
September 2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

João Pedro Pereira Mendes 

 

 

[Nome completo do autor] 

 

 

[Nome completo do autor] 

 

 

[Nome completo do autor] 

 

 

 

[Nome completo do autor] 

 

 

[Nome completo do autor] 

 

 

[Nome completo do autor] 

 

 

[Nome completo do autor] 

 

 

Bachelor of Science in Chemical and Biochemical Engineering 

 

[Habilitações Académicas] 

 

 

[Habilitações Académicas] 

 

 

[Habilitações Académicas] 

 

 

 

[Habilitações Académicas] 

 

 

[Habilitações Académicas] 

 

 

[Habilitações Académicas] 

 

 

[Habilitações Académicas] 

 

 

Chromatographic purification of virus particles 

for advanced therapy medicinal products 

 

 

 

[Título da Tese] 

 

Dissertation submitted in partial fulfillment of requirements for the degree of  

Master of Science in 

Chemical and Biochemical Engineering 

 

 

 

Dissertação para obtenção do Grau de Mestre em 
[Engenharia Informática] 

 

Adviser: Ricardo Silva, Post-Doc Researcher, ITQB-UNL 

Co-adviser: Cristina Peixoto, Competence Driven R&D Lab Head, 
ITQB-UNL 

 

  Examination Committee: 

  

Chairperson: Professor Mário Fernando José Eusébio, FCT-UNL  
 

  

Opponent: Professor José Paulo Barbosa Mota, FCT-UNL 

  

  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157638282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 



i 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chromatographic purification of virus particles for advanced therapy medicinal products 

Copyright © João Pedro Pereira Mendes, Faculdade de Ciências e Tecnologia, Universidade Nova 

de Lisboa. 

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo 

e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares 

impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido 

ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a 

sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde 

que seja dado crédito ao autor e editor. 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my father 

 

 

 

 

 



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Acknowledgments  
 

5 years later, many working hours later, many unslept hours later, many tears, many 

smiles, many failures and successes later, it came to an end. This is the goal line of a journey that 

wasn´t always easy but had its moment and was worth it. To all those who helped along the 

way, thank you so much. 

To Ricardo, my adviser, for his help, patience, knowledge and guidance. For giving me a 

glimpse of the real world; for allowing me to work side-by-side and learn from his work; for 

teaching me what being an engineer means; and far and for most, for always believing and 

impelling me to do better and be better. 

To Cristina, my co-adviser, for the opportunity to develop this thesis at IBET, for the risk 

took and the gamble made. But most important, for the encouraging words and the confidence 

shown throughout the journey that motivated me to do my best. 

To my lab colleagues, my friends, Mafalda, Sofia, Sara, Ana, Hugo, Tiago e Ana Sofia, for 

their support and sympathy, for the moments inside and outside the lab, for being there when 

I needed a kind word or being called up, but primarily for making me feel part of the team. 

To my friends, Tiago, Jessica and all the others that my journey gave the opportunity to 

meet, for the stories that I’ll remember forever, the late hours studying and a friendship worthy 

of a tale, it was my honour to finish this by your side and have you as friends. 

To my mother, my father and my sister for their support and love, for the countless 

moments of sharing and complicity, for the values, the education and for being there every time 

I needed. 

To Mariana, my best friend, my love, my everything, for these incredible 5 years, for the 

person that you are, for being by my side when I needed the most, for every moment, without 

you this wouldn’t be possible. 

To all and everyone my sincere and deepest OBRIGADO! 

 

 

 

 



vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Abstract 
 

 The increasing number of cancer diagnoses in the last decades is associated with 

behavioral risks, in addition with those genetically originated. The fight against the disease 

usually relapses in not selective mechanisms like chemotherapy or radiotherapy, that induce the 

organism in deep alterations and side effects. One of the alternative strategies relies on the use 

of advanced therapies medicinal products suchlike viruses, to carry out the treatment in each 

cell taking advantage of their invading abilities. The cost of producing this oncolytic virus directly 

influences process engineering, and thus, numerous efforts have been made to improve each 

purification step. 

 The development of the downstream process begins with the clarification of the 

viruses harvested from the bioreactor with two depth-filtration steps. This allows a gradual 

removal of larger impurities like cell debris with a complete virus recovery. Afterwards, a 

tangential flow filtration step enables volume reduction. After concentration, the retentate is 

subjected to diafiltration which allows not only the permeation of impurities but also the 

formulation of the concentrated product for the next processing step. 

The following step in the purification train is anion exchange chromatography. The 

chromatographic media used was selected after successive screening tests with a library of 

resins and membranes. The conditions used reflect the study carried out, in the sense that the 

load employed corresponds to the DBC10% obtained of 6.2 x 1011 (TP/ml) particles per millilitre 

and the elution of the viruses is preceded by a low salt concentration elution (200 mM) in order 

to remove impurities. The yield obtained is 85%. The purification process ends with polishing 

and sterile filtration to achieve the specified conditions, through a size-exclusion 

chromatography and membrane filters, respectively, obtaining a total yield of 53%.  

The study also opens perspectives on innovation and future development with the 

performance of multi-column chromatography assays and automated filtration tests, both in 

specialized equipment. 
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Resumo 
 

  

O aumento do número de diagnósticos de cancro nas últimas décadas deve-se a riscos 

comportamentais, em associação aos originados geneticamente. O combate à doença recai 

comummente em mecanismos pouco seletivos como quimioterapia ou radioterapia, que 

induzem no organismo profundas alterações e efeitos secundários. Uma das estratégias 

alternativas recai na utilização de vírus modificados para realizar o tratamento em cada célula, 

tirando partido das capacidades invasoras dos vírus. O custo de produção destes vírus 

oncolíticos influencia diretamente a engenharia de processo, e assim sendo, inúmeros esforços 

têm sido enveredados no sentido de melhorar e otimizar cada passo da purificação. 

 O desenvolvimento do processo de downstream inicia-se com a clarificação dos vírus 

recolhidos do bioreator por meio de dois depth-filters. Este passo permite a remoção gradual de 

impurezas maiores com uma completa recuperação de vírus. Seguidamente, um conjunto 

otimizado de filtrações tangenciais permite redução do volume. Após a concentração, o 

retentado é submetido a diafiltrações que possibilitam não apenas a permeação de impurezas, 

mas também a formulação do produto concentrado para o próximo passo de processamento.  

 O passo seguinte consiste na purificação cromatográfica por troca iónica. O meio 

cromatográfico utilizado foi selecionado após testes sucessivos com uma biblioteca de resinas e 

membranas. As condições utilizadas refletem o estudo efetuado no sentido em que carga 

empregue corresponde à DBC10% obtida de 6.2x1011 TP/ml (partículas por mililitro) e a eluição 

dos vírus propriamente ditos é precedida de uma eluição com pouca concentração de sal (200 

mM) de forma a retirar grande parte das impurezas. O rendimento obtido é de 85%. O processo 

de purificação termina com polimento e filtração estéril tendo como objetivo alcançar as 

condições especificadas, através de cromatografia de exclusão molecular e filtros de membrana, 

respetivamente, tendo sido obtido um rendimento total de 53%. 

 O estudo efetuado abre ainda perspetivas sobre inovação e desenvolvimento futuro 

com a realização de ensaios de cromatografia multi-coluna e filtração automatizada, ambos em 

equipamentos especializados. 
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Motivation 
 

The uprising number of diagnosed patients and cancer-related deaths appeals for 

increased dedication and research on this field; besides the clear necessity for better 

treatments, scientific interest and clinical development have never been so pronounced.  

R&D for oncolytic virus therapies appeared at the beginning of the 20th century, 

“surrounded” by theoretical potential and hope for an alternative strategy for the emerging 

cancer diseases. One hundred years later, the development is remarkable, with some already 

being clinically available.  But a lot has yet to be done. Despite all efforts, and mainly due to huge 

production and purification costs, the therapy is too expensive, and therefore, hardly affordable.  

By focusing on improving and optimizing downstream processes, researchers gradually 

reduce its costs, increase overall economic viability, and try to make therapies more accessible 

to patients and healthcare systems.   
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1 Introduction 
 

 

 

 

 

 

 

 

 

 This chapter contextualizes the research on its scientific environment through bioprocess 

analyses and a literature review on the latest purification development for oncolytic viruses, 

complemented with an outline in modelling and multicolumn chromatography. 
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1.1 Cancer and Oncolytic Therapies 
 

Cancer is one of the most notorious and fast growing diseases enhanced by the dietary 

and behavioural risks of nowadays society like high body mass index, lack of physical activity or 

tobacco and alcohol use [1,2]. Presenting itself as the second biggest death cause in 2015, with 

more than 8.8 million registered cases, cancer is responsible for almost 1 in every 6 deaths [1]. 

Traditional and more common treatments include chemo and radiation therapies, which 

through medication or intense radiation doses try to kill cancer cells or reduce tumours [3]. 

Although some satisfactory results can be achieved, their pathway is dangerous and may induce 

other systemic problems due to the amount and severity of dosage or lack of specificity for 

cancer/tumour cells. So new treatments have been developed, such as hormone therapy or 

stem cells transplant [3]. Among these innovative strategies are oncolytic virus therapies which 

take advantage of pathogenic agents to induce specific behaviours on target cells. By genetically 

engineering the perfect modified virus, scientists can promote virus replication and cell lysis 

dependent on the infected cell being normal or cancerous [4]. This is one of the most important 

advantages of virus therapy as it reduces toxicity and effects on non-cancerous cells [5,6]. 

Virus particles have been growing as a platform for drug production and thoroughly 

investigated as one of the most promising approaches for gene therapy vectors and viral 

vaccines [7]. The amount of possibilities brought by the multiple oncolytic viruses available, like 

reovirus or adenovirus, gives researchers a good amount of ways to solve tumours’ killing 

problems, from oncolysis amplification to gene therapy (Fig. 1). 

 

Figure 1 - Oncolytic viruses diversity (a) and implemented modes of action (b) [8] 
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 Targeting mechanisms and tumour selectivity are driven by several factors depending 

on the chosen oncolytic virus. Researchers’ first concern is the cell entry mechanism, being via 

virus-specific or receptor-mediated. Tumour cells often express viral receptors, and while the 

increased selectivity for those highly decreases immune responses, it also increases success 

possibility.  Other factors include rapid cell division inside tumour cells or deficiencies in antiviral 

type I. Even though these might seem problematic, the increased cell division may induce higher 

virus replication selectivity in tumour cells. Associated with the lack of enough antiviral, it can, 

upon cell lysis, release virus among cell debris, developing immunosuppression near the tumour 

and inducing pathways for antitumor immunity [9]. 

