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ABSTRACT

In the last few years, geometric semantic genetic programming has incremented
its popularity, obtaining interesting results on several real life applications. Never-
theless, the large size of the solutions generated by geometric semantic genetic
programming is still an issue, in particular for those applications in which read-
ing and interpreting the final solution is desirable. In this thesis, a new parallel
and distributed genetic programming system is introduced with the objective of
mitigating this drawback. The proposed system (called MPHGP, which stands for
Multi-Population Hybrid Genetic Programming) is composed by two types of sub-
populations, one of which runs geometric semantic genetic programming, while
the other runs a standard multi-objective genetic programming algorithm that op-
timizes, at the same time, fitness and size of solutions. The two subpopulations
evolve independently and in parallel, exchanging individuals at prefixed synchro-
nization instants. The presented experimental results, obtained on five real-life
symbolic regression applications, suggest that MPHGP is able to find solutions
that are comparable, or even better, than the ones found by geometric semantic
genetic programming, both on training and on unseen testing data. At the same
time, MPHGP is also able to find solutions that are significantly smaller than the
ones found by geometric semantic genetic programming.
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1 INTRODUCTION

Genetic Programming (GP) [Koz92] is a machine learning algorithm (typically
used for supervised problems) that aims at finding programs - mathematical func-
tions or computer programs - that best map inputs to outputs. It is called “genetic”
due to the inspiration it takes from evolutionary biology. GP in fact belongs to the
Evolutionary Computation class of algorithms.

A GP algorithm evolves a population of individuals (i.e. the programs) over the
course of a prefixed number of generations. The evolution within a generation is
carried out by the selection phase and the variation phase. The selection phase
selects individuals (i.e. programs) based on their fitness into the variation phase
- where fitness is captured by a set of objective functions to be optimized.

The variation phase is a means to search for fitter individuals by manipulating
the ”genome” of the individuals - i.e. the genotypic (or syntactic) content of the
program. In standard GP this is typically a crossover with a randomly selected
crossover point or a mutation with a randomly selected mutation point. For a
tree-based representation of programs, both these operations replace subtrees
of a parent which consequently results in a new offspring. It should be noted
that there are several other possible crossover and mutation operators. Each of
these programs is considered to be an individual and a population of individuals
is evolved for a prefixed number of generations. At the end of the evolution, the
algorithm returns the fittest individual.

In recent years, many efforts to improve GP were undertaken [VCS14]. In par-
ticular, Moraglio et al. [MKJ12] found variation operators that have known effects
on the semantics of the offspring individuals [Van17] - where semantics are de-
fined by the vector of outputs of a program on the different training data. These
operators constitute Geometric Semantic Genetic Programming (GSGP). The ge-
ometric semantic (GS) crossover and GS mutation operators are correspondingly
defined as:

TXO = TR.T1 + (1− TR).T2
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and
TMU = ms.(TR1 − TR2) + T

Where ms is the mutation step constant; R, R1 and R2 are random real functions
with codomain [0,1]; and T , T1 and T2 represent parents of the offspring. The
semantics of a crossover offspring are the result of a geometric mean of the
semantics of its parents, hence, regarding distance to the global optimum, the
offspring cannot be worse than the worst of its parents.

GS mutation corresponds to a ball mutation that induces a unimodal fitness land-
scape [Van17] in supervised learning problems. A unimodal fitness landscape
is that which is constituted by a single local optimum: the global optimum. To
convince oneself of this property, any individual that is not the global optimum in
the semantic space has at least one neighbor whose semantics are closer to the
target values. To put it simply, there is virtually no risk of the algorithm being stuck
in the non-existent local optima. It must be noted, this is one of the reasons this
work opted to undertake only GS mutation, therefore excluding GS crossover.

However, GSGP comes at a cost regarding size of found solutions: GS operators
take the entirety of the nodes of the parents to produce the offspring. This results
in a linear size growth if using GS mutation and exponential growth if using GS
crossover. In order to circumvent this issue, an efficient implementation of GSGP
proposed by Castelli et al. [Cas+13] (which is used in this thesis) allowed for the
application of GSGP in real-world datasets [Van+13]. It essentially puts aside
building the genotypic constitution of individuals, thus evolving the population us-
ing only the semantics which are obtainable by the definition of the GS operators.
Despite this, offline reconstruction (i.e. after evolution) still remains a problem
due to the large size of GSGP individuals. Even when possible, readability and
interpretability of the model produced by GSGP remains an issue.

In contrast, GP is not aggressive in size growth, at least by construction of its
variation operators. Nevertheless, GP can incur in bloat, which is defined as the
growth in size of the program without an improvement in fitness. In spite of GP
facing the bloat issue, its solutions are yet acknowledged as parsimonious enough
for readability and interpretability, being considered one of its main advantages
[Koz10]. It is worth mentioning that such property of GP solutions ”shines” when
bloat-limiting methods are used [SC09] [Tru+16] or when fitness and size are
conjointly optimized in a multi-objective framework [VSD09].

Regarding performance of GSGP versus GP, it is important to note that GP is
semantically blind in its crossover and mutation operators as they perform random
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operations on the syntax of individuals. This makes it frequently unable to find
solutions that are competitive with those found by GSGP in terms of training error.
In terms of unseen error, there is indication for the potentially better generalization
ability [Van17] of GSGP on three pharmacokinetic datasets [Van+13] that are
presented in this work as well.

The proposition of Multi-Population Hybrid Genetic Programming (MPHGP) algo-
rithm is to be able to capitalize on the advantages of GP and GSGP and improve
upon some shortcomings of the two. It essentially incorporates in its subpopu-
lations GP and GSGP in an effort to make them complement each other. What
is intended to capture with MPHGP is the generalization ability and optimization
power of GSGP and the parsimoniousness of GP for readability and interpretabil-
ity. This goal was not entirely achieved in the work presented in this thesis.

The remainder of this thesis is organized as follows: firstly the implementation
of MPHGP is described, as well as how to properly configure GP and GSGP
subpopulations; secondly results of MPHGP experiments are discussed starting
from the simplest MPHGP configuration possible with just two subpopulations,
followed by increasing this number and briefly discussing computational perfor-
mance; lastly this thesis concludes with proposing research paths and closing
remarks.
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2 MULTI-POPULATION HYBRID GENETIC PROGRAM-

MING

The proposed MPHGP system presented here has two types of subpopulations,
one running multi-objective genetic programming (MOGP) and another one run-
ning GSGP. The former optimizes size and training error and the latter optimizes
only training error. Each subpopulation is assigned to a thread and evolution
is carried out by running each in parallel. MPHGP is completely implemented
in Java, which carries out and handles parallelism with the class Thread. The
synchronization instants correspond to moments of migration between the sub-
populations. These are prefixed by the migration frequency parameter f , i.e.
migration moments occur every f generations, thus each subpopulation evolves
independently during f generations.

Following Fernández et al. [FTV03], the migration direction is configured as a
ring for any number of subpopulations. This means that if there are two subpop-
ulations, the ring configuration corresponds to a simple exchange of individuals
between the two subpopulations. If the number of subpopulations is, for instance,
three, then subpopulation 1 sends its best individuals to subpopulation 2; sub-
population 2 to 3; and finally, subpopulation 3 sends migrants to subpopulation
1.

In order to provide a comparative framework, this work considers standalone ver-
sions denoted by MOGP and GSGP. The hybrid system is denoted by MPHGP
(Multi-Population Hybrid Genetic Programming) and to refer its subpopulations,
the terms sub-MOGP and sub-GSGP are employed. MOGP, GSGP and MPHGP
run with a population size of 400 individuals each. Thus, if MPHGP has two sub-
populations, this means that sub-MOGP and sub-GSGP run with 200 individuals
each. All these variants are initialized using Ramped-Half-Half-Initialization [Koz92].

The migration policy is best-to-worst, meaning that the individuals selected to mi-
grate replace the worst in their destination subpopulation. In order to keep the
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size of the overall population of MPHGP constant, a copy of these best individu-
als remains in the origin subpopulation, so as to not waste the genetic material
found by the evolution of that subpopulation. Except where noted, the selection
of best individuals to migrate changes according to the optimization criteria of the
subpopulation: in sub-GSGP, this means simply picking the fittest; in sub-MOGP,
to follow a multi-objective policy, this means picking the fittest starting from the
best pareto front. Other migration policies, such as random-to-random or best-to-
random are not explored in this thesis.

In a view to address cross-domain robustness of the approaches, these three
GP variants are tested in 5 real-world symbolic regression problems described
by Table 2.1. The problems %F, PPB and LD50 [Arc+07] pertain to problems
in pharmacokinetics research aiding drug discovery - respectively to human-oral
bioavailability, plasma protein binding level and toxicity. These problems use as in-
put a set of molecular descriptors of a potential new drug. The Concrete [CVS13]
problem pertains to predicting the strength of this material according to its fea-
tures and the Energy [Cas+15] problem refers to predicting the energy consump-
tion using as input meteorological data of that and previous days, for instance.
All of these problems have already been used in previous GP studies. These
problem sets cover different degrees of dimensionality as proxies to their level of
difficulty. Finally, to address optimization and generalization ability, these datasets
are split into 70% for training data and 30% for unseen (test) data and the median
Root Mean Square Error (RMSE) of 30 independent runs is reported.

