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Abstract

Cellulose is the world’s most abundant, biocompatible, non-toxic, biodegradable poly-

mer obtained from renewable sources. However its dissolution problems hampers a

more generalized application. ILs are generally defined as organic/inorganic salts with a

melting point lower than 100◦C which present a good solubility for polar and non-polar

compounds such as organic, inorganic or polymeric materials like cellulose. Cellulose

solvents are scarce and, as such, the modification of its properties is a challenge.

In this dissertation the main goal was to combine some of the unique IL’s proper-

ties with the intrinsic cellulose features. Thus, our strategy was to synthesize cellulose

derivatives that enable the dissolution process in order to, later on, obtain a polymer gel.

In the first stage we obtained ionic liquid grafted cellulose derivatives. Afterwards, we

performed an extensive solubilization study to select the appropriate conditions to obtain

the gel state. To further understand the solvents’ dynamics and their relevance in the

gelation process, these conditions were followed by NMR and Rheology.

The obtained results allowed the proposal of a gelation model for these cellulosic

polymers. The proposed strategy could be a starting point to design and produce Ionic

Liquid Paper (ILP), a material that could have potential for electrochemical applications.

Keywords: Cellulose; Cellulose derivatives; polymer ionic liquid; Gels; Nuclear Magnetic

Resonance; Rheology.

ix





Resumo

A celulose é um dos polímeros mais abundantes do mundo, é biocompatível, não

tóxico, biodegradável e obtém-se a partir de fontes renováveis. No entanto, a sua difícil

dissolução dificulta uma aplicação mais generalizada. Os líquidos iónicos são espécies

iónicas geralmente definidas como sais orgânicos/inorgânicos com um ponto de fusão

inferior a 100◦C e apresentam boas capacidades de dissolução de compostos polares e

não-polares tais como compostos orgânicos, inorgânicos ou polímeros como a celulose.

Não existem muitos solventes capazes de dissolver a celulose por isso, a modificação das

suas propriedades é um desafio.

Nesta dissertação o principal objectivo foi combinar algumas das propriedades dos

LIs com as características da celulose. Assim, a nossa estratégia foi sintetizar derivados

de celulose que facilitem o processo de dissolução para depois obter géis a partir dos

mesmos. Numa primeira fase, sintetizou-se celulose derivatizada com líquidos iónicos

e depois realizou-se um estudo intensivo de solubilização para selecionar as melhores

condições para se obter o estado de gel. Para entender a dinâmica dos solventes e a sua

relevância no processo de gelificação foram utilizadas RMN e Reologia como técnicas de

referência.

Os resultados permitiram assim a obtenção de um possível modelo de gelificação para

estes derivados de celulose. A estratégia proposta pode ser assim, um ponto de partida

para aprofundar estudos e produzir Ionic Liquid Paper (ILP), um material que pode ter

potencial para, por exemplo, aplicações eletroquímicas.

Palavras-chave: Celulose; Derivados de Cellulose; Líquidos Iónicos Poliméricos; Géis;

Ressonância Magnética Nuclear; Reologia.
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1
Forward

This preliminary chapter intends to briefly introduce the motivation of this work and

the main objectives in this dissertation. An outline of this manuscript is also presented.

1.1 Motivation

Cellulose is known to be the world’s most abundant polymer. [1] It is biocompatible,

non-toxic, biodegradable, renewable and environmentally friendly material. [2] All this

interesting features are enough to arise curiosity and research into new applications for

this material. Thus, cellulose and its derivatives have become an alternative to synthetic

polymers, e. g., in gel state they are used in multiple fields like drug delivery system, [3]

sensors [4] and tissue engineering [5].

In the last decades, scientists have designed a new family of polymer materials -

Polymer ionic liquids (PILs).[6] These new materials are a class of polyelectrolytes which

carry an Ionic Liquid (IL) species in each of the repeating units that are not soluble in

water but instead in organic solvents. [7] PILs present some of the unique properties

of ILs such as ionic condutivity, thermal and chemical stability. The use of cellulose

as a backbone of PILs allows the production of new materials that bring together IL’s

properties with the intrinsic cellulose features.

This will be a new and promising material that could be explored in several fields (e.

g., with optical properties, [8] as an healing agent [9] or with conductive properties [10])

after their development and structural and mechanical comprehension.
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CHAPTER 1. FORWARD

1.2 Goals and Expected Contributions

The goal of this work is the development of a new soft material that combines IL

and cellulose properties toward the production of ionic liquid paper - a new polymer

gels. For that purpose we take advantage of two advanced techniques, Nuclear Magnetic

Resonance (NMR) and Rheology to study the micro- and macromolecular behavior.

Therefore, the four main contributions are:

• Development and characterization of a new cellulose derivative - Ionic liquid gel;

• Study the gelation process of cellulose derivatives in order to understand their

physical and chemical properties for future applications;

• Understand the solvents’ behavior and their relevance in the gelation process;

• Contribute with a detailed view on the dissolution and gelation process using NMR

spectroscopy to study materials using Spin-lattice relaxation time (T1), Spin-spin re-

laxation time (T2), Nuclear Overhauser Effect Spectroscopy (NOESY) and Diffusion

Ordered Spectroscopy (DOSY) experiments;

1.3 Outline

This document is organized as follows:

• Chapter 2 presents a detailed review of the literature on the dissertation research

field. Firstly the cellulose’s structural level understanding is carried out. Then an

overview of the most used solvents in cellulose dissolution is presented. A short

review of the most used cellulose derivatives is presented and polymer ionic liquids

are introduced. Finally, we present the strategy of the outlined work in order to

achieve the proposed goals.

• Chapter 3 presents a brief theoretical background of the techniques used. Herein is

briefly explained each technique and their contributions in this work. It begins by

NMR spectroscopy and then rheology technique is presented.

• Chapter 4 presents the experimental procedures used - a detailed description of the

synthesis, systems characterization and gelation studies.

• Chapter 5 presents the polymer characterization through the interpretation of FTIR,

CP-MAS and DRX diffraction experiments.

• Chapter 6 presents the results of this work. Here were made preliminary solubi-

lization experiments of the polymers under study using BmimCl/DMSO binary

mixture as solvent. Then for gelation process are presented both paths considered.

For each one chemical shifts, 13C - T1 and 1H - T2 relaxations, 1H-DOSY and 1H,

2
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1H-NOESY were measured in order to understand the dynamics of the system at

molecular level. Aiming to study the viscoelastic properties, rheology technique

was used (temperature and frequency sweep tests).

• Conclusions and future work are presented in chapter 7.
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2
Introduction

As a consequence of the technological evolution and the new environmental chal-

lenges contemporary society faces, there is a need to create and develop sustainable and

functional materials. In this context, Materials Science has been growing and currently

plays an important role in society. For the scientific community the challenge is to create

materials with specific physical, chemical or mechanical properties. Soft materials have

a variety of physical states and are easily deformed by thermal stresses, thermal fluctu-

ations or under stress.[11] These exist under different types, such as colloids, polymers

or gels. In the last years the interest in soft functional materials having a fibrous network

structure has been increasing. Electrochemical, drug delivery, catalysis or sensing are

their most used technological applications. This master thesis focuses on the study of

cellulose ionic liquid polymer gels.

2.1 Cellulose

Cellulose is a polysaccharide formed from repetitive D-glucose units, which are linked

together by β (1→4)-glycosidic bonds, figure 2.1.[2] As the most abundant natural poly-

mer on earth cellulose is a biocompatible, biodegradable, renewable and environmentally

friendly material. Plants, cotton or ramie are the major natural sources of this poly-

mer.[12] Cellulose is also produced by some green algae, bacteria and fungi. Due to its

natural availability this polymer can be a good raw material to be explored in many fields,

such as textile, food or pharmaceutical industry.[1, 13] These features make cellulose a

polysaccharide capable of replacing synthetic polymers and reducing the dependence on

fossil fuel resources.

With the increasing of environmental responsibility starting in the 19th century, the

search for sustainable and environmentally friendly products and processes has become
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CHAPTER 2. INTRODUCTION

imperative. In this context, the research on the renewable resource cellulose started.

In 1838, the French chemist Anselme Payen found the cellulose’s molecular formula,

C6H1005 which increased the scientific interest in this material and later, in 1870,the

synthesis of cellulose nitrate took place. [14]

In the last decades several scientific studies have been focusing on cellulose derivatives

and their applications as coatings, optical films as well as property-determining additives

in building materials or composites and nanocomposites as reflected by the review of

Klemm et al.. [15] More recently, cellulose and its derivatives have become an important

material due to its multiple applicability. This increasing interest results from the unique

structure of cellulose.

2.1.1 Molecular Structure

As previously described, cellulose is made of repeating glucose units. Each two anhy-

droglucose rings are linked together through an oxygen covalently bonded to the C-1 of

one glucose ring and the C-4 of the adjoining ring. This bond is called the β-1,4 glycosidic

bond and is susceptible to the hydrolysis. As can be seen in figure 2.1 the Anhydroglu-

cose unit(s) (AGU) contain hydroxyl groups at C-2, C-3 (secondary) and C-6 (primary)

positions. In this conformation the free hydroxyl groups are positioned in the ring plane

(equatorial) while the hydrogen atoms are in the axial position. The molecular size of

cellulose depends on the number of repeating units and it can be defined as Degree of

Polymerization (DP). The DP value depends on the pretreatment of cellulose.

Figure 2.1: Molecular structure of cellulose. Adapted from reference [16].

The hydroxyl groups at both ends of the cellulose chain show different behavior. The

glucose end group with a free C-1 hydroxyl group has reducing properties, while the

C-4 end is non-reducing, figure 2.1.[1, 17] The presence of these hydroxyl groups and

chirality offers a range of opportunities for synthesizing cellulose derivatives with desired

properties for specific applications. The abundant hydroxyl groups lead to strong intra-

and intermolecular hydrogen bonds, figure 2.2, making cellulose a relatively stable poly-

mer. However, due to its hydrogen bonding cellulose can neither be melted nor dissolved

in most organic solvents.[13] In section 2.2 this issue will be further addressed.
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Figure 2.2: Molecular Structure of cellulose showing the intermolecular and intra-
molecular hydrogen bonds. Adapted from reference [18]

2.1.2 Supramolecular Structure

During cellulose formation, van der Waals and intermolecular hydrogen bonds be-

tween hydroxyl groups and oxygens of adjacent molecules promote aggregation of multi-

ple cellulose chains, forming fibrils.[18] In turn, the chemical composition, conformation

and hydrogen bonding system of cellulose is responsible for the tendency of cellulose to

form crystalline aggregates. For this reason, within the cellulose fibrils there are regions

where the cellulose chains are arranged in a highly ordered crystalline structure and re-

gions that are low order, called amorphous regions.[1, 15] The different morphological

structures of cellulose depend on its unit cell dimensions and their chain polarity.

There are four types of cellulose crystal structures - cellulose I, II, III and IV. [1, 15,

18] Cellulose I, or native cellulose, is the most abundant structure and can be converted

to either cellulose II (most stable structure) and cellulose III by treatment with aqueous

sodium hydroxide or by dissolution of the cellulose and subsequent precipitation. [15]

Cellulose IV can be obtained through the treatment of the other structures (I, II and III)

in a suitable liquid at high temperature under tension.[1]

There is not yet a defined hydrogen bonding pattern but according to the current

state of the art, the intermolecular hydrogen bond between O-6-H and O-3 of another

chain (figure 2.2) is generally considered the most important one for cellulose I.[1] As

the most abundant structure, cellulose I has two polymorphs, a monoclinic structure Iβ

and a triclinic structure Iα (Iβ is the most abundant polymorph). These two polymorphic

structures only differ in the orientation of the hydrogen bonds on the plane [15, 17] and,

therefore, they can be easily distinguished through X-ray crystallography. Cellulose crys-

tallinity index can also be obtained through this technique.[18] Due to its supramolecular

structure it becomes difficult to dissolve cellulose. Therefore, in the next section this

theme will be explored.

2.2 Cellulose Dissolution

As already mentioned, cellulose cannot be dissolved in most organic solvents due to

its intra- and intermolecular hydrogen bonds. For this reason, over the past few years
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there has been an intensive research on the solvents which disrupt its hydrogen bonds.

[1, 19] There are two different systems of solvents - derivatizing and non-derivatizing

solvents. Herein will be presented the most important and used solvent systems on

cellulose dissolution.

2.2.1 Derivatizing Solvents

With the derivatizing solvents the dissolution process occurs in combination with the

formation of an unstable ester, ether or acetyl derivative.[16] The most important indus-

trial method is the viscose process based on CS2/NaOH/H2O. The N2O4/Dimethylformamide

(DMF) and Dimethyl Sulfoxide (DMSO)/ Paraformaldehyde (PF) systems herein summa-

rize in table 2.1 will also be described bellow.

