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ABSTRACT

Machine learning and statistics provide powerful tools to solving problems of
many different shapes. But with the algorithms searching for approximations the
problem of overfitting remains present. Genetic Programming describes an al-
gorithmic approach that is likely to produce overfitting solutions. Thus, in order
to lessen the risk of overfitting and increasing the generalization ability of ge-
netic programming the use of semantic information is assessed in different ways.
A multi-objective system driving the population away from overfitting solutions
based on semantic distance is presented alongside alternatives and extensions.
The extensions include the use of the semantic signature to increase the amount
of information available to the system, as well as the consideration to replace the
validation dataset. It is on the one hand concluded that the described approaches
and none of the extensions have a positive impact on the generalization ability.
But on the other hand it seems that the semantics do contain enough information
to appropriately discriminate between overfitting and not overfitting individuals.

KEYWORDS
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1 INTRODUCTION

This chapter provides an introduction to this thesis by generally explaining the
motivation, the underlying problem, the objectives, as well as the structure of this
work.

1.1 MOTIVATION

As the field of machine learning (ML) is progressing, it branches out into uncount-
able concepts and approaches [Mit97, see p. 2f.]. Many of which being black-
box1 algorithms producing incomprehensible solutions, while other creating clear
and understandable models. The increasing number of concepts, extensions and
adaptations create new possibilities, new applications and new insights. Along
with the exploding amount of information and data available, opportunities of un-
thought nature arise. As Gartner, Inc. has stated the ML field is the leading
technology trend in business [Gar16], suggesting that it is mature enough to be
productively used. Yet despite its maturity, innovation and research, not only new
approaches and improvements are unveiled, but old problems become present
again and new problems are detected. [KM14, see p. 4f.]

1.2 PROBLEM DEFINITION

One of the oldest and best known problems of any algorithm searching to solve a
problem is the case of overfitting. Overfitting describes the situation in which an
algorithm retrieves a solution well fit to the dataset it was trained upon, but inca-
pable of keeping the level of accuracy on observations excluded during training,
while another solution exists, that could perform better on the unseen observa-
tions. Typically datasets containing a lot of noise or few observations are bound
to make algorithms overfit, but it might also lie in the nature of the algorithm itself
to increase the probability of overfitting with increasing training time. [Mit97, see
p. 67]

1Black-box algorithms, such as neural networks process information without revealing the inputs
exact impact, thus producing models which humans are not able to understand. White-box
algorithms, such as linear regressions give clear information about the impact of the input. A
grey-box algorithm refers to an algorithm creating solutions that potentially could be under-
stood, but require additional processing in order for the information to be comprehensible or
traceable. [Lju01, see p. 138]
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Many of the applications of statistical tools rely on models providing accurate in-
formation outside the documented observations, thus the generalization ability
of an algorithm is a key criteria to many fields. Algorithms falling short on their
accuracy outside the known spectrum, no matter how powerful, won’t be usable
and many opportunities are lost. Taking into consideration i.e. pharmaceutical
analysis, needing to be able to predict, for instance, the toxicity of a given sub-
stance, rely on concepts first used decades ago, as well as on methods that could
be completely replaced by modern algorithms, if their accuracy was impecable.
[Haw04]

1.3 OBJECTIVES

In this thesis the focus lies on adapting a genetic programming (GP) system to ac-
tively prevent the tendency to overfit. Meaning that a GP system should be found,
minimizing the overfitting of the final solutions, especially regarding long running
training scenarios. All this should be achieved while not compromising the overall
quality of the solutions, thus the system needs to be able to produce solutions
comparable to the standard system and maintain a very low risk of overfitting.

Additionally, as GP systems are by themselves computationally complex, an ap-
proach is to be found not drastically increasing i.e. the memory load or compu-
tational operations, as even a slightly larger time consumption, might render the
approaches impractical or infeasible for use in a productive environment.

1.4 STRUCTURE

The thesis is structured into different parts spanning multiple different approaches
based of similar ideas. Firstly the underlying theoretical framework is outlined and
important components are presented in detail. The third chapter focusses on an
initial approach to using semantics to discriminate against overfitting solutions.
Subsequently in the fourth chapter, an extended approach is evalutated, followed
by a third system being based on a different concept, but using similar information.
The fifth and last chapter provides an overview of the results and summarizes the
possibilities and open points unveiled by the evaluted approaches.
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2 OPTIMIZATION ALGORITHMS

The following chapter presents an overview of the theoretical framework in which
GP is embedded, including optimization problems (OPs), search algorithms, evo-
lutionary algorithms (EAs) and GP itself.

2.1 OPTIMIZATION PROBLEM

The term OP refers to the formal abstraction of a set of real-world problems with
similarly shaped constraints and solutions. Mathematically speaking, an instance
of an OP I is defined as the pair (S, f), with S being a set of admissible solutions
and f : S ! R a quality measure (or cost) function returning a real-valued score
for each s 2 S. In case of a minimization problem2, the objective is to find

s 2 S such that f(s)  f(y) 8 y 2 S.

The solution s, of which there might be multiple, is also referred to as the global
optimum [PS13, see p. 5];[AK89, see p. 5f.].

2.2 SEARCH ALGORITHMS

The set S of solutions, referred to as the search space, has to be traversed by
a search algorithm in order to find a solution s satisfying the search objective
(minimizing/maximizing the quality/cost function). Since an exhaustive search is
mostly infeasible in non-trivial problems3, a traversal operator N : S ! 2

S has to
be defined, called neighborhood, such that for each solution s 2 S the function
N(s) returns a set of neighboring solutions [PS13, see p. 7]. A search algorithm
can then attempt to find a solution by recursively searching the neighborhoods.
[AK89, see p. 6f.]

The neighborhood operator has an immediate impact on the efficiency of the
search - it shapes the search space according to the quality measure f(s) ei-
ther unimodal, or multimodal. The plane resulting of arranging the solutions in

2A minimization problem in this context refers to a quality function f defined such that f(a) 
f(b) if a is better than b (maximization would use an inversed function f ). For maximization
the objective of an OP is inversed to s 2 S such that f(s) � f(y) 8 y 2 S

3I.e. using the notation of P, NP, NP-complete and NP-hard, this refers to any problem of class
NP-complete or more complex.
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S according to neighborhood and quality f , called fitness landscape, determines
the complexity of the problem and thus the efficiency and effectiveness of the
algorithm used. An unimodal fitness landscape allows any greedy4 search algo-
rithm to effectively retrieve a global optimum for the problem. A multimodal fitness
landscape on the other hand is a plane with multiple peaks distributed over the
whole search space, thus a greedy search algorithm would always terminate with
returning a solution5

s 2 S such that f(s)  f(y) 8 y 2 N(s).

The solution s is referred to as a local optimum6, since the operator N imposes
locality on the search [PS13, see p. 8].

2.3 EVOLUTIONARY ALGORITHMS

Simple search algorithms, such as Hill-Climbing, have been thoroughly studied
and improved upon with different approaches, typically using heuristic methods
and targeting premature convergence [Kok05, see p. 4]. One of the several re-
sulting concepts is the area of evolutionary programming, specifically EAs, which
mimic processes found in nature and Darwin’s Theory of Evolution. Conceptually
the main abstracted principles are populations, individuals (see section 2.3.1)
and mechanisms such as reproduction, recombination and mutation (see section
2.3.2). [Kok05, see p. 4f.]

EAs may be split into groups of phenotypic and genotypic algorithms, in respect
to the definition of a solution. A genotypic algorithm, such as Genetic Algorithm
traverses the search space by modifying a representation of the solution, while
a phenotypic algorithm, i.e. GP, modifies the actual solution. Therefore a geno-
typic algorithm depends on solutions being a representation defined with a fixed
structure, i.e. fixed-length array of characters from a defined alphabet, while a
phenotypic algorithm processes dynamic solutions. [Als09, see p. 790]

The main difference to simple search algorithms, i.e. Hill-Climbing, is that EAs
search the neighborhood of multiple solutions simultaneously (using populations)
with a neighborhood created by the combination of multiple different processes
(reproduction, survival, recombination and mutation). [Kok05, see p. 4];[Mit97,
see P.250]

4A greedy search algorithm, such as Hill-Climbing, traverses the search space by always moving
to a better solution in a neighborhood and terminates if none can be found. [Kok05, see p. 2]

5If the problem is minimization, otherwise the condition is inversed.
6The phenomenon of terminating with a local optimum instead of searching on for a global op-

timum is called premature convergence and is primary subject of research in optimization
algorithms [Kok05, see p. 3]
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2.3.1 Population and Individuals

In the context of EAs a solution s is renamed to individual i and the quality or
cost function f(s) is referred to as the fitness of individual f(i) [Bli97, see p.
21]. As previously mentioned an EA tries to overcome premature convergence by
searching multiple solutions simultaneously, the collection of individuals searched
at each step is called population P [Mit97, see p. 250].

2.3.2 Search Process

The search process is based of an initial population, which is typically gener-
ated randomly, with an uniform spread over the search space [YG10, see p. 17].
Fundamentally EA iterates over the population by executing different transforming
phases. At each iteration, referred to as generation, EAs apply three transforma-
tions to the held population subsequently [Mit97, see p. 250f.]:

1. Selection: Determines which individuals will be processed further and which
will be dropped from the search focus, especially granting individuals with
higher fitness better odds for surviving. [YG10, see p. 18f.]

2. Variation: Explores the neighborhoods of the selected individuals, by ap-
plying genetic operators such as mutation and crossover. [YG10, see p.
20f.]

3. Transition: Creates the new population to be used in the next iteration, also
referred to as replacement. [YG10, see p. 22]

Figure 2.1.: Evolutionary algorithm process overview
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Overall the process iterates until a stopping criteria has been reached (such as
sufficient fitness), or a certain number of generations have been executed (see
figure 2.1 for a process overview) [YG10, see p. 81].

