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Resumo 
 

Manosilglicerato (MG) é um soluto compatível envolvido na resposta a stress osmótico ou térmico 

em microrganismos marinhos hiper/termofílicos. Ensaios com proteínas-modelo demonstraram 

uma notável capacidade estabilizadora in vitro, justificando a aprovação de várias patentes. No 

entanto, os elevados custos de produção inviabilizam aplicações industriais. Esta tese tem dois 

objetivos, um de carácter sobretudo fundamental e outro visando a aplicação: i) estudar a eficácia 

de MG como estabilizador de proteínas in vivo, para fundamentar conjeturas sobre o seu papel 

fisiológico; e ii) desenvolvimento de um bioprocesso para produzir MG a preços competitivos. 

O primeiro objetivo foi conseguido utilizando um modelo de agregação proteica em levedura, em 

que a α-sinucleína, fundida com eGFP, foi concomitantemente expressa com a enzima bifuncional 

que sintetiza MG a partir de GDP-manose e 3-fosfoglicerato. Observou-se uma redução de 3,3× 

no número de células com focos fluorescentes em comparação com células sem MG e provou-

se que esta diminuição não era devida a efeitos indiretos. Este trabalho abre caminhos para o 

desenvolvimento de drogas contra doenças degenerativas associadas a deficiências estruturais.  

Para o segundo objetivo, implementaram-se estratégias, com complexidade crescente, na 

levedura Saccharomyces cerevisiae. Numa primeira abordagem, sobre-expressaram-se os genes 

PMI40 e PSA1 com o intuito de aumentar a disponibilidade de GDP-manose, um precursor da 

biossíntese de MG. Esta estratégia resultou num aumento de 2,2× na produção, atingindo-se um 

rendimento de 15,86 mgMG.gPS
-1 para células em bioreator. Um valor superior de produtividade 

(1,79 mgMG.gPS
-1h-1), conseguiu-se em modo contínuo com taxa de diluição de 0,15 h-1. 

Seguidamente, foi adotada uma abordagem holística usando modelos à escala genómica para 

pesquisar soluções in silico capazes de desviar mais eficientemente o fluxo para a produção de 

MG. As estirpes sugeridas foram construídas e caracterizadas em “batch” e em contínuo, tendo 

o rendimento e a produtividade aumentado para 25,30 mgMG.gPS
-1 e 3,4 mgMG.L-1h-1, 

respetivamente. 

 

Keywords: manosilglicerato, levedura, estabilizador de proteínas, abordagem in silico 
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Abstract  
 

Mannosylglycerate (MG) is a compatible solute implicated in the response to osmotic or heat 

stresses in many marine microorganisms adapted to hot environments. MG shows a remarkable 

ability to protect model proteins, especially against heat denaturation; however, high production 

costs prevented the industrial exploitation of these features. This thesis has two main objectives: 

i) to assess the efficacy of MG as protein stabilizer in the intracellular milieu; and ii) to develop a 

bio-based process for production of MG at competitive cost. The first goal was achieved by using 

a yeast model of Parkinson’s disease in which an aggregation-prone protein, eGFP-tagged α-

synuclein, was expressed along with the biosynthetic activities that catalyze the formation of MG 

from GDP-mannose and 3-phosphoglycerate. There was a reduction of 3.3-fold in the number of 

cells containing fluorescent foci of α-synuclein, in comparison with a control strain without MG. It 

was also proven that inhibition of aggregation was due to direct MG-protein effects, i.e., MG acted 

in vivo as a chemical chaperone. This opened a way for drug development against diseases 

related with protein misfolding. Towards the second objective, genes PMI40 and PSA1 of the 

GDP-mannose pathway were over-expressed in the industrial microorganism, Saccharomyces 

cerevisiae, to redirect metabolic flux towards that MG precursor. This strategy led to 2.2-fold 

increase in MG production (15.86 mgMG.gDW
-1) for cells cultivated in controlled batch mode. Further 

improvement was achieved by cultivation in chemostat mode at a dilution rate of 0.15 h-1; a 

constant productivity of 1.79 mgMG.gDW
-1h-1 was reached. Next, a holist approach was undertaken 

by using in silico tools to identify engineering strategies that would lead to efficient channeling of 

substrates to MG production. The proposed strains were constructed and characterized in batch 

fermentation and continuous mode and led to an improved MG production of 25.3 mgMG.gDW
-1 and 

3.4 mgMG.L-1h-1, respectively. 

 

 

Keywords: mannosylglycerate; yeast; protein stabilizer; in silico tools. 

 

 

 

 

  



x 
 

  



xi 
 

Table of contents 

1.  

Agradecimentos ........................................................................................................................... v 

Resumo ....................................................................................................................................... vii 

Abstract ........................................................................................................................................ ix 

Table of contents ......................................................................................................................... xi 

List of Figures ............................................................................................................................. xv 

List of Tables ............................................................................................................................. xix 

List of abbreviations ................................................................................................................. xxi 

Motivation, objectives, and thesis outline ................................................................................. 1 

Context and Motivation ............................................................................................................... 1 

Research Aims ............................................................................................................................ 3 

Outline of the Thesis ................................................................................................................... 3 

CHAPTER 1 - Introduction ........................................................................................................... 5 

1.1 The promising role of bioeconomy ................................................................................... 7 

1.2 Biotechnology for production of chemicals ...................................................................... 8 

1.2.1 Biomass as the new substrate .................................................................................. 9 

1.2.2 Conversion of biomass into commodity chemicals and fuel ................................... 10 

1.3 Bioproduction using metabolic engineering ................................................................... 12 

1.4 Systems biology applied to microbial engineering ......................................................... 13 

1.4.1 “Omics” tools in the context of metabolic engineering ............................................ 14 

1.4.2 Genome-scale models and in silico methods to improve metabolic engineering 

strategies ............................................................................................................................... 18 

1.4.3 Integration of genomic-scale models with the ‘omics´ data .................................... 20 

1.4.4 Computational methods for strain simulation and optimization .............................. 21 

1.5 Saccharomyces cerevisiae as a cell factory .................................................................. 25 

1.6 Product optimization in S. cerevisiae by using fermentation design.............................. 26 

1.7 Stress-protectant solutes and their biological role ......................................................... 28 

1.8 Mannosylglycerate ......................................................................................................... 31 

1.8.1 Structure and distribution of mannosylglycerate .................................................... 31 

1.8.2 Biosynthesis of mannosylglycerate ........................................................................ 32 

1.8.3 Biological function of mannosylglycerate ................................................................ 34 

1.8.4 Potential applications of Mannosylglycerate........................................................... 34 



xii 
 

CHAPTER 2 - Inhibition of formation of α-synuclein inclusions by mannosylglycerate in a 

yeast model of Parkinson´s disease ........................................................................................ 37 

2.1 Introduction .................................................................................................................... 39 

2.2 Materials and methods ................................................................................................... 40 

2.2.1 Yeast strains and genetic procedures .................................................................... 40 

2.2.2 Yeast cell culture .................................................................................................... 40 

2.2.3 Quantification of cells displaying α-Syn fluorescent foci ........................................ 41 

2.2.4 Extraction and quantification of organic solutes ..................................................... 41 

2.2.5 Western blot analysis .............................................................................................. 41 

2.2.6 Promoter shut-off studies........................................................................................ 42 

2.2.7 Assessment of α-Syn aggregation in yeast by sucrose gradient ........................... 42 

2.2.8 Reactive oxygen species (ROS) assay .................................................................. 42 

2.2.9 Spotting experiments .............................................................................................. 43 

2.2.10 In vitro assays of α-Syn fibril formation .................................................................. 43 

2.2.11 Transmission Electron Microscopy (TEM) .............................................................. 43 

2.3 Results ........................................................................................................................... 44 

2.3.1 Mannosylglycerate reduces α-Syn inclusion formation in yeast ............................. 44 

2.3.2 MG reduces the accumulation of reactive oxygen species and slightly alleviates α-

Syn induced toxicity .............................................................................................................. 45 

2.3.3 Hsp40, Hsp70 and Hsp104 levels are not affected by MG accumulation .............. 47 

2.3.4 MG does not interfere with α-Syn degradation ....................................................... 48 

2.3.5 Effect of MG on the kinetics of α-Syn fibril formation in vitro .................................. 48 

2.4 Discussion ...................................................................................................................... 50 

CHAPTER 3 - Mannosylglycerate production in Saccharomyces cerevisiae by 

overexpression of the GDP-mannose pathway and bioprocess optimization..................... 53 

3.1 Introduction .................................................................................................................... 55 

3.2 Methods ......................................................................................................................... 56 

3.2.1 DNA manipulation ................................................................................................... 56 

3.2.2 Construction of engineered strains ......................................................................... 57 

3.2.3 Strains maintenance and cultivation media ............................................................ 57 

3.2.4 Fermentation conditions ......................................................................................... 58 

3.2.5 Quantification of MG and fermentation end products ............................................. 59 

3.2.6 Quantification of enzymatic activities ...................................................................... 59 

3.3 Results and discussion .................................................................................................. 60 

3.3.1 Strains construction and characterization ............................................................... 60 

3.3.2 Physiological characterization of engineered strains ............................................. 60 

3.3.3 Physiological characterization of engineered strains cultivated in shake flasks and 

batch bioreactors ................................................................................................................... 61 



xiii 
 

3.3.4 Physiological characterization of engineered strains cultivated in chemostat at 

different dilution rates ............................................................................................................ 62 

3.4 Conclusion ..................................................................................................................... 66 

CHAPTER 4 - In silico design of Saccharomyces cerevisiae strains for high production of 

mannosylglycerate ..................................................................................................................... 67 

4.1 Introduction .................................................................................................................... 69 

4.2 Methods ......................................................................................................................... 71 

4.2.1 Model and software ................................................................................................ 71 

4.2.2 In silico optimization of mannosylglycerate production .......................................... 71 

4.2.3 DNA manipulation ................................................................................................... 71 

4.2.4 Strain maintenance and media ............................................................................... 72 

4.2.5 Plasmid constructions ............................................................................................. 72 

4.2.6 Construction of DNA cassettes ............................................................................... 73 

4.2.7 Transformation of S. cerevisiae with the DNA cassettes ....................................... 74 

4.2.8 Cultivation in bioreactor .......................................................................................... 75 

4.2.9 Sampling and quantification of fermentation products ........................................... 75 

4.2.10 Quantification of enzymatic activities ...................................................................... 76 

4.3 Results ........................................................................................................................... 77 

4.3.1 In silico analysis ...................................................................................................... 77 

4.3.2 In vivo implementation ............................................................................................ 81 

4.4 Discussion ...................................................................................................................... 84 

CHAPTER 5 - General discussion and future perspectives ................................................... 89 

References .................................................................................................................................. 99 

 

 

  



xiv 
 

  



xv 
 

List of Figures 
 

Figure 1.1 Biomass originates different kinds of components that can be transformed in precursors 
or end-products ....................................................................................................................... 9 

Figure 1.2 Systems biology as a system-level approach to understand biology through the use of 
the “omics” data and modeling .............................................................................................. 14 

Figure 1.3 Schematic representation of the “omics” technologies and their correspondent objective 
of study .................................................................................................................................. 15 

Figure 1.4 Simplified scheme of the main cultivation methods to establish a bioprocess in S. 
cerevisiae. Cells can be grown in batch mode characterized by the absence of feeding or exit 
of medium; fed-batch cultivation starts after a batch, with the addition of concentrated medium 
and no removal of culture broth; and continuous mode or chemostat is initiated with fresh 
medium after a batch growth, removed at the same dilution to maintain a constant working 
volume. .................................................................................................................................. 26 

Figure 1.5 Organization of compatible solutes in groups according to their chemical nature...... 30 

Figure 1.6 Schematic representation of mannosylglycerate, also known as digeneaside. .......... 31 

Figure 1.7 Biosynthetic pathways for the production of mannosylglycerate and their occurrence in 
the Tree of Life. Organisms with confirmed MG enzymes are in bold. Homology predictions 
were obtained using Rhodothermus marinus and Pyrococcus horikoshii as template for the 
single-step and two-step pathway, respectively. Abbreviations: mannosylglycerate synthase 
(MGS); mannosyl-3-phosphoglycerate synthase (MPGS), mannosyl-3-phosphoglycerate 
phosphatase (MPGP). ........................................................................................................... 33 

Figure 2.1 Mannosylglycerate and trehalose accumulation in yeast cells (strain VSY72). The 
Control (CS) and MG-producer (MG-P) strains were grown in glucose medium until late-
exponential phase and then both cultures were switched to galactose medium for 10 h. 
Intracellular levels of trehalose (Tre, black bars) and MG (white bars) accumulated by the 
Control and MG-producer strains were determined by NMR in cell extracts. Data are shown 
as mean ± S.D from seven independent experiments. ......................................................... 44 

Figure 2.2 Mannosylglycerate production does not affect yeast growth. Growth curve of the Control 
strain (black diamonds) and the MG-producer strain (grey squares) in galactose medium. 
Cells used as inoculums were late-exponential phase cells cultivated in glucose medium that 

at time zero were transferred to galactose medium to induce -Syn expression. Values are 
representative from three independent experiments. ........................................................... 45 

Figure 2.3 Mannosylglycerate prevents the formation of α-Syn fluorescent foci in yeast (strain 
VSY72). The Control (CS) and MG-producer (MG-P) yeast strains were grown as described 
in Figure 2.1. (A) Western blot analysis of total cell lysates from the control and MG-producer 
strains revealing the endogenous levels of α-Syn and β-Actin. The mass of α-Syn-eGFP is 
about 42 kDa. (B) Densitometric analysis of the immunodetection of α-Syn relative to the 
intensity obtained with a specific antibody for β-actin used as loading control, of at least three 
independent experiments represented in (A). (C) Representative images of yeast cells from 
the control and MG-producer strains exhibiting α-Syn-eGFP fluorescent foci. Scale bar: 5 μm. 
(D) Percentage of yeast cells (Control and MG-producer strains) containing α-Syn fluorescent 
foci. For each experiment a total of 300 cells were counted. Data are shown as mean ± SD 
from seven independent experiments. (E) The α-Syn oligomeric species formed by control 
and MG-producer strains, resolved on sucrose gradient. The collected fractions were applied 
to a SDS-PAGE followed by immunoblot with an antibody against α-Syn. (F) Western blot 
analysis showing that the same amount of total protein (approx. 1 mg) of the Control and MG-
producer strains was applied on the sucrose gradient. Results are from one representative 
experiment from at least three independent experiments ..................................................... 46 

file:///C:/Users/cfaria/Desktop/Tese%20phD/Tese%20geral_CF%20-%20com%20refs.docx%23_Toc477960213


xvi 
 

Figure 2.4 Mannosylglycerate accumulation reduces ROS levels in strain VSY72 and increases 
cell viability of the two strains displaying high α-Syn-associated toxicity. (A) ROS levels 
measured in strain VSY72. The Control (CS) and MG-producer (MG-P) strains were grown 
overnight in glucose medium, and then cultures were switched to galactose medium and 
growth continued for 9 h. The basal levels of ROS were determined in cells from the Control 
strain that were grown overnight in glucose medium and then re-suspended in fresh glucose 
medium for further 9 h. Intracellular ROS levels were determined in these strains by 
fluorescence using the DHR 123 staining method, as described in the “Material and methods”. 
Data from three independent experiments are shown as mean ± S.D. (Significance of the data 
was determined by one-way ANOVA with Tukey's Multiple Comparison Test; **p-value<0.01; 
****p-value<0.0001). (B) Cell viability assessment of the CS and MG-P strains. Cells were 
grown in glucose medium until mid-exponential (OD600 of 2) to accumulate MG and 
transferred to galactose medium to induce α-Syn expression. After 10 h, cells were removed 
and spotted on plates containing YPD medium and incubated at 30ºC for 2 days. Shown are 
3-fold serial dilutions starting with equal number of cells. (C) Cell viability assessment of the 
strain Y4791 that harbors two copies of wild-type α-Syn transformed with p425::mgsD (MG-
producer) and with the empty vector pRS425 (Control). (D) Cell viability assessment of strain 
Y4792 that harbors two copies of A53T α-Syn transformed with p425::mgsD (MG-producer) 
and with the empty vector pRS425 (Control). ....................................................................... 47 

Figure 2.5 Mannosylglycerate prevents the formation of -Syn fluorescent foci in yeast. (A) 

Percentage of yeast cells (Control and MG-producer strains) containing Wild-type -Syn 
fluorescent foci (strain Y4791). (B) Percentage of yeast cells (Control and MG-producer 

strains) containing A53T -Syn fluorescent foci (strain Y4792). For each experiment 200 cells 

were counted. Data are shown as meanSD from four independent experiments .............. 48 

Figure 2.6 Mannosylglycerate does not induce expression of molecular chaperones or α-Syn 
degradation mechanism in yeast. The Control (CS) and MG-producer (MG-P) strains were 
grown as described in Figure 2.1. (A) Representative western blots of total cell lysates from 
both strain showing the endogenous levels of Hsp104, Hsp70, Hsp40 and β-actin. (B) 
Densitometry analysis of the immunodetection of the indicated Hsp relative to the intensity 
obtained with a specific antibody for β-actin, used as loading control at least three 
independent experiments represented in (A). (C) Western blot analysis of protein total extracts 
of yeast cells after 6 h of α-Syn clearance; GAPDH was used as a loading control. Results 
shown are from one representative experiment from at least four independent experiments. 
(D) Densitometry analysis of the immunodetection of α-Syn relative to the intensity obtained 
with a specific antibody for GAPDH. ..................................................................................... 49 

Figure 2.7 Mannosylglycerate prevents α-Syn fibril formation in vitro. (A) Fibrillation of α-Syn 
monitored with fluorescence spectroscopy using ThioT. The reaction mixtures containing 200 
μM α-Syn and 20 mM Tris-HCl (pH 6.5) buffer were incubated at 37ºC for the indicated times 
in the absence (control, circles) and presence of 100 mM MG (squares), 100 mM KCl 
(diamonds) or 250 mM glycerol (triangles). Each point represents the mean of three 
independent experiments. (B) TEM micrographs of α-Syn fibrils grown during 96 h in the 
absence (Control) and presence of 100 mM MG, 100 mM KCl or 250 mM glycerol. White bars 
indicate a length of 200 nm. .................................................................................................. 50 

Figure 3.1 Biosynthesis of mannosylglycerate (MG) in Saccharomyces cerevisiae using glucose 
as carbon source. MG is produced from the reaction of GDP-mannose and 3-
phosphoglycerate (3PG) with the release of GMP. To produce MG, a gene from 
Dehalococcoides mccartyi coding for MG synthase/phosphatase (mgsD) was cloned in a 
plasmid and transformed in S. cerevisiae to yield strain MG01. A second plasmid containing 
the genes PMI40 and PSA1 from S. cerevisiae was constructed and transformed in MG01 
yielding MG02. ...................................................................................................................... 56 

Figure 3.2 Growth curve profile of MG01 and MG02 in shake flasks. Cells were cultivated in SC 
medium with 20 g.L-1 of glucose. MG01 harbors the plasmid pDES with the gene mgsD from 
D. mccartyi and MG02 harbors the same plasmid along with pSP-GM, which contains the S. 
cerevisiae genes PMI40 and PSA1. Data represents the mean ± SD of four independent 
experiments. .......................................................................................................................... 61 



xvii 
 

Figure 3.3 Effect of dilution rate in the formation of biomass and MG productivity for MG02 (mgsD 
↑pmi40 ↑psa1). Cells were grown in a 2-L batch fermenter containing 0.8 L of synthetic media 
with 20 g/L glucose. A) biomass yield on substrate, represented as gDW.gglc

-1 for dilutions 0.05, 
0.1 and 0.15 h-1 and B) MG productivity represented as mgMG.gDW

-1.h-1 at dilutions 0.05, 0.1 
and 0.15 h-1. For dilution 0.1 and 0.15 h-1 data is the mean ± SD of two independent 
experiments; dilution 0.05 h-1 represents one experiment. ................................................... 65 

Figure 4.1 In silico optimization results for MG production. A - MG production flux versus the 
specific growth rate for solutions obtained using SA as optimization algorithm and MOMA, 
LMOMA, ROOM and MIMBL as simulation methods. MG_max corresponds to the maximal 
theoretical yield of MG, and WT is the wild-type simulation using pFBA. For building this plot, 
the best four solutions from each optimization setup were selected. B - Specific growth rate 
and MG production flux for solutions obtained with unconstrained (respiration) and 
constrained O2 (fermentation), using the same protocol as described in A. The dashed lines 
represent the flux variability analysis that correlates MG production with growth. ............... 78 

Figure 4.2 Schematic representation of the in silico-derived strategy to increase MG production. 
Green arrows represent the over-expression of the genes PMI40 and PSA1. Red crosses 
indicate the knockouts of the genes for serine production – SER3 and SER33 – and for 
pyruvate kinase (gene PYK1). PYK1 knockout is not possible to achieve in S. cerevisiae under 
growth on glucose. A way around this was to diminish PYK1 promoter strength to down-
express PYK1. Abbreviations: MG, mannosylglycerate; GDPman, GDP-mannose; Man-1P, 
mannose-1-phosphate; Man-6P, mannose-6-phosphate; G3P, glyceraldehyde 3-phosphate; 
DHAP, dihydroxyacetone phosphate; 1,3bPG, 1,3-bisphospho-D-glycerate; 3PG, 3-
phosphoglycerate, 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate. ........................ 80 

Figure 4.3  Growth curve, MG production and end-products of strains S1, S2, S3 and S4 in 
controlled bioreactors. S1 (mgsD), S2 (mgsD ↑pmi40 ↑psa1), S3 (mgsD ↑pmi40 ↑psa1 ∆ser3 
∆ser33), and S4 (mgsD ↑pmi40 ↑psa1 ∆ser3 ∆ser33 pykp∆653-pyk), were cultivated in SD 
medium with 20 g.L-1 of glucose. Symbols are (▲) glucose, (●) MG, (□) ethanol, (∆) OD600nm, 
(■) glycerol and (○) acetate. Values represent mean ± SD of at least two independent 
experiments. .......................................................................................................................... 82 

Figure 4.4 Activity of the enzymes mannose-6-phosphate isomerase (PMI40p), 
phosphomannomutase (SEC53p), GDP-mannose pyrophosphorylase (PSA1p) and pyruvate 
kinase (PYK1p) for strains S2 and S4. Enzymatic activities are shown as percentage of the 
respective activities determined for strain S2. Data are mean+/-SD from three independent 
measurements....................................................................................................................... 83 

 

 

 



xviii 
 

  



xix 
 

List of Tables 
 

Table 1.1 Examples of processes to produce chemicals and fuels from biomass ...................... 10 

Table 1.2 Commodity chemicals and fuels produced naturally by microorganisms using 
sustainable raw-materials and the correspondent industrial use for each product. Adapted 
from (Yin et al., 2015) ............................................................................................................ 11 

Table 1.3 Computational tools for reconstruction of genome-scale models ................................ 18 

Table 1.4 Examples of computational tools used to integrate transcriptomics/metabolomics data 
into genome-scale models. Adapted from (Liu et al., 2015a) ............................................... 20 

Table 1.5 Simulation methods for genome-scale models ............................................................ 22 

Table 1.6 Examples of computational methods for strain engineering using genome-scale 
metabolic models .................................................................................................................. 23 

Table 3.1 Mannose-6-phosphate isomerase (PMI40) and GDP-mannose pyrophosphorylase 
(PSA1) activities in the background and MG02 strains ........................................................ 60 

Table 3.2 MG and end-products yields for the engineered strains MG01 (mgsD) and MG02 (mgsD 
↑pmi40 ↑psa1) cultivated in shake flask and batch fermenters. Data represent the mean ± SD 
of at least three independent experiments ............................................................................ 62 

Table 3.3 - Physiological parameters and MG yields for the engineered strains MG01 (mgsD) and 
MG02 (mgsD ↑pmi40 ↑psa1) in chemostat cultivation at different dilution rates. High-glucose 
experiments were performed at D = 0.2 and 0.15 h-1 for MG01 and MG02, respectively and 
glucose-limited experiments were performed at D = 0.1 h-1. ................................................. 63 

Table 4.1 List of primers used to construct plasmids and integrative cassettes. ......................... 73 

Table 4.2  List of plasmids used in this study. .............................................................................. 74 

Table 4.3  List of strains used in this study. ................................................................................. 75 

Table 4.4 In silico strategies and corresponding biomass growth and MG yields obtained using the 
SA algorithm in conjunction with LMOMA and MOMA methods. µ, specific growth rate. ϮMG 
yield is expressed as mol.molglc

-1.‡Tmax, percentage of the theoretical maximal MG yield; 

PEP, phosphoenolpyruvate; ADP adenosine di-phosphate; Pi inorganic phosphate; 2PG, 2-
phosphoglycerate; 3PG, 3-phosphoglycerate; NAD+, β-nicotinamide adenine dinucleotide; 
NADH, β-nicotinamide adenine dinucleotide, reduced form; 3PHP, 3-
phosphohydroxypyruvate; CTP, cytidine triphosphate; CDPdiacylglycerol, cytidine 
diphosphate-diacylglycerol; M1P, mannose-1-phosphate; GDP, guanosine diphosphate; 
GDPman, GDP-mannose; PPi, pyrophosphate; F6P, fructose-6-phosphate; M6P, mannose-
6-phosphate; ......................................................................................................................... 79 

Table 4.5 Specific growth rates, biomass yield on substrate, MG yield on biomass and MG 
concentration for all strains studied. Cells were cultivated in controlled, aerobic batch 
bioreactors with 20 g.L-1 of glucose in SD medium until growth on glucose was no longer 
observed. ............................................................................................................................... 83 

Table 4.6 Physiological parameters, MG titer and MG productivity for strains S2 and S4 cultivated 
in chemostat mode in SD medium with 20 g.L-1 of glucose at dilutions of 0.1 and 0.05 h-1. MG 
was extracted from cells with a methanol/chloroform mixture. Data represent mean ± SD in 
steady-state. .......................................................................................................................... 84 



xx 
 

Table 5.1 MG yield and productivity observed in the strains MG01 and MG02 (Chapter 3) and 
strains S2 and S4 (Chapter 4). Data from chemostat correspond to the highest dilution rates 
tested. .................................................................................................................................... 95 

  



xxi 
 

List of abbreviations 
 

1,3bPG  1,3-Bisphospho-D-glycerate  

2PG 2-Phosphoglycerate 

3PG 3-Phosphoglycerate 

3PHP 3-phosphohydroxypyruvate  

ADP Adenosine diphosphate 

BPCY Biomass product coupled yield 

BSA Bovine Serum Albumin  

CDPdiacylglycerol  Cytidine diphosphate-diacylglycerol  

CTP Cytidine triphosphate  

DHAP  Dihydroxyacetone phosphate  

DHR123 Dihydrorhodamine 123 

DIP Di-myo-inositol phosphate 

DNA Deoxyribonucleic acid 

DW Dry weight  

EDTA Ethylene diamine tetraacetic acid 

eGFP Enhanced Green Fluorescent Protein  

ENO2  Gene coding enolase  

F6P Fructose-6-phosphate  

FBA Flux balance analysis 

FT-fuels Fischer–Tropsch Fuels 

G3P Glyceraldehyde 3-phosphate  

GAL1 Gene coding galactokinase  

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GDP Guanosine diphosphate  

GDPman  GDP-mannose  

GPR Gene-protein-reaction  

GRAS           Generally Regarded As Safe 

HPLC  High-performance liquid chromatography  

Hsp Heat shock protein 

LMOMA Linear minimization of metabolic adjustment 

M1P Mannose-1-phosphate  

M6P  Mannose-6-phosphate  

MDIP Mannosyl-di-myo-inositol phosphate 

MG Mannosylglycerate 

MGS Mannosylglycerate synthase 

MILP  Mixed integer linear programming  

MiMBl  Minimization of metabolites balance  

MOMA Minimization of metabolic adjustment  



xxii 
 

MPGP Mannosyl-3-phosphoglycerate phosphatase  

MPGS Mannosyl-3-phosphoglycerate synthase 

mRNA Messenger ribonucleic acid 

msgD  Mannosyl-3-phosphoglycerate synthase/phosphatase gene 

NAD+ β-nicotinamide adenine dinucleotide  

NADH β-nicotinamide adenine dinucleotide, reduced form 

NADP+ β-nicotinamide adenine dinucleotide 

NADPH β-nicotinamide Adenine dinucleotide 2′-phosphate, reduced form 

NMR Nuclear Magnetic Resonance 

OECD Organization for Economic Co-operation and Development 

PAGE Polyacrylamide Gel Electrophoresis 

PD  Parkinson´s disease  

PEP Phosphoenolpyruvate 

pFBA  Parsimonious flux balance analysis  

Pi Inorganic phosphate  

PMI40 Gene coding the mannose-6-phosphate isomerase 

PMI40p Mannose-6-phosphate isomerase 

PPi  Pyrophosphate  

PS Peso seco 

PSA1 Gene coding the GDP-mannose pyrophosphorylase  

PSA1p GDP-mannose pyrophosphorylase  

PYK1 Gene coding the pyruvate kinase  

PYK1p Pyruvate kinase 

PYR Pyruvate 

ROOM  Regulatory on/off minimization  

ROS Reactive Oxygen Species  

rpm Rotations per minute 

rRNA Ribosomal ribonucleic acid 

SA Simulated Anneling  

SD Synthetic dextrose medium 

SDS Sodium Dodecyl Sulfate 

SEC53 Gene coding the phosphomannomutase 

SEC53p Phosphomannomutase 

SER3 Gene coding the 3-phosphoglycerate dehydrogenase and alpha- 

ketoglutarate reductase 

SER33 Gene coding the 3-phosphoglycerate dehydrogenase and alpha-

ketoglutarate reductase (paralog from SER3) 

SNCA Gene coding α-Synuclein 

ThioT Thioflavin T 

tRNA Transfer ribonucleic acid 



xxiii 
 

URA  Uracil  

vvm Gas volume flow per unit of liquid volume per minute 

YPD Yeast extract, peptone and dextrose 

α-Syn Alpha-synuclein 

 

 

 

  



xxiv 
 

 

  



 

1 
 

 Motivation, objectives, and thesis outline  
 

For centuries humans have unknowingly modified microbial metabolism to produce food and 

beverages. Nowadays, we hold the knowledge and the tools to rationally redirect microbial 

metabolism from poor natural production to high titers. Even more, with the development of 

molecular biology, high-throughput techniques and computational tools, it is possible to identity 

uncultivated organisms and to illuminate their metabolic capacities. 

Encouraged by these developments we set to produce, at competitive costs, mannosylglycerate, 

a remarkable compound with ability to protect proteins, especially against high temperature. A 

rational in silico design approach was applied with the goal to find engineering strategies that 

would lead to efficient channeling of substrates towards the production of mannosylglycerate. 

Saccharomyces cerevisiae, a widely-used cell factory, was selected to harbor the genetic 

alterations. By combining in silico design and optimization of microbial growth we aim at increasing 

the production of mannosylglycerate. 

 

Context and Motivation 

 

Mannosylglycerate (MG) is an osmolyte highly confined to Bacteria and Archaea adapted to thrive 

at high temperatures. Generally, this solute is accumulated in response to osmotic stress, but a 

few organisms accumulate MG at supraoptimal growth temperatures (Santos et al., 2011). The 

strong correlation between thermophily and MG accumulation led to the view that this compound 

could play an important role in thermo-adaptation. Indeed, MG has a remarkable ability to protect 

proteins against heat damage and also to prevent protein aggregation in vitro (Faria et al., 2003; 

Santos et al., 2007). However, the question about the ability of MG to stabilize macromolecules in 

the intracellular milieu remained unanswered.   

