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Abstract

It is known that Liquid crystals (LCs) are very sensitive to external fields, making them very
desirable regarding technological applications. The uniaxial nematic phase, with long-range orienta-
tional order, is widely studied, presenting molecular alignment singularities known as disinclination
lines. The manipulation of these lines opens new perspectives in the LCs field.

In fact recent studies showed that what appeared to be a point defect in a nematic liquid crystal,
are actually nanometer-sized closed-loops[1], that can selectively trigger self-assemble molecular
processes.[2]. The disclination loops appearance as well as position, when threaded on polymeric
fibers with axial anchoring, can be precisely controlled.

In this work, we present results concerning the generation and precise manipulation these
disclination loops, on a micro-scale, threaded on nylon, micro plants cellulose-based filaments and
electrospun fibers, immersed in homeotropic nematic cells, with the application of a magnetic field.

Keywords: Nematics, loops, fibers, fields, manipulation, anchoring
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Resumo

É sabido que os Cristais líquidos são muito sensíveis à aplicação de campos externos, tornando-os
assim muito desejáveis no que toca a aplicações tecnológicas. A fase nemática uniaxial, com ordem
orientacional de longo alcance, está amplamente estudada, apresentando defeitos no alinhamento
molecular denominados linhas de disclinação. A manipulação destas linhas abre novas perspectivas
no que toca ao ramo dos cristais líquidos.

Estudos recentes mostram que o que aparenta ser um defeito pontual num cristais líquido
nemático, são na realidade anéis de disclinação, à escala nanométrica[1], e estes podem desencadear
processos de ordenamento molecular de forma bastante selectiva[2]. O aparecimento destas linhas
de disclinação, bem como a sua posição, quando estão enroladas à volta de fibras poliméricas com
ancoragem planar, são condições que podem ser facilmente controladas.

Neste trabalho, apresentamos resultados tendo em conta a geração e manipulação precisas
destes anéis, à escala micrométrica, quando enrolados em fibras de nylon, em micro filamentos de
plantas à base de celulose e fibras de electrospinning, quando inseridas em células nemáticas com
ancoragem homeotrópica, recorrendo à aplicação de campos magnéticos.

Palavras-chave: Nemáticos, anéis, fibras, campos, manipulação, ancoragem
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Abbreviations

LC(s) Liquid Crystals
POM Polarized optical microscope
HPC Hydroxypropylcellulose
5CB 4’-n-pentyl-4-cyanobiphenyl
EN18 Nematic liquid crystal mixture (∆ξ < 0)
CCD Charge-coupled device
CA Cellulose acetate
DMac Dimethyllacetamide
AC Alternating current
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Symbols

B Magnetic field
Cg Chirogyral coefficient
d Sample thickness
∆χ Diamagnetic anisotropy
f Resulting force per unit length
F Elastic energy per unit surface
fd Frank’s free energy
fl Laplace force
fr Laplace opposite force
h Distance between the fiber and the disclination
K Frank elastic constant
K11 Splay elastic constant
K22 Twist elastic constan
K33 Bend elastic constant
M Magnetization
m Topological charge
m Molecule’s magnetization
Mn Average number molecular weight
ΓM Magnetic torque
n Director
R Fiber’s radius
S Order parameter
T Temperature
Te Disclination line tension
t Time
τ Time constant
ξ(B) Magnetic coherence length
w/w Weight per weight
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Chapter 1

Introduction

1.1 Aims of the present work

Liquid crystals (LCs) response to electric and magnetic fields enables their widespread tech-
nological applications. The uniaxial nematic phase is the most studied and is characterized by a
long-range orientational order and the appearance of dark, flexible filaments known as disclinations
lines. The precise control of the presence and movement of these lines, corresponding to singulari-
ties in the molecular alignment, opens news horizons to LCs applications and to man-made soft
materials.

It has been show recently by Xiaoguang Wang et all.[1] that the cores of singular defects
appearing optically as point defects are, in fact, nanometer-sized closed-loops. In addition, it was
also shown by Xiaoguang Wang et all.[2] that these nanoscopic environments can trigger processes
of molecular self-assembly in a very selective way.

In this work, micrometer-sized captive disclination loops will be manipulated by the application
of magnetic fields. In particular, the behaviour of these loops, under the action of oblique and/or
inhomogeneous magnetic fields, threaded on Nylon, natural and electrospun fibers immersed in
homeotropic nematic cells will be addressed. More precisely, in the case of using nylon fibers two
different setups will be built: the first one to study the behaviour of the captive disclination loops
when submitted to an oblique and inhomogeneous magnetic field created by cylindrical magnets.
The trajectory of the disclination loop as function of time, and also the time constant and the
tilt angle of the loop, when the distance between the fiber and the magnets is changed, will be
calculated; the second setup will allow to study the behaviour of these loops when an horizontal and
homogeneous magnetic field, created by two cylindrical magnets is applied, and also the influence
on the velocity of the disclination loop when the angle θ between the fiber main axis and the
cylindrical magnets is changed.

When using electrospun and natural fibers, horizontal and homogeneous magnetic field will be
applied, with the aim to determine the behaviour of the captive disclination loops while using fibers
with 1-2 µm diameter, much smaller than the Nylon fiber diameter (∼60µm). Lastly, we will try
to determine the critical diameter from which the disclination loop doesn’t vanish throughout the
medium.

1.2 Liquid Crystals: Nematic Phase

A fourth state of matter - liquid crystals (LCs) - was discovered in the late nineteens, and it is
described crudely as an intermediate state between the crystalline (solid) and the isotropic (liquid)
state, sharing properties from the first one, such as optical properties, but also flows and adapts
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CHAPTER 1. INTRODUCTION

the shape of the container, characteristics from the second one[3]. Liquid crystals, or mesomorphic
materials can be classified in three main groups, based on their structures: nematics, columnar
and smetics[4, 5].

Regarding the nematic phase, represented in Figure 1.1 a), which is the most studied among
liquid crystalline phases, the anisotropic molecules exhibit long-range orientational order, and no
positional order[3, 4], defined by the director ~n, schematically represented in Figure 1.1 b)[5, 6, 7].
The deviation between an arbitrary molecule and the director ~n is given by θ, schematically shown
in Figure 1.1 b). The fact that not all molecules point in the same direction is due to the existence
of thermal fluctuations. The orientational order is expressed by the order parameter[4], given by
1.1[8]:

〈S〉 =
1

2
〈3 cos2(θ)− 1〉 (1.1)

Figure 1.1: a) POM picture of the nematic phase, between cross-polarizers; b) Schematic repre-
sentation of the director ~n, showing the average orientation of the calamitic molecules, and θ, the
deviation between an arbitrary nematic calamitic molecule and the director ~n.

The order parameter is a thermodynamic parameter that decreases with increasing temperature,
due to the fact that in the isotropic phase the molecules are randomly distributed, S = 0. For an
ideal crystal, the order parameter is equal to 1[6, 7, 9].

Nematics ( from Greek “vηµa” - thread) owes its name to disclination defects, which appeared
as threads. These threads have been called "disclination lines" by Frank, and can be easily seen
when a nematic phase is observed under polarized light. We will discuss this in more detail along
section 1.2.3[4, 6, 10].