 As research and interest grow on this topic, so does the range of studied viruses as 

potential candidates for cancer therapeutics. Examples of these are Vaccinia, Herpes or 

Adenovirus, with many published clinical trials, and other ones like Polio and Parvovirus, still 

without any reported [9]. 

 The first therapy approved by the FDA (the United States Food and Drug Administration) 

that uses oncolytic viruses is Imlygic (talimogene laherparepvec). This “first-of-its-kind” therapy 

targets metastatic melanoma using modified live oncolytic herpes virus on lesions that couldn’t 

be completely removed by surgery [10]. The main advantage of this approach is the limited 

toxicity associated with the “ability to use each individual tumour as a source of antigen to 

generate a highly specific antitumor immune response” [11].  

The interest on these new treatments is reflected on researchers’ publications and 

clinical trials ongoing. Regarding adenovirus vectors, the amount of clinical trials increased from 

approximately 25% in the early 2000’s [12,13] , to a 50% growth per year since 2012, on gene 

therapy targeting cancer [14]. Reported studies presented results on tumour/cancer cells 

located on bone (osteosarcoma) [15], brain [16], skin (melanoma) [17] and head or neck [18].  

In fact, world’s first adenovirus oncolytic therapy was approved in China, back in 2005, to treat 

head or neck cancer. This treatment paired oncolytic virus with chemotherapy, increasing 

response rates to almost 80% compared to 40% when prescribing only the standard procedure. 

The oncolytic used was H101, an adenovirus serotype 5 with deleted E3 gene [19,20]. 

 Studied adenovirus differ on the modification made and targeted cells. Strategies 

contrast from deletion or insertion to modification of specific genes and having many variable 

goals like nonmuscle invasive bladder cancer, diffuse intrinsic pontine glioma or recurrent 

malignant gynaecologic diseases. Nowadays, a substantial number of clinical trials using some 
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of these adenoviruses are taking place. Currently, in phase 1, trials conducted by VCN 

Biosciences, S.L. and DNAtix, Inc., are measuring primarily safety/tolerability and efficacy, on 

therapies developed to target specifically advanced solid tumours and recurrent brain, 

glioblastomas (GBM) or gliosarcoma (GS) [9]. 

 Recombinant adenoviruses are gaining relevance as gene transfer vectors for gene 

therapy owing to its characteristics for this purpose [21]. Morphologically being non-enveloped 

with a diameter from 70 to 120 nanometres, and presenting double-stranded DNA associated 

with high transductions efficiencies and gene expression levels [12,22,23], makes this kind of 

virus particles great candidates for innovative virotherapies [7].  

 

1.2 Upstream Process  
 

 The production of oncolytic adenovirus can be achieved by many producer cells [24,25], 

such as PER.C6, C139 or the most known HEK293 which allows a high titter of productivity [8]. 

Another commonly used cell line is A549 which has been documented for GMP manufacturing 

and was used to produce the oncolytic virus studied in the scope of this thesis. These producer 

cells have been reported in several publications regarding adenovirus for oncolytic therapies 

(Table 1).  

 

Table 1 - Adenovirus production cells [26] 

PRODUCER CELL ORIGIN REFERENCE 

HEK293 
Human embryonic kidney 
with sheared adenovirus 

DNA 
Russell et al., 1977 [27] 

PER.C6 
Human embryonic 

retinoblast cells with a 
shorter adenoviral sequence 

Fallaux et at., 1998 [28] 

A549 Human lung cancer cells Imler et al., 2005 [29] 

C139 Derived from A549 Farson et al., 2005 [30] 
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Their production methods have been thoroughly reported with each one being 

particularly better in some parameters or for specific cell lines. Depending on the working scale, 

the approaches may include spinners, roller bottles and bioreactors [8]. 

 

1.3 Downstream Process  
 

The exponential awareness for oncolytic virus therapies catalyses the interest on 

developing scalable purification processes capable of ensuring compliance with product’s 

demand for clinical grade scale [31]. Although many different strategies are reported in the 

literature, the most usual purification train uses five key process stages such as the ones 

depicted in Figure 2  [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Common five steps of oncolytic viruses purification process [13] 
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Although most of the emphasis of the downstream process is put in the intermediate 

purification stages - chromatography, the improvement of the lysis, nuclease treatment, 

clarification or concentration steps have shown great repercussion on overall processes 

performance. 

The first step after bioreaction is cell lysis. Several strategies can be found in the 

literature to perform this operation. The most common are the use of freeze/thaw cycles 

followed by water baths [12,13,32,33]. Surfactants such as Triton X-100 [34] which can be 

directly applied on the bioreactor or coupled with centrifugation and/or a brief sonication after 

the freeze/thaw cycles [35] have also been recognized for their potential as cell lysis agents. 

Nuclease treatment is particularly important for adenovirus production, since host 

cell’s DNA may theoretically increase potential tumorgenicity [36]. Although other methods can 

be considered, for example, anion-exchange procedures, the most common are nuclease 

treatments with Benzonase (EM Science) and DNA precipitation.  Firstly, through the usage of 

this endonuclease, both DNA and RNA are digested which assists in achieving FDA guidelines for 

nucleic acid contamination. Secondly, it can be introduced in many different solutions due to 

stability and activeness in a large range of conditions [37], making it reliable for adenovirus 

purification either in research or clinical trials[36]. However, it has been reported some difficulty 

in separating benzonase remains from cell lysates [38].  Selective DNA precipitation 

using  ammonium sulphate and polyethylene glycol was also demonstrated [39] with good 

separation yields achieved [40]. 

The objective of clarification stage is to simultaneously remove cell debris or large 

products (e.g. process-related aggregates) in an efficient way and to ensure product quality in 

the flowthrough [7]. The two most common processes are centrifugation and membrane 

filtration. As scalability is a major deciding factor in research and development studies, both 

strategies have been tried on different scales [41]. These multiple options are been considered 

since the 90’s and different approaches have been tested from centrifugation [32] to more 

versatile and robust depth filters [34]. 

Concentration allows reduction of clarified bulk by successful removing low-molecular-

weight process’ impurities like host-cell proteins or fragmented cell DNA. Using pre-selected 

filters and filtration conditions (pore size, TMP and shear-rate), it’s possible to meaningfully 

reduce the volume while increasing volumetric concentration of virus particles [41]. Volume 

reduction decreases upfront investments on downstream processes costs [7] while increasing 

significantly overall viability. Associated with filtration processes, it’s common to introduce a 
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step of buffer exchange, which allows the formulation of the virus bulk for the next processing 

steps. 

 

1.4 Intermediate purification 
 

Virus intermediate purification processes have been improved in every aspect since 

early 1960’s when were mainly based on density gradients [42]. These processes included two 

rounds of cesium chloride (CsCl) or sucrose density gradient ultracentrifugation following freeze-

thaw cycles to disrupt infected cells [43,44].  Among several process’ disadvantages, such as 

poor yields, inconstant degrees of purity [33] and the necessity of consequent CsCl removal [45], 

the main concern was related to the lack of scale up viability [46,47]. Nevertheless, density 

gradient ultracentrifugation is still performed for research and pre-clinical applications. 

Moreover, small chromatography kits are available for the same scale enabling improvements 

on purified volume and total yield while reducing total operation time in more than 90%, to only 

3 hours [48]. 

New strategies have been tried to overcome this problem, some with more success 

than others. Unsuccessful approaches include filtration processes, which were developed from 

the principle that viruses are comparatively larger particles than impurities present. These 

strategies failed on technical aspects, namely because filters were designed with the purpose of 

virus removal. Additionally, particle aggregation on the membrane surface greatly contributes 

to viral loss [49]. 

A successful way to purify adenovirus, providing great process adaptability and scale 

up viability is through chromatographic processes. These include column and high-performance 

liquid chromatography (HPLC) both allowing purification through several different 

characteristics, such as size-exclusion  (SEC) [50], ion exchange (IEX) [51], affinity [12], 

hydrophobic interaction (HIC) [32], or processes combining more than one of them [13,31]. 

Reported reviews have already been made to compare different strategies [32,49] (Table 2). 
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Table 2 - Chromatography Strategies’ Comparison [32] 

Virus Type ACN53 

Cell Line ATCC 293 

Purification 

Method 
Resin Buffers Elution Yield 

SEC Toyopearl HW-75F 
PBS (2% Sucrose, 2 mM 

MgCl2) 
n.a. 15 – 20 % 

AEX Fractogel DEAE-650 M 

50 mM HEPES (pH 7.5, 300 

mM NaCl, 2 mM MgCl2, 2% 

sucrose) 

50 mM HEPES (pH 8, 300 mM 

NaCl, 2 mM MgCl2, 2% 

sucrose) 

Gradient n.a. 

HIC 

 
 
 
 
 

 

Toyopearl butyl 650M 

 

Toyopearl phenyl 

650M 

 

50 mM Tris (pH 8, 3 M 

(NH4)2SO4) 
Gradient 5 – 30 % 

Affinity 
IZAC column with 

zinc/glycine system 

50 mM HEPES (pH 7.5, 450 

mM NaCl, 2 mM MgCl2, 2% 

sucrose) 

50 mM HEPES (pH 7.5, 150 

mM NaCl, 2 mM MgCl2, 2% 

sucrose) 

Gradient 47% 

 

Chromatography columns allow for products discrimination through a large variety of 

characteristics supported on the required difference between itself and remaining components 

(impurities).  

Size-exclusion procedures are considered for a wide variety of ends depending on 

which stage of the process are applied; at the beginning, in clarification or ultrafiltration, at this 
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stage in purification by chromatography, or later on polishing and sterile filtration. Size-

exclusion, as the name suggests, allows for fractionation of different molecules or compounds 

depending on their dimensions and individualization of the product from other components, like 

DNA or proteins. The initial solution is injected trough a precise arrange of materials, that have 

a defined pore, and in some cases, intra-pore size.  

Regarding resins, as an example, their packed bed has accountable volume, and 

through research and experimentation, it’s possible to arrive at precise measurements of dead 

volume, pore size, intra-pore size and others, which then, will truly define the size-exclusion 

specifications required for a purification process. The following figure (Fig. 3) presents the 

outcoming of a SEC column, being the first peak the pretended product and the remain, 

impurities. The first image represents the results of eluted volume according to the molecular 

weight of present biomolecules. With this analysis, it’s verifiable that the viruses go through the 

matrix while impurities and other calibration molecules are caught on it which justifies their 

delay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3 – HPLC-SEC chromatography profile (wavelength 280 nm) [7]   
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Purification strategies based on membrane or surface charge, allow for product 

separation through a stationary phase that adsorbs opposite charged particles. By previously 

studying particle’s charge, using, for instance, Zeta-potential assays, the right conditions can be 

achieved and product’s purity can be maximized. Depending on the column being positively or 

negatively charged, IEX chromatography is narrowly named anion-exchange (AEX) or cation-

exchange (CEX), respectively. A great number of research has been developed using AEX 

chromatography for adenovirus purification, with presented results showing improvements 

regarding purity, virus particles’ and infection units’ yields [33,34,51,53,54]. 