Table 2.1: Examples of derivatizing solvents and formed intermediaries. Adapted from
reference [16]

Derivatizing solvents Intermediate R in (Cell-O-R)

CS2/NaOH/H2O Cellulose Xanthate CSSNa
N2O4/DMF Cellulose nitrite NO

DMSO/Paraformaldehyde Methylol cellulose CH2OH

a) CS2/NaOH/H2O System

The most used method in the industry for cellulose dissolution is the CS2/NaOH/H2O

system which forms cellulose xanthate from cellulose in seven steps. First, cellulose reacts

with NaOH to form alkali cellulose. Then, it is oxidized and depolymerized. On the third

step the white crumb produced is reacted with gaseous or liquid carbon disulfide (CS2)

to produce the intermediate cellulose xanthate. Afterwards, xanthate is dissolved again

in NaOH and, finally undergoes washes and filtrations to obtain the final product. It is

not a green process due to carbon disulfide production, an environmentally unfriendly

waste product. [1, 16]

b) N2O4/DMF System

The N2O4/DMF system involves formation of the intermediate cellulose nitrite with

the hydroxyl groups being converted to nitrite ester groups. [1] After the heterolytic cleav-

age of the N2O4, the process continues with the esterification of cellulose to the nitrite.

The solvent system is able to dissolve cellulose within minutes without pretreatment. [20]

The soluble cellulose nitrite has the ability to undergo ester exchange reactions. Toxico-

logical hazards due to the formation of nitrous amines should be considered when using

this system, which has also been studied for the preparation of cellulose derivatives.
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c) DMSO/PF System

The derivative formed in the DMSO/PF system is methylol cellulose. [16] Methylol

cellulose is able to participate in the synthesis of cellulose derivatives. Carboxymethy-

lation, carbanilation, methylation and hydroxyalkylation of cellulose has been reported.

[1] Finally, the major obstacles in this solvent system is the commercialization of DM-

SO/PF system. The solution requires a considerable excess of PF and the recovery is not

optimized.

2.2.2 Non-derivatizing Solvents

Non-derivatizing solvents are defined as solvents that have the ability to dissolve

cellulose only by intermolecular interactions.[16] Solvent systems such as N- methyl-

morpholine -N-oxide (NMMO), - Lyocell process - LiCl/Dimethylacetamide (DMA) and,

more recently ionic liquids (ILs) are the most relevant non-derivatizing solvent systems

on the cellulose dissolution process.[1]

a) N-methylmorpholine-N-oxide/water System

An alternative solvent used for cellulose dissolution is NMMO and its monohydrate,

NMMO·H2O. Due to its strong N-O dipole in combination with water NMMO can quickly

dissolve cellulose at a temperature of about 85◦C to a clear melted solution. [16] The in-

teractions between NMMO and cellulose can be interpreted as a hydrogen bond-complex

formation with cellulose hydroxyl groups, figure 2.3. [1] This NMMO/cellulose sys-

tems becomes unstable because at high temperatures cellulose undergoes severe degrada-

tions.[15]

Figure 2.3: NMMO/Cellulose complex.[1]

b) Lithium Chloride/Dimethylacetamide System

A solution of LiCl (typically 10%) in DMA (DMA/LiCl) is one of the most relevant

solvent systems in cellulose dissolution.[15] This system is based on the interactions

of the [Li(DMA)x]Cl complex with the cellulose hydroxyl groups (figure 2.4) and was

first reported by McCormick and Lichatowich in 1979. [21] Currently, this binary mix-

ture is used for synthesis and analytical purposes. [15] It is very efficient and stable in

homogeneous cellulose esterification and other reactions due to a full availability of cel-

lulose hydroxyl groups in solution. With this feature, it is easier to control the Degree
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of Substitution (DS) and cellulose can be dissolved without residue and detectable chain

degradation. [1].

Figure 2.4: Li-DMA+Cl−/Cellulose complex.[16]

c) Ionic Liquids

ILs are generally defined as organic/inorganic salts with a melting point lower than

100 ◦C presenting a good chemical and electrochemical stability, low flammability, negli-

gible vapor pressure, high ionic conductivity and a good solubility for polar and non-polar

compounds such as organic, inorganic or polymeric materials. [6, 22] They can be used

in electrochemistry,[23] nanotechnology[24] and biotechnology [25] and have the ability

to dissolve polymeric compounds by ionic, hydrophobic and hydrogen bond interactions.

Due to all of these properties they are able to replace traditional Volatile Organic Com-

pound (VOC)s used in chemical reactions and extractions. [26, 27] Since there are a large

number of cations and anions, there is a significantly large number of possible cation-

anion conjugations. The ILs properties derive from its structure and the many variation

possibilities have resulted in the capability to optimize them for specific applications, and

as such ILs are called tailor made. Typically, the most reported ILs in literature are based

on imidazolium, aliphatic ammonium, phosphonium and pyrrolidinium cations.[28] The

anions can be selected according to the final properties, often modulating the viscosity,

solubility, polarity, density, melting point and stability (chemical and thermal) of the final

ionic liquid.

A study with N-ethylpyridinium chloride as a cellulose dissolving agent was made in

1969 by Husemann and Siefert.[29] In 2002, Swatloski et al. [30] reported a dissolution

process of cellulose by 1-butyl-3-methylimidazolium chloride (BmimCl) and other ionic

liquids. During the last years the scientific interest concerning the dissolution of cellulose

in ILs has intensified [7, 31, 32] and currently several novel materials can be prepared

from cellulose-ionic liquid solutions such as porous cellulose materials, [33] function-

alized cellulose microparticles.[34] and bioactive cellulose films.[35] The anions of ILs

disrupt the native hydrogen-bonded network in cellulose through interactions - which

10



2.2. CELLULOSE DISSOLUTION

are new hydrogen bonds - with hydroxyl groups of cellulose. On the other hand the

cation can interact through hydrogen bonds, van der Walls, hydrophobic or non-specific

interactions. [7] A interesting example of the cellulose dissolution power by imidazolium-

based ionic liquids is 1-ethyl-3-methylimidazolium acetate (EmimAc) that can dissolve

Avicel®PH101 up to 20% at room temperature within one hour. [36]

1-Butyl-3-Methylimidazolium Chloride (BmimCl)

BmimCl, figure 2.5, is reported to be a direct cellulose solvent. It is important to

understand the mechanism of cellulose in ILs. Herein, the current state of the art about

cellulose dissolution by BmimCl will be presented.

Figure 2.5: 1-Butyl-3-Methylimidazolium Chloride structure

In 2006, Remsing et al.[32] demonstrated through 13C and 35/37Cl NMR relaxations

measurements that the solvation of cellulose by BmimCl involves hydrogen bonding be-

tween carbohydrate hydroxyl groups and the IL chloride anions in a 1:1 stoichiometry.

Then, in 2011, Gross et al.[37] calculated the density distribution function of the chloride

anions and 1-butyl-3-methylimidazolium (Bmim) cations around the dissolved cellulose

and suggested that the imidazolium ring of Bmim cations had closer contacts with ether

oxygen atoms and CH groups along the axial direction than with groups along the equato-

rial direction. In conclusion, they proposed that both the anion and the cation of BmimCl

disrupt the cellulose inter-sheet contacts. More recently, Mostofian et al.[38] performed

all-atom molecular dynamic simulations of a cellulose elementary fibril in BmimCl. The

results suggested that Bmim cation interacted with cellulose in two different ways: stack-

ing on cellulose strands on the hydrophobic surface and intercalating between chains in

hydrophilic surfaces. It was believed that intercalation of the cations between cellulose

strands on the two surfaces facilitated cellulose dissolution by loosening the layers of the

cellulose structure. Finally, thermodynamic studies were also made by Gross et al.[39]

and it was reported that the separation of the cellulose chains to the dissociated state in

BmimCl led to an entropy reduction of the solvent. This result suggested that some sol-

vent molecules were bound to cellulose chains and the intra-molecular degree of freedom

of these chains was also reduced upon dissociation. The next section will introduce the

most common cellulose derivatives with the aim of understanding their properties and

applications. With this, we will have a broad overview of cellulose and its applications.
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2.3 Cellulose Derivatives

In order to convert cellulose to a soluble compound, new water-soluble cellulose

derivatives were produced. Herein is presented an overview of the three most synthe-

sized cellulose derivatives. Typically, cellulose derivatives involve a chemical modifi-

cation that disrupts the 2, 3 and 6-hydroxyl bonds. In 1905 Suida synthesized for the

first time a cellulose derivative - Methylcellulose (MC)- [20] and in 1920 the synthesis of

Carboxymethylcellulose (CMC) and Hydroxypropylcellulose (HPC) was reported. The

most common reactions are esterification, etherification (figure 2.6) and grafting of cellu-

lose.[40]

Figure 2.6: Synthetic approaches for cellulose derivatives. Adapted from reference [11]

Cellulose is esterified with acid anhydrides, acyl chlorides or with acids in the pres-

ence of dehydrating agents. It is etherified by Williamson ether synthesis with alkyl

halides in the presence of a strong base, with alkylene oxides in a weakly basic medium

and by a Michael addition of acrylic or related unsaturated compounds. [16, 40, 41] The

three most relevant cellulose derivatives are MC, CMC and HPC, figure 2.7, that can be
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obtained through etherification of cellulose. Solubility combined with chemical stability

and non-toxicity are the most interesting features of these cellulose ethers.

Figure 2.7: Cellulose Derivatives: a) MC, b) CMC and c) HPC

As a hydrophobically modified cellulose derivatives, methylcellulose results from

a nucleophilic attack of an alkoxide group of cellulose on the acceptor carbon atom

of the methyl chloride - an SN2 reaction. [20] This methylation preferentially occurs

at the C2 and C6 cellulose hydroxyl groups and commercially has a DS range of 1.5-

2.0. [16] It has other interesting properties such as easy solubility in cold water and is

amphiphilic due to the presence of hydrophilic and hydrophobic surfaces. One of the

most relevant applications is the ability to form reversible gels in aqueous solutions. [1]

Sodium Carboxymethylcellulose (CMC) is a polyelectrolyte water-soluble, anionic and

linear polymer[41] with a DS range between 0.4 and 1.2. It is used in detergent, textile and

food industries and cosmetics worldwide. [40] Finally, hydroxypropylcellulose is obtained

through reaction of cellulose with propylene oxide. [41] Commercial HPC usually has a

Molar Substitution (MS) (defined as the average number of hydroxyl groups per glucose

unit) range of 3.5-4.5 and a DS between 2.2-2.8. [16, 20] It can act as a thickener, binder,

film coating and suspension agent.
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2.4 Polymeric Ionic Liquids

In the last decades, as a consequence of the research into new polymeric materials

based on its future functionalities such as mechanical reinforcement or gas barrier prop-

erties, scientists have designed a new family of polymer materials - Polymer Ionic Liquids

(PILs) - with particular properties and interesting applications.[42–44]. There is not a

clear definition for PILs. Fundamentally, PILs refer to a special type of polyelectrolytes

which carry an IL species in each of the repeating units that are not soluble in water but in

organic solvents. [10] This is mainly due to the hydrophobic character of the counter-ion

and the reduced coulombic interactions. [6] PILs present some of the unique properties

of ILs (ionic conductivity, thermal stability, tunable solution properties and chemical sta-

bility) together with the intrinsic polymer properties.[6] The major advantages of forming

a polymeric ionic liquid are enhanced stability, flexibility and durability, in addition to

improved control over its meso-to nano-structure.[45] There are many interesting appli-

cations of these new polymeric materials. They can be used as novel polymer electrolytes

[46], structuration agents of polymer matrices [47], plasticizers [48] or as surfactants

[49] in the preparation of functional polymers. Currently, PILs are used as a medium

for gas storage or transport, coatings for the detection of a number of environmental

contaminants, matrix for enzyme immobilization, cellulose dissolution agent or as cata-

lysts supports or precursors of N-heterocyclic carbene organic catalysts. These are the

emerging applications of these new materials. [6]

2.5 Gels as Soft Materials

The scientific interest in gels as soft materials has been increasing due to the potential

technological applications in multiple areas - such tissue engineering,[5] sensors[4] and

drug delivery.[3] Significant progress has been achieved in the development of smart

gels with the ability to respond to external stimuli, such as temperature,[50] electrical

field,[51, 52] and light[4]. These unique properties have led to a diversity of applications

such as sensors, actuators, cell/drug delivery systems, tissue engineering and regenerative

medicine. There is not yet a consensus regarding a unique definition for the set of gel

characteristics. Fundamentally, a gel is characterized by the presence of at least two

components that trigger a three-dimensional (3D) solid scaffold, immobilizing a much

larger liquid volume.[53] It has a continuous structure with macroscopic dimensions that

is permanent on the time scale of an analytical experiment. Rheologically it exhibits

mechanical solid properties and maintains its form under the stress of its own weight,

behaving as a viscoelastic material.[54]

Gels can be classified according to the cross-linking type, source, medium and size.

[55] Regarding the type of cross-linking of the gels, they can be divided in two classes

- chemical and physical gels. Chemical gels are cross-linked by covalent bonds and are

nonreversible. Physical gels’ networks are held together by weak noncovalent interactions
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like hydrogen bonding, π-π stacking, donor-acceptor interactions, metal coordination,

host-guest interaction, van der Walls interactions and solvophobic forces. [56] This class

of gels is reversible due to their easy-to-break interactions.