1.2.1 Frank’s continuous elastic theory

We can assume that nematic liquid crystal molecules have a long distance orientational order
as explained in section 1.2. However, the nematic phase can experience orientational deformations.
These deformations of the director field, which increases the free energy of the system are splay,
twist and bend, and are schematically represented in Figure 1.2. The Frank free energy expression
can be simplified and given by the equation 1.2[3, 4, 5, 7, 11, 12, 13, 14], considering also the
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CHAPTER 1. INTRODUCTION

influence of a magnetic field:

Fd =
1

2
K11(div n)2 +

1

2
K22(n · rotn)2 +

1

2
K33(n× rotn)2 − 1

2
ε0εa(n ·B)2 (1.2)

Figure 1.2: Schematic representation of the different types of elastic deformations in nematic liquid
crystal: a) Splay (K11); b) Twist (K22); c) Bend (K33)[9].

Where −1

2
ε0εa(n ·B)2 is the magnetic field component. Regarding this equation, the constants

K11, K22 and K33 are called Frank elastic constants, and refers to the ability of the director to
prevent Splay, Twist and Bend deformations, respectively. These constants are dependent on the
nematic temperature, being generally positive, to ensure the stability of the system[6, 7].

1.2.2 Surface Anchoring

Assuming that the Liquid Crystal (LC) is confined between two substrates, which can be
subjected to different treatments, the LC’s director can be easily manipulated, depending on the
different anchoring conditions of the sample substrates. Several types of molecular orientation can
be promoted, where we can distinguish the following two: planar and homeotropic alignment. The
first one can be achieved by rubbing the surfaces unidirectionally, which means that the director
n of the nematic liquid crystal stays parallel to the surface, Figure 1.2 a) and b). Regarding the
homeotropic anchoring that is more difficult to achieve than the previous one, due to the fact that
most surfaces, including glass, provide planar alignment. In this configuration, the director n is
perpendicular to the surfaces, Figure 1.2 c). To induce this anchoring, usually the substrates are
treated with lecithin[13, 15, 16].

1.2.3 Topological Defects

Defects in liquid crystals can be described as specific regions, within the sample, where the
orientation of the molecules is ill-defined. They may be caused by a continuous symmetry breaking,
when a phase transition occurs, or due to an application of an external field. The existence of these
singularities can increase the free energy of the system[7, 17].

Previous studies indicate that defects in LCs can be classified based on their dimension: point
defects, 0-dimensional structure, when the defect is at a point; line defects, or disclination lines,
a 1-dimensional structure; and defect walls, a 2-dimensional structure[7, 18]. The topology and
the location of these defects, as well as their distributions, may change with temperature, and also
with the nematic anchoring conditions[15, 16].

When analysing a nematic sample between crossed polarizers, it’s very common to find a texture
called Schlieren texture[19], Figure 1.1 a) and Figure 1.3 d), wherein point defects emanating black
brushes, where the orientation of the molecules is parallel or perpendicular to the polarizes[3]. These

3



CHAPTER 1. INTRODUCTION

spots are both point defects, and can have two or four brushes[20]. In the first case, these point
defects correspond to thin threads, and are associated with the end of singular stable disclinations.
These defects are associated with the topological charge m = ±(1/2)[21], due to a rotation of the
molecules main axis by ±π around the defect. The topological charge is given by the number of
brushes divided by 4. The positive sign is assigned to clockwise[3]. When there are four brushes,
Figure 1.3 a), the topological charge associated is m = ±1, due to a rotation of the director by
±2π around the point[3, 20, 21], corresponding to point defects that are isolated.

Point defects are subdivided in boojums and hedgehogs. The first one is a surface point defect,
owing to the fact that they can only exist on the boundaries of the medium, and cannot move
inside the bulk. On the other side, hedgehogs are called bulk point defects, due to the fact that
they can exist either on the surface but also in the volume[10, 18, 20, 21]. They can also also
exhibit radial or hyperbolic configuration[17].

Given the equation 1.2, we can use the one-constant approximation: K11 = K22 = K33 = K,
and assuming that a disclination line is located in tin the xy plane, the director field is given
by: n(r) = [cos θ(x, y), sin θ(x, y), 0][22]. Therefore, this gives rise to the equation: fd(r) =
1

2
K(θ2x + θ2y)[22]. Due to the fact that the system tends to minimize the free energy, we obtain:
52
xyθ = 0[3]. Using polar coordinates, and due to the relation between θ and φ, the equation that

describes the director’s configuration around disclinations is given by 1.3[3]:

θ(φ) = mφ+ θ0 (1.3)

Where φ = arctan(y/x), θ0 is a constant and m is a positive or negative integer or semi-integer.
Some possible configurations of ~n are schematically represented in Figure 1.3 e)-h)[7].

Figure 1.3: POM pictures of: a) a positive integer point defect, under crossed polarizers; b) same
point defect as in a), between cross-polarizers with a 530nm retardation plate; c) same point
defect as in a), between parallel polarizers, rotated anticlockwise. It should be noted that the
four brushes also rotate counterclockwise, implying that this is a positive integer point defect;
d) a Schlieren texture of a nematic liquid crystal, under crossed polarizers, showing positive and
negative integer point defects. Schematic representation of some topological defects: e) negative
semi-integer, m = −(1/2); f) positive semi-integer, m = +(1/2); g) negative integer, m = −1; h)
positive integer, m = +1.
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CHAPTER 1. INTRODUCTION

1.2.4 Captive disclination loops on fibers

We have already introduced and discuss the existence of point defects and disclination lines,
but regarding the first ones, more precisely hedgehogs(m = ±1), they can be transformed into
disclination loops with m = ±(1/2), first notice by Lavrentovich and Terentijev[23], when a
transition between radial and hyperbolic hedgehogs occurs[24, 25].

It has been generally admitted that due to their tension disclination loops in nematic liquid
crystal inevitably collapse. It has been show recently by M.H. Godinho et all.[26] that this is not
the case when disclination loops are threaded on fibers. In particular such captive disclination
loops exist in nematic droplets suspended in cellulosic fibers. Later, the behaviour of these loops
was studied using hydroxypropylcellulose(HPC) and Nylon fibers, both with planar anchoring, in
homeotropic cells containing nematic liquid crystal[27]. In the case of using HPC, or even twisted
nylon, the planar anchoring of the nematic becomes helicoidal near the fiber, resulting then, in an
effect called Chirogyral Effect, wherein the disclination loop is tilted, instead of being perpendicular
to the fiber[27].

1.2.5 External Fields

It is known that nematics are sensitive to external fields, due to the fact that the local orientation
of the molecules and the thermal fluctuations of the director can be changed by the application
of magnetic or electric fields, leading to changes in the bulk sample[28]. When a magnetic field is
applied, the nematic sample tends to be parallel to the field when its diamagnetic anisotropy is
positive(∆χ > 0), and perpendicular when is negative(∆χ < 0)[3, 11]. When a magnetic field(B)
is applied, the acquired magnetization by each molecule(m) is given by 1.4[4]:

m =
1

µ0
[χ⊥B + ∆χ(B · n)n] (1.4)

Where µ0 is the permittivity in free space.
Regarding the topological defects, apart from the fact that they can be created when a phase

transition occurs, they can be also formed when these fields are applied[3, 7].
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Chapter 2

Experimental and Characterization Techniques

Liquid crystal used during the experiments was the nematic liquid crystal 4’-n-pentyl cyanobiphenyl
(5CB), exhibiting a nematic phase between 18◦ C and 34◦ C, and also the nematic liquid crystal
EN18.