It ought to be noted that the %F dataset faces criticism due to the presence of
raw data and missing data that ideally would be cleaned up and transformed
beforehand. This cannot be the case for this thesis. From the perspective of
developing a machine learning technique, it is preferable to observe its behavior
with a hard dataset. Moreover, GP is a machine learning technique that performs
data transformations and feature selection with its evolutionary process. Such
behavior ought to be nurtured - namely, its ability to work around hard data -
when designing new approaches to GP.

2.1 INTRA-POPULATION CONFIGURATION

As it is known, GP faces the bloat problem, which is why a multi-objective GP
(MOGP) that optimizes both size and training error - using Pareto-based NSGA-
II [Deb+02] - was chosen to be included in MPHGP. Furthermore, no depth limit
could be applied to MOGP, as it would make it incapable of interacting with GSGP
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Dataset # Features # Instances
Bioavailability (%F) [Arc+07] 241 206

Protein Plasma Binding Level (PPB) [Arc+07] 626 131
Toxicity (LD50) [Arc+07] 626 234

Concrete [CVS13] 8 1029
Energy [Cas+15] 8 768

Table 2.1.: Description of the test problems. For each dataset, the number of features
(independent variables) and the number of instances (observations) are re-
ported.

individuals whose depth is well beyond a traditional depth limit of 17. For exam-
ple, a depth limit mechanism works by rejecting an offspring if its depth is beyond
the limit (and keeping one of the parents as replacement) and only accepting oth-
erwise. Enabling depth limits would mean making sub-MOGP be a storing sub-
population that would just return sub-GSGP individuals from previous migration
instants. Furthermore, MOGP that includes size as an objective to be minimized
is aggressive in reducing size of individuals: notice how an individual with only
one node is in the first pareto front regardless of its uselessness in capturing
the complexities of the dataset and its training error. The selection mechanism -
pareto rank selection (NSGA-II) - is thus going to consider such small individuals
as among the fittest.

GSGP uses the aforementioned efficient implementation [CSV15] and has a crossover
rate of 0. This is justified because geometric semantic mutation does not increase
size as dramatically as geometric semantic crossover would, making MPHGP
testable in useful time - notice that GSGP individuals have to be built at each
migration instant and that MOGP cannot work on these individuals offline! Note
that GS mutation builds up from a single individual rather than from two entire in-
dividuals. This is also convenient in offline rebuilding of the fittest individual after
an evolution has ended, and, in the context of MPHGP, at migration instants: with
only mutation, each individual has only a single parent, and after g generations,
the fittest individual will have g ascendants to look up in the offline records. 1 In
the opposite extreme case of only crossover, each individual will have two par-
ents, meaning that the winning champion will have to be rebuilt upon 2g parents
and looking up such an amount of individuals is an expensive task itself. For
this reason, crossovers are handled by sub-MOGP only, which will be in charge
of making crossovers between sub-GSGP individuals and its own small individu-

1I.e. the hash tables storing the references to relevant individuals in the history of the evolution
of GSGP, random trees generated along generations and the respective variation operations
performed.
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Parameter MOGP GSGP
Objectives training error and size training error

Crossover Rate 0.9 0
Elitist Survival 5 5

Tournament Size 15 15
Parent Selection Method Pareto Rank Selection Tournament Selection

Mutation Step - 1.0
Bounded Mutation - Yes
Migrant Selection multi-objective single-objective

Table 2.2.: Synthesis of the parameter tuning for the tested 2-Population Hybrid Genetic
Programming (MPHGP-2) system. In order to provide a comparative basis,
standalone MOGP (with 400 individuals) and standalone GSGP (with 400
individuals as well) follow the same tuning as the one reported here for the
MPHGP-2 subpopulations, each of which with a size of 200 individuals. Multi-
objective migrant selection means picking the fittest from the first pareto rank,
then from the second pareto rank and so on.

als.

The cosine function is included along with protected division, multiplication, addi-
tion and subtraction operators. Generally it improves fitness, generalization ability
and reduces size. Please refer to Figures A.1 to A.5 and Tables A.1 to A.5, where
standalone MOGP and GSGP are measured against their equivalents without the
cosine operator. It is observed that regardless of the dataset, the cosine operator
allowed for a reduction in size for GSGP while improving or retaining training error
and (or) unseen error - except for the exquisite LD50 dataset. Differences are not
notable in MOGP due to the aforementioned issue that it cherishes a small num-
ber of nodes excessively, which may have hindered this algorithm from actually
taking advantage from the cosine function the way GSGP did. For this reason,
the cosine was opted to be included in the MOGP subpopulations of MPHGP, a
context in which sub-MOGPs will definitely be operating with individuals of greater
sizes that they receive from sub-GSGPs.

To evaluate MPHGP, standalone versions of the subpopulations were run. Thus,
standalone MOGP with 400 individuals and standalone GSGP with 400 individu-
als serve as reference to evaluate MPHGP against, where MPHGP is constituted
by a subpopulation running MOGP (sub-MOGP) with 200 individuals and with a
subpopulation running GSGP (sub-GSGP) with 200 individuals. When increas-
ing the number of subpopulations of MPHGP, its overall population size remains
constant. Table 2.2 describes the configuration and tuning of MOGP, GSGP and,
by inheritance, that of the subpopulations of MPHGP.
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The number of elite survivors is unusually high and fixed at 5. Considering the
case of MOGP, which has a tendency of being blind to optimization quality in favor
of lower size, this is meant to keep the fittest individuals in place of the smallest of
the new generation with no comparable quality - hence, the selection of elites and
deletion of the worst individuals was purely single-objective even in MOGP. In the
case of GSGP, this is based on the idea of growth along generations: individuals
from previous generations are expected to be smaller than those of the current
generation [CVP15]. Elitism in GSGP is used not only under the perspective of
keeping solutions of better fitness but also of keeping other solutions that may
slow down size growth.

Similarly to the number of elite survivors, the tournament size is high as well. It
follows the rule of 7.5% of subpopulation size with a minimum constraint of 3 indi-
viduals - this pertains to a higher number of subpopulations, which is mentioned
in Section 2.4. For a 2-population MPHGP, this equates to 15 individuals. Re-
garding MOGP (remind that it uses ”pareto rank selection” from NSGA-II), in the
event that very small solutions are randomly drawn to the selection phase, it is de-
sirable that such solutions do not have an excessively higher probability of being
selected than solutions of better optimization quality, and increasing tournament
size is equivalent to approximating to a uniform density function. In the case of
GSGP, this increases the chances of finding the fittest solution, given tournament
selection.

2.2 INTER-POPULATION PARAMETER TUNING

For the analysis of a 2-population MPHGP system, the effect of varying two mi-
grational parameters is discussed in this section. The first one is the migration
frequency f , which is defined as the number of generations that each subpopu-
lation uses to evolve independently from the other one. The second parameter to
be discussed is the migration rate r, the percentage of the subpopulation size that
determines the integer number of migrants. For instance, if the MPHGP system
is split into two subpopulations, each will have a size of 200 individuals. Then,
for a migration rate of 0.15, MOGP will send its best 0.15 * 200 = 30 individu-
als to GSGP and this subpopulation in its turn will return its fittest 30 individuals
to MOGP. This study covers migration frequencies {25, 50, 100} that result cor-
respondingly to {12, 6, 3} migration instants in 300 generations; and migration
rates {0.05, 0.15, 0.25, 0.35} that correspond to {15, 30, 45, 60} individuals mi-
grating from each subpopulation. This results in 12 combinations of migration
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parameters that were ran for the 5 datasets across 30-independent runs.2

For each dataset, Figures A.6 to A.10 show on the left-hand side line plots for the
median training and unseen errors, where unseen errors are portrayed by dotted
lines; and a right-hand side plot for the size. Each row in each these figures
pertains to a migration frequency f and all migration rates are plotted together.
One observes that migration rates are generally ineffective in median terms, at
least for a given migration frequency.

To further look into this matter, matrices of p-values for the Wilcoxon Rank-Sum
test - testing whether two samples come from the same distribution - between the
results of two migrational parameter combinations are provided in Tables A.6 to
A.25. If one wants to check for the statistical significance of effects of migration
rate for a given migration frequency, one only needs to look at the “blocks” in the
diagonal of these tables. In most cases, there is close to no difference in varying
the migration rate for a fixed migration frequency. The ”blocks” standing outside
the diagonal represent cross-frequency p-values. In these cases, the difference is
more noticeable, indicating the higher impact of varying migration frequencies.

Overall the combination f = 50 and r = 0.15 seemed to obtain the best results
across the datasets. For this reason and the sake of simplicity, the migrational
parameters are generally fixed to these values and the analysis in the following
sections is to be seen as one of coeteris paribus.

2.3 2-POPULATION HYBRID GENETIC PROGRAMMING

The work included in this section is already published and was presented by the
author in an international conference [VG17]. The results presented pertain to
migration frequency 50 and migration rate 0.15 for a MPHGP with two subpopu-
lations, except where noted. In this section it is attempted the study of MPHGP
against the standalone MOGP and GSGP versions as well as the exercise of
studying the relationship between GSGP and MOGP subpopulations of MPHGP
- these are denoted as sub-MOGP and sub-GSGP in the introspection Figures
A.16 to A.21.

The reported results show that MPHGP is able to at least retain the best training
and unseen errors from the subpopulations. In some cases, improvement on one

2Please note that this resulted in 12 ∗ 30 ∗ 5 = 1800 runs just for MPHGP results pertaining to this
section.
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of these measures can be observed. General statements cannot be made about
the obtained size of solutions for a 2-population hybrid system.