Selection Phase

The first phase a population undergoes is a method to discriminate against solu-
tions of lesser quality. Due to the problems of premature convergance and genetic
drift, the selection of individuals has to be non-deterministic, yet not completely
random, otherwise the algorithm will loose it’s effectiveness [YG10, see p.64f.].
Generally speaking EAs employ a probabilistic selection of n = |P | individuals,
where each individual is chosen based on probabilities derived from their respec-
tive fitness. This aims at mimicing the idea of “survival of the fittest” according to
evolutionary theories, where no individual will be brought to extinction by design,
but by likelyhood and fitness. [YG10, see p. 18f.]

Out of many, three important approaches are:

• Fitness Proportionate Selection (Roulette Wheel):

The fitnesses of all individuals are transformed into a probability relative to
the total sum of fitnesses. An individual i will be selected with p

i

=

f(i)P
N

j=1 f(j)

with N being the number of individuals. [YG10, see p. 67]

• Ranking Selection:

Similar to fitness proportionate selection, with the difference being that the
individuals are sorted by fitness and the resulting rank is used to determine
the probabilities instead of directly using the fitness. [YG10, see p. 71]

• Tournament Selection:

The intermediary population is created by repeatedly (n = |P | times) select-
ing a random subset T of size t of the population. Then an individual w 2 T
is selected such that7 f(w)  8o 2 T , which is then placed into the new
population. [YG10, see p. 74]

Which of the methods is used has to be determined by empirical studies, for
each problem at hand8. Nevertheless the probabilistic selection will make the
population converge to a set of dominant solutions, without regards to which exact
technique was used9.

7for minimization (in maximization the objective is inversed)
8see no free lunch theorem [WM97]
9see schema theorem [Mit97, see p. 261f.]
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Variation Phase

The intermediary population retrieved from the previous phase will subsequently
be transformed by genetic operators in order to traverse the neighborhood, thus
the search space [Mit97, see p. 259]. Typically, and in accordance with naturally
observed phenomena, two types of transformation are used: [YG10, see p. 21]

• Crossover: two random individuals are merged and two new individuals re-
sult, based on only the genetic material present in the two parent individuals.

• Mutation: an individuals genetic material will be randomly changed.

Each of the methods usually is executed with a certain probability, which should
be a parameter of the system. Generally the mutation operator has a very low
probability, compared to the crossover operator. [YG10, see p.21]

Transition Phase

In order to begin the next generation, the population has to be replaced by the
created offspring population of the variation phase. This replacement can either
be total or constrained by i.e. elitism: the best n individuals (with n being a param-
eter of the system) are moved to the next generation without any transformation
in order to keep the best found solution(s).[YG10, see p.75f.]

2.4 GENETIC PROGRAMMING

GP as defined by John R. Koza ([Koz92]) is part of a collection of phenotypic EAs,
aiming at solving a variety of problems by generating and processing programs
as solutions. This section and the following chapters will assume individuals to
be structured as trees, as Koza suggested in his original implementation ([Koz92,
see p. 71]). The following sections will assess the differences of GP to EA and
elaborate on the GP implementation used throughout this thesis.

2.4.1 Particularities of Genetic Programming

The process of GP is mostly equivalent to any other EA. The difference results
from the hierarchical structure introduced by the individuals representing com-
puter programs. This includes the way fitness is measured as well as the way indi-
viduals are combined during crossover and manipulated during mutation. [Koz92,
see p. 73f.]
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Solution Structure

An individual itself is built from a defined set C = F [ T , where F is the function
set and T is the terminal set. The function set contains any number of domain-
specific, recursively combineable functions, taking a specified number of argu-
ments (referred to as arity). Elements of the terminal set are constant compo-
nents of the program, for instance input variables or constant values and take no
arguments, thus closing the program at the given point10. [Koz92, see p. 80]

Taking for example the field of symbolic regression, the function set could contain
arithmetic operations, such as addition or subtraction, while the terminal set could
contain input variables and several different fixed numbers. The following figure
(2.2) illustrates this example, by using a tree-representation of the program.

Figure 2.2.: Example function & terminal set and individual in symbolic regression

As can be seen in the figure (2.2), functions are used as internal tree nodes and
terminals as leaves. This illustrates the need for functions to be recursively com-
binable, otherwise it would be impossible to represent complex solutions. Further-
more terminals are required by the system to provide closure to the tree and the
represented solution. Other examples, such as the “Artificial Ant” (see appendix
A.1), show how Koza’s approach can be applied to a variety of fields, as long as
solutions can be split into defined functions and terminals.

Fitness

The fitness of an individual i is not directly coded into the individuals, as in other
EAs and has to be measured over a set of training examples, so called fitness
cases [Koz92, see p. 74]. The result of applying the fitness cases to an individual,
also referred to as semantics11 of individual i, can be compared to a target, which

10It is crucial for the configuration of any GP to follow the closure property, as Koza describes:
“The closure property requires that each of the functions in the function set be able to accept,
as its arguments, any value and data type that may possibly be returned by any function in the
function set and any value and data type that may possibly be assumed by any terminal in the
terminal set.” [Koz92, p. 81]

11Several uses of the term semantics are possible, all referring to a non-syntactical represenation
of an individual [MKJ12, see p. 21]
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allows for instance the calculation of the root mean squared error (RMSE) that
can be used as a fitness measure. [Koz92, see p. 94f.]

x1 x2 y

1 2 3
3 4 1
2 1 -1

Table 2.1.: Example fitness cases X with target y

Figure 2.3.: Example fitness computation

Using the example in figure 2.2, figure 2.3 shows the computation of the seman-
tics of the tree, as well as the computation of the fitness, given the sample data
in table 2.1.

Standard Variation

As individuals are a collection of recursively arranged functions and terminals, any
individual can be easily manipulated by exchanging or replacing subprograms.
Crossover is thus implemented by selecting a random branch of one parent and
replacing a random branch of the second parent. The replaced branch will then
take the place of the missing branch of the first parent [Koz92, see p. 101].

As can be seen in figure 2.4 the tree representaion allows for simple exchange
of subprograms between two parents, after selecting random crossover points
uniformly over all nodes in the trees.

9



Figure 2.4.: Example variation with crossover and mutation

The mutation operator, analogous to crossover, creates a new random tree (pos-
sibly constrained by a maximum depth), and uses it to replace a randomly se-
lected subtree (again using a uniformly distributed selection over all nodes of the
tree) of an individual (see figure 2.4) [Koz92, see p. 105].

2.4.2 Implementation

The approach of algorithm 1 conceptually follows the previously, in section 2.3.2
and 2.4.1, presented process. The GP presented here and used in the following
chapters aims at solving symbolic regression problems, and has been configured
with the arithmetic operators addition, subtraction, multiplication and division12,
as well as several constants in [�1, 1].

In regards to the evolutionary process the implementation is using tournament
selection, standard variation operators and an elitist transition phase. In order
to, for instance, reduce memory usage or increase efficiency during the execu-
tion, a few adaptations have been incorporated, without changing the behavior
dramatically:

• No intermediary population: the process of selection and variation can be
easily combined into one iteration over the population, eliminating the need
to save an intermediary population;

12The division operator has been protected from division by zero: it returns its first argument, in
case the second argument is zero.
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• Conditional evaluation: if an individual is not modified (by crossover or muta-
tion) it is unnecessary to compute the semantics of the fitness cases again;

• Depth constraint: if an individual is too deep, the algorithm discards the
individual and replaces it with it’s parent;

• Initial depth constraint: maximum depth an individual can reach during the
initialization phase13.

The approach has been implemented in Python, as well as in Java. The latter has
been used as a basis for the first part of the thesis, chapter 3, while the Python
version was used in the second part, chapter 4.

2.5 OVERFITTING

Overfitting describes the phenomena of any algorithm chosing a hypothesis h1 as
the best solution in regards to a training dataset, while there exists a hypothesis h

b

which is worse than h1 on the training dataset, but better than h1 on data outside of
the training dataset [Mit97, see p. 67]. This negatively impacts the generalization
ability of an algorithm and is generally due to noise, such as erronous labels, or
irrelevant patterns in the data [Mit97, see p. 68]. Overfitting can be controlled for
instance by regularizations or training an algorithm on a subset of the available
data while monitoring the performance on the excluded part (i.e. to then find an
optimal stopping point, such as when the error on the excluded data starts to
increase again).

In the context of this thesis overfitting is required to be automatically detectable,
quantifiable and usable by the GP system, therefore a measure has been defined
which determines an individuals degree of overfitting (overfitting severity from now
on). It uses a collection of individuals, the validation elite, to evalutate any individ-
ual at any given time. The validation elite is a pool of individuals with fixed size
n
valelite

that contains the globally best individuals in regards to the fitness on a val-
idation dataset. At each generation, the best individual on the training dataset will
be evaluated on the validation dataset and becomes a candidate for the validation
elite. The validation fitness (fitness of an individual on the validation dataset) of
the candidate will be compared to the worst individuals validation fitness of the
validation elite. In case the candidate has a better fitness, it will replace the worst
individual of the validation elite.

The overfitting of any individual i is then defined14 as

is overfitting(i) = f
validation

(i) >

P
n

valelite

j=1 f
validation

(j)

n
valelite

.

13For details on how the population is initialized, see appendix A.2.1
14Minimization. In case of maximization, comparison operators have to be inversed.
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The overfitting severity, calculated for every overfitting individual i is defined as
follows:

severity(i) =
1

2

q
(f

training

(i)� f
training

(j))2 + (f
validation

(i)� f
validation

(j))2,

with j being a representative of the validation elite, i.e. average, or median. These
two measures will be used throughout this thesis as methods to automatically
make decisions during GP executions.
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Algorithm 1 Standard Genetic Programming
X := Fitness Cases; N := Population Size
t := Tournament Size
p
c

:= Crossover Probability
p
m

:= Mutation Probability
d
max

:= Maximum Individual Tree Depth
id

max

:= Maximum Initial Individual Tree Depth
P = INITIALIZE(id

max

,N ) . Initialize N individuals randomly
for all i 2 P do

EVALUATE(i, X) . Evaluate individual i on X
end for
while stopping condition not reached do

P
offspring

= {BEST(P )} . Elitsm: copy fittest individual in P
while |P

offspring

| < N do
p1 = TOURNAMENT(t,P ) . Tournament of size t applied to P
r = RAND(0,1) . Random number in [0, 1]
if r < p

c

then
p2 = TOURNAMENT(t,P )
p
new

= CROSSOVER(p1,p2)
EVALUATE(p

new

, X)
else if r < p

c

+ p
m

then
p
new

= MUTATE(p1)
EVALUATE(p

new

, X)
else

p
new

= p1
end if
if DEPTH(p

new

) > d
max

then
P
offspring

= P
offspring

[ {p1}
else

P
offspring

= P
offspring

[ {p
new

}
end if

end while
P = P

offspring

end while
return BEST(P )
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3 SEMANTIC REPULSERS IN GENETIC PROGRAM-
MING

As described in section 2.5, the implications of overfitting can render solutions
derived by ML algorithms unusable. The following aims at developing a framework
to limit the overfitting in GP by the means of repulsing from such solutions. Firstly
conceptual ideas are presented, followed by the implemented algorithm. Lastly
the results of the approach will be discussed.

