (6.17e-06) (1.20e-05) (6.68e-06) 

week1 -1.104*** -0.803*** -0.794*** -0.737*** 

 (0.0649) (0.0927) (0.0881) (0.0896) 

week2 -1.154*** -0.968*** -1.000*** -1.228*** 

 (0.0536) (0.0515) (0.0595) (0.0702) 

week3 -1.113*** -0.991*** -1.058*** -1.256*** 

 (0.0498) (0.0506) (0.0542) (0.0561) 

week4 -1.065*** -0.960*** -0.912*** -0.956*** 

 (0.0476) (0.0476) (0.0521) (0.0675) 

week5 -1.008*** -0.902*** -0.879*** -0.850*** 

 (0.0502) (0.0585) (0.0682) (0.0976) 

week6 -0.895*** -0.791*** -0.875*** -0.959*** 

 (0.0575) (0.0881) (0.129) (0.0791) 

week7 -0.807*** -0.587*** -0.598*** -0.915*** 

 (0.0536) (0.0678) (0.0719) (0.0629) 

week8 -0.871*** -0.539*** -0.485*** -0.609*** 
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 (0.0442) (0.0449) (0.0595) (0.0519) 

languages -0.000872 -0.00100 -0.000741 -0.00100 

 (0.000818) (0.000887) (0.00155) (0.00116) 

metascore 0.0109*** 0.0129*** 0.0127*** 0.0114*** 

 (0.000403) (0.000455) (0.000618) (0.000572) 

Action 0.00132 -0.0111 -0.0217** 0.00117 

 (0.00664) (0.00764) (0.0107) (0.00943) 

Adventure 0.0139* 0.0625*** 0.0715*** 0.0148 

 (0.00735) (0.00834) (0.0111) (0.0104) 

Anime -0.267*** -0.161*** -0.138*** -0.279*** 

 (0.0136) (0.0144) (0.0182) (0.0190) 

Casual 0.0377*** 0.0572*** 0.0504** 0.0359** 

 (0.0112) (0.0121) (0.0209) (0.0160) 

EarlyAccess 0 0 0 0 

 (0) (0) (0) (0) 

FreetoPlay 0 0 0 0 

 (0) (0) (0) (0) 

Indie 0.0722*** 0.115*** 0.117*** 0.0580*** 

 (0.00761) (0.00823) (0.0115) (0.0108) 

Multiplayer -0.0705*** -0.100*** -0.152*** -0.0697*** 

 (0.00876) (0.0104) (0.0146) (0.0123) 

OpenWorld -0.195*** -0.0871*** 0 -0.191*** 

 (0.0123) (0.0153) (0) (0.0174) 

Single-player 0 0 0 0 

 (0) (0) (0) (0) 

Sports -0.117*** 0 0 -0.116*** 

 (0.0183) (0) (0) (0.0258) 

Strategy 0.151*** 0.167*** 0.251*** 0.157*** 

 (0.00851) (0.00987) (0.0139) (0.0120) 

Zombies -0.185*** -0.211*** -0.268*** -0.187*** 

 (0.0174) (0.0180) (0.0237) (0.0244) 

2KGames 0.0679** -0.367*** 0 0.0618 

 (0.0337) (0.0473) (0) (0.0479) 

Activision -0.353*** 0 0 -0.340*** 

 (0.0206) (0) (0) (0.0310) 

BethesdaSoftworks 0.115*** 0 0 0.107** 

 (0.0353) (0) (0) (0.0502) 

ElectronicArts -0.175*** 0 0 -0.153*** 

 (0.0300) (0) (0) (0.0432) 

RockstarGames 0.00818 0 0 0.0293 

 (0.0287) (0) (0) (0.0400) 

SEGA 0.381*** 0 0 0.383*** 

 (0.0235) (0) (0) (0.0335) 

SquareEnix 0.418*** 0.358*** 0.341*** 0.405*** 

 (0.0220) (0.0294) (0.0373) (0.0310) 

THQNordic 0.340*** 0.528*** 0 0.327*** 

 (0.0195) (0.0225) (0) (0.0281) 

TelltaleGames 1.135*** 1.175*** 0 1.083*** 

 (0.116) (0.0953) (0) (0.161) 