In the first setup, the cell containing the nematic liquid crystal was made of two overlapping
glass plates with 10mm width, 20mm length and 1mm of thickness. One plate was fixed while the
second one, supported by a simple mechanical system, was mobile. More precisely, the distance
h between the two plates as well as their parallelism can be controlled. The inner surfaces of the
two glass plates were treated with egg yolk with the aim to induce a homeotropic anchoring of the
nematic liquid crystal. The cell was filled with the nematic liquid crystal 5CB.

The Nylon fiber (fishing line 0.2mm in diameter) was stretched between the collinear axes of
two stepping motors controlled independently. By this means the fiber can be twisted precisely.
The nematic cell, fixed on a xyz translation stage, was moved towards the fiber and by this means
the Nylon fiber was introduced into the sample.

After this operation, usually one or more captive disclinations loops were formed on the fiber.
Otherwise, we had to create a turbulent flow in the sample, by a vigorous motion of the fiber. Such
a turbulent flow stretches disclination lines and results in generation of new captive loops. This
is going to be explained in more detail in section 3.5. The sample was observed in transmission
mode with an optical system made of a microscope objective and a CCD camera.

As shown in Figure 3.8 b), the inhomogeneous magnetic field ~B was created by a long cylindrical
magnet, almost parallel to the z axis. The magnet was supported by a xyz translation stage,
allowing to control its position with respect to the fiber and to the disclination loop. We have
made a series of experiments in which the z position of the magnet was kept constant and only the
x and y positions were modified.

When the captive disclination loop is located in the point O (see Figure 3.4) where the field
~B is orthogonal to the fiber, it does not move. But if it is located in positions 1 or 1’, where the
magnetic field is oblique with respect to the fiber, the disclination loop will move in the −x or x
direction, respectively.

During experiments, the magnet was first positioned in a way that the loop was located outside
of its equilibrium position O. Then, the motion of the captive disclination loop was recorded as a
sequence of images, usually taken at the rate of one image every twenty seconds. Subsequently, the
sequence of images was treated using the softwares ImageJ and IgorPro, with the aim to determine
the characteristic relaxation time of the return of the loop into the equilibrium position O. More
details about this treatment will be given in section 3.
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In the experiment illustrated by the series of eight pictures in Figure 3.6, section 3.5, a fiber
of diameter D = 28µm, drawn by hand from an anisotropic 63% HPC-in-water solution, has been
inserted in a homeotropic sample, also treated with egg yolk, of thickness d = 100µm, through one
of its two free edges. The sample was filled with the nematic liquid crystal EN18.

In the second setup, as shown in Figure 3.12 a) and b), the liquid crystal cell was assembled
from two glass plates separated by a plastic spacer of thickness 0.6mm. The cell was then fixed
with an epoxy glue on the top of a cylindrical support conceived specially for the purpose of the
experiment with horizontal magnetic fields. The plans of this support were drawn with the software
SolidWorks, and printed using a 3D printer. In order to enable the application of an horizontal and
homogeneous magnetic field, a second part - the magnet holder - was build by the same method. It
had a shape of a ring equipped with radial cylindrical holes in which magnets were inserted. The
inner diameter of the ring was identical with the outer diameter of the first part, so that magnets
can be rotated around the z axis, see Figure 3.12 a). Like in the previous experiment, the Nylon
fiber was stretched between the axes of stepping motors, and introduced into the sample, as shown
in Figure 3.12 a).

The motion of the captive disclination loop driven by the horizontal and homogeneous magnetic
field was recorded, and analyzed in the same way as in the previous experiment.

The electrospinning fibers were prepared from cellulose acetate (CA), obtained from 12% CA
(Mn = 50000gmol−1), in a homogeneous mixture of 66.6% (w/w) acetone and 33.3% (w/w) DMac.
The viscous solution was poured into a 2ml syringe with 4.5mm diameter fitted with a 27-gauge
needle, with 0.2ml inner diameter. The syringe was then placed on a infusion pump (KDS100), to
control the flow. The conducting ring with 15 cm in diameter was held coaxially with the needle
tip, and electrically connected to it. Then they were both connected with a positive output of a
high voltage supply (Glassman EL 30kV). After applying the electric potential, the highly viscous
CA solution was fed to the syringe-tip as a constant flow rate of 0.02mlh−1. The voltage used was
20kV, and the distance between the nozzle and the collector was 15cm. The setup is illustrated in
Figure 3.15 a). The fiber collectors was made of a plastic frame (6× 22mm), coated with double
sided adhesive tape, glued on top of two aluminum stripes distanced 0.6cm from each other, see
Figure 3.15 b). During the process the humidity was around 50% at room temperature, 24◦ C.

The samples were made of two overlapping glass plates (10mm × 20mm2), 1mm of thickness,
threated with lecithin as well, and the plastic support containing the suspended fibers was placed
in the middle. An epoxy glue was used to seal the sample. The samples were then filled with
nematic 5CB.

The natural fibers used in the experiments were taken from the plant called Ornithogalum
thyrsoides[29], and they were suspended in the same plastic support. The samples were prepared
using the same method. The samples were observed using a transmission mode microscope,
equipped with polarizers, a 530 nm retardation plate, a heating/cooling stage and a camera. The
image sequences recorded were analyzed with the software VLC media player.
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Chapter 3

Results and Discussion

3.1 Planar Axial Anchoring

Let us consider first a cylinder with planar axial anchoring ~a//~x (see Figure 3.2) , immersed in
a nematic. In the absence of fields and other surface conditions the director field ~n would take the
direction parallel to the cylinder axis ~x. The symmetry of this ground state is D∞h (see Figure
3.2 a)).

When a magnetic field ~B is applied in the direction ~z orthogonal to the cylinder, the symmetry
D∞h is broken into D2h (see Figure 3.2 b)) and the director field will be distorted: far from the
cylinder it will take the direction of the field while on the cylinder surface it will remain parallel to
~x.

As shown in Figure 3.3 two distorted ground states a) and b) are possible. Taken separately
they are symmetrical only with respect to the longitudinal mirror plane xz and to the twofold axis
C2//~y orthogonal the field. All other symmetry operations of the group D2h(mirror planes xy and
yz and the two-fold axis C2// ~B) exchange the two ground states.

The same symmetry breaking occurs when the cylinder immersed in a nematic is submitted to
the action of glass plates with homeotropic anchoring[30].