In the Bioavailability case (Fig. A.11 and Table A.26) MPHGP retained the training
error and improved both unseen error and size. To understand how the algorithm
got to this outcome, it is useful to look into the behaviour of each subpopulation
in Fig. A.16. Note that MPHGP picks the best individual on training error from the
two subpopulations to be reported, and each subpopulation reports only its best
individual on training error to be reported as well. The first migration event takes
place after evolving generation 50, at which point sub-GSGP is leading on training
error, thus these fitter individuals emigrate to sub-MOGP, which causes not only
sub-MOGP to improve its fitness but also to take in the size of these individuals,
causing the spike in its median size at generation 50.

It is after this moment that sub-MOGP takes over the lead of MPHGP, suggesting
that its NSGA-II selection mechanism and standard variation operators are more
suitable for the sub-GSGP individuals at this moment of the evolution of MPHGP.
Leadership in training error is important to help determine what way size will shift
to at each migration event. With this notion in mind, one can observe that size of
sub-GSGP shifted downwards at migration instants of generation 100 and 150: it
is because sub-GSGP applied its operators on the fitter and smaller individuals
that came from sub-MOGP and updated its best individual accordingly. For the
remaining generations, sub-GSGP takes back the leadership and does not stem
away from its size evolution trajectory anymore as sub-MOGP becomes a passive
participant of MPHGP.

This aspect is important to the success of a basic hybrid system: each subpopu-
lation ought to be an active participant in the evolution process and this is verified
with the exchange of leadership in fitness between the subpopulations. To put
it in other terms, what use would be of MPHGP if sub-GSGP led throughout the
entire evolution? Is MOGP contributing at all in this case? Would it not be bet-
ter to run only GSGP instead with offline reconstruction of individuals and end
the run sooner instead of forcing MOGP to build large individuals? One has to
ensure active participation of all subpopulations in MPHGP to reach the goals of
this algorithm.

In the case of the PPB dataset (Fig. A.12 and Table A.27), at the end of 300 gen-
erations, MPHGP almost retains the median training error of GSGP, is identical to
GSGP in median terms of unseen error and achieved effective size reduction. In
introspection (Fig. A.17), it is observed that, unlike the Bioavailability case, sub-
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MOGP has the lead before the first migration instant, and concedes it indefinitely
to sub-GSGP from this moment onwards. The main observation one can make
is that there is only one size reduction event that takes place in the evolution of
MPHGP: at the first migration instant (generation 50) when sub-MOGP dominates
in training error and in size. As no fitter and smaller individuals from sub-MOGP
arise in the remaining generations of the evolution of MPHGP, sub-GSGP runs on
its own and sub-MOGP merely becomes a follower. MPHGP finds a more par-
simonious solution (in terms of size) than GSGP due to this single occurrence.
Refer to Table A.27 for the statistical significance of these results.

In the Toxicity dataset, MPHGP was only better in terms of training error - Fig. A.13
and Table A.28. In fact the best performing algorithm for 300 generations was
MOGP with the lowest reported median unseen error and size. When looking
into introspection (Fig. A.18), it is verified that GSGP played the passive role
throughout all of the 300 generations. It is also observable that the spikes in size
occurred only with the migration moments every 50 generations, meaning that
the fittest on training error from MPHGP lied in the sub-MOGP. Further proof that
MPHGP gravitated towards solutions of MOGP lies in Table A.28, where one can
observe that MPHGP does not differ significantly from MOGP.

Finally for the Concrete and Energy datasets, statistically significant size reduc-
tion was not achieved by employing the base MPHGP. A special strategy - de-
noted by MPHGP* - to be able to achieve this result with two subpopulations can
be synthesized by force-feeding sub-MOGP individuals into sub-GSGP. For this
goal, two changes were applied to MPHGP:

• The selection of emigrants in sub-MOGP is single objective on training error,
so as to increase the chances of these individuals of being selected in sub-
GSGP.

• Sub-GSGP only sends one individual to sub-MOGP.

Moreover, migration rate of sub-MOGP* is increased to 0.35. The Concrete
dataset achieved always the same results in median terms for size, training error
and unseen error. However, looking at the box plot of size in Fig. A.14, one can
quickly observe that the distribution of MPHGP* results differ from those of GSGP
and MPHGP in that the 25% quantile drops. The Rank-Sum test in Table A.29
proves that the distribution of size results of MPHGP* is statistically different than
that of GSGP. Introspecting the behavior of MPHGP and MPHGP* in the Con-
crete dataset (Fig. A.19), there is visibly no difference in median terms between
the two.
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This suggests that in the case of MPHGP*, sub-MOGP* individuals were being
more frequently mutated and performant in sub-GSGP*, even becoming the fittest
in some runs. If this is the case, then there is support for MPHGP: there is no full
reliability on the first migration instant nor on the hope that MOGP leads at such
moment. This means that another way to improve MPHGP could be to properly
tune or find better algorithms for each of the subpopulations.

For the Energy dataset (Fig. A.15 and Table A.30), MPHGP* had its migration
frequency dropped to 25 (Figures A.20 and A.21, respectively) in order to take
advantage of the leadership of sub-MOGP* at this moment of the evolution, caus-
ing sub-GSGP* to “reset” the size of its fittest individual after the first migration
instant. In fact, the difference in size between MPHGP* and MPHGP and GSGP
is due to this single “reset” and one can observe that despite this gap, the growth
trend of MPHGP is identical to that of GSGP. Yet significant size decrease was
achieved as showed in Table A.30.

This closes the study of a 2-population MPHGP system. In general, this system
with basic configurations was able to keep the performance in training and unseen
error of the standalone versions, or even improve in some cases. With regards to
size, this strategy is not robust, which justified running MPHGP* with its tweaks.
Nonetheless, active participation (leadership exchange on training error) of all
subpopulations is important for the effectiveness of a basic MPHGP algorithm on
reducing size of found solutions when two different subpopulations are evolving
individuals in different size ranges. In other words, it is necessary to ensure that
subpopulations run on par with each other in terms of training error in order to
achieve the important “collaboration” between them. The case of the Concrete
dataset showed that, in spite of having sub-MOGP be a passive participant, sub-
MOGP can still influence sub-GSGP to bring down the size of solutions.

2.4 INCREASING NUMBER OF SUBPOPULATIONS

The work in this section was done at a time later than the paper [VG17] submis-
sion to CEC2017, but could as well be part of another paper to be published.
As mentioned before, specific strategies were used for the Concrete and Energy
datasets with two subpopulations: migrant selection in MOGP is single objective
on training error and GSGP only sends one individual to MOGP. As this strategy
proved already that it can be effective, baseline MPHGP was chosen to run for
all datasets in an attempt to verify the potential robustness of only increasing the
number of subpopulations.
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Number of Subpopulation Tournament Elite MigrantsSubpopulations Size Size Survivors
2 200 15 5 30
4 100 7 5 15
8 50 3 5 7

20 20 3 5 3
40 10 3 5 1

Table 2.3.: Changes in subpopulation size, tournament size, number of elite survivors
and number of migrants according to the increasing number of subpopula-
tions. Overall population remains constant at 400 individuals. Tournament
size obeys to the rule of 7.5% of subpopulation size with a floor constraint
of 3. Number of migrants obeys to the constant migration rate r = 0.15. It is
attempted to study the impact of only changing the number of subpopulations.

The number of subpopulations tested were 4, 8, 20 and 40. In order to capture the
effect of varying only this parameter as much as possible, only tournament size
was adapted for each number of subpopulations and is determined by a rule of
[0.075 * subpopulation size] subject to a minimum of three. In order to have a clear
picture of how these runs were performed, please refer to Table 2.3. Increasing
the number of subpopulations generally proved to be effective in reducing the size
of the solutions found.

For the Bioavailability dataset (Fig. A.22, Table A.31), and for an increasing num-
ber of subpopulations, median training error increased slightly, but generalization
ability of the solutions found by MPHGP was kept and their respective sizes de-
creased. This can be considered a successful experiment that is also verified for
the PPB (Fig. A.23, Table A.32) and Energy datasets (Fig. A.26, Table A.35). The
effect of decreasing size seems to reach a plateau at 8 subpopulations for the
Bioavailability and PPB datasets. Since increasing the distribution of the popu-
lation yet retains the generalization ability, one may state that 40 subpopulations
is optimal for the cases of Bioavailability, PPB and Energy, as computation time
decreases as discussed in section 2.5.

In other datasets the story differs. For the Toxicity dataset (Fig. A.24, Table A.33),
overfitting increased with an increasing number of subpopulations as well as
the size of the solutions found. Finally, for the Concrete dataset (Fig. A.25, Ta-
ble A.34) a pure trade off is verified with the size of solutions decreasing in detri-
ment of their performance. In cases such as this one it is impossible to determine
the optimal number of subpopulations, however, knowing that increasing it de-
creases size, this may be a starting point depending on how much one values
interpretability over performance.
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Focusing on the achievement of size reduction and following the argument given
in Section 2.3, a possible explanation is that sub-GSGPs with smaller search
space - that is, smaller subpopulation sizes - evolve at a slower pace, which puts
them more on par with sub-MOGPs. This allows sub-GSGPs to welcome sub-
MOGPs more receptively and ultimately capitalize on individuals of lower size.
Looking at the results in a positive light, no special tweaks from MPHGP* were
necessary to find statistically significant smaller solutions. In the specific case of
the Toxicity dataset, in which sub-MOGP has more optimization power than sub-
GSGP, increasing the number of subpopulations increased the relevance of sub-
GSGP in optimizing fitness, which is why MPHGP tended to solutions of higher
size.
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2.5 RUNNING TIMES

The results in this section correspond to the following available data on running
times:

• MOGP-ß, standalone multi-objective GP, optimizing training error and size,
without the cosine operator.

