
UNIVERSIDADE NOVA DE LISBOA

Faculdade de Ciências e Tecnologia

Departamento de Engenharia Civil

Adaptive glass pane using shape-memory alloys

Por

Mariana Portocarrero Pegado Lemos de Mendonça Oom de Sacadura

Licenciada em Ciências da Engenharia

Dissertação para obtenção do grau de

Mestre em Engenharia Civil - Per�l Estruturas

Orientador: Doutor Filipe Pimentel Amarante dos Santos

Co-orientador: Doutora Chiara Bedon

Júri

Presidente: Doutor Corneliu Cismasiu

Vogais: Doutor José Nuno Varandas

Doutor Filipe Pimentel Amarante dos Santos

October 2015





�Copyright� Mariana Portocarrero Pegado Lemos de Mendonça Oom de Sacadura, FCT/UNL
e UNL

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, per-
pétuo e sem limites geográ�cos, de arquivar e publicar esta dissertação através de exemplares
impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido
ou que venha a ser inventado, e de a divulgar através de repositórios cientí�cos e de admitir a
sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde
que seja dado crédito ao autor e editor.

i





Acknowledgments

I would like to express my deepest acknowledgment to many people without whom I would
not have been able to reach this important mark in my life.

First of all, to Professor Filipe Amarante dos Santos, not only for the opportunity and
support, but also for all the wise guidance and advice. For introducing me to the themes
present in this dissertation, for all the vital scienti�c orientation and for always have wel-
comed me with natural friendliness and sympathy. I also have to mention his tireless e�ort
to help with the prototype construction and testing.

To Professor Chiara Bedon of Università degli Studi di Trieste, for introducing me to
ABAQUS software and for all the incalculable precious help on clarifying all the doubts and
questions that kept on emerging. For the scienti�c elucidations and also for the sincere warm
welcoming in Trieste, it was a privilege. Also from Università degli Studi di Trieste I acknowl-
edge Professor Claudio Amadio for the wise suggestions.

To all my friends, for the joy that always supported me with.

To my family, who made me who I am, my eternal deepest heartfelt gratefulness.

iii





Abstract

Glass is one of the most commonly used building materials in modern architecture around
the world. Its ability to pass through natural light enabled the builders paradigm of a desire
for a exterior environment connected space, but yet comfortable and protected.

New techniques and recent developments in fabrication processes made possible to use
glass as a structural material.

Structural glass propelled construction in glass, turning it into the most distinctive ma-
terial of modern architecture. Because of the glass design complexity, glass as a construction
material, however, still represents a challenge for structural design engineers.

Glass is often associated to smart systems and active control researches, evolving shape-
memory alloys or pre-stressed cables.

This dissertation's aim is to contribute to the development of a shape-memory alloys
smart system, associated with a glass pane, in order to mitigate the wind action e�ects on the
structure. The hazardous e�ect of the temperature on the interlayer of the laminated glass is
also considered. The control action is imposed by an external system that causes an external
force on the structure, enabling the system structural response to be improved.
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Resumo

Painel de vidro adaptativo, usando ligas de memória de forma

O vidro é um dos materiais de construção mais utilizados na arquitectura moderna por todo o
Mundo. A sua característica de permitir o atravessamento de luz natural permite o equilíbrio
entre a construção de espaços em contacto privilegiado com o ambiente exterior, propiciando
ao mesmo tempo condições de protecção e conforto.

Recentes desenvolvimentos nos processos de fabrico e acabamento do vidro permitem que
o mesmo possa desempenhar funções estruturais.

O aparecimento do vidro estrutural veio impulsionar a construção em vidro, sendo este
o elemento mais marcante da arquitectura moderna. O vidro como elemento de construção
representa ainda um importante desa�o para os engenheiros projetistas, pela di�culdade de
dimensionamento.

O vidro está muitas vezes associado a pesquisas relativas a sistemas inteligentes de con-
trolo de ações externas, como cabos de ligas de memória de forma ou cabos de pré-esforço ativo.

A presente dissertação visa contribuir para o desenvolvimento de um sistema inteligente,
composto por cabos de memória de forma associados a um painel de vidro, com o objectivo
de mitigar as deformações impostas pela ação do vento na estrutura. O efeito da temperatura
na degradação do material que constitui a interlayer do vidro laminado é também tida em
consideração. A ação de controlo será imposta por um sistema externo que implementa uma
força exterior na estrutura, permitindo uma optimização da resposta do sistema estrutural do
painel.

Palavras chave:

Painel de vidro; Controlo ativo; Ligas de memória de forma; Ação do vento; Sistemas estru-
turais inteligentes
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Chapter 1

Introduction

1.1 Problem description

1.1.1 Introduction

Glass has always been a material that impassioned and impressed mankind. As one of the
oldest materials ever produced by man, initially was used mainly to create simple artifacts of
decoration. Over time, to take advantage of its transparency to the visible light, glass started
being used in windows as a way to enlighten the interior. In Figure 1.1 are represented
Vitttorio Emanuele galleries in Milan, built between 1865 and 1877, a clear example of the
early days of glass in architecture.

Figure 1.1: Vittorio Emanuele galleries, Milan

Transparency and translucency are not the only advantages of glass as a construction
material. Glass also provides a wide and clean environment being highly sought after by
architects. Recent developments in production techniques made it possible to develop di�erent
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Chapter 1. Introduction

types of glass, with distinct appearance and improved structural behavior. The improved
aesthetic e�ects are also a signi�cant bene�t, such as the changeable state of transparency
and light re�ection from translucent to mirror.

Figure 1.2: Modern glass facade, Centro de Congressos do Estoril

In contemporary architecture, glass plays an essential role, not only being present in all
modern architectural icons but essentially shaping their appearance. The importance of glass
in modern architecture is clearly obvious in modern cities. In Figure 1.2 is illustrated a modern
glass facade.

Despite all the technological advances regarding production, the structural use of glass is
still a challenge to engineers these days, because of the complexity of its design. Glass's brittle
behavior makes more di�cult to predict and foresee its performance along time. From one
of the oldest materials made by man, to one of the most modern materials in contemporary
architecture these days, how far goes the comprehension of glass as a building material and
engineers design development? How much more will we be able to improve glass design?
Several studies were conducted in the recent years, in an e�ort to answer these questions and
improve glass structures behavior.

1.2 Objectives and Scope

The bottom line of this work is based on a scienti�c research of an italian article: "Analisi

strutturale di grandi lastre in vetro strati�cato rinforzate con cavi in acciaio" by Maurizio Froli
and Leonardo Lani [12]. In this work, the authors propose to study the structural behavior of
large size glass plates under �at bending, sti�ened by a steel cable system. These glass panes
were used in the reconstruction of the Reinhold Messners' castle. Figures 1.3 and 1.4 shows
the aforementioned glass panes on the roof of the castle.

2
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Figure 1.3: Reinhold Messner Castle

Figure 1.4: Detail of Reinhold Messner Castle's roof

Factors such as temperature and the load duration were discussed, as they directly a�ect
the laminated glass behavior. These factors were considered by determining their in�uence
on the interlayer's ability to transfer shear load.

This dissertation proposes to analyze the same glass pane presented by the authors on the
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aforementioned scienti�c article, under the same load conditions but integrated in a smart
structure. The latter is composed by a shape-memory alloy cable system with active control,
in order to mitigate the wind action deformation on the glass.

The following objectives are prospected:

� Analysis of the temperature in�uence on the thermoplastic interlayer of laminated glass;

� Analysis of the wind action on a glass pane;

� Mitigation of the aforementioned action with an active control system.

