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Abstract 

Driven by the difficulty to predict the last financial crisis and possible distortion of predictive 

power of the conventional financial indicators on economic activity, this thesis provides in-

sample and out-of-sample analyses whether financial volatility helps in explaining and 

forecasting economic activity. Several measures of financial volatility were constructed, such as: 

realized volatility, volatility following a Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) process, common long-run component of volatility estimated by 

Dynamic Factor Model, Principal Component Analysis and cyclical components of financial 

volatilities filtered out with Baxter-King filter. I find that statistically there are measures of 

financial volatility that help in explaining economic activity. Moreover, out-of-sample analysis 

suggests that the model with term-spread and volatility of financial volatility (volatility of value-

weighted returns of market portfolio volatility) performs best in forecasting economic activity. 

The inclusion of a volatility measure reduces the noise in estimated probabilities of expansions 

and leads to the lowest number of uncertain periods, i.e. periods for which probability of 

recession is between 16.86% (percentage of recessions in the sample) and 50%, an event that in 

some studies is already considered as a recession. Thus, a certain financial volatility measure 

improves forecasts from the conventional financial indicators, especially during less volatile 

times. Moreover, the most parsimonious measure of volatility predicts business cycles best. On 

the other hand, industrial production growth seems to be barely affected by financial volatility 

measures, which tend to be a better predictor for the direction of the future path of the economy 

than the actual growth rate.  
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1 Introduction 

At the onset of the financial crisis in 2008, everyone was asking the same question: “How come 

nobody saw it coming?”. Over the past 30 years, economics has been dominated by an “academic 

orthodoxy” which says economic cycles are driven by players in real economy, i.e. producers and 

consumers of goods and services, while banks and other financial institutions have been ignored 

or given little attention.
1
 However, financial institutions were mostly responsible for the global 

crisis of 2008, because of their engagement into high-risk behavior and creation of risky 

products. One of the critiques focuses on researchers relying on mathematical models to figure 

out how economic forces will interact, with disregard for human factor and the role it plays in 

recessions. Most of the models in economics are based on the assumption of human rationality. 

Still, people behave irrationally in many situations and even if one acts rationally, it is wrong to 

assume that the whole group of people will react to a given condition as an individual would. 

This is exactly what one could see during the financial crisis. If people were rational, nobody 

would take mortgages they could not afford and which in turn, led to the financial crisis. On the 

other hand, human psychology is a hard-to-measure factor. However, Monash University finance 

lecturer John Vaz said that over the years, the ability to share the information rapidly and trade 

with “lightning speed” made markets more susceptible to sudden fluctuations based on human 

emotions.
2
 Given that, it is highly probable that financial volatility contains information about 

people’s behavior. 

The possibility that financial volatility may encode information about real economic 

activity has important policy implications, and is naturally of immediate concern to corporate 

decision makers. The correct assessment of the current and, especially, the future economic 

situation is essential for good policymaking. For years, researchers develop leading indicators 

that are supposed to signal the movements of the future economic activity before they occur and 

provide information of the magnitude of these movements. However, the unconventional actions 

taken by central banks during the recessions have likely distorted the predictive power of the 

historically most reliable leading indicators – the yield curve and the real monetary base, and 

made it even harder to predict the recessions (Duncan de Vries, 2015). Furthermore, in the United  

                                                 
1
 Why Economics Failed to Predict the Financial Crisis., (2009, May 13

th
), Knowledge @ Wharton, retrieved online 

from: http://knowledge.wharton.upenn.edu/article/why-economists-failed-to-predict-the-financial-crisis/ 
2
 Human factor colors volatility, (2011, August 13

th
), The Sydney Morning Herald, retrieved online from: 

http://www.smh.com.au/business/human-factor-colours-volatility-20110812-1iqzk.html?deviceType=text 
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Figure 1: Market portfolio volatility (left axis) and one year industrial production growth (right 

axis). 

States, the various leading indicators started to give inconclusive signals. For instance, the yield 

curve and the ratio of the Conference Board’s leading and coincidental indices pointed to a 

continuing economic expansion in 2015 and 2016, while the real monetary base, corporate profit 

data and the ratio of Conference Board’s coincidental and lagging indices predicted a recession. 

Thus, in the event of such problems, this topic is of great relevance since even the simple case 

where a sustained stock volatility merely anticipates, without affecting, the business cycle might 

be already informative and important, since policy makers and private agents are more concerned 

about absolute declines and expansions in activity than in growth cycle measures. Moreover, 

Figure 1 depicts the annualized volatility of the market portfolio constructed by Kenneth R. 

French
3
 and the annual industrial production growth, and reveals that stock volatility is counter 

cyclical, i.e. it raises during all dates marked as recessions. It is a first indication that an 

introduction of such measure may be a missing component in the mathematical predictive models 

                                                 
3
 Retrieved online from: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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of economic activity. Thus, the purpose of this study is to verify whether financial volatility can 

improve the forecasts from traditional predictors and contribute to the existing sparse literature on 

this topic. 

Schwert (1989) was the first person to relate capital market uncertainty to future 

economic fluctuation. He concluded that stock market volatility does not anticipate major 

financial crises and panics, from 1834 to 1987, but it rather rises after the onset of a crisis. 

Naturally, recessions may develop independently of financial crises and panics. Moreover, 

financial turmoil might precede recessions, as for example during the 2007 subprime crisis. More 

recently, Fornari and Mele (2013) find that financial volatility predicts 30% of post-war 

economic activity in the United States, and that during the Great Moderation, aggregate stock 

market volatility explains, alone, up to 55% of real growth. They prove that combining the latter 

with a term spread factor leads to a predicting block that anticipates the business cycle reasonably 

well as it would help predict at least the last three recessions with no “false positive” signals. 

Following, Chauvet, Senyuz and Yoldas (2015) create a simple common factor and find that the 

stock volatility measures and the common factor significantly improve macroeconomic forecasts 

of conventional financial indicators, especially over short horizons. 

Guided from this motivation, the aim of this research is to use the information that 

financial volatility encodes about the development of the business cycle, in predicting economic 

activity including different volatility measures. The study is going to focus mainly on one central 

issue: 

Does financial volatility help in explaining and predicting economic activity? 

However, several sub-questions are also going to be answered in this thesis. 

The literature on the topic focuses on very different volatility measures such as for 

example realized volatility, common factor estimated with Dynamic Factor Model, classical 

volatility approaches or principal component analysis. Based on this wide range of volatility 

measures, one would like to verify whether one of the measures dominates. The second sub-

question of this research is whether volatility measures improve forecasts from the conventional 

indicators. Fornari and Mele (2013) show that the combination of financial volatility with 

traditional predictors leads to better business cycle predictions. Similarly, Chauvet et al. (2015) 

combines financial volatilities with autoregressive term, term spread, credit spread and return of 
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the market portfolio and shows that some of the volatilities seem to have additional information 

beyond that included in the conventional indicators, over the short time horizon. 

 To my knowledge, this is one of the first studies including financial volatility in a 

prediction model conducted for a European country. Thus, since most of the literature on 

predictive power of financial volatility is based on data for the United States, one could suspect 

that there might be a difference in the magnitude of predictive power of financial volatility, if any 

at all. I chose the country of interest based on previous literature. For instance, already Artis, 

Kostolemis and Osborn (1997) showed that economic cycles of European countries are 

interconnected and linked to the economy of the United States through Germany. Thus, the 

German economy is taken as a case study due to its size and significance in the European Union. 

Therefore, based on the results obtained in this research the last sub-question will be answered, 

i.e. whether there are any differences in forecasting European and American economies. 

 The reminder of this thesis is organized as follows. The next section introduces the topic 

using the relevant empirical literature review and an assessment on the existing relevant 

methodology. Section 3 presents the hypotheses that might help to explain the predictive power 

of volatility. Section 4 introduces the data and explains construction of the volatility measures. 

Section 5 presents the empirical results from several models and compares the in-sample and out-

of-sample results of these models. Section 6 contains the discussion and implication for future 

research, and section 7 concludes. 

2 Literature Review 

2.1 Empirical literature 

An extensive research about the predictive ability of traditional financial variables is available. 

To introduce into the topic, among other studies, already Stock and Watson included term spread 

in a construction of their own leading business indicator index in 1989. Later, Estrella and 

Mishkin (1995), following their work about real rates prediction, investigated different financial 

variables and verified their predictive accuracy on American recession data. The analysis 

highlights outperformance of a stock price and other macroeconomic variables in short-term out-

of-sample analysis of up to 2 quarters ahead, whereas a yield curve performs best beyond 2 

quarters and gives better predictions if taken into analysis alone. Serletis and Krause (1996) 

investigated a cyclical behavior of money, prices and short-term nominal rates in the US from 
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1960 to 1993. They showed that short-term interest rates and money are generally strongly 

procyclical, whereas the price level follows a counter cyclical behavior and thus, can be useful in 

modeling business cycles. Further, Ang, Piazzesi and Wei (2006) build a dynamic approach for 

forecasting GDP based on term structure approaches for pricing bonds. They find that the short-

term rate has the most predictive power, but lagged GDP value and longest maturity yield should 

not be left out. 

 The relationship between uncertainty on capital markets and future economic activity 

received relatively less attention in the literature compared to the relationship between financial 

activity and future economic activity. The research so far mostly highlighted the effect of 

uncertainty on capital markets, such as the stock market. Poterba and Summers (1984) studied 

shocks to stock market volatility and their influence on stock market’s level. They find that these 

shocks are not persistent and can be seen on the financial market for not more than 6 months. In 

turn, neither the volatility shock nor movements in equity risk premia can be responsible for the 

stock market downturn in 1970’s. Schwert (1989) also raised a similar topic and documented the 

relations between business cycle, financial crises and stock volatility in the United States in years 

1834-1987. He provides evidence that on average stock volatility is higher during recessionary 

periods, which are shorter than periods of low volatility. Moreover, he shows that even though, 

major and minor banking crises caused significant changes in the stock market over the last 150 

years, the financial volatility does not anticipate the business cycle, but rather follows it. Borio, 

Furfine and Lowe (2001) raised the same issue and talked about misassessment of risks 

associated with economic cycles. Importantly, they highlight procyclical attitude towards risk, i.e. 

it tends to be underestimated during expansion periods and overestimated when the economy 

goes down, which indicates counter cyclical path of human factor on the stock market. This 

asymmetric aspect of stock market volatility was further examined by Mele (2007), who 

developed a theoretical framework about determinants of stock market volatility. On the other 

hand, Adrian and Rosenberg (2008) decomposed financial volatility into short- and long-run 

components. They argue that short-run component is related to a market skewness risk, whereas 

the long-run volatility component is linked to a business cycle risk. Following, Bloom (2009) 

investigates the impact of uncertainty shocks that increase significantly in a result of political and 

economic shocks. He simulates the response of three core macroeconomic variables: output, 

employment and productivity growth, and finds that introduced macro shocks generate a drop, 
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rebound and then a longer-run overshoot to these variables. Later, based on above conclusion, 

Bloom, Floetotto, Jaimovich, Saporta-Eksten and Terry (2012) introduced uncertainty shocks in 

business cycle analysis. They find that the shocks explain up to 3% of drop and rebound in 

quarterly GDP and affect government policies, making these less effective. Authors argue that the 

impact is substantial and the result suggests the quantitative importance of uncertainty shocks in 

driving business cycles. 

Similarly, there is a limited number of empirical confirmations on the predictive abilities 

of financial volatility for economic indicators. Hamilton and Lee (1996) extend Schwert (1989) 

and propose a model that uses the relation between economic recessions and the variance of stock 

returns to identify and forecast both, a business cycle and stock volatility. Driven by the positive 

results, Campbell et al. (2001) studied the disaggregated volatility and focused on the 

idiosyncratic risk at the firm level. They show that all three, volatility of common stocks at the 

market, industry and firm level, move the same way and their paths are counter cyclical. 

Moreover, they show signs of leading properties and thus, the inclusion of all components into 

predictive analysis was expected to increase the accuracy. Indeed, Campbell et al. prove that not 

only do financial volatility helps in forecasting the economic activity, but also weakens 

significance of stock index returns. In 2006, Ahn and Lee published a paper about the second 

moment relationships, between real stock index returns and real output growth, of various forms 

of generalized autoregressive conditional heteroskedastic models for US, Canada, UK, Japan and 

Italy. All the volatility models used in their study showed the strong relation between variables. 

Therefore, high volatility periods of a real output are followed by increased movements in the 

stock market for all the countries included in the analysis. Moreover, the opposite direction holds 

also for USA and Italy, but it is weaker in the magnitude. Bakshi, Panayotov and Skoulakis 

(2011) construct forward variances from option portfolios that help to predict not only a real 

economic activity, but also various returns such as stock market and Treasury bill returns and 

changes in variance swap rates. On the other hand, Allen, Bali and Tang (2012) derived a risk 

measure for financial institutions that improves forecasts of macroeconomic downturns six 

months ahead. They argue that since banks affect economy, an aggregate risk of their exposure 

has statistically significant influence on economic slowdowns. Looking from a different 

perspective Corradi, Distaso and Mele (2013) look for macroeconomic determinants of stock 

volatilities and volatility premiums. They show that the changes in the volatility and their 
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magnitude are strongly correlated with business cycles and that there exists an unobserved factor 

that contributes to around 20% of the overall variation in the volatility. However, macroeconomic 

factors can explain nearly 75% of the variation of stock volatility. Furthermore, authors argue 

that actually the volatility of volatility is connected to the business cycle. Driven by this result, 

Fornari and Mele (2013) conducted extensive study in which they used financial volatility and 

volatility of financial volatility as predictors of economic activity. Firstly, they showed that 

financial volatility helps in predicting economic activity and in fact, it alone explains around 30% 

of the industrial production growth and even up to 55% during the Great Moderation. Secondly, 

they also try to predict the business cycle indicator adding financial volatility to sets of 

conventional predictors. Indeed, combining the latter with the term spread makes the predictions 

more accurate. Authors argue that it is caused by more complete set of information, i.e. term 

spread encodes information about risk-premiums and is dependent on current macroeconomic 

policy, whereas financial volatility is seen as uncertainty and therefore has information about the 

general risks in the economic environment. In 2014, Ferrara, Marsili and Ortega conducted a first 

study that forecasted economic growth using volatility measures for Europe. They aimed to 

verify the impact of daily financial volatility, commodity and stock prices on an output growth in 

the US, UK and France. By using MIDAS approach, which allows different frequency of the 

data, they prove that the model with daily measure of financial volatility performs better in 

comparison to the model with just one regressor – the industrial production. In the same year 

Cesa-Bianchi, Pesaran and Rebucci (2014) conducted the study about interrelation between 

financial markets volatility and economic activity. They show that the volatility moves counter 

cyclically and can act as a leading indicator. Moreover, the co-movement of volatilities within the 

asset classes is stronger than across the classes, suggesting that various volatilities may encode 

different information about the business cycle. Finally, Chauvet, Senyuz and Yoldas (2015) 

analyzed the predictive power of different financial volatility measures, such as realized and 

implied volatilities, and estimated a common long-run component of volatility from both stock 

and bond markets. They show that inclusion of these measures significantly improves predictions 

of the traditional explanatory variables such as – the term spread, credit spread and the return on 

the market portfolio. Moreover, they identify regimes of high and low volatilities, with the former 

one giving early signals of an upcoming recession.  
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Few studies focus on interconnections between different economies and their business 

cycles. Artis, Kostolemis and Osborn (1997) analyzed business cycles in G7 and European 

Countries to examine the international nature of cyclical movements. They show that it is 

common that cycles are asymmetric and slopes in recessions are usually larger than in expansion 

periods. Moreover, their analysis reveals that business cycles of the researched group of 

European countries are interconnected and linked to the United States economy through 

Germany. Following this result, Artis and Zhang (1997) investigated whether the introduction of 

the European Monetary System strengthened the relation between the participating economies. 