Valve -0.106** 0 0 -0.144* 
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 (0.0507) (0) (0) (0.0737) 

WarnerBros. 0.247*** 0.0539 0 0.236*** 

 (0.0324) (0.0348) (0) (0.0458) 

BioWare 0.305*** 0 0 0.296*** 

 (0.0626) (0) (0) (0.0894) 

Capcom -0.126*** -0.316*** -0.657*** -0.124*** 

 (0.0223) (0.0254) (0.0332) (0.0313) 

CDPROJEKTRED 0 0 0 0 

 (0) (0) (0) (0) 

DICE 0 0 0 0 

 (0) (0) (0) (0) 

FiraxisGames 0.715*** 0 0 0.720*** 

 (0.0558) (0) (0) (0.0792) 

GearboxSoftware -0.111*** 0.0297 0 -0.139*** 

 (0.0306) (0.0358) (0) (0.0418) 

IOInteractive -0.338*** 0 0 -0.324*** 

 (0.0345) (0) (0) (0.0494) 

LucasArts 0.697*** 0 0 0.688*** 

 (0.0341) (0) (0) (0.0471) 

MumboJumbo 0 0 0 0 

 (0) (0) (0) (0) 

ObsidianEntertainment -0.0315 0 0 -0.0256 

 (0.0321) (0) (0) (0.0475) 

RelicEntertainment 0.512*** 0 0 0.499*** 

 (0.0734) (0) (0) (0.104) 

SquareEnixDEV -0.0635*** 0 0 -0.0541*** 

 (0.0137) (0) (0) (0.0192) 

TelltaleGamesDEV -0.672*** -0.898*** 0 -0.633*** 

 (0.107) (0.0876) (0) (0.148) 

TheCreativeAssembly -0.288** 0 0 -0.304* 

 (0.124) (0) (0) (0.175) 

Treyarch 0.490*** 0 0 0.487*** 

 (0.0720) (0) (0) (0.102) 

TripwireInteractive 0 0 0 0 

 (0) (0) (0) (0) 

UbisoftDEV 0 0 0 0 

 (0) (0) (0) (0) 

ValveDEV 0 0 0 0 

 (0) (0) (0) (0) 

Constant 14.66*** 16.92*** 19.23*** 14.67*** 

 (0.0808) (0.101) (0.191) (0.114) 

     

Observations 43,567 31,665 17,327 21,824 

R-squared 0.852 0.825 0.773 0.852 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Complementary Appendices 