1.3 Dissertation Outline

This dissertation is divided in 7 chapters.
In the �rst chapter, the current, the problem description is presented, as well as the

objectives and scope of this work.
In the second chapter, a brief overview of the use of glass through times is made, as

well as an introduction to shape memory alloys and control systems.
In the third chapter is described the Enhanced E�ective Thickness method, used in this

work, the study of the glass pane structural behavior and the cable con�guration set.
In the fourth chapter a case study is presented and analyzed, the results presented and

commented.
In the �fth chapter the active control system is implemented on the case study previously

presented.
In the sixth chapter is described the building and testing of a prototype
Finally in the seventh chapter the conclusions and future work are presented.
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Chapter 2

State of the art

2.1 Introduction

This dissertations theme involves three distinct topics:

� Glass

� Shape-memory alloys

� Control

To better understand the dissertation outline, before presenting the work held, a brief intro-
duction to each topic is made in this chapter.

2.2 Glass

2.2.1 Use of glass through time

As mentioned in section 1, glass is one of the oldest materials ever made by man. Initially, glass
was only used for manufacturing decoration artifacts. Over time, as construction techniques
were developing, glass as a construction material emerged, and increased until these days.
Glass is able to respond to man's crescent necessity of creating inside the buildings a bright
and exterior connected environment, but yet safe and where he feels protected. As a very
versatile material, it can easily adapt these needs and still play a crucial role in aesthetics and
in modern architecture.

The construction with glass had two major prime periods where its expansion was espe-
cially high:

� During the nineteenth century with the construction of many greenhouses composed by
a metallic bearing system, where the glass panes were incorporated. An example of this
type of glass construction is the Crystal Palace in Madrid, represented in the �gure 5.2;
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Figure 2.1: Crystal Palace, Madrid

� Twentieth century, with the constant advances in process techniques that made it pos-
sible to use glass as a structural element.

2.2.2 Glass types

Advances in process techniques made it possible to develop several types of glasses with
distinct applications. In this subsection is made a brief introduction to the most relevant
types of glass.

2.2.2.1 Float glass

Developments in glass production processes and processing methods made possible to develop
many types of glass products. Currently the �oat production process is the most common
method used worldwide. This technique advantages are its low cost, its wide availability, the
superior optical quality of the glass and the large size of panes that can be reliably produced
[15].

The �oat glass production process is schematized in �gure 2.2.
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2.2. Glass

Figure 2.2: Float glass production process [15]

The �oat glass production process is described below: The raw materials are melted at
temperatures of up to 1550oC. The molten glass is then poured continuously at approximately
1000oC on to a shallow pool of molten tin in an atmosphere of hydrogen and nitrogen to
prevent oxidation. Tin in its liquid physical state has a large temperature range (232 −
2270oC), because of this and also because of its high speci�c weight, the glass �oats on the
tin and spreads outwards, forming a smooth �at surface at an equilibrium thickness of 6 to
7mm. This surface is then gradually cooled and drawn on to rollers, and after enters a long
oven at temperatures around 600oC. Depending on the speed of the rollers the glass thickness
can be controlled within a range of 2 to 25mm, corresponding the biggest thickness to the
slowest speed and vice versa. To prevent residual stresses being induced within the glass,
the annealing lehr slowly cools the glass. After the lehr the glass is ready to be cut and
stored. Broken or defective pieces are sent back into the furnace and recycled. At some �oat
plants, so called on-line coatings (hard coatings) can be applied to the hot glass surface during
manufacture. As a consequence of this manufacture process, the two faces of glass sheets are
not completely identical [15].

2.2.2.2 Tempered glass

Tempered glass is a glass subjected to a heat treatment called tempering. This type of glass
is the most important in structural applications. The tempering process is illustrated in the
�gure 2.3.

Figure 2.3: Tempered glass production process - Adapted from [15]

The treatment consists on the heating of the glass, followed by a fast cooling, provided
by a cool air stream. These actions create compressive stresses on the surfaces of the glass
sheet and a residual stress �eld in the core of the glass. This self-balanced internal tension
state has a parabolic distribution within the thickness, as can be observed in �gure 2.4. In
the core of the glass pane, a tensile stress �eld is generated. This core's thickness corresponds
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to approximately 60% of the glass total thickness. In the remaining 40% of the thickness,
20% on each surface, a compressive stress �eld is created, preventing �aws from opening on
the glass surface. This state of stress enhances the glass behavior when subjected to a load
action, minimizing the tensile stress on the surfaces, as schematized on the �gure 2.4.

Figure 2.4: Tempered glass - Adapted from [15]

Tempering also enhances glass' behavior in what concerns to the fracture pattern. As the
latter is a function of the energy stored in the glass, and tempered glass stores more energy
than �oat glass, the fractures in tempered glass are smaller pieces, preventing large piece
of glass to be projected. For this reason, tempered glass is also designed safety glass. The
fracture patterns are illustrated on the �gure 2.5.

2.2.2.3 Laminated glass

To overcome glass' brittle behavior, laminated glass was created. It consists of two or more
glass sheets, bonded together by an intermediate layer of a plastic transparent material. The
combinations are in�nite, as the glass panes can have di�erent thickness or heat treatments.
The interlayer is placed between the glass panes, then the whole set is compressed and heated,
in order to expel the air between and merge the components. The most common material
used as interlayer is polyvinyl butyral, PVB.

The presence of the interlayer enhances glass behavior in case of fracture, as it ensures
the glass fragments to remain stuck after breakage. For this reason, safety tempered glass is
always laminated, and it is often used in cases where accidents that compromise human lives
can occur.
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Figure 2.5: Fracture patterns A:�oat glass; B:tempered glass [14]

2.2.2.4 Glass units

As mentioned before, a glass pane can be composed of two or more glass sheets in order to
improve its structural behavior. In the �gure 2.6 some examples of glass units are illustrated.

Figure 2.6: Examples of glass units [15]

2.2.3 Structure supporting system

The support system can be classi�ed in three distinct categories:
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� Glass facade with structural steel bearing structure - the glass panes are integrated in
a steel structure;

� Cable supported spider glass facade - the glass panes are supported by metallic devices
called spiders and glued at each other with silicon sealant on the edges;

� Glass facade composed by glass panes glued to each other with no structure seen from
the exterior facade side. In the opposite side the bearing system can be a steel structure
or a cable system.

2.3 Shape-Memory Alloys

2.3.1 Shape-memory alloys, a smart material

Shape-memory alloys (SMAs) are a functional smart new material, whose properties were
�rst discovered around 1930 and since then is object of study of numerous researches and
investigations. A smart system is de�ned as a system that is able to read the structure's
behavior to external disturbances, and after adapt and adjust the structure characteristics in
order to prevent damages [24]. Smart systems integrated in civil engineering structures made
possible to provide functions such as sensing, monitoring, healing and self-adapting response
to external actions. Features as durability, fatigue resistance, high power density and high
damping capacity make SMAs a very interesting investigation aim. Even though this is a
relatively recent material, its characteristics enable SMA to have several applications in civil
engineering structures.

2.3.2 Shape-memory e�ect and superelasticity

Shape-memory alloys are a type of metallic alloys that exhibit two essential properties:

� Shape memory e�ect - refers to the material ability to recover its original geometry after
deformed, when heated;

� Superelasticity - refers to SMAs ability to run through substantial inelastic deformations,
recovering the previous con�guration after the unload.

They were �rst discovered in 1932, when Chang and Read observed a shape memory trans-
formation in gold-cadmium. Shape-memory e�ect in nickel-titanium (Nitinol) was discovered
in 1962 by Buechler and co-researchers at Naval Ordnance Laboratory. There are several
kind of shape memory alloys, but nitinol is still up until these days the most commonly used
SMA as it possesses superior thermomechanical and thermoelectrical properties. The two
aforementioned essential properties of the SMAs result from a reversible phase transforma-
tion from two crystal phases: martensite and austenite. Martensite is a weaker phase, stable
in low temperature, austenite on the other hand is a high temperature stable and stronger
phase.