Differently from size-exclusion, adsorption based processes require a second phase 

called desorption. This procedure allows product’s retrieval through the introduction of a 

perturbation, either being related to salt concentration, pH or any other. The induce change will 

unbalance the equilibriums in-place and as result release the adsorbed particles.  

 Hydrophobicity interaction chromatography (HIC) relies on “reversible interaction 

between a protein and the hydrophobic ligand” [53]. This strategy has been studied as 

intermediary purification step [32], as its conditions are quite mild compared to others in order 

to preserve biological activity, and offer the advantage of being optimized by higher salt 

concentration as the ones encountered after elution on a previous purification column [53]. 

 Affinity chromatography is used complementarily to other strategies and is often 

associated with capture and polishing steps. Regarding adenovirus, metal affinity strategies have 

been tried against regular purification processes consisting in CsCl density gradients with great 

results [12]. This purification strategy depends on specific interactions between targeted 

molecule and column’s ligand. In this particular case, this bond is established between virus 

capsid and specific biological ligand coupled to the chromatographic matrix [49]. Like IEX and 

HIC, at the end of the adsorption step, the column is saturated and a clear majority of impurities 

have already been washed. Then through buffering change, the elution step results in a product 

with great purity through high selectiveness.  

 Chromatography strategies depend on the right conditions to purify the intended 

compound. The solutions used are adjusted through a variety of parameters such as salt 

concentration, pH and main species present, which usually names the buffer. The most reliable 

for biochemical systems have been described, and its choice is supported by some main 

characteristics concerning with pKa, solubility or effects with other components [54]. Reported 

studies have shown an immense variety of solutions for each step of a chromatographic 

procedure, constituted mainly by solutions of HEPES (4-(2-hydroxyethyl)-1-
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piperazineethanesulfonic acid) or TRIS (2-Amino-2-(hydroxymethyl)-1,3-propanediol). Different 

buffers allow good stability in a considerable operation range; for instance regarding pH, HEPES 

sustains equilibrium between 6.8 and 8.2 and TRIS from 7 to 9 [55].  

 Ionic strength is a major factor on buffer’s constitution and one of the biggest 

differentiation aspects between chromatography strategies. Regarding AEX targeting 

adenovirus purification, equilibration and washing steps have been reported with a variety of 

NaCl concentrations. Taking that into account, to ensure better process’ flexibility, research 

studies describe different introductions of salt concentrations through a gradient to the 

maximum of 400 mM of sodium chloride [7,12,13,23]. Concerning elution, different methods 

can be applied to elute adsorbed virus particles. Considering that the process is being conducted 

at a specific percentage of reagent B, if it’s raised gradually within a period, until reaching an 

established concentration, the elution was made with a gradient, otherwise, if B’s concentration 

is increased immediately, it’s called a step elution. Usually, strategies make use of gradient 

elution from washing/equilibration concentration until around 600 mM [23,32,41]. 

 Besides salt and main component, buffers’ composition often includes few other 

substances which have specific contributions to the overall process. Most of these are related 

to adenovirus stability and include sucrose, MgCl2 and glycerol. Sucrose, for instance, has been 

mentioned within a correlation study between concentration and “thermally induced structural 

changes”, arriving at the conclusion that increasing sucrose concentration stabilizes secondary 

and tertiary structures despite the fact that at 45 degrees Celsius, the quaternary structure is 

lost [56]. Regarding MgCl2, early studies included it on buffer’s formulations as a stabilizer [57]. 

However, more recent approaches to the matter couldn’t conclude association between both 

[58,59]. Nevertheless, 1 mM of MgCl2 was reported as virus capsid stabilizer under high-

temperature stress conditions [36,58].  Concerning glycerol, previous research has shown that 

it enhances virus integrity through capsid stabilization and so is often used in final formulation 

[13,60,61].  

 

1.5 Overview of different purification pathways 
 

Considering previous explanation about the major key steps on a purification strategy, 

it becomes relevant to enhance different approaches and adaptations, that could introduce 

improvements and present themselves as future possibilities on adenovirus purification. Its 

production starts within the bioreactor’s bulk and until product’s final formulation is achieved 

many different pathways can be taken to the generally used process presented below (Fig. 4). 
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Figure 4 - Purification process for adenovirus using chromatography [7] 

 

Using the purification process depicted in Figure 4 as a starting point, substitutions or 

suppressions can be made with the purpose of improving overall purification, reducing 

operation time, optimizing parameters, complying with the final formulation, or anything else 

that increments all around robustness and viability. Different approaches to previous steps have 

already been addressed, becoming now relevant to focus on chromatography and polishing.  

Regarding substitutions to the purification train, a great number of studies have been 

reported since Huyghe et al. [32] described chromatographic purification strategies using five 

different resins, from the conventional AEC (Source 15 Q) to more complex approaches like 

Immobilized Zinc Affinity chromatography (IZAC) or HIC [32]. Since then, changes regarding 

different chromatographic medias, process parameters and buffers allowed process viability and 

potential scale ability to use in clinical trials.  

As an example, Eglon et al. [13] compared the previous strategies with the non-scalable 

method of caesium chloride density gradient centrifugation [13,48] while searching for the 

optimum order between AEX and size exclusion chromatography (SEC).  Even though CsCl 

purification results in higher vector yield, it shows less recuperation after desalting, a lower ratio 

between total virion and infectious particles and less viability for scale-up. Focusing on 

chromatography strategies, and starting with the conventional order (AEX-SEC), the results were 

comparable to the obtained with gradient ultracentrifugation but contrasted with a reverse 

association (SEC-AEX) which obtained less purity and required further treatment [13].  
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Lee et al. [12] approached polishing strategies. The reported work describes an 

improved procedure supported on metal affinity membrane chromatography (MAMC) as a 

replacement for the more common, and perhaps “established”, SEC chromatography [12], 

making an overview of the entire chromatography spectrum focusing on yields and purity. As 

the main difference, membrane chromatography presents larger pore sizes and the possibility 

to operate at higher flow rates, while remaining the support for relevant ligands. The study 

directly compared membrane and resin affinity chromatography resulting in a 32% increased 

yield on membrane usage. Associated with this improvement, it’s theorized that the usage of 

MAMC as a rapid flow-through process to remove empty capsids (defective particles) can be a 

source of viability, affecting clinical consistency on adenovirus provisions [12,62].  

 As mentioned before, besides improvement through regular process optimization, 

reported studies showed focus on suppression of different steps, introducing new platforms or 

techniques that allow multiple levels of purification in only one or, for instance, a counter-

current operation of the chromatographic system. Examples of this strategies were 

demonstrated by Peixoto et al. [23] and Nestola et al. [7], presenting results about expanded 

bed chromatography and simulated countercurrent chromatography using two SEC columns, 

respectively.  

 Expanded bed chromatography introduces an alternative to early purification steps, 

allowing suppression of clarification and concentration associating them to the initial 

chromatography [23]. Reports of virus lost from 25 to 80 percent, during harvest due to early 

cell lysis [63], enhances needed optimization of such strategies. This can be done directly from 

the unclarified medium, as it’s reported. This strategy consists of a stable fluidized bed that 

allows particles from the feedstock to pass through, introducing several degrees of purification, 

permitting for a single step to combine the usual two or three. Associated with reduction of 

steps, are increased economic viability, overall process yields and reduction of expended time, 

all supporting expanded bed chromatography as a viable and attractive technique for cost-

effective processes [23,64].  

 

1.5.1 Multicolumn chromatography 
 

 Another approach was taken by Nestola et al. using countercurrent chromatography and 

simulated moving bed (SMB) technology, to create a quasi-continuous process with two SEC 

columns for adenovirus purification. SMB, as a chromatography concept for purification, has 
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been reported for a great variety of purposes, from the production of plasmid DNA (pDNA) [65] 

to influenza virus [66], with more general and amplified studies also being made considering it 

as a possible strategy for the future of bioseparation [67,68]. SMB allows higher productivity 

and yields through maximization of column’s used capacity while reducing both buffer’s 

consumption and needed column’s volume [7]. These advances reduce overall investment and 

increase attractiveness, justifying more research on this approach as a purification strategy for 

bioprocesses [66,69,70].  

 In a countercurrent chromatography system, while the mobile phase flows in opposite 

direction of the stationary phase, the solutes will be selectively attracted to one or another 

phase. The relation between phases and components is figuratively explained by Figure 5. As it’s 

demonstrated in single column elution chromatography, the outcoming product may lack 

enough differentiation from remaining impurities. On the other side, countercurrent 

chromatography establishes different phase “motions” and allows for better separation results, 

as shown both in column’s chromatography profile (Fig. 5 b, c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 - Elution (a) and Countercurrent Chromatography (b, c)  [71] 
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Taking advantage of this scenario, a cycle of columns can be arranged to ensure selective 

separation for a specific set of conditions, introducing complexity and optimization while 

allowing better yields and productivity, as mentioned before.  

The two-column, in open-loop, SEC purification step by Nestola et al., included 10 two-

way valves which controlled intended flows, 2 HPLC pumps (one for sample and one for fresh 

mobile phase), 2 UV detectors on the effluent of each column and 2 SEC’s columns, as shown in 

Figure 6. This scheme narrows column’s flow through to one of three situations; either it is 

frozen, directed to the other column, or being diverted to the product or the waste lines [7]. 

When compared to a single batch SEC, the reported approach led to similar results in what 

regards impurity removal but allowed for a 51% increase in virus yield with a 6-fold increment 

to column’s productivity [7]. 

 

 

 

 

 

 

 

 

Figure 6 - Two-column, in open-loop, SEC purification step (P – Product; F – Feed; W – Waste; E – Eluent) [72] 

 

These continuous purification strategies introduce a new range of possibilities and 

approaches to some, otherwise, difficult and expensive procedures. Different technologies have 

been introduced in comparison with batch chromatography and many research has been done 

reviewing both [73–75].  