Table CA.1 – Descriptive Statistics 

VARIABLES Obs Mean Std.Dev. Min Max 

lowners 305.17 9.964775 2.147558 6.142037 18.23536 

owners 305.17 211944.4 1343734 465 8.31E+07 

userscore 271.378 73.01538 19.92807 0 100 

lreviews 271.377 4.870605 1.992817 0 14.18586 

reviews 271.378 1606.936 18197.73 0 1448237 

lnewvotes 271.378 2.654028 2.803179 0 14.157 

newvotes 271.378 876.9574 13465.76 0 1407041 

price 261.762 10.34285 9.327774 0.19 300 

sqprice 261.762 193.9815 1050.128 0.0361 90000 

laverage 188.52 4.24512 1.689133 0 9.907928 

lmedian 188.52 4.094987 1.639207 0 9.907928 

lplayers 188.52 7.358732 1.352594 6.142037 16.24487 

releasedate 264.119 16227.13 859.7717 10042 17280 

week1 305.17 .0111577 .1050393 0 1 

week2 305.17 .0036504 .0603085 0 1 

week3 305.17 .0044041 .0662172 0 1 

week4 305.17 .0051217 .0713829 0 1 

week5 305.17 .0056231 .0747763 0 1 

week6 305.17 .0060065 .0772686 0 1 

week7 305.17 0.006711 .0816456 0 1 

week8 305.17 .0069764 .0832334 0 1 

languages 305.17 3.290094 3.729991 1 27 

metascore 59.782 72.63588 10.85966 20 96 

action 305.17 .4145132 .4926386 0 1 

adventure 305.17 .3154111 .4646801 0 1 

anime 305.17 .0474588 .2126184 0 1 

casual 305.17 .2485107 .4321501 0 1 

earlyaccess 305.17 .0715568 .2577531 0 1 

freetoplay 305.17 .0618999 .2409741 0 1 

indie 305.17 .5533965 .4971415 0 1 

multiplayer 305.17 0.091608 .2884722 0 1 

openworld 305.17 .0375266 .1900487 0 1 

singleplayer 305.17 .0086214 .0924507 0 1 

sports 305.17 .0381689 .1916041 0 1 

strategy 305.17 .2052757 .4039036 0 1 

zombies 305.17 .0223974 .1479722 0 1 

kgames 305.17 .0032441 .0568646 0 1 

activision 305.17 .0066848 0.081487 0 1 

bethesdaso~s 305.17 .0025035 .0499726 0 1 

electronic~s 305.17 .0043255 .0656259 0 1 

rockstarga~s 305.17 .0014746 .0383721 0 1 

sega 305.17 .0080414 .0893128 0 1 

squareenix 305.17 .0078645 .0883326 0 1 
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thqnordic 305.17 .0088148 .0934724 0 1 

telltalega~s 305.17 .0051119 .0713147 0 1 

valve 305.17 .0031458 .0559991 0 1 

warnerbros 305.17 .0029492 .0542263 0 1 

bioware 305.17 .0005898 .0242794 0 1 

capcom 305.17 .0020251 .0449556 0 1 

cdprojektred 305.17 .0002949 .0171707 0 1 

dice 305.17 .0002949 .0171707 0 1 

firaxisgames 305.17 .0011797 .0343261 0 1 

gearboxsof~e 305.17 .0008848 .0297317 0 1 

iointeract~e 305.17 .0007864 .0280327 0 1 

lucasarts 305.17 0.001278 0.035726 0 1 

mumbojumbo 305.17 .0034374 .0585288 0 1 

obsidianen~t 305.17 .0006881 .0262235 0 1 

relicenter~t 305.17 .0007766 .0278571 0 1 

squareenix~v 305.17 .0037356 .0863557 0 2 

telltalega~v 305.17 .0052102 .0719936 0 1 

thecreativ~y 305.17 .0002949 .0171707 0 1 

treyarch 305.17 .0007864 .0280327 0 1 

tripwirein~e 305.17 .0003932 0.019826 0 1 

ubisoftdev 305.17 .0043255 .0656259 0 1 

valvedev 305.17 .0027526 .0523927 0 1 

treatment 305.17 .4492283 .4974164 0 1 

diffscore 285.711 -.479565 6.370476 -98 70 

after 305.17 .6109939 .4875255 0 1 
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Table CA.2 – Correlation Matrix 
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0.003
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0.003

0.001
0.001

1
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Table CA.3 – Probit Regression to calculate Propensity Scores 