They show that linkages between the latter and the US cycle weakened in a result of the ERM in 

favor of Germany, whose influence grew by that time. Later, Sensier, Artis, Osborn and 

Birchenhall (2004) examined the predictive power of the domestic and foreign variables in 

predicting business cycles in Germany, UK, Italy and France over the period 1970 to 2001 The 

analysis shows that the domestic variables are able to predict movements in the German economy 

well in-sample, but poorly in the out-of-sample analysis. Inclusion of two foreign variables: the 

composite leading indicator and the short-term interest rates in the US, representing impact of US 

economy on Germany, improves forecasts of the business regimes. However, there is no impact 

of other European foreign variables on the German economy, but instead, German interest rates 

seem to lead the other European interest rates (Artis and Zhang, 1998; Barassi et al., 2000). 

The most relevant paper for my study is the described above Fornari and Mele (2013) 

article. They consider two measures of economic activity: a recession indicator and an industrial 

production growth rate, and forecast those using blocks of traditional predictors and sets of 

variables adjusted by financial volatility variables and volatility of volatility variables. I follow 

their framework and extent the research by adding different volatility measures to verify whether 

there exists a superior definition of financial volatility that contains more predictive information 

in this area. I include realized volatility, a principal component estimated using Principal 

Component Analysis, implied volatility, cyclical component filtered using Baxter-King filter, etc. 

Following Chauvet et al. (2015), among other measures, I also estimate a common factor, a long-

run component, which, according to previous research, encodes information about a business 

cycle (Adrian et al., 2008). However, modeling the European economy is more demanding than 

forecasting the US business cycle due to its close interconnection with other major economies. 
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Thus, I further extend the research by adding the so-called “foreign variables”, which link 

German economy with the US one (Artis et al., 1997; Sensier et al., 2004).  

2.2 Methodology 

In this thesis, I aim to explain economic activity, which is either expressed by stages of the 

economy, i.e. recession and expansion periods, or in levels, such as the value of industrial 

production or its growth rate. I base my research on these two representations of economic 

activity, with industrial production growth rates as the level of economic activity. The 

methodology used in this study is based on the results and suggestions obtained from the 

empirical literature on this topic. My research focuses on the German market, but most of the 

literature studies the US economy. Hence, I provide a short summary of important developments 

in this field regarding the methodology of interest, which mostly covers studies for the United 

States.  

Birchenhall, Jessen, Osborn and Simpson (1999) conclude that binary choice models 

predict the US regimes better than commonly used Markov switching models. In 2008, Kauppi 

and Saikkonen introduced a dynamic binary choice approach to forecast recessions in the US. 

They show that dynamic probit model that includes the lagged value of a recession indicator 

dominates all other approaches. Moreover, the iterative forecast approach performs best in out-

of-sample analysis. In 2013, Fornari and Mele estimated a recession indicator with a static probit 

model and estimated an industrial production growth with a simple linear regression. More 

advanced econometric measures were introduced by Chauvet et al. (2015), who, among others, 

estimated a common factor using a Dynamic Factor Model.  

Below I summarize traditional models applied in this thesis. Section 2.2.1 reviews 

methods for business cycle modeling whereas section 2.2.2 focuses on industrial production 

growth modeling. All the data processing was performed using STATA SE 12.0 and MATLAB 

R2015a software. 

2.2.1 Dynamic binary choice models 

Static approach to business cycles modeling is gradually substituted by a dynamic one, which 

includes information about the current or past state of the economy. For instance, Dueker (1997) 

and Moneta (2003) extended the probit function by lagged values of recession indicators. Later, 

Kauppi and Saikkonen (2008) considered four types of models in their analysis: static, dynamic, 
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autoregressive and dynamic autoregressive probits. Following their approach, this study estimates 

these four binary choice models.  

 The static probit model is the well-known book type model (Wooldridge, 2002). For a 

binary dependent variable, the simplest model is in a form:  

𝑝(𝑥𝑖) = 𝐹(𝜋𝑖) [2.1] 

where F(∙) is a cumulative distribution function of a certain distribution. In case of probit models, 

𝐹(∙) is a cumulative normal distribution function. The probability of success is equal to 𝛷(𝜋𝑖), 

where 𝛷(∙) is a cumulative standardized normal distribution. Consider the latent variable 𝑦𝑖
∗, 

which is a random variable following: 

𝑦𝑖
∗ = 𝜋𝑖 + 𝜀𝑖 [2.2] 

where 𝜀𝑖 ~ 𝑁(0,1). Then, the relation between the latent variable and observable binary variable 

is defined:  

𝑦𝑖
∗ = {

0 𝑓𝑜𝑟 𝑦𝑖
∗ ≤ 0

1 𝑓𝑜𝑟 𝑦𝑖
∗ > 0

 [2.3] 

and the probability of a singular event is equal to 

Pr(𝑦𝑖 = 1|𝑥𝑖) = [1 − 𝛷(𝜋𝑖)]1−𝑦𝑖𝛷(𝜋𝑖)
𝑦𝑖 [2.4] 

Maximum Likelihood estimation solves the above specification under the assumption of 

independence of observations. The purpose of this study is to verify the predictive power of 

numerous volatility measures. Thus, the actually applied conditional probability is in a form: 

Pr𝑡−1(𝑦𝑡 = 1) = 𝛷(𝛼 + 𝛽𝑥𝑡−𝑘) [2.5] 

where k is the employed lag order of independent variables. 

 The second approach, dynamic probit is built on a static model by augmenting it with a 

lagged value of binary variable as an additional regressor. The probability function of the 

modified model is given below. One can see that the forecast is done based on the information at 

time 𝑡 − 1. The model can also be extended to more lagged values, but for the sake of simplicity, 

I decided not to employ more regressors in the dynamic probit approach. 

Pr𝑡−1(𝑦𝑡 = 1) = 𝛷(𝛼 + 𝛿𝑦𝑡−1 + 𝛽𝑥𝑡−𝑘) [2.6] 

 In comparison, the autoregressive model extends the static approach by a lagged value of 

function 𝜋 instead of a recession indicator. The conditional probability follows then:  

Pr𝑡−1(𝑦𝑡 = 1) = 𝛷(𝛼 + 𝛾𝜋𝑡−1 + 𝛽𝑥𝑡−𝑘) [2.7] 
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The last extension of the classical probit model is a combination of two above-mentioned 

approaches. The most complex model consists of independent variables, lagged value of a 

business cycle indicator and lagged function 𝜋.  

Pr𝑡−1(𝑦𝑡 = 1) = 𝛷(𝛼 + 𝛿𝑦𝑡−1 + 𝛾𝜋𝑡−1 + 𝛽𝑥𝑡−𝑘) [2.8] 

 Inclusion of the autoregressive parameter in the models above leads to an additional 

condition that needs to be satisfied, i.e. 𝛾 needs to take such values that the stationarity condition 

is satisfied. Otherwise, the crisis would become perpetual, which is counterintuitive. The problem 

was solved by the implementation of a constrained maximum likelihood estimation method. 

Moreover, following Candelon, Dumitrescu and Hurlin (2014), I consider the robust covariance 

matrix to tackle the problem of possible autocorrelation. 

 The second issue regarding this modeling is a forecast horizon in dynamic models. 

Notably, one can obtain a “direct” k-step ahead forecast by adjusting the lag value of the dynamic 

regressors or use an iterative approach in which the lag order does not need to match the forecast 

horizon. There is no evidence that one method is superior to the other. The latter one makes the 

computation of forecasts more difficult than the direct approach, but if the model used in iterative 

forecasts is close to the true-data generating process then the iterative approach outperforms the 

direct one.  

2.2.2 Linear Regression 

The second part of the research focuses on modeling the industrial production growth with robust 

linear regression as in Fornari and Mele (2013). The in-sample estimation takes the following 

form: 

𝑦𝑡→𝑡+𝑘 = 𝛼 + ∑ 𝛽𝑗

𝑛

𝑗=1

𝑥𝑛𝑡
+ 𝜀𝑡 [2.9] 

where 𝑛 = {1,2, … ,17}, 𝛽𝑗 are the parameters to be estimated, and 𝑥𝑛𝑡
 is a n-th regressor 

introduced further in the paper. Based on the same study of Fornari and Mele (2013) the out-of-

sample estimates are calculated with the simple linear regression following: 

𝑦𝑡→𝑡+𝑘 = 𝛼 + 𝛽𝑋𝑡 + 𝜀𝑡 [2.10] 

where 𝑋 is a matrix of independent variables and 𝛽 is a vector of estimated coefficients. Most of 

known to me literature, forecasts the growth rate of industrial production k-steps ahead. I follow 
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the previous studies, forecast only dependent variable and do not focus on future development on 

input variables.    

 Due to the nature of the time series data, robust option was used in the estimation process 

to tackle the possible problems of autocorrelation or heteroskedasticity. Thus, the reported 

standard errors are robust to any kind of misspecification.   

3 Data Analysis 

Research is only reliable if the data on which it is based is reliable and uniform. Thus, when 

retrieving and constructing the database, one has to be careful with choosing official and 

trustworthy data sources. The data for this research are retrieved from at least six data sources: 

Bloomberg Professional, FactSet, Kenneth R. French Data library, FRED Economic Data, 

Deutsche Bundesbank Data Warehouse and OECD Data website. Both, Bloomberg and FactSet, 

act as financial data vendors: they collect data from different data sources and distribute them 

though their terminals, which means in reality data were collected from numerous sources. The 

final sample used in research consists of 261 monthly observations for the period from January 

1994 to September 2015. 

3.1 Choice of Variables 

The aim of the study is twofold. First, I want to verify whether financial volatility helps in 

predicting recessions using static and dynamic binary choice models. Second, whether it helps in 

predicting economic activity, i.e. the industrial production growth, using linear regression.  

The data used in this thesis is divided into 3 groups presented in table 1 based on the 

literature on the topic. The independent variables included in this research are traditional 

predictors of economic activity, such as a term spread, corporate spread, inflation, short-term 

interest rate, and volatility measures. Among the latter ones, following Fornari and Mele (2013) I 

distinguish between macroeconomic and financial volatilities. Although, the business cycle 

analysis is conducted based on only financial volatilities and traditional predictors, whereas 

forecasting levels of economic activity uses the macroeconomic volatilities, i.e. industrial 

production growth rates. Then again, the predictors are divided into 9 blocks, as presented in 

table 2 below, and generated groups are compared in their predictive power. This step is 

necessary to be able to verify which set of the variables performs best. Furthermore, the blocks 



13 

 

are designed based on the literature and previous research that suggests best predictors of 

economic activity and they consist only of financial volatility variables and traditional predictors.  

In order to construct all the variables mentioned in Table 1 and Table 2, I needed first to 

download and construct the base variables from which the volatilities and volatilities of volatility 

were generated. 

 Financial volatility 

Stock market volatility 

Volatility of the term spread 

Volatility of the corporate spread 

Volatility of stock market volatility 

Macroeconomic volatility 

Volatility of oil return 

Volatility of industrial production growth 

Volatility of inflation 

Volatility of unemployment rate 

Volatility of metal return 

Traditional predictors 

Term spread 

Corporate spread 

Stock returns 

Oil return 

Growth in composite leading indicator 

Short-term interest rate 

Inflation 

Lagged industrial production growth 
Note: Predictors as in Fornari and Mele (2013) 

Table 1: Predictors of economic activity. 

B0 Lagged industrial production 

B1 Term spread, corporate spread, 12 month stock market returns 

B2 Term spread, short-term rate 

B3 Term spread volatility, stock market volatility 

B4 Stock market volatility, term spread 

B5 Volatility of stock market volatility, short-term rate 

B6 Volatility of stock market volatility, term spread 

B7 Volatility of stock market volatility, stock market volatility, term spread 

B8 
Volatility of stock market volatility, stock market volatility, interaction term, term 

spread 

Note: interaction term is a product of a volatility of stock volatility and a lagged value of stock market volatility 

measure. Predictors as in Fornari and Mele (2013) 

Table 2: Predicting blocks of economic activity. 
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3.1.1 Recession Indicators 

First, I focus simply on predicting recessions using financial volatility measures. To the best of 

my knowledge, the majority of studies on the topic of impact of financial volatilities on modeling 

and predicting economic activity are based on the US economy. The literature focuses on the 

NBER based Recession Indicators for the United States, which is an interpretation of US 

Business Cycle Expansions and Contractions data. One of its European equivalents is the OECD 

based Recession Indicator for Germany, which is an interpretation of the OECD Composite 

Leading Indicators: Reference Turning Points and Component Series data. The indicator is in a 

form of a dummy variable and it is equal to one when the recessionary period occurs, and zero 

otherwise. For this time series, the recession begins the first day of the period following a peak 

and ends on the last day of the period of the trough. The second choice of the recession indicator 

I have is the Business Cycle Indicator published by Economic Cycle Research Institute. They use 

NBER-style procedures, i.e. the Bry and Boschan algorithm (1971) to date classical cycle turning 

points for various countries based on their coincident indexes (defined by production, sales, 

employment and income data). Thus, one can define the Recession Indicator as follows 

𝑅𝑒𝑐𝑡 ≡ 𝐼𝑅𝐼𝑡=1 [3.1] 

where 𝑅𝐼𝑡 is either the ECRI-based or the OECD-based Recession Indicator as of month t. 