Products’ purification complexity raises depending on the similarity between itself and 

impurities, resulting in increased elaborated methods and intricated applied technologies to 

solve the problem. When analysed through a chromatogram, starting with easier experiments, 

if products’ peak demonstrates enough differentiation between its physical and chemical 

properties from impurities’, a batch system could be enough. Nevertheless, continuous 
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processing can be considered depending on scale, propose or objective. Regarding more 

complex mixtures, namely binary or ternary, further laboured mechanisms have got to be taken 

into consideration, such as SMB or multicolumn solvent gradient purification (MCSGP) and 

gradient steady-state recycling (GSSR), respectively [76,77]. In fact, MCSGP has also been 

addressed as a purification method for biomolecules [78–80]. 

 

1.6 Modelling  
 

The constantly evolving field of purification, and namely purification through 

chromatography is permanently improving or innovating in order to answer the increased 

demand for better, more efficient and robust strategies. The constant research and 

development (R&D) needed to ensure that this goal is achieved requires time, money and 

knowledge that are, in most case, short or applied elsewhere. So, the landscape presented itself 

for a descriptive, yet experimentally validated, approach that could please both worlds. 

The R&D improvement was made through multiple attempts, in a trial-and-error system, 

adjusting distinct aspects and characteristics, eventually narrowing it down to the perfect ones 

that maximized intended objectives and complied with products’ specifications. This process 

had many bottlenecks that started from being time-consuming, requiring expensive material 

and personal investments to the amount of adjustable parameters (buffer, salt column or pH 

[81]). With these problematics, conducting development and research using this strategy is hard, 

delayed and, far and for most, not viable.  

The solution requires process’ description through related equations of mass, flow, 

adsorption and others, that can reliably replicate what is or can be experimentally obtained. 

Using modelling as purification tool provides with impressive results while sparing precious time 

and resources. This approach allows for increased efficiency in development, robustness, 

economic viability, flexibility and system control [81].  

Modelling based methods have been reported in association with a variety of 

purification strategies to some bioproducts, using, for instance, multicomponent or reverse-

phase chromatography [86–88]. Regarding adenovirus, chromatography methods have been 

reported, described and optimized with computer’s tools, focusing mainly on improving virus 

yields and column’s productivity [7,41,69].   
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1.7 Analytical Methods  
 

 The overall process results and comparative studies depend on yields and removals 

calculated through established methods that evaluate a specific impurity or the actual and 

intended product. On bioprocesses concerning virus, the main impurities are host cell DNA and 

proteins. From the range of methods involved in the studied process, some were not only used 

for yield accounting but also for product characterization, due to their different applications or 

equipment’s polyvalence.  

Considering that every decision and conclusion about a strategy taken is laid upon 

established methods of analytical quantification, these are a keystone on process validation and 

execution. Their outcome can make or break a chosen strategy, justify novel approaches, 

enhance innovative studies or even discard a route taken. So, their validation must be taken 

seriously, as everything is depending on them.  Multiple reviews have been done about this 

theme and method validation, considering the increased importance on food and drugs 

processes [85–87]. 

The process considered, reviewed and studied was quantified with the analytical 

methods showed at the following diagram (Fig. 7).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Analytical Methods 
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2 Methods 

and Materials 
 

 

 

 

 

 

 

 

 

 This chapter describes each step of the downstream train and the analytical methods 

used for yield assessment and impurity removals.  
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2.1 Virus production 
 

A549 cells were amplified in T-flasks, then in HYPERflask® before being inoculated at a 

concentration of 0.55x106 cell/ml. A 5 litres bioreactor was prepared for virus production.  As 

operation parameters, the pH was settled at 7.2 and controlled by aeration with a gaseous CO2 

and 1 M NaHCO3, the dissolved oxygen was controlled at 40% air saturation by gas mixing with 

a temperature of 37 ºC and gas flow of 0.2 L/min. 

 

2.2 Clarification 
 

The process started with a filter A, used to remove larger impurities, which has a pore 

size of 5 µm and 0,2 m2 of membrane surface area, followed by a second filter B with pores of 

0,2 µm and a membrane area of 0,1 m2 to ensure maximum clarification.  

Before starting, the filters were primed with 3 capsule volumes of water to remove 

preservative solutions and then equilibrated with working buffer (3 capsule volumes). For 

process monitoring, flowthrough and pressure overtime were measured. After each step, the 

effluent stream was sampled and analysed to evaluate process yields and removal ratios. 

 

2.3 Ultra/Diafiltration 
 

The clarified bulk was concentrated with a predefined strategy to ensure a certain virus 

concentration and impurity removal. The concentration was tested using tangential flow 

filtration (TFF) with Sartorius Slice 200 with a pore size of 300 kDa and an area of 200 cm2. The 

system was fed with a stable flow rate of 100 ml/min, using a Tandem 1081 Pump or SartoFlow 

Smart, both from Sartorius Stedim Biotech, established after adjusting previous trials results 

regarding protocol Shear factor (0.8 to 1 bar) and membrane surface area.  

  

After correctly assembling the process, a primarily run was made with Mili-Q water to 

ensure perfect cleaning and total removal of preservative solution, followed by system 

equilibration with working buffer. To confirm correct transmembrane pressure (TMP) (Eq. 1), 

feed, retentate and permeate flows were monitored with polysulfone pressure transmitter 
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(Spectrum Laboratories, Inc., USA) connected to a Midject pressure display unit (Amersham 

Biosciences Corp., USA). 

 

𝑇𝑀𝑃 =
𝑃𝑓 − 𝑃𝑟

2
− 𝑃𝑝 

  

Permeate volumes were taken every few minutes with a technical scale (TE4101, 

Sartorius Stedim Biotech, Germany) connected to system pump. This methodology allows 

system calibration and throughout process monitorization in order to accomplish concentration 

factors and diafiltration volumes. After reaching desired final values, the TFF system was 

drained, with special enhancement on recovering virus retentate.  

All process steps were conducted discontinuously which allowed sample collection from 

each flow and determination of overall yields and impurity removal ratios. When it was over, a 

complete sanitation was performed which consisted of multiples volumes of water and sodium 

hydroxide (0,5 M). 

 

2.4 Purification (AEX) 
  

The concentrated virus solution was purified by column chromatography in a bind-elute 

system using anion-exchange adsorbers. The chromatography trials were performed with 

different column mediums, including AEX resins (A and B) and a membrane. 

After correctly assembling the column on ÄKTA explorer 10 liquid chromatography 

system (GE Healthcare, U.K.), a cleaning-in-place run was made to, once again, ensure total 

removal of preservative solution, followed by equilibration until stable UV signal. The 

chromatography runs were conducted at a flow rate 2.3 ml/min which corresponds to 300 cm/h 

of flow velocity.  

Operation buffers were composed by 50 mM HEPES, pH 7,5 with 0 mM of NaCl for 

loading/running/washing or 2 M of NaCl for elution buffer. Before being used, each buffer was 

filtered with a 0,2 µm membrane filter (VacuCap® 90 PF Filter Unit). The ÄKTA system is 

associated with fractionator FRAC-950 (Amersham Biosciences Corp., USA), that allows precise 

and accurate fraction recovery after assessing correctly ÄKTA internal dead volumes.  

 (1) 
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2.5 Polishing (Size Exclusion Chromatography) 
  

Purified viruses from the eluted pool were further treated using a size-exclusion 

chromatography column connected to the same ÄKTA system. The selected resin was packed 

inside an XK 16/20 column. 

 Due to the flow through working principles of a SEC column, only one buffer was used 

when polishing the adenovirus bulk, in this case, the HEPES solution without salt concentration. 

The column was loaded with a maximum of 20% of its volume and the runs were performed 

with a flow rate of 4 ml/min. 

 Identically to what was done after purification, a sample was taken from the polished 

virus pool to evaluate virus yields and the presence of impurities.  

 

2.6 Analytical methods 
 

2.6.1 Total protein quantification 
 

The amount of proteins was quantified using BCA Protein Assay Kit (23227, Thermo 

Scientific, USA) according to the recommendations and manufacture’s protocol. The calibration 

curve was established with bovine serum albumin (BSA) (23209, Thermo Scientific, USA). 

Predefined dilutions were applied in duplicate or triplicate, to ensure a measurement of average 

and standard deviation of each assay. 

The absorbance was quantified at 562 nm on Infinite® PRO NanoQuant (Tecan, 

Switzerland) microplate multimode reader using a clear 96-well microplate (260895, Nunc, USA). 

 

2.6.2 Total dsDNA Quantification 
 

Using Quant-iTTM Picogreen® dsDNA assay kit (P7589, InvitrogenTM, UK), the amount of 

total DNA was quantified. This fluorescent-based technique was done according to 

manufacturer’s instructions and matrix interference was overtaken through successive dilutions 

(2-256 fold) with provided reaction buffer. Assay’s results were obtained with Infinite® PRO 
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NanoQuant (Tecan, Switzerland) by measuring samples fluorescence in a flat transparent black 

96-well microplate (3603, Corning, USA). 

 

2.6.3 Nanoparticle Tracking Analysis 
 

The concentration and size distribution of adenovirus was measured using NanoSIGHT 

NS500 (NanoSIGHT Ltd, UK). In this assay, each sample was diluted using D-PBS (14190-169. 

Gibco®, UK) to ensure that particle concentration was between the instrument’s linear range, 

meaning from 108 to 1010 particles per millilitre. All measurements were analysed with 

Nanoparticle Tracking Analysis (NTA) 2.3 Analytical software and performed at 23.3º C. The 

analysis is made through a 60-seconds video for each sample adjusting capture settings 

manually, namely shutter and gain, and considering particle size between 70 and 120 

nanometres.  

 

2.6.4 Turbidity analysis  
 

 Samples turbidity was obtained with 2100Qis Portable Turbidimeter (HACH, USA) in 

contrast with the standard provided. The instrument measures scattered light at a 90-degree 

angle from the incident light with a dilution of 1:3 applied to the sample. The results are obtained 

by directly applying the dilution factor to the displayed value. This instrument was selected for 

clarification assays because it measures heavily impure bulks that are otherwise unreliable to 

quantify. 

 

 

 

2.6.5 Dynamic Light Scattering  
 

Adenovirus’ zeta potential and size were measured using ZetaSizer Nano Series 

(Malvern, UK) and Dynamic Light Scattering (DLS) technique. Each sample was diluted with one 

of two different buffers with a gradually increased pH value from 3 to 9. The cell used for each 

measure, DTS1060 (Malvern, UK), was previously cleaned with Mili-Q water and ethanol to clear 

remaining sample residues and equilibrated with next samples’ buffer before being loaded with 
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it. All measurements followed standard procedure considering protein as samples and water as 

the dispersant, with 30 seconds of equilibration/optimization time. The analysis was done with 

ZetaSizer software 7.11 (Malvern, UK) at 25 degrees Celsius, considering a maximum amount of 

100 measurements, but never less than 10 per run. 