As a crystalline structure, SMAs atoms are arranged in a symmetric twinned pattern.
During the transformation from austenite to martensite, the atoms are arranged in symmet-
ric twinned way. On the other hand, if an external stress is induced on the structure in
the martensite phase, the structure responds by changing the atoms' orientation causing its
detwinning. These transformations are illustrated on the diagram of the �gure 2.7.
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Figure 2.7: Stress-free martensitic transformation - Adapted from [28]

The transformation from a crystal phase to another can be induced by two distinct rea-
sons: temperature gradient and mechanical loading. From a thermomechanical point of view,
temperature and external stress play an equivalent role in the transformation mechanism [30].
From the two types of martensite transformations result the two essential SMAs properties:
temperature-induced transformation causes SME and stress-induced transformation causes
superelasticity.

A stress-free transformation is represented in the graphic of the �gure 2.8. The loop
pictured in the graphic is characterized by four transition temperatures: Ms, Mf , As and Af ,
described below.

Figure 2.8: Stress-free martensitic transformation - Adapted from [30]

� Ms - Martensite start temperature

� Mf - Martensite �nish temperature

� As - Austenite start temperature

11
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� Af - Austenite �nish temperature, above which martensite becomes unstable

These four transition temperatures mark the start and end of the transformations phases.

A stress-induced transformation is represented on the stress-strain graphic of the �gure
2.9. The temperature is constant and higher than Af , austenitic phase.

Figure 2.9: Stress-induced martensitic transformation at a - Adapted from [28]

As the stress is being applied on the structure, the elastic deformation of austenite will
start to occur (o− a). From the critical value a, the forward transformation begins, turning
austenite into martensite (a − b). At this point (b) the structure is fully transformed into
martensite. Keep straining imply the elastic deformation of detwinned martensite (b − c).
During this phase, if the load ceases, the elastic deformation of the detwinned martensite
proceeds in the opposite direction, until a point of stress where martensite becomes unstable
(c′). From this point on, the inverse transformation proceeds as the stress decreases, reverting
back tho austenite phase (d′). The complete unload enables the structure to recover from all
deformation, creating an hysteretical loop that allows the structure to absorb energy. This
damping cycle is the superelasticity e�ect. If the unloading did not occur, the increasing level
of stress would cause the structure to reach a point (c) upon where it is enough to cause the
slipping of the martensite lattices, causing plastic deformation (c−d). Beyond point d, further
loading will cause failure (e′), while unloading will cause signi�cant residual deformation (e).

2.4 Control in civil engineering structures

Recent studies and investigations are being conducted in order to develop control systems
in civil engineering structures, that are able to detect and mitigate undesired e�ects on the
aforementioned structures. There are several types of control systems, which are brie�y
presented in this section, to better understand the control action in structures.

2.4.1 Passive control systems

Passive control systems are those that don't need external energy to operate. For this reason
they're the most commonly used control systems, on the other hand, if the dynamic char-
acteristics of the structure signi�cantly changes during the action, this control type is not
recommended.

12



2.4. Control in civil engineering structures

There are three types of passive control systems [21]:

� Absorbers - To absorb the structures' vibrations, a mass can be attached to the structure,
connected to the latter by a spring and a damper device. This system, called Tuned Mass
Damper (TMD), when correctly calibrated with the natural frequency of the structure,
can absorb and mitigate dynamic actions on the structure. The TMD devices can
only mitigate the response to a speci�c vibration mode. More than one be can be
implemented on the same structure, if necessary. They're very e�cient in the wind
engineering area. Tuning errors reduces signi�cantly this system's e�ciency. Other type
of absorber device are the Tuned Liquid Damper (TLD). These devices take advantage
of the hydrodynamic characteritics of a liquid, usually water, on a reservoir, presenting
a very similar behavior to the TMD, though more complex and non-linear.

� Dissipative - The dissipative devices are also known as dampers and can be viscous,
visco-elastic, frictional or hysteretics. In a general way, the action of these devices
consists in receiving the mechanical energy and dissipate it in order to prevent the
structure to absorb it. This way, these devices have the disadvantage that they only act
when the action occurs;

� Isolators - In order to prevent mainly the seismic action e�ects, a structure can be
isolated on its base. To do this, devices of low horizontal sti�ness are implemented on
the base of the structure, allowing its movements to be independent from the ground's
movements.

2.4.2 Active control systems

In contrast to passive control devices, active control devices need external power to actuate.
The control system has to be able to receive data from the structure, process the latter and
after that evaluate the data. To evaluate the data it is necessary to have previously de�ned
the range of admissible values at stake. The comparison between the received data and the
previously de�ned data will enable the system to evaluate if it is necessary to activate the
control on the structure. The control can be induced by an actuator and its algorithm is
carefully developed in order to be able to answer to all the structure's requirements. There
are two types of active control action, di�ering from each other in the moment where the
control occurs.

� Feedforward control - In this situation the control action is activated before the stimulus
occur. Because of this particular reason, the feedforward control is generally used in
situations where the structure's behaviour can be predicted. The diagram of the �gure
2.10 illustrates the feedforward control action.
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Figure 2.10: Feedforward control - adapted from [23]

� Feedback control - The control action is activated after the controller received and
processed the signal, comparing it to the previously setpoint value. This action is
illustrated on the �gure 2.11.

Figure 2.11: Feedback control - adapted from [23]

2.4.3 Semi-active control systems

Recently, several studies are being made in order to develop a control system that gather the
advantages of both previously mentioned control systems. This type of control system uses a
low power external source, reducing the cost associated, also using a control algorithm.

2.4.4 Hybrid control system

A hybrid control system is a system that combines two or more previously de�ned types of
control. It is particularly adapted to the situation in question in order to better monitor and
manage the structure's response.
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Chapter 3

Glass pane structural behavior

characterization

3.1 Introduction

In this section the structural behavior of the glass pane is studied in distinct cable system
con�gurations and distinct situations along time. The enhanced e�ective method is applied
in order to simulate the interlayer's behavior along time, that deeply a�ects the structural
behavior of the laminated glass and is strongly dependent of factors like temperature and load
duration. Several cable system con�guration are studied, with shell �nite elements models
using the software SAP2000, so the structural behavior of the whole system is optimized.
After this, a solid FE model using the software Abaqus is presented to further investigate
the structural behavior and validate the results obtained with the simpli�ed method. A
comparison between the results obtained with the two software programs is made.

3.2 The Enhanced E�ective Thickness method

3.2.1 Introduction

Due to the non-linear behavior of PVB, the resulting state of stress is quite di�cult to exactly
obtain and often requires sophisticated full three dimensional numerical analysis. Neverthe-
less, there are simpli�ed methods that can be used in the design practice of laminated glass
as the enhanced e�ective thickness (EET) method.

The developments in the production processes made in the last decades signi�cantly en-
hanced glass behavior. Glass has been more and more used in modern construction, not only
as a way to enlighten the interior, or even as a coating in modern buildings, but also with a
structural function. The structural use of glass is not necessarily more complex or di�cult
than other materials, but it requires a special attention due to its intrinsic brittleness[9]. Lam-
inated glass helps to overcome its typical brittle behavior by bonding together two or more
panes of glass with intermediate polymer interlayers. The latter imposes a plastic component
in the laminated glass structure and improves its post-breakage behavior, keeping the glass
fragments stuck and avoiding instantaneous collapse. The interlayer PVB material charac-
teristics depend mainly in two factors: temperature and load duration [11]. These factors
strongly a�ect the laminated glass behavior, in fact it is shown that the interlayer's properties
and thickness actually govern laminated glass behavior when subjected to bending or impact
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loads [26]. The shear modulus of the interlayer is also a very important characteristic that
has to be taken into account [17].