 

Note: STATA output. 
Figure 2: ECRI-based and OECD-based Recession Indicators 

The relatively short sample that was used in this study caused some difficulties in 

choosing one of the above-mentioned indicators. As can be seen in Figure 2 above, the OECD-

0
1

1990m1 1995m1 2000m1 2005m1 2010m1 2015m1

ECRI Business Cycle Indicator OECD based Recession Indicator
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based Recession Indicator indicates recession (with a value of one) in nearly 48% of times, while 

the ECRI Business Indicator is less reluctant to show recessions and it takes a value of one in 

only around 24% of cases. Interestingly, not all recession points market by ECRI Business 

Indicator are marked as recession according to OECD-based Recession Indicator, which may 

question the validity of available measures. However, the former measure may be considered as 

too conservative and not able to distinguish between expansion and recession periods very well, 

indicating more recessions than we observed in reality. Moreover, other research studies on the 

topic of recession predictions also use the ECRI Business Cycle Indicator as the dependent 

variables (Sensier et al., 2004). The final choice between these two indicators was made by 

proving the leading property of financial volatility, which is discussed further in chapter 5.1 of 

this paper.  

3.1.2 Industrial Production 

Second, I aim to check whether financial volatility has also predictive power in forecasting 

quantitative measures of economic activity. In this part, the industrial production growth rate over 

3 months plays a role of dependent variable. Industrial production is a measure of output of the 

industrial sector of the economy and it is very sensitive to interest rates and consumer demand 

changes. Thus, it is an important tool for forecasting future GDP and economic performance. 

This measure of economic activity also has one advantage over GDP data. Industrial Production 

Index is published monthly, in the first half of the succeeding month unlikely to the GDP growth 

rates, which are published quarterly with approximately one month delay. Define the industrial 

production growth rate as  

𝑦𝑡→𝑡+𝑘 = ln (
𝐼𝑃𝑡

𝐼𝑃𝑡−𝑘
) [3.2] 

 𝑘 = 3, where 𝐼𝑃𝑡 is the industrial production index as of month t. 

3.1.3 Stock Returns 

Several different measures of volatility of stock returns are used in this study, but most of them 

are based on value-weighted returns of the market portfolio for Germany, collected from Kenneth 

R. French Data library website. The published calculations in this data library are the value and 

growth portfolios based on raw data from Morgan Stanley Capital International for 1975 to 2006 

and from Bloomberg from 2007 to present. The portfolios are formed at the end of December 
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each year by sorting on one of the four ratios (book-to-market, earnings-price, cash earning to 

price and dividend yield) and then he computes monthly value-weighted returns for the following 

12 months. There are two sets of portfolios. In one, firms are included only if there is data on all 

four ratios. In the other one, a firm is included in a sort variable’s portfolios if there is data for 

that variable. The market return for the first set is the value-weighted average of the returns for 

only firms with all four ratios. The market return for the second set includes all firms with book-

to-market data. I decided to use the latter ones in this study due to their better representativeness 

of market returns.  

3.1.4 Term and Corporate Spreads 

The most common predictor of economic activity in the literature is the term spread that is 

proved to be a leading indicator of economic growth worldwide. It is well-known since at least 

Stock and Watson (1989a), Estrella and Hardouvelis (1991) and Harvey (1991, 1993), who prove 

that inverted yield curves predict recessions with a lead time of about one to two years. Davis and 

Fagan (1997) find that the interest rate spread leads to an improvement in forecasting 

performance of output for around half of the European countries examined, while Galbraith and 

Tkacz (2000) find this to be the case for all G7 countries apart from Japan. According to Smets 

and Tsatsaronis (1997), who investigate why the slope of the yield curve predicts future 

economic activity in Germany and the United States, the monetary policy plays an important role 

in determining the intensity of the relationship between the term spread and output growth. Two 

main findings of their work are that firstly, the predictive content of the term spread is not time-

invariant and secondly, it is policy dependent. They also show that its leading property is stronger 

in Germany than in the United States, but half of it is explained by supply shocks. Throughout the 

literature, the term spread is defined as the difference between the 10-year Treasury note yield 

and 3-month Treasury bill yield. Due to the short data sample for a 3-month Treasury bill yield 

for Germany, I define the term spread as the difference between yields of 10-year and 1-year 

benchmark government bonds.  

Corporate spread is another commonly used financial predictor of economic activity that is 

used in this study. The same as the term spread, corporate spread contains valuable information 

about the business cycle. Already Stock and Watson (1989) and Bernanke and Blinder (1992) 

proved that risk premiums contain predictive power due to counter cyclical premiums for long-

term investments and the risk of default of corporations. Fornari and Mele (2013) defined it as a 



17 

 

difference between the BAA industrial bond yield and the 10-year Government bond yield. In 

this study, I define it as the difference between the domestic corporate bond yield and 10-year 

government bond yield. The yields used to construct term and corporate spreads were 

downloaded from the time series database published on the Deutsche Bundesbank website. 

3.1.5 Short-term Rate 

In recent times, Ang, Piazzesi and Wei (2006) argue that the short-term rate has larger marginal 

power than the term spread. Their finding is based on a model that assumes no arbitrage relations 

between the yield curve and the growth of GDP. Later, Fornari and Mele (2013) included this 

variable in their analysis, which was not based on a non-arbitrage model. Indeed, they showed 

that the combination of short-term rate with term spread performed well but did not outperform 

significantly other variables in recession predictions and the industrial production growth. In this 

research, I used the short-term interest rate from the OECD Data website as a short-term rate. It is 

either the rate at which short-term borrowings are transacted between financial institutions or the 

rate at which short-term government paper is issued or traded in the market. When available, they 

are based on three-month money market rates.  

3.1.6 Macroeconomic Predictors 

Below I define other predictors of economic activity used to model the industrial production 

growth. Define the inflation rate as 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛𝑡 = ln (
𝐶𝑃𝐼𝑡

𝐶𝑃𝐼𝑡−1
), where 𝐶𝑃𝐼𝑡 is the consumer price 

index as of month t. I define the lagged industrial production as 𝑦𝑡 = ln (
𝐼𝑃𝑡−1

𝐼𝑃𝑡−2
), where 𝐼𝑃𝑡−1 is 

the industrial production of month 𝑡-1. I calculated oil return based on oil price index and metal 

return from metals prices in the same way as inflation was calculated. The monthly 

unemployment rate and growth in the composite leading indicator for Germany were also taken 

into the analysis.  

3.1.7 Foreign Variables 

One of the few studies of the links between the levels of economic activity in the countries of the 

European Union is Artis and Zhang (1997, 1999), who compare the synchronization of business 

cycles with the US and Germany. Following their work Sensier, Artis, Osborn and Birchenhall 

(2004) introduced foreign variables in their research about business cycle regimes. They showed 

that the domestic variables are able to predict recessions well in Germany, but the inclusion of the 
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composite leading indicator for US and short-term interest rates in US decreases the errors in in-

sample analysis. Previously, Canova and De Nicolo (2000) also highlighted the importance of US 

growth in leading that of Germany. Moreover, a high, nearly 90% and statistically significant, 

correlation between American S&P500 index and German DAX index suggest that the American 

indicator can be informative. Thus, two foreign measures of US economy are included in this 

study, i.e. growth in the composite leading indicator and short-term interest rates in US.  

3.2 Financial Volatility Construction 

The variable of interest of this research is a financial volatility, which is an unobserved measure. 

Since it is not directly observed, several methods exist to construct an approximation of it. Below 

I present common methodologies I followed to construct different measures of volatility.  

3.2.1 Realized Volatility of Stock Returns 

Realized volatility is one of the measures of historical volatility. Chauvet et al. (2015) define it as 

follows:  

𝑅𝑉𝑡 =  
1

2
∗ ln (∑ 𝑟𝑚𝑠

2)

𝑛𝑡

𝑠∈𝑡

 [3.3] 

where 𝑡 = 1,2, … , 𝑇, 𝑛𝑡 is the number of trading days in month t, 𝑟𝑚𝑠 is the daily return and T 

denotes the total number of months in the sample. I expect that realized volatility measure 

defined this way would be more informative than the one calculated on monthly returns, as it 

does not lose information embodied in daily returns if these are independent. On the other hand, 

daily returns are more volatile than monthly ones, and in turn, volatility obtained this way may be 

more noisy and unlikely to exhibit any linkage with the business cycles. Due to lack of daily 

value-weighted returns of the market portfolio, this measure was used for volatility of corporate 

bond and 10-year government bond. 

3.2.2 Volatility of Stock Returns and other variables 

The second measure of volatility is defined as a moving average of past absolute returns (Fornari 

and Mele, 2013). They want to distinguish between short- and long-run components of stock 

market volatility, because the long-run component is believed to be more informative and in turn, 

have larger predictive power of the future state of the economy (Adrian and Rosenberg, 2008). 
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Moving average application aims to smooth the unnecessary isolated episodes of financial 

turmoil from the returns. Following their approach, I define the volatility of stock market returns: 

𝜎𝑡
𝑦

≡ √6𝜋 ∗
1

12
∑ |𝑅𝑡+1−𝑖|

12

𝑖=1

 [3.4] 

where 𝑅𝑡 is a total return index as of time t.
4
  

The volatility of rest of the variables is computed similarly to a stock volatility: 

𝜎𝑡
𝑦

≡ √6𝜋 ∗
1

12
∑ |∆𝑦𝑡+1−𝑖|

12

𝑖=1

 [3.5] 

where ∆𝑦𝑡is the monthly variation of the variable of interest 𝑦𝑡. I chose a lag of 12 based on the 

data frequency and previous literature, especially Fornari and Mele (2013), who argue that this 

lag order increased the predictive power of financial volatility in their analysis. 

3.2.3 Volatility of Volatility of Stock Returns 

Figure 1 depicts counter cyclicality of volatility of value-weighted returns of the market portfolio. 

It shows that when the economy deviates, the volatility increases sharply and thus, it is likely that 

it contains information about the business cycle and future economic activity (Corradi et al., 

2013). To further examine this feature, Fornari and Mele (2013) included a volatility of volatility 

measure, which is defined as follows: 

𝑉𝑜𝑙𝑉𝑜𝑙𝑡+𝑙 ≡
1

12
∑ |𝜎𝑡+𝑖 − 𝜎̂𝑡+𝑖|

12

𝑖=1

 [3.6] 

𝜎̂𝑡+𝑖 ≡
1

12
∑ 𝜎𝑡+𝑖

12

𝑖=1

 [3.7] 

3.2.4 Common Factor 

One of the estimated volatility measures used in this study is a common factor obtained through 

Dynamic Factor Model. Following Chauvet et al. (2015) the factor contains information of four 

stock and bond market financial volatilities: realized volatility of the corporate bond, realized 

volatility of a 10-year government bond, implied volatility of DAX and volatility of value-

weighted returns of the market portfolio calculated as in [4.4]. Table 3 below presents the 

pairwise correlation coefficients between the variables. Interestingly, one can see a negative and 

                                                 
4
 The term √6𝜋 arises from Schwert’s (1989) and is later implemented in Fornari and Mele (2013). 
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significant correlation between the realized volatility of 10-year government bond and 

unemployment rate. It follows a common pattern that optimistic employment data (lower 

unemployment rate) usually drives the bond yields up. However, this may be also caused by 

monetary policies introduced in recessionary periods and resulting from them low interest rate 

environment that affected the volatility of government bond yields. Moreover, the market 

portfolio volatility is the only one that is significantly correlated with the industrial production, 

suggesting that other individual variables will not necessarily alone help in predicting economic 

activity. Thus, combining the information they all carry could improve the forecasts.  

 
RV Corp 

bond 

RV 10Y 

bond 
VDAX 

Vol mkt 

portfolio 
UN IP 

RV Corp bond 1.0000 - - - - - 

RV 10Y bond 0.4363** 1.0000 - - - - 

VDAX 0.3209** 0.4175** 1.0000 - - - 

Vol mkt portfolio 0.2407** 0.1888** 0.7519** 1.0000 - - 

UN -0.1008 -0.1407** 0.0274 0.2401** 1.0000 - 

IP 0.0425 0.0209 0.0208 -0.2242** -0.6337** 1.0000 

Note: This table reports all the pairwise correlation coefficients between the variables. RV Corp bond stands for 

realized volatility of a corporate bond, RV 10Y bond stands for realized volatility of 10-year government bond, VDAX 

stands for implied volatility of DAX, Vol mkt portfolio stands for volatility of value-weighted returns of the market 

portfolio, UR stands for unemployment rate and IP stands for the industrial production. ** Indicate significance at 

5% level.  

Table 3: Pairwise correlations between financial volatility measure and macroeconomic 

aggregates. 

Dynamic factor models have received a lot of attention in past decades because of their 

ability to model simultaneously and consistently data sets in which the number of series exceeds 

the number of time series observations. The premise of the model is that a few latent dynamic 

factors drive the co-movements of vector of time-series variables. The optimal number of factors 

in this study is just one common factor that is going to contain information that input variables 

carry. Let 𝑦𝑡 be a vector of independent variables in the order mentioned above, then the simple 

dynamic factor model of volatility dynamics can be specifies as follows:  

𝑦𝑖,𝑡 = 𝜆𝑖𝑉𝐹𝑡 + 𝑢𝑖,𝑡,  

[3.8] 𝑢𝑖,𝑡 = 𝜑𝑖𝑢𝑖,𝑡−𝑞 + 𝜀𝑖,𝑡,    𝜀𝑖,𝑡~𝑁𝐼𝐷(0, 𝜎𝑖
2), 

𝑉𝐹𝑡 = 𝜓𝑉𝐹𝑡−𝑝 + 𝜖𝑡,    𝜖𝑡~𝑁𝐼𝐷(0, 𝜏2). 
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Where 𝑉𝐹 represents a common factor, 𝜆𝑖 is called the dynamic factor loading for the i
th

 series of 

𝑦, which shows the degree of correlation between individual volatility series and the common 

factor, and 𝜓 is a common factor coefficient. I estimated the model using the first generation 

factor estimation, which consists of low-dimensional parametric models estimated using 

Gaussian maximum likelihood estimation and the Kalman filter (Stock and Watson, 2010).
5
 The 

data included in the model were checked for stationarity and standardized. 