 

These properties led to the filing of several patents by our group and others (Lamosa et al., 2009; 

Santos et al., 1998; Schwarz, 2003). Major potential fields of application are: the cosmetic industry, 

as moisturizer and skin protector against UV damage, storage of vaccines and other biomaterials, 

protein stabilizer in analytical and clinical kits, and in biosensors. In particular, MG proved to 

increase the life-span of retroviral vectors (Cruz et al., 2006) and to improve the sensitivity of DNA 

microarrays (Mascellani et al., 2007). The major bottleneck towards the industrial utilization of MG 

derives from the current high production costs. Although a procedure for the chemical synthesis 

of MG has been developed, the yield is very poor (Lamosa et al., 2006b). On the other hand, 

natural producers, generally thermophilic organisms, have very low growth yields and lead to 

prohibitive production costs. Therefore, the development of microbial systems for the industrial 

production of MG is mandatory to fully exploit the biotechnological potential of this osmolyte.  
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Metabolic engineering plays a crucial role in the production of valuable compounds from 

microorganisms. This is achieved by improving native routes of the selected organisms or by 

establishing new metabolic pathways optimized to fit the host. Further optimization usually 

includes cofactor balance and the modification of regulatory networks (Lee et al., 2009). The 

acquired knowledge about microbial metabolism and the development of molecular biology 

techniques to modify genomes increased the number of bio-based products and reduced the time 

required to complete a project from bench to industry. A few examples of strain design using this 

built-up knowledge are the production of artemisinin (Paddon et al., 2013), farnesene (Wang et 

al., 2011) or 1,3-propanediol (Nakamura & Whited, 2003).  

 

Advances in Systems and Synthetic Biology improved significantly the accuracy and success of 

strategies based on predicted solutions (Lee et al., 2012). These solutions are obtained by using 

metabolic reconstructions that contain all information about the genetic elements and metabolic 

information of an organism (Feist et al., 2009). Moreover, genome-scale metabolic models are 

useful to predict the phenotypic behavior of an organism in response to medium or genetic 

alterations, to identify drug targets or to predict genetic engineering strategies aimed at producing 

a desired compound (Maia et al., 2016). Even more, the publication of these models encouraged 

researchers to formulate different and better methodologies to fit the user’s need.  

 

To date, the heterologous biosynthesis of MG is restricted to Saccharomyces cerevisiae, 

Escherichia coli and some plants (Empadinhas et al., 2004; Sampaio et al., 2003; Scheller et al., 

2010). The gene coding for the bifunctional mannosyl-3-phosphoglycerate synthase/phosphate 

from Dehalococcoides mccartyi (former Dehalococcoides ethenogenes) was expressed in S. 

cerevisiae by Empadinhas and co-workers, which resulted in the accumulation of MG 

(Empadinhas et al., 2004). In E. coli, Sampaio and co-workers opted by using a different and 

exclusive pathway to produce MG by expressing a gene encoding the mannosylglycerate 

synthase from Rhodothermus marinus (Sampaio et al., 2003). However, the production of MG was 

very weak and could only be detected using radiolabeled precursors.  

 

S. cerevisiae is a model organism for which a great amount of information regarding physiology 

and metabolism is available. Moreover, it is widely used in industrial bioprocesses for the 

production of organic acids, amino acids, heterologous proteins and bioethanol (Borodina & 

Nielsen, 2014; Lee et al., 2009). This microbial cell factory is easy to grow, have simple nutrient 

requirements and present a robust behavior necessary to thrive in industrial conditions (Blattner 

et al., 1997; Goffeau et al., 1996; Mortimer, 2000). A sequenced genome allied with a vast amount 

of molecular tools to express and edit genes, and several genome-scale metabolic models make 

this organism an ideal chassis to successfully manipulate metabolism to produce a variety of 

products (Hill et al., 1986; McCloskey et al., 2013; Osterlund et al., 2012). Moreover, S. cerevisiae 

is stated as Generally Regarded As Safe (GRAS). The extensive knowledge and data availability 
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makes this organism an excellent candidate for strain design strategies aimed at increasing the 

production of MG up to industrial levels.  

 

 

Research Aims 

 

The ultimate goal of this thesis is to develop an efficient producer of mannosylglycerate at 

competitive costs. A well-established industrial organism, S. cerevisiae, was selected as host. The 

first objective was to prove that MG has ability to stabilize proteins in vivo. To do so, we studied 

the effect of MG in a yeast strain engineered to produce human α-synuclein - a protein prone to 

aggregate and involved in Parkinson’s disease. Moreover, we examined different cultivation 

modes, assessed MG accumulation and characterized metabolism in all tested conditions. Using 

in silico strain design methods we identified and then implemented efficient engineering strategies, 

exploiting available genome-scale metabolic models developed for S. cerevisiae. A major concern 

was the maximization of carbon fluxes towards the production of precursors for MG synthesis 

(GDP-mannose and 3-phosphoglycerate), without compromising cell growth. 

 

 Outline of the Thesis 

 

This thesis is organized into five chapters:  

- Chapter 1 is dedicated to the origin and evolution of bioeconomics and the impact of 

Systems Biology in microbial cell factory engineering. Next, we describe the developments 

in the discovery of stress-protectant solutes, focusing on MG distribution, biosynthesis, 

function, and potentiality, as this thesis aims to improve MG productivity. 

- In Chapter 2, we investigate the capability of MG to stabilize aggregating-prone proteins 

in vivo. To this goal, S. cerevisiae cells engineered to produce α-synuclein and MG were 

characterized and compared with cells producing α-synuclein, but not MG. In the end, we 

propose that MG acts as a chemical chaperone in vivo, and the stabilization mechanism 

involves direct solute/protein interactions. 

- Chapter 3 describes the optimization of MG production based on the use of different 

cultivation modes. For this study, S. cerevisiae was genetically manipulated to 

overexpress the GDP-mannose pathway and to synthetize MG.  

- In Chapter 4, several modelling methods were used in conjunction with SA algorithm to 

formulate different strategies and improve MG production based on IMM904 genome-

scale model. The in silico solutions led to the construction of three strains intended to 

increase the flux towards MG precursors. These strains and the reference strain 

(harboring the gene to synthetize MG) were physiologically characterized using controlled 

bioreactors operated in batch mode and the experimental data was compared with in silico 

data.  
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- Chapter 5 comprises an overall discussion embracing the results presented in this thesis, 

the final conclusions and future perspectives. 
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CHAPTER 1 

Introduction 
 

The manipulation of microorganisms to produce novel compounds is only possible thanks to 

decades of research on bioprocess engineering, recombinant DNA technology and the 

development of molecular tools. The expansion of computer power and the launch of “omics” 

approaches integrated with sophisticated genome-scale models, transformed metabolic 

engineering into a current holistic strategy with a sharp rise in the number of success cases.  

 

There is an increasing social awareness on the pressing need to replace petrol-based production 

of chemicals by clean and sustainable processes. This societal change, concomitant with 

advances in cell physiology, evolved to a path where cells become the new factories for the 

production of all kind of commodity compounds, proteins and drugs. Additionally, the ability to 

produce a specific compound is no longer restricted to their natural producers and can be 

transferred to more suitable organisms. Along this line of thinking, we aimed at developing a 

microbial cell factory to produce mannosylglycerate, a remarkable protein stabilizer naturally 

produced by microorganisms adapted to thrive in hot environments. 
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1.1 The promising role of bioeconomy 

 

The transformation of fossil resources has guaranteed the production of essential commodities - 

electricity, fuel and chemical compounds - that are used on a daily basis. Decades of industrial 

optimization using crude oil, natural gas and coal as raw materials, made the conversion of petrol-

based products a highly productive and inexpensive technology. Nevertheless, the price of 

compounds derived from crude oil is highly susceptible to market variations, especially in non-

petrol producing countries. The products derived from petrol can be categorized as low-price 

products and high-price products. Transportation fuel is an example of a cheap petrol by-product, 

while acrylic acid is a high-price, valuable compound (Clark et al., 2015). 

 

Exploitation of fossil resources allowed humankind to prosper, but it also propelled the emission 

of polluting gases and increased Earth´s average surface temperature, a phenomenon called 

global warming (OECD, 2011a). Climate changes are threatening many forms of life, and severely 

affect human well-being. Also, dependence on non-renewable raw material suffocates fragile 

economies due to unpredictable fluctuations in price. As a consequence, governments have been 

forced to look ahead and find alternative sources of energy and materials with increased 

sustainability and efficiency (Christensen et al., 2008). 

 

Governments are moving their attention to renewable resources, such as solar energy, wind 

power, water streams, and invest in the development of biotechnological strategies to decrease 

our environmental footprint. As a result of a worldwide campaign, the prefix Bio- is highly 

appreciated by conscious and environmentally aware consumers, which are looking for safer and 

cleaner products. Many reasons support a bio-based economy as this approach generates 

greener chemicals with reduced toxic side-products and low carbon dioxide emissions. Indeed, 

the development of processes to obtain renewable sources of energy and bio-based products is 

now part of many governmental guidelines (OECD, 2011b).  

 

As modern societies shift towards a bio-based economy, the quest to produce fuels and chemicals 

from plants, microorganisms or wastes is on (Naik et al., 2010). Two major success stories stand 

out in this area: bioethanol production from sugarcane (Goldemberg, 2007); and biodiesel 

production from vegetable oils and animal fats (Ma & Milford, 1999). Nonetheless, biotechnology 

is not only a mean to obtain safer energy or useful chemicals. It also brings in: innovations in 

agriculture as crops are improved to resist pesticides and cope with abiotic stresses such as 

extreme temperatures, high CO2, excess or lack of water (Varshney et al., 2011); production of a 

range of pharmaceutical drugs from antibiotics to anti-cancer and anti-parasitic agents, 

antioxidants, antivirals and hormones (Lee et al., 2009); incorporation of “natural” flavors and 

scents in foods (Berger, 2007; Carroll et al., 2015), and the production of valuable proteins for 

medical therapy and disease prevention (e.g., insulin, vaccines), or to be used as biocatalysts in 

a large range of industries (Demain & Vaishnav, 2009). 
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According to an OECD (Organization for Economic Co-operation and Development) prediction,  

by the year 2030, 35% of chemicals and other industrial products, 80% of pharmaceuticals and 

diagnostic products and 50% of all agricultural output will be produced via biotechnology (OECD, 

2009). Then, bioeconomy could represent 2.7% of gross domestic product (GDP) for countries 

belonging to OECD and even higher percentages are expected for non-OECD members (OECD, 

2009). In Europe, between 1,600 and 2,200 million tons of biomass are cultivated each year, 

generating 2 trillions of euros and employing more than 17 million people. Bioenergy and 

biomaterials produced using biomass account for 36% of the total production (Ronzon et al., 

2015). Bioscience companies in the USA generated in the last decade more than 111,000 highly-

paid jobs; in 2014, about 1.62 million people were working in a total of 73,000 companies. 

Importantly, this industry was not touched by the 2007 economic crisis and has been growing 17% 

a year (Nat Biotech, 2014).  

 

The successful implementation of a bioprocess is hampered by costs and time taken from 

engineering the organism to the development of a rentable production. A solution to reduce costs 

might pass by implementing bio-based processes blended in the well-established petrochemical 

industry. An alliance can be formed by using pre-existing refineries to produce solvents from 

biomass and/or petrochemical feedstocks, and reduce the inherent price fluctuations of food crops 

and petrol (Gu & Jérôme, 2013). 

 

1.2  Biotechnology for production of chemicals  

 

Worldwide, the production of bio-compounds reached 20 million of metric tons and is worth 

annually tens of billions of US dollars. In Europe, this market represents 25% of the total market 

of compounds and it is estimated that bio-based production will grow up to 1 million of metric tons 

by 2020 (Consulting, 2010). 

 

It is known that bio-based economy arises from the need to produce compounds that are 

environmentally acceptable, which led to the appearance of a new area called ‘Green Chemistry’. 

Although this terminology was first referenced in 1998 by Anastas and Warner (Anastas & Warner, 

1998), Green Chemistry started in the 80s with the principle of using environmentally friendly raw 

materials and processes to manufacture chemical products. The first definition states that: Green 

Chemistry efficiently utilizes (preferably renewable) raw materials, eliminates waste and avoids 

the use of toxic and/or hazardous reagents and solvents in the manufacture and application of 

chemical products (Sheldon, 2000). Indeed, Green Chemistry downgrades the importance of the 

economical prospect and embraces sustainable development and innovation. Anastas and 

Warner (Anastas & Warner, 1998) defined 12 principles of Green Chemistry that can be 

summarized as follows: minimize waste at source through the development of efficient processes 

instead of depending on remediation; improve health, safety, and protect the environment by 
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decreasing the use of toxic compounds and; use of renewable biomass in a sustainable manner, 

avoiding petroleum and other scarce resources (Sheldon et al., 2007). 

 

1.2.1 Biomass as the new substrate 

 

There is a pressing urgency to find energy and materials sources able to replace crude oil, as 

population and their fair expectations to improve wealth rise worldwide. The current view is to 

substitute non-renewable fossil resources by biomass feedstocks to produce chemicals and fuels. 

This strategy reduces dependency on petrol sources and decreases carbon dioxide emissions in 

the manufacture of bio-compounds. To increase profitability, co-production methods are 

implemented in biorefineries by coupling biofuel manufacture with the production of commodity 

compounds (Vlysidis et al., 2011).  

 

 

 
Figure 1.1 Biomass originates different kinds of components that can be transformed in precursors or end-
products. 

 

Generally, biomass is composed of carbohydrates (75%), lignin (20%), and triglycerides, terpenes 

and proteins (5%) (Sheldon, 2014). Carbohydrates present in biomass are starch, cellulose and 

hemicelluloses, which are the major components of plants (Figure 1.1). Arabinose and xylose are 

the most common C5-monomers, while glucose, galactose and mannose are representatives of 

abundant C6 sugars. Starch is a polymer of glucose that can be broken down into single molecules 

(Cherubini, 2010) Lignocellulosic biomass is composed of cellulose, hemicellulose and lignin. 

Cellulose is made of glucose molecules linked in a β(1-4) structure, which makes hard the task of 

breaking down into monomers. Hemicellulose is a mix of C5- and C6-molecules relatively easy to 

hydrolyze by using strong acids and heat. Lignin is a non-carbohydrate complex material that gives 

support and structure to plant cell walls via cross-linked phenol polymers. Vegetable oils and fats 
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fall into the triglyceride category and are composed of saturated and unsaturated fatty acids linked 

to a glycerol molecule. These are primarily used to produce biodiesel through esterification with 

methanol. Terpenes are a diverse class of organic compounds, generally exhibiting strong odors. 

Examples of well-known terpenes are limonene from citrus plants, farnesol, taxadiene, and 

carotenes. Proteins can be hydrolyzed into amino acids, which can be sold directly. 

 

The first-generation of bio-based compounds was produced from crops commonly used in the 

food industry, such as maize, sugarcane and oilseeds. Nonetheless, as food market prices rose, 

a growing controversy surrounding the use of edible crops to produce chemicals and fuels started 

to echo. General public defends that land intended to grow food should not be relocated to 

manufacture chemicals (ActionAid, 2010). 

 

To respond to this pertinent criticism, a second generation of bio-based compounds was 

envisaged that uses lignocellulose and non-edible seed oil as substrates. This is achieved by 

cultivating fast-growing and non-edible crops and by valorizing waste materials discarded by the 

food industry (Bautista et al., 2007). Indeed, there is a huge waste of organic material generated 

in the harvest and processing of food that could be utilized as substrates in biorefineries. This way 

of producing fuels and chemicals truly respects the principles of green and sustainable chemistry. 

Even more, by eliminating waste it creates a closed loop between food and chemical production.  

 

1.2.2  Conversion of biomass into commodity chemicals and fuel 

 

Chemicals and fuels can be produced by chemical synthesis or by microbial fermentation or even 

by a combination of the two methods (Cherubini, 2010). Industry adapted crude extraction 

protocols to the new substrates - biomass - and has been able to produce several types of fuel 

and commodity chemicals. Some examples are summarized in Table 1.1. 

 

Table 1.1 Examples of processes to produce chemicals and fuels from biomass. 

Process 
Intermediary 

compound 
Function Final product Ref. 

Gasification 
Syngas (e.g., H2, 

CO, CO2, CH4) 
Biofuel 

FT-fuels, 

dimethyl 

ester, 

ethanol, 

isobutene 

(Maschio et al., 

1994),(Woolcock & 

Brown, 2013) 

Gasification 
Syngas (e.g., H2, 

CO, CO2, CH4) 
Chemicals 

Methanol, 

ammonia, 

organic acids 

(Maschio et al., 

1994),(Woolcock & 

Brown, 2013) 
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Pyrolysis 

Pyrolytic oil 

Solid charcoal 

Light gases 

Chemicals 

Furfural, 

formic acid, 

acetic acid 

(Liu et al., 2014) 

Hydrolysis 

Monosaccharides 

(e.g., glucose, 

fructose, xylose) 

Chemicals 

Glycerol, 

glutamic acid, 

itaconic acid, 

malic acid, 

sorbitol 

(Brethauer & 

Studer, 2015) 

Transesterification 
Methyl or ethyl 

esteres 
Biofuel 

Biodiesel, 

glycerol 

(Sivasamy et al., 

2009) 

 

Microorganisms have been used for centuries to produce fermented food and beverages. Back 

then, the knowledge about these processes was purely empirical and it was only in the XIX century 

that the existence of microbes was demonstrated. Nowadays, many microorganisms are 

recognized as being able to naturally produce commodity chemicals and fuels (Table 1.2). 

However, the natural production of these compounds is generally poor and unsatisfactory. To 

circumvent this problem, researchers were able to increase productivity by optimizing culture 

medium and environmental conditions. Another way to increase productivity involves the 

application of methods of random mutagenesis and directed evolution. This strategy is also called 

classical strain development and takes advantage of genetic mutations in an organism to enhance 

the productivity of a microbial cell factory (Patnaik, 2008). 

 

Table 1.2 Commodity chemicals and fuels produced naturally by microorganisms using sustainable raw-
materials and the correspondent industrial use for each product. Adapted from (Yin et al., 2015). 

Organism Substrate Chemical Use Ref. 

Aspergillus 

niger 

Industrial 

waste 
Citric acid 

Food and pharmaceutical 

industries 

(Singh 

Dhillon et al., 

2011) 

Yarrowia 

lipolytica 

Glycerol, 

ethanol, 

and 

vegetable 

oils 

2-ketoglutaric 

acid 

Dietary supplement and 

building-block chemical for 

cancer therapeutics 

(Yu et al., 

2012) 

Actinobacillus 

succinogenes 
Xylose Succinic acid Additive and flavoring agent 

(Bradfield & 

Nicol, 2016) 

Rhizopus 

oryzae 

Brewery 

wastewater 
Fumaric acid 

Food and beverage 

industries 

(Das & Brar, 

2014) 

Rhizopus 

delemar 

Corn straw 

hydrolyte 
Malic acid 

Food and beverage 

industries 

(Li et al., 

2014) 
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Saccharomyces 

cerevisiae 

Xylose, 

glucose, 

galactose 

Ethanol Fuel industry 

(Olsson & 

Hahn-

Hägerdal, 

1993) 

Lactobacillus 

helveticus 

Whey 

permeate 
Lactic acid 

Pharmaceutical, chemical, 

and food industries 

(Günther & 

Gottschalk, 

1991) 

Clostridium 

acetobutylicum 

Maize 

mash 
Butanol Fuel industry 

(Jones & 

Woods, 

1986) 

Anabaena 

sphaerica 

CO2 and 

light 

Fatty acid 

methyl esters 
Biofuel 

(Anahas & 

Muralitharan, 

2015) 

 

 

1.3 Bioproduction using metabolic engineering  

 

Metabolic engineering aims to improve the production of a compound with commercial value by 

inflicting modifications on target biochemical reactions and/or by improving cell fitness. These 

modifications involve recombinant DNA technology whether the strategy aims to alter endogenous 

reactions or to introduce novel pathways. In the early days of metabolic engineering, examples of 

directed genetic alterations towards the development of improved strains were scarce. Instead, 

scientists often relied on random mutagenesis protocols that offered no insight into the 

modifications imposed on cell metabolism (Stephanopoulos et al., 1998). At this stage, metabolic 

engineering was powered by limited resources and focused on gene modification to improve a 

given pathway. Developments in PCR and Next-Generation DNA Sequencing boosted the area, 

leading to advanced tools that made organism manipulation fairly straightforward. These 

modifications include: gene deletion, expression of new genes synthesized to fit the host, 

overexpression of endogenous genes, modification of the transcript levels, or alterations on the 

regulatory network of the cell, to cite some examples.  

 

A metabolic engineering strategy typically comprises three stages: i) selection of the host strain; 

ii) selection of genetic tools and iii) multiple rounds of metabolic pathway optimization. As stated 

above, the extraction of valuable compounds from natural sources is often characterized by low 

productivity. Changing the host into a cell factory compatible with the desired product, is the first 

step to increase productivity and transform a prohibited process into cost-effective production. 

However, selection of the host strain to accommodate a pathway is not an easy task. This 

organism must offer the “chassis” to produce the desired metabolite; it needs to grow easily up to 

very high cell density; and efficient genetic tools, such as expression vectors, chromosomal 

knockout protocols and insertion methods, must be available. The selected host should have 
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simple nutritional requisites and tolerate harsh environmental conditions. Additionally, it must be 

able to grow at various scales, ranging from flask to industrial-scale fermenters (Lee et al., 2009).  

 

The construction and optimization of metabolic pathways towards the production of a compound 

frequently comprises increasing specific metabolic fluxes and shutting down competing pathways 

to maximize product formation. The genetic modifications typically include over-expression of 

genes belonging to key routes, deletion of genes related with side products and the introduction 

of foreign genes (Liu et al., 2015a). The overall goal is usually to increase the production of the 

desired compound without compromising cell growth.  

 

A complete map of the metabolic pathways started to be drawn as organisms became 

engineerable. Allied to this knowledge, advances in analytical tools created a platform for 

systematic and more rigorous data. New strategies to balance cofactors and manipulate regulatory 

elements were added to the yet simple methodologies of gene expression and knockout. Today, 

metabolic engineering strategies go beyond targeting a small number of product-related pathways 

to an intervention that contemplates the grid of metabolites. In the end, the modifications aim to 

increase product formation, decrease process time and energy, annul by-product formation and 

develop strains resistant to environmental stresses (Kumar & Prasad, 2011).   

 

Success cases of strain design are frequent in the literature. A few examples: the production of 

chemicals such as fumarate (Song et al., 2013) and succinate (Zhang et al., 2010) in Escherichia 

coli; or biofuels such as ethanol in Saccharomyces cerevisiae (Sonderegger et al., 2004), butanol 

(Atsumi et al., 2008) and isopropanol (Hanai et al., 2007) by E. coli; pharmaceuticals with the 

production of terpenoids (Martin et al., 2003) and artemisinin (Paddon & Keasling, 2014) by E. 

coli. Despite all efforts, some obstacles hinder the path that aims to substitute traditional 

production methods by effective bioprocesses. One way to overcome these difficulties is to build 

knowledge that will untangle the complexity of cell metabolism. Recent development in systems 

and synthetic biology areas will surely increase the success rate. 

 

 

1.4 Systems biology applied to microbial engineering 

 

Systems biology is a biology-based interdisciplinary field of study that focuses on obtaining a 

quantitative description of the biological entities using computational and mathematical modeling. 

This holistic approach aims to decode the inherent complexity of cells and predict how they react 

over time and variable conditions (Otero & Nielsen, 2010). Integrative biology aims to integrate 

knowledge at all levels of organization of living beings. Though this discipline has been active for 

the last 30 years, it was the development of computational tools and the ability to collect high-

throughput data that boosted the area and allowed it to evolve to its current status (see Figure 

1.2).  



CHAPTER 1 

14 
 

 

 
 
Figure 1.2 Systems biology as a system-level approach to understand biology through the use of the “omics” 

data and modeling. 

 

The concept of systems biology is not new and has been applied in different branches of biology 

since the XIX century (Westerhoff & Palsson, 2004). However, advances in genome sequencing, 

transcription, protein and metabolite profiling in conjunction with the development of high-

throughput methods were critical to the progress in this field by generating valuable information 

on the interactions among the network elements. 

 

1.4.1 “Omics” tools in the context of metabolic engineering 

 

Ideally, “Omics” technologies enable us to capture a global set of data from all single parts that 

compose a cell. In other words, we obtain information on which genes are expressed and the 

levels of expression, the pool of proteins and their modifications, the nature and concentration of 

metabolites and the fluxes through the complex metabolic network. These global approaches 

provide valuable information and guidelines for metabolic engineering strategies (Figure 1.3).  

 

Genomes contain all the information regarding metabolism and physiology of an organism. All 

these elements are finely tuned into an extraordinarily complex network that responds to the 

environment in an attempt to survive and reproduce. This interconnected network of genes and 

regulatory elements present in genomes is the subject of study in the interdisciplinary field of 

genomics. The major goal of this area is to identify patterns that define and characterize cells and 

their surrounding environment (Lee et al., 2012). As a result, the success of metabolic and cellular 
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engineering strategies increased significantly and led to microorganisms with enhanced yield and 

productivity of bio-products (Vemuri & Aristidou, 2005). 

 

 

 

Figure 1.3 Schematic representation of the “omics” technologies and their correspondent objective of study. 

 

Transcriptomics is the study of the complete set of mRNA transcripts generated in a cell and was 

firstly proposed in 1996 by Charles Auffray (Pietu et al., 1996). This field emerged from the 

development of automated Sanger sequencing and microarrays technology (Lander, 1999; 

Schena et al., 1995). From then on, it was possible to identify the changes in gene expression 

induced by environmental or genetic perturbations (Figure 1.3). The use of microarrays grew 

exponentially since this technology was able to determine correlations between environmental 

conditions/gene expression and the correlation between different genes (Vemuri & Aristidou, 

2005). An important example was the inventory of the activated gene pool throughout growth of 

S. cerevisiae on glucose. The growth curve of S. cerevisiae on glucose presents a diauxic shift 

corresponding to a metabolic change from fermentation to respiration. DeRisi and co-workers 

analyzed this shift and were able to identify genes whose expression changed upon glucose 

depletion, which permitted the elaboration of a regulatory map for central carbon metabolism of S. 

cerevisiae growing on glucose (DeRisi et al., 1997).  However, microarray usage implies several 

restrictions as it demands pre-existing information about the genome, and presents methodology 

problems such as high background noise levels or signal saturation. Also, data from microarrays 
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are difficult to normalize and compare between experiments (Okoniewski & Miller, 2006). More 

recently, the development of high-throughput DNA sequencing methods (deep-sequencing 

technologies) lead to the invention of a new method that maps and quantifies transcriptomes 

(Wang et al., 2009). This technique, called RNA-seq, can identify and quantify the majority of RNA 

species in the cell with an error in the range 1-5%, depending on the type of RNA analyzed and 

equipment used.  

 

Proteins are the functional units of the cell, assembled in response to gene expression. Cellular 

protein pools are investigated by proteomics, which includes the determination of protein 

abundance, protein function, interaction, and pathways in which these catalysts are involved. 

Developments in 2D electrophoresis, mass spectrometry, fluorescence-based interaction assays 

and protein arrays allowed to gather a significant part of the proteome dataset that is used to 

understand the links between genome and protein abundance (Han & Lee, 2003). In the context 

of microbiology and bioprocessing, proteome profiling provides insights into cell metabolism and 

hints at strategies to enhance productivity and improve cell performance. 

 

Moreover, knowledge of the pool of metabolites in cells attracts considerable attention from the 

scientific community, as metabolome constitutes the last piece that complements the genetic and 

protein information. Metabolite levels are the result of a finely tuned regulatory network that 

functions at the cellular level and the study of the complete set of metabolites is called 

metabolomics. Although we cannot identify and quantify all compounds present in a cell, we are 

able to measure concentrations of many small molecules such as carbohydrates, organic acids, 

alcohols, amino acids, lipids, among others. This is possible due to progress made in analytical 

methods such as mass spectrometry (MS), nuclear magnetic resonance (NMR), infrared 

absorption spectrometry (IR), ultraviolet spectroscopy (UV), high-performance liquid 

chromatography (HPLC), gas chromatography (GC) or near-infrared spectroscopy (NIR). 

Furthermore, 13C labeling has provided information beyond end-product production by permitting 

the quantification of intermediary isotopomers from central and secondary metabolism. With this 

information, it is possible to infer the flux of production/consumption of many metabolites. 

Currently, 3755 metabolites of E. coli and 2027 metabolites of S. cerevisiae are annotated in 

ECMDB (Guo et al., 2013)  and YMDB (Jewison et al., 2012), respectively. Usually, metabolites 

are identified through a sequence of steps that starts with quenching, which consists in stopping 

metabolism immediately after cell harvest and separating cells from the medium by centrifugation 

or fast filtration. Afterwards, metabolites are extracted and separated according to their chemical 

properties. Then, cell extracts can be analyzed using GC or LC coupled with a mass spectrometer 

or with NMR.  

Spotting the limiting reactions on the network can be achieved through metabolomic analysis. For 

example, substrate accumulation is an indication that one or more enzymes are working at a 

slower rate than the preceding reactions. The identification of these bottlenecks allows the direct 

identification of these reactions as possible metabolic engineering targets. One such example was 
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described by Yamamoto and co-workers while attempting to over-produce alanine in 

Corynebacterium glutamicum (Yamamoto et al., 2012). After observing the accumulation of 

intermediary compounds belonging to the alanine pathway, Yamamoto and co-workers designed 

a strategy to optimize the expression of several genes and balance co-factors, resulting in a 6.4-

fold increase in productivity (Yamamoto et al., 2012). 

 

Metabolomic approaches provide information on the nature and concentration of a large set of 

metabolites present in an organism, at a specific moment, but do not infer on its origin. Hence, no 

information can be gathered to assess metabolic fluxes through the reactions occurring in the cell. 

Substrate limitation/accumulation is not the only factor conditioning the flux through a reaction, as 

there are other relevant parameters such as co-factor availability, regulation and enzyme 

concentration. Metabolic flux analysis (MFA) is used to determine flux distribution based on 

experimental data (Christensen & Nielsen, 2000; Wiechert & de Graaf, 1996; Wittmann, 2007). 

These data are collected by measuring labeled amino acids from cellular proteins using GC–

LC/MS and/ or 2D-NMR. To label the amino acids, cells are grown on labeled 13C substrates and 

harvested once proteins are fully-labeled, which normally occurs when cells are growing in steady-

state for at least five residence times. With this information, it is possible to predict the metabolic 

capability of strains, energy and redox balancing or even investigate regulatory circuits that are 

condition-dependent (Lee et al., 2011). The estimation of fluxes in a network is not trivial, however 

methodologies such as constraint-based flux analysis can use optimization-based simulation 

techniques to simulate the flux distributions in a genome-scale model in different conditions. 

Alternatively, it is also possible to estimate the fluxes in central metabolism using isotope-labelled 

substrates such as in 13C-based flux analysis. This methodology uses relative isotopomer 

abundance data to compute the flux distribution that best fits the available experimental data 

(Zamboni et al., 2009). Briefly, 13C-based flux analysis uses isotope-labeled substrates to 

determine the intracellular fluxes during the course of time. The fluxes are estimated by fitting 

iteratively the simulated fluxes with stoichiometric models. Constraint-based flux analysis uses 

optimization-based simulation techniques to detect the metabolic differences of two tested 

conditions. To implement this approach, a genome-scale model is needed.  

 

The development of the “omics” technologies coupled to high-throughput assays led to the 

accumulation of an enormous amount of data whose analysis demand huge computer power. New 

programs and tools have been released that not only are able to process these data but can also 

build models and predict solutions for a given problem. This is the case of MET-IDEA that extracts 

semi-quantitative mass spectrometry datasets into organized data matrices (Broeckling et al., 

2006), or MZmine that processes mass spectrometry raw data and includes features as peak area 

parameterization of a large set of data (Katajamaa et al., 2006).  
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1.4.2 Genome-scale models and in silico methods to improve metabolic engineering 

strategies 

 

The sequencing of complete genomes provides information on the coding and non-coding 

elements of an organism. After the release of the first genome sequence in 1995 (Fleischmann et 

al., 1995), Edwards and Palsson started to construct the first genome-scale metabolic model, 

which was published in 1999 (Edwards & Palsson, 1999). Nowadays, genome sequencing is an 

easy and affordable task. In 2016, the number of sequenced genomes listed in NCBI was 2708 

for Eukaryotes and 59804 for Prokaryotes. Consequently, the number of genome-scale metabolic 

models available increased quickly and reached 134 in the year 2014 (Monk et al., 2014).  