2.6 Cellulose and Cellulose Derivatives Gels

Cellulose and its derivatives are nontoxic, biocompatible, biodegradable and abun-

dant in nature, thus it could be an alternative to synthetic polymer gels. Their strong

inter- and intra-molecular hydrogen bonds together with the hydrophobic interactions

between cellulose chains makes the dissolution process difficult which is crucial to obtain

the polymer gel.

Currently, most relevant and used solvents to obtain cellulose gels are DMA/LiCl,

DMSO and ILs (BmimCl and 1-allyl-3-methylimidazolium chloride (AmimCl)). H. Saito

et al. [57] and M. Patchan et al. [58] studied the synthesis in DMA/LiCl and properties of

cellulose-based hydrogels with high strength and transparency. They also evaluated the

properties of the resulting hydrogels, water content, optical transparency and tensile and

tear strengths. Finally, they correlated this features with cellulose concentration in order

to optimize the gelation process. Their results suggested that overnight activation time

(16 h) improves the optical transparency of the hydrogels from 77% to 97% at 550 nm and

controlling cellulose concentration and gelation humidity improves their tear strength by

as much as 200%. Even a small amount of water gave rise to a strong increase in viscosity

resulting in gelation. Another relevant observation to consider for the development of the

present master thesis is that Avicel®PH 101 hydrogels display good optical transparency.

Z. Wang et al. [59] have reported in 2012, a study using LiCl/DMSO for preparing

cellulose gels. Although the previously described optical improvement wasn’t achieved,

the dissolved in LiCl/DMSO, could be coagulated by ethanol to give translucent cellulose

gels, which could give rise to highly porous aerogels via solvent exchange drying.

Finally, the most recent and interesting solvents - ILs. They have revolutionized

the cellulose dissolution process and their gelation studies. In the last few years the

research focused on these solvents in cellulose dissolution has increased. [60] In addition

studies regarding cellulose gels can be found in the literature although there is still a

lack of experimental details. For instance in 2008, J. Kadokawa et al.[61] proposed the

preparation of a flexible gel from a solution of cellulose (15% w/w) in an ionic liquid,

BmimCl, by keeping it at room temperature for 7 days. The material was obtained by

formation of cellulose aggregates in the solution of cellulose, attributed to a gradual

absorption of water. Also, when the material was heated at 120oC, it became soft and by

keeping it at room temperature for 2 days, a more transparent gel was formed comparing

with the primary gel. More recently, R. Ariño et al.[62] developed a new gelation process

via coagulation. Cellulose was dissolved in an ionic liquid solvent and the resultant

solution was maintained during 4 days under a coagulation agent (water or ethanol)

vapor. The absorption of the coagulation agent was found to be related to the types of
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ionic liquid and cellulose. The stiffness of the polymer gel increased with the polymer

matrix content.

In 2016, C. Zhang et al.[63] reported new developments about the effect of DMSO

on cellulose dissolution with ILs. The results suggested that DMSO has a dual effect

depending on the concentration on solution. At lower concentrations it improves the

cellulose solvating ability of AmimCl but weakens it at higher concentrations. The reason

for this is the tight association between the cation and anion in the AmimCl network that

is loosened at low DMSO concentrations.

Gelation of cellulose derivatives occurs as result of dehydration of the chains along

with hydrophobic association of the chain segments, by which physical cross-links are

formed, leading to three-dimensional polymer-network structures. This depends on

the DS of the functional groups, polymer molar mass, temperature, etc. [11] A most

relevant example is methylcellulose (MC). Thermally induced gelation is reversible in

this polymer. Arvidson et al.[50] have reported, in 2013, new developments about MC

thermo-reversible gelation. They conclude that MC gelation has a strong dependence

on heating rate while the melting of the gel has little dependence on the cooling rate.

Additionally, the Tgel decreases with increasing MC concentration. It is believed that

water is the major factor for the gelation phenomena, since it disrupts the MC hydroxyl

group interactions creating new hydroxyl bonds. Also, MC gels depend on the chain

length, degree of substitution, substituents’ position, salt and polymer concentration.

[16]

2.7 Searching for Cellulose Derivatives - Ionic Liquid Gels

The aim of this dissertation is the development of a new cellulose derivative - ionic

liquid gel. This brief literature review evidenced the difficulties found in cellulose dis-

solution. One possible path to solve this problem is the modification of the cellulose

structure in order to increase the polymer solubility. Taking into account the interesting

ionic liquids features we devised a strategy to improve cellulose solubility were we could

both graft ionic liquids in the cellulose backbone and also use them as solvent systems,

figure 2.8.

This increased solubility will be paramount for the pretended polymer gelation. In

this sense it is crucial to characterize the polymer solvent interactions using NMR and

Rheology techniques as a mean to gain a deeper insight into the micro- and macromolec-

ular behavior of these systems.
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Figure 2.8: Pictorial representation of the strategy considered.
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3
Technical Background

This master thesis focuses on the molecular and mechanical studies of polymer gels.

For these studies techniques such as NMR spectroscopy, Rheology were used. Herein the

contributions of each technique for the studies will be presented.

3.1 NMR Spectroscopy

NMR spectroscopy can be defined as a technique that makes use of the interactions

between nuclear spins (I , 0) and electromagnetic Radio Frequency (RF) pulses to allow

the study of molecules at atomic scale (< angstrom). [64] Thus, it enables not only struc-

tural analysis but the study interaction between two molecules or even to determine the

dynamic of molecules in different states of matter. One of the drawbacks of this technique

is its relatively long timescale, which can be a disadvantage for observing fast phenomena

[65].

In this work the NMR tools explored were chemical shifts for 1H, T1 and T2, self-

diffusion and Nuclear Overhauser Effect (NOE). The establishment of a 3D macromolec-

ular arrangement and interactions were approached by chemical shift and NOE, respec-

tively. Dynamics were followed by DOSY and relaxation T1 and T2.

A proton in a molecule is shielded to a very small extent by its electron cloud, the

density of which varies with the chemical environment. This variations give rise to differ-

ences in chemical shift positions. [66] In a gelation process the electron density changes

with the local structural changes and as such, the chemical shift variations can be used to

follow this phenomena. Thus, knowing the chemical shift deviations, depending on the

features described above, it is possible to study the gelation process.

The relaxation plays a relevant role in NMR spectroscopy. It is possible to correlate it
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with the molecular dynamics, therefore allowing the understanding of the gelation pro-

cess. The mobility of the molecules is influenced by viscosity, temperature and molecular

weight. [65]

Figure 3.1: The spin-lattice relaxation time constant as a function of correlation time for
random field fluctuations. Typical ranges of correlation time are shown. [65]

Small molecules in non-viscous solvents and at higher temperatures presents fast

molecular reorientational tumbling. For solutions with higher viscosity or molecular

weight and low temperatures the reorientational rates become progressively slower and

consequently relaxation becomes more efficient, resulting in shorter T1 values, figure 3.1.

[64, 65]

T2 relaxation is important because xy-plane magnetization is directly related with

NMR signal appearance. In other words, this relaxation can be correlated with the spec-

tral line width and consequently with molecular motion, figures 3.2.

Figure 3.2: Effect of transverse relaxation process on NMR signal aspect. Adapted from
reference [64]

There are two types of coupling: scalar and dipolar. Scalar coupling can be defined
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as the indirect coupling that is transmitted through intermediate electron spins such

as those in intervening chemical bonds. [64] Dipolar coupling consists in the spacial

interactions between two spins, figure 3.3.

Figure 3.3: Dipolar interaction between two spins. Adapted from reference [65]

NOE is the change in intensity of one resonance when the spin transitions of a dipo-

larly coupled nucleus are somehow perturbed from their equilibrium populations. [65]

It depends on the distance between interacting spins (<5Å), type and mobility of the

nucleus, magnetic field strength and other relaxation processes. Therefore, acquiring

NOESY spectra makes it possible to get spatial correlations of the closest nuclei. This

technique allows the subsequent monitoring of the spatial intra- and intermolecular in-

teractions of the cellulose derivative ionic liquid systems.

Diffusion Ordered Spectroscopy (DOSY) has been described as an effective technique

to differentiate molecules according to their size.[64] It is based in the measurement of

the signal attenuation in a gradient stimulated spin echo. In a usual pulse sequence it

was added two Pulse Field Gradient (PFG). The PFG-NMR technique is the most used in

these studies because it allows the measurement of the self-diffusion coefficients of one or

several molecular constituents at a micrometric scale.[67] This technique can be useful in

the study of molecular interactions between the polymer, the ionic liquid and the solvent.

3.2 Rheology

Defined as a field of physics which studies the deformation of bodies and flow behavior

of matter,[68] rheology discloses information not only about flow behavior of liquids but

also about deformation behavior of solids. Rheology measures the opposition of the

material to flow due to an imposed deformation. Rheological behavior of matter can be

consider to be between two extremes: i) flow of ideal viscous liquid and ii) deformation

of ideal elastic solids. Materials in a non-ideal state show a combination of both, and are

considered as viscoelastic.

Rheometers allow the precise measurement of a complex material’s response to an

applied force (stress) or deformation (strain). Linear oscillatory rheology put the material

through a small oscillatory strain or stress of the form:
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γ = Asin(ωt) (3.1)

where γ is the strain, A is the amplitude of the oscillation and ω is the frequency of

oscillation. The response of the material to the applied strain is measured. In the case of

a pure elastic solid the stress required to impose the deformation is proportional to the

strain rate whereas for a viscous liquid, the stress is proportional to the strain rate [68]

γ = Aωcos(ωt) (3.2)

As stated before, viscoelastic solids like gels will show a response to an applied defor-

mation somewhere between ideal viscous liquid and ideal solid elastic. The rheological

parameter that consider both characteristics is the complex shear modulus (G*) (equa-

tion 3.3). This parameter accounts for both the fraction that is in-phase with the deforma-

tion and the part that is out-of-phase. Those fractions are represented as elastic modulus,

G’, and viscous modulus, G” and tan(δ) is a correlation between them:

G∗ = (G
′2 +G

′′2)1/2 (3.3)

G′ = αsin(ωt) (3.4)

G′′ = αcos(ωt) (3.5)

tan(δ) = G′′
G′ (3.6)

The analysis of the rheologic properties of the cellulose derivatives ionic liquid gel is

an important topic in this dissertation. The determination of the viscoelastic properties

would help the systems gel-like behavior at the macromolecular level.

Oscillatory rheology is a powerful tool in the field of a polymer science. Since by

varying the amplitude or/and frequency of the applied deformation is possible to study a

wide range of timescales and behavior. For instance, in the case of polymer gel oscillatory

measurements allows the determination of gel-like behavior without destroying the gel

structure. Rheologically, a polymer gel is characterized by i) an elastic modulus higher

than viscous modulus (G’>G”) and ii) an elastic modulus at zero frequency independent

of the frequency. [69]

By means of oscillatory it is possible to study the influence of temperature in the

gelation process of a physical gel. In fact, performing a temperature sweep test at a

non-destructive frequency under a LVR, it is possible to analyze the evolution of G’

and G” with temperature, and to detect the temperature at which the liquid-like to gel-

like behavior occurs (where G’ and G” crossover (G’=G”)). Finally, with all of these

measurements it is possible to characterize macroscopically the materials under study.
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4
Experimental

4.1 Preamble

The methods and characterization studies of the cellulose derivatives synthesized are

based on general framework procedures described below:

• The solvents N, N’ – dimethylformamide (DMF) and toluene were obtained from

Merck and Sigma Aldrich respectively, and distilled with CaH2. N-methylimidazole

was purchased from Alfa Aesar and distilled with CaH2. Ammonium hydroxide,

methanol and acetone were used without prior purification. Microcrystalline cellu-

lose (MCC) Avicel®PH-101 (DP 200-300) was obtained from Fluka, Sigma Aldrich

and dried at 60 ◦C at least 24h in a vacuum oven before used. The water used was

always Millipore water. Finally, BmimCl purchased from io-li-tec and was dried in

vacuum at 45 ◦C for at least 24h.

• Elemental analysis was obtained from elemental analyzer Thermo Finnigan-CE In-

struments Flash EA 1112 CHNS series. The data are presented through percentage

(%).

• Attenuated Total Reflectance -FTIR (ATR-FTIR) spectra were acquired from spec-

trometer Perkin Elmer UATR Two in a range of 400-4000 cm−1. Spectra were ac-

quired with 16 scans and the most intense bands characterizing each synthesized

compound were interpreted. Data are shown as follows: maximum frequency ab-

sorption, υmax, in cm−1 (functional group), intensity and shape (s – strong; m –

medium; w – weak; br – broad; sh – sharp)

• Thermogravimetric Analysis (TGA) analysis were obtained from TA Instruments

model Q20 equipment and SDT equipment (TA Instruments model Q600), respec-

tively. During the TGA scan, the samples were first heated from room temperature
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to 80 ◦C within 5 minutes, then cooled to -50 ◦C at a rate of 20 ◦C/min. After 2

minutes at -50 ◦C, samples were heated until 230 ◦C at a rate of 10 ◦C/min. After

2 minutes at 230 ◦C the temperature process was reversed, i.e., from 230 ◦C to -50
◦C (10 ◦C/min). Finally, after 2 minutes at -50 ◦C the temperature was ramped up

to 300 ◦C (10 ◦C/min).