3.1 CONCEPT

It has been shown that forcefully optimizing a ML algorithm might compromise
its ability to effectively retrieve general solutions [Die95, see p. 326]. Thus a
system has to be developed that provides the algorithm with an “incentive” to
evolve towards better solutions, or to evolve away from bad solutions. The latter
approach has been used in order to implement the concept of repulsers in GP.

Standard GP has been modified to be able to detect and quantify overfitting ac-
cording to the definition in section 2.5, as well as extended to incorporate the
following aspects:

1. maintain a pool of “repulsers”, a pool of fixed size containing overfitting indi-
viduals;

2. let GP evolve based on multiple objectives, specifically the fitness and dif-
ference to the pool of repulsers.

Using these modifications it is possible to define a system that automatically de-
tects unfit solutions and avoids similar ones by modifying probabilities thus avoid-
ing the application of hard criteria. The following sections will explain details and
design choices regarding the additions to standard GP.

3.1.1 Repulser Pool

The repulser pool, similar to the validation elite pool, is a global collection of indi-
viduals maintained by the means of predefined overfitting measures (see section
2.5). In each generation the best15 individual is tested for overfitting and is han-
15Or the best n. The number of individuals used can be specified as a parameter of the system.

The following assumes one indivdual per generation.
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dled as a repulser pool candidate in case the test is positive. The candidate will
be compared to the individual in the repulser pool with the smallest severity, the
“best” of the repulser pool, if the candidates severity is larger, it will replace the
individual in the repulser pool. In case the pool has not reached its maximum size
yet, the candidate will simply be added instead of replacing the best individual in
the pool. This ensures that over all generations, the most overfitting individuals
are collected into the pool, while keeping it at a reasonable size. Additionally the
parameter skip generations allows to delay the start of collecting repulsers by n
generations. This is used to prevent the pool being filled with the initial, random
individuals which are typically bad solutions and not fit for the problem.

3.1.2 Multi-Objective Genetic Programming

As the system is supposed to get an “incentive” to move away from the repulser
pool rather than being forced to not choose any solution that overfits, a second
objective has to be incorporated into GP. Alongside fitness, the similarity/dissim-
ilarity to the repulser pool needs to have influence on the selection probability
during the selection phase of GP. The “fast-non-dominated-sort” algorithm devel-
oped by Deb, et al. [Deb+02] in the context of “NSGA-II” is an efficient and simple
approach to identify the pareto hierarchie introduced through multiple objectives.
It consists of two stages [Deb+02, see p. 184]:

1. Pair-wise comparison: each individual will be compared to any other indi-
vidual in the population, while checking domination criterias based on the
objectives;

2. Extraction of the levels: based on a list collected during phase 1, all levels of
the pareto hierarchie can be extracted in one, simple loop. Each individual
will be assigned a rank according to its respective pareto level.

The first phase of the sorting algorithm requires the definition of a domination
measure which can be applied to two individuals i, j and will return three states, i
dominates j, j dominates i or i equals j. Two alternatives for this measure have
been used in this thesis, one using a dynamic number of objectives, according
to the number of individuals in the repulser pool. The other using exactly two
objectives, the fitness and an aggregated measure over the repulser pool. In the
first case any individual i dominates an individual j if i is better in fitness, and
if all its semantic distances to all individuals in the repulser pool are larger than
individual js. In case of the second measure i dominates j if i is better in fitness
and if the average semantic distance to all repulsers is larger than individual js.

As mentioned the second objective (or objectives if not aggregated) incorporates
the semantic distance between individuals. It describes the euclidean distance
between the vectors of semantics of two individuals (semantics are the ouput val-
ues of the solution over all observations, see section 2.4.1 Fitness) and is used to
overcome the expensiveness of tree comparisons. Individuals in GP tend to grow
quickly to very large and complex structures, which makes it a highly resource
expensive task to syntactically compare two individuals. Therefore a represena-
tion of the individuals has to be found which can be used to efficiently evaluate
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similarities. Inspired by geometric semantic genetic programming (GSGP) which
focusses on the value of semantics, here the semantics have been chosen to
represent an individual and to determine similarities among them.

3.2 IMPLEMENTATION

As seen in figure 3.1 the process of using semantic repulser genetic program-
ming (SRGP) disturbs the general way of retrieving solutions very little: after the
variation phase, repulsers are extracted16 and individuals are processed through
the fast-non-dominated-sort algorithm. The repulsers only point of influence is
the selection phase, where individuals more different from the repulser pool will
be gaining a higher probability to survive than others that are less different.

Figure 3.1.: Process Overview Semantic Repulsers in Genetic Programming

To achieve the desired behavior and modify selection probabilities, the tourna-
ment selection presented in section 2.3.2 has been used with slight changes to
accommodate the multi-objective nature of the system. The tournament, as for-
mulated in algorithm 2, will not discriminate based on fitness, but based on the
previously calculated rank of the individual.

16See algorithm 4 for details on how the measuring of overfitting and the associated severity is
implemented.
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Algorithm 2 Tournament Selection: Multi-Objective Implementation
function TOURNAMENT(P , n) . Apply tournament of size n to P

w =RANDOM(P ) . Select random individual from P
for all t 2 {1..n� 1} do

o =RANDOM(P )
if RANK(o)<RANK(w) then

w = o
else if RANK(o)=RANK(w) & FITNESS(o)<FITNESS(w) then

w = o
end if

end for
return w

end function

Since pareto levels can be occupied by multiple individuals at once, the tourna-
ment might run into the situation, where it is impossible to make a decision, as
two or more individuals could have equal ranks. In this case the rank is ignored
and the tournament falls back to using fitness, being still the primary decision
criterion during the evolution.

The implementation of SRGP brings along several new parameters that either
need to be adapted according to the problem at hand or could not be defined
in an intuitive manner. The following table 3.1 summarizes the most important
parameters of the system (for a complete list see appendix A.2.3):

Parameter Type Description
validation set size Decimal Size of the validation set to split of the train-

ing dataset
max repulsers Integer Maximum number of repulsers to collect
validation elite size Integer Maximum number of individuals to keep in

validation elite pool
skip generations Integer Number of generations to skip before start-

ing to collect repulsers
use best as rep candidate Integer Number of individuals to use as repulser

pool candidates per generation
overfit by median Boolean Use median instead of average as validation

elite representative
aggregate repulsers Boolean Use average distances to repulser pool as

objective

Table 3.1.: Parameters of Semantic Repulser Genetic Programming

As mentioned any constant used by the system has been translated into a pa-
rameter, which does not necessarily mean they should be treated as such. But
through leaving them open to configuration, initial tests can be made with a vari-
ety of modifications without the need to rewrite code. For instance, the parame-
ter overfit by median provides a switch to calculate the overfitting measures not
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based on the average, but on the median of the validation elite, which might be a
usefull change to avoid outlier-sensitivity.

3.3 ALTERNATIVE FUNCTIONALITY

The concept of SRGP relies on several predefined principles, such as the mea-
sure of overfitting or the nature of the multiple objectives. As these elements can
be easily exchanged, various alternatives have been defined during the process
of development. The following will describe several additional elements that can
be used interchangable with existing functionality.

Overfitting: Slope-based

The default measure of overfitting, defined in section 2.5, relies on building a pool
of best-of individuals regarding the fitness on the validation dataset and then us-
ing its average or median to determine overfitting of individuals. This method will
trap the algorithm in assigning the label “overfitting” to increasingly more individu-
als as evolution progresses, since barely any individual will be able to exceed the
validation elites representative. One way to prevent labelling increasing amounts
of individuals as overfitting is to increase the size of the validation elite pool, which
will make it easier for any individual to reach the upper half of the fitness spectrum
of the validation elite. Yet this way the process might ignore crucial individuals that
overfit slightly, but are the starting point of overfitting.

Therefore a second measure for overfitting has been defined based on the slope
of the curve17 created through collecting the validation fitness of every best indi-
vidual at every generation:

• let Hist
n

be the validation fitnesses of the last n individuals that have been
labelled as the best of a generation and

• let ¯f be the average (or median) of Hist
n

;

• let m
h

be the slope of the simple linear regression y = m
h

⇤x+b using Hist
n

;

• let f
i

be the validation fitness of any individual i to be tested for overfitting;

• let m
i

be the slope of the simple linear regression y = m
i

⇤ x+ b using n� 1

fitnesses of Hist
n

and f
i

(leaving out the oldest value in Hist
n

);

Overfitting and the associated severity are then defined as:

is overfitting(i) =

(
true, if f

i

> ¯f and m
i

�m
b

> 0.1

false, otherwise

severity(i) = m
i

�m
b

17Assuming minimization as the problem basis. For maximization the process can be used in-
versely, but is not considered in the following.
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Intuitively this measure tests the change in the slope of the validation fitness
curve, assuming individual i is accepted as the next best individual. In case the
change in slope is larger than the threshold of 0.1 (and positive) the individual will
significantly bend the curve upwards indicating overfitting. But on the otherhand,
if the curve has already an upwards tendency, no other individual will be made
responsible for the overfitting as long as they keep the same momentum. This
has been introduced as one solution to the problem of the previously defined
overfitting measure, which would label any individual as overfitting without regards
to previous generations.