 

These models can be used to predict the phenotypic behavior of a wild-type organism in response 

to different environmental stimuli. Even more, they allow the simulation of selected 

knockouts/overexpression of genes, outputting parameters such as specific growth rate and flux 

changes on the network (Milne et al., 2009; Patil et al., 2004). It is also possible to optimize the 

network by redirecting fluxes to produce, for instance, a desired compound. The first task in the 

construction of a genome-scale model passes by annotating each gene with a metabolic function 

to an enzymatic reaction. This work would be a daunting task if it was not for the automated 

reconstruction tools currently available (see Table 1.3). These automated tools are connected to 

important databases as Genbank (Benson et al., 2013) or GENE (Maglott et al., 2004), and are 

able to download information regarding an organism into their frameworks. For example, Merlin is 

able to annotate the genome of an organism, construct a map of reactions, identify genes encoding 

transporters and attribute a reaction to these carriers. Moreover, it performs compartmentalization 

of the model, predicts organelle localization of the proteins and attributes a gene-protein-reaction 

(GPR) association (Dias et al., 2015).   

 

Table 1.3 Computational tools for reconstruction of genome-scale models. 

Tool Brief description Ref. 

GLAMM 

Reconstruction of metabolic networks from 

genome data; visualization of the network and 

construction of pathways 

(Bates et 

al., 2011) 

Merlin 

Automated association of gene-protein-reaction; 

reconstruction of metabolic networks and 

identification of transporters, compartmentalization 

and organelle localization. Adds biomass function 

(Dias et al., 

2015) 

Model SEED 
Gene annotation from internal databases 

containing metabolic data 

(Overbeek 

et al., 

2005) 

Pathpred 
Web-based server to predict enzyme-catalyzed 

reaction pathways from a compound using the 

(Moriya et 

al., 2010) 
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KEGG and chemical structure alignments of 

substrate-product pairs. 

Pathway tools 

Creates a type of model-organism database called 

a Pathway/Genome Database; Integrates genes, 

proteins, metabolic network and regulatory 

network of an organism. 

(Paley & 

Karp, 

2006), 

(Karp et 

al., 2010) 

RAVEN toolbox 

Constructs semi-automated genome-scale 

models; Contains methods for visualizing 

simulation results and omics data 

(Agren et 

al., 2013) 

SuBliMinal toolbox 

Generates draft reconstructions, determines 

metabolite protonation state, mass and charge 

balancing reactions, suggesting intracellular 

compartmentalization; Adds transport reactions 

and a biomass function. 

(Swainston 

et al., 

2011) 

 

Multiple protocols can be found in the literature that aim to describe step by step all stages 

regarding the reconstruction of a model, including manual curation and validation (Feist et al., 

2009; Rocha et al., 2008a; Thiele & Palsson, 2010). Briefly, information regarding genes, enzymes 

and transporters are collected. Next, the metabolic reactions of that microorganism are identified. 

Supported by Brenda, BKN-react and MetaCyc, the stoichiometry of the network is checked, along 

with compartmentalization and localization of the reactions. Once these steps are complete, the 

model needs experimental data regarding metabolism or, if not available, published data for a 

taxonomic-related organism is used. These data include biomass composition, growth-associated 

energy requirements, substrate consumption, end-product production and maximal growth rate in 

chemically defined medium (Dias et al., 2015). Model validation is the last step and consists of 

comparing in silico growth in several environmental conditions with experimental data. The model 

is considered complete when it is able to predict biomass, metabolic yields and knockout effects 

in agreement with in vivo results. 

 

Flux balance analysis (FBA) is a well-established approach to simulate metabolism and is 

commonly used to predict flux distributions in metabolic networks (Edwards & Palsson, 1999; Orth 

et al., 2010). In the first stage, FBA represents the metabolic reactions in the form of a numerical 

matrix of the stoichiometric coefficients of each reaction, which directly arise from the model 

reconstruction process. This stoichiometry establishes flow-constrains for each reaction creating 

a constrain-based approach in which mass is balanced. This means that for all compounds, total 

consumption is equal to the total amount produced; for this, we have to assume that the system 

is in a steady-state mode. Also, every reaction is limited by an upper and lower bound for either 

consumption or production. Thus, by balancing mass and creating bounds we restrict the space 

of solutions regarding the distribution of flux belonging to each reaction. FBA operates with an 
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objective function which is, in the majority of cases, the maximization of biomass synthesis 

(growth), supported by the assumption that cells’ main goal is to grow and divide, and to do so, 

their metabolic map of reactions have to lean towards the production of cellular components (Orth 

et al., 2010).   

 

1.4.3 Integration of genomic-scale models with the ‘omics´ data 

 

The precision of metabolic targeting can be enhanced by integrating datasets from 

transcriptomics, proteomics and fluxomics into the metabolic network. This integration favors the 

simulation of phenotypes for specific conditions (Saha et al., 2014).  There are two main categories 

of methods to integrate omics data with metabolic: a) the switch approach – it activates or 

deactivates the reaction flux based on the expression levels detected in the transcriptome profile 

concerning a certain condition (e.g., GIMME) (Becker & Palsson, 2008), and b) the valve approach 

– that inputs the relative gene/proteins levels from transcription or proteomic data on the reaction 

flux (e.g., E-flux) (Hyduke et al., 2013). The main integration tools are summarized in Table 1.4. 

 

Table 1.4 Examples of computational tools used to integrate transcriptomics/metabolomics data into genome-

scale models. Adapted from (Liu et al., 2015a). 

Tools Brief description Ref. 

AdaM 
Bi-level optimization framework to integrate transcriptomics 

data with genome-scale models 

(Töpfer 

et al., 

2012) 

E-flux 
Predicts changes in metabolic flux capacity using gene 

expression data 

(Colijn et 

al., 

2009) 

EXAMO 
Integrates gene-expression measurements with genome-

scale models of metabolism 

(Rossell 

et al., 

2013) 

FCGs 
Correlates gene expression transitions with their 

corresponding flux values 

(Kim et 

al., 

2013) 

GIM3E 
Develops condition-specific models based on an objective 

function, transcriptomics and cellular metabolomics data 

(Schmidt 

et al., 

2013) 

GIMME 
Uses transcriptomic data and metabolic objectives to 

redesign a genome-scale model to a specific context 

(Becker 

& 

Palsson, 

2008) 
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GX-FBA Combines gene expression data with flux balance analysis 

(Navid & 

Almaas, 

2012) 

MADE 
Uses changes in gene or protein expression to build a 

condition-specific metabolic model 

(Jensen 

& Papin, 

2011) 

mCADRE 
Produces human tissue-specific models based on gene 

expression data and metabolic network topology 

(Wang et 

al., 

2012) 

TEAM 
Predicts temporal metabolic flux distributions using time-

series gene expression data 

(Collins 

et al., 

2012) 

TIGER 
Integrates metabolism, expression and regulation data to 

build genome-scale models 

(Jensen 

et al., 

2011) 

 

1.4.4 Computational methods for strain simulation and optimization  

 

Genome-scale metabolic models possess the biochemical information of an organism and are 

used to simulate metabolic phenotypes of wild-type strains. Moreover, these models are able to 

predict the effects of genetic modifications in the behavior of an organism. Several methods have 

been developed to predict phenotypic alterations in the metabolic network (Table 1.5). As 

discussed above, FBA was the first method developed for simulating the growth rate of a wild-type 

or knock-out mutant. However, the assumption of biomass maximization usually used in FBA 

simulations can result in unrealistic predictions for engineered strains (Shlomi et al., 2005a). This 

phenomenon can be explained by the fact that biological networks were formed in a slow process 

as result of natural selection, or in a more updated term – as a consequence of an evolutionary 

adaptation. As these processes occur, the cells with the fittest phenotypes will reproduce and be 

transferred to the next generation. Since cells with robust networks will be more adapted to a 

changing environment, natural selection promotes the appearance of cells that can grow and 

divide after an environmental or even genetic disturbance. In order to mimic the capacity of 

metabolic networks to counteract disturbances, Segrè and co-workers developed a method to 

simulate the impact of knockouts by minimizing the distance between fluxes of the wild-type and 

mutant strains (Segrè et al., 2002).Their approach, called Minimization Of Metabolic Adjustment 

(MOMA), simulates gene knockouts, by setting the wild-type as reference and having as objective 

function the minimization of the Euclidean distance between the flux distribution of the mutant and 

wild-type strains. MOMA simulations are better than FBA at predicting gene essentiality because 

its assumption of minimal changes in the metabolic network describes more accurately the short-

term phenotypes measured in the laboratory experiments. Following MOMA’s publication, a 

modified version was released called Linear MOMA that solves some issues of the original 
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formulation by minimizing the Manhattan distance between the mutant and wild-type flux 

distribution (Becker et al., 2007). All these methods are integrated in a plaflorm called OptFlux 

(Rocha et al., 2010). Multiple strain engineering success cases have been published using MOMA, 

including the improvement of lycopene biosynthesis (Alper et al., 2005) and L-valine (Park et al., 

2007) in engineered E. coli strains. Moreover, an 85% increase in cubebol titer was obtained in S. 

cerevisiae by applying a solution obtained by using OptGene as strain design framework and 

MOMA as simulation method (Asadollahi et al., 2009).  

 

Table 1.5 Simulation methods for genome-scale models. 

Method Description Ref. 

FBA 

Calculates the flow of metabolites through the network 

assuming a cellular objective, usually biomass formation. 

Used to predict flux and growth in wild-type or knock-out 

strains.   

(Orth et al., 

2010) 

pFBA 

Two-level target formulation that aims to predict flux 

distributions with FBA by minimizing the number of active 

reactions or the total sum of fluxes. 

(Ponce de 

León et al., 

2008) 

MOMA 

Uses wild-type fluxes as a reference to calculate the flux 

distribution of a knockout mutant. This distribution is 

computed by minimizing the Euclidean distance between the 

reference and the mutant fluxes. 

(Segrè et 

al., 2002) 

LMOMA 
Intended to refine MOMA by using the Manhattan distance to 

simulate the network fluxes. 

(Becker et 

al., 2007) 

MiMBl 

Assumes that cells try to minimize the metabolite turnovers, 

meaning that metabolite production and consumption will be 

minimized in relation to the wild-type fluxes. 

(Brochado 

et al., 2012) 

PSEUDO 

The formulation of this method determines the metabolic 

fluxes from a nearly optimal growth and calculates the 

network fluxes of the mutants by deviating minimally from this 

region. 

(Wintermute 

et al., 2013) 

ROOM 

Predicts metabolic fluxes in response to gene knockouts by 

minimizing the number of flux changes using a comparison 

with the wild-type. 

(Shlomi et 

al., 2005a) 

Under/Over-

expression 

Incorporates transcriptional / translational information into the 

flux constraints over related reactions and determines the 

overall effect of these changes. 

(Gonçalves 

et al., 2012) 

 

Strain optimization is another feature deriving from genome-scale metabolic models construction 

and consists in automatically finding alterations in the network that will shift carbon fluxes towards 
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the production of the desired compound. These alterations include: gene deletion, gene over- or 

under-expression, heterologous insertions, or cofactor alterations (Maia et al., 2016).  

 

Nowadays, there is a large variety of computational methods that find strain engineering strategies 

to meet the purpose of designing novel cell factories using existing pathways or foreign ones 

(Table 1.6). The first strain design method was published in 2003 and was named as OptKnock 

(Burgard et al., 2003). This method is formulated as a bi-level optimization problem (i.e., cellular 

objective and chemical production) and is able to identify multiple gene deletions that 

simultaneously combine cell growth with chemical production. OptKnock predicts sets of knock-

outs that promote the production a target metabolite while maintaining a minimum growth rate. 

Although growth coupling is not guaranteed, this algorithm produces solutions where the 

production of the target compound becomes a necessary by-product of cell growth. 

 

Since the first OptKnock article, several methods were published dealing with problems related to 

the initial formulation, as is the case of RobustKnock, which increased robustness of OptKnock 

solutions by optimizing the FBA formulation (Tepper & Shlomi, 2010), or ReacKnock in which the 

bi-level optimization problem was simplified to a single level (Xu et al., 2013), and OptORF that 

adds regulatory information to the optimization, among others (Kim & Reed, 2010). However, the 

number of gene deletions set by the user progressively increases the time required to solve the 

problem. This issue limits the number of genetic modifications that can be included in the strain 

designer solution obtained with this type of method.  

 

To tackle this drawback the first evolutionary optimization method emerged and was called 

OptGene (Patil et al., 2005). Evolutionary methods enable solving large gene modification 

problems in less computational time and can be combined with simulation methods such as FBA 

or MOMA. Evolutionary methods were applied successfully in the production of succinic acid in S. 

cerevisiae, with 43-fold improved yield (Otero et al., 2013), or in the production of vanillin, which 

increased 2-fold in S. cerevisiae (Brochado et al., 2010) in comparison with previous reports 

(Hansen et al., 2009), to cite some examples. 

 

Table 1.6 Examples of computational methods for strain engineering using genome-scale metabolic models. 

Method Description Ref. 

OptForce 

This algorithm defines the wild-type fluxes constrains 

either by calculating them or by importing 

experimentally measured fluxes and sets these fluxes 

as the interval to find target genes that will increase 

the productivity of the mutant strain.  

(Ranganathan 

et al., 2010) 

CosMos 

This method has a simpler formulation from OptForce 

by relying on continuous modifications to predict 

solutions that include deletions, downregulations, and 

(Cotten & 

Reed, 2013) 
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upregulations of fluxes that increase the desired 

compound 

FSEOF 

Iterative linear optimization method that allows the 

identification of gene amplifications targeted to 

enhance metabolism towards production of a given 

compound 

(Choi et al., 

2010) 

EMILio 

Identifies reactions with individually optimized fluxes 

that follow the objective of improving growth and 

production of the desired compound and predicts the 

optimal flux ranges that maximize that production 

(Yang et al., 

2011b) 

GDLS 

First method to reduce significantly the computational 

burden by using iterative local search steps, enabling 

the use of complex models with complex questions 

(Lun et al., 

2009) 

OptGene 

Evolutionary algorithm that optimizes strain design by 

discovering gene targets using available simulation 

methods present in Table 2.5. 

(Patil et al., 

2005) 

OptKnock 

Bi-level optimization method that uses the FBA 

formulation in combination with the maximization of 

fluxes towards the production of a desired compound. 

The optimal solution found by OptKnock is a 

combination of knockout genes that links the target 

with cellular growth.  

(Burgard et 

al., 2003) 

OptORF 

Similar formulation than used in OptKnock with the 

addition of transcriptional regulation constrains. 

Target solution includes gene knockouts and over-

expressions.  

(Kim & Reed, 

2010) 

ReacKnock 

Similar to the OptKnock method reformulated to 

change the bi-level optimization problem to a single 

optimization problem by using the Karush-Kuhn-

Tucker method. 

(Xu et al., 

2013) 

RobustKnock This method tackles OptKnock lack of robustness 

derived from the FBA simulation and guarantees 

robust solutions. 

(Tepper & 

Shlomi, 2010) 

SA/SEA 

Simulated annealing and evolutionary algorithms to 

search near optimal sets of solutions that maximize 

growth coupling with production of the compound of 

interest. 

(Rocha et al., 

2008b, Rocha 

et al., 

2010)(Rocha 

<i>et al.</i>, 

2008b)(Rocha 

<i>et al.</i>, 
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The possibility of evaluating solutions formulated computationally to be used in strain design is a 

breakthrough scientific achievement and encourages the development of synthetic approaches. 

This excitement ascends from the perception that the time to finalize a project of strain design 

towards the production of a target compound is realistically and significantly smaller, in comparison 

with the traditional methods of trial and error. 

 

1.5  Saccharomyces cerevisiae as a cell factory 

 

Saccharomyces cerevisiae is one of the most important organisms used in industry and in strain 

design strategies to produce metabolic compounds of interest. In the scientific field, S. cerevisiae, 

also known as baker’s yeast, is a model organism used all around the globe to understand 

fundamental cell processes that can often be replicated in higher Eukaryotes, including Humans 

(Botstein et al., 1997). In industry, S. cerevisiae is used for millennia (early 6th millennium B.C.) in 

the production of beer, bread and wine (Mortimer, 2000). Nowadays, the utility spectrum has 

grown exponentially as this yeast is used for the production of bioethanol, nutraceuticals, 

chemicals and pharmaceuticals (Borodina & Nielsen, 2014).  

 

S. cerevisiae was the first Eukaryotic organism to be fully sequenced (Goffeau et al., 1996). It is 

easily manipulated and has a rich set of available engineering tools from genome editing to 

expression plasmids. Moreover, yeast cells are easy to grow in the laboratory, display fast growth 

rates and achieve high densities even with chemically defined media, a good characteristic to 

study genetics and proteomics. The development of a production process using cells often 

includes the expression of heterologous genes and construction of an optimized route to produce 

the desired compound. S. cerevisiae is a genetically stable organism, stated as generally regarded 

as safe and considered a robust organism to be used in industrial processes for its capability to 

tolerate low pH, preventing contaminations and reducing the production costs with acidic products. 

Additionally, this yeast shows a resilient behavior towards fermentation inhibitors produced during 

growth (Goffeau et al., 1996).  

 

An active and supportive community of researchers allowed the creation of general strain banks 

(Euroscarf) with single-knockout strains (Winzeler et al., 1999), a collection of strains with green 

fluorescent protein (GFP) gene fused with a yeast gene (Huh et al., 2003), and a strain collection 

engineered for protein over production (Jones et al., 2008). S. cerevisiae is the best-studied 

Eukaryote and for this reason, there is an enormous amount of published data that was collected 

and integrated into online databases specific for each area of study. For instance, the SGD stores 

2008b)(Rocha 

<i>et al.</i>, 

2008b) 
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information regarding genes (Cherry et al., 2012), the YEASTRACT holds manually curated 

information regarding transcriptional regulation (Teixeira et al., 2014), and YMDB, which is another 

manually curated database, stores information on the metabolome (Jewison et al., 2012), among 

others. In addition, there is a strong development of metabolic models including 13 genome-scale 

models (Osterlund et al., 2012).  

 

 

1.6  Product optimization in S. cerevisiae by using fermentation design  

 

A variety of methods and equipment/labware is available to cultivate microorganisms. However, 

and for its stability, bioreactors are the ideal equipment to cultivate microbial cells. Many reasons 

support this statement: a) substrates are consumed without any deviation; b) offers no dead zones 

or clumps of media; c) feeding can be immediately distributed throughout the reactor; d) the 

sparger provides a transfer of air into the liquid medium and e) optimal growth conditions are 

maintained (e.g., pH, O2, agitation, temperature), and measured online with feedback control. This 

controlled environment guarantees the collection of reliable information regarding cell physiology 

and metabolism and is a powerful tool to decipher cell biology. The development of an optimized 

bioprocess can significantly increase the productivity and is the first step towards industrialization 

(Nielsen et al., 2003). There are mainly three modes of cultivation that are applied in industrial 

processes: a) batch; b) fed-batch; and c) continuous mode (Figure 1.4). These three configurations 

are briefly discussed below for the specific case of S. cerevisiae. 

 

 
 

Figure 1.4 Simplified scheme of the main cultivation methods to establish a bioprocess in S. cerevisiae. Cells 
can be grown in batch mode characterized by the absence of feeding or exit of medium; fed-batch cultivation 
starts after a batch, with the addition of concentrated medium and no removal of culture broth; and continuous 
mode or chemostat is initiated with fresh medium after a batch growth, removed at the same dilution to 
maintain a constant working volume.  
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The batch mode is the easiest method of cultivation. Temperature, agitation, pH and dissolved 

oxygen are controlled, and a broth medium containing a carbon source plus all essential nutrients 

is provided to cells at the inoculation time. The bioreactor volume is kept constant and an 

exponential growth at a maximal rate is obtained.  In an aerobic cultivation of S. cerevisiae, glucose 

is consumed in a respiratory/fermentative metabolism to produce ethanol (major end-product), 

acetate and glycerol, which are produced in smaller proportions. These end-products are 

consumed in a second-phase of growth after a period of metabolic adaptation. Batch mode has 

the advantage of allowing an everyday use for different fermentations and is easily sterilized with 

low risk of contamination (Nielsen et al., 2003). Additionally, total conversion of substrate is 

possible and is often an efficient process. However, operating bioreactors requires skilled labor 

and the time-off fermentation which comprises sterilization, growth of pre-culture and cleaning 

conditions the productivity.  

 

Fed-batch cultivation starts after cells were grown in a batch culture. This first step aims to 

guarantee a stabilized cell metabolism with a workable quantity of biomass. Feeding containing 

concentrated medium is added to the bioreactor near the phase when the carbon source is almost 

exhausted. The bioreactor working volume increases over time, consequence of the feeding and 

the absence of medium removal. Different feeding strategies can be applied in accordance with 

the process physiology. In the case of S. cerevisiae, the feeding strategy must have into account 

the type of metabolism favoring product-production. To maintain yeast cells on respiratory mode, 

glucose must be added below the threshold of the Crabtree effect, which is approximately 0.04 

g.L-1 (Pham et al., 1998). In contrast, respiratory/fermentative metabolism is achieved with an 

exponential feeding rate maintained until oxygen reaches limiting conditions. From then on, 

feeding is kept at a constant rate, resulting in a low and constant concentration of glucose in the 

medium and a declining specific growth rate.  Fed-batch cultivation combines the advantages of 

batch and continuous operation and offers great control and an optimization window to a desired 

product. 

 

The continuous mode starts with a batch cultivation as operated in fed-batch mode.  Feeding 

normally has the same composition of the batch culture medium and enters the bioreactor at the 

same rate as a level tube extracts the culture broth, to maintain a constant working volume. After 

several hours of cultivation, cells enter a metabolic steady-state. The dilution rate determines the 

specific growth rate of the culture until it reaches the μmax of the culture (determined in batch 

cultivation), where D = μmax.  Above this dilution rate, cellular growth can no longer accompany the 

dilution rate and cells start to be washed out from the vessel. This condition is observed when D 

> μmax. Chemostat cultivation is a powerful technique to unveil the metabolism of cells under 

different concentrations of glucose (Larsson et al., 1993). Even more, it can pinpoint metabolic 

subtleties detected between the steady-states of different dilutions. The continuous mode, using 

S. cerevisiae, is industrially used to produce biomass, antibiotics and proteins (Nielsen et al., 
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2003). Typically, these cultivations are made with a D = 0.1 h-1 or higher to obtain a productivity 

advantage in relation to batch cultivation. Continuous cultivation offers steady and continuous 

removal of product which is an enormous advantage in comparison to batch cultivation. However, 

this process can be hampered by contaminations and the introduction of deleterious mutations 

that affect production of the desired compound.      

 

The combination of system biology expertise, synthetic biology tools and the optimization of down-

stream and up-stream processes is opening a world of opportunities regarding the development 

of cell factories to produce exquisite compounds that once were never thought possible.   

 

1.7  Stress-protectant solutes and their biological role 

 

Astrobiologists have been actively searching for the presence of life beyond Earth for the last 

decades with no success so far, suggesting that life is a rare event. Even Earth, a planet that is at 

its most habitable, has extreme environments close to what Earth-forming conditions must have 

been. These extreme environments were thought to be sterile until microbial cells were found to 

thrive in these habitats (Brock, 1967).  

 

Scientists were immediately intrigued by how these organisms could cope with high temperatures, 

radiation, pressure, desiccation, salinity, high or low pH. Some of these questions are now 

answered and adaptations include alterations on membrane composition to adjust fluidity (for high 

temperature), potent efflux pumps to remove toxic compounds (heavy-metal rich environments), 

or structural modifications regarding the rigidity of proteins to guarantee functionality (Rothschild 

& Mancinelli, 2001). Another physiological difference is the accumulation of small organic 

compounds to cope with osmolarity, temperature or other harsh conditions. These compounds 

can accumulate up to molar concentration without stressing cellular components and for that 

reason are called “compatible solutes” (Brown, 1976). Compatible solutes are widely spread 

throughout the different taxonomic groups from bacteria to archaea, fungi, algae, plants and 

animals (Santos & da Costa, 2002). These molecules are produced via different pathways and 

can be organized by their chemical structure as amino acids, sugars and derivatives, 

phosphodiesters and polyols (Figure 1.5).  

 

Trehalose is a ubiquitous solute that can be found in lower orders of plants, lichens and algae, or 

in higher plants as the resurrection plant – Selaginella lepidophylla, and the model plant - 

Arabidopsis thaliana. Trehalose can also be found in different bacteria from the genera 

Streptomyces, Corynebacterium, Mycobacterium, Propionibacterium, Deinococcus, Thermus and 

also in Escherichia coli, among many others. In the domain Archaea, the genera Sulfolobus and 

Thermoproteus accumulate high levels of trehalose, but this solute is found in several other 

archaeons. In animals, it can be found in insects, eggs and round worms. It is a predominant solute 

in yeast and fungi where it accumulates in regular cells, spores, fruiting bodies and vegetative 
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cells (Elbein, 2003). Actually, trehalose can represent from 28-30% of a spore dry weight 

(Feofilova, 1992). Various functions are attributed to this solute: a source of energy, signal and 

regulator molecule to control pathways (yeast and plants), protector of proteins and cellular 

membranes against stress conditions including desiccation, dehydration, heat, cold and oxidation.  

 

In Bacteria, the most frequent compatible solutes are: ectoine, glycine betaine, glycerol, proline 

and glutamate (da Costa et al., 1998). Particularly ectoines, which are one of the most abundant 

osmolytes in Nature, can be found in organisms adapted to low-water-activity environments and 

function by minimizing the denaturation of proteins and other biological entities by interfering with 

the physical properties of water (Graf et al., 2008). Also, glycine betaine acts as an osmo- and 

thermoprotectant in response to osmotic up-shock or increased temperature above optimal growth 

(Caldas et al., 1999). This osmolyte is transported from the medium to the intracellular space in 

species such as Escherichia coli, Staphylococcus aureus or Pseudomonas aeruginosa, or it is 

synthesized from choline in two reaction steps. Only a few species are known to have a de novo 

synthesis pathway as in the chemoheterotrophic bacteria Actinopolyspora halophila (da Costa et 

al., 1998). 

 

On the other hand, solutes accumulated by thermophiles and hyperthermophiles are generally 

different from those found in mesophilic organisms and are often restricted to these two group of 

organisms (Santos & da Costa, 2002). These compounds can be divided into two categories: α-

hexose derivatives and phosphodiesters (Lamosa et al., 2007). Regarding the latter group, di-

myo-inositol-phosphate (DIP) is the most distributed solute, and is restricted to microorganisms 

growing optimally above 60 ºC, including one of the most extreme hyperthermophiles known, 

Pyrolobus fumarii (Blöchl et al., 1997; Gonçalves et al., 2008). DIP can also be found 

mannosylated, yielding mannosyl-DIP and di-mannosyl-DIP, in members of the genera 

Thermotoga and Aquifex (Rodrigues et al., 2009). Also, belonging to the phosphodiesters group 

there is diglycerol phosphate which is accumulated by members of the genus Archaeoglobus, and 

glycero-phospho-inositol, present in the genera Archaeoglobus and Aquifex (Gonçalves et al., 

2003; Lamosa et al., 2006b).  

 

Among the α-hexose derivatives, mannosylglycerate (MG) is the most common solute and can be 

found both in Bacteria and Archaea (Bouveng et al., 1955). Some strains of Rhodothermus 

marinus also accumulate a MG derivative called mannosylglyceramide (Silva et al., 1999). 

Mannosyl-glucosylglycerate is found in Petrotoga spp. and glucosyl-glucosylglycerate in 

Persephonela marina, which also accumulates glucosylglycerate (Fernandes et al., 2010; Jorge 

et al., 2007). However, there are exceptions that do not fit in these categories, as the case of β-

glutamate accumulated by the halotolerant organisms Methanothermococcus 

thermolithotrophicus, Methanocaldococcus jannaschii, and Methanotorris igneus (Roberts, 2005; 

Robertson et al., 1990) and also in hyperthermophilic bacteria (Fernandes et al., 2010; Lamosa et 

al., 2006b; Martins et al., 1996) or aspartate present in the genera Palaecoccus and 
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Thermococcus (Lamosa et al., 1998; Neves et al., 2005), to cite some examples. As a general 

rule, ionic solutes are predominantly found in organisms adapted to thrive in hot environments, 

while mesophiles accumulate preferentially neutral solutes. 

 

 

 

 

 

 
Figure 1.5 Organization of compatible solutes in groups according to their chemical nature. 
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1.8 Mannosylglycerate  

 

Most microorganisms possess mechanisms to effectively respond to increasing concentrations of 

salt in the environment, by the counterbalance of ions or solutes. However, these stress-protectant 

or compatible solutes surpass their function as “osmotic balancers” and evolved to help cells in 

the protection of their molecules and cellular structures under different stressful conditions. This 

is the case of mannosylglycerate (MG), a compound found in the three domains of the Tree of Life 

(Liu et al., 2015b): Bacteria, Archaea and Eukarya. 

 

1.8.1 Structure and distribution of mannosylglycerate 

 

Mannosylglycerate or 2-O-α-D-mannopyranosyl-D-glycerate is a compound belonging to the 

glycopyranosyl–glycerols family and is composed of a glycerate molecule linked to a mannose 

sugar (see Figure 1.6) (Bouveng et al., 1955; Claude et al., 2009; Silva et al., 1999). MG was firstly 

named in 1939 as digeneaside, identified by Colin and Augie in a seaweed called Polysiphonia 

fastigiata (Colin & Augier, 1939). MG structure was first elucidated by Bouveng and co-workers in 

1955 (Bouveng et al., 1955) and later established by NMR (Ascêncio et al., 2006; Silva et al., 

1999). Other species also belonging to the order 

Ceramiales were found to accumulate MG (Kremer, 

1980) and more recently it was detected in 

Rhodophyceae of the orders Gelidiales, Gigartinales, 

Porphyriales, Rhodymeniales, Gracilariales and 

Stylonematales (Eggert et al., 2007; Karsten et al., 2007; 

Yang et al., 2011a). Although MG can be found in 46 

genera of algae, the physiological role of this solute in 

these cells is yet unclear, raising the suspicion that MG 

may serve as carbon reserve (Borges et al., 2014).  

 

MG was assumed to be restricted to algae until it was first identified in the bacteria Thermus 

thermophilus and Rhodothermus marinus in 1995 (Martins & Santos, 1995; Nunes et al., 1995). 

In T. themophilus, MG is accumulated for adaptation at low osmolarity, but otherwise trehalose is 

the major osmolyte (Alarico et al., 2007; Silva et al., 2003). The same function is observed in R. 

marinus for low-salinity conditions, in which MG concentration increases concomitantly. However, 

at higher salinities, trehalose is substituted by a MG derivative – mannosylglyceramide (Silva et 

al., 1999). In addition, MG was also observed to accumulate in response to heat stress 

(Empadinhas et al., 2001; Martins & Santos, 1995; Neves et al., 2005). MG is also present in 

organisms extremely resistant to gamma-radiation, belonging to the genus Rubrobacter (Carreto 

et al., 1996). However, no effect on MG accumulation is observed when an osmotic stress is 

applied to Rubrobacter xylanophilus that grows optimally at 60 ºC (Empadinhas et al., 2007). In 

Figure 1.6 Schematic representation of 
mannosylglycerate, also known as 

digeneaside. 
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Archaea, MG has been found in the hyperthermophiles of the genera Pyrococcus, Thermococcus, 

Palaeococcus, Archaeoglobus, Aeropyrum and Stetteria (Martins & Santos, 1995; Neves et al., 

2005; Santos & da Costa, 2002). Its accumulation is a response to increasing levels of NaCl or, 

for the specific case of Palaeococcus ferrophilus, MG production is associated with thermal stress 

(Neves et al., 2005).  