In this work, the main factor studied was the temperature in�uence. Being a material
widely used in facades, laminated glass is frequently exposed to situations that leads to a high
range of temperatures, as sun exposure, rain, wind and other weather conditions. Therefore,
the behavior of laminated glass with the temperature is a subject that should be deeply
investigated in order to understand and predict the structure's behavior along time.

Tests made by Reznik and Minor [27] led to the conclusion that as temperature increases,
the laminated glass behavior approaches the situation where the glass sheets behave as if they
are independent - layered behavior. This is due to the fact that the ability of the interlayer
material to transfer shear load is reduced with the increase of the temperature. On the
opposite side, laminated glass presents a monolithic behavior when the interlayer is able to
transfer shear load. The temperature to which the laminated glass is subjected strongly a�ects
its behavior. Linden et al. [20] also studied this topic and reached the conclusion that the
same laminated glass sample can be weaker than a monolithic glass at high temperatures and
stronger at room temperatures. El-Shami, Norville and Ibrahim [11] studied the behavior
of laminated glass under a di�erent range of temperatures. The graphic of the Figure 3.1
shows the comparison between theoretical de�ections in the center of the plate at di�erent
temperatures.

Figure 3.1: De�ection at the central point at di�erent temperatures - Adapted from [11]

From the graphic it can be seen that as temperature increases, the de�ection at the
central point also increase. The curve of layered plates was obtained with the modulus of
rigidity of PVB equal to zero. This graphic supports the conclusion of Reznik and Minor
that as temperature increases, the laminated glass behavior migrates toward the layered glass
behavior.
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3.2.2 The method

The traditional Wölfel-Bennison formulas to determine an e�ective thickness are only accu-
rate when the plate response is similar to that of a beam under uniformly distributed load
[13]. The enhanced e�ective thickness method assumes a deformed con�guration for the plate
and returns an e�ective thickness used for estimate displacements and one other for calculate
stresses. The deformed con�guration assumed depends upon the boundary and load con-
ditions. The thickness of both glass panes and the interlayer's as well as the two material
properties are also taken into account.

To use this method, one �rst has to characterize the Ψ coe�cient, that depends on the
boundary conditions, load and also the plate's prevailing dimensions ratio. The values that
this Ψ can assume are tabled [13].

After the Ψ coe�cient is characterized, the η parameter should be calculated by the
expression (3.1)

η =
1

1 + hintE
Gint(1−ν2)

· Dabs

Dfull
· h1h2

h1 + h2
· ψ

(3.1)

Being:
hint - thickness of the interlayer;
h1 - thickness of the glass pane 1;
h2 - thickness of the glass pane 2;
E - glass' Young module;
Gint - shear module of the interlayer;
ν - glass' Poisson's ratio;
Dabs - Bending sti�ness relative to layered limit;
Dfull - Bending sti�ness relative to monolithic limit.

The η parameter, whose value is between 0 and 1, re�ects the interlayer ability to transfer
shear load, when η = 0 the interlayer is not able to transfer the shear actions (layered
behavior), and conversely when η = 1 we have the other limit situation where the interlayer
is able to transfer all shear load (monolithic behavior).

The e�ective thickness in terms of displacements, ĥw should be calculated by the expres-
sion (3.2). In terms of stresses, the e�ective thicknesses ĥ1;σ and ĥ2;σ are calculated by the
expressions (3.3) and (3.4)

ĥw =
3

√√√√√ 1
η

h3
1 + h3

2 + 12Is
+

1− η
h3

1 + h3
2

(3.2)

ĥ1;σ =
3

√√√√√ 1

2ηd1

h3
1 + h3

2 + 12Is
+

h1

ĥw
3

(3.3)

ĥ2;σ =
3

√√√√√ 1

2ηd2

h3
1 + h3

2 + 12Is
+

h2

ĥw
3

(3.4)

17



Chapter 3. Glass pane structural behavior characterization

The glass pane used in this study is similar to the one presented in [12]. It is a rectangular
pane, with the dimensions expressed on the Figure 3.2.

Figure 3.2: Glass pane dimensions

It is a laminated glass pane composed by two glass sheets of 8mm and 10mm of thickness
and a PVB interlayer of 1,52 mm.

The ψ factor is obtained by interpolation from the values of the table 3.3.

Figure 3.3: ψ values for a simply supported pane subjected to distributed load

To preview the interlayer's behavior degradation as the temperature increases, four distinct
situations are analyzed in which each one undertakes a distinct ability to transfer shear load.
To achieve this e�ect, in each situation is considered a di�erent value of the shear module,
from a situation that the system behaves as monolithic to a layered behavior. The four distinct
situations are the following:

� G=500MPa corresponding to a short duration load - Monolithic behavior

� G=8.06MPa, 20ºC, 3sec

� G=0.2MPa, 50ºC, 10sec

� G=0.052MPa, 50ºC, 50 years corresponding to the layered behavior.
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The e�ective thicknesses obtained to the mentioned situations are expressed on the table 3.1.

ĥw ĥ1;σ ĥ2;σ

G=500MPa;Short Duration Load 19.487 18.556 20.566

G=8.06MPa;20ºC;3sec 18.805 18.222 20.206

G=0.2MPa;50ºC;10min 13.305 14.221 15.863

G=0.052MPa;50ºC;50years 12.067 12.950 14.467

Table 3.1: E�ective thickness [mm] in terms of displacements and stresses to four distinct
situations

3.3 Structural behavior characterization

3.3.1 Introduction

The con�guration of the cable system is essential to understand the structural behavior of the
glass pane. In this section is described a parametric study regarding the e�ect of the cable
system in the structural behavior of the glass pane. The main results are presented, as well
as some conclusions regarding the studied systems.

3.3.2 The cable system con�guration

In order to understand the cable system's in�uence on the structure, various con�gurations
were studied, di�ering from each other only in the deviators' position. The interlayer's prop-
erties and capacity to transfer shear load was also analyzed. A glass pane with the dimensions
considered in [12] and presented in section 3.2 was considered. The load considered was also
the one presented in [12], a distributed load of 1, 8kN/m2 applied perpendicularly on the
surface to simulate the wind e�ect on the surface. The results in terms of displacements and
stresses were initially analyzed for the monolithic behavior and after that the distinct four
situations described in chapter 3.2 were compared.

3.3.3 Monolithic behavior

3.3.3.1 Longitudinal position of the deviators

Starting from a con�guration with only one deviator in the center of the longest edge on both
sides of the pane as shown in Figure 3.4, the deviator's position was gradually moved along
the edge, as can be seen in Figure 3.5. The distance between the deviators in each system are
reported on table 3.3.3.1.
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Figure 3.4: Initial system - System 0

Figure 3.5: Systems 1 to 6
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3.3. Structural behavior characterization

System Distance between deviators [mm]

0 -

1 400

2 800

3 1200

4 1600

5 2000

6 2400

Table 3.2: Distance between deviators in each system [mm]

The displacements obtained with the systems 0 to 6 are expressed on the diagrams of the
�gure 3.6.

Figure 3.6: Displacements' diagram on the di�erent systems

The stresses obtained are expressed on the diagrams of the Figures 3.7.
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Figure 3.7: σ11 and σ22 on the di�erent systems

From the results obtained, one can observe that the most e�cient system in terms of
displacements and stresses is the system 2, correspondent to 800mm between deviators.

3.3.3.2 Transversal position of the deviators

The deviators' position was also analyzed along the y axis. Starting, once again, from the
initial con�guration of the system 0 shown on Figure 3.4 (system 0), both deviators were
moved towards the central point of the pane, as shown in Figure 3.8. The distances between
the deviators are indicated on table 3.3.3.2. To prevent the deviators' rotation in the xz plane,
the same systems here represented were also analyzed with an additional transversal cable
connecting the deviators transversally as shown in Figure 3.9.
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3.3. Structural behavior characterization

Figure 3.8: Systems 0 to C

Figure 3.9: Systems 0 to C with cables connecting the deviators

System Distance between deviators [mm]

0 1500

A 1000

B 500

C -

Table 3.3: Distance between deviators in each system [mm]
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The displacements obtained on the di�erent systems are expressed in the diagrams of the
Figure 3.10.