The alternative overfitting measure comes along with an important parameter,
the number of generations to consider for the slope. The parameter is named
n sighted steepness and can be set to any positive integer, while 0 is used as the
switch to deactivate it and fall back to the standard overfitting measure. Similarly
to the size of the validation elite pool, this parameter changes the pressure on
individuals to perform well on the validation dataset. As the parameter increases
the slope m

h

becomes more stable and a single additional individual will likely
have a rather insignificant influence on it. Yet if the parameter is set to smaller
values, m

h

is increasingly changed by fluctuations and follows even the slightest
changes, thus increasing the influence of a single individual.

Objectives: Excluded Fitness

The fast-non-dominating-sort algorithm is used here in conjuction with the fitness
and n distance objectives (one for each repulser; unless aggregated by average).
Due to the fact that no individual can be dominated by another if it is better in
fitness18 the distance to repulsers becomes a secondary criterion in the decision
of the algorithm. The focus on fitness is additionally increased during the modified
tournament selection which will turn to fitness in case of equal ranks.

As to restructure the process into one being focussed on the distance objective,
a simple switch has been included as the parameter domination exclude fitness
to disregard fitness completely during the fast-non-dominated-sort. This results
in fitness being unused in tournament selection, unless two individuals have not
been able to dominate each other, in that case the tournament will again use the
fitness to handle the equal rank situation. It is important to note, that this does
not imply the algorithm will loose the ability to evolve solutions to an optimum.
It will be firstly converging away from bad solutions, which is inversely moving
the solutions towards an optimum, secondly the tournament will provide better
chances to individuals with better fitness.

Semantic Distance: Restricted to Validation Semantics

In the default configuration the distance objectives are calculated based on the
combined semantics of training and validation dataset. This provides the largest
18Any individual i dominates any individual j only if i is better (and not equal) than j on all existing

objectives.
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amount of information for the decisions during the fast-non-dominated-sort, yet
could introduce a problematic situation. Assuming a repulser r is, in comparison
to an individual i, semantically closer to the global optimum regarding the training
data, and semantically further away regarding the validation data. The problem
arises when i is semantically close to r on the training data, but for instance
distant on the validation data. Now the objectives would likely force the algorithm
away from individual i since it is overall quite similar to repulser r (training data is
usually around 80% of the data), altough individual i is an improvement regarding
the generalization ability.

To overcome this problem the parameter repulse with validation only allows to
disregard the training semantics during the distance calculations, such that the
objective only focusses on moving away from inferior semantics of the validation
dataset.

Repulser Pool Maintenance: Merge Repulsers

The method described in section 3.1.1 to maintain a fixed-sized pool of overfitting
individuals relies on removing the “best” (in terms of least severely overfitting)
individual before adding another individual. Since this might be removing indi-
viduals from the pool that contain crucial information a second method has been
implemented: merging of similar individuals. The mechanism searches to pool
for the two semantically closest (based on euclidean distance) individuals and
averages their semantics into a new individual19.

General: Force Distance to Repulsers

Using the distances to repulsers as additional objectives is supposed to create
a tendency to more general solutions (see section 3.1). In order to determine
the necessity of using a multi-objective system an opposing approach has been
embedded, forcing the algorithm away from the individuals collected in the re-
pulser pool. If activated by the parameter force avoid repulsers, it influences the
variation phase, such that if an individual is similar to any of the individuals in the
repulser pool, it will be discarded. Similarity in this context is defined as follows:

• let d
ir

be the semantic distance between individual i and repulser r;

• let dP
max

be the maximum semantic distance between any two individuals of
population P ;

• let e be a parameter of the system (referred to as parameter equality delta).

i ' r if d
ir

< dP
max

⇤ e

This implies that the variation phase can take indefinitely long, in case not enough
individuals are found satisfying the criterion. Therefore the iteration has been
escaped to 50000 loops, in order ensure a timely stopping of the algorithm.

19Note: This results in the loss of the syntactic component of the two merged individuals, the
resulting individual is therefore only usable by its semantics.
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3.4 RESULTS

The scope of the following tests is to determine the effectiveness of the previously
developed concept of repulsers. Thus parameters inherited of standard GP, such
as population size, or variation probabilities have been fixed to the values pre-
sented in table 3.2. These values represent sensible starting points when tuning
a GP system and since the objective of this thesis is not to optimize a specific GP
instance, but to implement an improving addition, no fine-tuning of these param-
eters has been conducted.

Parameter Value
generations 200

population size 200
tournament size 4

crossover probability 0.9
mutation probability 0.1

max init depth 6
depth limit true

apply depth limit 17

Table 3.2.: Fixed parameter configuration inherited from standard GP

Furthermore a dataset had to be selected accomodating the assumptions of the
developed approach. Specifically a dataset had be used that inherently overfits
at a given point during the evolution to initially prove the concept usable. The
dataset selected contains information retrieved from the stock market in istanbul,
consisting of 7 features, 1 target and 536 observations. In all of the tests, the
dataset has been split into 70% training data (375 instances) and 30% test data
(161 instances). Standard GP has been executed over 30 folds with the above
configuration (500 generations instead of 200) in order to get a baseline perfor-
mance to which the new concept can be compared.

From figure 3.2 it becomes clear, that standard GP is beginning to overfit already
after around 50 generations, which is why the parameter skip generations has
been set to 50. This ensures the initial, positive phase will not be disturbed.
Following the curve of the test fitness, it is also visible that the early overfitting
renders 200 generations more than enough to test the basic impact of the new
concept.

Since the implementation of SRGP required the creation of several new parame-
ters, the testing has been performed in stages. Instead of cross testing different
parameter configurations, one parameter at a time has been evaluated using the
previously evaluated parameters. This does leave out certain combinations of
parameters, yet is necessary due to the expensive computation. Table 3.4 con-
tains the different settings that have been used to determine the impact of the
concept.

The inital tuning has been determined by running the algorithm with each setting
on 5 different sortings of the dataset (see appendix A.2.4 for a detailed report
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Figure 3.2.: Standard GP: Training vs. Test Fitness on Istanbul Stock Dataset

Parameter Tested Values Ideal Value
Validation Elite Size 10, 25, 50 10
Repulser Pool Size 10, 25, 50 10

Aggregate repulsers true/false false
Overfit by Median true/false false

Best n as repulser candidates 1, 10 1

Table 3.3.: Parameter Tuning: tested and selected settings (ordered by testsequence,
based on 5 folds)

on the decisions). Based on the average performance the ideal value has been
chosen and the tests moved to the next parameter. A deeper analysis has then
been carried out, by running the ideal configuration over 30 different sortings,
equal to the folds on which the baseline algorithm had been evaluated.

Figure 3.3 shows in yellow the training and test results achieved by SRGP. Both
have been collected over the 30 folds in comparison to standard GP. It becomes
immediately clear, that using this configuration, the repulsers have no impact on
the general tendency of the algorithm. It does not even create outlying runs,
which exceed the perfromance of standard GP (see figure 3.420).

The alternative approaches discussed in section 3.3 have been evaluated one at
a time with the best found configuration of the previous tests using the settings
presented in table 3.4.

Most of the changes were unable to exceed the default configuration of SRGP, but
on the other hand, did not worsen the performance significantly. In these cases
the entries have been labelled as indifferent. Judging from the analysis described
in the appendix (see A.2.4 Additional Tuning) the most promising approach is to
exclude training semantics during the distance calculation. The figures 3.3 and

20Boxplot whiskers represent maximum 1.5IQR (Tukey Boxplot). This is valid for all boxplots
throughout this thesis.
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Parameter Tested Values Ideal Value Exceeds default
Merge repulsers true/false false indifferent

Only repulse validation semantics true/false true yes
Slope-based overfitting (n) 5, 10, 25 10 indifferent

Exclude fitness true/false false indifferent
Forced avoid repulsers (delta) 0.1, 0.01, 0.001 0.01 indifferent

Table 3.4.: Additional Parameter Tuning: tested and selected settings (ordered by test-
sequence, based on 5 folds)

3.4 present the result of said approach using 30 folds over the dataset. The
results are contrasted with the previously as best defined configuration of SRGP,
as well as with standard GP. As can be seen in the fitness plot (figure 3.3) the
only improvement over standard GP is a slight smoothening of the curve, meaning
both SRGP versions tend to be more stable. Yet the final outcome of the SRGP
versions is more spread out than the standard GP.

Based on the results of the described tests, it could be argued that the semantics
of an individual do not carry the information necessary to discriminate between
overfitting and not overfitting. Thus, in order to support this claim, a series of
tests has been executed using the mechanism to forcefully avoid overfitting indi-
viduals. As this test has already been carried out over 5 folds, another 25 folds
have been executed to remove any doubt of its outcome, which is presented in
figure 3.5. Clearly the test negates the argument of the semantics not contain-
ing the necessary information, since the solutions generated are not subject to
overfitting. Unfortunately, the approach to ignore individuals based on distance
to the repulser pool is unusable, as it takes an uncontrollable amount of time to
evolve. Moreover the test shows a different learning curve regarding the fitness
on the training data. It seems, that even though the curve is rather steep in the
beginning, it flattens out after around 100 generations and continues to improve
slowly. All in all the test indicates, that the multi-objective approach to providing
the “incentive” of moving to non-overfitting solutions is flawed, as it is, based on
the semantics, not pressuring the evolution enough.
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Figure 3.3.: Final: Training & Test Fitness

Figure 3.4.: Final: Consistency after 200 generations
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Figure 3.5.: Control Series: Forcefully avoiding repulsers (30 folds)

25



4 INDIVIDUAL’S SIGNATURES IN GENETIC PROGRAM-
MING

Krawiec and O’Reilly proposed a strategy to capture an individual’s behavioral
characteristics, in which the semantic vector is extended to a semantic matrix con-
taining the trace (from now on semantic signature) of an individual’s tree [KO14].
The signature provides a deeper description of an individual and can be used
in several ways. After presenting the retrieval of the signature, the following fo-
cusses on two approaches targeting overfitting, of which the first is an extension
of the SRGP proposed in the previous chapter and the second is a signature-
based substitute of the validation dataset embedded into a multi-objective GP.