 

2.6.6 Quantitative Real Time PCR 
 

Virus DNA was extracted and purified with High Pure Viral Nucleic Acid Kit (Roche 

Diagnostics, Germany) according to manufacturer’s instructions after previous digestion of viral 

suspension with DNase following standard procedures. Genome containing particles were 

measured by real time quantitative PCR (q-PCR) using respective protocol and LightCycler 480 

(Roche, Germany). 

 

2.6.7 High-Performance Liquid Chromatography 
 

The High-Performance Liquid Chromatography (HPLC) method using a column with size-

exclusion resin was introduced to evaluate sample content, concerning both virus and impurity 

concentrations. The TSKgel G5000PW column (TOSOH Biosciences, Japan) was connected to the 

ÄKTA system described above or to the WATERS 2695 Separation Module (Waters, USA). 

When connected to ÄKTA system, a 100 µl loading loop and a constant flow of 1 ml/min 

were used, contrasting to the multiple vial system on the separation model which used volumes 

of 50 µl per sample, running at 0,7 ml/min. The second equipment works for itself after method 

definition and period description, allowing overnight runs.  In both cases, samples were injected 

in flowthrough mechanism, into a pre-equilibrated column with running buffer (50 mM HEPES, 

pH 7,5 with 200 mM of NaCl). After several injections, a cleaning-in-place was applied in both 

upper and down flow, to ensure maximum impurity removal, which included multiple column 

volumes of water (Mili-Q) and NaOH (1 M).  
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 3  
3 Implementation and 

Development of an analytical 

tool for process monitoring  
 

 

 

 

 

 

 

  

The following chapter explains the implementation of an orthogonal analytical method 

for particle tracking that brings together easy procedures with accurate measurements.  
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3.1 The need for reliable analytical methods 
 

 The uprising specification complexity and narrowing on the quantity of impurities 

allowed in every step of the process increases the research for reliable and robust analytical 

methods that can provide real time data in the most efficient way. Alternatively, for product 

control on a specific process step, there is a need for a tracking assay that could present 

trustworthy results while requiring minimum operator dependence and ensuring throughout 

precision and accuracy. 

 In order to achieve it, an orthogonal method was tested and calibrated with the product, 

which made use of two previous presented methods, providing distinct types of data that can 

be easily correlated through a calibration curve. Even though the pore size of the SEC column 

guarantees that the viruses elute in the porous volume, a NanoSIGHT tracking analysis ensures 

that the measurement obtained doesn’t represent aggregates and other particles.  The 

respective values obtained by NanoSIGHT NS500 (NanoSIGHT Ltd, UK) and High-Performance 

Liquid Chromatography (HPLC-SEC) were associated and a thorough analysis of each method to 

ensured maximum applicability and will be discussed further on.  

 The appealing factor of this approaches comes from being an alternative for virus 

quantification different than qPCR which is expensive and time-consuming, requiring simpler 

procedures with the same reliable results. 

 

3.2 NanoSIGHT Calibration Curve 
  

 The correct use of this technology depends on preselected dilution to ensure complete 

analysis of the spectrum present to fully account for the number of particles. The obtained 

results present a distribution curve from 0 to 1000 nm of the analysed particles and an 

estimation of concentration is done for an interest range (in this case, from 70 to 120 

nanometres) (Fig. 8). Although useful for establishing the presence and number of particles, its 

results are, in a way, too much dependent on technician’s adjustments to ensure reliability and 

robustness on a single measurement so at least three must be made. 
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Figure 8 - NanoSIGHT assay with 3 measurements 

 

 NanoSIGHT was evaluated on a TFF concentration and diafiltration process, with results 

being reported below (Fig. 9). These steps include a two-fold concentration and four times 

diafiltration for buffer exchange. The results were obtained after 3 to 5 replicates of each sample 

to increase precision.  

 

 

 

 

 

 

 

 

 

 

Figure 9 - NanoSIGHT assay for Ultra/Diafiltration 

 

 Even though it decreases productivity and consumes valuable time, this assay must be 

considered, as its outcome is most valued for process monitoring.  
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Taken that into account, an experiment was done with the diafiltrated product in order 

to establish a relation between particle concentration and dilution factor for further method 

implementation in correlation with HPLC-SEC. The product was diluted as far as 10 times, and 

the initial concentration was measured 5 times to ensure maximum accuracy. The results show 

that a tendency line with almost 0.93 of correlation factor (Fig. 10) is achieved and an association 

can be made with another method for the same dilutions applied. 

 

 

 

 

 

 

 

 

 

Figure 10 - NanoSIGHT Correlation 

 

3.3 HPLC-SEC Calibration Curve 
 

 The application of HPLC as an analytical method introduces great reliability and allows 

for impartial and intemperate results as the outcome doesn’t rely on technician’s adjustments.   

 The use of a size-exclusion column (TSKgel G5000PW) ensures that the viruses are not 

caught on the matrix, as it’s demonstrated by Figure 3, and produces a simple chromatogram 

that shows the magnitude of its present species in the mixture as it flows through the column. 

According to the expected concentration of the sample, the injected amount can be optimized 

to ensure that a proficient reading is obtained. Besides relation between presence and peak 

intensity, different wavelengths can be selected to monitor different biomolecules.  

 As was done before, another TFF process was monitored by HPLC-SEC after clarification 

(Fig. 11). The results were obtained with injections of 100 microliters allowing for complete 

flowthrough before the next sample is introduced.  
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Figure 11 - HPLC-SEC assay for Ultra/Diafiltration (wavelength 280 nm) 

 

 With this approach, the interpretation and data analysis between steps is direct and 

easily understandable, as the volume injected is the same, the peaks magnitude depends only 

on species presence. As mentioned before, these peaks were fractionated and analysed with 

NanoSIGHT to ensure that corresponded to single virus and not aggregates. For the presented 

flowthrough intensities, a wavelength of 280 nanometres was used as it is the most common to 

trace proteins.  

 In order to make sure that the obtained intensities are to be taken seriously, a study was 

made correlating known dilutions and chromatography monitoring. This approach started upon 

several repetitions of the initial concentration and going until 5% of this value. 

 Later on, to evaluate the upper limits of the quantification the initial sample was 

concentrated 2 and 5 times (Fig. 12). As mentioned above, the 5-fold concentration required a 

smaller injection to be made and only 50 microliters were loaded. The calculations for this 

procedure are direct, as half of volume injected corresponds to half intensity detected.  

0 5 1 0 1 5 2 0

0

1 0 0

2 0 0

E lu te d  v o l. (m L )

A
b

s
o

rb
a

n
c

e
 (

m
A

U
)

V iru s

p e a k

H P L C -S E C

A
b

s
o

rb
a

n
c

e
 (

m
A

U
)

In
it
ia

l
U

F

D
F

1

D
F

2

D
F

3

D
F

4

0

2 0

4 0

6 0

8 0



33 
 

H P L C -S E C  C o rre la tio n

D ilu tio n  F a c to r

A
b

s
o

rb
a

n
c

e
 (

m
A

U
)

0 .0 0 .5 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

Y  =  1 0 7 ,9 x

 

Figure 12 - HPLC-SEC Correlation (wavelength 280 nm) 

  

This chart illustrates that the obtained results from HPLC are robust and reliable, with 

concentration and dilution factor exhibiting a linear dependence. The data points were obtained 

by integration of the chromatogram in UNICORN. The results have a 0.99 correlation factor to 

the trendline which describes them. 

 

3.4 Combined approach 
 

 By combining these two methods it is possible to ease the task of process monitoring 

and facilitates tracking of yields and particle accountability in every step.  

As it’s demonstrated by the correlation factor, or standard deviation, on the represented 

trending lines, the HPLC produces a much more accurate group of measurements. This fact 

combined with its direct and untampered procedure, cement it as a great analytical method for 

bioprocesses. 

The interest in associating these methods comes from the requirement of establishing 

yields and meeting specifications that are accounted in particles present on a certain volume. 

As NanoSIGHT provides it with relatively low precision, the HPLC can complement it and 

facilitate the acquiring procedure. In order to achieve it, a calibrated correlation has to be 

established by several analyses on both systems. 

The method used for this calibration relied on introducing the same samples in both 

types of equipment and correlating them until a certain degree of concentration or dilution. 

Y=107,9 x 
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Meaning that in higher or lower concentration, adjustments were made in each assay to ensure 

correct measurements. Furthermore, to confirm method robustness some samples were 

introduced several times, in particular, the initial concentration obtained from the filtration 

processes. The individual data was ranged for both validation limits to ensure that the 

correlation chart had maximum compatibility (Fig. 13 a, b, c). 
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Figure 13 - NanoSIGHT correlation for design range (a),  

HPLC-SEC correlation for design range(wavelenght 280 nm) (b), Correlation curve (c) 

  

The obtained trendline presents a correlation factor of 0.94, which makes for a 

reasonable tool for process monitoring. Considering this approach is possible to evaluate each 

step taken by introducing the respective samples on the equipment overnight and access to 

progress made without spending valuable time and expensive resources. 

 

a) b) 

c) 

Y=2,44x1011 x 

Y=2,41x109 x 

Y=95,9 x 
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3.4.1 Detection Limits and Errors 
 

 The validation limits of a method establish the range of its applicability by determining 

where the results obtained are a viable measurement of reality. These parameters include the 

determination of minimum and maximum limits and the error associated with the tendency line 

that describes the evolution of the experience.  

 The minimum detectability (D) is a parameter which includes a determination of 

equipment’ sensibility (S) and amplitude of noise taken through the assay (N). The first is 

calculated with the peak obtained (E) by introducing a previously characterized sample with 

known concentration (Ci) (Eq. 2). The noise amplitude (N) is a result of absorbance at the 

baseline within a time frame (Fig. 14). With these determined, the minimum detection limit was 

calculated at 4,7*109 particles per millilitre which correspond to 1,95 mAU when using the HPLC-

SEC assay (Eq. 3). 

 

 

 

 

 

  

 

 

 The maximum particle concentration from which linearity isn’t verified was determined 

with the correlation curve and the attachment of specific new lines (Fig. 15). These new ones 

correspond to a deviation of 5 % to the line slope and establish the limit from where the 

measurements are not trustworthy. With the charts analysis, it’s concluded that the maximum 

amount of particles per millilitre correctly detected by the method is 2.32x1011 or 96.1 mAU. 