Figure 3.10: Displacements on systems 0 to C, with and without cables

The stresses σ11 and σ22 obtained in the same previous systems are expressed on the
diagrams of the Figures 3.11 and 3.12.
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Figure 3.11: σ11[MPa] on the systems 0, A, B and C with and without cables
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Chapter 3. Glass pane structural behavior characterization

Figure 3.12: σ22[MPa] on the systems 0, A, B and C with and without cables

The results obtained show, as expected, that the extra cable connecting the deviators in
the plane z=-600mm has a remarkable e�ect, perceptible specially in terms of displacements,
as can be seen on the diagram of the Figure 3.10. Analyzing the results obtained, it can be
observed that the most e�cient system in terms of displacements and stresses is the system
A, correspondent to 1000 mm between deviators.

3.3.3.3 Deviators moving along y axis, from system 2

Since system 2 was proved to be the best cables' con�guration system in section 3.3.3.1, the
panel's behavior moving deviators along y axis starting from system 2 was also analyzed. The
diagrams of the obtained displacements can be consulted on the Figure 3.13.
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3.3. Structural behavior characterization

Figure 3.13: Displacements on the systems 0, A, B and C with and without cables

The stresses σ11 and σ22 obtained in the same previous systems are expressed on the maps
of the Figures 3.14 and 3.15.
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Figure 3.14: σ11 on the systems 0, A, B and C with and without cables
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3.3. Structural behavior characterization

Figure 3.15: σ22 on the systems 0, A, B and C with and without cables

3.3.3.4 Conclusion and comments

The results of the displacements and stresses obtained in the performed studies lead to the
following conclusions:

� The optimized deviators' distance in x direction is 800mm correspondent to system 2;

� The optimized deviators' distance in y direction is 1000mm correspondent to system A;

� The systems with the aditional transversal cables exhibit a signi�cant improved behavior
compared to the systems without the extra cables;

A comparison between system0A and system2A was also studied, and is presented in
Appendix A.

3.3.4 Time, temperature and load duration e�ect on glass behavior

As mentioned before, the PVB material characteristics depends on time, temperature and
load duration. By varying the PVB's shear modulus, the structural behavior of glass along
time can be foreseen. Therefore, four distinct situations were considered:
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� G=500MPa corresponding to a short duration load - Monolithic behavior

� G=8.06MPa, 20ºC, 3sec

� G=0.2MPa, 50ºC, 10sec

� G=0.052MPa, 50ºC, 50 years corresponding to the layered behavior.

The results obtained are shown in the following diagrams.

3.3.4.1 System0

Figure 3.16: Displacements [mm]
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Figure 3.17: σ11 [MPa]

Figure 3.18: σ22 [MPa]
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3.3.4.2 System2

Figure 3.19: Displacements [mm]
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3.3. Structural behavior characterization

Figure 3.20: σ11 [MPa]

Figure 3.21: σ22 [MPa]

3.3.4.3 Conclusion and comments

With the EET method it is possible to preview the structure behavior along time. The results
con�rm that the system A is the one that exhibit better behavior along time.
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3.4 ABAQUS solid model

A solid model analysis was performed in the ABAQUS software. The interlayer's PVB prop-
erties were adapted to simulate the four distinct situations mentioned on section 3.2. The
stresses obtained are expressed below:

3.4.1 Monolithic behavior

When a short duration load is applied on the pane, The PVB's characteristic are expressed
on the table 3.4

G E
500MPa 1490 MPa

Table 3.4: PVB's properties for the monolithic behavior

The displacements obtained are expressed on the Figure 3.22 and the stresses are expressed
in Figures 3.23 and 3.24.

Figure 3.22: Displacements [mm]
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3.4. ABAQUS solid model

Figure 3.23: σ11 [MPa]

Figure 3.24: σ33 [MPa]

3.4.2 Intermediate behavior

In the intermediate situation the load duration considered was 3 seconds and the temperature
20ºC. The PVB's characteristics are expressed on table 3.5

G E
8.06MPa 24.02 MPa

Table 3.5: PVB's properties for the intermediate behavior

35



Chapter 3. Glass pane structural behavior characterization

The displacements obtained are expressed on the Figure 3.25 and the stresses are expressed
in Figures 3.26 and 3.27.

Figure 3.25: Displacements [mm]

Figure 3.26: σ11 [MPa]
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3.4. ABAQUS solid model

Figure 3.27: σ33 [MPa]

3.4.3 Layered 1 behavior

In the layered 1 situation the load duration considered was 10 minutes and the temperature
50ºC. The PVB's characteristics are expressed on table 3.6

G E
0.2 MPa 0.596 MPa

Table 3.6: PVB's properties for the layered 1 behavior

The displacements obtained are expressed on the Figure 3.28 and the stresses are expressed
in Figures 3.29 and 3.30.
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Figure 3.28: Displacements [mm]

Figure 3.29: σ11 [MPa]
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3.4. ABAQUS solid model

Figure 3.30: σ33 [MPa]

3.4.4 Layered 2 behavior

In the layered 2 situation the load duration considered was 50 years and the temperature
50ºC. The PVB's characteristics are expressed on table 3.7

G E
0.052 MPa 0.155 MPa

Table 3.7: PVB's properties for the layered 2 behavior

The displacements obtained are expressed on the Figure 3.31 and the stresses are expressed
in Figures 3.32 and 3.33.
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Figure 3.31: Displacements [mm]

Figure 3.32: σ11 [MPa]
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3.4. ABAQUS solid model

Figure 3.33: σ33 [MPa]

3.4.5 Comments on the results obtained

Displacements

From the displacements diagrams obtained in the four di�erent situations, represented in
Figures 3.22, 3.25, 3.28 and 3.31, it can be observed that, as expected, the deformed shape of
the pane is gradually increasing. The central point displacements in all the four situations are
expressed on the table 3.8. It can be noted that the displacement increases 2, 5 times from
monolithic to layered.

Apart from the increasing magnitude of the displacements, it can also be noted that the
pane's behavior changes gradually to a situation similar to cylindrical bending.

U2 [mm]

Monolithic -3.9045

Intermediate -4.46532

Layered 1 -8.46128

Layered 2 -9.58516

Table 3.8: Displacements on the central point [mm]

Stresses

Except for the magnitude, the stresses distributions are similar in all the four situations. Note
that the scale isn't the same in all the images. The stress magnitude increases from monolithic
to layered.

3.4.6 Analysis of the tension within the thickness and the in�uence of

PVB shear modulus

The tensions within the thickness depends upon PVB's capacity to transfer shear load. As
the pane behavior goes from monolithic to layered, the tensions distribution have distinct
con�gurations. When the shear modulus value is high, the structure behaves as monolithic,
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as the two glass sheets and PVB behave as a single element. This is illustrated on the graphic
of the Figure 3.34. On the other hand, when the shear modulus is low the glass sheets act
individually, and the interlayer is not able to transfer the shear load, as can be seen on the
graph of the Figure 3.37. In between these two limit situation, the structure behavior is
intermediate, as can be seen on the graphs in Figures 3.35 and 3.36.