 

1.8.2 Biosynthesis of mannosylglycerate 

 

The biosynthetic pathway of MG was first revealed in R. marinus by the discovery of a 

glucosyltransferase named mannosylglycerate synthase (MGS) that catalyzes, in a single step, 

the conversion of GDP-mannose and D-glycerate into MG. Strangely, it was later found that R. 

marinus has an alternative route to produce MG involving two-steps and two enzymes. This 

alternative pathway uses 3-phosphoglycerate (3PG) and GDP-mannose which are condensed into 

mannosyl-3-phosphoglycerate by the mannosyl-3-phosphoglycerate synthase (MPGS), which is 

subsequently dephosphorylated by the mannosyl-3-phosphoglycerate phosphatase (MPGP), 

yielding mannosylglycerate (Figure 1.7).  

 

Only three organisms are known to produce MG via the single-step pathway, i.e., the thermophilic 

bacterium Rhodothermus marinus (Martins et al., 1999), the mesophilic red alga Caloglossa 

leprieurii (Borges et al., 2014), and the plant Selaginella moellendorffii (Nobre et al., 2013). The 

two-step pathway for the synthesis of MG is much more common and can be found in the 

thermophilic bacteria Rhodothermus marinus, Thermus thermophilus, Rubrobacter xylanophilus 

and the hyperthermophilic archaea Pyrococcus spp., Palaeococcus ferrophilus and 

Thermococcus litoralis (Empadinhas et al., 2001, 2003; Empadinhas & da Costa, 2011; Martins et 

al., 1999; Neves et al., 2005). The genes coding for the MPGS and MPGP are usually separated 

in the genome but placed close together, except for the bacterium Dehalococcoides mccartyi, 

(former D. ethenogenes) where the mpgS and mpgP genes are fused in a single coding sequence. 

This bifunctional enzyme was expressed in Saccharomyces cerevisiae and proved to be functional 

by allowing the accumulation of MG in this Eukaryote (Empadinhas et al., 2004). However, 

whether MG accumulates in D. mccartyi remains unknown. Also interesting is the presence of the 

gene mpgS in Magnaporthe grisea which was functionality verified in S. cerevisiae. However, this 

organism lacks the gene mpgP, indicating that M. grisea is only capable of producing mannosyl-

3-phosphoglycerate (Empadinhas, 2004).  

 

Since the disclosure of the genes involved in the biosynthesis of MG it is possible to search for 

homologs within the publicly available genomes. Regarding the single-step pathway, the homologs 

predicted for the enzyme MGS are: red algae Griffithsia japonica, Griffithsia okiensis, Chondrus 

crispus, Kappaphycus alvarezii, Eucheuma denticulatum, and Gracilaria changii,  green algae 

Penium margaritaceum, Klebsormidium flaccidum, Spirogyra pratensis, and Chaetosphaeridium 

globosum and also in the moss Physcomitrella patens subsp. patens (Borges et al., 2014).  
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Figure 1.7 Biosynthetic pathways for the production of mannosylglycerate and their occurrence in the Tree 
of Life. Organisms with confirmed MG enzymes are in bold. Homology predictions were obtained using 
Rhodothermus marinus and Pyrococcus horikoshii as template for the single-step and two-step pathway, 
respectively. Abbreviations: mannosylglycerate synthase (MGS); mannosyl-3-phosphoglycerate synthase 

(MPGS), mannosyl-3-phosphoglycerate phosphatase (MPGP).   

 

Enzymes for the two-step pathway are much more common in the Tree of Life. We found hits in 

Archaea (Euryarchaeota: Pyrococcus, Thermococcus, Palaeococcus, Methanothermus and 

Archaeoglobus; Crenarchaeota: Aeropyrum and Staphylothermus; Thaumarchaeota: Candidatus 

Nitrososphaera), Bacteria (Rhodothermus, Flexithrix, Verrucomicrobiae, Dehalococcoides, 

Dehalogenimolas, Thermus, Marinithermus, Catelliglobosispora and Actinoplanes), and the 

Eukarya (Fungi: Sordaria, Neurospora, Podospora, Chaetomium, Thielavia, Myceliophthora, 

Magnaporthe, Gaeumannomyces, Togninia, Eutypa, Colletotrichum, Pyrenophora, 

Phaeosphaeria and Leptosphaeria) (Borges et al., 2014). 

 

Until recently, there was no information on whether cells could recycle the MG that is produced in 

response to abiotic stresses. Nobre and co-workers were able to identify MG hydrolases in the 
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organisms T. thermophilus, R. radiotolerans and S. moellendorffii that are capable of hydrolyzing 

MG into mannose and D-glycerate (Nobre et al., 2013).  

 

1.8.3 Biological function of mannosylglycerate   

 

The presence of MG in organisms adapted to hot environments linked MG to survival in extreme 

environments, especially in response to osmotic stress. That is the case of R. marinus and T. 

thermophilus, in which MG is produced in response to fluctuations of salt (Nunes et al., 1995; Silva 

et al., 1999). In addition, these two organisms and the archaea P. ferrophilus also use MG as a 

protector against thermal stress (Empadinhas et al., 2001; Martins & Santos, 1995; Neves et al., 

2005). Conversely, the physiological role of MG is difficult to understand when the level of this 

solute remains unchanged upon application of osmotic or thermal stresses. This is the case of 

organisms belonging to red algae and the gamma-radiation resistant bacterium R. xylanophilus 

(Empadinhas & da Costa, 2011). In red algae, mannitol, digalactosylglycerol and sorbitol are the 

most frequently found compatible solutes responsible for cells survival in response to osmotic 

stress (Karsten & West, 1993). In face of these results, some authors speculate that MG may be 

used by these organisms as a carbon reserve.  

 

Recently, in an attempt to study the physiological role of MG in Pyrococcus furiosus the genes 

encoding the key biosynthetic enzyme were deleted. The resulting mutant was submitted to heat 

and osmotic stress and its growth performance compared with the parent strain (Esteves et al., 

2014). The changes are small, and solute replacement makes difficult the interpretation of results, 

but there is evidence that MG is especially suited to protect these cells against osmotic stress 

conditions. On the other hand, MG is as effective as DIP in the protection under heat stress 

conditions.  

 

1.8.4  Potential applications of Mannosylglycerate  

 

Osmolytes are known to protect organisms from low temperature, desiccation, urea accumulation 

and high salinity. Particularly, MG shows a remarkable ability to protect proteins, especially against 

heat denaturation and to prevent protein aggregation in vitro (Faria et al., 2003; Santos et al., 

2007). For this reason, we recognize that MG could have applications in several areas of 

biotechnological interest: 

 

a) Engineering of transgenic organisms with stress-resistant properties 

The cultivation of improved crops able to tolerate harsher habitats and resist to abrupt climate 

changes is currently on demand. The expression of genes to allow the synthesis of osmolytes has 

been shown to improve the fitness of organisms against several stresses. That is the case of a 

halo- and thermo- tolerant transgenic Arabidopsis thaliana modified to produce glycine betaine 

(Alia et al., 1998); or a transgenic Nicotiana tabacum (tobacco plant) containing genes to allow the 
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production of glycine betaine, which confers tolerance to colder temperatures and salt stress 

(Holmström et al., 2000). Also, the transgenic plants A. thaliana, tobacco plant and grasses 

already showed improved tolerance to drought and heat stress when engineered with genes to 

produce MG (Scheller et al., 2010). 

 

b) Stabilizer in the pharmaceutical, life science and high technology companies 

MG has exquisite properties in the protection of enzymes and could be used in the preservation 

of thermosensitive products, such as, aggregating-prone proteins, enzymes and vaccines. 

Applications in diagnostic kits are also envisaged.  It has been proven that MG improves the life-

span of retrovirus vectors and the quality of DNA microarray experiments (Cruz et al., 2006; 

Mascellani et al., 2007). Indeed, in vitro experiments revealed that the incubation of the model 

hexapeptide STVIIE (forms self-fibrils) with MG, causes a strong inhibition of fibril formation; 

moreover, MG is also able to disassemble pre-formed fibrils of STVIIE (Santos et al., 2007). Faria 

and co-workers set to investigate the effect of MG, through thermodynamic analysis, in the thermal 

folding of the model protein ribonuclease A. In this study, MG revealed to be an efficient 

thermostabiliser of ribonuclease A by inducing an increase of 6 ºC/Molar in the melting 

temperature of the protein. The mechanism of action suggested by the authors consists on the 

stabilization of the protein structure by forcing a more rigid structure (Faria et al., 2003). Upon 

denaturation of ribonuclease A, MG inhibited the formation of aggregates, demonstrating that this 

solute can be used as a protein stabilizer. In another study using a Staphylococcus aureus 

recombinant nuclease A (SNase), MG increased the melting temperature of the protein in 7 ºC 

and increased in 2-fold the unfolding heat capacity (Faria et al., 2004). An in-depth study was 

designed to understand the mechanism of action. Using NMR, the authors concluded that the 

protein backbone was significantly constrained in the presence of MG. In addition, the internal 

motions of the SNase were gradually restricted with increasing concentrations of MG, linking 

protein stabilization with protein rigidification (Pais et al., 2009).  

 

c) Use in cosmetic lines as a skin protector and moisturizer 

Having into consideration the extraordinary properties of MG, it is feasible to assume the 

potentiality of this solute as a component of UV damage protecting creams. Osmolytes are able 

to protect cells from different stresses which extended to the protection of skin cells opens an 

opportunity to use this compound in cosmetic products with anti-aging and revitalization properties. 

Several patents demonstrate these properties for MG (da Costa et al., 2003; Lamosa et al., 2006a; 

Santos et al., 1996, 1998). Ectoine is already used as a skin protector against UVA-induced 

damage (Buenger & Driller, 2004) and to ameliorate symptoms of atopic dermatitis (Marini et al., 

2014).   

 

d) Chemical chaperone to treat neurodegenerative diseases 

Some neurodegenerative diseases are characterized by an extensive inflammatory response to 

bulks of aggregated proteins which promotes cell death in the affected area. The most important 
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and prevailing diseases presenting this pathology are: Alzheimer’s, Parkinson’s and Huntington’s 

disease. Several osmolytes showed to be promising candidates to serve as therapeutic drugs 

(reviewed by (Jorge et al., 2016)). In a mammalian model of Alzheimer’s disease, MG was able to 

reduce protein aggregation and consequently improve cell viability by detoxifying cells from Aβ42 

oligomers/fibrils (Ryu et al., 2008). However, this study was elaborated by adding different 

concentrations of MG to the extracellular space of cells. As some diseases, present protein 

dysfunction in the cytoplasm, we set to evaluate the anti-aggregating potential of MG in the 

intercellular milleu. To do so, we have engineered MG-production in a Parkinson’s disease yeast 

model (see Chapter 2). MG performance in preventing aggregation of α-synuclein reaffirms the 

potentially of this compound as a therapeutic drug. 

 

The major bottleneck towards the industrial utilization of MG is the high production costs. Although 

a procedure for the chemical synthesis of MG has been developed (Lamosa et al., 2006b), the 

yield is poor. Moreover, there is a strong bias of consumers against synthetic products. Currently, 

commercial MG is produced (gram amounts) from fermentation and “milking” of R. marinus, a 

natural producer, but the efficiency of the process is unsatisfactory. In this context, the 

development of an efficient industrial producer of MG is mandatory. 

 



 

 

 

 

 

 

 

 

 

CHAPTER 2 

Inhibition of formation of α-synuclein inclusions by 
mannosylglycerate in a yeast model of Parkinson´s disease 

 

 

Protein aggregation in the brain is a central hallmark in many neurodegenerative diseases. In 

Parkinson’s disease, α-synuclein (α-Syn) is the major component of the intraneuronal inclusions 

found in the brains of patients. Current therapeutics is merely symptomatic, and there is a pressing 

need for developing novel therapies. Previously we showed that mannosylglycerate (MG), a 

compatible solute typical of marine microorganisms thriving in hot environments, is highly effective 

in protecting a variety of model proteins against thermal denaturation and aggregation in vitro. 

Saccharomyces cerevisiae cells expressing eGFP-tagged α-Syn, were further engineered to 

synthesize MG. The number of cells with fluorescent foci was assessed by fluorescence 

microscopy. Fluorescence spectroscopy and transmission electron microscopy were used to 

monitor fibril formation in vitro. We observed a 3.3-fold reduction in the number of cells with α-Syn 

foci and mild attenuation of α-Syn-induced toxicity. Accordingly, sucrose gradient analysis 

confirmed a clear reduction in the size-range of α-Syn species in the cells. MG did not affect the 

expression levels of α-Syn or its degradation rate. Moreover, MG did not induce molecular 

chaperones (Hsp104, Hsp70 and Hsp40), suggesting the implication of other mechanisms for α-

Syn stabilization. MG also inhibited α-Syn fibrillation in vitro. MG acts as a chemical chaperone 

and the stabilization mechanism involves direct solute/protein interactions. This is the first 

demonstration of the anti-aggregating ability of MG in the intracellular milieu. The work shows that 

MG is a good candidate to inspire the development of new drugs for protein-misfolding diseases. 
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2.1  Introduction 

 

Protein misfolding and aggregation is a key characteristic in many neurodegenerative diseases 

afflicting modern society. In particular, severely debilitating disorders such as Alzheimer´s, 

Huntington´s, Parkinson´s and prion diseases are associated with protein misfolding and 

aggregation in the brain. Given the devastating social impact of these diseases there is a pressing 

need to find drugs that prevent protein misfolding and arrest or reverse the aggregation process. 

Parkinson´s disease (PD) is the most prevalent neurodegenerative movement disorder, affecting 

1-2% of the population over the age of 65. This currently incurable disease is characterized by the 

presence of neuronal inclusions known as Lewy bodies and Lewy neuritis (Trojanowski & Lee, 

2003). The major component of these inclusions are fibrillar forms of α-synuclein (α-Syn), an 

abundant pre-synaptic protein of unknown function. In vitro studies showed that, under certain 

conditions, the natively unfolded α-Syn can self-aggregate to form oligomers, protofibrils and other 

intermediates that eventually give rise to mature fibrils. A considerable research effort has been 

directed to characterize the pathological species that trigger neuron dysfunction and degeneration, 

as this information would uncover targets for new therapies. However, progress has been delayed 

by the complexity of the fibrillation process. While more precise knowledge of the pathological 

pathway is lacking, preservation of the native conformation of α-Syn and/or inhibition of 

aggregation seem to be pertinent targets for drug development (Danzer & McLean, 2011). Small-

molecules such as natural osmolytes have been shown to stabilize the functional forms of proteins, 

promote correct folding and inhibit aggregation, hence they are called “chemical chaperones” 

(Ignatova & Gierasch, 2006; Khan et al., 2010; Papp & Csermely, 2006; Santos et al., 2007). 

These molecules accumulate in the cytoplasm in response to an increase in the external osmotic 

pressure and their main role is to preserve cell turgor. Interestingly, they also act as stabilizers of 

proteins and other macromolecules. Typical osmolytes of mesophilic organisms (trehalose, 

glycerol, ectoine), are effective at relatively high concentrations (over 100 mM), and their mode of 

action involves alterations of the solvent properties (Bolen & Baskakov, 2001; Timasheff, 1992). 

On the other hand, the so-called pharmacological chaperones can promote proper protein folding 

at much lower concentration since their action involves specific binding to native proteins (Morello 

et al., 2000). As the affinity constants are usually very high, pharmacological chaperones are 

effective in the μM range and are potential therapeutic agents (Bernier et al., 2004). The role of 

natural osmolytes goes beyond the mere adjustment of the intracellular osmotic pressure and 

some of them are involved in the response to other stresses, namely heat stress (Santos et al., 

2007, 2011). In particular, marine organisms adapted to grow at temperatures near 100ºC 

synthesize exclusive solutes that usually bear a negative charge and are rarely found as part of 

stress adaptation in moderate environments. These curious ionic compounds (mannosylglycerate, 

di-myo-inositol-phosphate, diglycerol phosphate, etc), accumulate in hyper/thermophiles, 

presumably to protect proteins and other macromolecules against the deleterious effects of heat. 

They act at lower concentrations and have shown much better performance than neutral 

osmolytes (trehalose, glycerol) in preventing heat-induced denaturation or aggregation of model 
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proteins (Faria et al., 2008; Santos et al., 2011). Microorganisms adapted to hot environments 

evolved to accumulate the most effective protectors against heat damage, i.e., ionic solutes. 

Therefore, we deemed important to examine the anti-aggregating properties of these compounds 

in the overcrowded cytoplasm of living cells using α-Syn as a model aggregation-prone protein. 

Among the solutes closely associated with thermophily, mannosylglycerate (MG) stands out for its 

great ability to stabilize a variety of proteins and to inhibit fibril formation in vitro (Faria et al., 2008; 

Santos et al., 2007). For that reason, MG was selected to study the effect on the formation of α-

Syn inclusions in a yeast model of PD (Outeiro & Lindquist, 2003). In this work, the S. cerevisiae 

strain VSY72 (Sancenon et al., 2012), expressing eGFP-tagged α-Syn, was further engineered to 

synthesize MG. We demonstrated that intracellular MG directly inhibited α-Syn aggregation 

without affecting the expression level and the degradation rate of α-Syn, or the expression level 

of representative molecular chaperones. Additionally, the anti-aggregating properties of MG on α-

Syn fibrillation were studied in vitro. The results strongly indicate that MG acts as a chemical 

chaperone in the intracellular milieu of yeast cells. 

 

 

2.2  Materials and methods 

 

2.2.1 Yeast strains and genetic procedures 

 

Yeast VSY72 strain (a derivative of W303-1A MATa, ade2-1, can1-100, ura3-1, leu2-3,112, his3-

11,15, trp1-1), harboring two copies of human wild-type α-Syn encoding gene (SNCA) tagged with 

eGFP under the control of a galactose inducible promoter (GAL1) (Sancenon et al., 2012), was 

used as the host strain for genetic manipulations and was kindly provided by Dr. Paul Muchowski 

(Gladstone Institute for Neurological Disease, USA). The VSY72 strain was transformed with the 

plasmid p425::mgsD, containing the mannosyl-3-phosphoglyceratesynthase/phosphatase gene 

from Dehalococcoides  mccartyi (former Dehalococcoides ethenogenes) under the control of 

constitutive enolase 2 (ENO2) promoter (Empadinhas et al., 2004). This plasmid was kindly 

provided by M. S. da Costa (Coimbra, Portugal). Standard lithium acetate heat shock procedure 

was used for the transformation (Guthrie & Fink, 1991). Selection was carried out at 30ºC on solid 

synthetic complete (SC) medium without uracil, tryptophan, and leucine (Guthrie & Fink, 1991). 

This procedure led to the isolation of the MG-producer mutant. The empty plasmid pRS425 was 

introduced in the strain to yield the “Control strain”. Strains Y4791 and Y4792 harbor two copies 

of WTα-Syn or A53Tα-Syn, respectively, and were first described in reference (Outeiro & 

Lindquist, 2003). They were selected for showing toxicity associated with the expression of α-Syn. 

These strains were transformed with p425::mgsD or pRS425 (MG-Producer and Control, 

respectively). Unless stated otherwise the results in this report refer to strain VSY72. 

 

2.2.2 Yeast cell culture 
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The MG-producer mutant and the Control strain were grown at 30ºC and 140 rpm in 50 ml of SC 

medium supplemented with 2% glucose (glucose medium), until mid-exponential phase (OD600 of 

2). Cells were harvested (7,000 × g, 10 min, 4ºC) and re-suspended in water. The resulting cell 

suspensions were used to inoculate 500 ml of SC medium supplemented with 2% galactose 

(galactose medium), to a final OD600 of 0.2. After 10 h of growth, samples (350 ml) were removed, 

washed three times with water, and the pellets saved for the determination of organic solutes and 

protein levels. 

 

2.2.3 Quantification of cells displaying α-Syn fluorescent foci 

 

Cells were examined by fluorescence microscopy using a Zeiss AxioImager microscope (Zeiss, 

Oberkochen, Germany) with a 63×/1.4 objective (Zeiss Plan-APO oil) and a GFP filter. For each 

culture sample, a total of 300 cells were inspected for the presence of fluorescent foci. The 

percentage of cells with α-Syn inclusions was determined by dividing the number of cells 

containing at least one fluorescent focus by the total number of cells counted, and then multiplied 

by 100. Seven independent experiments were performed.  

 

2.2.4 Extraction and quantification of organic solutes 

 

Cell pellets were suspended in water and aliquots used for dry weight determination(Santos et al., 

2006). The remaining cell suspension was treated twice with boiling 80% ethanol; the supernatants 

were pooled and the ethanol removed by evaporation. Non-polar compounds were subsequently 

extracted with chloroform. Finally, the aqueous fractions were lyophilized, dissolved in deuterated 

water, and MG and trehalose levels were quantified by NMR (Santos et al., 2006). 

 

2.2.5 Western blot analysis 

 

For each culture sample, the number of cells per ml was determined with a Neubauer chamber. 

Samples, containing 1.8 × 108 cells, were re-suspended in Laemmli buffer (Laemmli, 1970) and 

boiled for 10 min. After electrophoresis on SDS-PAGE (10%), proteins were transferred onto 

nitrocellulose membranes (Millipore, USA). These membranes were treated with a blocking 

solution (TBS-T buffer: 0.1% (v/v) Tween-20, 150 mM NaCl, 50 mM Tris-HCl, pH 7.5 plus 5% (w/v) 

BSA) for 1 h at room temperature, and incubated sequentially with the following primary 

antibodies: mouse anti-β-actin (1:600; Abcam); mouse anti-α-Syn mAb (1:5000; BD Transduction 

Laboratories); mouse anti-GAPDH (1:5000; Ambion, UK); mouse anti-Hsp70 (1:1000; Stressgen); 

rabbit anti-Hsp104 (1:1000; Stressgen), and mouse anti-Hsp40 (1:2000; Biosciences Inc). After 

overnight incubations at 4ºC, membranes were washed three times with TBS-T buffer and probed 

with the appropriate secondary antibodies (anti-mouse or anti-rabbit IgG-horseradish peroxidase, 

GE healthcare), for 1 h at room temperature. Signals were revealed with the ECL Plus detection 
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kit (Millipore, USA) and quantified using the Quantity One software (Bio-Rad, Hercules, CA). The 

signals were normalized with respect to that of β-actin or GAPDH. 

 

2.2.6 Promoter shut-off studies 

 

Cells were pre-grown in SC medium containing glucose and lacking uracil, leucine and tryptophan 

for 12 hours and shifted to SC medium containing galactose and lacking uracil, leucine and 

tryptophan for 10 h to induce α-Syn expression. Cells were then washed twice with water and 

shifted to SC medium supplemented with glucose and lacking uracil, leucine and tryptophan to 

shut off the promoter. Cells were harvested at 0 and 6 h, centrifuged (3000 rpm, 30ºC, 4 min) and 

washed with water. Then, cells were re-suspended in 100 μl of Tris-HCl buffer pH 7 containing 

protease and phosphatase inhibitors and stored at -20ºC. Cells were lysed with glass beads (3 

cycles of 30 sec in the beadbeater and 2 min in ice) and centrifuged to remove cell debris (700 × 

g, 3 min, 4ºC). The supernatant was sonicated for 10 s at 10 mA and protein quantification was 

performed using the BCA Protein Assay Kit (Pierce, USA). Protein sample buffer (200 mM Tris-

HCl pH 6.8, 6% 2-mercaptoethanol, 8% SDS, 40% glycerol, 0.4% bromophenol blue) was added 

to each sample and heated for 10 min at 100ºC before acrylamide gel loading. Total protein 

samples were run in 12% SDS-PAGE and immunoblotting was described above. 

 

2.2.7 Assessment of α-Syn aggregation in yeast by sucrose gradient 

 

Yeast cells were harvested by centrifugation, washed with sterile water and resuspended in 

spheroplasting solution (Tris pH 7.5 20 mM, MgCl2 0.5 mM, BME 50 mM, sorbitol 1.2 M and 

zymolyase 0.5 mg/ml) and incubated at 30ºC for 30 min. Samples were centrifuged at 800 rcf 

(3000 rpm) for 5 min at room temperature and the supernatant was completely removed. The cells 

were re-suspended in 250 μl of lyses buffer (Tris-HCl pH 7.5 100 mM, NaCl 50 mM, SDS 0.4%, 

Triton X-100 0.2%) with inhibitors for proteases and placed for 20 min in ice. Then cells were 

mechanically disrupted by forcing the solution to pass through a 25G syringe 6 times. Total protein 

was quantified and 1 mg was applied on a 5 to 30% sucrose gradient and centrifuged at 4°C for 

16 h with a swinging bucket rotor (SW-55Ti rotor, Beckman Instruments, Co., Palo Alto, CA) in a 

Beckman XL8 90 S/N ultracentrifuge at 45,000 rpm. Fractions were collected, precipitated for 4 h 

at 4°C in trichloroacetic acid, washed in acetone and suspended in protein sample buffer (0.5 M 

Tris-HCl, pH 6.8, glycerol, 10% (w/v) SDS, 0.1% (w/v) bromophenol blue). Proteins were resolved 

by SDS-PAGE. 

 

2.2.8 Reactive oxygen species (ROS) assay 

 

The level of ROS was determined using the dihydrorhodamine 123 (DHR 123) staining (Madeo et 

al., 1999). The Control strain and the MG-producer mutant were grown overnight in glucose 

medium and centrifuged (7,000 × g, 10 min, 4ºC). Subsequently, the cell pellets were re-
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suspended in galactose medium to induce α-Syn expression and allowed to grow for 9 h. To 

determine the basal level of ROS, the Control strain pellet was also re-suspended in fresh glucose 

medium and allowed to grow for further 9 h. Aliquots of the three cultures (around 3 × 106 cells) 

were collected and incubated with DHR 123 dye (final concentration of 5 μg/ml) for 1 h. In the cell, 

DHR123 is oxidized by ROS into rhodamine 123, which emits fluorescence at 535 nm when 

excited at 485 nm. The fluorescence intensity of the samples was measured with a Varian Cary 

Eclipse spectrofluorimeter (Varian, USA). 

 

2.2.9 Spotting experiments 

 

MG-producers and Control strains were grown at 30ºC in glucose medium, until midexponential 

phase (OD600 of 2). Cells were transferred to galactose medium to a final OD600 of 0.1. After 10 h, 

cells were removed and spotted on plates containing YPD medium (1% yeast extract, 2% peptone 

and 2% glucose) and incubated at 30oC for 2 days. Shown are 3-fold serial dilutions starting with 

equal number of cells.  

 

2.2.10    In vitro assays of α-Syn fibril formation 

 

Human wild-type untagged α-Syn was expressed and purified as previously described (Outeiro et 

al., 2009). Lyophilized α-Syn was dissolved in 20 mM Tris-HCl (pH 6.5) and aggregated materials 

were removed with Amicon filters (cut-off = 100 kDa). The protein concentration was determined 

with the BCA Protein Assay kit (Pierce). MG was purified from Rhodothermus marinus biomass 

as previously reported (Silva et al., 1999). The influence of this compound on α-Syn fibril formation 

was assessed in reaction mixtures (250 μl), containing: 20 mM Tris-HCl (pH 6.5), 200 μM α-Syn 

and 100 mM MG. Each reaction mixture was incubated at 37ºC under constant agitation (650 

rpm), using 0.5 ml siliconized eppendorf tubes. The fibrillation process was monitored with 

thioflavin T (Sigma-Aldrich, St. Louis, MO) fluorescence: 5 μl aliquots were removed at various 

time points from the incubated samples and added to 1 ml of 10 μM thioflavin T (ThioT) in 50 mM 

Na-glycine (pH 8.2). The fluorescence intensity of the samples was measured at an excitation 

wavelength of 450 nm and at an emission wavelength of 485 nm with a Varian Cary Eclipse 

spectrofluorimeter, using 1-cm light-path quartz cuvettes with both excitation and emission 

bandwidths of 10 nm. Experiments were run at least in duplicate and averaged. 

 

2.2.11    Transmission Electron Microscopy (TEM) 

 

Samples of α-Syn fibrils formed with and without MG were placed onto glow discarded carbon 

grids and allowed to stand for 1 min before removing the excess solution. The grid was washed 

once with distilled water, and once with 1% uranyl acetate before the sample was stained with 

fresh 1% uranyl acetate for an additional 2 min. The preparations were examined in a JEOL-1200 
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EX electron microscope. The grids were thoroughly examined to obtain an overall evaluation of 

the structures present in the sample. 

 

 

2.3 Results 

 

2.3.1 Mannosylglycerate reduces α-Syn inclusion formation in yeast 

 

The inhibitory effect of MG on the aggregation of several model proteins has been demonstrated 

in vitro, yet it remains unclear whether this feature prevails in the overcrowded milieu of living cells 

(Faria et al., 2008). A yeast model of PD was used to investigate the effect of MG on α-Syn 

inclusion formation. The yeast strain VSY72, expressing α-Syn fused to eGFP under the control 

of a galactose inducible promoter (Sancenon et al., 2012), was used as the host strain to construct 

two mutants: the MG-producer harbors the pRS425 containing the gene encoding the synthase 

and phosphatase activities implicated in MG synthesis; the Control strain carries the empty 

plasmid. The intracellular content of MG was determined by proton NMR analysis of 

ethanol/chloroform extracts of the Control strain and the MG-producer mutant. The extracts were 

derived from cells collected after 10 h of induction with galactose. MG was not detected in the 

Control strain, while the MG-producer contained 80.3 ± 11.6 μmol MG/g dry weight (Figure 2.1). 

Using 2.38 ml/g dry weight for the intracellular volume of S. cerevisiae (Theobald et al., 1997), the 

intracellular concentration of MG is approximately 33 mM. Trehalose, a compatible solute 

accumulated naturally by S. cerevisiae (Wiemken, 1990), was also detected (Figure 2.1).  

 

 
 

Figure 2.1 Mannosylglycerate and trehalose accumulation in yeast cells (strain VSY72). The Control (CS) 
and MG-producer (MG-P) strains were grown in glucose medium until late-exponential phase and then both 
cultures were switched to galactose medium for 10 h. Intracellular levels of trehalose (Tre, black bars) and 
MG (white bars) accumulated by the Control and MG-producer strains were determined by NMR in cell 
extracts. Data are shown as mean ± S.D from seven independent experiments. 

 

It was confirmed that trehalose accumulated to the same low level in the two strains (circa 3.6 

μmol/g dry weight or 1.5 mM). Therefore, the reduction of the α-Syn-eGFP fluorescent foci (see 

below) is associated with MG accumulation. As described, over-expression of α-Syn-eGFP in 
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yeast cells leads to the formation of cytosolic fluorescent foci that stained with thioflavin S (Outeiro 

& Lindquist, 2003). Moreover, it is well established that the eGFP tag does not interfere with α-

Syn inclusion formation in yeast cells (Outeiro & Lindquist, 2003; Zabrocki et al., 2005). Here, we 

found that the highest percentage of cells displaying α SyneGFP foci in the Control strain was 

observed at 10 h of growth in galactose medium. We confirmed that the Control strain and the 

MG-producer displayed identical growth profiles (Figure 2.2).  

 

 

 
Figure 2.2 Mannosylglycerate production does not affect yeast growth. Growth curve of the Control strain 
(black diamonds) and the MG-producer strain (grey squares) in galactose medium. Cells used as inoculums 
were late-exponential phase cells cultivated in glucose medium that at time zero were transferred to galactose 

medium to induce -Syn expression. Values are representative from three independent experiments. 

 

Western blot analysis showed no significant difference in the expressing levels of α-Syn between 

the Control strain and the MG-producer mutant (Figure 2.3A and B) and MG accumulation caused 

a significant decrease in the percentage of cells with α-Syn-eGFP foci, from 39.8 ± 4.6 % in the 

Control strain to 11.7±3.2 % in the MG-producer (Figure 2.3C and D). To interpret this result we 

set to evaluate the α-Syn oligomeric species size formed in both strains. For that, we used a 

sucrose gradient to separate the oligomeric species by molecular weight. In agreement with what 

was observed by fluorescence microscopy, in the Control strain α-Syn forms oligomeric species 

of higher molecular weight than in the MG-producer strain (Figure 2.3E and F). Indeed, the most 

prevalent α-Syn oligomeric species are of smaller mass when yeast cells accumulate MG, in 

comparison with the Control strain. 