Autoregressive 

process 
Autocorrelated errors AIC BIC 

1 0 2500.62 2533.80 

1 1 1728.86 1776.79 

1 2 1998.85 2046.78 

2 0 2275.41 2312.28 

2 1 1775.80 1827.41 

2 2 1714.31 1780.67 

Note: Information criteria for estimated different specifications of Dynamic Factor Model with standardized realized 

volatility of corporate bond, standardized realized volatility of 10-year government bond, implied volatility of DAX, 

and volatility of value-weighted returns of the market portfolio. The best model in bold. 

Table 4: Information criteria for alternative specifications estimated by Dynamic Factor Model. 

 The final model is based on information criteria showed in Table 4 above. According to 

BIC criterion, unobserved common factor that follows a first-order autoregressive process with 

autocorrelated errors of order one in the equation for the observables is the optimal model. The 

BIC criterion is preferred due to its larger punishment for additional estimated parameters 

compared to the AIC, which is the lowest for the most complex model. Table 5 presents 

parameter estimates for the dynamic factor model of volatilities. The extracted volatility factor  

𝜓 is highly persistent with an autoregressive coefficient estimate of 0.93. All factor loadings are 

positive and highly significant indicating co-movement of the volatility measures, especially 

among standardized realized volatility of corporate bond and 10-year government bond, and 

implied volatility of DAX. I fail to reject the null hypothesis in Wald test that the coefficients 

𝜆1, 𝜆2, 𝜆3 are equal (𝜒2(2) = 0.25, p-value = 0.8832). The factor loading of the volatility of the 

value-weighted returns of the market portfolio is the smallest and therefore, one can see that the 

factor and volatility of the market portfolio do not necessarily follow the same path.  

                                                 
5
 dfactor command with White estimator was used to estimate Dynamic Factor Model in STATA SE 12.0 

software.  
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 𝜓 𝜆1 𝜆2 𝜆3 𝜆4 𝜑1 

Coefficient 
0.9334*** 

(0.0270) 

0.2521*** 

(0.0392) 

0.2257*** 

(0.0472) 

0.2092*** 

(0.0695) 

0.0911*** 

(0.0243) 

0.0643 

(0.1694) 

𝜑2 𝜑3 𝜑4 𝜎1 𝜎2 𝜎3 𝜎4 

0.3630*** 

(0.1098) 

0.9179*** 

(0.0257) 

0.9658*** 

(0.0167) 

0.5068*** 

(0.0981) 

0.5383*** 

(0.0653) 

0.1120*** 

(0.0237) 

0.0599*** 

(0.0074) 

Note: This table reports parameter estimates and robust standard errors in parentheses, where 𝑦𝑡= [standardized 

realized volatility of corporate bond, standardized realized volatility of 10-year government bond, implied volatility 

of DAX, volatility of value-weighted returns of the market portfolio]. Thus, 𝜆1 is a coefficient of standardized realized 

volatility of corporate bond, 𝜆2 is a coefficient of standardized realized volatility of 10-year government bond, 𝜆3 is a 

coefficient of implied volatility of DAX and 𝜆4 is a coefficient of volatility of value-weighted returns of the market 

portfolio. Coefficients 𝜑𝑖 and 𝜎𝑖 refer to included variables in the same order. * Indicate significance at 10% level, 

**Indicate significance at 5% level, *** Indicate significance at 1% level. 

Table 5: Parameter estimates for the dynamic factor model of volatilities. 

  

  

Note: STATA output.  

Figure 3: The common factor and standardized realized volatility of corporate bond, standardized 

realized volatility of 10-year government bond, implied volatility of DAX, and volatility of 

value-weighted returns of the market portfolio. 
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Autoregressive coefficients of all idiosyncratic components, with the exception of standardized 

realized volatility of corporate bond are significant. 

Figure 3 depicts paths of standardized independent variables and the estimated common 

factor. The latter does not seem to follow input volatilities closely, but one may expect that it 

contains all the information that can enhance the predictive power of financial volatility. 

Moreover, one can notice that changes in volatilities of the bond market are more rapid and 

dynamic than in the stock market. 

3.2.5 Constructing Principal Components  

Another way to decrease the dimension in the analysis and extract information from different 

volatilities is via principal component analysis - a statistical procedure that uses an orthogonal 

transformation to convert a number of correlated variables into linearly uncorrelated variables 

called principal components. In this analysis I decided to use the same input variables as in 

Dynamic Factor Model, i.e. the realized volatility of the corporate bond, the realized volatility of 

a 10-year government bond, the implied volatility of DAX and the volatility of value-weighted 

returns of the market portfolio calculated as in [4.4]. It is important to mention that this procedure 

is sensitive to scaling of the data. Thus, again, all the variables are stationary and standardized. 

In the first step of the analysis, one should check whether the variables are correlated. 

Table 3 above shows the pairwise correlation coefficients for all included variables. All 

coefficients between four financial volatilities are statistically significant at 5% significance 

level. The highest correlation occurs between the implied volatility of DAX index and volatility 

of value-weighted returns of the market portfolio, which indicates that changes in DAX index 

explain 75% of the changes that happen in the market. The rest of the variables are not strongly, 

but significantly correlated.  

 The optimal number of principal components was chosen based on the aim of this 

analysis, i.e. to decrease the number of elements with as much information extracted from them 

as possible, and based on statistical tests and conditions. Moreover, the scree plot of the 

eigenvalues of a covariance matrix also suggests one to two principal components, but eigenvalue 

of only one component has a value higher than one. That said, one principal component, that 

explains 55.84% of financial volatilities included in the model, is being used in further analysis 
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(Appendix 1.2).
6
 Figure 4 depicts relationships between the principal component and 

standardized independent variables. The realized volatility measures of bond portfolios are lower 

in their magnitude than changes in the stock market. Moreover, estimated principal component 

seems to follow closer stock market volatilities – implied volatility of DAX and volatility of the 

market portfolio. 

  

  

Note: STATA output. 
Figure 4: The principal component and standardized realized volatility of corporate bond, 

standardized realized volatility of 10-year government bond, implied volatility of DAX, and 

volatility of value-weighted returns of the market portfolio. 

3.2.6 Baxter-King Filters 

It is believed that volatility encodes information about a business cycle, but it may also contain 

information about panic periods that do not necessarily need to be linked to the level of the 

economy. Thus, there arises a question how to separate the cyclical component from rapidly 

                                                 
6
 Principal Component Analysis was conducted using pca command in STATA SE 12.0 software. 
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varying seasonal or irregular components or slowly evolving secular trends. There are several 

techniques that could be used to resolve this issue, such as application of moving averages, first 

differencing, Hodrick-Prescott filter, etc. Baxter and King (1999) present a comparison of 

methods to isolate the cyclical component from economic data. They show that their filter is 

more flexible and easier to implement than other measures and what is important, it produces best 

approximation to the ideal filter. Driven by this result, the Baxter-King band-pass filter was used 

to separate a time series into trend and cyclical components. The procedure isolates business 

cycle components using data transformation by applying particular moving averages based on 

data characteristics. The filter is applied to two volatility measures: the common factor and the 

principal component estimated in previous steps.
7
 

 Both time series are checked for stationarity using Dickey-Fuller test for unit root. I reject 

the null hypothesis that the principal component or the common factor have a unit root (p-value = 

0.0003 and p-value = 0.0034, respectively). Thus, the stationary version of a Baxter-King filter is 

applied for these series with twelve observations in each direction that contribute to each filtered 

value. For monthly data, Baxter and King (1999) recommend 18 and 96 months of minimum and 

maximum periodicity included in the filter. They also suggest a symmetric moving average order 

of 12 for quarterly data. I decided to choose the order of 12 for monthly data, because of the short 

sample I have and the way the algorithm works. To illustrate, if the order of the symmetric 

moving average is denoted by q, the estimate for the cyclical component for the i
th

 observation is 

based upon the 2𝑞 + 1 values: 𝑦𝑡−𝑞 , 𝑦𝑡−𝑞+1, … , 𝑦𝑡, 𝑦𝑡+1, … , 𝑦𝑡+𝑞. Thus, by setting q to 12 months, 

I lose 24 observations – 12 first and 12 last data points. The analysis of the appropriateness if this 

number is also based on the periodogram – an estimate of the spectral density of a signal 

(Appendix 2.1). The vertical lines refer to the conventional values for business cycle components 

introduced by Burns and Mitchell (1946). Ideally, the periodogram should be a flat line at the 

minimum value of −6 outside the range identified by the vertical lines. One can see that the filter 

of SMA order 12 removed the stochastic cycles reasonably well.  

 Figure 5 shows the path of estimated volatility measures – the common factor and the 

principal component, and their cyclical components from Baxter-King filter. In both graphs, the 

cyclical component follows the estimated variable reasonably well and does not show signs of 

                                                 
7
 Data filtering was conducted in STATA SE 12.0 software using tsfilter bk command with an option for 

stationary data. 
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stochastic trend. However, one should notice that the magnitudes of volatility measures estimated 

by Dynamic Factor Model and Principal Component are different. The estimated common factor 

exhibits higher volatility than the estimated principal component. 

 

  

Note: STATA output. 
Figure 5: The cyclical component of the principal component and the principal component, and 

cyclical component of the common factor and the common factor. 

3.2.7 GARCH 

Other way to estimate volatility is to model it through GARCH(1,1) model. In the first step, the 

preliminary analysis was conducted to verify whether the returns of the value-weighted returns of 

the market portfolio have features that would classify them to apply Conditional 

Heteroskedasticity models – time-variant volatility (conditional heteroskedasticity) and 

leptokurtic density functions.  

From the left part of Figure 6 below, that shows the value-weighted market portfolio 

returns, one can see a visual evidence of time varying volatility. The ARCH-test verifies this 

finding, by investigating a time series for the null hypothesis of homoskedasticity within the 

series of squared returns (Engle, 1982). Based on the conducted test (p-value = 0.0298) one can 

state that the null hypothesis can be rejected at 5% conventional significance level and thus, it 

formally confirmed that there is a conditional heteroskedasticity in the data. The distribution of 

the returns is the second feature that needs clarification. The visual analysis of the histogram 

presented on the right hand side of Figure 6 justifies the assumption that the distribution is not 

normal. It displays fatter tails and larger concentration of values around zero compared to the 
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normal distribution line marked on the graph. It is distinctive of leptokurtic distribution. The 

formal Jarque-Bera test confirms the expectations, the p-value of 0.0000 allows to reject the null 

hypothesis that the data is normally distributed. 

 

Note: STATA output. 
Figure 6: Value-weighted returns of the market portfolio. 

The decision to use GARCH(1,1) instead of ARCH-type models was made by several 

reasons. Firstly, a number of conducted studies show that GARCH(1,1) model is hardly ever 

significantly outperformed by other, more complicated models (Hansen and Lunde, 2005). 

Secondly, I started the analysis with the most parsimonious model that seems to fit data really 

well, based on results of post estimation tests. Lastly, information criteria also suggest that 

GARCH(1,1) is superior to alternative models that might have been used in this analysis 

(Appendix 3.1). 

 Constant 
Lagged Market 

Portfolio return 
Lagged volatility 

Coefficients 
0.0004** 

         (0.0002) 

0.1581*** 

        (0.0577) 

0.7183*** 

         (0.0816) 

Note: This table reports parameter estimates and robust standard errors in parentheses. * Indicate significance at 10% 

level, **Indicate significance at 5% level, *** Indicate significance at 1% level. 

Table 6: Parameter estimates for the GARCH model for market portfolio value-weighted returns. 

 Table 6 presents the parameter estimates of GARCH(1,1) model.
8
 All coefficients are 

statistically significant at 5% significance level and the sum of coefficients of the lagged market 

portfolio returns and lagged volatility is less than one. Thus, the system is stationary. The post 

                                                 
8
 All GARCH estimates were obtained using STATA SE 12.0 software with a command: arch var, 

arch(1/1) garch(1/1) robust. 
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estimation Portmanteau test for white noise, suggests that the model is a good fit for the data. The 

p-value = 0.9282 fails to reject the null hypothesis that there is no serial correlation in the final 

residual series. Figure 7 depicts the market portfolio volatility calculated as in [4.4] and 

GARCH(1,1) modeled volatility for the value-weighted market portfolio returns. One can see that 

the volatility modeled by GARCH process is smaller in its magnitude than volatility of value-

weighted returns of market portfolio, but it takes values from nearly the same range as the latter 

one, with its maximum and minimum being slightly larger and the peak in October 2002. 

Moreover, the conditional volatility seems to precede the volatility obtained directly from the 

data and in turn, might have a good leading property in forecasting economic activity. 

 

Note: STATA output. 
Figure 7: Volatility of value-weighted returns of the market portfolio and GARCH conditional 

volatility. 

4 Estimation Results 

4.1. Stock Volatility as a Leading Indicator 

Figure 1 and Figure 8 depict the behavior of volatility of the value-weighted market portfolio 

returns during the recession and expansion periods. Remarkably, all OECD and ECRI-dated 

recessions are associated with higher market portfolio volatility. In this section, I present two 

preliminary analyses confirming the usefulness of financial volatilities in modeling economic 

activity. 
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4.1.1 Correlation between variables 

The market portfolio volatility is negatively correlated with quarterly GDP growth in Germany. 

The correlation is -21.64% and it is statistically significant at the conventional 5% significance 

level. Correlations between other volatility measures and the GDP growth rate are similar in 

magnitude, also negative and statistically significant. The largest correlation occurs between the 

implied volatility of DAX and the quarterly GDP growth and is equal to -24.84%. In conclusion, 

already based on this simple analysis, one may expect that the volatility may have some 

predictive power in forecasting economic activity.  