4.1 SIGNATURE OF AN INDIVIDUAL

The signature of an individual is gathered by evaluating a fitness case and sav-
ing the return value of each node into a vector in the order in which the tree is
traversed. Doing so for every observation in a dataset results in a m⇥n matrix
with m being equal to the number of observations and n being equal to the size
of the individual’s tree. Each column vector in the signature matrix represents the
semantics of the respective subtree of the individual, thus the last column vector
equals the individual’s semantics. As can be seen in the example in figure 4.1 a
dataset of two observations and an individual of size 5 will create a 2⇥5 matrix
where each column vector represents the subtrees prediction (the semantics).
[KO14, see p. 936]

4.2 EXTENDED SEMANTIC REPULSERS IN GENETIC PROGRAMMING

As concluded in chapter 3, despite the fact that the semantic vectors of individ-
uals might carry enough information to distinguish between overfitting and not
overfitting, the multi-objective system did not create enough pressure on the evo-
lution. Using the signature matrices instead of the semantic vectors might provide
the system with the additional information to effectively repulse from overfitting in-
dividuals, as pareto fronts can possibly be established in a clearer manner and
probabilities are modified unambigously to individuals with better quality. To in-
corporate the semantic signatures into the concept of SRGP, resulting in the
extended semantic repulser genetic programming (eSRGP), only a few changes
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Figure 4.1.: Example of Semantic Signature Retrieval

have to be made which are described in the following sections alongside the im-
plementation and results.

4.2.1 Concept

Using the semantic signature instead of the semantics of an individual poses
only a small difference in the implementation. Firstly, while each individual is
being evaluated, the signatures have to be extracted as described above (see
section 4.1). Secondly, during the fast-non-dominated-sort, a matrix dissimilarity
measure has to replace the euclidean distance as a domination criteria. The
algorithm can then proceed in exactly the same manner as described in section
3.1 in order to move the population away from a pool of repulsers.

Matrix Dissimilarity Measures

Using the signature matrices as descriptions of individuals opens new opportuni-
ties, yet comes along with additional difficulties. The dimensionality of the signa-
ture matrices is directly bound to the size of an indiviual, meaning that the system
has to be able to compare matrices of unequal size. Multiple measures, including
distance correlation [SRB07], the RV coefficient [RE76], as well as the modified
RV coefficient (RV2 coefficient) [Smi+09], have been implemented in order to
allow tuning towards the most suitable results. Generally the measures should
return low values in case of independence, while they should assume high values
for largely equal matrices. In order to initially decide for one of the coefficients a
simple test has been conducted, determining their discriminative power by apply-
ing them in two scenarios. Firstly two random, independent matrices (ideally in
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Parameter Type Description
max repulsers Integer Maximum number of signatures to keep as repulsers

validation elite size Integer Number of individuals to keep in the validation elite pool
search operator String Use Multi-Objective (mo) or Single-Objective (so)

penalty cost Decimal Cost parameter for fitness penalization

Table 4.1.: Parameters of the extended semantic repulsers in genetic programming

different random intervals) are compared by the measures and secondly two de-
pendent matrices (i.e. one being a subset of the other) are used. The coefficient
with the largest interval between the two scenarios has been chosen to be the
default, in this case the modified RV coefficient.

Single-Objective GP

Additionally, the whole system can be switched to a single-objective concept re-
ducing individual’s fitness according to dissimilarities to the repulsers. Subse-
quently the penalized fitness21 f

p

of any individual i has been defined as f
p

(i) =
f(i) + SIM(i, R) ⇤ c, with SIM being the average over the similarities of i to all
repulsers in R and c being a cost parameter. The cost parameter c is neces-
sary to adjust the penalty to an appropriate impact, since the fitness is problem
dependent and the similarity measures are bound to the interval [0, 1].

4.2.2 Implementation

The eSRGP has been implemented in Python in order to leverage the existing
third-party libraries covering large parts of the ML paradigms. As this is an exten-
sion of the SRGP, most of the functionality has been copied (see figure 3.1), while
leaving out approaches that did not show an improvement (such as the slope-
based overfitting, or others). In addition to exchanging the use of the semantics
with the semantic signatures, the tournament is modified to include a switch to
change the search operator between multi-objective and single-objective. The
reused and new components can be summarized by the table 4.1, which de-
scribes the parameters22 of the extended approach.

4.2.3 Results

The presented approach functions as an extension to the original SRGP concept,
trying to overcome the problem of overfitting with a deeper description of the indi-
viduals. Therefore the initial tests have been based of the previously determined
configuration for SRGP (see table 3.4 in section 3.4), such that two opposing
strategies were examined:

21The penalty is added to the fitness in the case of minimization. For maximization the penalty
would be subtracted from the fitness.

22Excluding the from standard GP inherited parameters, see section 3.4 table 3.2.
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1. Best-Of SRGP using the signature and the standard multi-objective setting

2. Best-Of SRGP using the signature and a single-objective setting

Regarding the latter, the cost parameter has been defined to keep the penalty
in between [0, 0.01], as the typical fitness using the istanbul stock dataset lies in
[0.01, 0.02]. The two tests have then been run over 30 folds and compared to
standard GP, see figure 4.2.

Figure 4.2.: Extended SRGP: Initial Test using Multi-Objective (mo) and Single-Objective
(so) Settings (y-axis is truncated for better visibility)

From the above initial tests it becomes clear that neither the multi-objective nor the
single-objective system is capable of moving the population away from overfitting
solutions. Especially the single-objective system seems to push the population
into a wrong direction, as the training error decreases and the test error increases
drastically. As can be seen the multi-objective system behaves quite similar to
standard GP, implying that using the eSRGP does not overcome the problems
mentioned earlier. Even with the increased amount of information, by using the
signatures, the multi-objective setting is not creating enough pressure to develop
towards higher quality solutions with regards to their generalization ability. Con-
sequently no futher tests regarding the approach of repulsing the evolution of GP
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from a collection of overfitting individuals have been carried out.

4.3 SIGNATURE-BASED SUBSTITUTE OF VALIDATION DATASET

The previously described concepts, improving the generalization ability of GP or
not, are built with the need to split the available data into a training and validation
set in order to run. This need reduces the amount of data, and thus information,
on which individuals are built upon, smallering the possibilities of retrieving a so-
lution of high quality. As an opposing approach, allowing to train the GP on the full
dataset, while incorporating means to discriminate against overfitting solutions, a
two-phased simple multi-objective system based on the signatures of individuals
is proposed, described and evaluated in the following sections.

4.3.1 Concept

The system bases of the idea to replace the validation set used in other ap-
proaches with an external ML algorithm capable of predicting whether an individ-
ual is overfitting, as well as to what degree it is overfitting. The model is trained
using individual’s signatures extracted in a GP run using a validation dataset and
is then applied to a GP run not using a validation dataset, but incorporating mul-
tiple objectives, the fitness and the degree of overfitting (both to be minimized).
This concept is therefore split into two phases:

1. Extract signatures and train classifier(s): Over several folds of standard
GP tuned to the problem, extract individual’s signatures (using all available
observations) and collect information about overfitting and severity (i.e. us-
ing a validation set and a validation elite pool as described in section 2.5).
Subsequently the signatures are used to create a classifier capable of dis-
criminating between overfitting and not overfitting. Additionally, but optional,
a classifier can be created to predict the severity associated with the over-
fitting.

2. Run multi-objective GP: Use the classifier to run a multi-objective GP us-
ing all available observations, while optimizing fitness, as well as the sever-
ity/overfitting measures retrieved through the classifier.

Both phases exhibit the need to transform an individual’s signature into a feature
vector usable for training and prediction respectively. That implies a constantly
sized feature vector has to be created from an individual’s signature, which is
sized according to the underlying program. As a result, signatures cannot be
simply “unstacked” into a row vector, since it would lead to differently sized obser-
vations. Two approaches overcoming the problem have been considered during
the testing of the concept, one truncating the signatures to the first n nodes of the
tree (from the root) and then unstacking it into a feature vector, while the other
applies feature selection techniques to reduce the dimensionality of the signature
to n columns before unstacking it into a feature vector.

30



Additionally, the concept allows for two different kind of models. As one option
a two-layered approach can be chosen, using a binary classifier to predicting
whether an individual overfits and subsequently applying a regression model to
determine the severity. On the other hand a single model could be used to predict
a discretized severity, deticating one bucket solely representing 0-valued, non-
overfitting individuals.

4.3.2 Conceptual Tests

As mentioned two approaches for preprocessing the individual’s signatures have
been used during the evaluation of the concept. The first approach, truncating
the signature to the first n nodes of the tree is in the following referred to as
depth-truncated. Regarding the second approach, feature-selected, a recursive
feature elimination using SVMs has been performed setting the last column vec-
tor (semantics) of the signature as the target. Additionally the continous severity
measure has been discretized for the second model choice. Based on the distri-
bution of the severity values, four buckets have been chosen, as depicted in 4.3,
and used as labels to train the multi-class model. Generally it has to be noted,
that in order to achieve a more clear distiction between overfitting and not overfit-
ting observations, any vector falling below a severity of 0.0005 has been dropped
from the training dataset.

Figure 4.3.: Histogram of severity with assigned buckets (x-axis is truncated at 0.0032,
bucket 0 contains all not overfitting observations)

Initially a depth-truncated dataset (7 components) has been used to establish a
choice of algorithms for the classifiers. Among the models tested were SVMs,
MLPs and random forests (as well as decision trees) for the binary, as well as the
multi-label classifier. OLSs and gradient boosting regressors have been evalu-
ated for the severity in case the binary model is used. Overall the random forests,
as well as the gradient boosting regressors achieved the highest scores on the
used dataset and have been chosen for further testing of the approach. Table 4.2
summarizes the best results gathered during the evaluation of several different
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Model Dimensionality
Reduction

# Nodes ? Training
Score

?Test
Score

Measure

Multi-Class
(severity
bucket)

feature-selected 5 0.9891 0.3800 F1

Binary (overfit-
ting)

feature-selected 15 0.9968 0.4900 F1

Continous
(severity)

feature-selected 15 0.000006 0.0030 MSE

Binary (overfit-
ting)

depth-truncated 3 0.9817 0.5500 F1

Continous
(severity)

depth-truncated 3 0.0000001 0.00006 MSE

Multi-Class
(severity
bucket)

depth-truncated 3 0.9259 0.2900 F1

Table 4.2.: Performance of overfitting/severity classifiers in training and test environment
(5 folds, see measure column for score meaning)

szenarios, varying the model type, dimensionality reduction technique and num-
ber of nodes (columns) to use during the dimensionality reduction (see table A.9
for the complete list of test results).