 

2.3.2 MG reduces the accumulation of reactive oxygen species and slightly alleviates α-

Syn induced toxicity 

 

It is known that overproduction of α-Syn leads to the formation of reactive oxygen species (ROS), 

such as hydrogen peroxide and superoxide in a variety of cell systems, including yeast (Flower et 

al., 2005). Hence, we examined the effect of MG accumulation on the generation of ROS using 

DHR 123 staining. The Control and MG-producer strains were grown as described above, first in 

glucose medium and then in galactose medium to induce high expression levels of α-Syn. The 
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basal levels of ROS were determined in cells without α-Syn expression, i.e., in cells of the Control 

strain grown in glucose medium. As expected, the ROS level in the Control strain expressing α-

Syn was higher (more than 3-fold), than that in control cells without induction of α-Syn expression. 

There was a 15% reduction of the ROS level in MG-producing cells (Figure 2.4A). As the 

expression of α-Syn in strain VSY72 did not induce significant levels of toxicity (Figure 2.4B), we 

used the strains Y4791 and Y4792, known to exhibit α-Syn-induced toxicity (Outeiro & Lindquist, 

2003) to assess whether MG was able to improve cell viability. The two strains were transformed 

with the p425::mgsD, to induce the accumulation of MG, and with the empty vector to serve as 

control. Cell viability was evaluated by spotting assays to show that the accumulation of MG 

decreased α-Syn cytotoxicity (Figure 2.4C and D). Importantly, when MG was produced, we 

observed a 1.4 and 1.6 -fold reduction in the percentage of cells with α-Syn-eGFP foci in Y4791 

and Y4792 strains, respectively (Figure 2.5). 

 

 

Figure 2.3 Mannosylglycerate prevents the formation of α-Syn fluorescent foci in yeast (strain VSY72). The 
Control (CS) and MG-producer (MG-P) yeast strains were grown as described in Figure 2.1. (A) Western blot 
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analysis of total cell lysates from the control and MG-producer strains revealing the endogenous levels of α-
Syn and β-Actin. The mass of α-Syn-eGFP is about 42 kDa (B) Densitometric analysis of the 
immunodetection of α-Syn relative to the intensity obtained with a specific antibody for β-actin used as loading 
control, of at least three independent experiments represented in (A). (C) Representative images of yeast 
cells from the control and MG-producer strains exhibiting α-Syn-eGFP fluorescent foci. Scale bar: 5 μm. (D) 
Percentage of yeast cells (Control and MG-producer strains) containing α-Syn fluorescent foci. For each 
experiment a total of 300 cells were counted. Data are shown as mean ± SD from seven independent 
experiments. (E) The α-Syn oligomeric species formed by control and MG-producer strains, resolved on 
sucrose gradient. The collected fractions were applied to a SDS-PAGE followed by immunoblot with an 
antibody against α-Syn. (F) Western blot analysis showing that the same amount of total protein (approx. 1 
mg) of the Control and MG-producer strains was applied on the sucrose gradient. Results are from one 

representative experiment from at least three independent experiments 

 

2.3.3 Hsp40, Hsp70 and Hsp104 levels are not affected by MG accumulation 

 

Small molecules such as geldanamycin, and its analogue 17-AAG, prevent α-Syn aggregation 

through up-regulation of molecular chaperones (McLean et al., 2002; Neckers, 2002; Putcha et 

al., 2010; Riedel et al., 2010). To verify whether the effect of MG resulted from the induction of 

molecular chaperones, immunoblot analysis was performed. The assays revealed similar 

expression levels of Hsp104, Hsp70 and Hsp40 in the Control and MG-producer strains. Thus, 

there is no evidence for MG affecting the expression of molecular chaperones (Figure 2.6A and 

B). 

 

 

 
Figure 2.4 Mannosylglycerate accumulation reduces ROS levels in strain VSY72 and increases cell viability 
of the two strains displaying high α-Syn-associated toxicity. (A) ROS levels measured in strain VSY72. The 
Control (CS) and MG-producer (MG-P) strains were grown overnight in glucose medium, and then cultures 
were switched to galactose medium and growth continued for 9 h. The basal levels of ROS were determined 
in cells from the Control strain that were grown overnight in glucose medium and then re-suspended in fresh 
glucose medium for further 9 h. Intracellular ROS levels were determined in these strains by fluorescence 
using the DHR 123 staining method, as described in the “Material and methods”. Data from three independent 
experiments are shown as mean ± S.D. (Significance of the data was determined by one-way ANOVA with 
Tukey's Multiple Comparison Test; **p-value<0.01; ****p-value<0.0001). (B) Cell viability assessment of the 
CS and MG-P strains. Cells were grown in glucose medium until mid-exponential (OD600 of 2) to accumulate 
MG and transferred to galactose medium to induce α-Syn expression. After 10 h, cells were removed and 
spotted on plates containing YPD medium and incubated at 30oC for 2 days. Shown are 3-fold serial dilutions 
starting with equal number of cells. (C) Cell viability assessment of the strain Y4791 that harbors two copies 
of wild-type α-Syn transformed with p425::mgsD (MG-producer) and with the empty vector pRS425 (Control). 
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(D) Cell viability assessment of strain Y4792 that harbors two copies of A53T α-Syn transformed with 
p425::mgsD (MG-producer) and with the empty vector pRS425 (Control). 

 

2.3.4 MG does not interfere with α-Syn degradation 

 

It has been reported that small compounds, namely trehalose, indirectly inhibit the aggregation of 

proteins implicated in neurodegenerative diseases by induction of degradation pathways (Aguib 

et al., 2009; Davies et al., 2006; Riedel et al., 2010; Sarkar et al., 2007). In view of these findings, 

it was important to verify whether the observed reduction of α-Syn inclusion formation in the MG-

producer was associated with a reduction in the expression level of α-Syn and/or acceleration of 

protein degradation pathways. Therefore, we set out to determine these whether any of these 

mechanisms were involved in the effect on α-Syn inclusion formation.  

 

 
Figure 2.5 Mannosylglycerate prevents the formation of -Syn fluorescent foci in yeast. (A) Percentage of 

yeast cells (Control and MG-producer strains) containing Wild-type -Syn fluorescent foci (strain Y4791). (B) 

Percentage of yeast cells (Control and MG-producer strains) containing A53T -Syn fluorescent foci (strain 

Y4792). For each experiment 200 cells were counted. Data are shown as meanSD from four independent 
experiments 

 

For this, the Control and the MG-producer strains were grown overnight in glucose medium to 

promote the synthesis of MG; then, cultures were shifted to galactose medium to induce the 

expression of α-Syn. At time 10 h, cells were inoculated in glucose medium to shut off the GAL1 

promoter and repress the synthesis of α-Syn. The level of α-Syn was monitored over time by 

immunoblot analysis. A significant decrease in the level of α-Syn was observed at 6 h after 

promoter repression, however no differences were found on α-Syn clearance between the two 

strains (Figure 2.6C and D). In summary, the results show that MG inhibits α-Syn inclusion 

formation, without affecting the protein expression levels or the rate of degradation. 

 

2.3.5 Effect of MG on the kinetics of α-Syn fibril formation in vitro 

 

The results reported above show that MG reduces α-Syn inclusion formation in the cytosol of yeast 

cells. In view of these findings, we enquired whether this was a direct effect on the aggregation 
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process, and conducted in vitro experiments to assess the effect of MG on α-Syn fibrillation. The 

kinetics of amyloid fibril formation was studied by thioflavin T fluorescence and fibrils were 

visualized by transmission electron microscopy. α-Syn (200 μM) was incubated in the absence 

and presence of 100 mM MG. Potassium chloride (100 mM) and glycerol (250 mM) were used as 

controls for ionic strength and viscosity, respectively. In all cases, the fibrillation of α-Syn followed 

typical sigmoidal curves that are consistent with a nucleation-dependent polymerization model 

comprising a lag phase, an exponential growth phase and a final plateau (Figure 2.7A). The lag 

and exponential phases of α-Syn fibrillation were not affected by the presence of MG or glycerol, 

while these phases were extended with KCl. The solute MG led to a clear decrease in the final 

equilibrium level as compared to no-solute, KCl or glycerol (Figure 2.7A). Transmission electron 

microscopy confirmed the presence of α-Syn fibrils and enabled us to infer whether the inhibitory 

effect of MG upon protein aggregation influences the amount of fibrils and their morphology (Figure 

2.7B). After 96 h incubation of pure α-Syn at 37ºC, under constant agitation, the fibrils formed in 

the presence of MG were short in size, appeared in low amounts and in individual structures. In 

contrast, clusters of long fibrils (longer than 200 nm), were observed under the other conditions 

examined (Figure 2.7B). Therefore, it is clear that MG inhibits the formation of α-Syn fibrils in vitro, 

in agreement with the observations in living yeast cells. 

 

 

Figure 2.6 Mannosylglycerate does not induce expression of molecular chaperones or α-Syn degradation 
mechanism in yeast. The Control (CS) and MG-producer (MG-P) strains were grown as described in Figure 
2.1. (A) Representative western blots of total cell lysates from both strain showing the endogenous levels of 
Hsp104, Hsp70, Hsp40 and β-actin. (B) Densitometry analysis of the immunodetection of the indicated Hsp 
relative to the intensity obtained with a specific antibody for β-actin, used as loading control at least three 
independent experiments represented in (A). (C) Western blot analysis of protein total extracts of yeast cells 
after 6 h of α-Syn clearance; GAPDH was used as a loading control. Results shown are from one 
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representative experiment from at least four independent experiments. (D) Densitometry analysis of the 
immunodetection of α-Syn relative to the intensity obtained with a specific antibody for GAPDH. 

 

 

2.4 Discussion 

 

In this study, we explored the potential of a simple cellular model to assess the efficacy of MG as 

an anti-aggregating agent of α-Syn. A yeast strain expressing α-Syn was further manipulated to 

accumulate MG. It was shown that MG significantly decreased α-Syn inclusion formation and this 

reduction did not arise from an alteration in the expression level of α-Syn or upregulation of protein 

degradation pathways. Likewise, MG did not affect the expression of the molecular chaperones 

Hsp104, Hsp70 and Hsp40, which are generally activated as part of the cellular defense 

mechanism against protein misfolding/aggregation (Lo Bianco et al., 2008; McLean et al., 2004). 

Additionally, the reduction in the ROS levels induced by MG synthesis further supports the 

conclusion that this compound inhibits α-Syn inclusion formation. Indeed, it is known that the 

expression of this aggregation-prone protein in yeast, as well as in higher eukaryotes, causes the 

formation of ROS (Flower et al., 2005; Witt & Flower, 2006), and our data showed over 3-fold 

increase in ROS upon expression of α-Syn in the Control strain. Therefore, the lower level of 

oxidative stress observed in the MG-producer correlates with the decreased extent of α-Syn 

inclusion formation.  

 

 

 
Figure 2.7 Mannosylglycerate prevents α-Syn fibril formation in vitro. (A) Fibrillation of α-Syn monitored with 
fluorescence spectroscopy using ThioT. The reaction mixtures containing 200 μM α-Syn and 20 mM Tris-HCl 
(pH 6.5) buffer were incubated at 37ºC for the indicated times in the absence (control, circles) and presence 
of 100 mM MG (squares), 100 mM KCl (diamonds) or 250 mM glycerol (triangles). Each point represents the 
mean of three independent experiments. (B) TEM micrographs of α-Syn fibrils grown during 96 h in the 
absence (Control) and presence of 100 mM MG, 100 mM KCl or 250 mM glycerol. White bars indicate a 
length of 200 nm.  

 

Moreover, using model strains in which α-Syn expression results in high levels of toxicity (Y4791 

and Y4792) (Outeiro & Lindquist, 2003), we showed that MG accumulation also led to mitigation 
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of cytotoxicity (Figure 2.4C and D). These results provide further evidence in support of a 

correlation between α-Syn inclusions and cytotoxicity (Outeiro & Lindquist, 2003). All these 

findings, together with the observation that MG was able to reduce considerably the α-Syn 

oligomerization in vivo and the fibrillation of pure α-Syn, lead to the conclusion that MG directly 

interferes with the process of inclusion formation of α-Syn in this yeast model of PD. To our 

knowledge this is the first demonstration that this ionic solute, closely associated with stress 

adaptation in hyper/thermophiles, acts as a potent chemical chaperone in vivo, preventing 

misfolding/aggregation of α-Syn. The ability of canonical osmolytes (amino acids, polyols, 

methylamines), to assist protein folding and reduce aggregation in vitro has been illustrated in 

numerous studies (Borwankar et al., 2011; Ignatova & Gierasch, 2006; Kanapathipillai et al., 2008; 

Schein, 1990; Uversky et al., 2001), but demonstrations of these protecting properties in living 

cells are scarce. In microbial cell models the accumulation of the target osmolyte is generally 

achieved through uptake of exogenously-provided osmolytes while cells are challenged with an 

osmotic shock. This approach has been used to load E. coli cells with proline and glycine betaine, 

but has the drawback of inducing a concomitant osmotic shock response that can obscure the 

interpretation of results (Borwankar et al., 2011; Ignatova & Gierasch, 2006). Obviously, this kind 

of strategy is not applicable to exclusive compounds such as MG, which accumulates via de novo 

synthesis and for which no uptake systems have been identified (Santos et al., 2011). Therefore, 

the yeast model constructed in this work had to include the heterologous expression of the specific 

MG biosynthetic genes. The chemical chaperone activity of trehalose, the most common osmolyte 

in mesophilic organisms, has been proposed to explain the reduction of aggregation of mutant 

protein kinase C in neuronal cells (Seki et al., 2010). Aggregation of this protein causes 

spinocerebellar ataxia type 14 (Chen et al., 2003). However, most studies have shown that 

trehalose reduces protein aggregation indirectly, via induction of autophagy, thereby enhancing 

the clearance of protein aggregates (Aguib et al., 2009; Sarkar et al., 2007). This mode of action 

has been proposed for trehalose in several neuronal cell models overexpressing mutants of 

huntingtin, α-Syn and prion proteins (Aguib et al., 2009; Sarkar et al., 2007). On the other hand, 

induction of proteosome activity by trehalose has been reported in a mouse model of 

oculopharyngeal muscular dystrophy, a disease linked to aggregation of poly(A)- binding protein 

nuclear 1 (Davies et al., 2006). The chaperone activity of trehalose has been amply demonstrated 

in vitro with a variety of proteins (Arora et al., 2004; Singer & Lindquist, 1998). Moreover, the 

thermoprotecting effect of trehalose in yeast was demonstrated in an elegant study (Singer & 

Lindquist, 1998). However, these stabilizing properties require high concentrations of this 

disaccharide (over 0.5 M). At the low intracellular concentrations attained in animal cell models of 

diseases (up to 20 mM), trehalose reduces protein aggregation indirectly, via activation of the 

degradation processes and the chaperone activity is negligible (Sarkar et al., 2007). Moreover, a 

genome-wide screen performed to identify genes that when deleted enhance α-Syn toxicity in 

yeast model of PD similar to that used in this study, has identified TSL1 gene (encoding the α-

subunit of trehalose 6-phosphate synthase) as having a role in alleviating α-Syn cytotoxicity 

(Willingham et al., 2003). Trimethylamine-N-oxide and glycerol were reported to interfere directly 
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with aggregation of prion protein in neuronal cells, but unfortunately the authors did not verify 

whether these compounds affected proteolytic degradation systems and/or molecular chaperone 

levels (Tatzelt et al., 1996). On the other hand, data on the anti-aggregating effect of proline in an 

E. coli model (over 400 mM intracellular concentration), convincingly point to a chemical 

chaperone mode of action of this osmolyte (Borwankar et al., 2011). Understanding the molecular 

mechanisms underlying the stabilization of protein structure by osmolytes has attracted 

considerable attention not only because of the clinical relevance of finding new therapies for 

protein misfolding/aggregation diseases, but also because of the biotechnological importance of 

protein stabilization. Timasheff and coworkers showed that, upon unfolding, stabilizing osmolytes 

are preferentially excluded from the protein surface and the protecting effect arises from the 

greater destabilization of the denatured state over the native state (Timasheff, 1992). More 

recently, Bolen and co-workers proposed the transfer free energy model, and concluded that the 

unfavorable interaction of osmolytes with the protein backbone is the major driving force in protein 

stabilization, with the final stabilizing outcome depending on the balance of osmolyte/backbone 

and amino acid sidechain/solvent interactions (Bolen & Baskakov, 2001; Liu & Bolen, 1995). 

However, many details remain poorly understood and the picture is even less clear for ionic 

organic solutes such as MG. Recently, a direct link between MG-induced stabilization and protein 

rigidification was established for the model protein staphylococcal nuclease. It was shown that MG 

exerts a generalized reduction of very fast backbone motions (ps-ns timescale), but not of side 

chain motions; importantly, there is specific restriction of slow motions of the β-sheet residues, 

denoting some degree of specificity with respect to secondary structural elements of the protein 

(Pais et al., 2009, 2012). It is generally accepted that the formation of oligomers with β-sheet is a 

hallmark in α-Syn amyloidogenesis (Cerdà-Costa et al., 2007; Pellarin & Caflisch, 2006). 

Therefore, it is tempting to speculate that MG might hinder the process of α-Syn fibrillation through 

rigidification and stabilization of β-sheet oligomers. Further studies with other proteins will be 

needed to substantiate this hypothesis. The results reported here show that MG is a potent 

inhibitor of protein aggregation in the crowded environment inside yeast cells; the observed 

reduction of 30% in the number of cells exhibiting fluorescent foci is well above that reported for 

trehalose in cellular models of neurodegenerative diseases (Sarkar et al., 2007; Seki et al., 2010). 

This chaperone activity of MG is even more notable if one considers its relatively low concentration 

of this osmolyte in the cell (33 mM). Thus, the high specific activity of MG is a promising feature 

for the development of new MG-inspired drugs to combat protein-misfolding diseases. In 

conclusion, we demonstrated the efficacy of MG in preventing protein aggregation in the context 

of living yeast cells. The yeast model can be easily modified to test the effect of MG in the 

protection of other aggregation-prone proteins, thereby determining how general the in vivo MG-

stabilizing ability is. This work also reinforces the view that MG plays a physiological role in the 

stabilization of proteins in the natural host organisms, which thrive optimally in hot environments 

where the deleterious effects of heat on macromolecule structures have to be offset efficiently. 

 

 



 

 

 

 

 

 

 

 

 

Chapter 3 

Mannosylglycerate production in Saccharomyces cerevisiae 
by over-expression of the GDP-mannose pathway and 

bioprocess optimization 
 

 

Mannosylglycerate (MG) is one of the most widespread compatible solutes among marine 

microorganisms adapted to hot environments. This ionic solute holds excellent ability to protect 

proteins against thermal denaturation, hence a large number of biotechnological and clinical 

applications have been put forward. However, the current prohibitive production costs impose 

severe constraints towards large-scale applications. Most native producers synthesize MG from 

GDP-mannose and 3-phosphoglycerate via a two-step pathway in which mannosyl-3-

phosphoglycerate is the intermediate metabolite. In an early exploratory work, this pathway was 

expressed in Saccharamyces cerevisiae by Empadinhas et al. (2004), but the level of 

accumulation was unsatisfactory. Therefore, we decided to invest further effort and convert S. 

cerevisiae into an efficient cell factory for MG production. To this end, the pathway for synthesis 

of GDP-mannose, one of the MG biosynthetic precursors, was overexpressed in S. cerevisiae 

along with the MG biosynthetic pathway. Moreover, MG production was evaluated under different 

cultivation modes, i.e., flask bottle, batch, and continuous mode with different dilution rates. Using 

the MG-producing yeast S. cerevisiae (MG01) as background host, the genes encoding mannose-

6-phosphate isomerase and GDP-mannose pyrophosphorylase were cloned. The resulting 

engineered strain (MG02) showed around a 2-fold increase in the activity of these enzymes in 

comparison to strain MG01. In batch mode, strain MG02 accumulated 15.86 mgMG.gDW
-1, 

representing a 2.2-fold increase relative to the reference strain (MG01). In continuous culture, at 

a dilution rate of 0.15 h-1, there was a 1.4-fold improvement in productivity (from 1.29 to 1.79 

mgMG.gDW
-1.h-1).  
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3.1 Introduction 

 

Enzymes and other proteins are used in a myriad of applications such as clinical and analytical 

tests, research, therapeutics, vaccines, food processing, textile industry, cleaning, or biofuel 

production. In every case, the preservation of the native structure under working conditions is a 

prerequisite for efficacy. While some proteins are remarkably robust and can stand harsh 

conditions or repeated work cycles, others require the presence of extrinsic stabilizers, or chemical 

chaperones, to prevent unfolding and/or assist refolding. Osmolytes, like glycerol and trehalose, 

which accumulate inside the cell to counterbalance the external osmotic pressure, are well known 

protein protectors (da Costa et al., 1998; Elbein, 2003). 

The discovery of marine hyperthermophilic organisms in the early 1980´s uncovered an untapped 

source of new osmolytes (Santos & da Costa, 2002). Microorganisms adapted to those extreme 

environments accumulate exquisite organic solutes, usually bearing a negative charge, which are 

absent from mesophilic prokaryotes. Importantly, these ionic solutes accumulate not only in 

response to elevated osmotic pressure, but also in response to supraoptimal temperature, 

suggesting a potential role in thermoprotection of cell components in vivo (Lamosa et al., 2007).  

Mannosylglycerate and di-myo-inositol-phosphate are the most widespread solutes among marine 

hyper/thermophiles (da Costa et al., 1998; Lamosa et al., 2007; Santos et al., 1998; Santos & da 

Costa, 2002). In vitro studies have shown that these compounds are better protein stabilizers than 

trehalose, glycerol or any other known neutral solutes (Borges et al., 2002; Lamosa et al., 2000; 

Longo et al., 2009; Ramos et al., 1997; Santos et al., 2011; Shima et al., 1998). For example, 0.5 

M of MG resulted in a 10.5ºC increase in the melting temperature of the model protein, 

staphylococcal nuclease, while the same concentration of glycerol or mannosylglyceramide 

produced increments of ˂ 1ºC and 2.7 ºC, respectively (Faria et al., 2008). Importantly, MG was 

able to inhibit formation of α-synuclein inclusions in the cytoplasm of yeast cells, a hint on its 

potential application in drug development against protein misfolding diseases  (Faria et al., 2013, 

2008). 

All native producers, Archaea and Bacteria, examined thus far synthesize MG via a two-step 

pathway: the enzyme mannosyl-3-phosphoglycerate synthase catalyzes the reaction of GDP-

mannose and 3-phosphoglycerate into mannosyl-3-phosphoglycerate, which is subsequently 

dephosphorylated by mannosyl-3-phosphoglycerate phosphatase to form MG (Martins et al. 1999; 

Borges et al., 2014). Empadinhas et al. (2004) noticed that the genome of the mesophilic 

bacterium Dehalococcoides mccartyi (formerly D. ethenogenes), comprised a gene encoding two 

domains with high homology to known mannosyl-3-phosphoglycerate synthase and mannosyl-3-

phosphoglycerate phosphatase. The same authors confirmed the functionality of this gene, 

designated mgsD, by cloning and expression in Saccharomyces cerevisiae, which thereby 

accumulated MG intracellularly up to 7.5 mg per g cell dry weight (Empadinhas et al., 2004).  

Capitalizing on these encouraging results, we deemed it interesting to convert S. cerevisiae into a 

cell factory for MG production. Currently, MG is produced by Bitop AG (Witten, Germany) through 

fermentation and “milking” of a natural producer. However, this process has high production costs, 
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hampering the utilization of this compound at an industrial scale. On the other hand, S. cerevisiae 

is a well-known industrial workhorse used for the production of many chemicals, such as 

sesquiterpenes, ethanol, artemisinic acid, succinic acid and vanillin (Asadollahi et al., 2009; 

Brochado et al., 2010; Otero et al., 2013; Ro et al., 2006; van Zyl et al., 2007).  

 

 

 
Figure 3.1 Biosynthesis of mannosylglycerate (MG) in Saccharomyces cerevisiae using glucose as carbon 
source. MG is produced from the reaction of GDP-mannose and 3-phosphoglycerate (3PG) with the release 
of GMP. To produce MG, a gene from Dehalococcoides mccartyi coding for MG synthase/phosphatase 
(mgsD) was cloned in a plasmid and transformed in S. cerevisiae to yield strain MG01. A second plasmid 
containing the genes PMI40 and PSA1 from S. cerevisiae was constructed and transformed in MG01 yielding 
MG02. 

 

GDP-mannose and 3-phosphoglycerate are the two precursors for the synthesis of MG. We are 

aware that S. cerevisiae’s anabolic pathways imply a high demand for GDP-mannose. Indeed, this 

activated sugar is the precursor for protein mannosylation and synthesis of oligomannans, 

important components of the yeast cell wall (Hashimoto et al., 1997; Janik et al., 2003). Therefore, 

our engineering strategy was intended to enhance the flux towards GDP-mannose synthesis by 

overexpressing the genes encoding phosphomannomutase and GDP-mannose 

pyrophosphorylase (Figure 3.1). The production of MG by the resulting engineered strain was 

evaluated under different cultivation modes, including flask bottles, controlled batch and 

continuous fermentations at different dilution rates.  

 

 

3.2 Methods 

 

3.2.1 DNA manipulation 

 

S. cerevisiae genomic DNA for colony PCR and gene amplification was prepared as described by 

(Lõoke et al., 2011). Primers were purchased from Metabion (Germany). Gene amplification and 

colony PCR were performed using Phusion polymerase and DreamTaq DNA polymerase (both 

enzymes from Thermoscientific, Waltham, USA), respectively. PCR reactions were performed in 

a Thermal Cycler from Bio-Rad (Hercules, USA) using the protocols recommended by the 

manufacturers for each polymerase. Plasmid extraction, PCR product purification, and DNA gel 
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extraction were carried out using Zymo Research kits (Irvine, USA). All restriction enzymes were 

obtained in fast-digestion format from Thermoscientific (Waltham, USA). The plasmid pDES 

containing the gene mgsD that codes for mannosyl-3-phosphoglycerate synthase/phosphatase 

from D. mccartyi is under the control of the ENO2 promoter from Enolase II and was kindly 

provided by the group of Prof. Milton da Costa (University of Coimbra, Portugal) (Empadinhas et 

al., 2004). S. cerevisiae transformation was performed using the lithium acetate method as 

described by (Gietz & Woods, 2002). Escherichia coli DH5α was used for plasmid isolation and 

maintenance using the competence and transformation procedures developed by (Dower et al., 

1988). 

 

3.2.2  Construction of engineered strains 

 

The plasmid pSP-GM was kindly provided by Prof. Jens Nielsen’s group (Chalmers University of 

Technology, Sweden) (Partow et al., 2010). This plasmid was used to express the mannose-6-

phosphate isomerase (PMI40) and GDP-mannose pyrophosphorylase (PSA1) encoding genes 

from S. cerevisiae. The gene PMI40 was amplified using genomic DNA isolated from S. cerevisiae 

strain CENPK2-1C with the primers pair 5’- 

CCGCGGCCGCAAAAAAATGTCCAACAAGCTGTTCAGG-3´ and 5´-

CCGAGCTCCTAATTTGGTTCCACAAAGGC-3´. This PCR product was digested with SacI/NotI 

and ligated into pSP-GM between promoter TEF1 and terminator ADH1 using a T4 ligase 

(Thermoscientific, Waltham, USA), yielding pSP01. Next, the gene PSA1 was amplified using 

again S. cerevisiae strain CENPK2-1C genomic DNA with primers pair 5´-

GGCCCGGGAAAAAAATGAAAGGTTTAATTTTAGTCGG-3´ and 5´-

CCAAGCTTTCACATAATAATAGCTTCCTTTGG-3´. This PCR product was digested with 

HindIII/XmaI and ligated into pSP01 using a T4 ligase between promoter PGK and terminator 

CYC1, resulting in plasmid pSP02. Colonies harboring pSP01 and pSP02 were identified by 

performing a colony PCR with the primers used in the amplification. Correct constructions of 

plasmids were confirmed by restriction analysis and DNA sequencing (GATC Biotech, Germany).  

The strain S. cerevisiae CENPK2-1C, obtained from EUROCARF (Germany), was used as the 

background strain in this work. The strain MG01 was obtained by transforming CENPK2-1C cells 

with plasmid pDES (conferring yeast cells the ability to produce MG) and strain MG02 was 

obtained by transforming MG01 with plasmid pSP02 (resulting in strains with the ability to produce 

MG and with over-production of GDP-mannose). 

 

3.2.3 Strains maintenance and cultivation media 

 

Selection and maintenance of plasmids in E. coli was performed in LB medium containing 10 g.L-

1 of peptone, 10 g.L-1 of NaCl, 5 g.L-1 of yeast extract, and supplemented with 100 mg.L-1 of 

ampicillin. The solid LB medium also included 20 g.L-1 of agar. All cultivations of E. coli were made 

at 37ºC and 200 rpm of agitation.  
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Cells from S. cerevisiae strain CENPK2-1C (MATa ura3-52 his3-Δ1 leu2-3,112 trp1-289, MAL2-

8c SUC2) were cultivated in YPD medium, containing 10 g.L-1 yeast extract, 20 g.L-1 of peptone, 

and 20 g.L-1 of glucose, at 30ºC and 160 rpm. Recombinant strains were selected on Synthetic 

Dextrose (SD) medium containing 6.7 g.L-1 of yeast nitrogen base without amino acids from Difco 

(New Jersey, USA), 20 g.L-1 of glucose and 20 g.L-1 of agar. When necessary, histidine (20 mg.L-

1), tryptophan (20 mg.L-1), uracil (20 mg.L-1) and leucine (30 mg.L-1), were added to cover 

auxotrophies. All cultivations of S. cerevisiae were performed at 30 ºC with 160 rpm agitation. 

Strains were grown overnight and stored at -80 ºC in selective media plus 30% (w/v) of glycerol.  

 

3.2.4 Fermentation conditions 

 

The SD medium used for shake flasks, batch in controlled bioreactors and continuous cultivation 

contained 6.7 g.L-1 of yeast nitrogen base without amino acids from Difco (New Jersey, USA) 

supplemented with 20 g.L-1 of glucose. For strain MG01, SD medium was supplemented with 

histidine (20 mg.L-1), tryptophan (20 mg.L-1), and uracil (20 mg.L-1), while for strain MG02 it was 

complemented only with histidine and tryptophan, in the concentrations described above (Guthrie 

& Fink, 1991). 

In shake flask cultivations, MG01 and MG02 were pre-grown in 50 mL of SD medium at 30ºC and 

160 rpm. Then, cells were inoculated with an initial OD600 of 0.1 in 500 mL shake flasks containing 

100 mL of SD medium. Growth was followed using a spectrophotometer V-560 from Jasco 

(Japan); cells were harvested at the end of the exponential phase (24 h upon inoculation). 

Batch cultivations were performed as following: firstly, cells were grown overnight in shake flasks 

from a single colony. Each fermenter was inoculated with an initial OD600 of 0.1. The batch 

fermentations were performed in a BIOSTAT-B Plus system (Sartorius, Germany) coupled with a 

2-L culture vessel. The operating conditions are the following: the fermentation volume was 0.8 L, 

the temperature was maintained at 30ºC, the airflow was 1 vvm, the pH was kept at 5.5 controlled 

by addition of 2 M NaOH, and the dissolved O2 was kept above 30% of saturation by feedback 

control of the stirring speed from 200 rpm until 600 rpm. Concentrations of O2 and CO2 in the 

exhaust gas were monitored by Bluesens gas analyzers (Germany). Samples were collected at 

the end of the exponential phase, when CO2 production dropped drastically.  