Figure 3.34: Monolithic behavior - σ33 within the thickness [MPa]

Figure 3.35: Intermediate behavior - σ33 within the thickness [MPa]

42



3.4. ABAQUS solid model

Figure 3.36: Layered 1 behavior - σ33 within the thickness [MPa]

Figure 3.37: Layered 2 behavior - σ33 within the thickness [MPa]
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3.5 Comparison between shell model with EET and solid

model

S11 S33
ABAQUS SAP2000 ABAQUS SAP2000

G=500MPa;Short Duration Load -2.18426 -3.002762121 -6.00219 -9.859225727

G=8.06MPa;20ºC;3sec -2.35067 -3.017388431 -6.1705 -10.19242012

G=0.2MPa;50ºC;10min -2.58257 -3.472483179 -6.29547 -16.07492231

G=0.052MPa;50ºC;50years -2.80099 -3.798391842 -6.04155 -19.11950193

Table 3.9: Comparison between the stresses obtained with Abaqus and with SAP2000
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Numerical implementation of an

adaptive glass pane

4.1 Introduction

In this chapter is presented the numerical implementation of an adaptive glass pane, subjected
to a wind dynamic loading. The �exibility and mass matrices were used to compute the
dynamic matrix and the dynamic parameters were characterized. The dynamic wind action
was also characterized. A solid model of the system was created on Abaqus software, and the
obtained results are presented. At last, a comparison between the solid model and the shell
models with EET previously analyzed is presented.

4.2 System's response

The dynamic study of a glass pane was performed using a simulation in the software MatLab.
The implementation of a control routine to mitigate the mean wind action was developed,
and is presented in the following sections.

4.2.1 Dynamic behavior of the glass pane

The dynamic behavior of the pane was analyzed, using a �nite-element model made with the
software SAP2000. The mode shapes were obtained as well as the corresponding vibration
frequencies. The natural frequency of the glass pane yielded 17.92Hz. A sensibility analysis
was conducted in order to simplify the structure, reducing the number of degrees of freedom
(DOF), keeping the frequency as close as possible to the initial. Taking advantage of its
double symmetry, it was possible to obtain a system corresponding to a 1/4 of the total pane,
with 19 DOF and frequency of 17.36Hz. The mesh is represented in Figures 4.1 and 4.2.

45



Chapter 4. Numerical implementation of an adaptive glass pane

Figure 4.1: Final mesh associated to the 1/4 of the pane

Figure 4.2: FE model of the simpli�ed system

It should be noted that the node 7 of the represented FE model corresponds to the point
of support. The node 9 corresponds to the point where the deviator meets the pane and where
the control force will act.

By applying an unitary force in each DOF and obtaining the displacements induced by
that force, the �exibility matrix can be constructed.

The �exibility matrix obtained, in [m/kN ] is represented in appendix B, as well as the
mass matrix.

Assuming in a simpli�ed way that to each DOF corresponds a lumped mass, the mass
matrix was obtained by assigning to each DOF an in�uence area which was then multiplied
by the thickness and density of each material (PVB and glass).

From the �exibility and mass matrices the dynamic matrix can be determined by the
expression: D = F ·M . The dynamic matrix is represented in appendix B.

Knowing the dynamic matrix, the modal frequencies and vibration modes can be charac-
terized by the expressions:
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4.2. System's response

Modal frequencies, ω:

ω = 1√
eigenvalues(D)

Vibration modes, φ:

φ = eigenvectors(D)

4.2.2 Motion equation solution

For a discrete action, the system's response can be achieved in a numerical way by interpolat-
ing the action in time steps [7]. For a multiple degrees of freedom system, the �nal response
is given by a modal superposition. In a damped system, the motion equation is given by the
expression:

mü+ cu̇+ ku = pi +
∆pi
∆ti

(4.1)

The system response is given by the following expression [7]:

u(τ) = uie
−ζωnτ

(
ζ√

1− ζ2
sinωDτ + cosωDτ

)
+ u̇ie

−ζωnτ

(
1

ωD
sinωDτ

)
+

pi
Kn

[
1− e−ζωnτ

(
cosωDτ +

ζ√
1− ζ2

sinωDτ

)]
+

∆pi
Kn

[
τ

δti
− 2ζ

ωn∆ti
+ e−ζωnτ

(
2ζ2 − 1

ωDδti
sinωDτ +

2ζ

ωnδti
cosωDτ

)]
(4.2)

While the response's velocity is given by [7]:

u̇(τ) = −uie−ζωnτ

(
ωn√
1− ζ2

sinωDτ

)
+ u̇ie

−ζωnτ

(
cosωDτ −

ζ√
1− ζ2

sinωDτ

)
+

pi
Kn

e−ζωnτ

(
ωn√
1− ζ2

sinωDτ

)
+

∆pi
Kn∆ti

[
1− e−ζωnτ

(
ζ√

1− ζ2
sinωDτ + cosωDτ

)]
(4.3)
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The previous expressions with τ = ∆ti, return respectively the structure's response ui+1

and the structure response's velocity ˙ui+1 in the instant ti+1. The aforementioned expressions
can be simpli�ed replacing the parameters A, B, C, D, A', B', C' and D' presented on the
table XXX, obtaining the following expressions:

ui+1 = Aui +Bu̇i + Cpi +Dpi+1 (4.4)

˙ui+1 = A′ui +B′u̇i + C ′pi +D′pi+1 (4.5)

A e−ζωn∆t

(
ζ√

1− ζ2
sinωD∆t+ cosωD∆t

)
B e−ζωn∆t

(
1

ωD
sinωD∆t

)
C

1

Kn

{
2ζ

ωn∆t
+ e−ζωn∆t

[(
1− 2ζ2

ωD∆t
− ζ√

1− ζ2

)
sinωD∆t−

(
1 +

2ζ

ωn∆t

)
cosωD∆t

]}
D

1

Kn

[
1− 2ζ

ωn∆t
+ e−ζωn∆t

(
2ζ2 − 1

ωD∆t
sinωD∆t+

2ζ

ωn∆t
cosωD∆t

)]
A' e−ζωn∆t

(
ωn√
1− ζ2

sinωD∆t

)

B' e−ζωn∆t

(
cosωD∆t− ζ√

1− ζ2
sinωD∆t

)

C'
1

Kn

{
− 1

∆t
+ e−ζωn∆t

[(
ωn√
1− ζ2

+
ζ

∆t
√

1− ζ2

)
sinωD∆t+

1

∆t
cosωD∆t

)}

D'
1

Kn∆t

[
1− e−ζωn∆t

(
ζ√

1− ζ2
sinωD∆t+ cosωD∆t

)]
Table 4.1: A,B,C,D,A',B',C' and D' parameters [7]

Being ωD the damped structure's frequency, given by the expression:

ωD = ωn
√

1− ζ2 (4.6)

As mentioned before, in a system with multiple degrees of freedom, the �nal structure's
response is given by a modal superposition. To each degree of freedom corresponds a vibra-
tion mode de�ned by an expression and the solution of each expression represents a modal
coordinate. The modal superposition is given by the following expression:

u =
∑

φiqi (4.7)

4.2.3 Characterization of the wind action

The mean wind velocity series were retrieved from the portuguese wunderground (http://portuguese.wunderground.com)
database. The latter provides the daily variation of wind velocity with a 30 minutes interval.
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The velocity values were adjusted in order to set the value prescribed in Eurocode 1-4, 30m/s.
The mean wind pressure was subsequently calculated using the following expression:

qp = 1/2 · ρ · v2

in which ρ represents the air's density and v the wind velocity.

To characterize the wind force in each degree of freedom, the following relation was used:

Fw = Cpe · qp ·A

in which:
Cpe represents the exterior pressure coe�cient;
qp is the wind pressure previously calculated;
A is the in�uence area of each DOF.

Thus, the graphic of the Figure 4.3 is obtained, which represents the wind pressure in the
pane, throughout the day.