In the two ground states generated by the magnetic field, the distorsion is localized in a
cylindrical shell whose thickness is given by the so-called magnetic coherence length ξ[8], which
due to its importance must be explained in more detail, starting with the case of a simple twist.
First, we have to take into account the effects of a magnetic field and a wall on the alignment of
the nematic molecules, in the case where the wall is in the xoy plane, and the magnetic field ~B is
applied in parallel to the x axis, as shown in Figure 3.1. We can observe that near the wall the
nematic molecules are parallel to the z axis, and far from the wall they are parallel to ~B[8]. This
means that there is a transition layer, near the wall, where the molecules are parallel to it, with
the addition of presenting an angle β(y) with the z direction, as represented in Figure 3.1. This
can be classified as a distorted state, where the magnetic torque ΓM acting on the magnetization
M is given by 3.1[8]:

ΓM = χa(n ·B)n×B (3.1)

Taking that into account, in this case, ΓM is parallel to the y axis, and considering a section(1×1cm)
in the xoy plane, from y to y + dy, the section experiences a surface and a bulk torque. Adding
these torques, the equilibrium equation is given by 3.2:

K2
d2β

dy2
+ χaB

2 sinβ cosβ = 0 (3.2)
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Figure 3.1: Schematic representation of a simple twist. The nematic molecules are parallel to the
z axis near the wall, and parallel to ~B far from the wall. The applied magnetic field ~B is parallel
to the x axis. As the distance from the wall increases, the nematic molecules present an angle β,
going from 0 near the wall, to π/2 far from the wall[8].

Where ξ2( ~B) is a length defined by 3.3:

ξ2(B) = (K2χa)1/2/B (3.3)

Substituting in the equation 3.2 and integrating, and due to the fact that far from the wall β = π/2,
we come to the equation 3.4:

ξ2
dβ

dy
= ± cosβ (3.4)

Where both solutions are possible. Choosing one of them, and resolving the equation by using a
change of variable[8], the result is given by 3.5:

t = exp(−y/ξ2) (3.5)

Where t = tan
(

(π/2)−β
2

)
. This shows that ξ2(B) can be considered as the transition layer.

Regarding a different case, where the applied magnetic field ~B is parallel to the y axis, it is not
just a case of a simple twist, but a combination of splay and bend[8]. These distortions are associated
with the elastic constants K11 and K33, respectively, where their lengths (ξi) are similar. Thus,
using the one-constant approximation already discussed in section 1.2.3 (K11 = K22 = K33 = K),
the magnetic coherence length is given by 3.6[8]:

ξ(B) =

√
µ0K

χa

1

B
(3.6)

and the elastic energy per unit surface of the distorted boundary layer is given by:

F =
1

2

K

ξ
(3.7)

3.2 Tilted magnetic field, translation of disclination loops

When the magnetic field is oblique to the cylinder (for example tilted in the direction of the x
axis as shown in Figure 3.2 c)), the symmetry D2h is broken to C2v and the two ground states are
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Figure 3.2: Symmetries of the system ”cylinder + field”: a) Planar axial anchoring, no field: D∞h,
for simplicity only one mirror plane parallel to the cylinder axis and one twofold axis orthogonal
to it are shown; b) Planar axial anchoring + field orthogonal to the cylinder: D2h; c) Planar axial
anchoring + field oblique to the cylinder: C2v; d) Helical anchoring + field orthogonal to the
cylinder: D2.

no more related by any symmetry operation. If the angle between the magnetic field and cylinder
is writen as:

π

2
− Φ =

π

2
(1− ε) (3.8)

where ε << 1, then the distortion energy of states a and b becomes:

Fa/b = (1± ε)2K
2ξ

(3.9)

When the two possible states a and b coexist on the fiber, there must be a disclination loop at the
junction between them. This can be easily checked by following the director orientation on the
circuit 12341 drawn with dashed line in Figure 3.3. At the starting point 1 the director is (0,0,1)
while after the whole turn of the circuit it becomes (0,0,-1).

The energies per unit surface of the boundary layers adjacent to the disclination loop Fa and
Fb can be seen as forces per unit length pulling on the loop, respectively, in −~x and ~x directions.
The resultant force

f = Fb − Fa = −2K

ξ

2

π
Φ (3.10)

will pull the loop in the ~x direction when the tilt angle of the magnetic field ~Φ is positive. As a
result, the disclination loop will move in the ~x direction, as observed in experiments.

When other disclination loops coexist on the fiber then their sequence can represented as:

a−DL1 − b−DL2 − a−DL3 − b... (3.11)

In this sequence, the ground states a and b are located respectively on left and right sides of loops
DL1 and DL3 . In the case of the loop DL2 the positions of the ground states are inverted so that
the force f given by equation 3.10 changes its sign.

11



CHAPTER 3. RESULTS AND DISCUSSION

Figure 3.3: Fiber with axial anchoring in the magnetic field orthogonal to it: a) and b) are the two
ground states.

3.3 Trap-like action of an inhomogeneous magnetic field

Knowing that the magnetic field oblique with respect to the fiber generates the force f propor-
tional to the field angle Φ (see equations 3.8 and 3.10) we are prepared to analyse the action of
inhomogeneous magnetic fields such as the one of the cylindrical magnet used in our experiments.

As shown in Figure 3.4, the magnetic field of a cylindrical magnet has the axial symmetry with
respect to the magnet axis ~z.

Figure 3.4: Magnetic field of a cylindrical magnet acting as a trap for disclination loops.

In this geometry, the angle Φ between the field and the axis y normal to the fiber varies as a
function of the position x of the loop. In the first approximation, we can write:

Φ ≈ Ax (3.12)
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Then, using the equations 3.8 and 3.10 we obtain:

f = −Bx (3.13)

with

B =
2K

ξ

2

π
(3.14)

Upon the action of the force f the dislocation loop with move with the velocity v given by:

B = v =
dx

dt
= µf (3.15)

where µ is the mobility.
Finally using equation 3.13 and 3.15 we obtain the equation of motion:

dx

dt
= −µBx (3.16)

Its solution:

x(t) = x0e
−t/τ (3.17)

3.4 Captive disclination loops, the chirogyral effect

As already introduced in section 1.2.4, the first observations of captive disclination loops were
made in experiments with nematic[31] and cholesteric droplets[26] threaded on HPC fibers with
planar anchoring. When the anchoring at the nematic (cholesteric)/air is homeotropic, each droplet
must contain, for topological reasons, a defect with the topological charge m = 1: a disclination
loop equivalent to a radial hedgehog.

Captive disclination loops were also observed on glass fibers with homeotropic anchoring im-
mersed in planar nematic samples[32, 33]. In this geometry, disclination loops were generated in
a controlled manner by the KibbleZurek mechanism during quenching from the isotropic into the
nematic phase.

Recently, captive disclination loops were created and studied using HPC and Nylon fibers with
a planar anchoring immersed in homeotropic nematic samples[27]. In the case when the planar
anchoring on the fiber surface was helicoidal, due to the chirality of the polymer (HPC) or to
the mechanical torsion of the fiber, the so-called chirogyral effect was observed (see Figure 3.5):
the captive disclination loops are tilted with respect to the fiber axis by the angle η which is
proportional in the first approximation to the helix angle α:

η = Cg(D/d)α (3.18)

The chirogyral coefficient Cg(D/d) occurring in this formula, is a function of the ratio D/d between
the fiber diameter D and the sample thickness d. In these first experiments, for symmetry reasons,
disclination loop were rotating around the axis z parallel to the homeotropic anchoring on the
sample surfaces.