4.1.2 Linear regression results 

Following Fornari and Mele (2013), to further investigate the leading property of stock volatility 

I estimated the following regression: 

𝜎𝑡 = 𝑐 + ∑ 𝑏𝑖𝜎𝑡−𝑖 + 𝛾1𝐼𝑡∈0(𝑅𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑡=1) +
𝑖∈{3,12,24,36}

𝛾2𝐼𝑅𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑡=1 + 𝑢𝑡
𝜎 [4.1] 

where 𝜎𝑡 is stock market volatility, an indicator function 𝐼𝑡∈0(𝑅𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑡=1) is always zero, except 

during the twelve months preceding any Indicator-dated recession and 𝐼𝑅𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑡=1 equals one 

only during Indicator-dated recessions, and zero otherwise, 𝑢𝑡
𝜎 is a residual term. 

Table 7 below reports the estimates and p-values, computed through heteroskedasticity 

and autocorrelation consistent standard errors, for the parameters 𝑐, 𝑏𝑖, 𝛾𝑖.
9
 Over the whole 

sample, the ECRI Business Cycle estimate of 𝛾2is positive and highly significant, while estimate 

of 𝛾1 is not different from zero. For the OECD-based Recession Indicator none of the 𝛾𝑖 is 

statistically significant – the financial volatility measure is not affected by the OECD-based 

Recession Indicator. Moreover, lagged values of financial volatility matter only until 12 past 

months and are statistically not different from zero for longer lags for any indicator. Given that, I 

decided to estimate the equation [5.1] with only 3 and 12 months lagged values of volatility. 

Then, the coefficient 𝛾1 became positive and statistically significant at 10% significance level for 

the ECRI-based Recession Indicator (p-value = 0.0870), but it did not change for the OECD-

based Recession Indicator and it was still statistically not different from zero.
10

  

                                                 
9
 Estimated using STATA SE 12.0 software. 

10
 For the sake of brevity, the numerical results are not displayed in this paper, but available from the author upon 

request. 
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Figure 1 and Figure 8 show the volatility of value-weighted returns of market portfolio 

constructed by K. R. French and periods marked as recessions by both ECRI-based Recession 

Indicator and OECD-based Recession Indicator, respectively. In both cases, it is clearly visible 

that the magnitude of volatility is higher during the recession-marked periods and in case of 

Figure 1 also at times before recession.  

Thus, based on the preliminary analysis, the value-weighted returns of the market 

portfolio volatility is counter cyclical, since the volatility increases around 12 months before the 

recessions. Furthermore, it also anticipates economic activity, because the impact of the business 

cycle indicator is statistically significant over the sample. Hence, the ECRI-based Recession 

Indicator is used further in the study as the recession indicator. The second part of this chapter 

presents obtained results, followed by their discussion and conclusion of this thesis. 

 

Note: Graph obtained using MS Excel 2010. 
Figure 8: Volatility of value-weighted returns of the market portfolio and the OECD-based 

Business Cycle Indicator 

 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

0,005

0,01

0,015

0,02

0,025

0,03

1
9

8
6

m
1

0

1
9

8
7

m
9

1
9

8
8

m
8

1
9

8
9

m
7

1
9

9
0

m
6

1
9

9
1

m
5

1
9

9
2

m
4

1
9

9
3

m
3

1
9

9
4

m
2

1
9

9
5

m
1

1
9

9
5

m
1

2

1
9

9
6

m
1

1

1
9

9
7

m
1

0

1
9

9
8

m
9

1
9

9
9

m
8

2
0

0
0

m
7

2
0

0
1

m
6

2
0

0
2

m
5

2
0

0
3

m
4

2
0

0
4

m
3

2
0

0
5

m
2

2
0

0
6

m
1

2
0

0
6

m
1

2

2
0

0
7

m
1

1

2
0

0
8

m
1

0

2
0

0
9

m
9

2
0

1
0

m
8

2
0

1
1

m
7

2
0

1
2

m
6

2
0

1
3

m
5

2
0

1
4

m
4

2
0

1
5

m
3

OECD-based Recession Indicator Value-Weighted Market Portfolio Volatility



31 

 

 𝑐 𝑏3 𝑏12 𝑏24 𝑏36 𝛾1 𝛾2 

ECRI 

Estimate 

0.0031*** 

(0.0005) 

0.9657*** 

(0.0293) 

-0.2238*** 

(0.0344) 

0.0398 

(0.0266) 

-0.0467 

(0.0261) 

0.0004 

(0.0004) 

0.0008*** 

(0.0003) 

OECD 

Estimate 

0.0029*** 

(0.0006) 

0.9853*** 

(0.0301) 

-0.2142*** 

(0.0336) 

0.0591 

(0.2820) 

-0.0463 

(0.0275) 

-0.0004 

(0.0003) 

0.0002 

(0.0003) 

Note: This table reports parameter estimates and standard errors computed through heteroskedasticity and 

autocorrelation consistent standard errors for the linear regression presented in [5.1]. * Indicate significance at 10% 

level, **Indicate significance at 5% level , *** Indicate significance at 1% level. 

Table 7: Parameter estimates for the linear regression verifying the leading property of financial 

volatility. 

4.2. In-sample analysis of recession indicator 

All the estimations are based on two versions of defined sets of blocks. First one consists of just 

the variables which were introduced in Table 2, whereas the second one is extended by two 

foreign variables - growth in the composite leading indicator and short-term interest rates in US, 

which are added to each block. The analysis considers 3-months-ahead prediction models 

presented below. Three-months are preferred because it allows for realistic time lags in the 

availability of data and for lags in the response of agents to economic information, both domestic 

and international.  

The conclusions are drawn from several characteristics. In-sample analysis is based on 

information criteria, Mean Squared Error (MSE), Mean Absolute Error (MAE), Area Under 

Curve (AUC)
11

 measure and the number of classified events. In terms of the information criteria, 

Schwarz Information Criterion
12

 is preferred in this study, because as mentioned in Swanson and 

White (1996) it focuses on out-of-sample forecasting and is valid even for misspecified models, 

when it asymptotically selects the best model from the choice set (Sin and White, 1995). 

Secondly, lately, researchers showed that AUC is quite noisy and has some other significant 

problems in model comparison. Thus, it is used with caution in this research and is treated just as 

an indicator, but no final decision is based just on its value. Thirdly, each event can be classified 

as correctly estimated, recession or expansion, if the estimation is higher or lower than 0.5, and 

the observed event was either one or zero, respectively. Furthermore, following Birchenhall, 

Jessen, Osborn and Simpson (1991) and Sensier et al. (2004) I also identify number of 

                                                 
11

 AUC is the area under the receiver-operating characteristic used as model comparison tool. It is a credit-scoring 

criterion that reveals the predictive abilities of the model by relying on all the values of the cut-off, i.e. the threshold 

used to compute crisis forecasts. 
12

 In the form 𝑆𝐵𝐶 =
−2𝑙𝑜𝑔𝐿+𝑘𝑙𝑜𝑔𝑇

𝑇
, where L is the likelihood value and T is the number of observations. 
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“uncertain” events, i.e. months for which the probability is lower than 0.5, but higher than 

16.86%, which is the percentage of recessions in the sample. This characteristic is used in case 

other two measures suggesting the accuracy of predictions are equal or nearly equal for different 

models. That said, it is considered as noise in the analysis. The analysis presented below was 

conducted using MATLAB R2015a software. 

4.2.1 Static Probit Model Results 

Block 1 (term spread, corporate spread, 12 month stock market returns) performed best among 

the basic version of blocks in the static probit estimation. The AUC is the highest for this block 

and equal to 89.40%, where 100% is the perfect classifier. Also, the highest R
2
 of 34.81% 

suggests that this model fits the dependent variable best. Moreover, information criteria and 

calculated errors are lowest for B1. The frequency of correctly classified recessions and 

expansions is one of the highest. Block number 8, which consists among others of the volatility 

of the value-weighted returns of the market portfolio, performs as well as the best block in this 

area, but its other characteristics are not as satisfying. Importantly, the best statistical model 

predicts recessions successfully in 31.82% of times, which is the highest rate for this type of 

estimation approach. It is very important since one can assume that the cost of an unpredicted 

crisis is higher than cost of an unpredicted expansion.  

 The inclusion of the foreign variables into blocks improved estimates significantly. The 

best model among these is B2 (the term spread and short-term rate), which also dominates other 

models in every other characteristic. Notably, the frequency of successful predictions of 

recessions is nearly twice larger than in the best block without the foreign variables and equal to 

68.18%. AUC (97.18%) and pseudo-R
2
 are also higher than in any model estimated by static 

probit. Moreover, it has the lowest AIC and SBC among all the models. Thus, statistically it is the 

best fit and it also predicts recessions best – 68.18% of recessions were predicted successfully. 

On the other hand, the accuracy of correct expansion estimations is lower than in the same block 

without the US indicators, but still larger than in the considered best B1. 

Formal t-student test
13

 was conducted to verify whether the differences between obtained 

characteristics with and without the foreign variables are statistically significant. The frequency 

of successfully predicted recessions is statistically smaller after the inclusion of foreign variables 

                                                 
13

 Two tailed test with the null hypothesis that the difference between means is equal to zero. 
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(p-value = 0.0228), but the difference was statistically not significant for expansion predictions 

(p-value = 0.5346). MAE and MSE are also statistically smaller for the dataset with the foreign 

variables, with p-values equal to 0.0434 and 0.0361, respectively. Provided that, the foreign 

variables representing the US influence on German market significantly affect this analysis for 

the static probit. Furthermore, the traditional economic activity predictors dominate in the static 

approach. 

Figure 9 below presents estimated probabilities for both models. Block 1, with just the 

domestic variables, gives quite a few false signals during expansion periods. Moreover, what is 

even more alarming, the probability of recession is low during 2001 and 2002. Thus, despite 

being the best among other blocks with just domestic variables, it does not predict the recessions 

good enough. On the other hand, block 2, with the domestic and foreign variables, predicts 

expansions much clearer. Its probabilities in 2001 clearly indicate recession, although the model 

was late in predicting it. However, it predicted a crisis of 2008 reasonably well and early despite 

its poor performance in the previous recession. This improvement might be due to the more 

international character of the last crisis.  

 

Note: Graph obtained using MS Excel 2010. 
Figure 9: Estimated probabilities from block 1 with the domestic variables and block 2 with  the 

domestic and the foreign variables. 

4.2.2 Dynamic Probit Model Results 

Inclusion of a lagged value of the business cycle indicator dominates the results for every block 

regardless whether these consist of only the domestic or also the foreign variables. The frequency 

of correctly forecasted recessions and expansions is the same for each model and equal to 95.45% 

and 98.62%, respectively. Nevertheless, block 4, which comprises of stock market volatility and 
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term spread is the most appropriate model from statistical perspective, i.e. the AIC and SBC 

criteria are lowest. Moreover, in this case, the foreign variables are not as important as in static 

analysis. Despite the same number of successfully predicted recessions and expansions, its 

information criteria are larger and pseudo R
2
 measure is lower and equal to 80.62% compared to 

81.88% for the model with only the domestic variables. Moreover, based on the t-student test, 

one cannot see any statistical difference in errors performance between these two datasets (p-

value = 0.7933, p-value = 0.6853 for MAE and MSE errors, respectively). 

 Figure 10 below depicts the probabilities estimated by the statistically best models – 

blocks 4. One can see that the estimations are nearly the same although, the model with just 

domestic variables gives a bit higher probabilities of recession during expansion periods, but it 

does not influence the estimated state of the economy. In conclusion, the exactly same number of 

correctly estimated recessions and expansions suggest the predictive dominance of lagged 

component and superior performance of this model over the static approach. Nonetheless, the 

models with financial volatility variables perform better on the statistical ground, i.e. the 

information criteria are lower for these models, which indicates that even though the percentage 

of correctly estimated recessions and expansions is the same regardless of the inclusion of the 

variables the model may perform better in future estimates. 

 

Note: Graph obtained using MS Excel 2010. 
Figure 10: Estimated probabilities from block 4 with the domestic variables and block 4 with the 

domestic and the foreign variables. 

4.2.3 Autoregressive Probit Model Results 

Autoregressive model includes the lagged value of the function 𝜋 instead of the recession 

indicator. The best model with the domestic variables is block 6 (the volatility of stock market 
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volatility and term spread) with the value of AUC equal to 96.22% and the lowest SBC criterion. 

It predicts recessions and expansions reasonably well – 90.91% and 95.85% of cases, 

respectively. Obtained value of pseudo-R
2
 of McKelvey and Zavoiny suggests the good fit of the 

model (60.04%). Looking at the dynamics of the errors for blocks with and without financial 

volatility variables, one can see that the latter ones are smaller, compared to the errors obtained 

for blocks with the classical predictors. The same pattern is visible for the blocks with the foreign 

variables, but the difference is not statistically significant in either of the cases. There is also no 

statistical difference between the errors nor correctly predicted recessions and expansions 

between the blocks with the domestic and foreign variables.  

 Then again, as in the case of static approach, the inclusion of the foreign variables 

positively affects the prediction accuracy. Block 8 (the volatility of stock market volatility, stock 

market volatility, interaction term and term spread), which is the best among the blocks with the 

foreign variables, predicts 90.91% of recessions and 97.24% of expansions correctly. Pseudo R
2
 

based goodness of fit suggests that this model fits best in this approach, with R
2
 equal to 75.49%. 

Moreover, the smallest information criteria indicate that statistically this model performs best, 

also compared to B6 with the domestic variables. Even though, the statistical tests do not prove 

the statistical difference between the errors of these two versions of blocks, the calculated errors 

for block 8 are nearly twice smaller than the ones for block 6.   

One can see from Figure 11 that the estimated by B8 probabilities are more accurate and 

do not give as many false signals as probabilities of B6. Its better performance is possible due to 

the inclusion of the foreign variables and the international character of the last crises. The over 

60% probability of recession in 1994 should not be considered, because of the beginning of the 

sample. Furthermore, B8 is the most complex model, containing information from not only the 

stock market volatility, but also the volatility of volatility, term spread and interaction term, 

which again contains information of volatility and volatility of volatility with the former one 

being one period lagged. Thus, all these measures are significant in modeling the business cycle. 