Continuous cultivations were also carried out in a Sartorius BIOSTAT-B Plus system coupled with 

a 2-L culture vessel with a constant working volume of 0.8 L, with the same controlled variables 

and set-points as before. The same medium described above was used to feed the bioreactor at 

dilution rates of 0.05, 0.1, 0.15 and 0.2 h-1. The volume was kept at 0.8 L by controlling the level 

of broth inside the vessel. To guarantee that the culture reached a steady-state mode, at least 5 

volumes of medium were allowed to pass through the culture whenever the dilution rate was 

changed. Samples were collected when O2 consumption and CO2 production were constant. 
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3.2.5 Quantification of MG and fermentation end products 

 

For each sampling, 50 mL of culture broth were removed from the culture and centrifuged at 3600 

× g for 10 min to separate cells from the medium. Next, the supernatant was filtered through a 

membrane filter with a pore size of 0.22 μm into HPLC vials and stored at -20 ºC until further 

analyzed for glucose, glycerol, acetate, and ethanol. MG is an intracellular compound and was 

extracted from the pellet centrifuged above by adding 5 mL of water, 5 mL of methanol and 10 mL 

of chloroform. This mixture was vigorously shaken with the help of a vortex and then centrifuged 

at 12,000 × g for 30 min at 4 ºC. The top part, corresponding to the aqueous phase, was carefully 

transferred to a new tube and the process of centrifugation was repeated after the addition of 5 

mL of water. Once the aqueous phase was separated, samples were evaporated using a Savant™ 

SPD131DDA SpeedVac (Thermoscientific). Next, the evaporated samples were dissolved in 1 mL 

of water and transferred to an HPLC vial. Analysis was performed in an HPLC apparatus from 

Jasco (Japan) model LC-NetII/ADC equipped with UV-2075 Plus and RI-2031 Plus detectors, also 

from Jasco. The samples were analyzed using an Aminex HPX-87H column from Bio-Rad, which 

was kept at 50 ºC, and a solution of 0.01 M of H2SO4 was used as the mobile phase with a flow 

rate of 0.3 mL.min-1. Quantitative analysis of glucose, MG, glycerol, acetate and ethanol was 

performed by comparison with a mixture of standards with known concentrations of each 

metabolite. Calibration curves were prepared using the peak areas of the RI detector for glucose, 

glycerol, acetate and ethanol and of the UV absorbance for MG. The cell dry weight was 

determined by filtering 5 mL of culture broth through a 0.22 μm pore Millipore filter and washing 

once with 5 mL of water. Filters were then dried for 10 min at 150 W in a microwave oven and 

weighted using an analytical balance.  

 

3.2.6 Quantification of enzymatic activities 

 

For the determination of mannose-6-phosphate isomerase and GDP-mannose pyrophosphorylase 

activities, strains MG01 and MG02 were grown in shake flasks until mid-exponential phase in SD 

medium supplemented with 20 g.L-1 of glucose at 30°C and 160 rpm. Then, cells were harvested 

by centrifugation and re-suspended in water with a cocktail of protein inhibitors (Roche, USA). 

Next, cells were broken three times using a Fastprep 24 system (MP, USA). Supernatants were 

obtained by centrifugation at 13,500 × ց for 5 min and used to determine enzymatic activities. Total 

protein was determined using the Bradford method (Bradford, 1976). The methods used to 

determine the enzymatic activities have been described by (Bergmeyer & Gawehn, 1974). Briefly, 

the mannose-6-phosphate isomerase activity was determined using a spectrophotometric method. 

The assay mixture (final volume of 1 mL) contained: 50 mM Tris-HCl (pH 7), 5 mM mannose-6-

phosphate, 8 mM MgCl2, 2.8 mM NADP, 0.27 U glucose-6-phosphate dehydrogenase, 0.27 U 

phosphoglucose isomerase, and 0.25 mg of cell extract. Reactions were started by the addition of 

mannose-6-phosphate and absorbance was measured at 340 nm for 2 min. The GDP-mannose 

pyrophosphorylase activity was determined using a spectrophotometric method. The assay 
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mixture (final volume of 1 mL) contained: 50 mM of Tris-HCl (pH 7), 0.5 mM NaF, 10 mM MgCI2, 

0.1 mM ADP, 1 mM glucose, 1 mM NADP, 2 mM PPi, 5.5 mM GDP-mannose, 1 U each of 

nucleoside kinase, hexokinase, and glucose-6-P dehydrogenase, and 0.25 mg of cell extract. The 

reaction was started by the addition of GDP-mannose, and the formation of NADPH was monitored 

by recording the absorbance at 340 nm for 2 min.  

 

 

3.3 Results and discussion 

 

3.3.1 Strains construction and characterization 

 

S. cerevisiae strain CENPK2-1C was genetically manipulated to overexpress the genes involved 

in the synthesis of GDP-mannose and MG (Figure 3.1). Two engineered strains were constructed: 

i) the first strain (named MG01) harbors the plasmid containing the heterologous gene encoding 

the MG bifunctional enzyme (plasmid pDES); and, ii) the second strain (named MG02) harbors 

the plasmid pDES plus the plasmid pSP02 containing the mannose-6-phosphate isomerase 

(PMI40) and GDP-mannose pyrophosphorylase (PSA1), both genes from S. cerevisiae. The gene 

PMI40 was cloned under the control of PGK1 promoter and terminator CYC1, while the gene PSA1 

under the promoter TEF1 and the terminator ADH1. These promoters have previously shown high 

expression levels during growth on glucose (Partow et al., 2010). To determine the expression 

levels of PSA1 and PMI40 genes, mannose-6-phosphate isomerase and GDP-mannose 

pyrophosphorylase activities were measured in the MG02 strain and compared with the 

background strain (S. cerevisae strain CENPK2-1C). The MG02 strain showed an increase of 2-

fold in the mannose-6-phosphate isomerase activity and 1.4-fold in the GDP-mannose 

pyrophosphorylase activity in comparison with the background strain (Table 3.1).  

 

Table 3.1 Mannose-6-phosphate isomerase (PMI40) and GDP-mannose pyrophosphorylase (PSA1) 
activities in the background and MG02 strains. 

  

 

3.3.2 Physiological characterization of engineered strains   

 

Cultivation conditions exert a great impact in the performance of producing strains. In particular, 

S. cerevisiae is known to accumulate ethanol as a major by-product in aerobic conditions under 

certain circumstances, and these different metabolic states may affect the production capabilities 

 
CENPK2-1C 

(U/mg of protein) 

MG02 

(U/mg of protein) 

Increase 

(n-fold) 

Mannose-6-phosphate isomerase 0.120 ± 0.001 0.244 ± 0.010 2.0 

GDP-mannose pyrophosphorylase 0.045 ± 0.007 0.065 ± 0.014 1.4 
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of the strains. When there is a low glucose uptake rate, S. cerevisiae is reduced to a respiratory 

metabolism only, with no ethanol formation while, when the glucose concentration and/or uptake 

rate surpasses a critical threshold value, the metabolism becomes a combination of respiration 

and alcoholic fermentation (Sonnleitner & Käppeli, 1986). In this work, the engineered strains were 

grown under conditions that determined a respiratory vs respiro-fermentative metabolism, and the 

fitness and MG accumulation parameters were determined. 

 

3.3.3 Physiological characterization of engineered strains cultivated in shake flasks and 

batch bioreactors 

 

The engineered strains were initially characterized in shake flasks using SD medium with 20 g.L-1 

of glucose. Both strains present a similar growth rate (0.24 h-1 for MG01 vs 0.25 h-1 for MG02) but 

differ on biomass production: 0.134 ± 0.006 gDW.gglc
-1 for MG01 and 0.096 ± 0.003 gDW.gglc

-1 for 

MG02 (Figure 3.2). The intracellular amount of MG was determined after glucose depletion. The 

solute was extracted with methanol/chloroform solution and quantified by HPLC analysis. Under 

these conditions, MG02 showed a 1.5-fold increase in MG production compared to the reference 

strain MG01 (Table 3.2). S. cerevisiae GDP-mannose pool had been successfully increased 

before by the over-expression of the gene MPG1 (PSA1) in a multi-copy plasmid (Janik et al., 

2003). In the present work, it was possible to increase MG production by over-expressing PSA1 

and PMI40, which re-directed the glycolytic flux towards the formation of GDP-mannose and 

consequently to MG. S. cerevisiae end-products were also determined by HPLC in the culture 

broth after glucose depletion (Table 3.2). In shake flasks, MG01 produces higher amounts of 

ethanol (1.5-fold), glycerol (1.4-fold), and acetate (3.6-fold), than MG02.  

 

 

 
Figure 3.2 Growth curve profile of MG01 and MG02 in shake flasks. Cells were cultivated in SC medium with 
20 g.L-1 of glucose. MG01 harbors the plasmid pDES with the gene mgsD from D. mccartyi and MG02 harbors 
the same plasmid along with pSP-GM, which contains the S. cerevisiae genes PMI40 and PSA1. Data 
represents the mean ± SD of four independent experiments. 
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In order to check whether MG accumulation could be favored by a controlled environment, strains 

MG01 and MG02 were grown in a 2-L bioreactor. In batch cultivation, MG02 produces 15.86 

mg.gDW
-1 of MG, which represents an increase of 2.2-fold in comparison to MG01 (Table 3.2). Also, 

higher yields of MG are obtained in batch cultivation in comparison with shake flask. In batch 

cultivation, using a bioreactor, it is possible to maintain optimal conditions regarding pH, 

concentration of oxygen and temperature. Under these conditions, S. cerevisiae is able to produce 

higher amounts of MG. Moreover, MG01 and MG02 produce the same amount of ethanol, unlike 

the behavior observed in shake flasks. Acetate is still produced in lower amounts in MG02, whether 

cells are cultivated in shake flasks or controlled batch (Table 3.2). 

 

Table 3.2 MG and end-products yields for the engineered strains MG01 (mgsD) and MG02 (mgsD ↑pmi40 
↑psa1) cultivated in shake flask and batch fermenters. Data represent the mean ± SD of at least three 
independent experiments. 

 YX/MG 
a YS/MG 

b YS/EtOH 
c YS/Acet 

d YS/Gly 
e 

Shake flasks      

MG01 8.082 ± 0.403 0.908 ± 0.045 0.531 ± 0.177 0.018 ± 0.011 0.013 ± 0.001 

MG02 12.048 ± 1.646 1.015 ± 0.105 0.362 ± 0.102 0.005 ± 0.004 0.009 ± 0.002 

Batch      

MG01    7.080 ± 1.256 0.937 ± 0.072 0.339 ± 0.032 0.058 ± 0.045 0.027 ± 0.007 

MG02 15.862 ± 0.465 1.365 ± 0.084 0.385 ± 0.109 0.039 ± 0.007 0.076 ± 0.031 

a Yield of mannosylglycerate on biomass, mgMG.gDW
-1 

b Yield of mannosylglycerate on substrate, mgMG.gglc
-1 

c Yield of ethanol on substrate, gEtOH.gglc
-1 

d Yield of acetate on substrate, gAcet.gglc
-1 

e Yield of glycerol on substrate, gGly.gglc
-1 

 

 

3.3.4 Physiological characterization of engineered strains cultivated in chemostat at 

different dilution rates 

 

Although the relative contribution of respiratory and respiro-fermentative regimens in S. cerevisiae 

depends on the glucose availability, it is not easy to achieve a pure respiratory regimen in batch 

cultivations. Therefore, a clear distinction of the two metabolic states is only possible in fed-batch 

and chemostat cultures. In an aerobic environment and in the presence of large amounts of 

glucose, S. cerevisiae has a fermentative metabolism in addition to a respiratory metabolism due 

to a limited respiratory capacity (Sonnleitner & Käppeli, 1986). In addition, there is a molecular 

response that represses the TCA cycle in the presence of large amounts of glucose, increasing 

the metabolic flow towards the production of end-products with some reducing power, a 

phenomenon called Crabtree effect (Crabtree, 1929). This behavior happens independently of the 

presence of enough oxygen to support respiration and is seen as an adaptive response to a 
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competitive environment, as fermentation increases S. cerevisiae’s growth rate. Nevertheless, it 

is possible to ensure a respiratory metabolism if glucose uptake rate is kept below the critical 

threshold that activates fermentation.  

In an attempt to investigate the impact of the metabolic regimen in the biomass and MG 

accumulation yields, both MG01 and MG02 were cultivated in the continuous mode at different 

dilution rates: 1) a dilution rate of 0.1 h-1, where glucose-limited conditions could be maintained, 

expressed by a steady-state glucose concentration below the HPLC detection level; and 2) a 

dilution rate of 0.2 h-1 for MG01 and 0.15 h-1 to MG02 where the glucose concentration in the 

medium upon steady-state was approximately 1 g.L-1. 

 

Table 3.3 Physiological parameters and MG yields for the engineered strains MG01 (mgsD) and MG02 
(mgsD ↑pmi40 ↑psa1) in chemostat cultivation at different dilution rates. High-glucose experiments were 
performed at D = 0.2 and 0.15 h-1 for MG01 and MG02, respectively and glucose-limited experiments were 
performed at D = 0.1 h-1.. 

 High-glucose Glucose-limited 

 MG01 MG02 MG01 MG02 

YX/MG 
b 6.09 ± 1.49 11.93 ± 2.62 7.58 ± 1.21 11.71 ± 0.77 

YS/MG 
a 1.08 ± 0.04 1.46 ± 0.10 0.98 ± 0.02 1.82 ± 0.35 

YS/EtOH 
a 0.33 ± 0.06 0.33 ± 0.14 0.17 ± 0.03 0.33 ± 0.31 

YS/Acet 
a 0.05 ± 0.01 0.03 ± 0.01 0.05 ± 0.01 0.04 ± 0.02 

YS/Gly  
a 0.016 ± 0.003 0.024 ± 0.017 0.001 ± 0.001 0.013 ± 0.001 

YX/S 
b 0.15 ± 0.01 0.12 ± 0.02 0.13 ± 0.02 0.15 ± 0.02 

PX/MG
 c 1.22 ± 0.29 1.79 ± 0.39 0.76 ± 0.12 1.17 ± 0.08 

PX/S 
c 0.030 ± 0.002 0.019 ± 0.003 0.013 ± 0.002 0.015 ± 0.002 

PX/EtOH
 c 0.41 ± 0.05 0.40 ± 0.12 0.14 ± 0.04 0.24 ± 0.17 

PX/Acet
 c 0.02 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 

a Yields on substrate for ethanol YS/EtOH, acetate YS/Acet and glycerol YS/Gly  are represented as  g.gglc
-1 and 

MG yield YS/MG is represented as mg.gglc
-1.  

b Yields on biomass for substrate YX/S is represented as gDW.gglc
-1  and for MG YX/MG  as mgMG.gDW

-1. 
c Productivities in chemostat cultivation are represented for ethanol PX/EtOH, acetate PX/Acet and glycerol PX/Gly 
in g.gDW

-1.h-1  and for MG is represented as mg.gDW
-1.h-1. 

 

 

On the chemostats at a higher dilution rate, MG01 showed a higher yield on biomass (Yx/s) than 

MG02 (Table 3.3). It should be emphasized that MG01 supported a higher dilution rate than MG02, 

since there was washout over 0.15 h-1 for this strain, given the lower maximum specific growth 

rate. It can thus be concluded that either the higher production of MG or directly the over-

expression of PSA1 and PMI40 cause a significant decrease of the biomass production. Under 

higher dilution rates, MG02 accumulated 11.93 mgMG.gDW
-1, representing a 2-fold increase in 
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relation to MG01 (Table 3.3). By using this set up, MG is produced at a rate of 1.79 mg.gDW
-1.h-1 

for MG02, which is 46% higher compared to MG01 (Table 3.3). Biomass productivity is higher for 

MG01 - 0.030 g.gDW
-1.h-1 - than in MG02 - 0.019 g.gDW

-1.h-1 (Table 3.3). Ethanol and acetate 

production rates remained similar for both strains. These results are according to fundamental 

studies with S. cerevisiae in steady-state continuous mode. These studies have shown that cells 

cultivated at higher dilution rates close to the µmax produce higher amounts of ethanol, glycerol 

and acetate, than at lower dilution rates (Leuenberger, 1972).  

To test if MG production would improve with lower dilution rates where respiration is favored and 

the production of ethanol is reduced (or even zero), both strains were cultivated at a dilution rate 

of 0.1 h-1. Under these conditions, MG yield in MG02 is 1.5-fold higher than in MG01 (Table 3.3). 

Regarding MG productivities, the MG production rate is 0.76 mg.gDW
-1.h-1 for MG01 and 1.17 

mg.gDW
-1.h-1 for MG02, which represents a 1.5-fold increase. Although there is a distinct difference 

between the production of MG in MG01 and MG02, the productivity of both strains in glucose-

limited chemostat is lower when compared to high-glucose chemostat. Since MG yields on 

biomass are similar for both strains across the different dilution rates and MG yields on substrate 

even exhibit an opposite trend (being larger for the lower dilution rate for MG02), it can be 

concluded that the observed increase in MG productivity at high dilution rates is only due to the 

faster process caused directly by the dilution. 

Biomass production in MG02 increased from dilution 0.15 h-1 (high-glucose) to 0.1 h-1 (glucose-

limited) which is coherent with previews publications (Table 3.3) (Van Hoek et al., 1998). When 

yeast cells are cultivated at high rates, the flux from glycolysis is re-directed to the production of 

by-products (e.g. ethanol) and respiration is kept at lower levels. However, when the dilution is 

reduced, respiration becomes the major source of energy through TCA cycle and consequently, 

the production of biomass increases (Van Hoek et al., 1998). Strangely, this behavior is not 

observed for strain MG01, since biomass production decreases from high-glucose chemostats to 

glucose-limited. In both cases, however, the overlapping confidence intervals do not allow to 

extract clear conclusions. 

It would be expected that for lower dilution rates the production of ethanol, glycerol and acetate 

decreased in relation to the high-glucose chemostats. In fact, at a dilution rate of 0.1 h-1 wild-type 

S. cerevisiae cultures are often in a pure respiratory regimen and by-product accumulation is thus 

absent (Postma et al., 1989). It thus seems that MG production strongly affects the respiratory 

capacity of S. cerevisae. Also, only MG01 shows a reduction of ethanol and glycerol production, 

while acetate production remained the same (Table 3.3). For MG02, a reduction on the ethanol 

yield was likely to be observed, as attained in MG01. Interestingly, steady-state MG02 cells 

cultivated under a dilution rate of 0.1 h-1 showed a profile of ethanol production that is largely 

influenced by the concentration of ethanol produced during growth in the batch mode. Chemostat 

experiments were initiated with different ethanol concentrations, which apparently produced 

different results for the ethanol concentration at steady-state. However, the rate of ethanol 

decrease from the beginning of the chemostat until steady-state is very similar, for both 

experiments. The fact that the initial ethanol concentration is not fully washed from the bioreactor 



MG production by over-expression of the GDP-mannose pathway and bioprocess optimization 

65 
 

during the continuous cultivation at low dilution rates may be an indication that both strains are not 

in their full respiratory regimen, as ethanol production is not expected, or expected at low levels, 

in cases where yeast cells are on respiratory metabolism (Van Hoek et al., 1998). However, the 

influence of initial ethanol concentration in continuous cultures in the respiratory capacity has not 

been, to our knowledge, previously reported and remains unexplained. 

To evaluate the behavior of strain MG02 at low dilution rates and given the inconclusive results at 

dilution rate of 0.1 h-1, a chemostat with a lower dilution rate of 0.05 h-1 was performed. Under 

these conditions, ethanol and acetate yields dropped to 0.1 g.gglc
-1 and glycerol production was 

not detected, indicating that fermentative metabolism had a lower contribution. Even more, the 

biomass yield increased to 0.18 g.gglc
-1 and follows an increasing pattern as the dilution rate 

decreases (Figure 3.3A). Nevertheless, at dilution 0.05 h-1, MG yield on biomass significantly 

decreases to 8.21 mg.gDW
-1 in comparison to 11.71 mgMG.gDW

-1
 in dilution 0.1 h-1 (glucose-limited) 

(Table 3.3).  

 

 

 
Figure 3.3 Effect of dilution rate in the formation of biomass and MG productivity for MG02 (mgsD ↑pmi40 
↑psa1). Cells were grown in a 2-L batch fermenter containing 0.8 L of synthetic media with 20 g.L-1 glucose. 
A) biomass yield on substrate, represented as gDW.gglc

-1 for dilutions 0.05, 0.1 and 0.15 h-1 and B) MG 
productivity represented as mgMG.gDW

-1.h-1 at dilutions 0.05, 0.1 and 0.15 h-1. For dilution 0.1 and 0.15 h-1 
data is the mean ± SD of two independent experiments; dilution 0.05 h-1 represents one experiment. 

  

Cultivation with different dilution rates allowed the establishment of a direct correlation between 

dilution and the production rate of MG. By gradually decreasing the dilution rate in MG02, we 

verified a decrease in the production rate of MG (Figure 3.3B), not only due to the higher process 

rates but also due to decreased MG yields, especially when comparing the 0.05 h-1 dilution rate 

with the remaining ones. Continuous mode chemostat presents several advantages in comparison 

with batch cultures and it is a valuable tool to explore the best conditions that will be selected for 

industrial production. One advantage of continuous mode cultivation and that is explored in this 

work is the evaluation under controlled conditions of physiological parameters based on growth 

rates (Nielsen et al., 2003). These parameters represent an important evaluation before scale-up 

and industrialization of a bioprocess. The cultivation of S. cerevisiae in respiro-fermentative 

metabolism holds some issues as it is accompanied by the accumulation of by-products, low 
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biomass yield and low glucose rentability. Additionally, ethanol production might interfere with the 

productivity of compounds by provoking toxicity (Stanley et al., 2010). For this reason, industrial 

bioprocesses usually use a dilution rate of 0.1 h-1 or lower (Nielsen et al., 2003). That is the case 

of resveratrol production (Vos et al., 2015). Nonetheless, the respiro-fermentative metabolism 

favors the production of certain compounds. In a recent study, the cultivation conditions for 

ethylene production were optimized and were found to be coupled with the growth rate (Johansson 

et al., 2013). In the present work, we also observed that MG accumulation is coupled to high 

growth rates. This can be explained by the fact that MG precursors, GDP-mannose and 3PG, 

derive both from glycolysis. As the respiro-fermentative metabolism of S. cerevisiae presents a 

higher glycolytic flux than in respiration, it is feasible to foresee that MG production would increase 

as it was observed. Additionally, it has been described that PSA1 is an essential gene linked to 

the progression of phase G1 of the cell cycle, since the efficient glycosylation of proteins is a key-

point for cell division (Zhang et al., 1999). PSA1 transcript levels will increase with higher growth 

rates, which may favor the synthesis of GDP-mannose and ultimately the synthesis of MG. 

 

 

3.4 Conclusion  

 

In this study, we have increased the production of mannosylgycerate (MG), a protein stabilizer 

with outstanding properties, by over-expressing PSA1 and PMI40 (GDP-mannose pathway) and 

by optimizing the mode of cultivation. The resulting strain - MG02 - represents a maximum of 2.2-

fold improvement in MG yield on biomass, being able to produce a maximum of 1.79 mg of MG 

per gram of biomass per hour. It was also possible to establish a correlation between growth rate 

and MG production. New rounds of optimization are needed to produce MG in S. cerevisiae at 

adequate levels, i. e., well above the values reported for organisms that naturally produce this 

compound. To this end, a holistic approach should be considered, based on in silico driven 

metabolic engineering to find gene targets that will improve MG production.  

 

 



 

 

 

 

 

 

 

 

 

Chapter 4 

 In silico design of Saccharomyces cerevisiae strains for 

high production of mannosylglycerate  
 

 

Mannosylglycerate (MG) is one of the most notable compatible solutes accumulated by 

(hyper)thermophiles in response to either osmotic or thermal stresses. Its superior ability to 

stabilize proteins in vitro makes it a promising candidate for industrial applications wherein protein 

performance and robustness are important requisites. Also, MG is an efficient protector of 

aggregating-prone proteins in the intracellular milieu and this feature could set the basis for the 

development of therapeutics to combat neurodegenerative diseases, such as Parkinson´s and 

Alzheimer´s.   

Recently, we engineered S. cerevisiae to synthesize MG by heterologous expression of the gene 

encoding the bifunctional enzyme mannosyl-3-phosphoglycerate synthase / phosphatase of 

Dehalococcoides mccartyi; moreover, following a strategy dictated by common sense, the 

biosynthetic pathway of one of the precursors, GDP-mannose, was over-expressed (Chapter 3). 

However, and despite some extent of fermentation optimization, the productivity was poor and the 

titers far below those required for large-scale industrial applications.    

Systems biology is shaping the way science is progressing towards the development of efficient 

cell factories. In particular, genome-scale metabolic modeling is a strong asset to accelerate the 

construction of novel strains that will replace the current petrol-based processes. In this work, we 

used simulated annealing algorithm and different simulation methods to identify the best strategies 

for improving MG production in S. cerevisiae. The resulting strains were characterized in batch 

fermentation as well as continuous mode. There was a 1.6-fold increase in MG production in 

comparison with MG02 strain from Chapter 3, but the experimental results on MG yields were 

considerably lower than foreseen by simulations, suggesting the involvement of a regulatory 

response that the models were unable to predict.       
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4.1 Introduction 

 

Mannosylglycerate (MG) accumulates in thermophilic and hyperthermophilic prokaryotes primarily 

in response to osmotic stress (da Costa et al., 1998; Lamosa et al., 2007; Santos et al., 2011; 

Santos & da Costa, 2002); accumulation of MG induced by thermal stress also occurs, though 

more rarely (Empadinhas et al., 2001; Martins & Santos, 1995; Neves et al., 2005). This heteroside 

was first encountered in red algae of the order Ceramiales, but in contrast with prokaryotes, MG 

plays no significant role in osmotic adaptation of those organisms (Eggert et al., 2007). Therefore, 

the physiological function of MG in algae remains elusive.  

In vitro experiments demonstrated that MG possesses a remarkable ability to protect proteins 

against thermal denaturation and aggregation (Faria et al., 2008). Also, by engineering the 

biosynthesis of MG in a Parkinson’s yeast model, we showed that the number of cells with α-

synuclein inclusions was significantly reduced (Faria et al., 2013). Moreover, MG increased the 

life-span of retroviral vectors (Cruz et al., 2006) and improved the sensitivity of DNA microarrays 

(Mascellani et al., 2007). These properties suggested many commercial applications for this solute 

and led to several patent applications (da Costa et al., 2003; Lamosa et al., 2006a; Santos et al., 

1996, 1998). In particular, this stress metabolite could be useful in the cosmetic industry as 

moisturizer and skin protector against UV damage and in analytical and clinical kits as general 

stabilizer of proteins and other biomaterials. Of upmost importance is the prospect to replace the 

cold-chain needed for long-term storage of vaccines, especially for delivery in hot climates. 

Moreover, in the agro industry, the heterologous expression of the MG pathway was demonstrated 

as a means to improve the resistance of plants to drought and other stresses (Scheller et al., 

2010).  

Currently, MG is obtained from a natural producer, Rhodothermus marinus, and commercialized 

in a small scale by Bitop AG (Witten, Germany). A protocol for chemical synthesis has been 

established, but the method was not optimized for large scale production (Lamosa et al., 2006b); 

moreover, the well-known bias of European consumers against synthetic products makes this 

process far less appealing than fermentation.  

More and more, the development of improved cell factories relies on the rational design of strains. 

New approaches emerge as advances in the computational and synthetic biology areas continue 

to expand and come up with answers to complex metabolic problems (Lee et al., 2009). In this 

work, we aim to improve the production of MG in Saccharomyces cerevisiae by using an 

engineering strategy supported by genome-scale modeling. S. cerevisiae is a robust industrial bio-

platform for which a wealth of information has been gathered and an extensive repertoire of DNA 

manipulating techniques is available (Borodina & Nielsen, 2014; Goffeau et al., 1996). Moreover, 

the accessibility of multiple computational models, including 13 genome-scale models, makes this 

yeast an ideal model organism for industrial as well as fundamental research.  

Several methods are available to exploit the potentialities of genome-scale models in simulation 

and optimization of novel strains. The most widely used approach to simulate strain phenotypes 

is flux balance analysis (FBA) which calculates flux distributions by assuming, as objective 
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function, that microorganisms have evolved to maximize biomass (Orth et al., 2010). This 

methodology can successfully predict gene essentiality, growth rates and knockout strategies for 

a given strain. Nonetheless, FBA can produce unrealistic results for knockout mutants since it 

does not account for certain perturbations generated by gene disruptions. To circumvent this 

limitation, a new method was formulated called Minimization Of Metabolic Adjustment (MOMA), 

which incorporates gene knockout effects on the network by setting the wild-type as reference 

(Segrè et al., 2002). Although the predictions are usually more conservative, this method can, 

under the conditions evaluated, actually predict targets and gene essentiality with more accuracy 

than FBA. Besides simulation algorithms, optimization tools are useful to look for genetic 

modifications that will redirect fluxes towards a desired compound. Optknock is a bi-level 

optimization algorithm that accounts for maximization of growth and chemical production, 

delivering knockout solutions that accomplish these two objectives (Burgard et al., 2003). New 

updated formulations were designed, including evolutionary methods that can solve large gene 

modification problems in less time and can be combined with simulation methods such as FBA or 

MOMA (Patil et al., 2005). In this study, we use the genome-scale model of S. cerevisiae iMM904 

(Mo et al., 2009) to identify and select targets using Simulated Annealing algorithm (Rocha et al., 

2008b). Different simulation methods and objective functions were run to disclose the best set of 

solutions, including an under/over-expression plugin that searches for solutions with increased 

(over) or decreased (under) fluxes for a given reaction or expression of a given gene when 

compared with the reference strain (Gonçalves et al., 2012).  

MG can be synthesized by two pathways: in the single-step pathway the MG synthase (MGS) 

catalyzes the conversion of GDP-mannose and D-glycerate into MG (Martins et al., 1999); and in 

the two-step pathway, 3-phosphoglycerate (3PG) and GDP-mannose are converted by mannosyl-

3-phosphoglycerate synthase (MPGS) into mannosyl-3-phosphoglycerate, which is subsequently 

dephosphorylated by the mannosyl-3-phosphoglycerate phosphatase (MPGP), yielding MG 

(Empadinhas et al., 2001; Martins et al., 1999). This latter pathway is the most common one and 

was cloned in S. cerevisiae using the gene encoding mannosyl-3-phosphoglycerate 

synthase/phosphatase from Dehalococcoides mccartyi (Empadinhas et al., 2004).  

We incorporated this biosynthetic pathway in a genome-scale model of S. cerevisiae in order to 

define a model-based strategy obtained by simulation and optimization methods. By using this 

holistic strategy, we aim to increase MG production above the level reported in Chapter 3. The in 

silico results led to the construction of three mutant strains that were characterized and compared 

with the reference strain (only harboring a plasmid for MG synthesis). In the end, we were able to 

obtain a strain that produces 25.3 mg.gDW
-1, which represents a 60% increase in comparison with 

strain MG02 described in Chapter 3.   
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4.2 Methods 

 

4.2.1 Model and software  

 

The genome-scale model used here is an updated version of iMM904 (Mo et al., 2009; Pereira et 

al., 2016) that was imported into OptFlux 3.07 (Rocha et al., 2010). A lumped reaction representing 

the two steps of MG formation, i. e. the conversion of GDP-mannose and 3-phosphosglycerate to 

MG, GDP, and inorganic phosphate (R_MG: M_gdpmann_c + M_3pg_c → M_MG_c + M_pi_c + 

M_gdp_c), and a drain to MG were added to the model (R_EX_MG: MG_c → MG_e → MG_b). 

For optimization purposes, in silico environmental conditions were set to mimic minimal growth 

media supplemented with glucose under aerobic conditions (ammonia: unconstrained uptake, 

phosphate: unconstrained uptake, sulfate: unconstrained uptake, oxygen: unconstrained uptake, 

glucose uptake: 1.15 mmol.gDW
-1.h-1). All simulations were run within OptFlux 3.07 using IBM 

CPLEX Optimization Studio (Academic) as the linear and Mixed-Integer Linear Programming 

solvers. To analyze fermentative metabolism, oxygen uptake was set to 1 mmol.gDW
-1.h-1.  