Probit regression  Number of obs = 19249 

   LR chi2(52) = 3311.57 

   Prob > chi2 = 0.0000 

Loglikelihood = -10932.959   PseudoR2=0.1315 

Treatment Coef. Std. Err.  z P>|z| 

userscore   -.0150199  .0008704  -17.26 0.000*** 

lreviews   -.3138634  .0130525 -24.05 0.000*** 

price    .0138958 .0026743  5.20 0.000*** 

sqprice   -.0001655  .0000419 -3.95 0.000*** 

laverage   -.0866508  .0242414  -3.57 0.000*** 

lmedian    .0505344  .0228138  2.22 0.027** 

lplayers    .1715067   .0161413  10.63 0.000*** 

releasedate    .0001379  .0000133 10.35 0.000*** 

week1      .34651 .2073262 1.67  0.095* 

week2    .5918188 .1760343  3.36  0.001*** 

week3    .1363872  .1861791 0.73 0.464 

week4   -.7222578 .2330219 -3.10 0.002*** 

week5    .1631291  .2105297  0.77 0.438 

week6    .9882958  .2523809 3.92 0.000*** 

week7    .1990192 .2298656  0.87 0.387 

week8     .482154  .2076047 2.32  0.020** 

languages    .0015304  .0028834 0.53 0.596 

metascore   -.0078557 .0012834  -6.12 0.000*** 

action    .2361013  .0226317 10.43 0.000*** 

adventure    .1437587 .0251786  5.71 0.000*** 

anime   -.0314537 .0647408  -0.49  0.627 

casual    .0689664  .0372939  1.85 0.064* 

indie    .2998386  .025792 11.63 0.000*** 

multiplayer    -.054341  .030623 -1.77 0.076* 

openworld    .0212448 .0470803  0.45  0.652 

sports   -.0190094  .0595336  -0.32 0.749 

strategy    .0868336 .0274166 3.17 0.002*** 

zombies   -.1471901  .0672837 -2.19 0.029** 

kgames    .1227787  .118476 1.04 0.300 

activision   -.1060774 .1100118 -0.96 0.335 

bethesdaso~s     .270947  .0953302 2.84 0.004*** 

electronic~s   -.9040765 .124461 -7.26 0.000*** 

rockstarga~s   -.1583564  .1555282 -1.02  0.309 

sega    .4014912 .0962517  4.17 0.000*** 

squareenix   -.1881256 .0714217 -2.63  0.008*** 

thqnordic   -.1444694 .0545663  -2.65  0.008*** 

telltalega~s    .1529674  .3029959 0.50  0.614 

valve   -5.688059 .1268442 -44.84 0.000*** 

warnerbros   -.0137148 .1049003  -0.13  0.896 

bioware    1.158276  .2161746 5.36 0.000*** 

capcom   -.0066959 .1023783 -0.07 0.948 
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firaxisgames    .3762701  .1524423  2.47 0.014** 

gearboxsof~e    1.066681  .2467913 4.32 0.000*** 

iointeract~e    1.481941  .1675785  8.84 0.000*** 

lucasarts   -.2463514  .2057303  -1.20 0.231 

obsidianen~t    .1218065  .2017681 0.60 0.546 

relicenter~t    .4551792 .1884168  2.42 0.016** 

squareenix~v   -.0908546  .0889025 -1.02  0.307 

telltalega~v    .6852268 .3001559 2.28  0.022** 

thecreativ~y    .5945643  .251777 2.36  0.018** 

treyarch    .8556419  .2416324 3.54 0.000*** 

_cons   -.2661982  .2259048 -1.18  0.239 
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CA.4 – Stata Codes 

*KERNEL PROPENSITY SCORE DiD 

use "E:\Documentos\NOVA\Mestrado\Work Project\FINAL MERGED DATA 

September.dta" 

set more off 

global tags action adventure anime casual earlyaccess freetoplay indie multiplayer openworld 

singleplayer sports strategy zombies 

global publisher kgames activision bethesdasoftworks electronicarts rockstargames sega 

squareenix thqnordic telltalegames valve warnerbros 

global developer bioware capcom cdprojektred dice firaxisgames gearboxsoftware 

iointeractive lucasarts mumbojumbo obsidianentertainment relicentertainment squareenixdev 

telltalegamesdev thecreativeassembly treyarch tripwireinteractive ubisoftdev valvedev 

global week week1 week2 week3 week4 week5 week6 week7 week8 

xtset app_id date, format(%tdDD/NN/CCYY) 

set more off 

diff lowners if support==1, t(treatment) p(after) cov( userscore lreviews lnewvotes price 

sqprice laverage lmedian lplayers releasedate $week languages metascore $tags $publisher 

$developer ) robust report 

diff lowners , t(treatment) p(after) cov( userscore lreviews lnewvotes price sqprice laverage 

lmedian lplayers releasedate $week languages metascore $tags $publisher $developer ) kernel 

id(app_id) robust report 

 

*Exporting 

outreg2 using "did.doc", replace ctitle(Main Regression) label 

outreg2 using "did.doc", append ctitle(Treatment -2;2) label 

outreg2 using "did.doc", append ctitle(Treatment -5;5) label 

outreg2 using "did.doc", append ctitle(Week Before&After) label 

 