Figure 4.3: Wind pressure [kPa]
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Chapter 5

Control system implementation

5.1 Introduction

In this chapter the active control system is analyzed and subsequently implemented in the
studied structure. The system is implemented in order to control a variable, measuring its
value and forcing it to comply with a previously set value. In this particular case, the variable
to control is the displacement in the central point of the pane. This input signal is afterwards
subjected to a control function that relates the input and the output signal. The block
diagram of the �gure 6.12 illustrates this simple action.

Figure 5.1: Control system

5.2 Control type

The control action considered in this study was the PID system, in which three control actions
are combined in order to improve the system response:

5.2.1 Proportional control

With this control action, the output of the controller is proportional to the error signal. The
response of this action can be described as:

u(t) = Kp · e(t);
in which Kp is a adjustable constant called proportional gain.

When an error proportional force is being generated is as though a displacement propor-
tional force is being introduced [21]. This e�ect in an mechanical system involves a sti�ness
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increase. Therefore, through the proportional gain action it is possible to modify a system's
natural frequency.

Figure 5.2: Proportional control - Adapted from [23]

5.2.2 Integral control

With integral control, the output of the controller is proportional to the integral of the error
signal, the response being generally described as:

u(t) = Ki ·
∫ t

0 e(t)dt.
in which Ki is a adjustable constant called integrative gain.

As the controller response is de�ned by the integral of the error signal, it should be noted
that being the error null at a certain instant it does not mean that the system's response
also is null, in contrast with what happens with the proportional control. This behavior is
illustrated by the graphics of the �gure 5.3.
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Figure 5.3: Integral control - Adapted from [23]

5.2.3 Derivative control

The derivative control response is proportional to the rate of change of the error signal. This
way, the response is generally described as:

u(t) = Kd · de(t)dt ;
in which Kd is a adjustable constant called derivative gain.

As in the proportional controller case, the derivative controller's action on a mechanical
system also modi�es the dynamic properties. As mentioned above, the derivative control
action outcome is proportional to the rate of change of the error signal, that corresponds to
the application of a force proportional to the velocity. This is equivalent to the introduction
of an additional damping on the system. This control action is never implemented isolated.
It's usual to combine the action of a derivative controller with a proportional controller. The
control response is described as:

u(t) = Kp · e(t) +Kd · de(t)dt ;

where Kp and Kd are adjustable constants.

The PD control action can be observed in the graphics of the Figure 5.4.
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Figure 5.4: Proportional and derivative control - Adapted from [23]

From the graphic exposed above, it can be observed an error anticipation of Td.

5.2.4 PID control

A PID control system is a system that combines all the types of control previously described:
proportional, integral and derivative. The controller response is given by the following ex-
pression:

u(t) = Kp · e(t) +Ki ·
∫ t

0 e(t)dt+Kd · de(t)dt ;

Knowing thatKi =
Kp

Ti
andKd = Kp ·Td and replacing on the controller's response expression:

u(t) = Kp · e(t) +
Kp

Ti
·
∫ t

0 e(t)dt+Kp · Td · de(t)dt ;

where Kp is the proportional gain; Ti is the integral time and Td is the derivative time.
The PID controller response is represented on the graphic of the Figure 5.5.

Figure 5.5: Proportional, integrative and derivative control - Adapted from [23]

From the graphic presented, it can be observed that the PID response not only presents
an error anticipation as in the PD control, but also the control action velocity is increased by
the integral action.
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5.3 Algorithm to implement the control system

To impose the PID action and control the displacements on the central point an algorithm
was implemented with the procedure described below:

� A dynamic study was performed on the system, de�ning the mass and dynamic matri-
ces. After de�ning the damping, the modal frequencies, vibration modes and damped
frequencies can be calculated. The time is also set, in accordance with the time de�ned
on the wind characterization.

� The wind force is de�ned, in accordance with the procedure previously described on
section 4.2.3.

� The generalized forces for each vibration mode are de�ned by the expression:

Fn = φTn · f(t) (5.1)

� After, the A, B, C, D, A', B', C' and D' parameters are de�ned, according to the ex-
pressions described on section 4.2.2 and the structure's response and its velocity to each
vibration mode are respectively given by the following expressions:

ui+1 = Aui +Bu̇i + Cpi +Dpi+1 (5.2)

˙ui+1 = A′ui +B′u̇i + C ′pi +D′pi+1 (5.3)

A modal superposition gives the structure's �nal response:

u =
∑

φiqi (5.4)

Until this phase, the system's response is being de�ned with no type of control. The outcome
is the passive system's behavior to the de�ned action.

Then the proportional, integrative and derivative gains are de�ned, the control node and
the node in which the results are consulted are set.

Afterwards the structure's response with control is de�ned:

u(t) = Kpe(t) +Ki

∫ t

0
e(t) +Kd

de(t)

dt
(5.5)

After the system's response with control is de�ned, the same steps are set as before, and
the two situations are compared in terms of a superposed graphic with the two responses.

5.4 Tuning of the controller

The proportional, integrative and derivative constants, Kp,Ki and Kd have to be adequately
tuned in order to grant the appropriate behavior of the control system. The method used
to tune the PID controller was the second method of Ziegler-Nichols in which is considered
initially only the proportional action, being Ki = Kd = 0. The integral time, Ti = Kp/Ki,
and derivative time, Td = Kd/Kp, are respectively ∞ and 0 in this phase. By increasing the
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proportional gain from 0 to a critical value, Kcr, the system returns a harmonic oscillatory
response. When the critical value is exceeded the system becomes unstable. When the
eminent instability is achieved, the critical value Kcr and critical period Pcr can be known
and the proportional gain, integrative and derivative time can be calculated by the expressions
presented on table 5.1

Kp Ti Td
P 0.5Kcr ∞ 0

PI 0.45Kcr
Pcr
1.2 0

PID 0.6Kcr 0.5Pcr 0.125Pcr

Table 5.1: Kp, Ti and Td values

The process of tuning the controller is further developed in C.

5.5 Results

Two distinct analysis were conducted, one for the situation of monolithic behavior and other
for the situation of layered behavior of the glass pane. The results obtained are expressed in
the graphs of the Figures 5.6 and 5.7.

Figure 5.6: Displacements-time history for monolithic behavior
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5.5. Results

Figure 5.7: Displacements-time history for layered behavior

Both analysis present satisfying results in terms of the controlled solution, as in both
situations the displacements obtained in the analysis with the active control solution are
approximately null. The results are signi�cantly distinct however when it comes to the analysis
without control. This proves once again the importance of the interlayer ability to transfer
shear load. The graph of the Figure 5.7 is particularly enlightening of the e�ciency of the
proposed system, decreasing the maximum displacement to approximately 2% of the obtained
without the control system.
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Chapter 6

Prototype analysis

6.1 Introduction

In this section is described the procedure of building and testing a prototype with the scaled
con�guration of model System 2 described on section 3.

6.2 Building and testing of the experimental prototype

6.2.1 Prototype

The prototype is composed by a 5101 × 320mm2 plexiglass plate with 2.5mm of thickness.
The plate is pinned at four steel struts with 5mm diameter, which are also the points from
where a cable system is set. Four additional steel struts with 3mm of diameter and 93mm
of length are set on the following con�guration: each pair is set in between two points of
support along the longest edge, allowing the cables to take the con�guration of the Figure
6.1. These two cables are SMA wires which actuates through temperature modulation by
Joule e�ect. The whole system is assembled within a 550 × 350 × 200[mm3] wooden box
enfolding it, topped by the aforementioned plexiglass plate, and sealed along its edges. By
applying a suction force within the wooden box the wind force is simulated and the system
can be tested. Figure 6.2 represents a prototype construction phase.
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Figure 6.1: Model's dimension

Figure 6.2: Prototype construction

The system is able to adapt its behavior to the action by compensate in real time the
displacements obtained due to the external action. The control algorithm is based on a
PID control approach, in which the displacements of the pane are reduced by de�ning a
vertical reference position for the mid-section of the acrylic pane. As the suction is introduced
and the pane starts to deform, the system increases the stress in the restraining wires in
order to compensate for this displacement. Figure 6.3 illustrates the working principle of the
experimental prototype.
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Figure 6.3: Working principle of the experimental prototype

The stress in the wires is applied to the system by temperature induced phase transfor-
mations,in NiTi SMA, martensitic actuator wires. The �nalized prototype is represented in
the Figure 6.4.