 

4.2.2 In silico optimization of mannosylglycerate production 

 

The simulated annealing algorithm included in OptFlux was used for optimization purposes (Patil 

et al., 2005; Rocha et al., 2008b). pFBA (parsimonious FBA) (Lewis et al., 2010; Ponce de León 

et al., 2008) was used for the calculation of the reference (wild-type) flux distributions, with the 

maximization of biomass production as the objective function (Ponce de León et al., 2008). MOMA 

(Segrè et al., 2002), Linear MOMA (Becker et al., 2007), MIMBL (Minimization of Metabolites 

Balance) (Brochado et al., 2012) and ROOM (Regulatory On/Off Minimization of Metabolic Flux 

Changes) (Shlomi et al., 2005b) were used as simulation methods. The objective functions 

considered in the algorithm were the Biomass-Product Coupled Yield (BPCY) and Yield (Patil et 

al., 2005). The algorithm was run 3 times, setting the number of solution evaluations to 20,000 

and the maximum number of strain modifications to 6. 

 

4.2.3 DNA manipulation 

 

PCR reactions were performed in a Thermal Cycler from Bio-Rad (Hercules, USA) using the 

protocols recommended by the manufacturers for each polymerase. Yeast genomic DNA for 

colony PCR and gene cloning was prepared as previously described (Lõoke et al., 2011). Primers 

were purchased from Metabion (Germany). High fidelity PCR and Fusion PCRs were performed 

with Phusion polymerase from Thermoscientific (Waltham, USA); colony PCR was performed with 

DreamTaq DNA polymerase from Thermoscientific. Plasmid extraction, PCR product purification, 

and DNA gel extraction were carried out using Zymo Research kits (USA). All restriction enzymes 

were obtained in fast-digestion format from Thermoscientific.  
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Plasmid isolation and maintenance were carried out in Escherichia coli DH5α following the 

competence and transformation procedures developed by (Dower et al., 1988). S. cerevisiae 

transformation was performed using the lithium acetate method as described by (Gietz & Woods, 

2002). Yeast cloning procedures used for cassette construction were performed as described 

earlier (Orr-Weaver & Szostak, 1983). 

 

4.2.4 Strain maintenance and media 

 

Selection and maintenance in E. coli of the plasmids constructed/used in this work was performed 

in LB medium containing 10 g.L-1 of peptone, 10 g.L-1 of NaCl, 5 g.L-1 of yeast extract and 

supplemented with 100 mg.L-1 of ampicillin. The solid version of this medium also included 20 g.L-

1 of agar. All cultivations of E. coli were performed at 37 ºC and 200 rpm agitation.  

Cells of S. cerevisiae strain CENPK2-1C (MATa ura3-52 his3-Δ1 leu2-3,112 trp1-289, MAL2-8c 

SUC2) were cultivated in YPD medium, containing 10 g.L-1 yeast extract, 20 g.L-1 of peptone, 20 

g.L-1 of glucose, at 30 ºC with 160 rpm. Recombinant strains were selected on Synthetic Dextrose 

(SD) medium containing 6.7 g.L-1 of yeast nitrogen base without amino acids from Difco (New 

Jersey, USA), 20 g.L-1 of glucose and 20 g.L-1 of agar. When necessary, histidine (20 mg.L-1), 

tryptophan (20 mg.L-1), uracil (20 mg.L-1) and leucine (30 mg.L-1), were added to cover 

auxotrophies. All cultivations of S. cerevisiae were performed at 30 ºC with 160 rpm agitation. 

Strains were grown overnight and stored at -80 ºC in selective media plus 30% (w/v) of glycerol.  

 

4.2.5 Plasmid constructions  

 

The plasmid pDES containing the gene mgsD from D. mccartyi under the control of the ENO2 

promotor, was kindly provided by Milton S. da Costa (Coimbra University, Portugal). All primer 

sequences used in this study are shown in Table 4.1. pDES was modified by adding a Kosak 

sequence (5´- AAAAAA - 3’) between the ENO2 promoter and mgsD starting codon. Additionally, 

a synthetic terminator (Ts) with the sequence 5´-

TGGGTGGTATATATATATATATATATATATATAACTGTCTAGAAATAAAGAGTATCATCTTTCA

AA-3’  was cloned immediately after the stop codon of mgsD (Curran et al., 2015). For this 

construction, mgsD was amplified with primers 1 and 2. Then, this PCR product was amplified by 

using primers 1 and 3 to complete the fusion of the terminator with msgD. This new construction 

and pDES were digested with BamHI / HindIII and then ligated to form pMG.  

The plasmid pSP-GM (kindly provided by Jens Nielsen’s group, Chalmers University of 

Technology, Sweden) was used to express genes PMI40 and PSA1 from S. cerevisiae. PMI40 

was amplified with primers 4 and 5 using as template genomic DNA from S. cerevisiae, digested 

with SacI / NotI and ligated in pSP-GM between promoter TEF1 and terminator ADH1 to yield 

plasmid pSP01. Next, PSA1 was amplified with primers 6 and 7 using as template genomic DNA 

from S. cerevisiae and digested with HindIII / XmaI. pSP01 was digested with the same enzymes 

so that PSA1 could be placed between promoter PGK and terminator CYC1. Ligation was 
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achieved by using T4 ligase, yielding plasmid pSP02. Positive colonies harboring pMG, pSP01, 

pSP02 were identified by colony PCR with the primers used in the amplification. Correctness of 

plasmid constructions was confirmed by restriction analysis and DNA sequencing (GATC Biotech, 

Germany). All plasmids used and constructed in this study are listed in Table 4.2. 

 

Table 4.1 List of primers used to construct plasmids and integrative cassettes.  

Primer Sequence 

1 CCAAGCTTAAAAAAATGCGCATTGAAAGCCTG 

2 CAGTTATATATATATATATATATATATATACCACCCATTATTCCATGGGCAGTATTA 

3 TTTGAAAGATGATACTCTTTATTTCTAGACAGTTATATATATATATATATATATATATACCACC 

4 CCGCGGCCGCAAAAAAATGTCCAACAAGCTGTTCAGG 

5 CCGAGCTCCTAATTTGGTTCCACAAAGGC 

6 GGCCCGGGAAAAAAATGAAAGGTTTAATTTTAGTCGG 

7 CCAAGCTTTCACATAATAATAGCTTCCTTTGG 

8 ATGACAAGCATTGACATTAACAACTTACAAAATACC 

9 CGGGAATTGCCATGAAGCCGAAATTTCAGCGATGACCAATTCTGC 

10 GGCGTTACCCAACTTAATCGCCAAATTGCAGGTGCTGCTTTGG 

11 TTAATATAGCAATCTAATTGAGATCTTAGCAGAGG 

12 TTCGGCTTCATGGCAATTCCCGGG 

13 GGCGATTAAGTTGGGTAACGCCAGGG 

14 ATGTCTTATTCAGCTGCCGATAATTTACAAG 

15 CCCGGGAATTGCCATGAAGCCGAATCTCACCAATTACCAATTCTGCTACGG 

16 GGCGTTACCCAACTTAATCGCCAAATTGCAGGTGCTGCTTTAGATG 

17 TTAGTATAATAACCTGATGGAAACTTTGGCAG 

18 TTAAACGGTAGAGACTTGCAAAGTGTTGG 

19 CCTGGCGTTACCCAACTTAATCGCCCACCCAGACATCGGGCTTCCAC 

20 TATATCGCATGAAGAATAACCAGAGTTTTTCTCCG 

21 AATTGCCATGAAGCCGAAGATCAATTCTAACAAAAAAAAAATAAGG 

 

 

4.2.6 Construction of DNA cassettes 

 

The results obtained in the in silico optimization section suggested the elimination of the flux from 

3-phosphoglycerate to serine. Two isoenzymes encoded by the genes SER3 and SER33 are 

involved in this conversion. S. cerevisiae genome was used as template for PCR procedures 

except when stated otherwise. To disrupt those genes we built a disruption cassette, which is 

composed by the first and the last 500 bp of each gene, intercalated with an URA3 gene and the 

respective promoter, for selection purposes. Therefore, the upstream sequence of SER3 was 

amplified with primers 8 and 9 (Table 4.1), and the downstream sequence was amplified with 

primers 10 and 11. URA3 gene and the respective promoter from Kluyveromyces lactis was 

amplified with primers 12 and 13 from the plasmid pWJ1042 (kindly provided by Jens Nielsen´s 

group, Chalmers University of Technology, Sweden). All PCR products were purified and fused 
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by PCR using primers 8 and 11. For SER33 cassette, the upstream sequence of SER33 was 

amplified with primers 14 and 15 and the downstream sequence was amplified with primers 16 

and 17. All PCR products were purified and fused by PCR using primers 14 and 17.    

Another target flux identified to improve MG production was the reaction from 

phosphoenolpyruvate to pyruvate catalyzed by the pyruvate kinase and coded by gene PYK1. 

However, the disruption of this gene caused growth arrest in S. cerevisiae (Pearce et al., 2001) 

and for this reason we set to construct a DNA cassette to provoke an under-expression of the 

gene by changing the promoter strength. This cassette was composed by an upstream region of 

PYK1 (PYK1-up) linked with URA3 gene and promoter for selection, the PYK1 promoter lacking 

an upstream activating sequence (UAS), and the PYK1 gene. The fused PYK1p∆653-PYK1 (Pearce 

et al., 2001) was amplified with primers 18 and 19. URA3 gene and the respective promoter were 

amplified as stated above. Then, PYK1-up was amplified using primers 20 and 21 and fused with 

URA3 using primers 13 and 21. Finally, PYK1-up-URA3 was fused with PYK1p∆653-PYK1 using 

primers 19 and 20 (see Figure 4.2). 

 

Table 4.2 List of plasmids used in this study. 

Plasmid Description Sources 

pDES p425:PENO2-mgsD LEU2 
(Empadinhas et 

al., 2004) 

pMG p425:PENO2-kosak-mgsD-Ts LEU2 This work 

pSP-GM Wild-type plasmid 
(Partow et al., 

2010) 

pSP01 pSP-GM:PTEF1-kosak-pmi40-TADH1 URA3  This work 

pSP02 pSP-GM:PTEF1-kosak-pmi40-TADH1 PPGK1-kosak-psa1-TCYC1 URA3 This work 

 

 

4.2.7 Transformation of S. cerevisiae with the DNA cassettes 

 

After amplification of the SER3 cassette, yeast cells were transformed with 3 µg of DNA following 

the standard protocol (Gietz & Woods, 2002). The list of strains used in this study is shown in 

Table 4.3.  Selection was made in SD-URA plates with agar (see section Cultivation Conditions 

above) and DNA insertion was confirmed by PCR. As described previously by (Akada et al., 2006), 

the positive colonies were plated in YPD with 0.75 mg.L-1 of 5-fluoroorotic acid to select cells that 

have excised URA3 selection mark. This strain served as reference to disrupt gene SER33 (herein 

called strain S3) and to truncate PYK1 promotor (strain S4). After each disruption, the URA3 

marker was recycled. 
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Table 4.3 List of strains used in this study. 

Strain Description Plasmid Sources 

MG01 MATa; his3D1; leu2-3_112; ura3-52; trp1-289; MAL2-8c; SUC2 pDES Chapter 3 

S1 MATa; his3D1; leu2-3_112; ura3-52; trp1-289; MAL2-8c; SUC2 pMG This work 

S2 MATa; his3D1; leu2-3_112; ura3-52; trp1-289; MAL2-8c; SUC2 pMG, pSP02  This work 

S3 
MATa; his3D1; leu2-3_112; ura3-52; trp1-289; MAL2-8c; SUC2; 

Δser3 Δser33 

pMG, pSP02 This work 

S4 
MATa; his3D1; leu2-3_112; ura3-52; trp1-289; MAL2-8c; SUC2; 

Δser3 Δser33; PYK1p∆653-PYK1 

pMG, pSP02 This work 

 

 

4.2.8 Cultivation in bioreactor 

 

Batch fermentations were performed in SD medium containing 20 g.L-1 of glucose. Cells were pre-

grown overnight in shake flasks containing 50 mL of the same medium, at 30ºC and 160 rpm. 

Each fermenter was inoculated at an initial OD600 of 0.1. Optical density was measured using the 

spectrophotometer V-560 from Jasco (Japan). The batch fermentations were performed in the 

Eppendorf DASGIP Parallel Bioreactor System (Switzerland) coupled with 2-L culture vessels. 

The operating volume for the fermentations was 1-L, temperature was maintained at 30 ºC, airflow 

at 1 VVM, pH was kept at 5.5, controlled by addition of 2 M NaOH, and dissolved oxygen was kept 

above 30 % of saturation by feedback control of the stirring speed from 200 rpm up to 400 rpm. 

The concentration of O2 and CO2 in the exhaust gas was monitored by Bluesens gas analyzers 

(Germany).  

For continuous cultures, cells were allowed to grow in batch mode until glucose was depleted from 

the medium. Then, a peristaltic pump was turned on to deliver new medium into the vessel at 

dilution rates of 0.05 and 0.1 h-1. Cultivation broth was removed from the vessel using a leveled 

tube connected to a peristaltic pump. To guarantee that the culture reached a steady-state mode, 

at least 5 retention times were allowed.  

 

4.2.9 Sampling and quantification of fermentation products  

 

For each sampling, 50 mL of culture broth were removed from the bioreactor and centrifuged at 

3600 × g for 10 min to separate cells from the medium. Next, the supernatant was filtered through 

a membrane filter with a pore size of 0.22 μm into HPLC vials and stored at -20 ºC until further 

analyzed for glucose, glycerol, acetate, and ethanol. MG is an intracellular compound and was 

extracted from the pellet centrifuged above by adding 5 mL of water, 5 mL of methanol and 10 mL 

of chloroform. This mixture was vigorously shaken with the help of a vortex and then centrifuged 

at 12,000 × g for 30 min at 4 ºC. The top part, corresponding to the aqueous phase, was carefully 

transferred to a new tube and the process of centrifugation was repeated after the addition of 5 

mL of water. Once the aqueous phase was separated, samples were evaporated using a Savant™ 
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SPD131DDA SpeedVac (Thermoscientific). Next, the evaporated samples were dissolved in 1 mL 

of water and transferred to an HPLC vial. Analysis was performed in an HPLC apparatus from 

Jasco (Japan) model LC-NetII/ADC equipped with UV-2075 Plus and RI-2031 Plus detectors, also 

from Jasco. The samples were analyzed using an Aminex HPX-87H column from Bio-Rad, which 

was kept at 50 ºC, and a solution of 0.01 M of H2SO4 was used as the mobile phase with a flow 

rate of 0.3 mL.min-1. Quantitative analysis of glucose, MG, glycerol, acetate and ethanol was 

performed by comparison with a mixture of standards with known concentrations of each 

metabolite. Calibration curves were prepared using the peak areas of the RI detector for glucose, 

glycerol, acetate and ethanol and of the UV absorbance for MG. The cell dry weight was 

determined by filtering 5 mL of culture broth through a 0.22 μm pore Millipore filter and washing 

once with 5 mL of water. Filters were then dried for 10 min at 150 W in a microwave oven and 

weighted using an analytical balance.  

 

4.2.10   Quantification of enzymatic activities  

 

For the quantification of enzymatic activities, strains S2 and S4 were grown in shake flasks 

containing 50 mL of SD medium with 20 g.L-1 of glucose at 30°C and 160 rpm. Cells were 

harvested at mid-exponential phase and centrifuged at 3600 × g for 10 min. Then, cells were re-

suspended in deionized water containing a protease inhibitor cocktail from Sigma (Sigma, USA) 

and were broken 3 times using a Fastprep 24 system (MP, USA). Supernatants were used to 

determine enzymatic activity following centrifugation at 13,500 × g for 5 min. Protein concentration 

was determined using the Bradford method (Bradford, 1976). All reagents were purchased from 

Sigma and are of the best grade available. The methods used to determine the enzymatic activities 

are described in (Bergmeyer & Gawehn, 1974). Briefly, the mannose-6-phosphate isomerase 

activity was determined by using a spectrophotometric method. The assay mixture contained the 

following components in a final volume of 1 mL: 50 mM Tris-HCl (pH 7), 5 mM mannose-6-

phosphate, 8 mM MgCl2, 2.8 mM NADP, 0.27 U of glucose-6-phosphate dehydrogenase and 

phosphoglucose isomerase and 0.1 mg of cell extract. Reactions were started by the addition of 

mannose-6-phosphate and the formation of NADPH was monitored at 340 nm for 5 min. The GDP-

mannose pyrophosphorylase activity was determined using a spectrophotometric method. The 

assay mixture contained the following components in a final volume of 1 mL: 50 mM of buffer Tris-

HCl (pH 7), 0.5 mM NaF, 10 mM MgCI2, 0.1 mM ADP, 1 mM glucose, 1 mM NADP, 2 mM PPi, 

GDP-mannose at a concentration of 0.2 mM, 1 U of nucleoside kinase, hexokinase, and glucose-

6-phosphate dehydrogenase and 0.1 mg (total protein) of cell extract. The reaction was started by 

the addition of GDP-mannose, and the formation of NADPH was recorded at 340 nm for 5 min. 

For the phosphomannomutase, the assay mixture contained the following components in a final 

volume of 1 mL: 50 mM of buffer Tris-HCl (pH 7), 0.5 mM MgCl2, 0.25 mM NADP, 10 μg of yeast 

glucose-6-phosphate dehydrogenase, 0.1 mM mannose-1-phosphate, 1 μM mannose-1,6-

bisphosphate, 10 μg phosphoglucose isomerase, 3.5 μg phosphomannose isomerase and 0.1 mg 

of cell extract. The reaction was started by the addition of mannose-1-phosphate and the 
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production of NADPH was measured at 340 nm for 5 min. Mannose-1,6-bisphosphate was 

synthetized by incubating for 2 h at 30°C a mixture of 50 mM Tris-HCl (pH 7), 0.3 mM mannose-

1-phosphate, 0.2 mM glucose-1,6-bisphosphate, 5 mM MgCI2, 0.25 mM NADP, 1 mM 

dithiothreitol, 5 μg/mL yeast glucose-6-phosphate dehydrogenase, and 10 μg/mL muscle 

phosphoglucomutase. Pyruvate kinase activity was determined using a spectrophotometric 

method and the assay mixture contained the following components in a final volume of 1 mL: 24 

mM KH2PO4/K2HPO4 (pH 7.0), 150 µM NADH, 1 mM fructose-1,6-bisphosphate, 2.4 mM ADP, 25 

U lactate dehydrogenase, 10 mM MgSO4, 800 µM PEP and 0.1 mg of cell extract. The reaction 

was started by the addition of PEP, and the formation of NAD+ was monitored at 340 nm for 5 min. 

 

 

4.3 Results 

 

4.3.1 In silico analysis 

 

To accommodate the genome-scale model iMM904 we used the Optflux platform (Rocha et al., 

2010). The iMM904 model was modified to contain the reactions corresponding to MG 

biosynthesis, as described in the methods section. Using the simulated annealing optimization 

algorithm and the pFBA, MOMA, LMOMA, MIMBL and ROOM simulation methods, we set to 

identify which reactions and/or genes should be manipulated to increase the production of MG, 

either using BPCY (Biomass Product Coupled Yield) or YIELD (product flux with minimum 

biomass) as objective functions. For this study, glucose was constrained to 1.15 mmol.gDW
-1.h-1 

and the limits for inorganic phosphate, oxygen, sulfate and ammonia were left unconstrained. In 

addition to knockout strategies, an over/under-expression plug-in that is implemented in the 

Optflux framework was used (Gonçalves et al., 2012). This plug-in revealed to be very useful as it 

led us to the identification of candidate genes to over- and under-express, while also allowing to 

include knockout strategies. All solutions obtained by in silico methods were manually curated 

using S. cerevisiae databases with genomic, transcriptomic and physiological experimental data, 

namely Saccharomyces Genome Database (Cherry et al., 2012), YEASTRACT (Teixeira et al., 

2014) and Kyoto Encyclopedia of Genes and Genomes (Kanehisa et al., 2017). The maximal 

theoretical production of MG corresponds to a production flux of 0.7 mmol.gDW
-1.h-1 for the 

specified glucose uptake rate or a yield of 0.61 molMG.molglc
-1, when all carbon is channeled to MG 

production (thus with zero biomass).  

The simulated annealing optimization algorithm was run three times, setting the number of solution 

evaluations to 20,000 and the maximum number of strain modifications allowed to 6. For each 

optimization, a set of solutions were obtained and the best four solutions of each simulation 

method were selected and categorized according to the MG production flux and the specific growth 

rate (Figure 4.1-A). The analysis of these results revealed that MOMA and LMOMA identified 

potential targets leading to high MG production, but with compromised growth. On the other hand, 

ROOM and MIMBL were used to find strategies with low MG production, and growth rates close 
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to the wild-type. A flux variability analysis is also represented in Figure 4.1-A as the dashed line, 

indicating the compromise between MG production and growth.  

To verify if aerobic fermentation could favor MG production we did a new optimization round, this 

time by constraining O2 to 1 mmol.gDW
-1.h-1. Results are presented in Figure 4.1-B and show that 

the respiratory metabolism produces higher yields of MG than the fermentative metabolism. 

 

 
 

Figure 4.1 In silico optimization results for MG production. A - MG production flux versus the specific growth 
rate for solutions obtained using SA as optimization algorithm and MOMA, LMOMA, ROOM and MIMBL as 
simulation methods. MG_max corresponds to the maximal theoretical yield of MG, and WT is the wild-type 
simulation using pFBA. For building this plot, the best four solutions from each optimization setup were 
selected. B - Specific growth rate and MG production flux for solutions obtained with unconstrained 
(respiration) and constrained O2 (fermentation), using the same protocol as described in A. The dashed lines 
represent the flux variability analysis that correlates MG production with growth. 

 
 

The solutions displayed in Figure 4.1-A were analyzed and are summarized in Table 4.4 that 

contains knockout and over/under-expression targets for the best 6 solutions with regard to MG 

production. MG is formed from two compounds: 3-phosphoglycerate (3PG) and GDP-mannose. 

The main metabolic strategy identified included the inhibition of reactions that consume GDP-

mannose and 3PG. To block 3PG spending, the algorithm suggested removing the flux from 

phosphoenolpyruvate (PEP) to pyruvate (PYR), which increased MG production, although 

impacting significantly biomass (solution 1 in Table 4.4). Another incremental strategy (solution 2 

in Table 4.4) advises the elimination of two reactions that consume 3PG, namely its conversion to 

2-phosphoglycerate (2PG) following glycolysis and to 3-phosphohydroxypyruvate (3PHP) that 

leads to the synthesis of serine. In addition, this strategy also advocates the elimination of a 

reaction involved in phospholipid synthesis that uses glycerol-3-phosphate as an intermediate to 

synthetize CDP-diacylglycerol. This solution increases 2-fold the MG production yield in 

comparison with solution 1, but also affects biomass production in 40% in relation to the wild-type. 

The results for solution 3 suggest the removal of the reaction (3PG → 2PG) to provoke 3PG 

accumulation, and the elimination of two reactions that spend GDP-mannose, both catalyzed by 

the mannose-inositol-phosphorylceramide synthase involved in the synthesis of multiple 

sphingolipids characteristic of yeasts. Although biomass production is predicted to be only 20% of 

that in wild-type, MG yield is 3.6-fold higher than in solution 2.  
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Naturally, the algorithms do not choose among the target genes that are in silico essential for 

growth, but it may happen that some of the targets are in fact essential in vivo due to limitations in 

the model. An example is the essentiality of pyruvate kinase to S. cerevisiae grown in glucose 

(Sprague, 1977) or the phosphoglycerate mutase (Papini et al., 2010). Also, in vivo, the knockout 

of the gene that codes for the mannose-inositol-phosphorylceramide synthase presents a 

phenotype with sensitivity to temperature and decreased resistance to general stress (Cerbón et 

al., 2005; Jenkins et al., 1997). 

 

Table 4.4 In silico strategies and corresponding biomass growth and MG yields obtained using the SA 
algorithm in conjunction with LMOMA and MOMA methods. µ, specific growth rate. ϮMG yield is expressed 
as mol.molglc

-1.‡Tmax, percentage of the theoretical maximal MG yield; PEP, phosphoenolpyruvate; ADP 
adenosine di-phosphate; Pi inorganic phosphate; 2PG, 2-phosphoglycerate; 3PG, 3-phosphoglycerate; 
NAD+, β-nicotinamide adenine dinucleotide; NADH, β-nicotinamide adenine dinucleotide, reduced form; 
3PHP, 3-phosphohydroxypyruvate; CTP, cytidine triphosphate; CDPdiacylglycerol, cytidine diphosphate-
diacylglycerol; M1P, mannose-1-phosphate; GDP, guanosine diphosphate; GDPman, GDP-mannose; PPi, 

pyrophosphate; F6P, fructose-6-phosphate; M6P, mannose-6-phosphate.  

KNOCKOUTS 

ID Reaction Enzyme 
MG 

yieldϯ 
(Tmax‡) 

µ (h-1) 

 (wild-type) none 0 0.10 

1 PEP + ADP + Pi → PYR + ATP Pyruvate kinase 
0.035 
(5%) 

0.06 

2 

2PG → PEP 
3PG + NAD+ → 3PHP + NADH 
CTP + phosphatidate→ 
CDPdiacylglycerol 

Enolase 
3-phosphoglycerate 
dehydrogenase 
CDP-diacylglycerol synthase 

0.070 
(10%) 

0.04 

3 

3PG → 2PG 
IPC224 + GDPman → GDP + 
MPIC224 
IPC326 + GDPman → GDP + 
MPIC326 

Glycerate mutase 
Mannose-inositol-phosphoryl 
ceramide synthase 

0.250 
(36%) 

0.02 

 OVER AND UNDER-EXPRESSION 

ID Reaction (o/u value) Enzyme 
MG 

yieldϯ 

(Tmax‡) 
µ (h-1) 

4 3PG → 2PG (0.5) P-glycerate mutase 
0.019 
(3%) 

0.08 

5 
M1P + GDP → GDPman + PPi (2.0) 
F6P → M6P (2.0) 
3PG + NAD+ → 3PHP + NADH (0) 

M1P guanyltransferase 
M6P isomerase 
P-glycerate dehydrogenase 

0.096 
(14%) 

0.08 

6 M1P + GDP → GDPman + PPi (4.0) M1P guanyltransferase 
0.277 
(40%) 

0.03 

 
 

Since all strategies were based on deleting key points of S. cerevisiae metabolism we used the 

Over/Under-expression (Gonçalves et al., 2012) plug-in built for OptFlux v3.2.7 (Rocha et al., 

2010) that determines which reaction fluxes should be increased, decreased or eliminated to 

accomplish a given metabolic engineering aim. The best solutions obtained are described in Table 

4.4 and point to three critical strategies: a) down-expression of enzymes that consume 3PG in the 

glycolytic pathway (solution 4); b) over-expression of the GDP-mannose pathway (solution 5 and 

6) and c) elimination of reactions belonging to the serine pathway, which starts with the 

dehydrogenation of 3PG (solution 5). From these three strategies, solution 5 has a good specific 
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growth rate while MG yield is 14% of the theoretical maximum. On the other side, solution 6 

produces 40% of MG maximum theoretical yield but with low growth (30% of µwt), making these 

two solutions similar in global BPCY. One common point for all solutions is that biomass and MG 

yield correlate inversely, meaning that when biomass is high, predicted MG yield is low and vice-

versa. Therefore, strain design must consider a solution that conciliates biomass production and 

MG yields by pinpointing key reactions.  

 

 

 
Figure 4.2 Schematic representation of the in silico-derived strategy to increase MG production. Green arrows 
represent the overexpression of the genes PMI40 and PSA1. Red crosses indicate the knockouts of the 
genes for serine production – SER3 and SER33 – and for pyruvate kinase (gene PYK1). PYK1 knockout is 
not possible to achieve in S. cerevisiae under growth on glucose. A way around this was to diminish PYK1 
promoter strength to down-express PYK1. Abbreviations: MG, mannosylglycerate; GDPman, GDP-mannose; 
Man-1P, mannose-1-phosphate; Man-6P, mannose-6-phosphate; G3P, glyceraldehyde 3-phosphate; DHAP, 
dihydroxyacetone phosphate; 1,3bPG, 1,3-bisphospho-D-glycerate; 3PG, 3-phosphoglycerate, 2PG, 2-

phosphoglycerate; PEP, phosphoenolpyruvate. 

 

Based on these analyses, several strategies were selected with different complementary aims 

based on biological feasibility. One of the aims was to increase the GDP-mannose pool and this 

was sought by overexpressing PSA1 and PMI40, coding the mannose-1-phosphate 

guanyltransferase (part of solution 4) and the mannose-6-phosphate isomerase (part of solution 

5), respectively. A valid strategy to increase the 3PG pool consists in blocking its flux towards 

serine synthesis by knocking out SER3 and SER33 genes that code for two isoenzymes called 3-

phosphoglycerate dehydrogenase (solution 5). Finally, to further increase the 3PG pool, an under-

expression of the PYK1 gene (pyruvate kinase) was also selected (Figure 4.2). The phenotype 

simulation of this combined solution using MOMA indicates a production of MG of 0.09 
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molMG.molglc
-1 (15% of the theoretical maximum) with a specific growth rate of 0.09 h-1, very similar 

to what is obtained in the wild-type, i.e., 0.1 h-1.  

 

4.3.2 In vivo implementation 

 

MG biosynthesis in S. cerevisiae was firstly observed by Empadinhas and co-workers who cloned 

the mgsD gene from Dehalococcoides mccartyi (formerly Dehalococcoides ethenogenes) to 

confirm the functionality of this gene (Empadinhas et al., 2004). To improve mgsD transcription, a 

set of engineering strategies were implemented that included plasmid, promoter and terminator 

change (as referred in the Methods Section). S. cerevisiae harboring pMG, the newly constructed 

plasmid, was named strain S1 that was able to accumulate 12.91 mg.gDW
-1 of MG in batch culture, 

corresponding to a 1.8-fold increase in comparison with pDES (see Chapter 3, Table 3.2). These 

results refer to cells grown in shake flasks with SD medium plus 20 g.L-1 of glucose and the MG 

content was assessed upon glucose depletion.  

To increase GDP-mannose availability, we transformed strain S1 with plasmid pSP02 carrying 

genes PSA1 and PMI40, yielding strain S2 (Table 4.3). Additionally, the two incremental strategies 

advocated to increase the 3PG pool were implemented. First, the SER3 and SER33 genes were 

disrupted to block 3PG flux towards the production of serine and this strain was subsequently 

transformed with plasmids pMG and pSP02 (strain S3). Finally, an under-expression of PYK1 was 

envisaged by constructing a PYK1 promoter lacking an upstream activating sequence (UAS) 

(Nishizawa et al., 1989). The resulting mutant was named S4 and contained the genetic alterations 

∆SER3 ∆SER33 PYK1p∆653-PYK1 and the plasmids pMG and pSP02.  

All strains were evaluated in controlled, aerobic batch bioreactors with 20 g.L-1 of glucose in SD 

medium until growth on glucose was no longer observed. Over-production of enzymes leading to 

GDP-mannose (strain S2) exhibited a 1.35-fold improvement on MG titer (32.6 vs 44.1 mg.L-1), 2-

fold improvement in MG yield per biomass (12.9 vs 25.3 mg.gDW
-1) and a reduction of 31% on 

biomass to substrate yield, in relation to strain S1 (Figure 4.3 and Table 4.5). Fermentation by-

products such as glycerol, acetate and glycerol were also measured and show a similar profile of 

production. In strains S1 and S2, all glucose was exhausted.  