*Descriptive Statistics 

tab treatment 

tab support if _merge_treatment==3 

sum lowners owners userscore lreviews reviews lnewvotes newvotes price sqprice laverage 

lmedian lplayers releasedate $week languages metascore $tags $publisher $developer 

treatment diffscore after if _merge_treatment==3 
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mean diffscore 

mean diffscore if diffscore~=0 

gen diffscore22=diffscore*treatment22 

mean diffscore22 if diffscore22~=0 

gen diffscore55=diffscore*treatment55 

mean diffscore55 if diffscore55~=0 

correlate lowners userscore lreviews lnewvotes price sqprice laverage lmedian lplayers 

releasedate languages metascore treatment after 

correlate lowners userscore lreviews lnewvotes price sqprice laverage lmedian lplayers 

releasedate $week languages metascore $tags $publisher $developer treatment after 

hist lowners, by(treatment) 

hist userscore, by(treatment) 

hist releasedate, by(treatment) 

hist lowners if after==0, by(treatment) 

hist userscore if after==0, by(treatment) 

hist releasedate if after==0, by(treatment) 

hist lowners if after==0 & support==1, by(treatment) 

hist userscore if after==0 & support==1, by(treatment) 

hist releasedate if after==0 & support==1, by(treatment) 

histogram lowners if after==0, xtitle(Log(Owners)) by(, title(Log(Owners) by Treatment 

Groups) note(treatment=1 means it belongs to the treatment group.)) by(treatment) 

histogram userscore if after==0, xtitle(User Score) by(, title(User Score by Treatment Groups) 

note(treatment=1 means it belongs to the treatment group.)) by(treatment) 

histogram lreviews if after==0, xtitle(Log(Reviews)) by(, title(Log(Reviews) by Treatment 

Groups) note(treatment=1 means it belongs to the treatment group.)) by(treatment) 

histogram releasedate if after==0, xtitle(Release Date) by(, title(Release Date by Treatment 

Groups) note(treatment=1 means it belongs to the treatment group. Variable is in days since 

release coded for days since 01/01/1970)) by(treatment) 

histogram lowners if after==0 & support==1, xtitle(Log(Owners)) by(, title(Log(Owners) by 

Treatment Groups in the Common Support) note(treatment=1 means it belongs to the 

treatment group.)) by(treatment) 

histogram userscore if after==0 & support==1, xtitle(User Score) by(, title(User Score by 

Treatment Groups in the Common Support) note(treatment=1 means it belongs to the 

treatment group.)) by(treatment) 
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histogram lreviews if after==0 & support==1, xtitle(Log(Reviews)) by(, title(Log(Reviews) 

by Treatment Groups in the Common Support) note(treatment=1 means it belongs to the 

treatment group.)) by(treatment) 

histogram releasedate if after==0 & support==1, xtitle(Release Date) by(, title(Release Date 

by Treatment Groups in the Common Support) note(treatment=1 means it belongs to the 

treatment group. Variable is in days since release coded for days since 01/01/1970)) 

by(treatment) 

 

*New Treatment Assignment 

use "E:\Documentos\NOVA\Mestrado\Work Project\FINAL MERGED DATA 

September.dta" 

sort app_id date 

gen diffscore=newscore-userscore 

replace diffscore=0 if date<17058 

gen diffscore14=userscore-newscore if date==17058 

tab diffscore14 

keep if date==17058 

gen treatment=1 

replace treatment=0 if diffscore14==0 | diffscore14==. 

gen treatment22=1 

replace treatment22=0 if diffscore14==0 | diffscore14==. | diffscore14==1 | diffscore14==2 | 

diffscore14==-1 | diffscore14==-2 

gen treatment55=1 

replace treatment55=0 if diffscore14==0 | diffscore14==. | diffscore14==1 | diffscore14==2 | 

diffscore14==3 | diffscore14==4 | diffscore14==5 | diffscore14==-1 | diffscore14==-2 | 

diffscore14==-3 | diffscore14==-4 | diffscore14==-5 

merge m:1 app_id using "E:\Documentos\NOVA\Mestrado\Work Project\Treatment and 

Diffscore.dta", generate(_merge_treatment) 

merge m:1 app_id using "E:\Documentos\NOVA\Mestrado\Work Project\Treatment 55.dta", 

generate(_merge_treatment55) 

 

*Robustness Checks 

diff lowners, t(treatment22) p(after) cov( userscore lreviews lnewvotes price sqprice laverage 

lmedian lplayers releasedate $week languages metascore $tags $publisher $developer ) kernel 

id(app_id) support robust report 
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gen support22=_support 

diff lowners if support22==1, t(treatment22) p(after) cov( userscore lreviews lnewvotes price 

sqprice laverage lmedian lplayers releasedate $week languages metascore $tags $publisher 