Figure 6.4: Prototype �nal

After building the prototype, the control sensors were set, from which the input is read and
sent to the system. To measure the displacement of the central point, a laser measurement
device was set on the framebox bottom. The SMA cables are straight and oxide-free, provided
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by Dynalloy, Inc., and have a 0.51 mm diameter circular cross section .A cables' detail can be
observed on the Figure 6.5.

Figure 6.5: Detail of the prototype - Electric current feeding cables

To allow the Joule heating of the SMA wire actuators, a Sorensen programmable DC
power supply (PPS), model XHR 40-25, was connected to the system. The control of the SMA
actuator was performed in a voltage control mode, with a maximum input current of 2A. The
temperature of the NiTi wires was monitored by a T-type thermocouple (Copper-Constantan),
with a temperature reading range of -40?C to 100?C, connected to a NI SCXI-1112 8 channel
thermocouple ampli�er. To create, edit and run the analog inputs corresponding to the
voltage measurement tasks was used a DAQ assistant express VI, using NI-DAQmx software.
To attenuate the noise of the readings, a sample compression of the data points was performed.
The system and its main features is represented in Figure 6.6.
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6.2. Building and testing of the experimental prototype

Figure 6.6: Main features of the experimental prototype

6.2.2 Static load test

The prototype was �rst tested with a static load, positioned at the center of the pane. The
load values tested were 8N, 16N and 24N. The same load was simulated at software SAP2000,
the displacements map obtained is shown in �gure 6.7. The comparison of the displacements
obtained with the two tests are expressed on table 6.1.
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Figure 6.7: Static load displacements map obtained with SAP2000

Load [N]
Central point displacement [mm]
Static load test SAP2000

8 1,9 1,7

16 3,3 3,4

24 5,1 5,1

Table 6.1: Central point displacements comparison

The obtained results shows a good conformity between the two tests.

6.2.3 Dynamic suction load

In order to better simulate the dynamic action of the wind load, a dynamic suction load
was applied on the structure. This was achieved by isolating the wood frame and applying
a suction inside it. This proved to be a easier way to apply the load than applying pressure
outside it. Five separate tests were conducted, two of them without control action, the other
three with control. A overlap of two tests, one without control and other with control, was
made in order to better illustrate the bene�t of the system. The graphs of the Figures 6.8.
6.9 and 6.10 represent respectively the pressure, displacements and cables' temperature along
time.
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Figure 6.8: Pressure time-history

The graph of the Figure 6.8 represents the overlap of the pressure along time in the two
situations tested: with control and without. Here it is desirable that the two situations are
the more even possible in order to validate the comparison between the following obtained
results.

Figure 6.9: Displacement time-history

The graph of the Figure 6.9 represents the overlap of the displacements obtained in the
test with control and without. Here it is visible the di�erence between the two situations,
with the maximum displacement going from −5mm in the system without control to 0.8mm
in the controlled system. This represents an overall reduction of 85% in absolute value of the
original displacement.
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Figure 6.10: Cables' temperature time-history

The graph of the Figure 6.10 shows the overlap of the cables temperature readings, along
the test. While the temperature remains constant in the test without control, in the controlled
test the activation of the wires causes a considerable variation of the temperature, from
approximately 18C up to 46C.

6.3 The Labview control platform

The LabView control platform is a National Instruments development environment that allows
the user to program a control code by a graphical programming syntax. The user de�nes the
inputs and set the limits from which the control will start. The block diagram of the �gure
6.11 represents the control action implemented on the prototype structure.
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6.3. The Labview control platform

Figure 6.11: Graphical programming syntax

The system receives three inputs: the pressure inside the prototype box, the temperature
on the cables and the central point displacement measured by a laser. The input that activates
the control system is the midpoint displacement. When the value read reaches the setpoint
previously de�ned, the PID control system starts reacting by sending an electric current
through the cables, causing them to contract and pushing the deviators upwards. This action
will force the glass pane to rise, counteracting the wind pressure e�ect. The PID gains
are automatically calculated and adjusted by the software. The actions' sequence outline is
represented on the �gure6.12.
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Figure 6.12: Control action block diagram
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6.3. The Labview control platform

Figure 6.13: Software framework

Figure 6.14: System's components overview

Legend:

1. Prototype

2. Power supply feeder

3. Monitor
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4. CPU

5. Reader
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Chapter 7

Summary, conclusions and future work

7.1 Summary and conclusions

The present work aimed to develop and study a smart system with active control, composed
of a glass pane and a shape-memory alloys cable system. The aforementioned system would
be able to process the structure reaction to an external action and implement a response in
order to mitigate the deformation on the glass due to the external action.

The system here proposed presents in fact an enhanced structural behavior when compared
with the same structure without the active control action.

The proposed system is able to decrease the maximum displacement to approximately 2%
of the obtained without the control system.

The in�uence of the temperature in the layered glass structural behavior proofed to be a
key point that has to be properly considered. Due to the temperature action the interlayer's
ability to transfer shear load is seriously a�ected, going from a monolithic to layered behavior,
and increasing 2, 5 times the displacements obtained with the same load condition.

The active control system implemented allows the structural engineers to develop projects
in a more e�cient and economic way.

The tests performed on the experimental prototype were able to implement an overall
reduction of 85% in absolute value of the original displacement, due to the control action.

Being an active control system, it is important to refer its requirement of an external
source of power.

This type of solution to mitigate the e�ects of external actions should be investigated
particularly in each speci�c case, adapting the control system to the actual structure charac-
teristics.

7.2 Future work

In order to improve this dissertation in a more comprehensively way, the control system could
be implemented in more systems with other cables' con�guration. In the same way, the shape
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and size of the glass pane could be further developed, as well as the glass constitution: to
mention some examples the thickness of the layers, interlayer material, interlayer thickness,
among others.

The application of the aforementioned system to a real glass pane with the dimensions
referred in this work and the comparison with other types of glass would be advantageous to
understand the in�uence on the �nal behavior.
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Appendix A

A.1 Comparison between system0A and system2A

To conclude the study of the cables' con�guration an analysis between the system0 and
system2 was made. The results obtained are expressed on the following diagrams.

Figure A.1: Displacements on the systems 0 and 2
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Figure A.2: σ11 on the systems 0 and 2
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Figure A.3: σ22 on the systems 0 and 2
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Appendix B.
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Appendix C

C.1 Proportional control

Considering only proportional control, the proportional gain that corresponds to the optimal
control solution is 115. The system response to the proportional control is represented in
�gure C.1.

Figure C.1: Graphic of the displacements on the center of the glass pane, action of proportional
control

C.2 Proportional and integrative control

Combining both proportional and integrative control the system's response is improved. The
gains considered were Kp = 100 and Ki = 19. The response obtained is represented in �gure
C.2.
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Appendix C.

Figure C.2: Graphic of the displacements on the center of the glass pane, action of proportional
and integral control

C.3 Proportional, integrative and derivative control

Imposing the derivative parcel in the system, the gains were adjusted to Kp = 100, Ki = 19
and Kd = 10 and the obtained response can be interpreted with the graphic of the �gure C.3.

Figure C.3: Graphic of the displacements on the center of the glass pane, action of propor-
tional, integral and derivative control
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Appendix C.

From the graphics obtained, it is easily observed the bene�ts of the control system. The
displacements obtained in the central point decreased from 4mm at its highest value, to
approximately zero.
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