Let us stress that the chirogyral effect was discovered previously in experiments with nematic
droplets threaded on helicoidally-shaped fibers obtained by electrospinning where disclination loops
were tilted with respect to the average axis of fibers[34].
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Figure 3.5: The chirogyral effect: tilt of the captive disclination loops with respect to the axis of
the fiber with a planar helicoidal anchoring inserted in a nematic hoemotropic sample with the
director field oriented in z direction.

3.5 Generation of captive disclination loops by electrohydrodynamic
turbulence

In the experiment illustrated by the series of eight pictures in Figure 3.6, and already intro-
duced in section 2, the sample contained, initially, one disclination loop threaded on the fiber.
Subsequently, we applied a 100Hz, 50V , AC voltage to this EN18 sample with the negative di-
electric anisotropy drove the electrohydrodynamic turbulence which stretched progressively the
initial disclination loop and created the strongly light scattering area labelled DSM2 whose size is
growing with time[35] as shown in Figures 3.6 b) and c). After switching the excitation off, due to
the elastic relaxation, the density of disclination (length/unit volume) is rapidly falling down and
a tangle of individual disclination can be distinguished in Figure 3.6 d). In Figure 3.6 f) only three
loops are left. Their evolution in Figures 3.6 g) and h) shows that the one labeled cdl is captive
and while the other two, fdl1 and fdl2, are free and can collapse.

The outcome of this experiment is that the topology is a quite robust feature of the director
field. Nevertheless, when a vigorous hydrodynamic turbulence is applied for a longer period, new
captive disclinations can be created. This is shown in the series of seven pictures in Figure 3.7,
where the number of captive disclinations increases from 1 (Figure 3.7 b)) to 13 (Figure 3.7 h))
by generation of six pairs of captive disclinations. We can also say that disclination loops can be
created not only by the application of an electric field, like in the previous experiment, but also
with the application of any other external field. In the following experiments, we are going to
use two different approaches: a mechanical external field, where we create a turbulent flow in the
sample, by a vigorous motion of the fiber; and a second one, an external magnetic field, created by
cylindrical magnets.

14



CHAPTER 3. RESULTS AND DISCUSSION

Figure 3.6: Fiber of diameter D = 28µm, drawn by hand from an anisotropic 63% HPC-in-water
solution, has been inserted in a homeotropic sample, treated with egg yolk, of thickness d = 100µm,
through one of its two free edges. The sample was filled with the nematic liquid crystal EN18. a) one
captive disclination loop (cdl); b-c) stretching of the initial disclination loop by electrohydrodynamic
turbulence; d-h) relaxation of disclination loops created by turbulence; all loops but one collapse.
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Figure 3.7: Generation of captive disclination loops by the electrohydrodynamic turbulence: a) one
disclination loop captive on a HPC fiber inserted in a homeotropic cell of the nematic EN18; b)
stretching of the initial captive disclination loop leads to formation of the strongly light scattering
domain DSM2 containing a finite density of disclinations; c) growth of the DSM2 domain; d-g)
elastic relaxation after switching the AC field off unveils the existence of six new pairs of disclination
loops generated by the turbulent flow.

3.6 Magnetic Traps

With the purpose of studying the behavior of the captive disclinations loops threaded on nylon
fibers, inserted in a sample with homeotropic anchoring, when an oblique and inhomogeneous
magnetic field ~B is applied, we build a setup, illustrated in Figure 3.8, and already explained in
the beginning of section 2.

Before beginning the experience, the magnets were placed so that the disclination loop was
not in its equilibrium position O. These positions may be 1 and 1′, schematically represented in
Figure 3.4. Then, in case the disclination loop is positioned in 1, the magnets were placed near the
position 1′, presenting an angle Φ between the field and the y axis normal to the fiber. This means
that the disclination loop will be attracted to the magnet, due to the fact that the magnetic field
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is now oblique with respect to the fiber, and will move in the ~−x direction, toward the position O,
with a velocity v. The same will happen if the disclination loop is positioned in the 1′ position,
and the magnets near the position 1, resulting in the movement of the disclination loop in the ~x
direction, toward the position O. In this case, the position of the magnets was only changed in
the ~x direction. For each position of the magnets, a sequence of images was recorded, usually with
a rate of one image every twenty seconds. The positions of the captive disclination loop versus
the time of the movies are plotted in Figure 3.11 a). After that, we moved the magnets in the
~x direction, but also in the −~y direction, increasing the distance d between the magnets and the
fiber. A sequence of images was recorded in the same way, for increasing distances.

Figure 3.8: Principle of the experiment. Captive disclination loops threaded on a Nylon fiber,
inserted into a sample with homeotropic anchoring, filled with nematic liquid crystal 5CB, are
submitted to an oblique and inhomogeneous magnetic field created by cylindrical magnets: a)
Photograph of setup; b) perspective view of the setup; c) closer view of the setup.

The image sequences recorded were analyzed using the software ImageJ. They were converted
to grayscale, and imported as stacks. A typical image from one stack is shown in Figure 3.9 a). The
segment AB visible here is parallel to the fiber, and crosses the disclination loop. Using the “reslice”
command this segment was extracted from each image of the stack and the set of all segments was
assembled into the image shown in Figure 3.9 b). Let us note that the segment AB is rotated by
90 degrees with respect to the Figure 3.9 a). It is obvious that the reslice image represents the
trajectory x(t) of the loop as a function of time. At the first sight, the shape of this trajectory
seems to be exponential.

With the aim to extract the time constant τ , the positions (x, t) of the loop were measured
using the multi-point selection option, and saved as an excel file. This data were then loaded into
the IgorPro software as so called waves, and plotted as shown in Figure 3.11 a). Using the “analysis
- fit” option the experimental points were then fitted to the exponential formula 3.19 using as
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adjustable parameters coefficients x0 and τ .

x(t) = x0e
−t/τ (3.19)

The inverse of the relaxation time 1/τ was then plotted in Figure 3.11 b) as a function of the
inverse of the distance d between the magnet and the fiber. Let us emphasize that both axes of the
plot in Figure 3.11 b) are logarithmic. The reason for such a choice is that the expected dependence
between 1/τ and 1/d is approximatively given by the power low 3.20:

1

τ
= a

(
1

d

)α
(3.20)

In such a log-log plot the exponent α corresponds to the slope of a straight line fitting the
experimental points. The time constant τ and the tilt angle η versus the distance between the
disclination loop and the magnets are represented in Figure 3.11 c). The shape of the disclination
loop with the increasing of the distance between the magnet and the fiber is represented in Figure
3.10.

Figure 3.9: Determination of the relaxation time τ characteristic of the magnetic trap: a) one frame
showing one position of the captive disclination loop around the fiber, and the magnet orthogonal
to the fiber axis; b) reslice of the image sequence.

Figure 3.10: Variation of the shape of the disclination loop, with the increasing of the distance
between the magnets and the fiber. The distance d is expressed in µm.
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Figure 3.11: a) Plot of the position of the captive disclination loop versus the time of the movie; b)
Plot of the inverse of time constant versus the inverse of the distance between the disclination loop
and the magnets; c) Plot of the time constant versus the distance between the disclination loop
and the magnets, represented by the red crosses, and the tilt angle versus the distance between the
disclination loop and the magnets, represented by the blue crosses.
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The Figure 3.11 b) shows clearly that the increasing of the distance between the disclination
loop and the magnets translates into a increasing of the time constant. There is also a decreasing
of the tilt angle of the disclination loops with the increasing of d, represented in Figure 3.11 c) and
Figure 3.10.