Intuitively a higher number of components should result in a more accurate pre-
diction. Unfortunately GP is likley to produce highly imbalanced trees, thus using
more than 7 components in the depth-truncated approach is infeasible, since al-
most no individual will be able to fulfill the dimensionality required by the resulting
models. Contrarily it is visible, that all of the above test szenarios, even using only
3 components, show the capability of the models to predict precisely the flag of
overfitting, as well as the value/bucket of the severity (the latter has slightly worse
performance).

Subsequently, in order to verify the classifiers performance in a real GP run, the
second phase has initially been replaced with a standard GP run, evaluating the
best individual with the classifiers and an independent test set. The prediction
of the classifier can then be compared against the true characteristics calculated
from the test set and the resulting scores can be derived (see table 4.2 5th col-
umn). Unfortunately the test runs were unable to support the expected scores
retrieved during the training of the model. None of the tests showed an accept-
able performance with regards to precision, recall, F1-Score, as well as MSE,
thus negating the assumption on which this approach is based on. The derived
models from previously, diversely extracted semantic signatures cannot be used
as a substitute to the validation dataset.

There are several underlying aspects which could possibly cause the models to
fail during the tests:

• Individuals are different: as GP heavily relies on randomized processes,
the individuals, thus their signatures, are likely to be different every time the
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system is run again23. A model trained on the signatures of one batch of
runs, won’t be able to recognize any of the signatures in another batch of
runs.

• Dimensionality Reduction: individual’s signatures directly depend on the
size of the individual’s program, thus have to be truncated or reduced to a
common size. This reduction implies a loss of information, especially high
when truncating everything but a couple of low-level nodes (which are likely
to be the same for many individuals), resulting in undistinguishable feature
vectors.

Due to the nature of GP being a grey-box algorithm24, it is a highly complicated
task to follow through the evolution and determine the aspects responsible for
these models to fail. Additionally the models used to classify individual’s signa-
tures are themselves black-box models not allowing for an analysis of the learned
patterns and driving factors during prediction. As these issues are rendering
the concept of using a simple multi-objective system to avoid overfitting solutions
flawed, further tests and implementations have not been carried out.

23Even if the solution trees of two individuals are equal, they could be arranged differently, result-
ing in different signatures.

24see section 1.1 for an explanation of the terms grey-box, black-box and white-box
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5 DISCUSSION

The problem of algorithms retrieving overfitting solutions is wide spread and a
well-known phenomena in the field of statistics. It is a problem immanent to the
algorithms and datasets used, independent of their individual quality - a robust al-
gorithm overfits on heavily noised data, while a fragile algorithm overfits on clean
data already [Mit97, see p. 66f.]. While algorithms advance in their ability and
datasets explode in size (typically containing large amounts of noise, i.e. sensor
data), the problem remains as present as ever. As specifically GP is a very sen-
sible system in regards to ovefitting on unclean and noisy datasets it has been
the focus of this thesis. The three different proposed and evaluated concepts
have been based of the semantic structure of individuals, rather than working
with the syntax of solutions, and have been designed to draw the population away
from low-quality solutions rather than moving the population to higher-quality re-
gions.

1. Semantic Repulsers in Genetic Programming: using the semantics of in-
dividuals the population is pushed away from a pool of overfitting individuals
by the means of a multi-objective system.

2. Extended Semantic Repulsers in Genetic Programming: in order to sup-
port the multi-objective system proposed in SRGP the individual’s signa-
tures have been used in this approach.

3. Signature-based Substitute of Validation Dataset: modelling the overfit-
ting of individuals based on the signature promised to help building a simple
multi-objective system using all available data for training.

The initial approach, SRGP, has been proven to be ineffective, as it did not re-
duce the level of overfitting throughout the tests. Even through multiple variations,
such as modifing the objectives or the way overfitting is detected, no improve-
ments could be generated. Thus it has been concluded on the one hand that
discriminating through the multi-objective system using the semantic distance to
the repulsers does not have the necessary power to push the population away
from low-quality solutions. On the other hand one important aspect has been
confirmed: the semantics of an individual could be used to identify overfitting,
by comparing them to overfitting individuals (see section 3.3 Force Distance to
Repulsers).

The second approach, eSRGP, resulted in similar conclusions, being that the
semantic signature does neither support the multi-objective system in increasing
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Figure 5.1.: Running times of semantic approaches

the pressure on overfitting individuals, nor provide a stable basis for a single-
objective system using penalization of the fitness. Additionally problematic have
been the differently sized signature matrices, since the used similarity measures
might not provide the coefficients that express what is necessary to distinguish a
not overfitting individual from an overfitting one, therefore diminishing any positive
impact the signatures could have on the multi-objective system.

The third approach has not been followed longer than the conceptual phase in
which testing already revealed ineffectiveness. Despite individual’s signatures
producing acceptable results during training of the models, the application in a
GP run showed large differences in comparison to a real validation dataset. The
problem of the differently sized signatures, as already mentioned for eSRGP, pos-
sibly is a large contributor to the failure of this approach. As the signatures have
been truncated or feature selected in order to provide a fixed sized feature set,
valuable information might have been removed, preventing models from effec-
tively discriminating between overfitting and not overfitting.

As summarized above, none of the approaches was proven to be a usable con-
cept to overcome or at least limit the overfitting of GP. From figure 5.1 it becomes
clear, why the single working variation of SRGP to forcefully avoid repulsers is
infeasible. The computational effort seems to be 4-5 times higher than the av-
erage standard GP run needs (measured in seconds per 200 generations). The
inefficiency is directly bound to the number of trials, which the variation phase is
allowed to perform in order to create individuals being distant from the repulser
pool (in the tests this threshold was set to 50000).

Although the suggested approaches did not provide the expected outcome, many
more options to incorporating the semantics or the signatures in a GP system
working against overfitting exist and should be examined in the future. Addition-
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ally and setting the problem of overfitting aside, the signatures of individuals can
be used in alternative ways, of which not many have been researched yet.

Multiple objectives in a GP system do not necessarily imply an equal importance
of the objectives and therefore the classical multi-objective approach might not
create the needed environment to accomplish such goals. All of the described
concepts, with one exception, built on using a multi-objective system not discrim-
inating between the objectives and have been shown to not effectively limit the
overfitting. Subsequently additional work is necessary in determining an appro-
priate construct around the repulsing objective in order to provide a significant
influence. Such constructs include, i.e. a single-objective system using a lin-
ear combination of fitness and repulser distance, a single-objective system re-
stricted to only repulser distance, or even completely different approaches, where
the distance criteria leads to the complete purging of individuals from the pop-
ulation. The latter could be approached similarily to the forceful avoidance of
repulsers, dropping any individual from the population, that is below a certain dis-
tance threshold (this could imply dynamically sized populations, or a mechanism
to refill the population).

Regarding the use of the semantic signatures one key aspect has been iden-
tified to be problematic: the size of the signature matrices. Finding a sensible
way to reduce (or increase) the dimensionality to a fixed number of components
while retaining as much information as possible and not loosing comparability
could increase the effectiveness of the evaluted approaches. The repulser sys-
tem presented in section 4.2 would benefit from such findings, as the similarity
measure could be providing more adequate results and the computational effort
could be decreased. Additionally the concept of substituting a validation dataset
with pretrained models based on the signatures could become possible again, as
it seemed to fail due to a lack of information.

Krawiec and O’Reilly (see [KO14]) not only defined the idea behind the semantic
signature but also presented several ways to use the information. One of which
is to process the signature performing an automatic feature selection resulting
in the n most important columns of the signature matrix. Since columns of the
signature matrix correspond to a specific node in the individual’s tree, the subtree
belonging to that column can be extracted, including the associated subsignature.
Generalizing the eSRGP and adding the extraction of subtrees, or -signatures,
results in a system depicted in figure 5.2. This system, independent of how the
objectives are used to influence the probabilities during the selection phase, can
switch between two modes, syntactic repulsing or semantic repulsing. The latter
is what has been used throughout this thesis but instead of using the full repulser
signature, it uses subsignatures representing the most influencial parts of the
repulser. Similarily the syntactic mode will as well not ban whole individuals, but
rather filter the individual for the parts likely to be responsible for the overfitting.
Clearly, as it cannot be a distance anymore, the notion of similarity to repulsers
has to be redefined for the syntactic approach to, i.e. the number of occurences
of a repulser tree in an individual’s tree.

Furthermore the signature can be used to analyze and process individuals after

36



Figure 5.2.: Signature-base approach to repulsing from overfitting individuals using syn-
tactical or semantic information

a GP has returned a final solution. As signatures reveal the behavior of the indivi-
uals on the training data, one possible use could be to determine the imporance
of specific parts of the solutions. Such analysis might provide the means to group
and abstract the solutions such that they can be reformulated into a less com-
plex, possibly even comprehensible representation. It could as well be possible
to not only simplify the solutions but even to exclude certrain parts due to insignif-
icant influence. I.e. a column of the signature matrix containing always the same
value, could be transformed into a constant, as it would not make sense to keep
the subtree associated to it.

Even though most of the above ideas and suggestions pertain to the subject
of this thesis, many possibilities exist targeting the same objective, overfitting.
And as this issue persists in the field of machine learning, so does the task of
improving upon the algorithms aiming at a better generalization ability, especially
regarding long-running GP systems.
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A APPENDIX

A.1 GENETIC PROGRAMMING APPLICATION: THE ARTIFICIAL ANT

The artificial ant problem describes a scenario in which the GP is configured to
create a simple program “navigating an artificial ant so as to find all the food
lying along an irregular trail.” [Koz92, p. 54] The function set consists of several
operators capable of chaining the execution of the terminals. These operators are
a conditional, “if-food-ahead” which allows for a branching of the program, and two
simple chains, “progn2” and “progn3”, which allow the unconditional execution of
two respectively three subprograms. The terminal set on the other hand contains
three elements corresponding to a turn left by 90�, a turn right by 90�and a step
forward. [Koz92, see p. 148f.]