• GSGP-ß, standalone single objective Geometric Semantic Genetic Pro-
gramming, without the cosine operator.

• MPHGP*-2, the MPHGP with two subpopulations, where MOGP selects mi-
grants on training error only and GSGP only sends one individual to MOGP.
With f = 5 and r = 0.5.

• The remaining MPHGPs are those of Section 2.4, with the number of sub-
populations increasing.

• For the Energy dataset, the migration frequency is set to 25; for the remain-
ing datasets it is set to 50.

As mentioned before, increasing the number of subpopulations reduces the size
of the best found solution, which contributes to having less nodes being evalu-
ated per average individual in the population. Furthermore, subpopulations run in
parallel until the prefixed migration instant, which means that more computation
is being performed simultaneously, in the sense that instead of having one thread
going over each of 400 individuals sequentially, there are, for instance, 20 threads
going sequentially over just 20 individuals at the same time.

These two factors both contribute to the decreasing computation time with in-
creasing number of subpopulations as verified in Fig. A.27 and in Fig. A.36. The
only exception would be for the Toxicity dataset - which always yielded better
results with MOGP for 300 generations - where the size of the best found in-
dividual increased with the number of subpopulations, by tending to sub-GSGP
solutions.

Generally, the more data instances a dataset has, the longer it will take to com-
plete a run. For example, note the largest dataset in instances, Concrete. In-
creasing the number of subpopulations had the effect of reducing the size of
solutions found, which allowed for faster running times. Moreover, these lower
running times make the option of cross-validation a more realistic undertaking, at
least for the datasets presented in this work.
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3 CONCLUSION

This thesis proposed a hybrid model to combine a multi-objective GP and GSGP,
two subpopulations that run independently until a prefixed migration instant or
synchronization moment when the two subpopulations exchange individuals. The
experimental results on five real-world symbolic regression problems show that
MPHGP is able to retain the advantageous properties of any of the algorithms
while finding statistically significant smaller solutions, namely, than GSGP.

There are caveats to this work however. Firstly, while MPHGP was able to de-
crease size, such solutions remain yet greater than desirable for the interpretabil-
ity and readability in any of the problems. Thus, this work ought to be seen as
one of first step in that direction.

Moreover, the increase in size of MPHGP solutions as generations go by fol-
low the same trend as GSGP for a 2-Population Hybrid system, except for the
Bioavailability (%F) dataset. Increasing the number of subpopulations helped
getting away from such trend, mainly because of the compacter search-space
of each subpopulation, which ”allowed” for the subpopulations to be on par with
each other more frequently, thus exchange of individuals was more valuable.

Secondly, the bar was lowered with using only mutation in GSGP: size growth
is linear, as well as the number of ascendants of an individual. This allowed
for the reconstruction of individuals to be trivial at each migration instant. This
decision was undertaken for the sake of executing runs in useful time in a setting
where MOGP would be responsible for crossovers. Hence, the crossover was
never semantically aware and that is a case to be covered when the challenge of
dealing with exponential growth is well handled.

Some may argue that this is just extra work on top of GSGP. Without a doubt,
sub-GSGP was doing all the work on its own in some cases, but not in the cases
where the number of subpopulations was higher, as mentioned before. However
this extra work proved to be worthwhile: while MPHGP retains train and unseen
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errors of GSGP, in some cases it boosted one of these measures!3 Such a fact
would have gone unnoticed without this extra work and it shows that sub-GSGP
and sub-MOGP can complement each other.

Future work includes new research paths. Notice that there are several GP vari-
ants out there that can be included in a hybrid system and it is yet to be known
how well they would interact in such environment or how well they would benefit
or benefit from GSGP. In specific, some of the most sophisticated known algo-
rithms of simplification of mathematical expressions [ZZS05] ought to be included
among the subpopulations of MPHGP. Given the results presented by this work, it
is a given that these simplification algorithms will not be carrying out such a task
by themselves!

An ambitious future work is to define a dynamic and versatile parallel and dis-
tributed hybrid GP system. While this work was rather parsimonious in the param-
eter configuration, ideally one can build a hybrid system that subjects to evolution
number and size of subpopulations; algorithms executed in different subpopula-
tions; and respective parameters. As a result, these would change during the run
according to specific criteria.

3Fig. A.13 for an example of a boost on training error; Fig. A.11 for an example of a boost on
unseen error.
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A APPENDIX: FIGURES AND TABLES OF RESULTS

A.1 COSINE VS. NO COSINE

VIII



Figure A.1.: Bioavailability (%F) - standalone MOGP and GSGP (with the cosine func-
tion); and standalone MOGP-ß and GSGP-ß (without the cosine function).
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Figure A.2.: PPB - standalone MOGP and GSGP (with the cosine function); and stan-
dalone MOGP-ß and GSGP-ß (without the cosine function).
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Figure A.3.: Toxicity (LD50)- standalone MOGP and GSGP (with the cosine function);
and standalone MOGP-ß and GSGP-ß (without the cosine function).
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Figure A.4.: Concrete - standalone MOGP and GSGP (with the cosine function); and
standalone MOGP-ß and GSGP-ß (without the cosine function).
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Figure A.5.: Energy - standalone MOGP and GSGP (with the cosine function); and stan-
dalone MOGP-ß and GSGP-ß (without the cosine function).
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%F Train Unseen Size
MOGP-ß vs MOGP 0.74987 0.22102 0.50378
GSGP-ß vs GSGP 2.84E-05 0.13591 1.92E-06

Table A.1.: Bioavailability (%F) - Statistical significance of cosine function according to
p-values Wilcoxon Rank-Sum tests. Significance at 5% is highlighted in light
grey, stating that the distribution of results differs.

PPB Train Unseen Size
MOGP-ß vs MOGP 0.00057 0.44052 0.13779
GSGP-ß vs GSGP 0.06871 0.17138 1.73E-06

Table A.2.: PPB - Statistical significance of cosine function according to p-values
Wilcoxon Rank-Sum tests. Significance at 5% is highlighted in light grey,
stating that the distribution of results differs.

LD50 Train Unseen Size
MOGP-ß vs MOGP 0.97539 0.81302 0.11080
GSGP-ß vs GSGP 0.00148 0.29894 1.73E-06

Table A.3.: Toxicity (LD50) - Statistical significance of cosine function according to p-
values Wilcoxon Rank-Sum tests. Significance at 5% is highlighted in light
grey, stating that the distribution of results differs.

Concrete Train Unseen Size
MOGP-ß vs MOGP 0.01852 0.02564 0.06408
GSGP-ß vs GSGP 0.01752 0.65833 1.73E-06

Table A.4.: Concrete - Statistical significance of cosine function according to p-values
Wilcoxon Rank-Sum tests. Significance at 5% is highlighted in light grey,
stating that the distribution of results differs.

Energy Train Unseen Size
MOGP-ß vs MOGP 0.95899 0.71889 0.03222
GSGP-ß vs GSGP 1.73E-06 0.00003 1.73E-06

Table A.5.: Energy - Statistical significance of cosine function according to p-values
Wilcoxon Rank-Sum tests. Significance at 5% is highlighted in light grey,
stating that the distribution of results differs.
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A.2 INTER-POPULATION PARAMETER TUNING
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f = 25:

f = 50:

f = 100:

Figure A.6.: Bioavailability (F%) - Comparison of combinations of migrational parame-
ters: first column plots training error (TE) together with unseen error (UE)
and the second plots size. Each row pertains to a migration frequency f
from the set {25, 50, 100}. In each plot, every tested migration rate r in the
set {0.05, 0.15, 0.25, 0.35} is present.
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f = 25:

f = 50:

f = 100:

Figure A.7.: PPB - Comparison of combinations of migrational parameters: first col-
umn plots training error (TE) together with unseen error (UE) and the sec-
ond plots size. Each row pertains to a migration frequency f from the
set {25, 50, 100}. In each plot, every tested migration rate r in the set
{0.05, 0.15, 0.25, 0.35} is present.
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f = 25:

f = 50:

f = 100:

Figure A.8.: Toxicity (LD50) - Comparison of combinations of migrational parameters:
first column plots training error (TE) together with unseen error (UE) and
the second plots size. Each row pertains to a migration frequency f from
the set {25, 50, 100}. In each plot, every tested migration rate r in the set
{0.05, 0.15, 0.25, 0.35} is present.
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f = 25:

f = 50:

f = 100:

Figure A.9.: Concrete - Comparison of combinations of migrational parameters: first
column plots training error (TE) together with unseen error (UE) and the
second plots size. Each row pertains to a migration frequency f from
the set {25, 50, 100}. In each plot, every tested migration rate r in the set
{0.05, 0.15, 0.25, 0.35} is present.
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f = 25:

f = 50:

f = 100:

Figure A.10.: Energy - Comparison of combinations of migrational parameters: first col-
umn plots training error (TE) together with unseen error (UE) and the sec-
ond plots size. Each row pertains to a migration frequency f from the
set {25, 50, 100}. In each plot, every tested migration rate r in the set
{0.05, 0.15, 0.25, 0.35} is present.
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f 25 50
r 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

0.05 - 0.41653 0.00129 0.02703 0.01108 0.00499 0.02304 0.01397
0.15 0.47795 - 0.22888 0.18462 0.11561 0.13591 0.10639 0.12044
0.25 0.58571 0.97539 - 0.68836 0.47795 0.81302 0.92626 0.6143125