• The X-ray diffractions were performed using a PANalytical’s X’Pert PRO MRD X-ray

diffractometer with 2θ in the 5-75◦ interval, using the CuKα radiation source with

a wavelength of 1.54 Å at room temperature.

• The NMR experiments were acquired in a Bruker Avance III 300 MHz (7.2 T) spec-

trometer and a Bruker Avance III 400 MHz (9.4 T) spectrometer.

300 MHz:

– The solid state Cross Polarization Magic Angle Spinning (CP-MAS) 13C NMR

spectra operating at 75.47 MHz equipped with a BBO probehead. The samples

were spun at the magic angle at a frequency of 5 KHz in 4 mm diameter rotors

at room temperature with pulse repetitions of 2 s and contact times of 1200

ms.

– 1H-NMR experiments were acquired with 13C/1H/2H 5mm dual probe (VT)

operating at 300.02 MHz with 64 k time domain points over a spectral window

of 8012.820Hz (20.0244 ppm) centered at 2471.09 Hz (6.175 ppm) and with

64 scans per FID. Relaxation delay was 5 s. Typical 90 degree pulse lengths

were 12.125 µs. VT-NMR were carried out using DMSO-d6 as reference with a

temperature range from 296 to 346 K (296, 301, 306, 311, 316, 321, 326, 331,

336, 341 and 346 K). A standard BVT 3000 variable temperature control unit

with an accuracy of +/-0.5 ◦C was used.

– 13C Spin-lattice (T1) relaxation times were obtained with 13C/1H/2H 5mm

dual probe (VT) operating at 75.47 MHz by means of the usual inversion re-

covery (180-τ-90-acquisition) sequence. Typically, for a T1 determination 12

spectra of 64 K data points with τ values in the range of 1 ms to 25 s were

acquired. Relaxation delay was 5 s. A quick T1 estimation was performed for

all samples in order to set the appropriate relaxation delay.

– Transverse (T2) relaxation times were obtained by means of the usual CPMG

sequence. Typically, for a T2 determination a number of 8 spectra of 14 K data

points were collected, with 14 τ values in the range of 3 ms to 35 s.

– 1H Diffusion measurements were acquired with a micro-imaging probe PH

Micro 2.5 with a 1H insert using a magnetic field pulsed gradient in the z-

direction of 1.47 T.m−1 and were performed using the stimulated echo se-

quence using bipolar sine gradient pulses and eddy current delay before the

detection (diffSTE). Self-diffusion coefficients were obtained by varying the
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gradient strength (g) while keeping the gradient pulse length (δ) and the gra-

dient pulse intervals constant within each experimental run. Typically, in each

experiment a number of 32 spectra of 16 K data points were collected, with

values for the duration of the magnetic field pulse gradients (δ) of 12 to 16 ms

and diffusion times (∆) of 180 to 200 ms. The sine shaped pulsed gradient (g)

was incremented from 5 to 95% of the maximum gradient strength in a linear

ramp. The spectral width was 8333.33 Hz (27.77 ppm) centered on 2214.96

Hz (7.38 ppm) in direct dimension (t2) and of 3001.20 Hz (9.99 ppm) centered

on 2214.96 Hz (7.38 ppm) in indirect dimension (t1). The phase was corrected

with 1D spectrum obtained by 1H-NMR. All experiments were acquired at

298 Kelvin (K).

400 MHz:

– NOESY experiments were acquired with a 5 mm high-resolution BBO probe

operating at 400.15 MHz for 1H with pulsed gradient units, capable of pro-

ducing magnetic field pulsed gradients in the z-direction of 0.54 T.m−1. Two

dimensional nuclear Overhauser effect spectra, 2D 1H-NOESY, were acquired

with 4096 points in the direct dimension (t2) and 256 increments in the indi-

rect dimension (t1) with 8 scans per increment. A spectral window of 5197.505

Hz (12.99 ppm) centered at 2240.84 Hz (5.60 ppm) was identical in both di-

mensions. The relaxation delay was 5 s long and the mixing times was 50

to 300 ms. The phase were corrected using the 1D spectra obtained through

NOESY.

• Rheological properties were characterized using a Bohlin Gemini HR nano rheome-

ter in a stress-controlled mode with a diameter steel parallel plates of 20 mm.

Three different experiments were performed:

– Strain sweep test was carried out to determine the linear viscoelastic range

(LVR) that was fixed at 0.002.

– Temperature sweep test were performed under the LVR at constant frequency

ω = 1 Hz at 2 ◦C/min. In a temperature range between 70◦C and 20◦C.

– Frequency sweep test were performed under the LVR in the range of 0.1-10 Hz

at 70◦C.
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4.2 Synthesis

4.2.1 Synthesis of CDC

General Procedure

Figure 4.1: 6-chloro-6-deoxycellulose (CDC) synthesis

The CDC was prepared according to procedures described in the literature, figure 4.1.

[42] Microcrystalline cellulose Avicel®PH-101 (1g, 6x10−3 mol, 1 equiv.) was suspended

in DMF (20 mL) and heated to 80 ◦C under magnetic stirring during 20 minutes. Thionyl

chloride (3.5 mL, 4.8x10−2 mol, 8 equiv.) was gradually added to the suspension. After

the addition was complete, the reaction was continued for 3 h at 85 ◦C. The viscous solu-

tion was cooled to room temperature and poured into ice water (500 mL) with agitation.

The precipitated CDC was filtered, washed with dilute ammonium hydroxide and then

washed with water to bring the pH to neutral. Finally, CDC was dialyzed for 48 h and

lyophilized during 24h. The yield is 94.7%. CP-MAS 13C NMR (75 MHz) δ (ppm): 104.68

(C1’); 85.40 (C4’); 74.46 (C3’,2’,5’); 45.15 (C6’). IV υmáx (cm−1: 3404 (s, (O-H)); 2884

(sh, (C-H)); 1626 and 1176 (CH-OH); 1314 (C-H, C-O); 1028 (s, (C-O, O-H)); 866 (C-O β

glycosidic linkage); 753 and 719 (C-Cl). Appendix figures: A.4 and A.6. EA (%): 4.92 (N);

37.80 (C); 5.89 (H); 1.82 (S).

In the appendix, table A.1 a summary of all the synthesis and corresponding spectra

can be found.

4.2.2 Synthesis of cellulose anchored 1-methyl-imidazolium chloride
(CellmimCl)

General Procedure

The CellmimCl was prepared according to the literature procedure, figure 4.2. [42]

6-chloro- 6-deoxycellulose (0.5 g) was reacted with N-methylimidazole (5 mL) at 95
◦C under magnetic stirring for 24 h. The solution was poured into methanol (150 mL)

and the precipitate was washed with methanol, then dried in vacuum at 45 ◦C. Finally,

CellmimCl was dialyzed for 48 h and dried again in vacuum at 45 ◦C. The degree of

methylimidazolium substitution is 0.37 determined by elementar analysis [42] and the

yield is 92.3%. CP-MAS 13C NMR (75 MHz) δ (ppm): 139.60 (C7’); 128.77 (C8’); 123.37

(C9’); 105.36 (C1’); 86.5 (C4’); 74.65 (C3’,2’,5’); 49.46 (C6”); 45.49 (C6’); 37.04 (C10’). IV

υmáx (cm−1: 3446 (s, (O-H)); 2904 (sh, (C-H)); 1734 (C=O); 1634 and 1112 (CH-OH);

26



4.3. GELATION STUDIES

Figure 4.2: Cellulose anchored 1-methyl-imidazolium chloride (CellmimCl) synthesis

1526 (C= N); 1314 (C-H, C-O); 1064 (s, (C-O, O-H)); 866 (C-O β glycosidic linkage); 753

and 719 (C-Cl). Appendix figures: A.5 and A.7.

In the appendix, table A.2 a summary of all the synthesis and corresponding spectra

can be found.

4.3 Gelation Studies

The pursue of the gelation of CDC and CellmimCl was attempted through several

approaches. Herein, their experimental procedures are presented.

4.3.1 Approach I

In a closed vial Avicel®, CDC or CellmimCl was dissolved in BmimCl and DMSO at

different ratios for each sample, tables 4.1, 4.2 and 4.3. After 8 hours at 70◦C the mixture

each sample was put through heating/cooling cycles (heating the sample to 343 K and

cooling down to 298 K), see figure 4.3. Initially the cycles were of 30 minutes (32 cycles) ,

1 hour (7 cycles) and 12 hours (3 cycles).

Figure 4.3: Gelation process - heating/cooling cycles.
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Table 4.1: Experimental conditions for Cellulose samples used in Approach I. (Solubility:
- No soluble; +/- swelling; + Soluble)

ID
Total

(g)

Cellulose

(mg) - (%)

BmimCl

(mg) - (%)

BmimCl/Cellulose

ratio

DMSO

(mL) - (%)

DMSO/Cellulose

ratio
Solubility

D1 1.09 4 (0.37) 60 (5.2) 14 0.95 (94.4) 258 -

D2 1.06 4 (0.38) 140 (12.7) 34 0.85 (86.9) 231 -

D3 1.06 4 (0.38) 240 (23.0) 61 0.75 (76.6) 204 -

Table 4.2: Main experimental conditions for CDC samples used in Approach I. (Solubility:
- No soluble; +/- swelling; + Soluble)

ID
Total

(g)

CDC

(mg) - (%)

BmimCl

(mg) - (%)

BmimCl/CDC

ratio

DMSO

(mL) - (%)

DMSO/CDC

ratio
Solubility

E2 1.07 4 (0.37) 250 (23.4) 63 0.75 (76.2) 204 +

E1 1.17 4 (0.34) 250 (20.9) 61 0.85 (78.7) 231 +

H1 1.08 4 (0.37) 100 (9.2) 25 0.90 (90.4) 244 +

H3 1.12 4 (3.57) 50 (4.5) 1 0.95 (92.0) 26 +

Table 4.3: Main experimental conditions for CellmimCl samples used in Approach I.
(Solubility: - No soluble; +/- swelling; + Soluble)

ID
Total

(g)

CellmimCl

(mg) - (%)

BmimCl

(mg) - (%)

BmimCl/CellmimCl

ratio

DMSO

(mL) - (%)

DMSO/CellmimCl

ratio
Solubility

F2 1.07 4.7 (0.44) 470 (43.9) 100 0.550 (55.7) 127 -

F3 0.54 4.0 (0.75) 125 (23.4) 31 0.375 (75.9) 102 +

F1 1.09 2.6 (2.40) 250 (23.0) 10 0.750 (74.6) 31 +/-

F4 0.27 4.0 (1.48) 63 (23.2) 16 0.188 (75.3) 51 +/-

PC 1.11 40.0 (3.60) 256 (23.1) 6 0.750 (73.3) 20 +

H4 1.08 40.0 (3.70) 50 (4.6) 1 0.950 (95.4) 26 +
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4.3.2 Approach II

CDC (50, 100 and 150 mg) was dissolved in the BmimCl (475, 450 and 425 mg) and

DMSO (475, 450 and 425 mg) at 70 ◦C overnight in a closed vial to obtain solutions

with (matrix:IL:DMSO) (p/p) ratios of (5:47.5:47.5), (10:45:45) and (15:42.5:42.5), respec-

tively. CellmimCl was dissolved in the BmimCl/DMSO with (matrix:IL:DMSO) (p/p)

ratio of (10:25:65). The solution was kept in an oven at 100◦C for 10 min to minimize

any heterogeneity in the solution and to remove residual air bubbles. The vial containing

the solution was placed under an overturned glass bowl together with a vial with water,

coagulation agent, in order to obtain a slow absorption of the latter into the solution.

The gelling period was set to 4 days and, in order to prevent any side-effect from light

exposure, the system was placed in the dark. Excess ionic liquid was rinsed off with

coagulation agent and the gels were bench-dried for 4 days, figure 4.4.

Figure 4.4: Gelation process with coagulation agent.

Table 4.4: Main experimental conditions for all samples used in Approach II. (Solubility:
- No soluble; +/- swelling; + Soluble)

ID
Total

(g)

Polymer

(mg) - (%)

BmimCl

(mg) - (%)

BmimCl/Polymer

ratio

DMSO

(mg) - (%)

DMSO/Polymer

ratio
Solubility

A 1.0 0.05 (5) 0.48 (47.5) 10 0.475 (47.5) 10 +

B 1.0 0.10 (10) 0.45 (45.0) 5 0.450 (45.0) 5 +

C 1.0 0.15 (15) 0.43 (42.5) 3 0.425 (42.5) 3 +

CellmimCl 1.0 0.10 (10) 0.25 (25) 3 0.650 (65.0) 7 +
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5
Cellulose Derivatives Characterization

CDC was obtained from Avicel®chlorination with a similar yield as previously re-

ported in literature.[42] The addition of N-methylimidazolium to CDC allowed the pro-

duction of CellmimCl in 92.3% yield. The results were analyzed by ATR-FTIR, X-ray

diffraction, CP-MAS NMR.