$developer ) robust report 

set more off 

diff lowners, t(treatment55) p(after) cov( userscore lreviews lnewvotes price sqprice laverage 

lmedian lplayers releasedate $week languages metascore $tags $publisher $developer ) kernel 

id(app_id) support robust report 

gen support55=_support 

diff lowners if support55==1, t(treatment55) p(after) cov( userscore lreviews lnewvotes price 

sqprice laverage lmedian lplayers releasedate $week languages metascore $tags $publisher 

$developer ) robust report 

 

*xtreg Experimentation 

gen pt=treated*after 

xtreg lowners after pt average mediantime players price sqprice $tags $publisher $developer 

$week releasedate languages userscore metascore, robust 

xtreg lowners after pt average mediantime players price sqprice $tags $publisher $developer 

$week releasedate languages userscore metascore, fe robust 

gen before1=0 

replace before1=1 if date<=17050 

gen before2=0 

replace before2=1 if date<=17056 & date>17050 

gen after1=0 

replace after1=1 if date<=17062 & date>17056 

gen after2=0 

replace after2=1 if date<=17068 & date>17062 

gen after3=0 

replace after3=1 if date>17068 

gen pt1=after1*treated 

gen pt2=after2*treated 

gen pt3=after3*treated 

xtreg lowners after pt1 pt2 pt3 average mediantime players price sqprice $tags $publisher 

$developer $week releasedate languages userscore metascore, fe robust 
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xtreg lowners after pt pt1 pt2 pt3 average mediantime players price sqprice $tags $publisher 

$developer $week releasedate languages userscore metascore, fe robust 

 

*Initial Processing 

import delimited "E:\Documentos\NOVA\Mestrado\Work Project\FinalData.csv", 

delimiter(";")  

drop if dates<1470009600000 

drop if dates>1477872000000 

gen date=dates/86400000 

drop if owners==. 

drop dates 

xtset app_id date, daily 

gen MA7owners = (F3.owners + F2.owners + F1.owners + owners + L1.owners + L2.owners 

+ L3.owners) / 7 

gen lowners=log(owners) 

gen sqprice=price^2 

gen after=1 if d1970>17056 

replace after=0 if after==. 

gen lplayers=log(players) 

gen laverage=log(average) 

gen lmedian=log(mediantime) 

gen reviews=positive+negative 

gen lreviews=log(reviews) 

*September 

drop if date<17045 | date>17074 

*2weeks 

drop if date<17051 | date>17065 

 

*Merge Web & Reviews 

use "E:\Documentos\NOVA\Mestrado\Work Project\FINAL DATA.dta", clear 

merge m:m app_id datestring using "E:\Documentos\NOVA\Mestrado\Work Project\Data 

Reviews FINAL.dta", force 
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*Release Date Variables 

gen days= date - releasedate 

gen weeks=days/7 

gen week1=0 

replace week1=1 if weeks<=1 

gen week2=0 

replace week2=1 if weeks<=2 & weeks>1 

gen week3=0 

replace week3=1 if weeks<=3 & weeks>2 

gen week4=0 

replace week4=1 if weeks<=4 & weeks>3 

gen week5=0 

replace week5=1 if weeks<=5 & weeks>4 

gen week6=0 

replace week6=1 if weeks<=6 & weeks>5 

gen week7=0 

replace week7=1 if weeks<=7 & weeks>6 

gen week8=0 

replace week8=1 if weeks<=8 & weeks>7 

 

*Data Robustness Check 2016 

import delimited "E:\Documentos\NOVA\Mestrado\Work Project\FinalData.csv", 

delimiter(";")  

gen date=dates/86400000 

drop dates 

gen var10=date 

xtset app_id date, format(%tdNN/DD/CCYY) 

gen yearvariation=F250.owners-owners 

gen ownersvariation=yearvariation if var10==16916 

gsort -  ownersvariation 
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CA.5 – Python Codes for Web Scraping 

import requests 

from lxml import html 

from lxml.etree import tostring 

import json 

import pandas as pd 

import re 

import time 

import os 

os.chdir(r"E:\Documentos\NOVA\Mestrado\Work Project") 

db1 = pd.read_stata("Data Reviews FINAL.dta") 

db1["db1"] = 1 

db2 = pd.read_stata("FINAL DATA.dta") 

db1["db1"] = 0 

mergedata = pd.merge(db1, db2, on = ["app_id", "datestring"], how="right") 

mergedata.to_stata("MergedData.dta") 

db3 = pd.read_stata("Preliminary Merge.dta") 

db3.groupby("app_id")["date"].value_counts().to_csv("test.csv", index=1) 