0.35 0.32857 0.08972 0.21336 - 0.53044 0.39333 0.64352 0.34935
0.05 0.57165 0.08972 0.23694 0.99179 - 0.62884 0.33886 0.89364
0.15 0.55774 0.09777 0.19152 0.92626 0.64352 - 0.55774 0.97539
0.25 0.78126 0.08590 0.06268 0.84508 0.86121 0.74987 - 0.9589950

0.35 0.99179 0.24519 0.29894 0.79710 0.81302 0.73433 0.65833 -
0.05 0.02564 0.00468 0.00773 0.04950 0.04070 0.06871 0.05193 0.11093
0.15 0.14139 0.00567 0.01044 0.21336 0.04950 0.11561 0.10201 0.08590
0.25 0.00039 0.00241 0.00316 0.01397 0.01657 0.02183 0.00984 0.01397100

0.35 0.28021 0.12544 0.17138 0.44052 0.58571 0.45281 0.59994 0.41653

Table A.6.: Bioavailability (%F) - Wilcoxon Rank-Sum test on training error and unseen
error. Null hypothesis assumes that two samples (of results) come from the
same distribution. Below the marked diagonal lie the p-values for tests on
training error and above for unseen error. At 5% significance level, the cases
which reject the null hypothesis is highlighted in light grey. The purpose is to
visualize the impact of varying migrational parameters.

f 25 50
r 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

0.05 - 0.42242 0.76552 0.06711 0.72656 0.84506 0.90992 0.62881
0.15 0.85313 - 0.69589 0.37088 0.38705 0.28477 0.49722 0.30850
0.25 0.84508 0.45281 - 0.13320 0.88821 0.89362 0.99179 0.9753825

0.35 0.45901 0.51705 0.21715 - 0.22877 0.12795 0.07268 0.20974
0.05 0.38203 0.24519 0.86121 0.09570 - 0.98359 1.00000 0.93442
0.15 0.74987 0.39333 0.84508 0.11800 0.86121 - 0.91808 0.97538
0.25 0.90993 0.47795 0.92626 0.14704 0.55774 0.81302 - 0.9671850

0.35 0.44052 0.25364 0.84508 0.15886 0.84508 0.78126 0.51705 -
0.05 0.89364 0.74986 0.26230 0.99179 0.44052 0.41653 0.81302 0.54401
0.15 0.82901 0.87740 0.50957 0.81302 0.34935 0.61431 0.81302 0.68836
0.25 0.01522 0.02849 0.00585 0.01657 0.00241 0.00567 0.02703 0.00064100

0.35 0.84508 0.61431 0.88551 0.23694 0.92626 0.70356 0.74987 0.90993

Table A.7.: Bioavailability (%F) - Wilcoxon Rank-Sum test on size and depth. Null hypoth-
esis assumes that two samples (of results) come from the same distribution.
Below the marked diagonal lie the p-values for tests on size and above for
depth. At 5% significance level, the cases which reject the null hypothesis
is highlighted in light grey. The purpose is to visualize the impact of varying
migrational parameters.
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f 100
r 0.05 0.15 0.25 0.35

0.05 0.03872 0.00129 0.12044 0.00411
0.15 0.03501 0.06564 0.53044 0.03872
0.25 0.42843 0.79710 0.51705 0.6732825

0.35 0.38203 0.20589 0.89364 0.17138
0.05 0.65833 0.99179 0.28021 0.81302
0.15 0.71889 0.65833 0.45281 0.71889
0.25 0.37094 0.19152 0.65833 0.5857150

0.35 0.28948 0.45281 0.39333 0.61431
0.05 - 0.79710 0.25364 0.65833
0.15 0.41653 - 0.17791 0.79710
0.25 0.42843 0.13591 - 0.06268100

0.35 0.25364 0.79710 0.02849 -

Table A.8.: Continuation of Table A.6.

f 100
r 0.05 0.15 0.25 0.35

0.05 0.65089 0.84507 0.00425 0.94260
0.15 0.80221 0.35996 0.04714 0.14700
0.25 0.43627 0.58876 0.00602 0.3709125

0.35 0.46876 0.20957 0.07568 0.03498
0.05 0.75386 0.72123 0.00683 0.35456
0.15 0.90532 0.95079 0.02242 0.56659
0.25 0.75382 0.98359 0.01478 0.9589950

0.35 1.00000 0.51697 0.00219 0.58131
0.05 - 0.41741 0.00845 0.41052
0.15 0.78126 - 0.00107 0.71884
0.25 0.00727 0.01319 - 0.00083100

0.35 0.62884 0.55773 0.00468 -

Table A.9.: Continuation of Table A.7.
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f 25 50
r 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

0.05 - 0.70356 0.15886 0.42843 0.12544 0.12544 0.07865 0.00211
0.15 0.41653 - 0.50383 0.49080 0.15886 0.01319 0.08221 0.00411
0.25 0.05984 0.58571 - 0.44052 0.70356 0.20589 0.41653 0.1588625

0.35 0.04277 0.18462 0.38203 - 0.41653 0.09368 0.30861 0.10201
0.05 0.23694 0.04492 0.00642 0.00211 - 0.47795 0.45281 0.28948
0.15 0.29894 0.06871 0.00532 0.00120 0.74987 - 0.79710 0.54401
0.25 0.31849 0.09368 0.03327 0.00083 0.68836 0.45281 - 0.5577450

0.35 0.26230 0.04492 0.00642 0.00077 0.79710 0.92626 0.81302 -
0.05 0.28021 0.03501 0.00138 0.00062 0.94261 0.97539 0.36004 0.74987
0.15 0.04492 0.00338 0.00009 0.00022 0.10639 0.16503 0.02564 0.21336
0.25 0.07190 0.01108 0.00039 0.00003 0.26230 0.41653 0.01108 0.23694100

0.35 0.03160 0.00773 0.00077 0.00002 0.22888 0.11561 0.01752 0.34935

Table A.10.: PPB - Wilcoxon Rank-Sum test on training error and unseen error. Null hy-
pothesis assumes that two samples (of results) come from the same distri-
bution. Below the marked diagonal lie the p-values for tests on training error
and above for unseen error. At 5% significance level, the cases which reject
the null hypothesis is highlighted in light grey. The purpose is to visualize
the impact of varying migrational parameters.

f 25 50
r 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

0.05 - 0.56463 0.37518 0.12798 0.87333 0.91837 0.92623 0.96718
0.15 0.74987 - 0.81300 0.12738 0.39330 0.29484 0.32510 0.19070
0.25 0.57865 0.42843 - 0.51038 0.30364 0.41115 0.31461 0.1649125

0.35 0.27116 0.03242 0.27116 - 0.06290 0.10861 0.01687 0.01751
0.05 0.13591 0.31849 0.05984 0.00873 - 0.57827 0.30841 0.87102
0.15 0.04492 0.10201 0.09367 0.01245 0.36004 - 0.55765 0.98274
0.25 0.18462 0.70356 0.10862 0.00773 0.97539 0.51705 - 0.5812250

0.35 0.17791 0.30861 0.02010 0.00138 0.82901 0.82901 0.84508 -
0.05 0.67328 0.27114 0.74987 0.25364 0.08589 0.05575 0.08221 0.08972
0.15 0.16503 0.17137 0.12544 0.00499 0.95899 0.50383 0.90993 0.90993
0.25 0.12798 0.16503 0.19861 0.00439 0.83703 0.89364 0.67328 0.64352100

0.35 0.12044 0.21336 0.09368 0.00773 0.87740 0.97539 0.50383 0.87740

Table A.11.: PPB - Wilcoxon Rank-Sum test on size and depth. Null hypothesis assumes
that two samples (of results) come from the same distribution. Below the
marked diagonal lie the p-values for tests on size and above for depth. At 5%
significance level, the cases which reject the null hypothesis is highlighted
in light grey. The purpose is to visualize the impact of varying migrational
parameters.
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f 100
r 0.05 0.15 0.25 0.35

0.05 0.00138 0.01245 0.00642 0.00439
0.15 0.00062 0.00226 0.00089 0.00053
0.25 0.00049 0.00873 0.01397 0.0021125

0.35 0.00019 0.01657 0.00873 0.00211
0.05 0.00120 0.01752 0.06871 0.01752
0.15 0.00468 0.26230 0.04950 0.07865
0.25 0.01957 0.13591 0.13591 0.0786550

0.35 0.06564 0.49080 0.34935 0.24519
0.05 - 0.37094 0.27116 0.42843
0.15 0.08972 - 0.41653 0.54401
0.25 0.46528 0.58571 - 0.99179100

0.35 0.17138 0.54401 0.87740 -

Table A.12.: Continuation of Table A.10.

f 100
r 0.05 0.15 0.25 0.35

0.05 0.03589 0.71887 0.85416 0.86265
0.15 0.13855 0.57859 0.78122 0.39328
0.25 0.25169 0.77335 1.00000 0.3989625

0.35 0.58875 0.12470 0.17454 0.11786
0.05 0.01912 0.36530 0.49059 0.82895
0.15 0.05059 0.38139 0.98273 0.77012
0.25 0.00411 0.27097 0.26918 0.8450050

0.35 0.02061 0.54468 0.90173 1.00000
0.05 - 0.31021 0.12090 0.08250
0.15 0.04950 - 0.41478 0.30628
0.25 0.04950 1.00000 - 0.72050100

0.35 0.15286 0.83703 0.92626 -

Table A.13.: Continuation of Table A.11.
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f 25 50
r 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