Overall, the autoregressive approach performs reasonably well in predicting business cycles and 

significantly, the financial volatilities play an important role in this modeling.  
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Note: Graph obtained using MS Excel 2010. 
Figure 11: Estimated probabilities from block 6 with the domestic variables and block 8 with the 

domestic and the foreign variables. 

4.2.4 Autoregressive Dynamic Probit Model Results 

The most complex – an autoregressive dynamic probit is a combination of two above described 

models. Again, as in the case of dynamic probit, the lagged value of the business cycle indicator 

dominates the other variables. Regardless of the domestic or the foreign variables in the datasets, 

the number of correctly estimated recessions and expansions is the same and, what is interesting, 

the frequency of successfully predicted recessions is smaller than in the dynamic approach and 

equal to 93.18%. Thus, one can conclude that the lagged function adds some noise into analysis 

that lowers the predictive power of the model. The best block with the domestic variables is block 

6, which is also the best model overall based on information criteria and pseudo-R
2
.  

Figure 12 below depicts paths of probabilities estimated by B6 with just the domestic 

variables and B4 with the domestic and foreign variables. One can see that these do not differ 

significantly. The percentage of correctly estimated recessions and expansions is the same for 

these two. However, B6 performed slightly better in modeling recession in 2001-2003, and 

importantly, this model is more parsimonious in comparison to the model with domestic and 

foreign variables are thus, it is preferred. 
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Note: Graph obtained using MS Excel 2010. 
Figure 12: Estimated probabilities from block 6 with the domestic variables and block 4 with the 

domestic and the foreign variables. 

 In conclusion, the dynamic approach performs best in in-sample analysis. It predicts 

recessions and expansions most accurately, has the highest AUC and pseudo-R
2
 and the lowest 

IC for block 4, which consists of the most common traditional predictor – term spread, and the 

stock market volatility. Nonetheless, to focus on the purpose of this study the autoregressive 

model for block 8 with the foreign variables is taken further into the analysis to check whether 

the other measures of financial volatility perform better.  

4.2.5 In-sample Results for Different Financial Volatility Measures  

Table 8 presents characteristics of block 8 with the foreign variables and different measures of 

financial volatility estimated by the autoregressive probit. Based on the percentage of correctly 

classified estimated recessions and expansions, the earlier estimated common factor performs 

best among the various volatility measures. Despite the same number of predicted recessions as 

by the market portfolio volatility, the number of successfully estimated expansions increased to 

98.16%. However, this model does not perform better than the earlier models on the statistical 

ground – its information criteria are larger than in the other models. 

 Figure 13 depicts the probabilities estimated by the different volatility measures included 

in block 8. The market portfolio volatility performed well in predicting the last two crises, and 

did not show any “false positive” signals, except at the beginning of the sample. Similarly, the 

implied volatility of DAX predicted all the recessions perfectly, but it also did introduce more 

noise in the analysis, i.e. uncertain periods. Already the beginning of the sample could be 
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considered as possible recession, just like the small peak after the last crisis. The GARCH 

modeled volatility performed alike. It forecasted the probabilities of recession reasonably well, 

but it introduced noise into expansion periods. For example, the probability of recession after the 

crisis of 2001 stays high longer than necessary. The same situation takes place after the 2008 

financial crisis. Although there is a significant peak before the last crisis, which could indicate 

changes on the markets, then again it decreases and yet again goes sharply up at the onset of the 

financial crisis in Germany. The best model, with the common factor, performs very well in 

predicting expansions and recessions. Compared to the market portfolio volatility, this measure 

does not give a peak in 1994, at the beginning of the sample, and therefore, outperforms the latter 

in predictions accuracy. The estimated cyclical component of the common factor produces very 

smooth estimates. Its probability of recessions decreases gradually in 2004. Moreover, again, this 

model gives a warning signal of the last recession. Lastly, the estimates of the cyclical component 

of principal component are also smoother than the principal component’s probabilities of 

recession. However, they estimate the same peaks, just in slightly different magnitude. 

Block 8 

(foreign) 

Market 

portfolio 
VDAX GARCH Factor 

Factor 

BK 

Principal 

Component 
PC BK 

AUC 98,94% 97,59% 95,90% 95,00% 96,50% 96,54% 97,89% 

# recessions 40 39 35 40 39 31 34 

# expansions 211 216 211 213 213 210 215 

# uncertain 9 13 26 9 11 28 25 

AIC 52,05 63,88 90,87 80,37 68,10 92,73 72,08 

SBC 88,56 100,40 127,39 116,89 104,62 129,25 108,60 

R
2
 75,49% 70,49% 59,09% 63,52% 68,71% 58,30% 67,02% 

MAE 5,49% 5,35% 9,50% 7,41% 6,31% 10,50% 7,54% 

MSE 2,69% 2,43% 4,32% 3,10% 2,69% 5,33% 3,74% 

freq resession 90,91% 88,64% 79,55% 90,91% 88,64% 70,45% 77,27% 

freq expansion 97,24% 99,54% 97,24% 98,16% 98,16% 96,77% 99,08% 
Note: The best model in bold. Market portfolio stands for volatility of value-weighted returns of the market portfolio, 

VDAX stands for implied volatility of DAX, GARCH stands for volatility following the GARCH(1,1) process, Factor 

is the estimated common factor, Factor BK is a cyclical component of the common factor, Principal Component is 

the estimated principal component, PC BK stands for cyclical component of the principal component. 

Table 8: In-sample characteristics of block 8 with the domestic and the foreign variables 

estimated with autoregressive approach. 
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Note: Graph obtained using MS Excel 2010. 
Figure 13: In-sample estimated probabilities of recessions from block 8 with the domestic and the 

foreign variables and different volatility measures. 

4.3. Out-of-sample Forecasting Results of Recession Indicator 

The out-of-sample recursive analysis is done to calculate 3-months-ahead forecasts by using an 

iterative approach where needed. This approach is preferred to multi-step ahead probabilities of 

recession as it gave significantly better results in the preliminary analysis. The out-of-sample 

analysis is more of the interest of this study, because it will signal the best prediction model. Due 
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to the recursive approach, neither information criteria nor a pseudo-R
2
 was registered. Thus, this 

analysis is solely based on models’ predictive performance measured in AUC value, the 

percentage of correctly identified recessions and expansions, and the number of uncertain events. 

This part of the research is structured the same as the in-sample analysis and the results are 

obtained using MATLAB R2015a software. 

4.3.1. Out-of-sample Results for Value-weighted Returns of the Market Portfolio Volatility 

The best models to predict the business cycle indicators using a static approach are again 

B1 and B2, which perform the same in the percentage of successfully predicted expansions and 

recessions (Appendix 4.1). The set of only domestic variables predicted correctly 100% of 

recessions and 84.52% of expansions, whereas in the second set the percentage of predicted 

expansions is lower and equal to 82.14%. Thus, again, in the most simple and static approach, the 

financial volatility does not help in predicting the recession indicator and it is outperformed by 

the traditional predictors. However, Figure 14 shows that even though they may perform well   

 

Note: Graph obtained using MS Excel 2010. 
Figure 14: Estimated probabilities from block 1 with the domestic variables and block 1 with the 

domestic and foreign variables. 

compared to the other models, they still perform poorly. Both blocks give noisy predictions, with 

probabilities of recessions being higher than 50% very often. Looking at Figure 14, one may 

suspect that the estimated probabilities are random and thus, cannot be trusted. 

Surprisingly, the best approach in-sample performs poorly out-of-sample. The dynamic 

probit fails in predicting recessions regardless of the version of neither datasets nor the blocks of 

variables. B1 and B2 predict the highest percentage of recessions that amounts to 66.67%, 
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whereas their power in forecasting expansions is stable and equal to 95.24%. Similarly, the 

dynamic autoregressive model performs poorly out-of-sample, with its results being nearly the 

same, but slightly worse than the ones obtained from the dynamic approach (Appendix 4.2). 

 In this analysis, the autoregressive approach gives the best recession estimates. Table 9 

presents the models’ characteristics. Firstly, three of the models estimated on the domestic 

variables predict 100% of recessions successfully, i.e. block 1, 2 and 5. Nevertheless, blocks 1 

and 2 predict expansions with a higher accuracy than block 5, thus they are superior. Secondly, 

the inclusion of the foreign variables increases the number of correctly estimated recessions. It 

mostly affects the blocks, which among others consist of the financial volatility measure. 

Although, the difference is not statistically significant according to t-student test (p-value = 

0.1808), one can see that the percentage of correctly classified recessions is higher in the lower 

part of the Table 9. Nonetheless, the best model with the foreign variables does not outperform 

B1 and B2 with the domestic variables in terms of the percentages of correctly classified events. 

The number of predicted recessions and expansions is the same for these blocks. However, the 

number of observations classified as uncertain is lower in block 6 with the foreign variables. 

Furthermore, this block has also lower MAE and MSE, which indicates that the probabilities are 

closer to either zero or one than in the case of models B1 and B2 with the domestic variables. 

Thus, based on the models’ predictive performance and calculated errors block 6 with the 

domestic and foreign variables is considered the best. 

 Figure 15 presents estimated probabilities for the best model with the domestic and 

foreign variables. The first estimated “false positive” signal of crisis was around October 2007. 

However, it does not necessarily need to be considered as false since in April 2007 the leading 

subprime mortgage lender, New Century Financial Corp in the US, filed for Chapter 11 

bankruptcy protection, and since August that year Fed cut the discount rate four times until the 

end of 2007, by a total 1.5 percentage points. Thus, the inclusion of two foreign variables – the 

growth in the composite leading indicator and short-term interest rates in the US, most likely 

affected the probability estimation significantly, giving a sign of an upcoming recession. The 

model predicts the 2008 recession reasonably well, but according to the encoded information, the 

estimated crisis lasts longer than the recession indicated by the business cycle indicator. The 

estimated probability can be justified with, currently historical, data. In 2009, the annual 

percentage change in the real GDP of Germany was -5.1% whereas the total employment change  
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Block B0 B1 B2 B3 B4 B5 B6 B7 B8 

Variables as in Table X 

AUC 31,35% 93,25% 93,25% 28,31% 80,42% 85,58% 80,42% 82,80% 85,71% 

# recessions 1 9 9 0 9 0 6 6 6 

# expansions 78 73 73 84 66 79 65 64 65 

# uncertain 51 12 12 27 2 6 4 6 6 

MAE 28,01% 15,85% 15,85% 22,42% 20,67% 13,94% 21,17% 23,87% 22,79% 

MSE 13,34% 11,45% 11,45% 11,18% 16,08% 11,83% 15,48% 18,89% 18,50% 

freq resession 11,11% 100,00% 100,00% 0,00% 100,00% 0,00% 66,67% 66,67% 66,67% 

freq expansion 92,86% 86,90% 86,90% 100,00% 78,57% 94,05% 77,38% 76,19% 77,38% 

Variables as in Table X and two foreign variables 

AUC 59,13% 93,92% 93,92% 50,00% 93,65% 77,91% 92,72% 97,22% 91,14% 

# recessions 3 9 9 4 8 6 9 9 8 

# expansions 67 70 70 75 71 76 73 70 69 

# uncertain 57 14 14 31 20 4 3 4 2 

MAE 37,92% 20,05% 20,05% 28,23% 20,55% 13,16% 14,29% 14,96% 16,95% 

MSE 20,28% 12,77% 12,77% 17,44% 12,58% 10,70% 10,73% 11,39% 14,39% 

freq resession 33,33% 100,00% 100,00% 44,44% 88,89% 66,67% 100,00% 100,00% 88,89% 

freq expansion 79,76% 83,33% 83,33% 89,29% 84,52% 90,48% 86,90% 83,33% 82,14% 
Note: The best model in bold. 

Table 9: Out-of sample characteristics of models estimated with autoregressive approach. 

 

Note: Graph obtained using MS Excel 2010. 
Figure 15: Estimated probabilities from block 6 with domestic and the foreign variables. 

was 0%. This was the largest fall of the real GDP in post-war Germany. Finally, the peak at the 

beginning of 2012 can also be explained by the slowdown of German economy, such as the 

industrial production shrinkage by 1.8% in September 2011 after already declining 0.4% the 
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month before. Even though, the 2011 was a good year, with the real GDP growth of 3%, the 

expected growth rate fallen to 0.8% in 2012. 

4.3.2. Out-of-sample Results for Different Financial Volatility Measures 

Table 10 presents characteristics of block 6 with the domestic and foreign variables and the 

different volatility measures included in the analysis. Based on the percentage of correctly 

predicted recessions and expansions, the basic estimated model with the volatility of value-

weighted returns of the market portfolio volatility performs best among all the measures. It 

successfully predicts 100% of recessions and 86.90% of expansions out-of-sample. The second 

best model is the GARCH model that is again estimated out of the value-weighted market 

portfolio returns. That said, the broad market return helps in predicting the economy activity best. 

On the other hand, the estimated common factor and the principal component that encodes 

information from not only the stock market but also the bond market volatilities significantly 

underperform the measures that are more parsimonious. With this in mind, one may suspect that 

the bond volatility does not necessarily contain information about business cycle in Germany.  

 Block 6 

(foreign) 

Market 

portfolio 
VDAX GARCH Factor 

Factor 

BK 

Principal 

Compone

nt 

PC BK 

AUC 92,72% 94,12% 90,85% 87,19% 88,24% 89,02% 88,76% 

# recessions 9 9 9 9 9 9 9 

# expansions 73 50 63 51 59 54 53 

# uncertain 3 11 16 13 7 20 14 

MAE 14,29% 35,10% 25,01% 36,69% 27,54% 34,05% 32,95% 

MSE 10,73% 27,63% 16,84% 28,49% 23,19% 22,83% 23,62% 

freq resession 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 

freq expansion 86,90% 59,52% 75,00% 60,71% 70,24% 64,29% 63,10% 

Note: The best model in bold. Market portfolio stands for volatility of value-weighted returns of the market portfolio, 

VDAX stands for implied volatility of DAX, GARCH stands for volatility following the GARCH(1,1) process, Factor 

is the estimated common factor, Factor BK is a cyclical component of the common factor, Principal Component is 

the estimated principal component, PC BK stands for cyclical component of the principal component. 