These results are in agreement with the theoretical analysis in sections 3.1, 3.2 and 3.3.

3.7 Field induced translation of disclination loops

In this section, we studied the behavior of the captive disclination loops threaded on nylon
fibers, inserted in a sample with homeotropic anchoring, when subjected to an horizontal and
homogeneous magnetic field ~B, created by two cylindrical magnets. For this purpose, a second
setup was build, already described in section 2, and illustrated in Figure 3.12.

After inserting the nylon fiber into the sample, the magnets were initially placed in the magnet
holder with an angle θ = 0, wherein θ = π − Φ. This means that, in the beginning of the
experience,the magnets were parallel to the fiber main axis (see Figure 3.12 b)). The angle θ
ranged from 0 to 2π, every 5 degrees, around the z axis, clockwise, with the help of a circumference
made of paper with lines drawn every 5 degrees. We recorded sequences of images of a loop moving
upon the action of an horizontal and homogeneous magnetic field for each angle θ.

Figure 3.12: Principle of the experiment. Captive disclination loop threaded on a Nylon fiber,
inserted into sample with homeotropic anchoring, filled with nematic liquid crystal 5CB, are
submitted to an horizontal homogeneous magnetic field, created by two cylindrical magnets: a)
Photograph of the setup; b) perspective view.
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The analysis of the image sequences was then identical to what was done in section 3.5. For
example, on the spatio-temporal cross section obtained by the reslice command (see Figure 3.13)
the velocity of the disclination loop is given by the slope of the trajectory x(t). As we can see
here, there are discontinuous changes of the slope because during this experiment the angle θ has
been changed several times. For a better accuracy the velocity as a function of θ was obtained
from a series of movies recorded at different angles θ. The results are plotted in Figure 3.14 a).
Obviously there is a wide range of angles Φ, where Φ = π − θ, in which velocity is proportional
to Φ. We noticed a linear behavior of v(Φ) in the vicinity of Φ = 0, due to symmetry reasons
represented in Figure 3.14 b). The scheme on the right represents the distortion of the director field
in the presence of the magnetic field with Φ > 0. When the field is strong enough the distortion
is localized in a cylindrical shell whose thickness is given by the magnetic coherence length ξ(B).
The energy per unit length (in x direction) of this cylindrical shell can be seen as a force pulling
on the disclination loop. Clearly, as the distorsion on the left side of the disclination loop (labeled
5) is larger then on its right side (labeled 4), the resulting force drives the motion of the loop to
the left as shown. Upon the reversal of the sign of the director field is transformed by reflection in
the mirror orthogonal to the fiber and the sign of the loop’s velocity v is reversed too.

Analytically, for this symmetry reason, in the expansion of v(Φ) into a Fourier series only sine
terms sin(mΦ) can occur. Moreover, as the distorsion should not depend on the sign of B must
be pair so that finally one gets the expression:

v(Φ) = a sin(2Φ) + b sin(4Φ) + ... (3.21)

which in the limit of small angles Φ leads to a linear dependence of v on Φ:

v =
dx

dt
≈ αΦ (3.22)

Remarkably, the experimentally observed linear dependence of v on Φ (see Figure 3.14 a)) is
not limited to the vicinity of Φ = 0 but holds in a wide interval of angles −60◦ < Φ < 60◦.

The fit of this linear dependence to experimental results in Figure 3.14 a) leads to a positive
coefficient α.

Figure 3.13: Reslice of the image sequence, showing the increasing of the velocity of the disclination
loop, with the increasing of the field angle between the disclination loop and the magnets.
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Figure 3.14: a) Plot of the velocity of the disclination loop versus the field angle θ(θ = π − Φ)
between the fiber main axis and the horizontal homogeneous magnetic field created by the two
magnets. The plain line in this graph represents the best linear fit to experimental results in the
interval [−50◦, 50◦]; b) symmetry relationship explaining the odd dependence of v on Φ.

Let us emphasize that these results are in agreement with the theoretical analysis in sections
3.1, 3.2 and 3.3.

3.8 Horizontal magnetic fields on CA electrospinning fibers

As previously mentioned in section 2, the fibers used in this experiment were produced by
electrospinning, which due to its importance must be detailed. The process begins whit the
placement of the syringe containing a polymeric solution on the pump. In our experiment we used
a CA solution. The pump forces the solution to come out at a constant rate of 0.02mlh−1, and
due to the application of an high potential to the nozzle (20kV ), a drop is formed. The charged
drop is then deformed, presenting a conical shape called Taylor cone[36], and ejected toward the
target, when the electrostatic forces are higher than the surface tension of the polymeric solution.
This jet is steady in the region near the needle[37], traveling along a straight path. In the region
near the target, the jet is more unstable, assuming a spiral path, when the electrostatic forces and
the surface tension are equal[4, 32]. The distance between the nozzle and the target should be
large enough to allow the evaporation of the solvent, to allow the formation of fibers instead of
droplets. We used 15cm in our experiment. The electrospinning setup used in the experiment, as
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well as the target, can be observed in Figure 3.15 a) and Figure 3.15 b), respectively.
During the process is necessary to control not only the distance between the needle and the

target, but also other critical parameters, such as the humidity and the temperature of the room,
as well as the concentration and the viscosity of the polymeric solution[38].

Figure 3.15: a) Photograph of the electrospinning setup: 1- infusion pump KDS100; 2- syringe; 3-
coaxial shield ring; 4- target. The flow rate, the voltage used and the distance between the needle
and the target were, respectively: 0.02mlh−1, 20kV and 15cm. b) Photograph of the target, where
we can see the plastic frame, coated with double sided adhesive tape, glued on top of the aluminum
stripes separated by 6mm.

As already explained, the samples were prepared by overlapping two glass plates, previously
treated with egg yolk, and the support with the suspended fibers was placed in the middle. To
study the presence of disclination loops on these fibers, and their behavior when a horizontal and
homogeneous magnetic field is applied, we used a different setup from the first two, illustrated
in Figure 3.16. For this purpose, a regular polarized light microscope was used. First, without
applying the magnetic field, the sample was simply placed in the microscope platinum, to see the
presence of the disclination loops, and several pictures were taken with the following microscope
lenses: 10x, 20x and 50x. The sample was observed using the transmission mode of the microscope.
Some POM pictures are illustrated in Figure 3.17, where we can easily see the presence of these
disclination loops.