0.05 - 0.23694 0.00984 0.10639 0.20589 0.03160 0.05446 0.12044
0.15 0.17138 - 0.33886 0.62884 0.92626 0.81302 0.71889 0.47795
0.25 0.06871 0.41653 - 0.45281 0.40483 0.71889 0.37094 0.9426125

0.35 0.12544 0.36004 0.78126 - 0.53044 0.57165 0.62884 0.90993
0.05 0.01852 0.02849 0.00211 0.00468 - 0.05710 0.73433 0.78126
0.15 0.87740 0.11093 0.08590 0.05446 0.14139 - 0.26230 0.25364
0.25 0.37094 0.07865 0.05984 0.03327 0.28948 0.92626 - 0.7812650

0.35 0.47795 0.64352 0.22888 0.25364 0.06564 0.27116 0.67328 -
0.05 0.00411 0.00211 0.00014 0.00014 0.50383 0.03872 0.04070 0.00532
0.15 0.00120 0.00024 0.00001 0.00002 0.51705 0.00468 0.00411 0.00138
0.25 0.00567 0.00028 0.00024 0.00017 0.38203 0.00211 0.02183 0.00567100

0.35 0.02431 0.00642 0.00077 0.00567 0.62884 0.03872 0.19861 0.00499

Table A.14.: Toxicity (LD50) - Wilcoxon Rank-Sum test on training error and unseen er-
ror. Null hypothesis assumes that two samples (of results) come from the
same distribution. Below the marked diagonal lie the p-values for tests on
training error and above for unseen error. At 5% significance level, the cases
which reject the null hypothesis is highlighted in light grey. The purpose is
to visualize the impact of varying migrational parameters.

f 25 50
r 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

0.05 - 0.33879 0.27930 0.01395 0.57857 0.93106 0.14141 0.07349
0.15 0.46883 - 0.24514 0.16963 0.90175 0.29878 0.45555 0.10468
0.25 0.25363 0.33368 - 0.65747 0.45881 0.07517 0.72653 0.5169625

0.35 0.04716 0.15583 0.78916 - 0.33870 0.04600 0.95078 0.61416
0.05 0.14704 0.22182 0.70356 0.99179 - 0.55366 0.87111 0.20574
0.15 0.58879 0.99179 0.42843 0.25364 0.34935 - 0.16970 0.06116
0.25 0.10201 0.15285 0.41653 0.55772 0.73433 0.22102 - 0.6883250

0.35 0.03242 0.03327 0.38203 0.24519 0.61431 0.13059 0.92626 -
0.05 0.00027 0.00004 0.00003 0.00003 0.00053 0.00083 0.00019 0.00009
0.15 0.09368 0.06268 0.04716 0.03501 0.11560 0.04277 0.01591 0.06267
0.25 0.01108 0.02183 0.00873 0.00773 0.00439 0.01903 0.00705 0.00453100

0.35 0.01566 0.01566 0.01245 0.01107 0.04099 0.04276 0.00984 0.01688

Table A.15.: Toxicity (LD50) - Wilcoxon Rank-Sum test on size and depth. Null hypothe-
sis assumes that two samples (of results) come from the same distribution.
Below the marked diagonal lie the p-values for tests on size and above for
depth. At 5% significance level, the cases which reject the null hypothesis
is highlighted in light grey. The purpose is to visualize the impact of varying
migrational parameters.
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f 100
r 0.05 0.15 0.25 0.35

0.05 0.04070 0.09777 0.18462 0.01245
0.15 0.74987 0.50383 0.70356 0.46528
0.25 0.81302 0.87740 0.13591 0.9753925

0.35 0.61431 0.61431 0.50383 0.50383
0.05 0.51705 0.19152 0.92626 0.08590
0.15 0.74987 0.64352 0.11093 0.45281
0.25 0.34935 0.64352 0.59994 0.2288850

0.35 0.27116 0.46528 0.45281 0.31849
0.05 - 0.71889 0.34935 0.95899
0.15 0.71889 - 0.30861 0.78126
0.25 0.70356 0.81302 - 0.06564100

0.35 0.59994 0.45281 0.20589 -

Table A.16.: Continuation of Table A.14.

f 100
r 0.05 0.15 0.25 0.35

0.05 0.00017 0.05698 0.01588 0.01317
0.15 0.00007 0.03239 0.01653 0.01478
0.25 0.00003 0.01851 0.01106 0.0077225

0.35 0.00004 0.01477 0.00466 0.00984
0.05 0.00066 0.07348 0.01074 0.03138
0.15 0.00077 0.04272 0.02739 0.04425
0.25 0.00015 0.00704 0.00749 0.0038850

0.35 0.00011 0.01173 0.00284 0.01319
0.05 - 0.30125 0.83684 0.98273
0.15 0.36370 - 0.22232 0.58819
0.25 0.74207 0.27480 - 0.93645100

0.35 0.67323 0.33581 0.62872 -

Table A.17.: Continuation of Table A.15.
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f 25 50
r 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

0.05 - 0.79710 0.40483 0.45281 0.28948 0.00984 0.09368 0.09777
0.15 0.87740 - 0.61431 0.99179 0.20589 0.00258 0.08590 0.17791
0.25 0.23694 0.42843 - 0.44052 0.38203 0.12044 0.41653 0.5304425

0.35 0.53044 0.64352 0.42843 - 0.07190 0.01245 0.12044 0.03501
0.05 0.01957 0.04277 0.07521 0.01566 - 0.12044 0.41653 0.33886
0.15 0.00684 0.01245 0.23694 0.03160 0.89364 - 0.38203 0.84508
0.25 0.04492 0.09777 0.53044 0.03001 0.76552 0.65833 - 0.4528150

0.35 0.02304 0.08590 0.36004 0.06871 0.87740 0.57165 0.92626 -
0.05 0.00604 0.01397 0.17791 0.00642 0.50383 0.67328 0.28948 0.68836
0.15 0.04716 0.05193 0.20589 0.01957 0.74987 0.90993 0.55774 0.94261
0.25 0.01657 0.01957 0.26230 0.00727 0.94261 0.94261 0.67328 0.64352100

0.35 0.00927 0.05193 0.06871 0.01044 0.53044 0.45281 0.29894 0.39333

Table A.18.: Concrete - Wilcoxon Rank-Sum test on training error and unseen error. Null
hypothesis assumes that two samples (of results) come from the same dis-
tribution. Below the marked diagonal lie the p-values for tests on training
error and above for unseen error. At 5% significance level, the cases which
reject the null hypothesis is highlighted in light grey. The purpose is to visu-
alize the impact of varying migrational parameters.

f 25 50
r 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

0.05 - 0.77030 0.74983 0.14125 0.82896 0.97412 0.53709 0.91835
0.15 0.89364 - 0.57161 0.34128 0.90933 0.90528 0.57156 0.93964
0.25 0.73433 0.82901 - 0.49720 0.49718 0.85310 0.86120 0.8626325

0.35 0.08221 0.31849 0.19861 - 0.60361 0.51628 0.78116 0.45891
0.05 0.51705 0.14139 0.19861 0.06268 - 0.99091 0.42353 0.71305
0.15 0.59994 0.27116 0.46528 0.13591 0.97539 - 0.45885 0.49544
0.25 0.59994 0.53044 0.50383 0.13059 0.47795 0.92625 - 0.3283250

0.35 0.24519 0.12543 0.45281 0.06871 0.90178 0.59994 0.42843 -
0.05 0.61431 0.09570 0.15286 0.01175 0.59994 0.46528 0.30861 0.61431
0.15 0.71889 0.04716 0.40483 0.00873 0.81302 0.44663 0.42842 0.86121
0.25 0.28021 0.06123 0.15286 0.00684 0.61431 0.14992 0.08590 0.11561100

0.35 0.25364 0.39332 0.33368 0.01437 0.82100 0.31988 0.19152 0.69594

Table A.19.: Concrete - Wilcoxon Rank-Sum test on size and depth. Null hypothesis
assumes that two samples (of results) come from the same distribution.
Below the marked diagonal lie the p-values for tests on size and above for
depth. At 5% significance level, the cases which reject the null hypothesis
is highlighted in light grey. The purpose is to visualize the impact of varying
migrational parameters.
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f 100
r 0.05 0.15 0.25 0.35

0.05 0.05984 0.17138 0.10639 0.11561
0.15 0.03001 0.30861 0.04277 0.08972
0.25 0.28948 0.27116 0.39333 0.1915225

0.35 0.01480 0.03327 0.01319 0.01852
0.05 0.13591 0.50383 0.39333 0.26230
0.15 0.90993 0.39333 0.73433 0.95899
0.25 0.45281 0.99179 0.65833 0.6883650

0.35 0.97539 0.92626 0.70356 0.31849
0.05 - 0.87740 0.84508 0.89364
0.15 0.78126 - 0.81302 0.86121
0.25 0.78126 0.97539 - 0.57165100

0.35 0.92626 0.74987 0.42843 -

Table A.20.: Continuation of Table A.18.

f 100
r 0.05 0.15 0.25 0.35

0.05 0.41383 0.02959 0.89129 0.38694
0.15 0.46515 0.07336 0.64339 0.24288
0.25 0.88819 0.18709 0.65830 0.8203425

0.35 0.47520 0.08161 0.44021 0.82893
0.05 0.90519 0.06827 0.65719 0.69848
0.15 0.51619 0.04882 0.72200 0.50111
0.25 0.82868 0.40421 0.20397 0.6212350