Figure 14 - Noise amplitude at the baseline 
(wavelength 280 nm) 
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Figure 15 - Maximum particle concentration acceptable, right figure is focused on the 80 – 110 mAu region of the 
left plot 

 

 After completing the limitation ranges, it’s relevant to establish error margins to 

correctly express a measurement of quantity. These boundaries were calculated with the 

tending line and experimental data, obtaining a value that induces certainty to experimental 

results. With this in consideration, it’s possible to conclude that from 1,95 to 96,1 mAU, the 

number of particles per millilitre can be calculated with an error of 8,2x109 TP/ml. This margin 

can have different significance depending on the stage of the process. For instance, clarified 

bulks have around 1010 TP/ml which makes the error being close to 20%. For the following steps, 

with the increased concentrations, its repercussions on the measurements are less than 10%.  
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4 

4 Results and 

Discussion 
 

 

 

 

 

 This chapter presents the outcome of each assay taken throughout the downstream 

process and the considerations made to access the best conditions and parameters for 

adenovirus purification. 
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Bioreactor Bulk

Clarification

1st Ultra/diafiltration

AEX Chromatography

2nd Ultra/diafiltration

4.1 Development of a purification process for oncolytic virus 
 

The optimization and development are the focus on research studies applied to 

downstream as its improvement is directly related to overall applicability and most important, 

viability. Depending on the knowledge that precedes the intended product, the focus on 

development could be differentiated between a completed analysis of each step needed to 

achieve planned goals or directing all efforts to optimize a particular step for maximum 

productivity. 

 The implemented purification process for oncolytic viruses englobes a series of 

increasing complexity steps that require a wide variety of means and induce the product to 

several environment changes (Fig. 16). Nevertheless, the acceptance and recognition of this 

strategy are relentless proven by the reported yields obtained from it when applied to different 

oncolytic viruses. These results justify that for recently discovered oncolytic viruses, this is the 

fall-back procedure used for purification. With more research and as their behaviour in different 

conditions is known, the overall process with the focus on downstream can be improved with 

recently developed strategies for each step.  

  

 

 

 

 

 

 

 

 

 

Figure 16 - Standard downstream processing train for adenovirus purification [7] 

 

 

SEC Chromatography 
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4.1.1 Clarification studies 
 

 After bioreactor production and cell lysis, the adenovirus bulk initiates the downstream 

processing train with clarification. The focus on this step is the removal of larger impurities like 

cell debris. In order to accomplish it, a 2-step filtration strategy was tested as previously 

mentioned. The decreasing of pore size ensures maximum impurity removal while controlling 

pressure and folding layer issues.  

 Before initiating a step clarification, the depth-filter must be cleansed with equilibration 

buffer to ensure complete removal of the preservative agent.  After this stage, some 

measurements of flux are taken at different flow rates (120, 200 and 333 ml min-1) for both 

filters to determine the maximum achieved. These assessments are made only with buffer as 

maximum flux is only obtained when the membrane isn’t obstructed (Table 3). At the same time, 

the pressure increment was tested for each named flux to establish a baseline to use at 

clarification (Fig. 17). 

 

Table 3 - Water Fluxes for different filters: (A) and (B) calculated from observed Flow rates  

 

 Filter A (5 µm pore, 0,2 m2) 

Flow Rate (ml.min-1) 110 197 319 

Area (m2) 0.2 

Flux (L.min-1m2) 33 59 96 

 

 

 Filter B (0,2 µm pore, 0,1 m2) 

Flow Rate (ml.min-1) 99 196 325 

Area (m2) 0.1 

Flux (L.min-1m2) 59 117 195 
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Figure 17 – Pressure variation for different filters: A (a), B (b) for observed water fluxes 

 

 The increasing pressure observed along the procedure is caused by the cumulative pore 

clogging (Fig. 18), this result justifies the decrease of flux observed despite the positive 

displacement of the pump.  

 

 

Figure 18 -   Pressure over time: A with a pore size of 5 µm (a), B with pores of 0,2 µm (b) 

 

 The clarification results were assessed with NanoSIGHT and turbidity assays. The 

outcomes prove the previous runs made and demonstrate the efficiency of filters and strategy 

chosen. The turbidity analysis proves the clearance of a sample in comparison with an 

established reference and as wanted, the initial sample is much denser than the clarified one 

(Fig. 19 a). Instead of using the implemented HPLC-SEC method, due to impurity content at this 

stage, a direct NanoSIGHT assay was performed to evaluate the number of particles present and 

the yield of clarification achieved with this 2-step strategy (Fig. 19 b). The results obtained with 

a) b) 

a) b) 

Y=2,01x10-4 x + 4,1x10-2 Y=1,99x10-4 x + 1,25x10-2 
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the turbidimeter show a 73% decrease of product turbidity as was expected. The total particle 

count from NanoSIGHT reveal that no viruses were lost during the process.  
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Figure 19 - Results of clarification: Turbidity (a) and NanoSIGHT (b) 

 

These outcomes justify the strategy taken to the product handled. The reduction of 

turbidity to levels below 10 NTU and the high recovery of total particles demonstrate that this 

2-step filtration approach is viable to clarify these oncolytic viruses. For the following steps, a 

reduction in impurity content is much relevant because the continuous decrement in pore size 

would be endangered by clogging. 

 

4.1.2 Ultrafiltration and Diafiltration Steps  
 

After clarification, and before being suitable for purification, the oncolytic viruses were 

ultra/diafiltrated. This process has gained a lot of attention as many new strategies could be 

applied depending on the virus. The previous research made indicated that the optimal 

procedure to impurity removal and virus concentration was a two times ultrafiltration followed 

by 4 diafiltrations with equilibration buffer.   

 A cassette membrane filter with 200 cm2 and a 300 kDA cutoff was evaluated. The 

cassette was previously equilibrated with buffer and through the entire procedure the permeate 

flux was monitored to determine its evolution overtime with increasing pore clogging (Fig. 20). 

 

a) b) 
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Figure 20 - Flux in Ultra/diafiltration for a cassette membrane filter cartridge with 200 cm2 

 

 The results obtained by this analysis show that a greater permeate flux of almost 40   

Lm2h-1 is obtained, this might be associated to the different flow regime provide by this device, 

whereas in the hollow fibre the flow is usually laminar, that is not the case in flat sheet cassettes 

where usually the flow is turbulent thus delaying pore clogging.  

 The process yield was evaluated with the NanoSIGHT-HPLC method explained before 

with its results presented in the following table (Table 4). 

 

Table 4 - Ultra/diafiltration results for Membrane Filter 

 
Initial 

Concentration 
UltraFiltration 

Diafiltration 

 1 2 3 4 

mAU 18.489 44.898 44.961 47.573 56.428 53.603 

TP/ml 4.46E+10 1.08E+11 1.08E+11 1.15E+11 1.36E+11 1.29E+11 

Yield 

Overall 104% 

 

 Through this approach, a 104 % yield of purification after 4 diafiltrations was obtained, 

which is reasonable for the error margin considered. These results from HPLC analysis and 

analytical methods show a similar impurity removal as was obtained when using the hollow fibre 
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cartridge. With a comparative analysis is also concluded that the virus peak is more intense than 

the present impurities (Fig. 21).  

 

Figure 21 - HPLC-SEC comparing product and impurities (wavelength 280 nm) using Membrane filter 

 

With the analysis of both procedures, it’s concluded that either strategy deliver 

satisfactory and reliable results on what concerns impurity removal but majorly increment on 

virus concentration. Depending on the scale, and bulk volume, each approach has its 

applicability. These conclusions regard specific biomolecules, for instance, the absence of 

envelope on adenovirus makes them capable to endure higher shear rates which allows 

processes with greater fluxes. From this conclusion, when a small batch is needed for scouting, 

the hollow fibre can be a reasonable solution. To larger assays, and scale up processes, the 

membrane cassette presents itself as a more suitable approach by allowing greater flow rates 

which diminish overall process length while maintaining quality specifications. Another 

advantage of this technology is the possibility to connect it to an automated equipment 

(Sartoflow Smart, Sartorius) which performs ultra and diafiltration by itself, controlling the 

intended pressures and flow rates determined by scouting, and even offering the possibility to 

perform continuous diafiltrations.  

 

4.1.3 Chromatography purification   
 

 The chromatography strategies developed to purifying this oncolytic virus focused on 

several possibilities, from different resins and membranes to elution gradients or steps with 

different salt concentrations. 
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 Before starting chromatography experiments a surface potential measurement was 

conducted to evaluate the oncolytic virus charge in solutions with different pH and determine 

its isoelectric point (Fig. 22). This analysis concludes that the isoelectric point is not achieved at 

the range of pH handled, which narrows the ligands and resins that were possibilities for 

purification. Despite maintaining a negative potential thorough the range of pH’s tested, lower 

values represent acid and dangerous environments for virus stability. When close to 0 mV, 

parallelly to the severe environment for adenovirus, the lack of repulsive charges or forces 

induces virus precipitation and therefore their loss.  By maintaining the pH range from 7 to 8, 

virus stability is ensured throughout the entire process. As the negative potential is preserved 

within this interval, the anion-exchange chromatography presents itself as a suitable purification 

approach.  
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Figure 22 – Zeta Potential for adenovirus 

 

  

With these considerations, the first strategy consisted of using a membrane adsorber. 

This is a ReadyToProcess membrane device with ligand Q, that allows good impurity removals. 

The chromatography runs taken were conducted at 5 ml min-1 and different injections were 

made to establish the 10% of virus breakthrough. The outcome was evaluated by Nanoparticle 

tracking analysis (NTA) using NanoSIGHT, RT-qPCR and impurity analytical methods. 

As a first attempt, 50 ml of diafiltrated bulk were injected and with this, no breakthrough 

was achieved (Fig 23 a). This fact was evidenced by NTA which only detected 5% of feed material 

in flowthrough. In result, another effort was done to achieve the intended objective. This time 

an increase of 5 times of the previous amount was injected and the breakthrough was obtained 
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after more than 100 ml of virus bulk (Fig 23 b).  The result was evaluated with RT-qPCR and the 

establishment of C/Cfeed. The DBC10% measured was 2.7x1012 VG copies ml-1 of membrane and 

the impurity detection methods showed relevant removals of around 80% for host cell DNA and 

total protein. Concerning virus recuperation, it was obtained a 78% yield after elution with 2 M 

of salt concentration.  

Figure 23 - DBC10% of membrane adsorber (wavelength 280 nm): 50 ml injection (a) and 250 ml 
injection (b)  

 

 

Although these results are promising for oncolytic viruses, the overall spectrum of 

possibilities tested showed a greater match. Nevertheless, membrane chromatography presents 

the possibility of volume reduction and purification in a single step while providing good scale 

up solutions that could make this a viable solution for other applications. 