5.1 ATR-FTIR

ATR-FTIR measurements were carried out in order to verify whether the desired

product was synthesized. Avicel®, CDC and CellmimCl are shown in figure 5.1. From

these spectra it is possible to observe the bands characterizing each of the products. The

FTIR spectra of all synthesized samples can be found in appendix A.3.

In the Avicel®spectrum the absorption band at 3338 cm−1 is attributed to the stretch-

ing vibrations of the hydroxyl groups (OH ring and the side chains -CH-OH and CH2-OH).

The stretching and deformation vibrations of C-H group in the glucose unit are shown

at 2900 cm−1 and 1317 cm−1 bands. The absorption bands at 1162 cm−1 and 1056 cm−1

are assigned to the stretching bands of the CO groups. The absorption band at 894 cm−1

is characteristic of β-glycosidic linkage between glucose units. Finally, the band at 1642

cm−1 is assigned to the deformation vibration of the hydroxyl groups. All the bands are

in agreement with the literature values. [70–72]

Comparing CDC with the Avicel®spectrum, two new absorption bands at 752 cm−1

and 722 cm−1 were observed in the former. These bands are associated with the stretching

vibration of the C-Cl bond. The bands between 1500 cm−1 and 1200 cm−1 have decreased

intensity due to the substitution of the hydroxyl group on C6. [70, 72] In the CellmimCl

spectrum it is possible to observe new bands (1564 cm−1, 1110 cm−1 and 1062 cm−1)

corresponding to the ionic liquid. [42, 73] The absorption band at 3342 cm−1 exhibits
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Figure 5.1: FTIR patterns of avicel®, CDC - E and CellmimCl - N.

increased intensity due to the hydrophilic property of the BmimCl.

5.2 X-ray Diffraction

Avicel®, CDC and CellmimCl X-ray diffraction patterns were carried out in order to

follow the changes in polymer structure aggregation at the molecular-level, figure 5.2.

In Avicel XRD pattern three distinct peaks (101, 002 and 040 planes) can be observed,

which are characteristic of microcrystalline cellulose. [72, 74]

Figure 5.2: X-ray diffraction patterns of Avicel®, CDC and CellmimCl.
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Crystallinity is a parameter that determine the availability of hydroxyl groups to in-

teract with other molecules. In crystalline regions the arrangement is more ordered and,

consequently the intermolecular interactions with solvents are more difficult. In contrast,

in non-crystalline regions these interactions are less intense and the arrangement is not

ordered. [72] In CDC and CellmimCl no clear diffraction pattern is identified except

for the vestigial peak at 2θ = 20◦. For that reason no conclusions are extracted from

these analysis. However, as reported in the literature it is expected that the incorpora-

tion of chloride or the imidazolium within the cellulose backbone could derive to a less

crystalline structure.

5.3 CP-MAS

13C CP-MAS spectra of Avicel®, CDC and CellmimCl shown in figure 5.3 were per-

formed to confirm if the synthesis was successful. The Avicel®spectrum exhibits the

chemical shifts expected for this polymer. The signal at 106.70 ppm is attributed to C1’,

bonded to two oxygen atoms. C4’ appears at 90.00 ppm, which is connected to only

one oxygen atom and is responsible for binding 1,4-β-glucoside bonds. The chemical

shifts between 70 and 80 ppm correspond to C2’,3’,5’. Finally, the signal at 65.60 ppm is

assigned to C6’ which is a primary carbon connected to -OH and -CH2 groups.

Figure 5.3: CP-MAS 13C-NMR spectra of Avicel®, CDC and CellmimCl.

Comparing CDC with the Avicel®spectrum, the most significant change is the chem-

ical shift of C6’ from 65.60 ppm to 45.15 ppm (this synthesis results in a partial substi-

tution of the -OH by chloride at C6’ position). Other slight changes occurred, namely

the C1’ chemical shift changes from 106.70 ppm to 104.68 ppm. Finally, on CellmimCl
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synthesis 1-methylimidazolium was covalently bonded to the C6’ position, as confirmed

by the presence of the signals at 139.60 ppm (C7’), 128.77 ppm (C8’), 123.37 ppm (C9’)

and 37.04 ppm (C10’).These results are in agreement with the values described in the

literature. [42, 74].

5.4 TGA

TGA curves of Avicel®, CDC and CellmimCl are shown in figure 5.4. CDC exhibits

lower thermal stability than Avicel and CellmimCl has lower thermal stability than both

cellulose and CDC. The onset degradation temperature of Avicel is 280◦C and shows

only one decomposing process from 280 to 400◦C with a mass loss of 88% (Appendix,

figure A.17) due to pyrolytic degradation of the carbon skeleton. [42] CDC can remain

stable until 200◦C and has a mass loss of 77% up to 600◦C. (Appendix, figure A.18)

Two decomposition stage can be seen in CDC. The first stage between 200 and 260◦C

is caused by the cleavage of C-Cl bond and the condensation of hydroxyl groups on C2

and C3. The second stage from 260 to 360◦C corresponds to the depolymerization of

cellulose polymeric chain. [42] CellmimCl also presents two stage of decomposition

behaviour with a mass loss of 69%. (Appendix, figure A.19) The first mass loss from

100 to 200◦C can be interpreted as losing of the immobilized imidazolium group on

cellulose backbone together with the condensation of hydroxyl groups of C2 and C3. The

second stage from 200◦C is correlated with the loss of cellulose fiber. Finally, with the

compound derivatization there was a lower degradation temperature. It may be explain

by the destroyed crystalline structure and the different chemical structures.

Figure 5.4: TGA curves of Avicel®, CDC and CellmimCl.
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6
Gelation Studies

One of the main targets of this work is the investigation of a gelation process for

new cellulose derivatives. The solvent system that emerged from the literature review

(sections 2.2 and 2.6) - BmimCl and DMSO was chosen for the dissolution/gelation studies

of cellulose and cellulose derivatives obtained in this work. A dissolution study will now

be discussed in this chapter.

6.1 Early studies on gelation of cellulose and cellulose

derivatives

One of the main issues with cellulose is its solubility problems that affect the pro-

cessing and further applications. Aiming to solve this problem the strategy that we

followed consisted of the cellulose derivatization with ionic liquids and the study of sol-

vents’ behavior and their respective relevance in order to achieve the gelation of cellulose

derivates.

In a first stage we studied a variation of conditions (composition of the solvents sys-

tem and polymer matrix ratio) in order to obtain the suitable composition towards the

gel obtainment. This study was performed for Avicel®, CDC and CellmimCl and the

corresponding results are presented in table 6.1.

Avicel®

Avicel®samples were prepared using a fixed polymer weight of 4 milligrams (mg)

and different solvent ratios. This mixtures were submitted to heating/cooling cycles, see

section 4.3.1, to induce the gelation. The results of this procedure is presented in table

6.1.
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Table 6.1: Experimental conditions for Cellulose, CDC and CellmimCl samples used in
Approach I. Cellulose: D1-D3; CDC: E2-H3; CellmimCl: F2-H4. (Solubility: - No soluble;
+/- swelling; + Soluble)

ID
Total

(g)

Polymer

(mg) - (%)

BmimCl

(mg) - (%)

BmimCl/Polymer

ratio

DMSO

(mL) - (%)

DMSO/Polymer

ratio
Solubility

D1 1.09 4 (0.37) 60 (5.2) 14 0.95 (94.4) 258 -

D2 1.06 4 (0.38) 140 (12.7) 34 0.85 (86.9) 231 -

D3 1.06 4 (0.38) 240 (23.0) 61 0.75 (76.6) 204 -

E2 1.07 4 (0.37) 250 (23.4) 63 0.75 (76.2) 204 +

E1 1.17 4 (0.34) 250 (20.9) 61 0.85 (78.7) 231 +

H1 1.08 4 (0.37) 100 (9.2) 25 0.90 (90.4) 244 +

H3 1.12 4 (3.57) 50 (4.5) 1 0.95 (92.0) 26 +

F2 1.07 4.7 (0.44) 470 (43.9) 100 0.550 (55.7) 127 -

F3 0.54 4.0 (0.75) 125 (23.4) 31 0.375 (75.9) 102 +

F1 1.09 2.6 (2.40) 250 (23.0) 10 0.750 (74.6) 31 +/-

F4 0.27 4.0 (1.48) 63 (23.2) 16 0.188 (75.3) 51 +/-

PC 1.11 40.0 (3.60) 256 (23.1) 6 0.750 (73.3) 20 +

H4 1.08 40.0 (3.52) 50 (4.4) 1 0.950 (92.1) 26 +

Several studies have been carried out about BmimCl/DMSO system and the effect on

cellulose dissolution. [75–77] From those studies was suggest that the increased cellulose

solubility resulted from the preferential solvation of the cation by the aprotic polar solvent

which leaves the anion more free to engage in cellulose interactions. Our results did not

show polymer solubilization in this range of concentrations (5-23%) which is a clear

indication of the need for a higher amount of BmimCl to accomplish the dissolution.

CDC

With the substitution of a hydroxyl group in the C6 position of cellulose for a chloride,

some inter- and intra-molecular hydrogen bonds are affected, figure 6.1, which is expected

to decrease the crystallinity of the polymer. As such it should be easier to dissolve the

resulting polymer.

From table 6.1 is possible to confirm that all BmimCl/DMSO binary mixtures (E and

H samples) were able to dissolve CDC. With increasing concentration of DMSO there

is a decreased ability to dissolve the CDC. In every case, the polymer is dissolved but

the samples with the highest DMSO concentration the dissolution process takes longer.

Sample H3 is fairly viscous and therefore was studied through NMR technique in order

to study the solvents-polymer interactions and verify whether or not a gel was present.
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DERIVATIVES

Figure 6.1: Molecular structure of CDC illustrating the intermolecular and intra-
molecular hydrogen bonds.

CellmimCl

This system is slightly more complex than the previous one, figure 6.2. The imi-

dazolium cation grafted in the cellulose backbone is expected to further decrease the

crystallinity of the polymer and to enable additional interactions namely ionic interac-

tions.

Figure 6.2: Molecular structure of CellmimCl illustrating the intra-molecular hydrogen
bonds.

From table 6.1 is possible to observe that in sample F3 there is polymer dissolution, in

F1 and F4 there is the formation of swollen aggregates and sample F2 does not appear to

have any dissolution. The behavior of sample F3 can be explained by the lower polymer

amount in relation to the remaining samples. F1 and F4 suggest that the IL concentration

of 23% is close to the minimum concentration necessary to achieve polymer dissolution.

Regarding sample F2 where no polymer dissolution is observed, the result is probably

related to the amount of DMSO in the system, in sample F2 the solvation of IL might not

be as effective as in sample F3. In sample H4 only a slight dissolution occurs, indicating

that the IL concentration below 23% does not dissolve the polymer. Also, it is observed

that with a DMSO concentration above 95% there is no polymer dissolution. A DMSO
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concentration of 75% promotes an effective dissolution process.

Summary

In summary, the exchange of the polymer’s hydroxyl group in position C6 by chloride

and imidazolium cation could allows a reduction in the amount of IL that could be neces-

sary to dissolve the polymer when compared with cellulose.[75, 76, 78] These results can

be related to the decrease of crystallinity in these cellulose derivatives that allows a easier

solvent interaction and a new favorable ionic interactions. Besides it was determined the

most suitable solvent ratios that could give rise to polymer gelation. In the case of CDC

50:50 (BmimCl/DMSO) was found to be the adequate ratio whereas for CellmimCl this

ratio was of 27:73 (BmimCl/DMSO).

In order to gain a deeper insight into the dissolution phenomena sample H3 was

selected to perform NMR experiments since it was consider the most suitable in terms of

composition and closest to the intended gel state.

6.1.1 Dissolution study - Sample H3

NMRmeasurements

The dissolution phenomena of the CDC/BmimCl/DMSO-d6 system was studied using

the NMR technique 1H-NMR spectra (figure 6.3) 1H,1H-NOESY, 1H-DOSY and 13C- T1

and 1H-T2 relaxation.

Figure 6.3: Sample H3 - 1H-NMR spectra of CDC/BmimCl/DMSO-d6 system at 298 K.
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1H - VT-NMR

In the 1H-NMR spectrum is possible to identify the imidazolium cation, DMSO and

water protons. Also is possible to observe cellulose broaden proton signals.

In order to understand the solvents interactions a variable temperature analysis was

studied with the aim of observing the chemical shift deviations with Variable Temperature

NMR (VT-NMR). Depending on the interactions during this process, some chemical shifts

are shielded and others are deshielded, figure 6.4.

Figure 6.4: 1H-NMR spectra of CDC gel with temperature gradient - local changes in the
IL polar domain region H2,4,5 (a); in IL H10 and H2O (b); DMSO and IL H7,8,9 (c).

Figure 6.5: Relevant chemical shift deviations with gradient temperature.