0.35 0.84888 0.13514 0.27444 0.81969
0.05 - 0.34593 0.24501 0.82829
0.15 0.92248 - 0.02361 0.28831
0.25 0.54401 0.56463 - 0.29345100

0.35 0.87740 0.86121 0.74986 -

Table A.21.: Continuation of Table A.19.
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f 25 50
r 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

0.05 - 0.45281 0.73433 0.19861 0.99179 0.36004 0.73433 0.46528
0.15 0.79710 - 0.21336 0.40483 0.29894 0.14139 0.28948 0.03872
0.25 0.89364 0.86121 - 0.14704 0.99179 0.67328 0.94261 0.6288425

0.35 0.41653 0.50383 0.70356 - 0.22888 0.02304 0.12544 0.02703
0.05 0.21336 0.15286 0.10201 0.06871 - 0.47795 0.55774 0.30861
0.15 0.28021 0.23694 0.09368 0.06564 0.81302 - 0.76552 0.55774
0.25 0.20589 0.15886 0.08972 0.09368 0.90993 0.92626 - 0.5716550

0.35 0.24519 0.16503 0.15286 0.07190 0.78126 0.81302 0.84508 -
0.05 0.00045 0.00104 0.00642 0.00017 0.03501 0.01566 0.01319 0.01480
0.15 0.00016 0.00004 0.00057 0.00045 0.01480 0.00411 0.00773 0.01657
0.25 0.00361 0.00083 0.00604 0.00241 0.05710 0.01566 0.04716 0.02564100

0.35 0.02564 0.00727 0.00984 0.00684 0.19152 0.28021 0.31849 0.09368

Table A.22.: Energy - Wilcoxon Rank-Sum test on training error and unseen error. Null
hypothesis assumes that two samples (of results) come from the same dis-
tribution. Below the marked diagonal lie the p-values for tests on training
error and above for unseen error. At 5% significance level, the cases which
reject the null hypothesis is highlighted in light grey. The purpose is to visu-
alize the impact of varying migrational parameters.

f 25 50
r 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

0.05 - 0.01747 0.67311 0.90993 0.08965 0.06406 0.05317 0.20967
0.15 0.06294 - 0.02180 0.05973 0.00225 0.00124 0.00120 0.00159
0.25 0.68080 0.00567 - 0.97538 0.02815 0.06561 0.00704 0.1443025

0.35 0.76552 0.15886 0.64351 - 0.14412 0.13052 0.06561 0.33365
0.05 0.07521 0.00241 0.47795 0.26230 - 0.92247 0.81194 0.66536
0.15 0.04716 0.00104 0.13591 0.14139 0.92626 - 0.72119 0.46213
0.25 0.03327 0.00066 0.05446 0.07190 0.42842 0.44052 - 0.4298950

0.35 0.17791 0.00148 0.76552 0.46528 0.96719 0.54401 0.33368 -
0.05 0.00258 0.00007 0.03001 0.03872 0.07521 0.08972 0.28021 0.02849
0.15 0.00233 0.00001 0.02183 0.01044 0.02564 0.09570 0.27565 0.00873
0.25 0.00031 0.00003 0.00727 0.00684 0.00499 0.00773 0.07190 0.01319100

0.35 0.03327 0.00277 0.20589 0.16503 0.32857 0.82901 0.87740 0.39333

Table A.23.: Energy - Wilcoxon Rank-Sum test on size and depth. Null hypothesis as-
sumes that two samples (of results) come from the same distribution. Be-
low the marked diagonal lie the p-values for tests on size and above for
depth. At 5% significance level, the cases which reject the null hypothesis
is highlighted in light grey. The purpose is to visualize the impact of varying
migrational parameters.
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f 100
r 0.05 0.15 0.25 0.35

0.05 0.03872 0.01957 0.04492 0.05710
0.15 0.00338 0.00053 0.00211 0.00642
0.25 0.05193 0.04950 0.05984 0.1779125

0.35 0.00111 0.00089 0.01175 0.00338
0.05 0.04950 0.00183 0.02183 0.02849
0.15 0.05710 0.01175 0.14704 0.29894
0.25 0.04277 0.01566 0.05193 0.1204450

0.35 0.05193 0.05710 0.17791 0.22102
0.05 - 0.70356 0.30861 0.46528
0.15 0.90993 - 0.31849 0.45281
0.25 0.70356 0.54401 - 0.90993100

0.35 0.22888 0.19861 0.51705 -

Table A.24.: Continuation of Table A.22.

f 100
r 0.05 0.15 0.25 0.35

0.05 0.00360 0.00945 0.00059 0.01396
0.15 0.00015 0.00004 0.00002 0.00061
0.25 0.00119 0.00071 0.00014 0.0032625

0.35 0.00566 0.00349 0.00096 0.02430
0.05 0.04274 0.01610 0.00622 0.07513
0.15 0.02893 0.01073 0.00133 0.17288
0.25 0.06445 0.06966 0.01608 0.3990250

0.35 0.00584 0.00103 0.00025 0.03869
0.05 - 0.75373 0.09968 0.98358
0.15 0.81302 - 0.52349 0.29401
0.25 0.11093 0.82901 - 0.25333100

0.35 0.19151 0.01752 0.07865 -

Table A.25.: Continuation of Table A.23.
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A.3 2-POPULATION HYBRID GENETIC PROGRAMMING
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Figure A.11.: Bioavailability (%F) - Performance of 2-subpopulation MPHGP measured
against the standalone benchmarks MOGP and GSGP. From the top, train-
ing error, unseen error and size.
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Figure A.12.: PPB - Performance of 2-subpopulation MPHGP measured against the
standalone benchmarks MOGP and GSGP. From the top, training error,
unseen error and size.
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Figure A.13.: Toxicity (LD50) - Performance of 2-subpopulation MPHGP measured
against the standalone benchmarks MOGP and GSGP. From the top, train-
ing error, unseen error and size.
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Figure A.14.: Concrete - Performance of 2-subpopulation MPHGP measured against the
standalone benchmarks MOGP and GSGP. From the top, training error,
unseen error and size.
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Figure A.15.: Energy - Performance of 2-subpopulation MPHGP measured against the
standalone benchmarks MOGP and GSGP. From the top, training error,
unseen error and size. MPHGP with f = 50 and MPHGP* with f = 25.
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%F Train Unseen Size
MPHGP vs MOGP 1.73E-06 0.00066 1.73E-06
MPHGP vs GSGP 0.64352 0.25364 2.13E-06

Table A.26.: Bioavailability (%F) - Rank-Sum test results in terms of p-values, for
MPHGP-2

PPB Train Unseen Size
MPHGP vs MOGP 1.73E-06 0.00385 1.73E-06
MPHGP vs GSGP 0.00171 0.18462 2.97E-05

Table A.27.: PPB - Rank-Sum test results in terms of p-values, for MPHGP-2

LD50 Train Unseen Size
MPHGP vs MOGP 0.53044 0.31849 1.53E-05
MPHGP vs GSGP 1.73E-06 0.03501 1.73E-06

Table A.28.: Toxicity (LD50) - Rank-Sum test results in terms of p-values, for MPHGP-2

Concrete Train Unseen Size
MPHGP* vs MOGP 1.73E-06 1.73E-06 1.73E-06
MPHGP* vs GSGP 0.38203 0.87740 0.00080

Table A.29.: Concrete - Rank-Sum test results in terms of p-values, for MPHGP*-2

Energy Train Unseen Size
MPHGP* vs MOGP 1.73E-06 2.13E-06 1.73E-06
MPHGP* vs GSGP 0.22102 0.64352 8.47E-06

Table A.30.: Energy (f = 25, r = 0.35) - Rank-Sum test results in terms of p-values, for
MPHGP*-2
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Figure A.16.: Bioavailability (%F) - Introspection of 2-subpopulation MPHGP.
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Figure A.17.: PPB - Introspection of 2-subpopulation MPHGP.
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Figure A.18.: Toxicity (LD50) - Introspection of 2-subpopulation MPHGP.
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Figure A.19.: Concrete - Introspection of 2-subpopulation MPHGP and MPHGP*.
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Figure A.20.: Energy - Introspection of 2-subpopulation MPHGP. Note that f = 50
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Figure A.21.: Energy - Introspection of 2-subpopulation MPHGP*. Note that f = 25
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A.4 INCREASING NUMBER OF SUBPOPULATIONS
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Figure A.22.: Bioavailability (%F) - Increasing number of subpopulations of MPHGP.
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Figure A.23.: PPB - Increasing number of subpopulations of MPHGP.
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Figure A.24.: Toxicity (LD50) - Increasing number of subpopulations of MPHGP.
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Figure A.25.: Concrete - Increasing number of subpopulations of MPHGP.
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Figure A.26.: Energy - Increasing number of subpopulations of MPHGP.
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ns 2 4 8 20 40
2 - 0.15286 0.49080 0.46528 0.86121
4 0.00014 - 0.18462 0.61431 0.37094
8 0.00003 0.05984 - 0.29894 0.97539

20 0.00007 0.10201 0.46528 - 0.61431
40 0.00057 0.18462 0.55774 0.39333 -

Table A.31.: Bioavailability (%F) - Wilcoxon Rank-Sum tests on training and unseen er-
rors for an increasing number of subpopulations. Below diagonal lie the
p-values for tests on training error and above for unseen error. Migration
frequency f = 50.

ns 2 4 8 20 40
2 - 0.26230 0.03327 0.00277 0.02703
4 1.80E-05 - 0.73433 0.11093 0.22102
8 1.92E-06 1.49E-05 - 0.22888 0.36004