Genetic alterations to increase the 3PG pool implemented in strains S3 and S4 did not increase 

MG titer or MG yield per biomass and reverted production to values obtained in the reference 

strain S1 (Figure 4.3 and Table 4.5). These strains did not consume glucose completely. The 

profile of by-product accumulation in strain S3 is similar to that observed for strains S1 and S2. In 

contrast, strain S4 exhibits a lower accumulation of acetate and ethanol. This was expected as a 

consequence of the down-regulation applied at the level of pyruvate kinase expression. The 

growth characteristics of the mutants were also studied and showed that the genetic modifications 

affect the duration of the lag phase, the growth rates and biomass production of all strains. For 

instance, strain S2 growth and biomass yield are highly impaired in relation to strain S1, which 

seems to correlate with the production of MG and its accumulation in the cell (Table 4.5). Cellular 

growth in strain S2 was arrested at 24 h upon inoculation. At this point, MG accumulation reached 
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26 mM (Table 5) and glucose was still present in the culture broth (Figure 4.3). After 34 h, glucose 

was completely exhausted but this metabolization did not translate into biomass production.  

 

 

 
Figure 4.3 Growth curve, MG production and end-products of strains S1, S2, S3 and S4 in controlled 

bioreactors. S1 (mgsD), S2 (mgsD ↑pmi40 ↑psa1), S3 (mgsD ↑pmi40 ↑psa1 ∆ser3 ∆ser33), and S4 (mgsD 

↑pmi40 ↑psa1 ∆ser3 ∆ser33 pykp∆653-pyk), were cultivated in SD medium with 20 g.L-1 of glucose. Symbols 

are (▲) glucose, (●) MG, (□) ethanol, (∆) OD600nm, (■) glycerol and (○) acetate. Values represent mean ± SD 

of at least two independent experiments. 

 

Interestingly, of all compounds analyzed, MG is the only one produced by strain S2 in the interval 

from 24 to 34 h, increasing up to 25.30 mg.gDW
-1, which corresponds to a concentration of 39.78 

mM. This concentration is 2-fold higher than what is obtained in strain S1 and is probably related 

with a 33% decrease in the growth rate of strain S2 in comparison with S1 (Table 4.5). Strains S3 

and S4 show a very different growth profile when compared with S1 and S2, characterized by a 

pronounced lag phase (Figure 4.3). Strain S3 has a growth rate similar to S2 but with a higher 

yield on biomass and final OD. The pyruvate bottleneck distinctively affected strain S4 by reducing 

the specific growth rate to 0.19 h-1 and the final OD. MG production for these two strains decreased 
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significantly to values observed in strain S1, either on yield per biomass or intracellular 

concentration (Table 4.5).  

 
Table 4.5 Specific growth rates, biomass yield on substrate, MG yield on biomass and MG concentration for 
all strains studied. Cells were cultivated in controlled, aerobic batch bioreactors with 20 g.L-1 of glucose in SD 

medium until growth on glucose was no longer observed. 

Strain µmax (h-1) YX/S (gDW.gglc
-1) YMG/X (mg.gDW

-1) MG content (mM) 

S1 0.33 ± 0.05 0.13 ± 0.016 12.91 ± 0.13 20.30 ± 2.72 

S2 0.22 ± 0.02 0.09 ± 0.003 25.30 ± 1.91 39.78 ± 3.01 

S3 0.23 ± 0.06 0.13 ± 0.002 12.81 ± 1.26 20.14 ± 1.99 

S4 0.19 ± 0.03 0.12 ± 0.007 13.03 ± 1.89 20.49 ± 2.96 

 
 

These results were not predicted by the simulations using the iMM904 genome-scale model, which 

supports the conclusion that the observed phenotypes for strains S3 and S4 are not related to flux 

constrains but to regulatory phenomena that cannot be predicted by stoichiometric models. To 

investigate further this hypothesis, the activities of the enzymes from the GDP-mannose pathway 

and pyruvate kinase were determined. The strains S2 and S4 were selected to compare the impact 

of disrupting genes SER3 and SER33 plus the modification in the PYK1 promoter. Enzymatic 

activities were measured in cells at mid-exponential phase to show no significant differences 

between the two strains for the enzymes mannose-6-phosphate isomerase (PMI40p) and 

phosphomannomutase (SEC53p) (Figure 4.4). However, the activity of GDP-mannose 

pyrophosphorylase (PSA1p) decreased significantly for strain S4 in comparison to S2. This 

corresponds to a 4-fold reduction in the activity of the PSA1p, which must influence the GDP-

mannose pool size.   

 

 
Figure 4.4 Activity of the enzymes mannose-6-phosphate isomerase (PMI40p), phosphomannomutase 
(SEC53p), GDP-mannose pyrophosphorylase (PSA1p) and pyruvate kinase (PYK1p) for strains S2 and S4. 
Enzymatic activities are shown as percentage of the respective activities determined for strain S2. Data are 
mean+/-SD from three independent measurements. 
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Pyruvate kinase activity was also measured to confirm the bottleneck applied by truncating the 

PYK1 gene’s promoter and revealed a 40% decrease for strain S4 in comparison to S2 (Figure 

4.4). This decrease is consistent with literature reports (Nishizawa et al., 1989), and proves the 

feasibility of this type of strategy for the manipulation of essential genes.  

 

Table 4.6 Physiological parameters, MG titer and MG productivity for strains S2 and S4 cultivated in 
chemostat mode in SD medium with 20 g.L-1 of glucose at dilutions of 0.1 and 0.05 h-1. MG was extracted 
from cells with a methanol/chloroform mixture. Data represent mean ± SD in steady-state.  

Strain Dilution (h-1) YX/S Glucose (g.L-1) Ethanol (g.L-1) MG titer (mg.L-1) MG productivity (mg.L-1.h-1) 

S2 
0.10 0.10 5.3 ± 0.82 3.0 ± 0.4 34.2 ± 2.6 3.4 ± 0.3 

0.05 0.18 0 0 41.0 ± 5.1 2.0 ± 0.3 

S4 

0.10 0.17 1.14 ± 0.36 2.39 ± 0.4 11.2 ± 2.3 1.1 ± 0.2 

0.05 0.22 0 0 22.5 ± 1.8 1.0 ± 0.2 

 

 

To assess MG productivity and physiological behavior of key strains, S2 and S4 were cultivated 

in overflow (D= 0.1 h-1) and in full respiratory metabolism (D=0.05 h-1). Chemostat cultivation is 

the best way to manipulate microbial metabolism for its simplicity to control different metabolic 

states (Nielsen et al., 2003). For strain S2, overflow metabolism was achieved by cultivating cells 

at dilution 0.1 h-1; there was production of ethanol (3 g.L-1), acetate (0.7 g.L-1) and glycerol (0.5 

g.L-1). Biomass yield in these conditions was 0.10 gDW.gglc
-1, MG titer and MG productivity were 

34.2 mg.L-1 and 3.4 mg.L-1.h-1, respectively (Table 4.6). No ethanol was observed when cells from 

strain S2 were cultivated at dilution 0.05 h-1, although glycerol (0.9 g.L-1) and acetate were 

produced (2.5 g.L-1). Biomass yield and MG titer increased and MG productivity decreased in 

relation to dilution 0.1 h-1. The same profile was obtained with strain S4 for biomass yield, acetate 

(1 vs 2.2 g.L-1 for dilution 0.1 and 0.05 h-1, respectively) and MG titer, glucose, ethanol and glycerol 

(1 vs 0.5 g.L-1) as the dilution varies from 0.1 to 0.05 h-1. MG productivity revealed to be 

independent of dilution (Table 4.6). 

 

 

4.4 Discussion 

 
The optimization of metabolic networks envisaging the production of target compounds often 

demands changes in different genes/pathways. As metabolic pathways are intimately connected, 

these alterations can often affect neighbor pathways, producing phenotypes that are difficult to 

predict. Genome-scale models are an excellent tool to predict and understand the implications of 

multiple genetic alterations. Multiple cases of success have been described for in silico driven 

solutions. That is the case of lycopene (Choi et al., 2010) and L-valine (Park et al., 2007) 

biosynthesis in engineered E. coli strains or cubebol (Asadollahi et al., 2009), vanillin (Brochado 

et al., 2010) and succinate (Otero et al., 2013) in S. cerevisiae.  
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In this work, we used the genome-scale model iMM904 to identify target genes for improvement 

of MG yield. Different methods were used to search for the best strategy to achieve a higher MG 

yield. The curated solution aimed to improve flux towards GDP-mannose and to increase 3PG 

concentration in the cell. The over-expression of PMI40 and PSA1, suggested by the simulating 

annealing algorithm, led to an increase of 2-fold on the MG production in comparison to strain S1. 

Strain S2 and MG02 from Chapter 3 have the same straightforward strategy of over-expressing 

PMI40 and PSA1. However, S2 showed a better MG yield than MG02 (25.30 versus 15.86 mg.gDW
-

1, respectively). The difference in MG production between strain MG02 (Chapter 3) and strain S2 

derives from the optimization in mgsD gene construction (see Methods section). 

In addition to improve flux towards GDP-mannose, two strains were constructed with the intention 

of augmenting 3PG pool by disrupting the carbon flux towards the production of serine 

(∆SER3∆SER33) (strain S3) and by decreasing pyruvate kinase activity through downregulating 

PYK1 expression (strain S4). By truncating the PYK1 promoter we were able to reduce pyruvate 

kinase activity by 40% (Figure 4.4). Pearce and co-workers developed a similar construction to 

decrease PYK1 gene transcription by substituting the PYK1 promoter with a truncated version and 

called this strain YKC11 (Pearce et al., 2001). YKC11 had reduced growth and glucose 

consumption and accumulated glucose-6-phosphate and fructose-6-phosphate while having 

reduced pools of fructose-1,6-biphosphate and trehalose-6-phosphate. In theory, the 

accumulation of glucose-6-phosphate and fructose-6-phosphate and the bottleneck on pyruvate 

kinase would favor the synthesis of MG by increasing the precursors 3PG and GDP-mannose 

(produced from fructose-6-phosphate). Strain YKC11 also presented a reduction on the production 

of ethanol and glycerol, as observed in this work with strain S4. However, this strategy of 

increasing 3PG concentration did not improve MG yield. To understand why MG production in 

strain S4 was lower than in strain S2, the activity of enzymes belonging to the GDP-mannose 

pathway were measured (Figure 4.4). PMI40p and SEC53p activity revealed to remain unchanged 

in strains S2 and S4, while the activity PSA1p showed a drastic decrease for strain S4, in 

comparison with S2. These results help to explain the reduced production of MG in strain S4, as 

a strong depression of PSA1p reduces the production of GDP-mannose in the cell (Janik et al., 

2003) that will ultimately compromise the production of MG. Activity levels of PSA1p for strain S3 

were not measured but we suspect that this enzyme also has an reduced activity based on the 

decrease of MG production. In light of these results, it is reasonable to conclude that PSA1p 

activity in strains S3 and S4 is being affected by the alterations made on the glycolytic pathway.  

An understanding of what might be influencing PSA1p activity is difficult to infer as information on 

PSA1p regulation is very limited. However, we postulate two scenarios. First, alterations on serine 

pathway and the reduced activity of PYK1p activated a regulatory network that targets PSA1p. 

The regulatory network of S. cerevisiae is a very complex system and can take place at different 

levels. Cells control protein synthesis based on feedback obtained from environmental or genetic 

conditions. This action starts with gene expression through modulation of the chromatin structure 

(Wyrick et al., 1999) and gene transcription (O’Malley et al., 1977). Next point of control is on 

mRNA pools which are regulated through modifications on mRNA and by the translation 
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machinery (Filipowicz et al., 2008). Once proteins are synthesized, post-translational modifications 

dictate the fate of these molecules regarding activation / inhibition or even destruction (Mann & 

Jensen, 2003). PSAp activity can be influenced by each one of these regulation mechanisms or 

even a combination of more than one. Another explanation to PSA1p reduced activity may derive 

from the reduced growth rate of strains S3 and S4 in relation to strain S1 which might affect PSA1 

transcription levels, that are intimately connected to cell division. It is well known that PSA1p 

synthesizes GDP-mannose to be incorporated into N-linked and O-linked glycoproteins and its 

deletion is lethal to yeast cells (Hashimoto et al., 1997). Moreover, hypomorphic mutants exhibit a 

variety of defects on cell wall biosynthesis, sensitivity to osmotic stress, lack of transformation 

competence and leakage of cell surface proteins (Yoda et al., 2000). Transcription of PSA1 is 

regulated by cyclins of G1 cell cycle that control budding division (Benton et al., 1996). Even more, 

PSA1 transcription is positively regulated by GTP levels inside the cell (Kuehner & Brow, 2008; 

Shimma et al., 1997). The link between cell growth / proliferation and PSA1 was established by 

Melamed and co-workers when transcript levels of cells were analyzed in response to high salinity. 

Under these conditions, transcript levels of PSA1 and of other genes involved in cell-wall 

metabolism were highly reduced in comparison with optimal growth conditions (Melamed et al., 

2008). In the present work, we have observed that strains S3 and S4 show a prolonged lag phase 

and reduced growth rate, which, based on the studies referred above, may be directly related with 

lower levels of PSA1 transcription.  

Clearly, GDP-mannose pathway is highly regulated and connected to the glycolic pathway and 

cell growth. New strategies to improve the production of MG must have into consideration the 

impact on growth rate of S. cerevisiae.  

Despite the success that computational tools have in the development of quality of solutions to be 

applied in metabolic engineering, they have failed to solve our metabolic problem. By applying the 

in silico solutions to S. cerevisiae we learned that MG synthesis is dependent of a regulatory 

network surrounding GDP-mannose. Genome-scale models are built on stoichiometric-based 

calculations and do not account for regulatory phenomena. However, it is important to stress out 

that the solutions obtained by the simutating annealing algorithm to increase MG yield were simple 

and robust and had a literature support, as PSA1 over-expression increases GDP-mannose pool 

in S. cerevisiae (Janik et al., 2003) and PYK1 down-expression increases fructose-6-phosphate 

pool (Pearce et al., 2001).  

In the future, it is expectable that genome-scale models evolve to harbor information regarding 

gene expression and regulation. The first ME-model for E. coli has been published (O’Brien et al., 

2013) and combines the stoichiometry of a genome-scale model with gene expression for a 

particular environmental condition or/and genetic alteration. These ME-models are a step to 

improve phenotype predictions and might be a solution to solve problems similar to what is 

presented here.  

In this work, the in silico solutions predicted an increased MG production by targeting the over-

expression of PMI40 and PSA1 and by disrupting reactions that consume 3PG (Table 4.4). From 

the applied strategies, only the overexpression of the GDP-mannose pathway (strain S2) resulted 
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in an enhanced MG production (Figure 4.3 and Table 4.5). Continuous mode production of MG 

with strain S2 shows better results with higher dilution rates, as observed in Chapter 3 (Table 4.6). 

These results reinforce the connection between cell division and GDP-mannose formation, as 

discussed above. Regarding strain S4, MG productivity in continuous mode seems to be unrelated 

with the dilution rate and may be due to the reduced activity measured for PSA1p. Clearly, while 

strain S2 served as a successful demonstration of systems biology-based strategies, new rounds 

of optimization are needed to increase MG productivity capable of competing with the existing 

processes.  
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The discovery of organisms capable of thriving in adverse environments was received by the 

scientific community with astonishment and excitement. Since then, multiple questions have been 

asked: How can these organisms survive and multiply? What are the adaptation strategies? A 

mechanism related with adaptation to extreme habitats is the synthesis of novel compounds with 

superior ability to protect cellular components against heat and osmotic stresses (da Costa et al., 

1998). These compounds are called compatible solutes and they accumulate intracellulary, 

sometimes in high concentration, without interfering with cell physiology. Mannosyglycerate (MG) 

is the most widespread solute found in marine (hyper)thermophiles and for its remarkable ability 

to stabilize proteins it became pertinent to develop efficient producers so that MG could be 

commercialized at competitive prices and widely used.  

 

The main goals of this thesis are: i) to evaluate the in vivo role of MG regarding the stabilization of 

proteins; and ii) to construct a cell factory to permit a wider commercialization and utilization of 

MG.  

To evaluate MG ability to protect proteins in the intracellular milieu, a new strain capable of 

producing MG and expressing α-synuclein (α-Syn) was constructed and compared to a strain 

expressing α-Syn only. Encouraged by these results, we set to develop a cost-effective bioprocess 

to produce MG. Saccharomyces cerevisiae was the industrial microorganism selected to 

accommodate the MG pathway. 

 

 

MG acted as an inhibitor of the aggregation of α-synuclein (a protein involved in Parkinson´s 

disease) in the intracellular milieu of the yeast S. cerevisiae. 

 

The first yeast model of Parkinson disease (PD) was published in 2003 by Outeiro and Lindquist 

(Outeiro & Lindquist, 2003) who showed that the mechanisms underlining α-Syn expression in 

humans can be partially represented in the unicellular fungi – S. cerevisiae. Although this model 

was developed with the purpose of finding therapies to treat PD, it became a tool to understand 

the phases of protein aggregation inside cells. For this reason, we selected this yeast model of 

PD to prove, for the first time, that MG is able to protect proteins inside the intracellular space, and 

to gain insight into the mechanisms underlying the ability of MG to reduce cell toxicity induced by 

α-Syn aggregates. Even more, we venture on the potential of MG as a lead compound for the 

development of drugs against misfolding-related neurodegenerative diseases.  

 

As referred in Chapter 1, marine (hyper)thermophiles accumulate MG mainly in response to 

osmotic stress. Exceptions to this behavior are observed in Rhodothermus marinus and 

Palaeococcus ferrophilus; these organisms accumulate MG in response to osmotic and thermal 

stresses (Neves et al., 2005; Silva et al., 1999). However, in vitro studies have demonstrated that 

MG is capable of protecting a variety of model proteins against thermal denaturation and 

aggregation, such as lactate dehydrogenase, glutamate and alcohol dehydrogenase (Ramos et 
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al., 1997); malate dehydrogenase, nuclease A, and lysozyme (Faria et al., 2008). Taking these 

results into consideration it is feasible to postulate a correlation between MG accumulation and 

protection of cell components against heat damage. This hypothesis is strengthened by the results 

obtained in Chapter 2. Cells expressing α-Syn and accumulating MG showed a clear reduction of 

the aggregation of this prone-aggregating protein. The same inhibition effect was observed when 

α-Syn was incubated with 0.1 M of MG in vitro.  

 

The protein α-Syn is highly expressed in the human brain, especially in the dopaminergic neurons 

that control multiple brain functions, including voluntary movement and a broad array of behavioral 

processes such as mood, reward, addiction, and stress (Chinta & Andersen, 2005; Stefanis, 

2012). Although its function remains unclear, α-Syn is localized specifically in the nerve terminal 

of the neuron and is associated with the localization of developing synapses, arriving once the 

synaptic vesicle is matured. Multiple factors seem to contribute to the development of PD, from 

genetic alterations to environmental conditions. However, the most critical factor appears to be 

age. As we grow old, mitochondrial dysfunction increases and the quality of protein degradation 

systems degrades (e.g. ubiquitin proteasome system and autophagy), disrupting cell homeostasis 

and promoting cell death (Reeve et al., 2014). Familial forms of PD correlate with the existence of 

mutations and duplications of α-Syn gene and mutations in proteins from complex I of mitochondria 

(e.g. PINK1, PARK2 and PARK7 genes) or in protein quality control systems (e.g. LRRK2 gene) 

to cite a few examples (Trinh & Farrer, 2013). 

 

Using a yeast model of PD we showed that MG significantly reduced α-Syn aggregation. Such 

effect can arise either by direct stabilization of the native α-Syn structure, or by stimulating protein 

degradation systems. The later hypothesis was tested by measuring the levels of chaperones 

which are able to refold aberrant forms of α-Syn. Additionally, α-Syn clearance and proteasome 

activity were analyzed once protein synthesis was arrested. In both experiments, MG 

accumulation did not affect chaperone expression or proteasome activity, strengthening the 

hypothesis that MG acted directly on α-Syn structure. In fact, it was demonstrated that MG is able 

to reduce α-Syn aggregation in vitro. A characteristic of PD at the cellular level is the significant 

increase of ROS levels due to elevated toxicity of α-Syn inclusions. This is indeed corroborated 

by our observations; most importantly, we showed that this stress indicator dropped in the 

presence of MG. We concluded that MG was able to reduce α-Syn fibrillation in vitro and to 

decrease ROS levels in yeast without affecting the protein degradation systems. So, the remaining 

question was: Could MG act as a molecular chaperone in vivo? To check this hypothesis, α-Syn 

oligomeric species were separated by size in cells with and without MG. Results show that cells 

accumulating MG have α-Syn oligomers of smaller size than cells without MG, indicating that this 

osmolyte interferes with the early stages of the fibrillation process preventing further 

polymerization.  
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 In conclusion, this work brings new insights into the role of MG in vivo: This solute acts as a 

chemical chaperone and the stabilization mechanism involves direct solute/protein interactions. It 

also points to new fields for MG applications and emphasizes the need for development of an 

efficient industrial bioprocess.  

 

 

Increasing flux towards GDP-mannose in S. cerevisiae improves the production of 

mannosylglycerate  

 

Microorganisms can produce several compounds at high levels, which make them excellent hosts 

to produce desired chemicals at large-scale. Some of these microorganisms are natural-producers 

and to increase the production level, industrial bioprocesses are developed by optimizing growth 

conditions and medium composition. On the other hand, the development of genetic manipulation 

tools has opened the way for the construction of cells tailored to produce new compounds (Lee et 

al., 2009). Some organisms are capable of growing fast up to high density with low medium 

requirements and show high resilience to stressful conditions, which makes them excellent cell 

factories. One of these organisms is S. cerevisiae. This budding yeast is used for centuries in the 

production of bread and beer, and is one of the most important cell factories. For its importance, 

a wide-range of molecular biology tools were developed and now are used to produce commodity 

compounds such as ethanol, or high-price pharmaceutical products such as artesimic acid 

(Kavšček et al., 2015; Nevoigt, 2008).   

 

In this thesis, we set to optimize the production of MG using S. cerevisiae as a host. Empadinhas 

and co-workers reported the accumulation of MG by engineering S. cerevisiae with a gene 

encoding the mannosyl-3-phosphoglycerate synthase/phosphatase from Dehalococcoides 

mccartyi (Empadinhas et al., 2004). This mesophilic, neutrophilic, and gram-positive bacteria lives 

in a consortium with other species, where it has an important role in the bioremediation of 

groundwater (Loffler et al., 2013). Homologues of mannosyl-3-phosphoglycerate synthase 

(MPGS) from D. mccartyi were found in different branches of the Tree of Life: from Bacteria like 

Thermus thermophilus or Rhodothermus marinus (MG industrial producer), to Fungi (e.g. Sordaria 

macrospora or Actinoplanes friuliensis) in which MG accumulation was never observed, or in two 

phyla of Archaea: Crenarchaeota (e.g. Aeropyrum pernix and Staphylothermus marinus) and 

Euryarchaeota (e.g. Palaeococcus ferrophilus or Pyrococcus abyssi) (Borges et al., 2014).  

 

Another critical task in this work was to choose the most appropriate strain of S. cerevisiae. The 

strain CEN.PK2-1C, a laboratory generated strain, was selected for having: i) high growth rates in 

complete and defined media under aerobic and anaerobic conditions in batch, fed-batch and 

continuous culture; ii) high mating and sporulation efficiency; iii) high transformation efficiency; 

and iv) good single-cell formation (no flocculation), which makes this strain the ideal candidate to 

study metabolic fluxes and to engineer for production of a variety of chemicals (Stark & Stansfield, 
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2007). MG is produced from GDP-mannose and 3-phosphoglycerate (3PG). Our first approach to 

improve MG production was to increase the flux to GDP-mannose production from fructose-6-

phosphate. To achieve this goal we cloned the genes PMI40 and PSA1 (coding for mannose-6-

phosphate isomerase and GDP-mannose pyrophosphorylase, respectively) in a multi-copy 

plasmid with stronger promoters and terminators. As the cultivation mode greatly influences the 

production of compounds we have tested growth in shake flasks, batch and continuous mode 

(Chapter 3). The overexpression of PMI40 and PSA1 led to a 1.5-fold increase on MG yield in 

shake flask and 2.2-fold increase in batch cultivation, corresponding to a maximal yield of 15.86 

mg of MG per g of DW (0.13 μmol of MG per mg of protein).  

 

The continuous mode cultivation of S. cerevisiae has been applied to the production of many 

compounds (Nielsen et al., 2003). That is the case of resveratrol (Vos et al., 2015), 

polyhydroxybutyrate (Kocharin & Nielsen, 2013) or vanillin (Brochado et al., 2010). To the end of 

developing an efficient bioprocess to produce MG, we set to test dilution rates and determine the 

correspondent MG productivity. Our results show that MG productivity is positively connected with 

higher growth rates, as the best result was obtained with a dilution of 0.15, corresponding to 1.79 

mg of MG per DW per hour. This correlation may be due to the fact that MG precursors are derived 

from glycolysis, as is the case of GDP-mannose (produced from fructose-6-phosphate), or are 

actually glycolytic intermediates, as for 3PG. Therefore, the synthesis of MG is favored by the high 

glycolytic fluxes obtained with elevated growth rates.   

 

 

Improving MG production in S. cerevisiae through in silico design 

 

The metabolic networks of cells are a product of thousands of millions of years of evolution 

“engineering”. Disrupting these optimized networks to serve our purposes is therefore a daunting 

goal. The construction of constrained-based models at a genomic scale allied with computational 

tools that try to mimic cell behavior is boosting the area by producing holistic strategies that will 

redirect metabolism towards the production of a particular product (Otero & Nielsen, 2010).  

 

Multiple cases of success have been achieved by applying in silico design strategies to improve 

product titer in microorganisms. For this reason, we set to use the most robust computational tools 

to design a S. cerevisiae strain that would produce high levels of MG. These tools account for 

methods on simulation of phenotypes and optimization of strains which allied with evolutionary 

algorithms produce solutions to improve the in silico production of MG. To run these methods and 

algorithms we took advantage of Optlux (Rocha et al., 2010). This is a computer program 

developed in Isabel Rocha group that has several tools implemented. The solutions obtained and 

described in chapter 4 are a result of curated outputs from different conjugations of method / 

algorithm (Gonçalves et al., 2012; Maia et al., 2016).  
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All methods tested pointed out two strategies: 1) increase the flux towards the formation of GDP-

mannose; and 2) accumulation of 3PG. These two strategies were achieved by over-expression 

PSA1 and PMI40 genes using a multi-copy plasmid and by truncating the flux from 

phosphoenolpyruvate to pyruvate (Chapter 4). Additionally, the expression of the gene mgsD 

(pDES) was improved by adding a strong ribosome binding site and a synthetic terminator. The 

overexpression of the GDP-mannose pathway genes led to a 2-fold increase in MG production to 

25.3 mg of MG per g of DW, in controlled batch mode.  

 

Table 5.1 MG yield and productivity observed in the strains MG01 and MG02 (Chapter 3) and strains S2 and 
S4 (Chapter 4). Data from chemostat correspond to the highest dilution rates tested.  

 Cultivation mode  

Strains 
Batch  

(mgMG.gDW) 

Chemostat  

(mg.gDW
-1.h-1) 

Reference 

MG01 (mgsD) 7.08 1.22 Chapter 3 

MG02 (mgsD ↑PSA1 ↑PMI40) 15.86 1.79 Chapter 3 

S2 (mgsD ↑PSA1 ↑PMI40) 25.30 2.31 Chapter 4 

S4 (mgsD ↑PSA1 ↑PMI40 ∆SER3 

∆SER33 Pykp∆653-PYK) 
13.03 0.34 Chapter 4 

 

To improve the availability of 3PG, a disruption of the genes SER3 and SER33 (deviates flux 

towards serine production) and a down-expression of the PYK1 (limits pyruvate formation) was 

performed. Strangely, MG production decreased to values obtained by the reference strain, which 

harbored only the mgsD gene encoding the bifuncional enzyme mannosyl-3-phosphoglycerate 

synthase/phosphatase. Curiously, changing the glycolytic flux at the level of pyruvate kinase 

seemed to have a profound effect on the GDP-mannose pathway. This was confirmed by 

evaluating the activity of the enzymes mannose-6-phosphate isomerase (PMI40p), 

phosphomannomutase (SEC53p) and GDP-mannose pyrophosphorylase (PSA1p). These 

enzymes are responsible for the conversion of fructose-6-phosphate from glycolysis into GDP-

mannose. Indeed, the alterations in the glycolytic pathway led to 40% reduction in the activity of 

PSA1p, which likely affects the production of GDP-mannose and consequently explains the 

decrease in MG production. A list of the most relevant yields and productivities of MG obtained in 

these thesis is summarized in Table 5.1.  

 

The phenotypic simulations of mutant strains using genome-scale models can only predict flux 

changes on the network and cannot foresee regulatory layers that are activated in response to 

genetic alterations. In order to predict the regulatory mechanisms from a cell, genome-scale 

models must integrate regulatory mechanisms acting on transcriptional, post-transcriptional, 

translational and post-translational levels (Faria et al., 2014). The first model of integrated 

metabolic and regulatory networks of E. coli was developed by Covert and co-workers and 
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established that regulation significantly affects the quality of predictions for growth phenotypes 

and gene expression experiments (Covert et al., 2004). Herrgård and co-workers also developed 

a model for S. cerevisiae that integrated a nutrient-controlled transcriptional regulatory data with 

a genome-scale model and identified regulatory cascades connecting transcription factors to 

target genes. This combined model is also capable of predicting growth phenotypes of knock out 

transcription factor strains (Herrgård, 2006). In the future, we expect that these computational 

models will enable catching the complexity of biological processes. The task of integrating these 

different models is challenging the scientific community. At the moment, metabolic and regulatory 

models are being combined from high-throughput data with the help of new algorithms. These 

models will be useful to understand the complexity of the biological processes, and will become 

an indispensable tool to design experimental protocols and also to increase the rate of 

biotechnology successes (Imam et al., 2015). 

 

MG is naturally produced by several organisms that grow optimally above 60ºC. Currently, MG is 

extracted from Rhodothermus marinus with a maximal yield of 0.8 μmol.mgprotein
-1 (Nunes et al., 

1995). A trehalose-deficient Thermus thermophilus RQ-1 mutant is able to accumulate 0.6 

μmol.mgprotein
-1 of MG in a fed-batch cultivation (Egorova et al., 2007). S. cerevisiae strain S2 

(Chapter 4) produces 0.21 μmol.mgprotein
-1 of MG (considering 0.45 g protein per g of biomass 

(Lange & Heijnen, 2001)).  

 

The MG-producing yeast (S2 strain) showed low productivity yield, but possesses several 

advantages in comparison to natural producers, namely: 1) growth at 30ºC, a moderate 

temperature that contrasts with the temperature used to cultivate the natural producers (between 

65 and 100ºC); 2) the organism is easily grown with minimal nutrient requirements and 3) there 

are various bioprocesses already implemented in S. cerevisiae to product a wide range of products 

(Kavšček et al., 2015; Krivoruchko & Nielsen, 2014) 

 

 

Recommended future work 

 

In this thesis, we were able to increase the production of MG in S. cerevisiae. However, the 

production is still far from that of the natural producers. New rounds of optimization are needed to 

improve MG production, such as: 

 

1. Improving the flux to GDP-mannose by inserting new copies of the genes PSA1 and 

PMI40 in the genome. Additionally, a search for heterologous proteins with higher activity 

could also lead to an improved production of GDP-mannose; 

2. Characterizing the regulatory network that controls the synthesis of GDP-mannose and 

3PG. This data is important to select the best genetic manipulation to channel the 

glycolytic flux towards the MG precursors; 



General discussion and future perspectives 

97 
 

3. Searching and charactering new mesophilic mannosy-3-phosglycerate 

synthase/phosphatase to find enzymes with higher activity towards the synthesis of MG; 

4. Construction and characterizing a S. cerevisiae expressing the mannosylglycerate 

synthase from plants (single-step pathway for MG). However, in this case we would also 

have to express a plant enzyme to convert 3PG into D-glycerate since there is no 

evidence that S. cerevisiae has such enzyme, either on SGD (Cherry et al., 2012), YMDB 

(Jewison et al., 2012) or Brenda (Schomburg et al., 2004).  

5. In terms of operating mode, it would be important to culture S. cerevisiae MG-producing 

strains in a fed-batch mode, and compare the yields with the continuous mode. 
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