In figure 6.5 a pictorial view of the chemical shift deviations is depicted (Table and

graphic of all protons are in appendix A.5 and A.21, respectively.). When sample H3

is heated it is possible to see that water changes its local environment in a more drastic

way compared to the rest of the nuclei. H4 and H5 also have a slight deviation which

probably means that IL cation is more efficiently solvated with DMSO. H7 and H8 are

the protons that are less affected. These results point to a relevance of the cation in the

dissolution process. Water has the same ∆δ range as CDC OH’, OH. For this reason, they

are probably influenced by the same rearrangement of the hydrogen bond system.
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1H - DOSY

The diffusion coefficients for sample H3 allow the observation of different diffusional

regimes within the analyzed mixture, table 6.2.

Figure 6.6: Sample H3 - 1H – DOSY CDC/BmimCl/DMSO-d6 system at 293 K.

Table 6.2: Sample H3 - 1H Diffusion Coefficients at 293 K.

δ

(ppm)

Diffusion Coeff. x 10−10

(m2/s)

H2 9,64 2.308±0.001

H4,5 7,99 2.304±0.003

OH CDC 6,20 0.110±0.025
H1 CDC 4,88 0.219±0.153
H6 4,37 2.183±0.032

H10 4,05 2.352±0.005

0.164±0.066
H2O 3,60 6.000±0.033

0.178±0.074
DMSO 2,68 4.596±0.038

H7 1,94 2.307±0.001

H8 1,41 2.296±0.002

H9 1,07 2.303±0.002

The results show two distinct diffusional regimes (figure 6.6) - a faster regime which

corresponds to IL, water and DMSO protons and a slower regime that corresponds to

CDC protons. This difference is justified by their respective dimensions.

An important finding is that H10 IL and water exhibit a bi-exponential behavior,

i.e., each nuclei’s populations are distributed in two different regimes. A faster regime,

which is the free molecule, with higher mobility and a slower regime in the same order of

magnitude as CDC protons. Thus, this is evidence of the interaction between the polymer
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with IL and water in the dissolution process at 293 K, figure 6.6.

13C - T1 Relaxation

The longitudinal relaxation times T1 can be used to establish a correlation between

the system rigidity and the molecular tumbling rate with the temperature gradient. The

results, figure 6.3 suggest that C10 denotes a change between 310 K and 320 K probably

associated to a conformational change, figure 6.7.

Figure 6.7: Sample H3 - 13C T1 relaxation with increasing temperature.

Table 6.3: Sample H3 - T1 values with gradient temperature.

T1 (s)

T(K) C2 C4 C5 C6 C10 C7 C8 C9

306 1.96±0.06 1.76±0.07 1.92±0.05 1.57±0.08 3.39±0.40 1.81±0.06 3.04±0.10 4.34±0.44

311 2.12±0.10 2.10±0.11 1.92±0.05 1.40±0.07 4.31±0.26 2.23±0.08 3.55±0.23 4.36±0.31

316 2.34±0.24 2.04±0.12 2.18±0.15 1.86±0.12 3.19±0.28 2.53±0.16 4.13±0.18 5.12±0.53

321 2.61±0.22 2.62±0.19 2.64±0.19 1.88±0.14 3.78±0.39 2.72±0.31 4.34±0.34 6.14±1.00

326 3.01±0.31 2.68±0.24 2.64±0.18 2.30±0.18 4.32±0.58 2.87±0.22 4.63±0.48 6.71±0.90

331 3.59±0.44 3.10±0.19 2.94±0.22 2.56±0.13 5.27±0.69 2.78±0.20 4.08±0.57 4.95±0.67

C8 and C9 also present a pronounced change however being a part of the end of the

aliphatic chain a higher mobility with the temperature increase is expected.

1H - T2 Relaxation

The transverse relaxation time T2 can be correlated with molecular motion. When

measurements are made with a temperature gradient the variation of the mobility of each

nuclei enable understanding changes on T2 relaxation. Increasing temperature results

in a decreasing viscosity and increasing of the solvents and polymer degrees of freedom.

The results of our measurements, figure 6.8 and table 6.4, suggest that at 321 K the system
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decreased its T2 value, which means above 313 K and below 328 K probably occurs some

conformational changes.

Figure 6.8: Samples H3 - 1H T2 Relaxation values with increasing temperature.

Table 6.4: Sample H3 - 1H T2 Relaxation values with gradient temperature.

T (K) T2 (ms)

306 148.53±0.35

311 148.88±0.37

316 149.87±0.34

321 148.79±0.32

326 150.27±0.34

331 151.07±0.26

Looking at each nuclei, graphic 6.9 and table 6.5, there are changes in relaxation trend

with increasing temperature. Between 308 K and 313 K H10 and OH CDC are affected

by conformational changes in this range of temperature.

Table 6.5: Sample H3 - T2
∗ values with gradient temperature.

T2
∗ (ms)

T (K) H2 H4,5 OH CDC H6 H10 H2O DMSO H7 H8 H9

306 14,94 7.51 6.02 11.75 15.45 13.17 14.47 9.74 9.22 11.88

311 15.67 7.72 4.81 12.21 17.76 13.29 15.00 9.91 9.62 12.08

316 15.25 7.61 6.84 12.48 16.42 12.72 15.13 9.97 9.81 11.75

321 15.95 7.76 7.76 12.85 15.78 12.38 14.66 10.29 9.32 12.13

326 15.57 7.66 6.24 12.47 15.56 12.15 14.83 10.16 9.34 12.05

331 15.87 7.70 5.27 12.24 16.38 12.50 15.67 10.11 9.93 12.00
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Figure 6.9: Sample H3 - 1H T2* relaxation values with increasing temperature.

1H, 1H - NOESY

The 1H, 1H– NOESY spectrum (300 ms mixing time) presented in figure 6.10 al-

lows the observation of the correlations between the CDC protons, IL, DMSO and water

species.

Figure 6.10: 1H, 1H– NOESY CDC/BmimCl/DMSO-d6 system at 293 K.

At 293 K besides the usual cation-cation interactions it is possible to observe three

main correlations - the H6’ from CDC has a correlation with H10 from the IL and water;

OH, H1’ and H2’ from CDC show correlation with water; and DMSO shows spatial

proximity with all IL nuclei and water, figure 6.11. These correlations are indicative of

the spatial proximity between BmimCl, DMSO and the polymer.
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Figure 6.11: Expansions of 1H, 1H– NOESY CDC/BmimCl/DMSO-d6 system at 293 K.

Summarizing all NMR experiments is possible to conclude that i) IL cation estab-

lishes interactions with CDC through the polar IL domain; ii) between 308 K and 320

K the system undergoes conformational changes that could be the starting point of the

solution/gelation phenomena. iii) From the diffusion experiments it is possible to ob-

serve some degree of association between the polymer and the IL’s cation. iv) From NOE

experiments the IL’s cation exhibits interactions with part of the polymer.

The results described suggest a hypothetical network system for sample H3, fig-

ure 6.12 in which the material is ordered into aggregates in the solvent mixtures and

at structural level water interacts with the hydroxyl groups and H6’ of the polymer and

the IL polar domain region interacts with polymer H1’ and H6’.

Figure 6.12: Pictorial representation of the hypothetical network system of sample H3.

From these set of NMR experiments it is not possible to arrived a conclusion regarding

to a plausible gel-like behavior however, it is possible to extract relevant information from
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these distinct pattern of interactions. The IL and water are establishing interactions with

the polymer. A complete polymer dissolution is necessary step prior the gelation and as

such a two step approach was followed from here on (approach II of the section 4.3.2).

6.2 Gelation studies on cellulose derivatives

The second approach studied in this dissertation will now be discussed. The gelation

process was followed for three CDC samples and a CellmimCl sample, table 6.6, and in

all presented studies were analyzed the cooled process from 343 K to 298 K.

Table 6.6: Amounts of Polymer, BmimCl and DMSO in each sample studied.

CDC CellmimCl

A B C D

Polymer (%) 5.0 10.0 15.0 10.0

BmimCl (%) 47.5 45.0 42.5 25.0

DMSO (%) 47.5 45.0 42.5 65.0

Here in, in CDC samples three different polymer loadings were used, 5%, 10% and

15%. The objective of this study is to discuss the influence of the polymer amount in the

gel stiffness and the solvents dynamic in gelation process with increasing polymer.

CDC/BmimCl/DMSO-d6 and CellmimCl/BmimCl/ DMSO-d6 systems after their char-

acterization (figures 6.3 and 6.13) were studied through NMR techniques, such as 1H

-VT-NMR, 13C - T1 and 1H - T2 relaxation times, 1H-DOSY and 1H,1H-NOESY. Rheology

measurements were also made in order to confirm the matter physical state.

NMRmeasurements

1H -VT-NMR

As explained above, the chemical shifts of protons are essentially influenced by the

chemical groups locations and interactions between them. With this in mind, our focus

is in chemical shift deviations between liquid-like (343K) and gel-like behavior (298K),

table 6.7. The change of physical state can may cause the chemical shifts change to up or

downfield.

Interpreting the figure 6.14(a) (table is in appendix A.7) it is possible to observe that

samples A and B exhibit a similar trend. Particularly, H2 changes its local environment to

upfield and DMSO to downfield. Sample B doubled the polymer amount however when

compared with sample A the chemical shift deviations have the same behavior. These

results probably means that the nuclei in both samples were influenced by the same local

environment and in these conditions range there are no dynamic changes in the system.

Sample C shows a significant pattern change, figure 6.14(b), H2’s changes is downfield
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Figure 6.13: 1H-NMR spectra of CellmimCl/BmimCl/DMSO-d6 system at 298 K.

Table 6.7: 1H-NMR chemical shifts of CDC samples at 298K.

298 K 343 K

A B C A B C

H2 9.763 9.635 9.680 9.882 9.800 9.671

H4 8.074 7.965 7.969 8.057 7.960 7.913

H5 7.966 7.867 7.871 7.958 7.870 7.831

H2O 4.622 - - - - 4.853

H6 4.235 4.184 4.175 4.219 4.170 4.178

H10 3.914 3.859 3.851 3.899 3.850 3.864

DMSO 2.511 2.465 2.451 2.458 2.412 2.443

H7 1.665 1.649 1.637 1.672 1.649 1.660

H8 1.084 1.080 1.080 1.110 1.091 1.104

H9 0.682 0.682 0.682 0.682 0.682 0.682
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(a) Sample A and B have the same pattern.

(b) Sample C have a different pattern.

Figure 6.14: CDC samples - Chemical shift deviations (δ343 K−δ298 K) — � is the reference
point.
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shifted which can be related with the ionic liquid pair (cation-anion) interactions changes

at this polymer concentration.

In BmimCl, chloride anion mainly governs the cellulose dissolution through the poly-

mer hydrogen bonds disruption [79, 80] and therefore, the cation-anion interactions can

change. This being said in samples A and B the anion interactions with the polymer

network decreases the ionic interactions between cation and anion. This means that the

cation establish interactions with the anion but probably suffers from constraints due

to macromolecular organization of the polymer. On the other hand, in sample C where

there is increased polymer amount, the cation exhibits an opposite trend.Here the poly-

mer must be in a different type of organization, more constrained, where the structure

does not need the ILs ions to be stabilized, and therefore we only observe minor changes

in the cation’s chemical shifts. Based on these observations, from 5-10% polymer, fig-

ure 6.14(a), the local organization and ions interactions reflect a similar arrangement

while the 15%, figure 6.14(b), loading the polymer as a different behavior.
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13C - T1 Relaxation

13C - T1 relaxation time can be correlated with nuclei’s mobility. At 298 K samples

A/B/C have a very similar pattern of relaxation times, figure 6.15, except for the methyl

groups C9 and C10, where slight changes can be detected. This could be an indication

that all of these samples are in a similar physical state at this temperature.

Analyzing the changes in 13C - T1 relaxation of each nuclei with the temperature

change, it is possible to observe that in samples A and B, methyl group C10 present the

most pronounced change. However this is not observed for sample C, this nuclei exhibit

only a slight change, table 6.8, probably this is indicative that at 343 K the system is very

constraint and the local mobility of the cation is not as influenced by temperature as in the

previous samples. The imidazolium cation in CellmimCl sample presents a very similar

relaxation profile to the CDC however the absence of data in a different temperature

prevents further conclusions to be drawn.

Figure 6.15: Deviations of T1 relaxation times of CDC and CellmimCl samples at 298 K.

Table 6.8: CDC and CellmimCl samples - 13C - T1 relaxation time (seconds) at 298 K and
343 K.