20 1.73E-06 5.75E-06 0.15286 - 0.87740
40 1.73E-06 1.73E-06 1.24E-05 0.00773 -

Table A.32.: PPB - Wilcoxon Rank-Sum tests on training and unseen errors for an in-
creasing number of subpopulations. Below diagonal lie the p-values for tests
on training error and above for unseen error. Migration frequency f = 50.

ns 2 4 8 20 40
2 - 0.36004 0.84508 0.73433 0.32857
4 5.31E-05 - 0.27116 0.64352 0.44052
8 4.07E-05 0.82901 - 0.28021 0.74987

20 6.89E-05 0.30861 0.50383 - 0.90993
40 0.00015 0.47795 0.55774 0.57165 -

Table A.33.: Toxicity (LD50) - Wilcoxon Rank-Sum tests on training and unseen errors
for an increasing number of subpopulations. Below diagonal lie the p-values
for tests on training error and above for unseen error. Migration frequency
f = 50.

ns 2 4 8 20 40
2 - 0.00049 8.47E-06 3.18E-06 1.36E-05
4 2.84E-05 - 0.00049 8.47E-06 1.02E-05
8 5.75E-06 1.13E-05 - 0.01108 0.00258

20 1.73E-06 2.13E-06 0.00096 - 0.12044
40 1.73E-06 1.73E-06 0.00011 0.03160 -

Table A.34.: Concrete - Wilcoxon Rank-Sum tests on training and unseen errors for an
increasing number of subpopulations. Below diagonal lie the p-values for
tests on training error and above for unseen error. Migration frequency f =
50.
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ns 2 4 8 20 40
2 - 0.27116 0.00072 3.72E-05 3.11E-05
4 0.00045 - 0.00277 2.84E-05 2.13E-06
8 1.92E-06 1.49E-05 - 0.02183 0.00196

20 1.73E-06 1.73E-06 0.02431 - 0.09777
40 1.73E-06 1.73E-06 3.72E-05 0.00822 -

Table A.35.: Energy - Wilcoxon Rank-Sum tests on training and unseen errors for an
increasing number of subpopulations. Below diagonal lie the p-values for
tests on training error and above for unseen error. Migration frequency f =
25.
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A.5 RUNNING TIMES
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Bioavailability (%F): Plasma Protein Binding level (PPB):

Toxicity (LD50):

Concrete: Energy:

Figure A.27.: Median running time over 30 independent runs. Notes: (a) MOGP-ß and
GSGP-ß are the single-population benchmarks of MOGP and GSGP with-
out the cosine function; (b) MPHGP*-2 is the special MPHGP with two
subpopulations with f = 5 and r = 0.5 (thus, 100 individuals) - this is an
extremely worse scenario in terms of speed; (c) MPHGP-4 to MPHGP-40
represent the base MPHGP with a number of subpopulations correspond-
ing to {4, 8, 20, 40} with the number of migrants specified by 2.3 and
f = 50 except for the Energy dataset where f = 25.
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Algorithm %F PPB LD50 Concrete Energy
MOGP 0:00:05 0:00:02 0:00:03 0:00:09 0:00:07
GSGP 0:00:12 0:00:05 0:00:09 0:00:39 0:00:27
MPHGP*-2 0:12:51 0:05:46 0:00:22 1:08:07 0:29:36
MPHGP-4 0:06:24 0:03:07 0:00:44 0:34:37 0:19:59
-8 0:03:45 0:01:46 0:00:43 0:18:45 0:09:04
-20 0:01:50 0:00:45 0:00:36 0:09:40 0:05:12
-40 0:01:31 0:00:50 0:00:31 0:07:38 0:05:00

Table A.36.: Median running time [h:mm:ss] with increasing number of subpopulations.

%F MOGP-ß GSGP-ß MPHGP*-2 MPHGP-4 -8 -20 -40
MOGP-ß - 3.11E-05 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06
GSGP-ß 1.73E-06 - 1.80E-05 1.73E-06 1.73E-06 1.73E-06 1.73E-06

MPHGP*-2 1.73E-06 1.73E-06 - 0.00042 5.75E-06 9.32E-06 1.13E-05
MPHGP-4 1.73E-06 1.73E-06 2.35E-06 - 0.00984 2.88E-06 0.00927

-8 1.73E-06 1.73E-06 1.73E-06 0.00241 - 3.41E-05 4.86E-05
-20 1.73E-06 1.73E-06 1.73E-06 0.02849 0.51705 - 0.67328
-40 1.73E-06 1.73E-06 1.73E-06 2.35E-06 0.86121 0.09777 -

Table A.37.: Bioavailability (%F) - Statistical significance of impact of number of subpop-
ulations on running times and size. The p-values pertain to the Wilcoxon
Rank-Sum test and significance at 5% is highlighted with light grey. Below
the diagonal the Rank-Sum test is performed on the samples of results of
running times; above the diagonal, of size.

PPB MOGP-ß GSGP-ß MPHGP*-2 MPHGP-4 -8 -20 -40
MOGP-ß - 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06
GSGP-ß 1.73E-06 - 0.00211 2.88E-06 1.73E-06 1.73E-06 1.73E-06

MPHGP*-2 1.73E-06 1.73E-06 - 0.00031 4.29E-06 6.98E-06 1.92E-06
MPHGP-4 1.73E-06 1.73E-06 2.60E-06 - 0.00042 1.73E-06 0.00039

-8 1.73E-06 1.73E-06 1.73E-06 1.92E-06 - 5.22E-06 2.35E-06
-20 1.73E-06 1.73E-06 1.73E-06 0.00873 0.17791 - 0.15886
-40 1.73E-06 1.73E-06 1.73E-06 1.73E-06 0.81302 0.86121 -

Table A.38.: PPB - Statistical significance of impact of number of subpopulations on run-
ning times and size. The p-values pertain to the Wilcoxon Rank-Sum test
and significance at 5% is highlighted with light grey. Below the diagonal
the Rank-Sum test is performed on the samples of results of running times;
above the diagonal, of size.
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LD50 MOGP-ß GSGP-ß MPHGP*-2 MPHGP-4 -8 -20 -40
MOGP-ß - 1.73E-06 1.73E-06 2.56E-06 1.92E-06 1.73E-06 1.92E-06
GSGP-ß 1.73E-06 - 1.73E-06 1.73E-06 1.73E-06 1.73E-06 2.35E-06

MPHGP*-2 1.73E-06 1.73E-06 - 0.04949 0.00049 1.24E-05 7.69E-06
MPHGP-4 1.73E-06 8.47E-06 0.00499 - 0.06871 0.36004 0.00241

-8 1.73E-06 3.18E-06 0.00019 0.34935 - 0.14704 0.02183
-20 1.73E-06 1.92E-06 2.60E-05 0.01319 0.40483 - 0.51705
-40 1.73E-06 1.73E-06 0.00039 0.31849 0.29894 0.41653 -

Table A.39.: Toxicity (LD50) - Statistical significance of impact of number of subpopu-
lations on running times and size. The p-values pertain to the Wilcoxon
Rank-Sum test and significance at 5% is highlighted with light grey. Below
the diagonal the Rank-Sum test is performed on the samples of results of
running times; above the diagonal, of size.

Concrete MOGP-ß GSGP-ß MPHGP*-2 MPHGP-4 -8 -20 -40
MOGP-ß - 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06
GSGP-ß 1.73E-06 - 0.00053 1.92E-06 1.73E-06 2.35E-06 3.18E-06

MPHGP*-2 1.73E-06 1.73E-06 - 5.03E-05 1.73E-06 1.02E-05 8.07E-06
MPHGP-4 1.73E-06 1.73E-06 1.73E-06 - 0.00015 1.73E-06 5.31E-05

-8 1.73E-06 1.73E-06 1.73E-06 8.47E-06 - 4.73E-06 2.13E-06
-20 1.73E-06 1.73E-06 1.73E-06 0.00015 0.14139 - 0.00773
-40 1.73E-06 1.73E-06 1.73E-06 1.73E-06 0.00062 0.00642 -

Table A.40.: Concrete - Statistical significance of impact of number of subpopulations on
running times and size. The p-values pertain to the Wilcoxon Rank-Sum
test and significance at 5% is highlighted with light grey. Below the diagonal
the Rank-Sum test is performed on the samples of results of running times;
above the diagonal, of size.

Energy MOGP-ß GSGP-ß MPHGP*-2 MPHGP-4 -8 -20 -40
MOGP-ß - 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06
GSGP-ß 1.73E-06 - 4.07E-05 1.73E-06 1.92E-06 1.92E-06 1.73E-06

MPHGP*-2 1.73E-06 1.73E-06 - 0.00031 2.60E-05 8.47E-06 1.73E-06
MPHGP-4 1.73E-06 1.73E-06 1.73E-06 - 0.00019 1.73E-06 1.73E-06

-8 1.73E-06 1.73E-06 1.73E-06 1.73E-06 - 1.64E-05 2.60E-06
-20 1.73E-06 1.73E-06 1.73E-06 2.60E-05 0.00143 - 0.12044
-40 1.73E-06 1.73E-06 1.73E-06 1.73E-06 0.00017 0.94261 -

Table A.41.: Energy - Statistical significance of impact of number of subpopulations on
running times and size. The p-values pertain to the Wilcoxon Rank-Sum
test and significance at 5% is highlighted with light grey. Below the diagonal
the Rank-Sum test is performed on the samples of results of running times;
above the diagonal, of size.
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