To study the behavior of these disclination loops with the application of an horizontal and
homogeneous magnetic field, the sample was placed on the microscope platinum first. Then, the
magnet holder was placed on top of the sample, without being in contact with it. The angle
between the fiber main axis and the magnets assumed the values of 0 and 90 degrees, controlled
by the angles marked in the platinum. For each case we recorded sequences of images using the
software QUALQUER COISA. This procedure was done in the liquid crystalline phase, at room
temperature, but also in the isotropic phase, heating the sample using the heating/cooling stage.
Due to the difficulty in handling all the components of the setup in such a small space, the heating
stage was placed next to the microscope platinum, at the same high, and the heating was done
using a copper strip. One side of the stripe was placed inside the heating/cooling stage, while the
other side was glued on the top of the sample. To observe the sample we did a circumferential
hole in the strip, with few millimeters in diameter. We programmed the heating for 250◦ C, and
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the sample was heated by conduction. We used a high heating value due to the energy losses that
occur due to the size of the strip.

Figure 3.16: Photograph of the setup: 1- magnet; 2- microscope lens; 3- sample; 4- microscope
platinum; 5- magnet holder. Electrospinning fibers inserted in a sample with homeotropic anchoring,
and filled with the nematic liquid crystal 5CB, are submitted to an horizontal and homogeneous
magnetic field, created by two cylindrical magnets. The angle between the fibers main axis and the
magnets is controlled by the angles marked in the platinum. The microscope used is a polarized
light microscope.

Figure 3.17: POM pictures of cellulose acetate fibers, produced from a CA solution (12%w/w),
in a homeotropic sample: a) under crossed polarizers; b) between cross-polarizers with a 530nm
retardation plate. The different colors surrounding the fiber, yellow and blue, show us that there
are different orientation of the director field ~n along the fiber[27]. The average diameter of the fibers
is 4µm. These fibers induce disclination loops which can be seen easily in these two photographs,
that are perpendicular to the fiber main axis, due to the planar anchoring on the fiber surface and
the homeotropic anchoring of the sample walls.

After applying the horizontal and homogeneous magnetic field to the sample, varying the angle
θ, the image sequences recorded were analyzed using the software VLC media player. Unlike what
happened in the last case, where the captive disclination loops threaded on nylon fibers moved
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across the fiber with a velocity v, in this case the captive disclinations loops remained in the same
place, not showing any movement. This occurred in both phases, and for both values of θ. The
cause for such an occurrence could be explained by the fiber diameter. In the case of the nylon
fiber, the diameter was 200µm (see Figure 3.18). In this case, we have fibers of smaller dimensions,
with approximately 4µm, see Figure 3.17. This can indicate that there is a critical diameter from
which the disclination loop does not move, due to the attraction force fL (see Figure 3.18) that
the fiber exerts on the disclination loop.

We also noticed that although the disclination loops did not move, the fibers showed slight
fluctuations when the field was applied in the liquid crystalline phase and in the isotropic phase.
The fact that they have moved in the isotropic phase shows us that the nematic liquid crystal does
not interfere with the fiber movement, being only due to the action of the magnetic forces created
by the two magnets[39].

In order to know the critical diameter from which the disclination loop doesn’t vanish throughout
the medium, it is necessary to do some calculations. It is known that there are two forces acting
on a disclination loop, the Laplace force (fL), 3.23, and fr which is opposed to the first one, 3.24,
respectively[4]:

fL =
Te

R+ h
(3.23)

fr = 2πK
m2

2h
(3.24)

Where h is the distance between the fiber and the disclination; R is the fiber’s diameter; K is the
isotropic elasticity; m is the disclinations line strength and Te is the disclinations line tension. The
parameters h and R, as well as the two forces fL and fr are schematically represented in Figure
3.18.

Figure 3.18: Picture a captive disclination loop on a nylon fiber, where the equilibrium distance h,
as well as R, fL and fr are schematically represented. The scale bar corresponds to 50µm.
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Taking into account that the radius of the fiber is much larger than h (R >> h), comes that:

fL ≈
Te
R

(3.25)

Due to the fact that the disclination ring is in equilibrium and doesn’t move across the fiber, it
comes:

fr = fL =
Te
R

= 2πK
m2

2h
(3.26)

Finally, and knowing that m = +1/2, the final expression to the equilibrium distance h is given
by[6]:

h = R
πK

4Te
≈ RK

Te
(3.27)

3.9 Horizontal magnetic fields on natural fibers

After preparing the samples in the same way as the previous ones, they were observed also
using a transmission mode microscope. The POM pictures are represented in Figure 3.19. The
samples were also submitted to an horizontal and homogeneous magnetic field, using the same
setup and conditions as already explained in section 3.7.

Figure 3.19: POM pictures of the natural fibers taken from the plant called Ornithogalum thyrsoides,
in a homeotropic sample: a) under crossed polarizers; b) between cross-polarizers with a 530nm
retardation plate; c) between parallel polarizers. We can easily see that these fibers also induce
disclination loops. Through a close observation of the picture b), we noticed that the direction of
the nematic molecules in the regions near the disclination loops varies. This could be seen by the
change of colors between yellow and blue[27]. The average diameter of the fibers is 2µm.

In a first analysis, we can say that these disclination loops do not exist only in synthetic fibers,
like the previous ones, but also in fibers extracted from natural plants.

After applying the horizontal and homogeneous magnetic field to the sample, giving θ the same
values of 0 and 90 degrees, the results were very similar to the ones using CA electrospinning
fibers. Due to the small diameter of the fibers, the disclination loops are strongly attracted to the
fiber, like we explained in section 3.8, causing them not to move when we applied the horizontal
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and homogeneous magnetic field. The main difference to the CA and nylon fibers is that these
fibers have a pronounced curvature, which is not the case of the last two. This shows us that the
movement of the disclination loops with the application of the magnetic field is not related to the
curvature of the fibers, but with their diameter.
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Chapter 4

Conclusions and Future Perspectives

While topological defects should be avoided in nematic liquid crystal electro-optical sensors
and displays this work demonstrates that 1D defects, i.e. disclination lines, can have some use if
precisely designed and manipulated. In particular, it is possible to generate the so-called captive
disclination loops threaded on fibers immersed in nematic cells.

It has been pointed out that such captive disclination loops can be manipulated, i.e. translated
and tilted, by electric and magnetic fields.

Tilting captive disclination loops in electric or magnetic fields was found to be a source of
information about the fibers morphologies. Indeed, the field-induced tilt of a disclination loop with
respect to the fiber axis is correlated with the fibers’ chirality (for fibers with diameters ranging
from hundred to few micrometers).

Captive disclination loops have also been put in a translational motion by the action of a
magnetic field oblique to fibers and their velocities were found to vary as a function of the field
intensity and orientation as well as of the fibers’ diameters. While velocities of 2µms−1 were
achieved for rings moving along fibers with diameters of 200µm driven by the action of an oblique
magnetic field, no motion was observed, using the same drive driving conditions, if fibers with
diameters of the order of 1− 1.5µm were used. A reason for this behavior was given considering

the disclination tension line, which is highly dependent on the radius of the fiber: h = R
πK

4Te
.

For the future, new interactive technology for transport of living matter can be foreseen using
systems of captive disclination loops generated on fibers’ networks with special geometries immersed
in nematic liquid crystalline cells.

29



Bibliography

[1] X. Wang, Y.-K. Kim, E. Bukusoglu, B. Zhang, D. S. Miller, and N. L. Abbott. “Experimental
Insights into the Nanostructure of the Cores of Topological Defects in Liquid Crystals”. In:
Physical review letters 116.14 (2016), p. 147801.