CDC CellmimCl

A B C D

298 K 343 K 298 K 343 K 298 K 343 K 298 K

C2 0.327±0.003 1.139±0.007 0.387±0.003 1.302±0.009 0.387±0.003 0.751±0.007 0.504±0.009

C4 0.317±0.002 1.103±0.008 0.369±0.003 1.262±0.011 0.362±0.004 0.749±0.003 0.498±0.008

C5 0.310±0.001 1.109±0.006 0.370±0.003 1.266±0.006 0.369±0.005 0.766±0.009 0.536±0.012

C6 0.262±0.006 0.966±0.007 0.317±0.005 1.119±0.007 0.290±0.012 0.646±0.012 0.399±0.026

C10 0.851±0.027 2.646±0.081 1.084±0.040 3.011±0.082 1.120±0.042 1.679±0.034 1.121±0.043

C7 0.424±0.008 1.675±0.006 0.538±0.007 1.823±0.012 0.473±0.012 1.131±0.013 0.617±0.030

C8 0.739±0.007 2.882±0.013 0.970±0.006 3.129±0.022 0.881±0.006 1.901±0.016 1.012±0.047

C9 1.662±0.021 5.259±0.033 2.100±0.011 5.587±0.038 1.993±0.018 3.451±0.036 2.185±0.035
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1H - T2 Relaxation

The transverse relaxation time can be correlated with molecular motion and therefore,

with the system rigidity. Looking at table 6.9 we can observe that all samples decreased

its 1H - T2 values from 343 K to 298 K, i.e., the molecules’ mobility decreases. Thus, at

298 K all system show gel-like behavior.

Sample C presents the smallest 1H - T2 difference between 343 K and 298 K among all

samples, figure 6.16, which means that probably at 343 K this system presents a gel-like

behavior (this is in agreement with 13C - T1 relaxation time results).

Sample B has the highest 1H - T2 value at 298 K therefore, possible exchange effect or

system viscosity may be affecting the measurements.

Table 6.9: CDC and CellmimCl samples - 1H - T2 Relaxation times at 298 K and 343 K.

T2 (ms)

298 K 343 K

A 160.152±0.112 500.336±0.185

B 267.484±0.092 399.718±0.314

C 129.469±0.112 220.954±0.146

CellmimCl 124.825±0.164 -

Figure 6.16: 1H - T2 Relaxation times of all samples at 298 K and 343 K.
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1H - DOSY

The determination of the diffusion coefficients in a sample with polymer and ions and

solvents allows us to observe possible associations between them (the effective decay of

H2 for sample B of CDC is in Appendix A.10 and A.22). Looking at table table 6.10 to

6.13, it is possible to observe that sample B exhibits diffusion coefficients one order of

magnitude below than samples A and C, which can be a reflection of the viscosity, and

the local interactions. This can be explained, with a more effective association of the

ILs cation with the polymer for sample B. In samples A and C some of the ILs cation

nuclei exhibit a bi-exponential behavior, meaning that part of the cations population is

associated with the polymer and the rest is flowing more freely in the solution. In sample

A there is a lesser amount of polymer and because of that less cations are in fact associated

with the matrix. From A to B an increased amount of polymer means that probably more

cations are establishing interactions within the polymer, in sample C which has even

more polymer the dual behavior detected can be a reflection of a decreased association

of the cation with the matrix when compared to sample B. The IL population in excess

(that does not participate in hydrogen bonds disruption) diffuses quickly. Regarding

CellmimCl sample, all nuclei present mono-exponential diffusion except DMSO nucleus.

This nucleus is responsible for solvating BmimCl, thus these results show the populations

that is solvating and the one that is not.
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Table 6.10: CDC - Sample A (x 10−11).

δ (ppm)
Diffusion

Coeff. x 10−11

(m2/s)

H2 9.76 0.204±0.002

H4,5 8.02 0.197±0.001

H6 4.24 0.771±0.111

-

H10 3.91 0.183±0.005

DMSO 2.51 1.912±0.186

0.194±0.005
H7 1.67 3.207±0.272

0.199±0.002
H8 1.08 3.212±0.273

0.208±0.002
H9 0.68 0.184±0.003

Table 6.11: CDC - Sample B (x 10−13).

δ (ppm)
Diffusion

Coeff. x 10−13

(m2/s)

H2 9.64 1.662±0.014

H4,5 7.92 1.683±0.013

H6 4.18 7.655±1.099

1.581±0.022
H10 3.86 1.598±0.011

DMSO 2.47 4.988±0.739

1.479±0.058
H7 1.65 6.882±0.895

1.539±0.020
H8 1.08 6.882±0.950

1.539±0.020
H9 0.68 1.577±0.010

Table 6.12: CDC - Sample C (x 10−11).

δ (ppm)
Diffusion

Coeff. x 10−11

(m2/s)

H2 9.68 0.228±0.005

H4,5 7.92 0.224±0.004

H6 4.18 4.110±0.392

0.241±0.003
H10 3.85 0.212±0.001

DMSO 2.45 1.964±0.358

0.269±0.024
H7 1.64 3.605±0.640

0.225±0.002
H8 1.08 3.491±0.498

0.235±0.003
H9 0.68 0.201±0.004

Table 6.13: CellmimCl - (x 10−12).

δ (ppm)
Diffusion

Coeff. x 10−12

(m2/s)

H2 9.579 4.341±0.029

H4,5 7.823 4.218±0.032

H6 4.103 4.496±0.031

-

H10 3.778 4.103±0.038

DMSO 2.386 9.584±0.297

3.038±0.224

H7 1.603 4.292±0.031

-

H8 1.055 4.240±0.035

-

H9 0.682 4.019±0.037
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1H, 1H - NOESY

Herein will be presented the spatial correlations by 1H, 1H– NOESY experiment in all

samples considered. In all spectra all the ILs cation protons show correlation with every

other cation nucleus.

The 1H, 1H– NOESY spectrum (150 ms mixing time) presented in figure 6.17 allows

the observation of the correlations between CDC protons, IL, DMSO and water species.

At 298 K this spectrum shows three main correlations - IL protons and H2’ from CDC

have correlations with water; H6’ from CDC has correlations with H10 IL proton; and

DMSO shows spatial proximity with H7 IL proton and water, figure 6.18.

Figure 6.17: Sample A - 1H, 1H-NOESY CDC/BmimCl/DMSO-d6 system at 298 K.

Figure 6.18: Sample A - Expansions of 1H, 1H-NOESY CDC/BmimCl/DMSO-d6 system
at 298 K.
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In sample B, at 298 K the 1H, 1H - NOESY (150 ms mixing time) spectrum, figure 6.19,

present two main correlations - IL protons has correlations with water; and DMSO shows

spatial proximity mainly with H6 and H10 IL protons and water, figure 6.20.

Figure 6.19: Sample B - 1H, 1H-NOESY CDC/BmimCl/DMSO-d6 system at 298 K.

Figure 6.20: Sample B - Expansions of 1H, 1H-NOESY CDC/BmimCl/DMSO-d6 system
at 298 K.

Regarding to sample C, at 298 K the 1H, 1H - NOESY (150 ms mixing time) spectrum,

figure 6.21, shows two main correlations - water has correlations with H2’; and DMSO

shows spatial proximity with all IL protons and water, figure 6.22.
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Figure 6.21: Sample C - 1H, 1H-NOESY CDC/BmimCl/DMSO-d6 system at 298 K.

Figure 6.22: Sample C - Expansions of 1H, 1H-NOESY CDC/BmimCl/DMSO-d6 system
at 298 K.
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Summary

Based on NMR experiments the pattern of interactions observed in each sample is

depicted in figure 6.23. In every sample the correlation between the polymer and water is

present which means that it must be in the vicinity of the polymer matrix, the interaction

between IL and DMSO is also detected, which points to some degree of dissociation of the

cation/anion pair, which was no doubt important for the dissolution step. The correlation

between the ILs cation and the polymer is only detected in samples A and B, in agreement

with what the VT-NMR, the relaxation measurements and even diffusion were suggesting.

Namely that in sample C the polymer is stabilized without the need for the ILs cation to

engage in further interactions. In samples A and B this interaction seems to be a part of

the system.

(a) Sample A

(b) Sample B

Figure 6.23: Representation of the three CDC hypothetical system models.
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(c) Sample C

Figure 6.23: (Continued) Representation of the three CDC hypothetical system models.

Regarding to CellmimCl sample at 298 K in 1H, 1H - NOESY (150 ms mixing time)

spectrum, figure 6.24, it is possible to observe three main correlations: H7’ CellmimCl

shows spatial proximity with H10’ and H6’ CellmimCl; water has correlations with H2’,

H10’, H1’ and OH, OH’ CellmimCl; and DMSO shows spatial proximity with all IL

protons, figure 6.25.

Figure 6.24: CellmimCl - 1H, 1H-NOESY CellmimCl/BmimCl/DMSO-d6 system at 298
K.

The imidazolium cation grafted in the cellulose backbone enabled new system ionic

interactions. The imidazolium cation grafted in the cellulose backbone enabled an addi-

tional set of interactions to be established – from the ionic moiety 6.26. An important

conclusion is that H7’ CellmimCl correlations with H10’and H6’allows us to conclude

that the introduction of the ionic liquid moiety in the cellulose backbone brought a new
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Figure 6.25: CellmimCl - Expansions of 1H, 1H-NOESY CellmimCl/BmimCl/DMSO-d6
system at 298 K.

set of interactions, since it is possible to correlate the ILs cation in the solvent with the

imidazolium grafted in the cellulose. The modification of the polymer’s structure enabled

additional interactions with the solvent.

Figure 6.26: Representation of CellmimCl hypothetical system model.
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Rheology measurements

In order to study the viscoelastic properties of CDC and CellmimCl samples, dynamic

measurements were performed by means of rotational rheometer.

From the results obtained by different NMR measurements it was advanced that the

gelation of the system may occur upon cooling. Thus, in order to confirm the gelation of

the polymer, temperature sweep test as well as frequency sweep test were performed for

all samples.

Figure 6.27(a) shows the temperature sweep test where the evolution of both elastic

and viscous modulus are analyzed upon cooling from 70 to 20 ◦C for the sample A. The

experiment was carried out at constant non-destructive frequency, 1 Hz, and a cooling rate

of 2◦C/min, under the LVR (region where the elastic and viscous moduli are independent

of the applied deformation). As observed from the figure 6.27(a), above 32.6◦C there is

a high dispersion of points from which no conclusions can be drawn. At this range of

temperatures the rheometer is not sensitive enough to acquired real G’, G” values, instead

we are measuring the inertia of the sample. In contrast, below 32.6◦C the elastic modulus,

G’, become higher than viscous modulus, G” which is indicative of a more solid-like

behavior. However, from this experiment it is not possible to confirm a gel-like behavior.

In order to determine if the sample showed a gel-like behavior, we performed a frequency

sweep test at 20◦C , immediately after the temperature sweep test and represented in

figure 6.27(b). From the evolution of G’ and G” with frequency, two main results can

be extracted: (i) G’ is higher than G” in the whole range of studied frequencies, which

confirms that the sample present a solid-like behavior and (ii) that the sample shows

an elastic modulus at zero frequency and independent of the frequency, which is the

rheological definition of a gel-like behavior. Therefore, the performed study confirmed

the gel formation.

The described behavior is also observed for the samples B, C and CellmimCl as shown

from figure 6.27(c) to 6.28(h), thus confirming the gel formation.

By comparing the results of CDC samples, table 6.14, which corresponds to gels with

different polymer matrix content, it is observed that as the polymer amount increases the

obtained gel present higher modulus. Besides, the temperature where the cross-over of

G’ and G” (G’=G”) occurs increases with polymer content, being of 32, 33 and 43◦C, for

A, B and C samples, respectively.

If we compare the results of CDC (sample B, 10% of polymer matrix) and CellmimCl

(also containing 10% of polymer matrix), the latter presents G’ almost two orders of mag-

nitude lower than the moduli of CDC. In addition, the temperature where the crossover

of G’ and G” occurs is lower, being of 33.8◦C for sample B and of 28.0◦C for CellmimCl.

This result indicates that the grafting of IL into the cellulose backbone give rise to a less

stiff gel.

The analysis of rheology data demonstrates that the system presents a gel-like behav-

ior and allows us to verify that the NMR results were reflecting the gelation of the system.
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(a) Sample A temperature sweep (b) Sample A frequency sweep

(c) Sample B temperature sweep (d) Sample B frequency sweep

Figure 6.27: Temperature sweep test performed at a cooling rate of 2◦C/min (a, c, e, g)
and frequency sweep test performed at 20◦C (b, d, f, h) corresponding to samples CDC
(A, B, C) with different polymer content, and to CellmimCl are shown.

In fact, the difference observed in the rheological behavior of CDC samples was previ-

ously observed in the relaxation profiles. For instance sample C that presents a TG′=G′′

temperature at 43.3◦ is the one that exhibits no significant difference in IL cation 13C - T1

relaxation profile.
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(e) Sample C temperature sweep (f) Sample C frequency sweep

(g) CellmimCl sample temperature sweep (h) CellmimCl sample frequency sweep

Figure 6.27: (Continued) Temperature sweep test performed at a cooling rate of 2◦C/min
(a, c, e, g) and frequency sweep test performed at 20◦C (b, d, f, h) corresponding to
samples CDC (A, B, C) with different polymer content, and to CellmimCl are shown.

Table 6.14: Cross-over temperature (G’=G”) was extracted from temperature sweep test
and G’ and G” was obtained from frequency sweep test.