Table 10: Out-of-sample characteristics of block 6 with domestic and the foreign variables 

estimated with autoregressive approach.Although, more extensive analysis should be done to 

prove this point. Chauvet et al. (2015) shows that the bond market volatility measures are less 

useful than the stock market volatility indexes, but they contain information about the 

development of a business cycle. In conclusion, the broad market portfolio volatility predicts the 

recessions best compared to the other volatility measures.  
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Note: Graph obtained using MS Excel 2010. 
Figure 16: Out-of-sample estimated probabilities of recessions from block 6 with domestic and 

the foreign variables and different volatility measures. 

Figure 16 depicts the estimated probabilities and the observed crisis according to the ECRI 

Business Cycle indicator. Interestingly, all of the measures, but the basic one, indicate recessions 

in the first half of 2011, then beginning of 2012 and some of them even in 2013. Indeed, it was a 

very turmoil time in the European Economy with the European debt crisis that according to the 

ECRI indicator is not marked as recessionary period, whereas the OECD-based recession 

indicator classifies mid-2011 to the end of 2012 as a recession. Moreover, according to Sensier et 

al. (2004) the money market is an important indicator in explaining business cycles. Thus, high 
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probabilities in that period, does not need to be necessarily classified as “false positive” signals. 

With this in mind, a different model could be more appropriate for this data. 

4.4. Industrial Production growth Estimates – In-sample Analysis 

The in-sample analysis is based on the linear regression that includes three types of predictors 

listed in table 1. The first regression includes the stock market volatility; the second regression 

includes the stock market volatility and the volatility of the term spread as regressors. The last 

regression has all the regressors listed in the mentioned table. The Granger causality test statistic 

was calculated for each of the regressions. The null hypothesis assumes that the coefficient of the 

stock market volatility variable is zero. All of the tests failed to reject the null, with p-values 

significantly higher than the conventional significance level.  

 

Market 

portfolio 
VDAX GARCH Factor 

Factor 

BK 

Principal 

Comp. 
PC BK 

stock market volatility 0,00% 0,61% 0,20% -0,05% 0,03% 0,28% 0,41% 

vol of the term spread -0,33% 0,36% -0,11% -0,35% -0,24% 0,00% 0,20% 

vol of the corp. spread -0,25% 0,40% -0,07% 0,69% 1,32% 0,35% 0,78% 

vol of stock market vol -0,26% 1,91% 0,97% 1,32% 2,51% 0,03% 0,89% 

vol of oil return -0,63% 1,67% 0,55% 0,92% 2,21% -0,18% 0,63% 

vol of industrial 

production index 
0,52% 2,28% 1,58% 3,04% 3,62% 0,78% 1,40% 

vol of inflation 0,81% 2,78% 1,89% 2,92% 3,53% 0,96% 1,63% 

vol of unempl. rate 1,66% 3,40% 3,24% 3,32% 3,88% 1,87% 2,37% 

vol of metal return 1,21% 2,91% 2,77% 2,83% 3,37% 1,40% 1,93% 

all regressors 17,44% 18,67% 21,32% 17,51% 18,00% 18,56% 18,41% 

Note: The best model in bold. Market portfolio stands for volatility of value-weighted returns of the market portfolio, 

VDAX stands for implied volatility of DAX, GARCH stands for volatility following the GARCH(1,1) process, Factor 

is the estimated common factor, Factor BK is a cyclical component of the common factor, Principal Component is 

the estimated principal component, PC BK stands for cyclical component of the principal component. 

Table 11: Adjusted R
2
 for in-sample regressions on predictors of economic activity with different 

volatility measures. 

 Table 11 reports the cumulative adjusted R
2
. The broad market portfolio volatility seems 

to perform poorly among other measures. The best individual predictor is the implied volatility 

that alone explains 0.61% of the industrial production growth. First four predictors, which are 

based on the financial volatility, predict only at most 2.21%, which is significantly less than the 

Fornari and Mele’s (2013) estimate of 14%. This is the first indication that the financial volatility 

may not be as useful in predicting the European economy activity as it is in the American one. 
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Overall, the model with the GARCH volatility explains most of the industrial production growth 

when all the variables are taken into the analysis. Unexpectedly, the set of variables with the 

broad market portfolio volatility underperforms all the other models. 

4.5. Industrial Production growth Estimates – Out-of-sample Analysis 

The same as in the out-of-sample analysis for the binary choice models, this analysis is based 

only on the calculated errors of the estimates since the recursive approach does not allow 

comparison of information criteria and adjusted R
2
. 

 Table 12 reports the Mean Absolute and Mean Squared Errors for 9 blocks with the 

domestic and foreign variables. One can see that the errors are of the same magnitude for every 

block regardless of the inclusion of the foreign variables. However, the latter ones keep the errors 

slightly lower, except for block 1, but the difference is statistically insignificant. Among all the 

blocks included in the analysis B1, which consists of just the conventional predictors of economic 

activity, with only the domestic variables performs best in terms of the magnitude of errors and 

outperforms all the models with the financial volatility measures. Nevertheless, block 5 with the 

foreign variables has the second lowest MAE and MSE. Moreover, Giacomini and White (2006) 

conditional predictive accuracy test suggests that either B5 or B2 perform best and the difference 

between them is statistically insignificant (p-value = 0.1171) although the test statistic points into 

B5 as a better model (Appendix 5.1). Thus, based on these characteristics, model B1 performs 

best in forecasting levels of economic activity in terms of the industrial production growth rate 

over the 3 months horizon. However, comparing Figure 17 and Figure 18, one can see that even 

though the blocks with the financial volatility variables have larger errors in the analysis, they 

seem to perform better in giving early signals about the direction of the path of economy. 

Furthermore, in order to verify the results obtained with the mean absolute and squared errors, I 

conducted additional analysis on demeaned data.
14

 Obtained estimated suggest the same 

conclusion as the analysis above. In terms of the calculated errors, block 1 with only the domestic 

variables performs best followed by block 5 with the domestic and foreign variables. Thus, 

considering it and the relative good performance of model B5 with the volatility of stock market 

volatility and the foreign variables, I decided to include it further into the analysis to verify 

whether any other volatility measure outperforms the traditional predictors.  

                                                 
14

 For the sake of brevity, the numerical results are not displayed in this paper, but available from the author upon 

request. 
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Block B0 B1 B2 B3 B4 B5 B6 B7 B8 

Variables as in Table X 

MAE 2,78% 2,70% 2,89% 2,81% 2,79% 2,95% 2,80% 2,79% 2,79% 

MSE 0,18% 0,14% 0,17% 0,18% 0,18% 0,17% 0,17% 0,17% 0,17% 

Variables as in Table X and two foreign variables 

MAE 2,77% 2,82% 2,77% 2,77% 2,78% 2,75% 2,76% 2,77% 2,78% 

MSE 0,15% 0,15% 0,15% 0,15% 0,15% 0,15% 0,15% 0,15% 0,15% 

Table 12: Mean average and mean squared errors for different blocks of predictors. 

 

Note: Graph obtained using MS Excel 2010. 
Figure 17: Actual (red, right hand side axis) and forecasted 3-months ahead industrial production 

growth (blue, left hand side axis) by B1. 

4.5.1 Comparison of Different Volatility Measures 

Sadly, no volatility measure dominates the other based on the MAE and MSE, and Giacomini-

White conditional tests. Table 13 presents the values of calculated errors. There is no statistical 

nor simple predictive difference between the different definitions of volatilities. Moreover, 

looking at Figure 18, one can say that there is nearly no difference between the estimated 

industrial production growth rates. They all seem to follow the same path and predict more the 

direction in which the industrial production will go than the actual value of it. This result is 

consistent with the binary analysis described above, in which the volatility matters in reducing 

the noise in predictions of the business cycle indicator. Thus, no measure is considered best in 

predicting the industrial production, although, based on the smallest errors, the cyclical 

component of the common factor might be recognized relatively better.  
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Note: Graph obtained using MS Excel 2010. 
Figure 18: Actual (red, right hand side axis) and forecasted 3-months ahead industrial production 

growth (blue, left hand side axis). 
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Block 
Market 

portfolio 
VDAX GARCH Factor Factor BK 

Principal 

Component 
PC BK 

Variables as in Table X and two foreign variables 

MAE 2,75% 2,73% 2,74% 2,72% 2,72% 2,76% 2,74% 

MSE 0,15% 0,16% 0,15% 0,15% 0,15% 0,15% 0,15% 

Note: Market portfolio stands for volatility of value-weighted returns of the market portfolio, VDAX stands for 

implied volatility of DAX, GARCH stands for volatility following the GARCH(1,1) process, Factor is the estimated 

common factor, Factor BK is a cyclical component of the common factor, Principal Component is the estimated 

principal component, PC BK stands for cyclical component of the principal component. 

Table 13: Mean average and mean squared errors for different volatility measures. 

5 Discussion of Results and Implications for Future Research 

The connection between financial volatility, German business cycle and the industrial production 

growth is not as strong as it can be found in the studies conducted for the United States. The in-

sample analysis focuses on answering the question whether financial volatility helps in 

explaining economic activity. In case of the in-sample binary choice models, the dynamic 

approach with the lagged recession indicator dominates the other models with the block 4 that 

consists of the stock market volatility and the term spread as the best statistical fit. It is not 

surprising since very often, when testing naive forecasts against experts in the financial industry, 

the naive forecast wins and beating it is more complicated than most people assume. However, 

when looking at the forecasts without the dynamic component, the block 8 with the domestic and 

foreign variables estimated by the autoregressive approach performs best in the percentage of 

predicted recessions and expansions, the number of uncertain events and the information criteria. 

This finding suggests that the financial volatility indeed helps in explaining business cycles, but it 

is dominated by the lagged probability of recession. Comparing different volatility measures it 

seems that the estimated common factor adds more information than any other measure, even 

though the model is not statistically superior. The common factor and the principal component, 

two of the measures that were estimated from the stock and bond markets volatilities, increase the 

probability of correctly estimated expansions, which suggests that the bond market volatility may 

contain more information about expansionary periods. However, the stock market volatilities 

encode all the necessary information which improve forecasts of recessions. Moreover, two 

blocks with just traditional predictors of economic activity and the foreign variables dominate the 

static approach as shown in Sensier et al. (2004), but these perform poorer than B8 estimated by 

the autoregressive probit. Thus, the inclusion of financial volatility improves the explanatory 
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power of the conventional financial indicators for business cycles in the in-sample analysis. 

Furthermore, the foreign variables play an important role in explaining the state of economy, 

unless the dynamic model is used. In this case, the past probability of recession is all that matters.  

 The in-sample analysis of the industrial production growth is based on the percentage of 

the industrial production growth that is explained by predictors. Unfortunately, the magnitude of 

these is significantly smaller than in the study conducted by Fornari and Mele (2013) in which 

the first four predictors, based on the financial volatility, explain about 30% of the industrial 

production growth. In my study, the value is at most 2.51% for the cyclical component of the 

common factor as a financial volatility measure. After including all the regressors in the analysis, 

the economic activity is explained in, at most, 21.32% for the GARCH volatility. Furthermore, 

the obtained results suggest that the financial volatility measures introduced in this thesis do not 

influence the economic activity. In light of the in-sample results for the industrial production, the 

financial volatility barely explains the economic activity in terms of the industrial production 

growth. 

 The out-of-sample forecasts were performed to verify the predictive power of the 

financial volatility. Fornari and Mele (2013) and Chauvet et al. (2015) show that the inclusion of 

the volatility measures positively affects forecasts of recessions and expansions. The same as in 

the in-sample analysis, the static approach estimated for the domestic conventional predictors 

performs relatively well with 100% of correctly estimated recessions and 84.52% of correctly 

estimated expansions. The autoregressive probit model gives the most accurate results out-of-

sample. In terms of the number of successfully predicted recessions and expansions, B1 and B2 

with the domestic variables perform best as well as B6 with the domestic and foreign variables. 

That said, one can conclude that the financial volatility does not help in predicting business 

cycles. However, even though there are measures suggesting superiority of B1 and B2 models, 

the block that among others consists of the volatility of stock market volatility gives the least 

number of events considered as uncertain. The number is four times lower than in the case of the 

blocks with the domestic traditional predictors. This indicates that the volatility of financial 

volatility reduces the so-called noise in the analysis, and makes it clearer, since the uncertain 

events may be already considered as recessionary periods. Furthermore, this result confirms the 

suggestion of Corradi et al. (2013) that volatility of stock volatility is what affects business 

cycles. Moreover, comparing the other volatility measures with the broad market volatility gives 
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no better measure than the most parsimonious one used in the first step of this analysis. Thus, the 

broad market portfolio and the volatility of value-weighted returns of it seem to perform best in 

predicting business cycles. Although, it is essential to mention the estimated by this model high 

probability of recession in 2012. The result indicates a recession period, when in reality 

according to the indicator no recession took place. Similarly, other volatility measures (Figure 

16) gave “false signals” first in 2011, then 2012 and some of them even in 2013 even though 

these periods were classified as expansions by the ECRI. Contrary, the same periods are 

recessionary in the OECD-based recession indicator data. Moreover, looking at the economic 

situation at that time, the European economy faced many problems with the sovereign debt crisis 

that worsened in the second half of 2011 and caused the rapidly cooling economy in the euro 

area. The steps taken by the euro zone countries to reach an orderly sovereign debt workout for 

Greece were met with continued financial market turbulence and concerns of debt default in 

some of the larger economies in the euro area. Despite monetary policies remained 

accommodative with the use of various unconventional measures, the continuing financial sector 

fragility and persistent high unemployment made them ineffective. Furthermore, the German 

economy also experienced a slowdown in the second half of 2011, with a significant shrinkage in 

the industrial production, which also affected next year’s forecasts. Indeed, in 2012 the German 

economy grew by 0.7%, and continued the sharp slowdown compared to the previous year. On 

top of that, the United States struggled with a slowdown in economic growth in the first half of 

2011, which was expected to weaken further in 2012, the high total public debt equal to 100% of 

GDP and historically low yields on government bonds. All things considered, the estimated high 

probabilities of recessions can be explained by the economic situation in Europe and the United 

States and the fact that the economies are interconnected. 