 

Steam DB 

all_app_ids =  [] 

all_game_names = [] 

all_app_types = [] 

n_pages = 

int(html.fromstring(requests.get("https://steamdb.info/apps/page1/").content).xpath('/html/bod

y/div[1]/div[2]/div/h1[1]/text()[2]')[0][1:]) 

for page in range(1,n_pages+1): 

    raw_page = requests.get("https://steamdb.info/apps/page"+str(page)+"/") 

    tree = html.fromstring(raw_page.content) 

 

    app_id = [x.text for x in tree.xpath("//tr/td[2]/a")] 
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    game_name = [x.text for x in tree.xpath("//tr/td[3]/a")] 

    game_name = list(filter(lambda x: x!="\n", game_name)) 

    app_type = [x.text for x in tree.xpath("//tr/td[3]/i")] 

 

    all_app_ids = all_app_ids+app_id 

    all_game_names = all_game_names+game_name 

    all_app_types = all_app_types+app_type 

steamdb = pd.DataFrame(data = [all_app_ids, all_game_names, all_app_types]).T 

steamdb.columns = ["app_id", "app_name", "app_type"] 

steamdb.to_csv("steamdb.csv",index=0) 

 

Steam Spy 

from robobrowser import RoboBrowser 

browser = RoboBrowser(history=True, parser="lxml") 

browser.open("http://steamspy.com/login") 

form = browser.get_form("login_form") 

form["username"] = "CapitaoPortugal" #Põe entre "" o teu username 

form["password"] = "Recroom00" ##Põe entre "" a tua password 

browser.submit_form(form) 

def get_dataset_boundaries(code): 

    iter_start = re.finditer("\{", code) 

    indices_start = [m.start(0) for m in iter_start] 

        iter_end = re.finditer("\}", code) 

    indices_end = [m.end(0) for m in iter_end] 

    return indices_start, indices_end 

steamdb = pd.read_csv("IDsnoerrors.csv", encoding="latin", sep=";") #Para carregar a base 

que tenhas guardado. Remove o # 

steamdb.columns = ["app_id", "name"] 

#for app_id in steamdb["app_id"]: 

 

merge_final = pd.DataFrame() 
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#for app_id in ['268500']:     

for app_id in steamdb["app_id"]: 

    print(app_id) 

    #time.sleep(.2) 

    browser.open("http://steamspy.com/app/"+str(app_id)) 

    tree = html.fromstring(browser.response.content) 

     

    #tab-sales 

    tab_sales = tree.xpath('//*[@id="tab-

sales"]/script/text()')[0].replace("\n","").replace("\r","").replace(" ", 

"").replace(",,",',"",').replace("\\'","").replace("\\","") 

    tab_sales = re.sub('(?<=\w)"(?=\w)',"",tab_sales) 

    tab_sales = re.sub('(?<=\w)""','"',tab_sales) 

    tab_sales = re.sub('""(?=\w)','"',tab_sales) 

    tab_sales = re.sub('(?<=[<?+!-*=])""','"',tab_sales) 

    tab_sales = re.sub('""(?=[<?+!-*=])','"',tab_sales) 

    tab_sales = re.sub('(?<=\w)"(?=[<?+!-*=])',"",tab_sales) 

    tab_sales = re.sub('(?<=[<?+!-*=])"(?=\w)',"",tab_sales) 

    starts, ends = get_dataset_boundaries(tab_sales) 

    owners_data = json.loads(tab_sales[starts[0]:ends[0]]) 

    dates = [row[0] for row in owners_data["values"]] 

    owners = [row[1] for row in owners_data["values"]] 

    owners_data = pd.DataFrame(data = [dates, owners]).T 

    owners_data.columns = ["dates", "owners"] 

    owners_data["app_id"] = app_id 

    prices_data = json.loads(tab_sales[starts[1]:ends[1]]) 

    dates = [row[0] for row in prices_data["values"]] 

    prices = [row[1] for row in prices_data["values"]] 