The first condition verified was the flowrate used for sample loading. The ones tested 

were 1.6 ml min-1 and 2.3 ml min-1, which considering that the column used has a 5 ml packed 

bed volume, corresponds to 200 and 300 cm.h-1, respectively. In these chromatography runs, 

the viruses were eluted with the same elution buffer used in Sartobind Q experiments.  From 

the results obtained, when comparing the DBC10% from the first run (2.81x1011 TP/ml) with the 

second (1.7x1011 TP/ml), it is possible to conclude that there is a dependence of dynamic binding 

capacity with the flow-rate. This is somewhat expected since we are dealing with a resin based 

adsorber in contrast with a continuous and convective media such as membranes. An example 

of a chromatogram obtained with this media is shown in Figure 28. 
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Figure 24 - Chromatogram using AEX media A (wavelength 280 nm) 

 

After particle tracking analysis, host cell DNA and total protein removal yields were 

obtained. These shown valuable progress towards purification as 94% and 95% of respective 

impurities were removed. For this case, a 74% virus recovery was obtained after elution. 

The same experiment was conducted with the AEX resin B. In this case, the flowrates 

applied were 2.3 and 3.2 ml.min-1, which correspond to 300 and 400 cm.h-1. The entire assay 

was monitored by absorbance using a wavelength of 280 nm (Fig. 25). 

 

 

 

 

 

 

 

Figure 25 – Chromatogram using AEX B (wavelength 280 nm)  

 

 

After analysing the C/Cfeed over time, a dynamic binding capacity at 10% was determined 

for each flow velocity, resulting in 6.2x1011 and 2.7x1011 TP/ml for 300 and 400 cm h-1, 

respectively. The impurity removal ratios were inferior than before, but still promising for this 

application. The host cell DNA content was lowered to 85% and total protein for 90%. A major 

factor on this column is the virus yield recovery achieved, which was 85%. 
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Although apparent benefits of using membranes adsorbers, the selected media for 

further process development was AEX B. This media presents a virus recovery of 85% and 

considerable impurity removal ratios (Table 5).  

 

Table 5 - Chromatography comparative study 

Chromatography 

Media 

DBC10% 

(TP/ml) 

Virus 

Recovery (%) 

DNA removal 

(%) 

Total protein 

removal (%) 

AEX membrane 2.7x1012 78 80 80 

AEX Resin A 1.7x1011 74 94 95 

AEX Resin B 6.2x1011 85 85 90 

 

With the decision of the chromatographic media, the focus changed to salt 

concentration and its repercussions in virus recovery and impurity removal.   As mentioned 

before, a salt concentration is used to destabilise the equilibrium created inside the column 

while the loading takes place and elute the purified virus. The elution recoveries of the previous 

described experiments were obtained through a 2 M salt concentration elution step. Although 

a high recovery can be obtained the excess strength of elution might counteract the purification 

process by over eluting absorbed impurities, or affect products stability and therefore viability.  

This aspect was further evaluated in two different routes. Firstly, by pursuing the 

minimum amount of salt concentration needed for full virus recovery with fewer impurities 

desorbed.  And secondly, by performing a first wash step with a low salt concentration prior to 

elution that would not affect virus adsorption but would greatly improve the impurity removal 

ratios obtained.  

As a mean to accomplish it, and considering the previously DBC obtained data, the AEX 

B was repeatedly loaded with calculated volumes. After completing the washing procedure, a 

serious of continuously increasing salt concentration gradients were introduced in the column 

(Fig. 26 a, b, c, d, e).  
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Figure 26 - Elution experiment on AEX resin B (wavelength 280 nm) for 150 (a), 487 (b), 825 (c), 1162 (d) and 1500 
(e) mM 

  

The elution steps included a minimum of 150 mM of salt concentration increasing until 

1.5 M with other 3 stages in between. The maximum concentration was lowered from 2 M due 

to previous research and knowledge of the elution step. 
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The result of this experiment was analysed by NTA to determine the quantity of eluted 

particles, and DNA Picogreen assay and BCA protein method to verify the eluted impurities in 

each step.  The outcome showed valuable improvements on impurity removal and proved that 

the lower concentration clearance steps can enhance the purification outcome of higher 

elutions (Fig. 27). The removal ratios verify that small concentrations can achieve an 80% 

reduction in impurities per millilitre of sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 - Impurity removal ratios for different salt concentration elutions 

 

This accomplishment introduces a new feature to the purification procedure that can 

greatly improve the process outcome by previously removing a relevant amount of impurities. 

To evaluate applicability, a particle tracking analysis was done to verify its effect on virus 

recovery in smaller gradient intervals. The results demonstrate that the small gradients applied 

didn’t elute a significant amount of virus particles when comparing to the great improvement 

on contaminants’ removal (Fig. 28). And so, this step could be introduced in chromatography 

purification to improve quality without compromising recovery. 

 

 

 



51 
 

 

 

 

 

 

 

 

 

 

Figure 28 – Virus recovery ratios for low salt concentration elutions 

 

At the other end, the experiments focusing virus elution demonstrated that 

concentrations higher than 825 mM would elute a significant amount of adsorbed virus. This 

fact is relevant to process planning when the virus stability is a concern (Fig. 29). Another process 

would require higher concentrations and even reach 2 M, which may demand quick handling for 

ensuring quality preservation. 

 

 

 

 

 

 

 

 

Figure 29 - Virus recovery ratios for high salt concentration elutions 

 

With the data obtained, column conditions and process parameters were defined for 

batch chromatography. In resume, it was established that to maximize productivity and quality, 

the column loading volume would be limited to 6.2x1011 particles per resin millilitre, with a 

loading flow rate of 2.3 ml min-1 or 300 cm h-1 and virus elution would be preceded by a small 

salt concentration gradient of 200 mM to remove absorbed impurities and considerably improve 

products purity. 
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After these trials, a final validation run was performed focusing completely on virus 

recovery. These consisted of a pair of chromatography comparative runs differing in NaCl 

concentration on the sample to be loaded (0 and 200 mM) (Fig. 30 a, b). The eluted product was 

evaluated by HPLC-SEC method and shows that the result of the 200 mM experiment has a 

higher concentration (9.5x1010 particles/millilitre) than the one from the run without NaCl in the 

loaded sample (6.2x1010 TP/ml) which proves and supports the conclusion previously taken.  

Figure 30 - Purification Validation Assays (wavelength 280 nm): 0 mM (a) and 200 mM (b) 

 

4.1.4 Polishing scouting 
 

 After AEX chromatography purification, a step of polishing is carried to further deplete 

impurities present. As this is a step closer to the final product, the quality control narrows and 

the outcome must fulfil the intended specifications.  

 A SEC resin performance evaluation consisted in a 500 µl injection of AEX purified 

oncolytic virus in a pre-equilibrated column followed by fractionation and peak monitoring using 

UV detector at 280 nm (Fig. 31). The results were then analysed by NTA using NanoSIGHT and 

the impurity removal ratios by the standard analytical methods. Results indicate that a 56% virus 

recuperation was obtained.  

 

 

 

 

 

 

Figure 31 - Polishing Assay with a 500 µl injection 
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Optimal loading amount was tested to maximize productivity without compromising 

quality. The loaded volumes and correspondent column volume are depicted in Figure 32 and 

summarized in Table 6.  These runs were conducted at the recommended flow rate (4 ml min-1) 

and analysed with the same QC methods used before.  
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Figure 32 - Loading assays: 5% (a), 10% (b), 20% (c) 

 

Table 6 - Loading assay 

 

𝐕𝐬𝐚𝐦𝐩𝐥𝐞

𝐕𝐜𝐨𝐥𝐮𝐦𝐧
  

Virus Recovery 

(%) 

DNA removal 

(%) 

Total protein 

removal (%) 

0.05 69 96 67 

0.1 65 94 80 

0.2 70 97 72 

  

 

According to these results and as suggested by previous research, the loading should be 

up to 20% of column volume. The virus recovery is stable between these values and the impurity 

removals average more than 95% of DNA removal and 70% of total protein.  

 After this analysis, several replications were conducted to ensure that the data obtained 

was correct. As an example, a validation run was performed following different process steps 

with comparable results. This involved a 5 ml injection, which corresponds to 14% of column’s 

volume, and achieved similar impurity removal ratios (Fig. 33). The main difference experienced 

was the virus recovery yield that went to 90%. This factor can be explained by several aspects 

along the purification train because although the injected oncolytic viruses were the same, their 

a) b) c) 
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upstream or downstream routes could differ concerning bioreactor providence or elution 

conditions, respectively. With this being said, the results demonstrate this approach affectability 

and applicability for this purification process. 

 

 

 

 

 

 

 

 

Figure 33 - Polishing Validation Run 

 

4.1.5 Sterile filtration  
 

 This last processing step consists of an impurity filtration step for final formulation in a 

sterile environment. The experiments were made using two different sterile filters, the first was 

a Millex GP Fibre Unit with a PES membrane and a 0.22 µm pore size (Millipore Express, USA), 

the second was an Acrodisc PF with 0.8/0.2 µm Supor Membrane (PALL, USA). The filtered 

materials were once again evaluated by HPLC-SEC method and impurity removal methods (Table 

7). According to the results, a better virus recovery is obtained with Millipore’s filter while a 

greater impurity removal is achieved by PALL’s. At this stage, the results of other steps would 

greatly determine which parameter is more relevant to achieve quality parameters. In this 

scenario, virus recovery would be once again the factor of choice. 

 

Table 7 - Sterile filtration assay 

 

 

 

 

 

 

Membrane Filter Virus Recovery (%) DNA removal (%) 
Total protein 

removal (%) 

Millex GP 89 16 39 

Acrodisc PF 81 17 58 
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4.2 Development of a multicolumn chromatography purification step 
 

The single-column chromatographic experiments performed (see sub-chapter 4.1.4) 

presents initial results and parameter setpoints that can be used for further development. These 

conclusions can, at the same time, be employed in scale up procedures for pilot plan processes 

or in other scouting research methods like multi-column chromatography at the same scale. As 

mentioned before, the optimal loading quantity, elution condition and flow velocity have been 

addressed and will be considered for the following experimentations. The system used for this 

process is a two-column array using 0.967 ml columns connected a modified ÄKTA 10 system 

(Fig. 34).  

 

 

 

 

 

 

 

 

 

Figure 34 - Two-column chromatography array 

 

This setup allows for the main steps needed for column chromatography to be occurring 

in different columns at the same time. The display of operations overtime demonstrates the 

possibilities given by such procedure and the single column scheme evidences each flow inlet 

and recirculation path for this approach (Fig. 35 a, b). 
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Figure 35 - Multicolumn scheme (a) and single column inlets (b) 

 

 The multi-column system presented shows that while the first column is being loaded 

the other is being prepared for it. This preparation includes wash, elution and clean-in-place 

procedures until both columns are connected. This scheme represents only half-cycle, being the 

next one symmetrical to the presented, with the inlet and outlet ports exchanging positions.  