 The financial volatility does not seem to help much in predicting the industrial production 

growth. Included foreign effects, measured as the effect of the American economy on the German 

one, improved the forecasts in terms of obtained errors. However, it is also difficult to say that 

blocks with the financial volatility measures perform better than the traditional predictors. Block 

1 with traditional predictors of economic activity characterized by the smallest errors, but its 

predicted growth seems to follow the actual industrial production growth, whereas block 5 with 

the domestic and foreign variables gave early signals about the drop in industrial production. 

Thus, it was chosen further into comparison analysis. Unfortunately, no other volatility measure 
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was more informative about the economic growth as they all follow nearly the same path and 

anticipate more the direction of the industrial production growth than its value. In conclusion, all 

blocks performed similarly and poorly in predicting the economic activity. 

 All things considered, there is a significant difference between modeling European, on the 

example of Germany, and American economic activity with financial volatilities. Firstly, in 

general the inclusion of two foreign effects, representing situation of the American economy, in 

this thesis helps in explaining and predicting the economic activity. Thus, as expected, the largest 

European economy is interconnected to the American one, and the other economies in the 

European Union are expected to be connected more between each other (Sensier et al., 2004). 

Provided that, modeling such economies is more complicated due to the problem of capturing the 

connection between economies. Secondly, the influence of the financial volatility on the German 

economy seems to be significantly smaller than on the American one. This may be caused by 

several reasons, for example because of the abovementioned interconnections or different 

policies that influence the regressors. Above all, there seem to be more structural differences 

between these two countries.  

Conducted study suggests that the connection between the financial volatility and the 

German business cycle in Europe is weaker than expected. Nevertheless, it does not imply that 

researchers should not use financial volatilities in future studies about the business cycle in 

Europe. Although this study was prepared carefully, it has several limitations. Firstly, the lack of 

certain data or access to it led to exclusion of variables that might have predictive power, and 

based on the obtained results, they very likely do. Namely, no daily value-weighted returns of a 

market portfolio for Europe are available to calculate the realized volatility of the market 

portfolio, which was dominant in this analysis. Moreover, to the best of my knowledge, no 

dataset with daily value-weighted returns of all firms in the industries exists to construct 

idiosyncratic firm level volatility. I believe this data could increase the predictive power of the 

financial volatility. The “gross profit ratio”
15

 of non-financial corporations in the euro area is 

between 40-42% since 2006, indicating that firm-level data could encode information about the 

real economic activity. The second significant limitation of the study is the lack of the ideal 

recession indicator. The choice of the ECRI-based business cycle indicator was made based on 

                                                 
15

 The “gross profit ratio” is calculated in percentages as gross operating surplus divided by gross value added. 

Provided by Eurostat.  
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the previous research, methodology used for its construction and preliminary analysis that 

suggested it as a better choice. However, as mentioned above, this indicator does not classify 

2011-2012 as a recession even though one can argue that during that time Germany observed an 

economic slowdown. In turn, the performance based model verification was not necessarily 

optimal, since it compared the estimated probabilities with observed values according to the 

chosen recession indicator. Nonetheless, there was no better option to consider. The OECD-based 

recession indicator was not diversified enough in terms of the values, and the model did not have 

enough calm periods to learn. Thirdly, the interconnection between German and American 

economies may have been modelled incompletely. I decided to use the same two foreign 

variables as in research done by Sensier et al. (2004). However, the paper is relatively outdated 

and does not include any financial volatility measures. Thus, possibly, the inclusion of 

international or foreign financial volatilities might have increased the predictive performance of 

the financial volatility. Fourthly, the data sample was relatively short and consisted of 261 

monthly observations. Longer time series would allow extending the analysis to other financial 

crises and verifying whether the prediction power of the volatility changed over time. Usually, 

models estimated on larger datasets (in terms of number of observations) perform better. Lastly, 

due to lack of the computation power, only 3-months ahead iterative forecasts were calculated. 

However, Fornari and Mele (2013) show that certain blocks with financial volatilities and 

volatilities of financial volatility perform better in longer forecast horizons. In the view of the 

mentioned limitations, future research about this topic with the inclusion of the above-mentioned 

issues is needed to verify the fully captured predictive magnitude of the financial volatility and its 

inclusion in widely used prediction models. 

6 Conclusion 

The counter-cyclicality of the financial volatility is believed to encode information about the 

business cycle, since volatility seems to be larger during recessions and smaller during 

expansions. Challenging economic environment of global economy, various policy measures 

taken by central banks that affected and possibly distorted the predictive power of the most 

conventional economic indicators, and the critique turned against researchers that failed to predict 

the last severe recession, which led to a search for new leading indicators that would improve 

forecasting of the real economic activity. Thus, financial volatility was one of the solutions to the 

problem. 
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 This work organized the previous models and summarized the basic findings in this field. 

The purpose of this thesis was to verify whether financial volatility can act as predictor of the 

economic activity, and if so, whether any measures of volatility perform better in this task, and 

help to improve forecasts from the conventional financial indicators. To my knowledge, it is one 

of the first studies including the volatility measures conducted for Europe, on the example of 

German economy, which was chosen based on its size and impact on other European countries. 

The expectations were verified by both the in-sample and out-of-sample analysis using the 

dynamic binary choice models to predict the business cycle and linear regressions to forecast the 

industrial production growth.   

 The obtained results suggest that financial volatility does not explain the business cycle in 

the magnitude that it does in the United States. However, it seems to contain more information 

about the expansionary periods and makes the estimates less noisy, even though it does not 

improve the forecasts in terms of the percentages of correctly identified recessions and 

expansions. Moreover, the study confirmed that the interconnection between the US and German 

economies is significant and important in modeling German business cycles. In-sample analysis 

reveals that no financial variable is significant, if the lagged probability of the recession indicator 

is taken into analysis. Although, statistically the model with the financial volatility fits best, i.e. 

the SBC is lowest. Nonetheless, for the autoregressive probit model, which performs reasonably 

well, the model with the volatility of financial volatility outperforms the other blocks of 

variables. The most parsimonious volatility measure of the broad market portfolio encodes most 

of the information needed for the prediction analysis. On the other hand, explaining and 

forecasting the industrial production growth seems to be a more difficult task. None of the 

volatility measures perform well in that part, they all seem to predict the direction in which the 

economy will go, but not the actual values.  

 The topic is of great concern for policy and corporate decision makers, because the 

correct assessment of the current and, especially, future economic situation is essential for good 

policymaking. This study can be considered as an introduction and indication for future research 

for Europe. Especially, in light of the limitations of this paper, more research is needed to further 

verify whether the financial volatility helps in predicting economic activity and should be 

included in mathematical models. 
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7 Appendix 

Appendix 1 Principal Component Analysis 

 

Variable Component 1 

Realized volatility of a corporate 

bond 
0.4292 

Realized volatility of 10-year 

government bond 
0.4373 

Implied volatility of DAX 0.5841 

Volatility of value-weighted 

returns of the market portfolio 
0.5323 

 

A1.1: Scree plot of eigenvalues after principal component analysis, and the characteristic of 

chosen principal component. 

Component Eigenvalue 
Proportion 

explained 
Cumulative explained 

Component 1 2.23352 0.5584 0.5584 

Component 2 0.96037 0.2401 0.7985 

Component 3 0.59438 0.1486 0.9471 

Component 4 0.21173 0.0529 1.0000 

A1.2: Eigenvalues and proportion explained of components. 

Appendix 2 Baxter-King filter 

  

A2.1: Spectral density functions for the principal component and the common factor. 
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Appendix 3 GARCH modeling 

Model AIC BIC 

GARCH(1,1) -1039.573 -1024.130 

ARCH(1) -1020.921 -1009.338 

ARCH(2) -1031.464 -1016.021 

ARCH(3) -1032.039 -1012.735 

ARCH(4) -1032.439 -1009.274 

GARCH(1,2) -1037.640 -1018.336 

GARCH(2,1) -1037.633 -1018.329 

GARCH(2,2) -1035.640 -1012.475 

A3.1: Information criteria for alternative models. 

Appendix 4 Out-of-sample binary choice models estimates 

Block B0 B1 B2 B3 B4 B5 B6 B7 B8 

Variables as in Table X 

AUC 59,39% 90,87% 90,87% 27,12% 85,19% 89,81% 81,08% 83,07% 84,13% 

# recessions 0 9 9 0 0 1 2 1 0 

# expansions 84 71 71 84 84 81 80 83 83 

# uncertain 91 13 13 26 25 13 25 18 21 

MAE 26,14% 19,16% 19,16% 22,34% 14,75% 13,47% 19,57% 14,89% 15,21% 

MSE 9,85% 11,23% 11,23% 11,16% 7,57% 8,04% 9,10% 7,67% 7,74% 

freq resession 0,00% 100,00% 100,00% 0,00% 0,00% 11,11% 22,22% 11,11% 0,00% 

freq expansion 100,00% 84,52% 84,52% 100,00% 100,00% 96,43% 95,24% 98,81% 98,81% 

Variables as in Table X and two foreign variables 

AUC 60,45% 92,86% 92,86% 58,47% 92,86% 86,64% 92,59% 93,78% 91,27% 

# recessions 4 9 9 4 8 6 8 8 7 

# expansions 67 69 69 75 72 77 68 73 74 

# uncertain 56 17 17 32 20 6 37 20 20 

MAE 37,50% 21,61% 21,61% 27,22% 20,74% 13,31% 29,09% 19,29% 19,13% 

MSE 20,06% 13,64% 13,64% 16,42% 12,32% 10,13% 15,96% 11,40% 11,45% 

freq resession 44,44% 100,00% 100,00% 44,44% 88,89% 66,67% 88,89% 88,89% 77,78% 

freq expansion 79,76% 82,14% 82,14% 89,29% 85,71% 91,67% 80,95% 86,90% 88,10% 

A4.1: Characteristics of static probit estimates of the business cycle indicator. 
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Block B0 B1 B2 B3 B4 B5 B6 B7 B8 

Variables as in Table X 

AUC 67,99% 75,40% 75,40% 58,07% 90,08% 82,94% 72,22% 65,87% 65,61% 

# recessions 5 6 6 5 5 5 5 5 5 

# expansions 80 80 80 80 80 80 80 80 80 

# uncertain 0 0 0 0 0 0 1 0 1 

MAE 9,75% 7,96% 7,96% 9,51% 8,68% 9,17% 8,38% 8,42% 8,15% 

MSE 7,92% 7,68% 7,68% 8,10% 7,94% 8,16% 7,86% 8,06% 7,66% 

freq resession 55,56% 66,67% 66,67% 55,56% 55,56% 55,56% 55,56% 55,56% 55,56% 

freq expansion 95,24% 95,24% 95,24% 95,24% 95,24% 95,24% 95,24% 95,24% 95,24% 

Variables as in Table X and two foreign variables 

AUC 61,11% 59,66% 59,66% 59,79% 94,44% 58,73% 72,62% 68,39% 71,36% 

# recessions 5 5 5 5 5 5 5 5 5 

# expansions 80 80 80 80 80 80 80 80 80 

# uncertain 0 0 0 0 0 1 2 0 0 

MAE 8,83% 8,75% 8,75% 8,63% 9,01% 9,08% 8,74% 8,68% 8,67% 

MSE 8,60% 8,61% 8,61% 8,60% 7,90% 8,66% 7,92% 8,60% 8,60% 

freq resession 55,56% 55,56% 55,56% 55,56% 55,56% 55,56% 55,56% 55,56% 55,56% 

freq expansion 95,24% 95,24% 95,24% 95,24% 95,24% 95,24% 95,24% 95,24% 95,24% 

A4.2: Characteristics of dynamic probit estimates of the business cycle indicator. 

Block B0 B1 B2 B3 B4 B5 B6 B7 B8 

Variables as in Table X 

AUC 66,27% 66,93% 66,93% 58,33% 85,19% 82,14% 65,74% 57,21% 65,94% 

# recessions 5 5 5 5 5 5 5 5 6 

# expansions 80 80 80 80 78 80 80 80 80 

# uncertain 0 0 0 0 2 0 1 0 0 

MAE 9,80% 8,64% 8,64% 9,61% 11,07% 9,18% 8,28% 8,62% 8,07% 

MSE 7,93% 8,60% 8,60% 8,07% 9,88% 8,18% 7,91% 8,60% 7,78% 

freq resession 55,56% 55,56% 55,56% 55,56% 55,56% 55,56% 55,56% 55,56% 66,67% 

freq expansion 95,24% 95,24% 95,24% 95,24% 92,86% 95,24% 95,24% 95,24% 95,24% 

Variables as in Table X and two foreign variables 

AUC 61,24% 57,54% 57,54% 60,32% 76,19% 58,53% 61,97% 65,41% 66,27% 

# recessions 5 5 5 5 6 5 5 5 5 

# expansions 80 80 80 80 78 80 80 80 80 

# uncertain 0 0 0 0 0 1 1 0 0 

MAE 8,90% 8,72% 8,72% 8,62% 9,79% 9,18% 9,12% 8,63% 8,64% 

MSE 8,61% 8,60% 8,60% 8,60% 9,68% 8,68% 8,68% 8,60% 8,60% 

freq resession 55,56% 55,56% 55,56% 55,56% 66,67% 55,56% 55,56% 55,56% 55,56% 

freq expansion 95,24% 95,24% 95,24% 95,24% 92,86% 95,24% 95,24% 95,24% 95,24% 

A4.4: Characteristics of dynamic autoregressive probit estimates of the business cycle indicator. 
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Appendix 5 Giacomini-White conditional test statistics 

  B1 B2 B3 B4 B5 B6 B7 B8 

B0 -3,45 65,64 67,39 49,60 64,96 11,17 44,61 23,05 

B1 - 22,87 16,35 9,90 21,03 4,49 10,14 9,42 

B2 - - -21,73 -39,84 4,29 -80,29 -38,89 -37,53 

B3 - - - -12,34 16,91 -18,21 -12,16 -14,01 

B4 - - - - 47,67 -23,62 -5,44 -5,01 

B5 - - - - - -122,11 -52,16 -37,29 

B6 - - - - - - 37,38 29,98 

B7 - - - - - - - -7,12 
Note: In bold statistics significant at 5% significance level. 

A5.1: Test statistics for models with the domestic and foreign variables, estimated probabilities 

of recession out-of-sample by autoregressive probit. 