 

    prices_data = pd.DataFrame(data = [dates, prices]).T 
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    prices_data.columns = ["dates", "prices"] 

    prices_data["app_id"] = app_id 

    merge = pd.merge(owners_data, prices_data, on = ["dates", "app_id"]) 

     

    #tab-audience 

    tab_audience = tree.xpath('//*[@id="tab-

audience"]/script/text()')[0].replace("\n","").replace("\r","").replace(" ", 

"").replace(",,",',"",').replace(",,",',"",').replace("\\'","").replace("\\","") 

    tab_audience = re.sub('(?<=\w)"(?=\w)',"",tab_audience) 

    tab_audience = re.sub('(?<=\w)""','"',tab_audience) 

    tab_audience = re.sub('(?<=[<?+!-*=])""','"',tab_audience) 

    tab_audience = re.sub('""(?=[<?+!-*=])','"',tab_audience) 

    tab_audience = re.sub('(?<=\w)"(?=[<?+!-*=])',"",tab_audience) 

    tab_audience = re.sub('(?<=[<?+!-*=])"(?=\w)',"",tab_audience) 

    starts, ends = get_dataset_boundaries(tab_audience) 

    players_data = json.loads(tab_audience[starts[0]:ends[0]]) 

    dates = [row[0] for row in players_data["values"]] 

    players = [row[1] for row in players_data["values"]] 

    players_data = pd.DataFrame(data = [dates, players]).T 

    players_data.columns = ["dates", "players"] 

    players_data["app_id"] = app_id 

    average_data = json.loads(tab_audience[starts[1]:ends[1]].replace(',]',',""]')) 

    dates = [row[0] for row in average_data["values"]] 

    average = [row[1] for row in average_data["values"]] 

    average_data = pd.DataFrame(data = [dates, average]).T 

    average_data.columns = ["dates", "average"] 

    average_data["app_id"] = app_id 

    median_data = json.loads(tab_audience[starts[2]:ends[2]].replace(',]',',""]')) 

    dates = [row[0] for row in median_data["values"]] 

    median = [row[1] for row in median_data["values"]] 

    median_data = pd.DataFrame(data = [dates, median]).T 
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    median_data.columns = ["dates", "median"] 

    median_data["app_id"] = app_id 

    merge2 = pd.merge(merge, players_data, on = ["dates", "app_id"]) 

    merge3 = pd.merge(merge2, average_data, on = ["dates", "app_id"]) 

    merge4 = pd.merge(merge3, median_data, on = ["dates", "app_id"]) 

     

    def clean(l): 

        return ", ".join(list(filter(None,[re.sub('[<>, ]',"",x) for x in re.findall('\>.*?\<',l)]))) 

 

    def clean2(l): 

        return ", ".join(list(filter(None,[re.sub('[<> ]',"",x) for x in 

re.findall('\>.*?\<',l)]))).replace(",",", ") 

 

      

    a = tree.xpath('//div[@class="p-r-30"]/p')[0] 

    b = tostring(a).decode("utf-8") 

    raw_list = [i for i in b.split("<strong>")][1:] 

    categories_list = [i.split("<")[0].replace(":","") for i in raw_list] 

    try: merge4["developer"] = clean(raw_list[0]) 

    except: pass 

    try: merge4["publisher"] = clean(raw_list[1]) 

    except: pass 

    try: merge4["genre"] = clean(raw_list[2]) 

    except: pass 

    try: merge4["languages"] = clean(raw_list[3]) 

    except: pass 

    try: merge4["tags"] = clean(raw_list[4]) 

    except: pass 

    try: merge4["category"] = clean2(raw_list[5]) 

    except: pass 

    try: merge4["release_date"] = clean2(raw_list[6]).replace(":","") 
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    except: pass 

    try: merge4["metascore"] = clean(raw_list[11]) 

    except: pass 

     

    merge_final = pd.concat([merge_final,merge4]) 

merge_final.to_csv("FinalData.csv", index=0, sep=";") 

 