Using the functions and the terminals the program needs to move the artificial
ant over a square matrix in which cells along a path are marked as food. The
fitness of a program is the amount of cells marked as food it passes in a finite
number of steps. The single fitness case used by Koza is the “Santa Fe Trail”
which incorporates several difficulties along the path, such as angles and gaps of
different length [Koz92, see p. 54]. Koza showed the effectiveness of GPs using
this example as after already 21 generations an optimal solution was derived.
[Koz92, see p. 154]
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A.2 SEMANTIC REPULSERS IN GENETIC PROGRAMMING

The following contains parts of the implementation and results, not included in the
main body of the thesis in order to prevent redundancy.

A.2.1 Population Initialization

According to Kozas implementation the initialization of the population should be
fully random, such that trees are built from the root up by randomly selecting
elements from the combined set. Only the root node, is forced to be an element
of the function set, in order to prevent the creation of degenerate trees. [Koz92,
see p. 91f.]

Koza has shown, that a more uniform distribution can be reached by applying
algorithm 3, which splits the number of individuals into n = id

max

� 1 (id
max

as
used in algorithm 1 is the maximum initial depth parameter) equal sized buckets
and numbers them from 1 to id

max

. The process then iterates over the buckets
growing half of the assigned individuals to a full depth of the buckets number (by
chosing only elements from the function set, until the last level is reached). The
other half of the buckets will be grown randomly according to Kozas approach,
stopping with a terminal when the tree is about to exceed the buckets number in
depth. This process is referred to ramped up half and half initialization. [Koz92,
see p. 93]

Algorithm 3 Population Initialization: Ramped Up Half and Half
function RAMPED(id

max

, N ) . Create N individuals with maximum depth id
max

P = ;
n
b

=

N

(1+id

max

)

for all b 2 {1..id
max

} do
for all i 2 {1..n

b

} do
if i%2 = 0 then

P = P[ FULL(b)
else

P = P[ GROW(b)
end if

end for
end for
return P

end function
function FULL(d)

... Grow individual to full depth d
end function
function GROW(d)

... Grow individual to random depth up to d
end function
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A.2.2 Overfitting Measurement

The following algorithm depicts two functions used to determine the binary flag
“overfitting” of an individual and its associated degree of overfitting, the severity.

Algorithm 4 Overfitting Calculation
function OVERFITTING(i) . Return if i is overfitting or not

avg
valelite

=

P
j=1
n

valelite

f

validation

(j)

n

valelite

if f
validation

(i) > avg
valelite

then
return True

else
return False

end if
end function
function SEVERITY(i) . Return if overfitting severity of i

avgtraining
valelite

=

P
n

valelite

j=1 f

training

(j)

n

valelite

avgvalidation
valelite

=

P
n

valelite

j=1 f
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(j)

n

valelite

return 1
2

q
(f
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(i)� avgtraining
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)

2
+ (f
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(i)� avgvalidation
valelite

)

2

end function

A.2.3 Full Parameter List

The following table contains the full list of parameteres of the implementation of
SRGP.

Origin Parameter Type Description

Standard Genetic
Programming

generations Integer Number of generations to exe-
cute the evolution

population size Integer Number of individuals in the
population

tournament size Integer Number of individuals to use for
tournament selection

crossover probability Decimal Probability to apply crossover
operator

mutation probability Decimal Probability to apply mutation op-
erator

max init depth Integer Maximum depth to which indi-
viduals are initialized

depth limit Integer Maximum depth an individual is
allowed to grow to during evolu-
tion

apply depth limit Boolean Apply the depth limit

Semantic Repulser
Genetic
Programming

validation set size Decimal Size of the validation set to split
of the training dataset

max repulsers Integer Maximum number of repulsers
to collect

validation elite size Integer Maximum number of individuals
to keep in validation elite pool
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Origin Parameter Type Description
skip generations Integer Number of generations to skip

before starting to collect re-
pulsers

use best as rep candidate Integer Number of individuals to use
as repulser pool candidates per
generation

overfit by median Boolean Use median instead of average
as validation elite representative

aggregate repulsers Boolean Use average distances to re-
pulser pool as objective

Additional
(Semantic
Repulser Genetic
Programming)

force avoid repulsers Boolean Discard individuals that are se-
mantically too close to any re-
pulser

equality delta Decimal Fraction of the intra-population,
maximum semantic distance
used to determine the threshold
for forcefully avoiding repulsers

domination exclude fitness Boolean Evolve only with semantic dis-
tance to repulsers as objective

merge repulsers Boolean Average two repulsers instead
of replacing the better one in the
repulser pool

n sighted steepness Integer Use n-sighted steepness mea-
sure (n being the value of the
parameter) for overfitting (0 pre-
vents the use)

repulse with validation only Boolean Use only the validation seman-
tics during fast-non-dominated-
sort

Table A.1.: Parameters of Semantic Repulser Genetic Programming

A.2.4 Results

The following section explains the steps taken to evaluate SRGP and determine
the best parameter settings on the Istanbul Stock dataset. As mentioned in sec-
tion 3.4 the tests have been executed in stages, meaning that each parameter
has been evaluated by itself using arbitrarily defined values for the others, and
the best values for the previously evaluated parameters. If not mentioned other-
wise, each configuration has been run 5 times on the dataset, using 5 differently
sorted versions, any data presented in the following will refer to the average over
those 5 folds.
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Validation Elite Size

For the size of the validation elite pool the values 10, 25, 50 have been tested
using for the other parameters (see table 3.2 for configuration of the standard GP
parameters) the following configuration:

Parameter Value
max repulsers 25

use best as rep candidate 1
overfit by median false

aggregate repulsers false

Table A.2.: Parameters for variying validation elite pool size

It can be seen in figure A.125, with standard GP in red, that generally the repulsers
seem to affect the evolutionary process. From the graph it becomes clear, that
none of the configurations shows an improvement over standard GP, yet regard-
ing the parameter of the validation elite size, the number 10 appears to be a rather
good setting.

Expressing the outcome of the 5 folds of each configuration in a box-plot shows
the consistency with which the algorithm finishes the evolution. It is important to
highlight in figure A.226, that all three configurations (including standard GP) have
very similar behavior.

25In this and the following figures, the y-axis might be truncated in order to show relevant data
only.

26Boxplot whiskers represent maximum 1.5IQR (Tukey Boxplot). This is valid for all boxplots
throughout this thesis.
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Figure A.1.: Validation Elite Size: Training & Test Fitness

Figure A.2.: Validation Elite Size: Consistency after 200 generations
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Repulser Pool Size

As the number of collected repulsers has an immediate impact onto the multi-
objective system, it will be tested in three settings: 10, 25, 50. The same parame-
ters are being used as before, with the exception of the validation elite pool size,
which is being set to the previously best found value.

Parameter Value
validation elite size 10

use best as rep candidate 1
overfit by median false

aggregate repulsers false

Table A.3.: Parameters for variying repulser pool size

From assessing figure A.3 it can be said, that the configuration with a repulser
pool size of 10 seems to be working the most reliable, as well in regards to the
consistency visible in figure A.4. It has to be noted here though, that even tough
the test with a repulser pool size of 25, in green, is equal to the winning test of
the validation elite size, it has a completely different behavior (compare to yellow
line in figure A.1). That shows that possible assumptions derived from the graphs
have to be assessed later with further detail, thus the here derived parameter
configurations will be tested again using 30 folds, as has been used for standard
GP.
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Figure A.3.: Repulser Pool Size: Training & Test Fitness

Figure A.4.: Repulser Pool Size: Consistency after 200 generations
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Aggregate Repulsers

Section 3.1.1 described a second approach to using the semantic distances of
an individual to the repulsers, which is aggregating them to an average in order
to obtain a fixed, two-objective system. Using the parameters in table A.4 it has
been found, that using the distances as distinct objectives provides a better base
for the algorithm (see figure A.5 and figure A.6), although the difference seems to
be marginal.

Parameter Value
max repulsers 10

validation elite size 10
use best as rep candidate 1

overfit by median false

Table A.4.: Parameters for varying aggregation of repulsers

Figure A.5.: Aggregate Repulsers: Training & Test Fitness

XVII



Figure A.6.: Aggregate Repulsers: Consistency after 200 generations
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Overfit By Median

The fact that the validation elite is a collection of the best found individuals (see
section 2.5) opens the possibility of collecting one or more outliers into the pool.
In order to overcome the problem, that anormally well performing solutions distort
the validation elite representative, the median can be used to determine a repre-
sentative individual (the representative will then be used to determine overfitting
of any individual). The following parameters (table A.5) have been used in order
to test the impact of switching the representative computation:

Parameter Value
max repulsers 10

validation elite size 10
use best as rep candidate 1

aggregate repulsers false

Table A.5.: Parameters for varying validation elite representative

The figures (A.7 and A.8) show that using the average has a better influence on
the overall tendencies of the system. Again it has to be noted, especially regard-
ing the spike around generation 35 in the green line, during which no repulsers
are used yet, that bad results here might be due to the probabilisitic and random
movement of the algorithm.
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Figure A.7.: Validation Elite Representative: Training & Test Fitness

Figure A.8.: Validation Elite Representative: Consistency after 200 generations
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Repulser Pool Candidates

Restricting the selection of candidates to only the best individual per generation,
might lead to missing a crucial individual regarding future development. Therefore
the number of tested candidates per generation has been increased to 10 and
compared to the baseline version, using the following parameters:

Parameter Value
max repulsers 10

validation elite size 10
aggregate repulsers false

overfit by median false

Table A.6.: Parameters for varying number of repulser pool candidates

The graphs of fitness (figure A.9), as well as consistency (figure A.10) show
clearly that the selection should be restricted to only the best individual per gen-
eration. This might be due to the fact, that increasing the number of individuals
merged into the repulser pool, increases the number of individuals removed from
it, due to the fixed size. A high fluctuation rate in the repulser pool might prevent
a consistent direction of the impulse given from the pool, such that the algorithm
looses its ability to move towards an optimal and distant to the repulser pool so-
lution.
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Figure A.9.: Repulser Pool Candidates: Training & Test Fitness

Figure A.10.: Repulser Pool Candidates: Consistency after 200 generations
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Merge Repulsers

Merging individuals in the repulser pool instead of replacing them, when a new
individual is added, was suggested in section 3.3 and has been tested using the
previously found parameters:

Parameter Value
max repulsers 10

validation elite size 10
use best as rep candidate 1

aggregate repulsers false
overfit by median false

Table A.7.: Parameters for alternative functionality

Based on the results, none of the settings is dominating the tests. Using the
replacement technique, as well as the merging, results in equally stable behavior.
The only visible difference is the consistency, yet this might be due to a random
influence. Generally it seems that either technique fits the concept well.