 The single-column representation demonstrates the connections to previous and 

following columns or inlets/outlets within a generic multi-column arrangement, complemented 

with the discrimination of the main flows used. For the runs performed, the washing procedure 

consisted of the standard working buffer (50 mM HEPES filtrated solution with pH 7.5), the 

elution on a similar HEPES solution with 2 M of Sodium chloride added, and the CIP solutions 

were water and 1 M NaOH.  

 Before starting the oncolytic virus purification, a BSA and Tryptophan model solution 

was repeatedly loaded to evaluate system design and the control method implemented. These 

assays are relevant to make sure that all chromatography steps and timeframes are correctly 

assembled before starting the purification run. 

This scouting experiment started with a breakthrough curve of the considered system 

using only one column to evaluated the correct loading amount (Fig. 36). After this, several 

experiences were made to optimize time frames and inlet flow rates. 
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The step parameters used for each assay are depicted according to the flowrate used 

for each (Tables 8, 9, 10). The first and second runs allowed to mark limits for best loading 

quantity and establish the best balance between all flows at 3rd assay. Despite these 

adjustments, each run performed in a similar way and returned a periodic behaviour of the 

concentration profiles. After adjusting the baseline for each first step, the chromatograms of the 

last two half cycles demonstrate the overlay of runs which validates the accuracy of the system 

(Figures 37, 38). 

 

Figure 36- BSA and Tryptophan breakthrough 
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Figure 37 - BSA and Tryptophan Multicolumn Chromatography Assay 1 

 

Table 8 - BSA and Tryptophan Multicolumn Chromatography Assay 1 

 

Step 
Duration 

(min) 
QFeed 

(ml/min) 
QWash 

(ml/min) 
QElution 

(ml/min) 
QCIP 

 (ml/min) 
1 5 0.4 2 0 0 

2 5 0.4 0 2 0 

3 7.5 0.4 0 0 2 

4 10 0.4 0 0 0 
++ 
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Figure 38 - BSA and Tryptophan Multicolumn Chromatography Assay 2 

 

Table 9 - BSA and Tryptophan Multicolumn Chromatography Assay 2 

 

Step Duration 

(min) 

QFeed 

(ml/min) 

QWash 

(ml/min) 

QElution 

(ml/min) 

QCIP (ml/min) 

1 5 0.67 2.33 0 0 

2 5 0.67 0 2.33 0 

3 7.5 0.67 0 0 2.33 

4 10 0.67 0 0 0 
 

 

With these results, it’s possible to conclude that, despite applying different flow rates, 

the overlay of half-cycles suggests accuracy on the constructed method. Furthermore, these 

chromatograms make possible to evaluate the chosen time frames and adjust them to improve 

the process steps. The first assay, in which the sample loading was performed at 0.4 ml/min, 

didn’t achieve a virus breakthrough and the flow was considered insufficient for the experiment. 

In the other end, the second experiment demonstrates a fully achieved breakthrough before 

washing starts. This situation reveals that the flow rate applied of 0.67 ml/min was too much for 

the system and should be brought down to prevent virus loss. 



60 
 

With this being said, the third experiment was adjusted to an intermediate loading 

flowrate to diminish the virus quantity in flow through and ensure the maximum amount of 

loading (Fig. 43). The loop section demonstrates the period from when the loaded j column is 

connected to the j+1, when it ends the first column is washed and the second is directly fed. 

 

Figure 39 - BSA and Tryptophan Multicolumn Chromatography Assay 3 

 

Table 10- BSA and Tryptophan Multicolumn Chromatography Assay 3 

 

Step Duration 

(min) 

QFeed 

(ml/min) 

QWash 

(ml/min) 

QElution 

(ml/min) 

QCIP 

 (ml/min) 

1 5 0.5 2.5 0 0 

2 5 0.5 0 2.5 0 

3 7.5 0.5 0 0 2.5 

4 10 0.5 0 0 0 

 

 The last BSA and Tryptophan model achieved the intended objective and demonstrated 

that the method can operate consistently at the correct and pre-defined conditions. After this 

experimentation, the evaluated data could be introduced into a modelling software to 

implement a method that would theoretically describe the results obtained. This process would 
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require greater knowledge of the system and could imply further experimentation associated 

with time consuming procedures and analysis, and so it wasn’t performed. 

 The following step was the introduction of adenovirus on the system (Fig. 40). The 

previous protein capture columns where replaced by AEX resin B columns and the method was 

also tested for different flowrates. This experiment started after total system sanitation of 

model assays residues with multiple volumes of water and sodium hydroxide before complete 

equilibration.  

 The approach taken followed the same steps as before; an initial breakthrough curve 

was accomplished with the monitored column to evaluate system periods and step time frames 

needed for correct completion. The results demonstrate a fully established BT curve and correct 

time frames for this analysis. 
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Figure 40 - Adenovirus breakthrough in AEX media B 

  

 With these outcomes, two process attempts were made to evaluate the best way to 

apply the oncolytic virus considering the previous batch experiments regarding DBC10% made 

with AEX media resin B. The first one was conducted at 0.67 millilitres per minute and resulted 

on an acceptable attempt with appropriate time frames for each step but still, a higher loading 

amount than recommended or wanted (Fig. 41). The second attempted achieve better results 
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due to flow reduction to 0.5 ml/min which diminished the amount of CV’s loaded for the same 

time frame and the number of viruses wasted in flowthrough (Fig. 42). 

 

Figure 41 - Adenovirus multicolumn chromatography assay 1 (0.67 ml/min) 

Figure 42 - Adenovirus multicolumn chromatography assay 2 (0.5 ml/min) 

 With these results, the completion of a multicolumn chromatography step for oncolytic 

purification is a possibility which may be worth integrating into the downstream train. This 

continuous procedure reduces buffer spending and significantly diminishes operation periods 

while ensuring maximum loading amount and reduction of virus flowthrough losses.  The 

objective of this experimentations was accessing if this system could be applied to oncolytic 
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virus purification but further analysis is required to take conclusions and establish any relations 

between single-column and multi-column strategies. 
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5 

5 Conclusion 

and Future 

Work 
 

 

 

 This chapter summarizes the accomplished results and establishes a bridge for further 

research with innovative approaches and different techniques. 
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5.1 Conclusion  
 

 The extended research done throughout the downstream process displays the 

increasing interest in bioprocess investigation and the necessity for purification improvements 

that can significantly change the standard procedures. The presented work demonstrates 

several possible strategies for each step resolution and, even though some of them aren’t the 

selected for this sequence, they certainly can be the best fitting for other approaches.  

 The evaluations made allowed for a supported arrange of stratagems that can deliver 

the purified oncolytic virus with the correct specification parameters required. 

 The initial experimentation focused on clarification and the establishment of a 2-step 

filtration which guarantees high virus recovery and relevant impurity removal that results from 

extraction in the bioreactor. The following ultra and diafiltration assays result on a scale 

dependent decision with the focus on an automated procedure that is reliable and accurate, but 

most importantly independent. These steps ended with a fully established line of operation with 

good outcomes for purification experiments. 

 The chromatography strategies differentiate between relevant ligand Q 

chromatography medias. After single column experimentations, the multicolumn approach was 

evaluated as an alternative for the standard route and shown great applicability for this 

purification train. The upcoming polishing was made through a SEC column with valuable 

outcome results concerning virus yield, but the multimodal resin tested could be a strong 

possibility for future endeavours if improvements to it are made. The sterile filtration that 

followed ensured a pure and controlled environment for the product and achieved the required 

quality parameters.  

 In parallel, the implementation of an analytical method for particle analysis increases 

the range of measurements possible as it allows accurate and linear results that can sustain an 

entire development strategy with a simple operation procedure. 

 With all things considered, this research led to a complete purification train with 53% 

yield for oncolytic viruses (Fig. 43) that fulfils excellence requirements but leaves a margin for 

further investigation, improvement and innovation.  
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Figure 43 - Downstream purification diagram 

 

 

 

Clarification

•Filter A: 5 μm pore size and 0.2 m2 of surface area 

•Filter B: 0,2 μm pore size and 0.1 m2 of surface area 

Concentration

Diafiltration

•Cassette membrane filter: 300 kDA and 200 cm2 of surface area

Purification

•AEX resin B with Ligand Q

Polishing

•SEC column with a volume of 34.5 ml 

Sterile Filtration

•Millex GP Fibre Unit: PES membrane filter with 0.22 µm pore size

Global recovery: 53% 
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5.2 Future Work  
 

 The work developed and reported in this thesis introduced new points of view to solve 

the existent problems throughout the downstream train. For a short term, the introduction of a 

fully automated ultrafiltration device is an accomplishable objective that could differentiate and 

facilitate the entire process. As a mean to achieve it, a full understanding of equipment’s 

capabilities and limitations is needed in parallel with multiple biological system testing with 

several filtration membranes, volumes and conditions.  

 In the midterm, other innovative strategies could be implemented. As an example, the 

wave reactor used for cell growth, and then virus production, is a batch reactor and despite 

having its conditions assessed or continuously adjusted has its downfalls. Another approach 

could be the introduction of a perfusion reactor that allows gradual nutrient introduction and 

bulk monitoring associated with steady product release. With this mechanism, a more complex 

operation is needed, but considering it ensures maximum viability and productivity by 

countering excess concentrations and growth limitations, it might be a worthy alternative. This 

process highly increases cell density which requires innovative downstream strategies to deal 

with it and a complete makeover on the purification train.  

 Concerning multicolumn chromatography, it requires more investigation and additional 

development in order to become a stable alternative for oncolytic viruses. The direct 

improvement relies on a chromatographic equipment designed specifically for multicolumn that 

ensures a capable operation method and a wide range of possibilities.  

Another significant development that could be considered relates to process control. 

The usual static system relies on predefined switch times between columns. By relying on time 

control, the arrangement may experience a downsize on its outcomes from not considering 

possible variability in feed concentration or different resin binding capacity. A better approach 

might rely on a control strategy that introduces the possibility of adjusting specific operation 

time frames by real time monitoring the outcome and comparing it with intended. Even though 

it would be comparatively more complex, this real-time adaptive control could ensure overall 

optimization and improvements. 

 The long run development would be the execution of a full continuous purification 

strategy associated to the perfusion reactor described above, and a serious of different 

capability columns that could, in a single operation, deliver the sterile and purified adenovirus 

without step interruptions and product losses. 
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