TG′=G′′

(◦C)

G’

(Pa)

G”

(Pa)

A 32.6 709.3 32.7

B 33.8 9,333.0 1,254.8

C 43.3 57,209.0 5,401.6

CellmimCl 28.0 237.6 23.6
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7
Conclusions and Future work

Cellulose is a polymer with a set of relevant features for several fields, however its

dissolution process is a relevant issue for further applications. The main goal of this

dissertation was to develop a new cellulose derivative - ionic liquid gel. In order to

improve the polymer solubility ILs were grafted to cellulose backbone and also used as

solvent system in the dissolution/gelation process. To study the gelation process and

understand the physical and chemical properties of the new cellulose derivative NMR

techniques and Rheology measurements were performed.

The polymer dissolution with BmimCl/DMSO system (figure 7.1) benefits from the IL

ions solvation. The dissolution process is crucial for the sucess of the subsequent gelation.

Figure 7.1: Pictorial representation of dissolution step.

For the gelation to occur a minor amount of water is needed as observed by NMR.

Depending of polymer matrix amount the gels present distinct behavior. In CDC, for A

and B samples the structure has less constraints, figure 7.2.1), and in the gelation process

the anion-cation interactions decreases due to anion interaction with polymer network.

Moreover, sample C structure has more constraints, figure 7.2.2) - in these conditions,

the cation still interacts with polymer network although to a lesser extent. In this system
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Figure 7.2: Pictorial representation of gelation step.

probably there are the formation of clusters of IL solvated by DMSO. CellmimCl sample

has similar behavior.

It is the anion that is expected to governs the hydrogen bond disruption process but it

is possible to follow the dissolution/gelation process through the cation. In the gelation

process probably it is necessary less IL amount than the needed to dissolve the polymer.

The rheological experiments allow to confirm the gel-like behavior of the obtained

system, moreover, the increasing of polymer matrix content in CDC samples increases

the viscoelastic properties.

The derivatization of cellulose with ionic liquids allowed the improvement of the

polymer solubility as intended however the obtained gel is weaker.

As above described it is possible to follow the dissolution and gelation processes

through the IL cation. Thus, it is important to do studies with the polymer amount

gradient in order to comprehend the IL critical concentration for each considered system.

The relaxation behavior of the polymer can be using in the future to followed the gelation

process by NMR. In the future, will be interesting to explore the versatility of the polymer

ionic liquids by grafting different moiety in cellulose backbone.
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APPENDIX A. APPENDIX

A.1 Technical Background

A.1.1 NMR processes

Inversion recovery process

In this process the first step is inverting the population by applying 180◦ pulse. The

magnetization vector will recover only along the z-axis as there is no xy magnetization.

The recovery is measured by placing the vector in the xy-plane with a 90◦ pulse after a

suitable period, τ , as reproduced in figure A.1.

Figure A.1: The inversion recovery process

Spin-echo process

This experiment is reproduced in figure A.2. The first step is a 90◦ pulse that places

the magnetization in the xy-plane. The magnetization will then lose coherence due to

field inhomogeneity during a time period, τ . The second step is to apply a 180◦ pulse

that will rotate the vectors towards to −y axis and, after a second period time, τ , the

magnetization will be refocused. Carl-Purcel-Meiboom-Gill (CPMG) sequence is the

same but in the 180◦ pulse the vectors will rotate around +y axis, figure A.3.

Figure A.2: Spin-echo sequence.

Figure A.3: CPMG process
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A.2 Experimental

A.2.1 Syntheses Results

Table A.1: Summary of CDC syntheses

CDC Avicel m(g) Initial Conditions T(◦C) t(h) Yield (%)

A 1 20 min. at 80 ◦C 85 3.0 65.1

B 2 20 min. at 80 ◦C 85 3.0 86.7

C 2 20 min. at 75 ◦C 85 4.5 94.7

D 2 20 min. at 80 ◦C 85 4.0 92.3

E 1 60 min. at 80 ◦C 85 3.0 73.4

F 1 60 min. at 80 ◦C 85 3.0 69.9

G 1 60 min. at 80 ◦C 85 3.0 80.0

Table A.2: Summary of CellmimCl syntheses

CellmimCl CDC m(g) Initial Conditions T(◦C) t(h) Yield (%)

H 0.5 3 h at 36.4 ◦C 95 24 72.6

I 1.0 - 95 24 63.4

J 0.5 - 95 24 68.6

K 0.5
0.6 mL N-methylimidazole

30 min. before start
90 24 63.9

L 0.5 - 95 24 34.5

M 0.5
1 mL N-methylimidazole

6h before start
95 28 92.3

N 1.0 - 90 24 43.4

O 0.2 - 90 24 48.7

P 0.2 - 90 24 52.9
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A.2.2 Spectra Characterization

Figure A.4: IV spectrum of sample E.

Figure A.5: IV spectrum of sample N.
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A.2. EXPERIMENTAL

Figure A.6: CP-MAS 13C-NMR spectrum of CDC.

Figure A.7: CP-MAS 13C-NMR spectrum of CellmimCl.
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A.3 Polymer Characterization

Figure A.8: FTIR patterns of avicel®, CDC - B and CellmimCl - I.

Figure A.9: FTIR patterns of avicel®, CDC - F and CellmimCl - O.
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A.3. POLYMER CHARACTERIZATION

Figure A.10: FTIR patterns of avicel®, CDC - B and CellmimCl - J.

Figure A.11: FTIR patterns of avicel®, CDC - B and CellmimCl - K.
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Figure A.12: FTIR patterns of avicel®, CDC - C and CellmimCl - M.

Figure A.13: FTIR patterns of avicel®, CDC - C and CellmimCl - L.
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A.3. POLYMER CHARACTERIZATION

Figure A.14: FTIR patterns of avicel®and CDC - D.

Figure A.15: X-ray diffraction patterns of Avicel®and CDC.
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Figure A.16: X-ray diffraction patterns of Avicel®and CellmimCl.

Figure A.17: TGA-DTG curve of Avicel®.
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A.3. POLYMER CHARACTERIZATION

Figure A.18: TGA-DTG curve of CDC.

Figure A.19: TGA-DTG curve of CellmimCl.
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A.4 Gelation Study - Approach I

A.4.1 BimCl/DMSO - Structural concepts

Figure A.20: Three dimensional network of hydrogen-bonding between ring protons.
Adapted from reference [81]

A.4.2 CDC experiments

Table A.3: Experimental conditions for CDC samples used in the approach I.

ID
Total

(g)

CDC

(mg)

CDC

(%)

BmimCl

(mg)

BmimCl

(%)

DMSO

(mL)

DMSO

(%)

BmimCl/CDC

ratio

DMSO/CDC

ratio

C1 0.19 4.0 2.12 130.0 69.0 0.05 28.8 33.0 14.0

C2 0.24 4.0 1.65 130.0 53.6 0.10 44.8 33.0 27.0

C3 0.41 4.0 0.99 130.0 32.1 0.25 67.0 33.0 68.0

C4 0.25 4.0 1.57 250.0 98.4 63.0

E1 1.17 4.0 0.34 250.0 20.9 0.85 78.7 61.0 231.0

E2 1.07 4.0 0.37 250.0 23.4 0.75 76.2 63.0 204.0

H1 1.10 4.0 0.36 50.0 4.5 0.95 95.1 13.0 261.0

H2 1.09 4.0 0.37 100.0 9.1 0.90 90.5 25.0 248.0

H3 1.14 4.0 3.52 50.0 4.4 0.95 92.1 1.0 26.0
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A.4.3 CellmimCl experiments

Table A.4: Experimental conditions for CellmimCl samples used in the approach I.

ID
Total

(g)

CellmimCl

(mg)

CellmimCl

(%)

BmimCl

(mg)

BmimCl

(%)

DMSO

(mL)

DMSO

(%)

BmimCl/CellmimCl

ratio

DMSO/CellmimCl

ratio

C5 0.28 14.0 5.05 260.0 95.0 19.0

F1 1.09 26.0 2.40 250.1 23.0 0.75 74.6 10.0 31.0

F2 1.07 4.7 0.44 470.5 43.9 0.55 55.7 100.0 127.0

F3 0.54 4.0 0.75 125.3 23.4 0.38 75.9 31.0 102.0

F4 0.27 4.0 1.48 62.7 23.2 0.19 75.3 16.0 51.0

PC 1.11 40.0 3.60 256.3 23.1 0.75 73.3 6.0 20.0

H4 1.14 40.0 3.52 50.0 4.4 0.95 92.1 1.0 26.0

H5 2.23 80.0 3.59 500.0 22.4 1.5 74.0 6.0 21.0

R 1.13 50.0 4.43 254.0 22.5 0.75 73.1 5.0 17.0

A.4.4 Approach I - Sample H3

Chemical Shifts

Table A.5: Sample H3 Chemical Shifts.

T (K) H2 H4,5 OH’ CDC OH CDC H1’ CDC H6 H10 H2O DMSO H7 H8 H9

296 9.638 7.998 6.204 5.893 4.877 4.374 4.053 3.601 2.677 1.941 1.413 1.065

301 9.637 7.990 6.173 5.861 4.860 4.375 4.053 3.568 2.671 1.941 1.415 1.065

306 9.640 7.985 6.145 5.830 4.860 4.374 4.052 3.543 2.672 1.947 1.423 1.065

311 9.639 7.982 6.109 5.796 4.853 4.374 4.053 3.512 2.666 1.948 1.424 1.065

316 9.637 7.968 6.084 5.765 4.839 4.373 4.053 3.481 2.661 1.947 1.425 1.065

321 9.640 7.957 6.066 5.742 4.832 4.373 4.042 3.457 2.662 1.953 1.432 1.065

326 9.640 7.952 6.043 5.709 4.824 4.374 4.043 3.428 2.659 1.936 1.434 1.065

331 9.637 7.942 5.996 5.668 4.805 4.376 4.052 3.398 2.653 1.937 1.434 1.065

336 9.635 7.947 5.971 5.656 4.806 4.368 4.054 3.381 2.662 1.955 1.447 1.065

341 9.634 7.939 5.941 5.618 4.818 4.367 4.053 3.350 2.657 1.956 1.445 1.065
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Figure A.21: Chemical shifts deviations with gradient temperature - Sample H3.
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A.4. GELATION STUDY - APPROACH I

13C - T1 Relaxation

Table A.6: ∆ T1 with increasing temperature.

∆T1 (s)

T (K) C2 C4 C5 C6 C10 C8 C9

306 - - - - - - -

311 0.15 0.34 -0.01 -0.17 0.42 0.51 0.02

316 0.22 -0.06 0.27 0.46 0.30 0.58 0.76

321 0.27 0.58 0.46 0.03 0.19 0.20 1.03

326 0.40 0.06 0.01 0.42 0.15 0.30 0.57

331 0.58 0.41 0.30 0.25 -0.09 -0.56 -1.76
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A.5 Gelation Study - Approach II

A.5.1 CDC experiments

Chemical Shifts

Table A.7: CDC samples - Chemical shift deviations (δ343 K − δ298 K).

∆ T (K)

A B C

H2 -0.119 -0.165 0.008

H4 0.017 0.005 0.056

H5 0.008 -0.003 0.039

H6 0.016 0.015 -0.003

H10 0.015 0.010 -0.013

DMSO 0.053 0.053 0.008

H7 -0.008 -0.004 -0.022

H8 -0.027 -0.012 -0.024

H9 0.000 0.000 0.000

Table A.8: Chemical shift deviations of samples B and C comparing with sample A.

298 K

A B C

H2 0.000 -0.128 -0.084

H4 0.000 -0.109 -0.105

H5 0.000 -0.099 -0.095

H6 0.000 -0.051 -0.061

H10 0.000 -0.055 -0.064

DMSO 0.000 -0.046 -0.060

H7 0.000 -0.019 -0.027

H8 0.000 -0.004 -0.004

H9 0.000 0.000 0.000
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13C - T1 Relaxation

Table A.9: Deviations of T1 relaxation times of samples B and C comparing with sample
A.

T1 (s)

298 K

A B C

C2 0.000 0.060 0.060

C4 0.000 0.053 0.045

C5 0.000 0.061 0.059

C6 0.000 0.054 0.027

C10 0.000 0.233 0.269

C7 0.000 0.115 0.050

C8 0.000 0.231 0.142

C9 0.000 0.437 0.331

Diffusion

Figure A.22: Representation of effective decay of H2 of CDC - sample B.
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Table A.10: Data of the effective decay of H2 for sample B of CDC.

γ2g2δ2*(∆-δ/3)

(m2.s−1)
Intensity

5.386E9 0.335

6.870E10 0.328

2.032E11 0.320

4.090E11 0.306

6.860E11 0.291

1.034E12 0.273

1.454E12 0.254

1.944E12 0.233

2.506E12 0.213

3.139E12 0.191

3.843E12 0.171

4.619E12 0.150

5.466E12 0.131

6.384E12 0.114

7.373E12 0.097

8.433E12 0.082

9.565E12 0.068

1.077E13 0.057

1.204E13 0.047

1.339E13 0.038

1.480E13 0.031

1.629E13 0.025

1.785E13 0.020

1.948E13 0.015

2.118E13 0.013

2.295E13 0.010

2.480E13 0.008

2.671E13 0.006

2.870E13 0.005

3.076E13 0.004

3.289E13 0.003

3.509E13 0.003
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