Figure A.11.: Merge Repulsers: Training & Test Fitness
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Figure A.12.: Merge Repulsers: Consistency after 200 generations
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Restrict to Validation Semantics

Described in section 3.3, the following presents the results of testing the exclusion
of training semantics from the process of fast-non-dominated-sort. The tests have
been executed using the above described settings shown in table A.7.

The plots show only slight differences in the behavior, yet restricting the distance
calculation to only the semantics of the validation dataset, seems to improve the
convergence, as well as the consistency of the results slightly (see figure A.13
and A.14).

Figure A.13.: Restrict to validation semantics: Training & Test Fitness
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Figure A.14.: Restrict to validation semantics: Consistency after 200 generations
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Slope-based Overfitting

The alternative measure of overfitting and the associated severity described in
section 3.3, was tested using 5, 10 and 25 as the number of generations to in-
clude in the calculation of the slope. The other parameters have been kept at the
settings derived in A.7.

Assessing the behavior over 200 generations, leads to the conclusion, that using
the last 10 generations in the slope-based measure results in the best outcome.
In comparison to the default overfitting measure, the slope-based approach has a
rather similar outcome. One reason for the outcome to be equal, might be the fact,
that both mechanisms classify individuals as overfitting with a similar frequency.
Figure A.17 depicts the absolute size of the repulser pool over time, as well as
the number of individuals added to the pool at every generation. Both methods
quickly fill the pool up to its limit and then seem to consistently add individuals at
more or less every generation.

Figure A.15.: Slope-based Overfitting: Training & Test Fitness

XXVII



Figure A.16.: Slope-based Overfitting: Consistency after 200 generations

Figure A.17.: Overfitting in SRGP: Number of Repulsers during Evolution

XXVIII



Excluded Fitness Objective

To increase the influence of the distance to repulsers, the system can be modified
to ignore the fitness objective during the fast-non-dominated-sort. The following
results are based on the same parameters as above (see table A.7) and are
comparing the inclusion and exclusion of the fitness as an objective against the
baseline standard GP.

Generally speaking, no significant differences can be found, both versions seem
to smoothen the behavior of standard GP in a similar manner. As expected the
exclusion of the fitness objective has no negative influence on converging towards
an optimal solution. On the other hand it does not have a positive impact either.

Using this parameter in conjunction with the aggregation of the semantic dis-
tances renders the system single-objective, with the only target being a large
average distance to all repulsers. The figure A.20 presents the results of such
configuration and interestingly the algorithm is following a steeper learning curve
on the training data, yet behaves uncontrollable for anything outside the training
observations.

Figure A.18.: Excluded Fitness Objective: Training & Test Fitness
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Figure A.19.: Excluded Fitness Objective: Consistency after 200 generations

Figure A.20.: Excluded Fitness Objective & Aggregate Repulsers (Training and Test Fit-
ness)
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Force Avoid Repulsers

Forcefully avoiding the creation of individuals similar to the repulser pool has
been tested in three configurations. The equality delta parameter has been set
to 0.1, 0.01 and 0.001 in order to have different levels of pressure on the varia-
tion phase. As can be seen in the graphs A.21 and A.22 this approach keeps
the overfitting down to a minimum and increases the stability of the results af-
ter 200 generations. Overall it seems to have comparable outcomes to the best
previously found configuration of SRGP.

As the tests have been carried out it became apparent, that the iteration limit
mentioned in section 3.3 (the number of trials to create a non-similar individual
per generation) has been applied frequently. This is due to the difficulty of GP to
create new individuals, lying outside the populations genetic material. As a result
any test using this approach runs infeasibly and unpredictably long, thus being
not a useful alternative to SRGP in its default configuration.

Figure A.21.: Force Avoid Repulsers: Training & Test Fitness
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Figure A.22.: Force Avoid Repulsers: Consistency after 200 generations
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Additional Tuning

In order to support the data gathered previously several more tests have been
carried out using 30 folds per configuration. The following will examine the specific
tests and the implications.

As mentioned, excluding the training semantics during the distance calculation
for the fast-non-dominated-sort had a positive effect on SRGP. Thus the following
plot presents the results using the parameters determined previously (table A.7)
in conjunction with only using the validation semantics (it is opposed by the default
SRGP configuration). As can be seen, neither of the two approaches introduces
significant improvements, besides a slight smoothening of the evolution.

Additionally to support the final claim of the repulsers not impacting significantly,
more tests have been executed varying the validation elite pool size, as well as
the repulser pool size. The following figure A.25 contains the fitness over the 200
generations using the default configurations (table A.7) and the following three
settings:

Validation Elite Pool Size Repulser Pool Size Identifier
10 50 SRGP 10/50
50 10 SRGP 50/10
25 25 SRGP 25/25

Table A.8.: Parameters of Final Test for Semantic Repulsers in Genetic Programming

As can be seen in comparison to standard GP, none of the configurations over-
comes the problem of overfitting. Standard GP is perfroming better than any of
the last three configurations and similarly to the previously tested, best configura-
tion.
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Figure A.23.: Additional Tuning: Training & Test Fitness

Figure A.24.: Additional Tuning: Consistency after 200 generations
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Figure A.25.: Final Test for Semantic Repulsers in Genetic Programming: Training & Test
Fitness
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A.3 SIGNATURE-BASED SUBSTITUTE OF VALIDATION DATASET

The following table A.9 presents the results of the conceptual tests carried out in
order to assess the general possibility of the concept presented in section 4.3.
Three different model types, two different dimensionality reduction techniques, as
well as two different signature sizes have been used in order to establish a basis
for an evaluation of the models performance.

Model Dimensionality
Reduction

# Nodes ? Training
Score

?Test
Score

Measure

Binary (over-
fitting)

feature-
selected

5 0.9963 0.2800 F1

Continous
(severity)

feature-
selected

5 0.000003 0.0010 MSE

Multi-Class
(severity
bucket)

feature-
selected

5 0.9891 0.3800 F1

Binary (over-
fitting)

feature-
selected

15 0.9968 0.4900 F1

Continous
(severity)

feature-
selected

15 0.000006 0.0030 MSE

Multi-Class
(severity
bucket)

feature-
selected

15 0.9832 0.0200 F1

Binary (over-
fitting)

depth-truncated 3 0.9817 0.5500 F1

Continous
(severity)

depth-truncated 3 0.0000001 0.00006 MSE

Multi-Class
(severity
bucket)

depth-truncated 3 0.9259 0.2900 F1

Binary (over-
fitting)

depth-truncated 7 0.9668 0.5400 F1

Continous
(severity)

depth-truncated 7 0.0000005 0.000005 MSE

Multi-Class
(severity
bucket)

depth-truncated 7 0.8534 0 F1

Table A.9.: Performance of overfitting/severity classifiers in training and test environment
(5 folds, see measure column for score meaning)
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GLOSSARY

algorithm A sequence of (computational) instructions for solving a well-defined
problem by transforming input into output [Cor09, see p. 5].

decision tree A model using trees made of data separating decision in order to
perform classifications [Mit97, see p. 52ff.].

euclidean distance Euclidean distance refers to the pythagorean theorem ap-
plied to p dimensions and corresponds to ED

i,h

=

qP
p

j=1(ai,j � a
h,j

)

2,
where a is a component of the vectors to be compared [MGU02, see p.
46].

gradient boosting regressor An algorithm deriving a solution by minimizing a
loss function using gradient descent [Fri01].

MLP A multi-layer perceptron is an implementation of an artificial neural network
using the backpropagation algorithm. The model is based of several con-
nceted layers of neurons that subsequently transform the input into an out-
put vector/value [Mit97, see p. 81f.].

NP Complexity class containing all problem solvable in polynomial time on a non-
deterministic Turing machine; The class contains all problems (P and NP-
complete) [Kok05, see p. 4].

NP-complete Complexity class containing all problems solvable in polynomial
time on a non-deterministic Turing machine to which all other problems can
be reduced to [Kok05, see p. 4].

NP-hard Complexity class containing all NP-complete problems and all problems
for which no algorithm exists [Kok05, see p. 4].

OLS A generalized linear model using the least squares estimation method [NW72,
see p. 370ff.].

P Complexity class containing all problems solvable in polynomial time on a de-
terministic Turing machine [GGL95, see p. 1609];[Kok05, see p. 4].
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pareto hierarchie In a multi-objective setting a hypothesis is only better than an-
other one, if it exceeds the other one in all objectives (domination). The best
n solutions are referred to as pareto optima solutions [CD08, see p. 12f.] Ap-
plying this concept recursively to all hypotheses a hierarchie of domination
can be derived in order to compare hypothesis among each other.

random forest An ensemble model made of multiple decision trees returning the
majority vote of the trees as a predictions result [Bre01, see p. 5f.].

SVM A classification algorithm mapping the input data into a very-high dimen-
sionality space in order to construct a separating hyperplane [CV95, see p.
273f.].

tree A graph consists of a set of vertices, which form nodes and edges [Die06,
see p. 2]. An acyclic, conected arrangement of the vertices in a graph,
creates a tree. Trees consist of branches, whose ending vertices (of degree
1) are referred to as leaves [Die06, see p. 13f.].
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