[2] X. Wang, D. S. Miller, E. Bukusoglu, J. J. de Pablo, and N. L. Abbott. “Topological defects
in liquid crystals as templates for molecular self-assembly”. In: Nature materials 15.1 (2016),
pp. 106–112.

[3] F. J. Antonio. “Estudo de Defeitos Topológicos em Cristais Líquidos do Ponto de Vista
Cosmológico”. Master’s Thesis. Universidade Estadual de Maringá, 2009, p. 121.

[4] P. Pieranski, Pawel, Oswald. Nematic and Cholesteric Liquid Crystals. Taylor & Francis,
2005, p. 616.

[5] M. Cardoso. “Contribuição para o Estudo da Fase Nemática Biaxial em Dendrímeros Líquido-
Cristalinos Termotrópicos”. Master’s Thesis. Instituto Superior Técnico, 2007, p. 68.

[6] A. de Oliveira. “Cellulose micro/nano fibers conformational effects probed by nematic liquid
crystal droplets”. Master’s Thesis. FCT, 2014, p. 38.

[7] A. Sengupta. Topological microfluidics: nematic liquid crystals and nematic colloids in
microfluidic environment. Springer Science & Business Media, 2013.

[8] J. de Gennes and J Prost. The physics of liquid crystals. 83. Oxford University Press, 1995.

[9] S. Čopar. “Topology and geometry of nematic braids”. In: Physics Reports 538.1 (2014),
pp. 1–37.

[10] G. Volovik and O. Lavrentovich. “Topological dynamics of defects: boojums in nematic
drops”. In: Zh Eksp Teor Fiz 85.6 (1983), pp. 1997–2010.

[11] D. D. Luders. “Estudo de propriedades ópticas de uma fase nemática calamítica”. PhD
Thesis. Universidade Estadual de Maringá, 2014, p. 123.

[12] D. Andrienko. “Introduction to liquid crystals”. In: IMPRS school, Bad Marienberg (2006).

[13] R. A. Alla. “On the Control of Nematic Liquid Crystal Alignment”. PhD Thesis. University
of Gothenburg, 2013, p. 49.

[14] F. C. Frank. “I. Liquid crystals. On the theory of liquid crystals”. In: Discussions of the
Faraday Society 25 (1958), pp. 19–28.

[15] C. M. Tone, M. P. De Santo, M. G. Buonomenna, G. Golemme, and F. Ciuchi. “Dynamical
homeotropic and planar alignments of chromonic liquid crystals”. In: Soft Matter 8.32 (2012),
pp. 8478–8482.

[16] C. Tone, M. De Santo, and F Ciuchi. “Alignment of chromonic liquid crystals: A difficult
task”. In: Molecular Crystals and Liquid Crystals 576.1 (2013), pp. 2–7.

30



BIBLIOGRAPHY

[17] T. Lubensky, D. Pettey, N. Currier, and H. Stark. “Topological defects and interactions in
nematic emulsions”. In: Physical Review E 57.1 (1998), p. 610.

[18] M. Kleman and O. D. Lavrentovich. “Topological point defects in nematic liquid crystals”.
In: Philosophical Magazine 86.25-26 (2006), pp. 4117–4137.

[19] J. Nehring and A. Saupe. “On the schlieren texture in nematic and smectic liquid crystals”. In:
Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics
68 (1972), pp. 1–15.

[20] J. de Gennes. “Nematic Liquid Crystals: Defects”. In: I (1993), pp. 1–5.

[21] O. Lavrentovich. “Defects in liquid crystals: surface and interfacial anchoring effects”. In:
Patterns of Symmetry Breaking. Springer, 2003, pp. 161–195.

[22] G. Vertogen and W. H. de Jeu. Thermotropic liquid crystals, fundamentals. Vol. 45. Springer
Science & Business Media, 2012.

[23] O. D. Lavrentovich and E. M. Terentjev. “Phase transition altering the symmetry of topo-
logical point defects (hedgehogs) in a nematic liquid crystal”. In: Soviet Physics JETP
64.December 1986 (1986), pp. 1237–1244.

[24] Y.-S. Wang, B.-H. Yuan, and G.-H. Yang. “Effect of Saddle-Splay Elasticity on Stability of
Disclination Rings in Nematic Liquid Crystals”. In: Communications in Theoretical Physics
50.4 (2008), pp. 847–850.

[25] G. P. Alexander, B. G. G. Chen, E. A. Matsumoto, and R. D. Kamien. “Colloquium:
Disclination loops, point defects, and all that in nematic liquid crystals”. In: Reviews of
Modern Physics 84.2 (2012), pp. 497–514.

[26] Y Geng, D Seč, P. L. Almeida, O. D. Lavrentovich, S Žumer, and M. H. Godinho. “Liquid
crystal necklaces: Cholesteric drops threaded by thin cellulose fibres”. In: Soft Matter 9.33
(2013), pp. 7928–7933.

[27] S. Čopar, D. Seč, L. E. Aguirre, P. L. Almeida, M. Dazza, M. Ravnik, M. H. Godinho, P.
Pieranski, and S. Žumer. “Sensing and tuning microfiber chirality with nematic chirogyral
effect”. In: Physical Review E 93.3 (2016), p. 032703.

[28] B. J. Frisken. “Nematic liquid crystals in electric and magnetic fields”. PhD thesis. University
of British Columbia, 1989.

[29] M. S. Roh, A. K. Lee, and J. K. Suh. “Induction of bulb maturity of Ornithogalum thyrsoides”.
In: Scientia horticulturae 114.2 (2007), pp. 138–141.

[30] M. Nikkhou, M. Škarabot, S. Čopar, M. Ravnik, S. Žumer, and I. Muševič. “Light-controlled
topological charge in a nematic liquid crystal”. In: Nature physics 11.2 (2015), pp. 183–187.

[31] Y. Geng, P. L. Almeida, J. L. Figueirinhas, E. M. Terentjev, and M. H. Godinho. “Liquid
crystal beads constrained on thin cellulosic fibers: electric field induced microrotors and N–I
transition”. In: Soft Matter 8.13 (2012), pp. 3634–3640.

[32] M. Nikkhou, M. Škarabot, S. Čopar, M. Ravnik, S. Žumer, and I. Muševič. “Light-controlled
topological charge in a nematic liquid crystal”. In: Nature physics 11.2 (2015), pp. 183–187.

[33] M Nikkhou, M Škarabot, and I Muševič. “Topological binding and elastic interactions of
microspheres and fibres in a nematic liquid crystal”. In: The European Physical Journal E
38.3 (2015), pp. 1–15.

31



BIBLIOGRAPHY

[34] L. E. Aguirre, A. de Oliveira, D. Seč, S. Čopar, P. L. Almeida, M. Ravnik, M. H. Godinho,
and S. Žumer. “Sensing surface morphology of biofibers by decorating spider silk and cellulosic
filaments with nematic microdroplets”. In: Proceedings of the National Academy of Sciences
113.5 (2016), pp. 1174–1179.

[35] K. A. Takeuchi and M. Sano. “Universal fluctuations of growing interfaces: evidence in
turbulent liquid crystals”. In: Physical review letters 104.23 (2010), p. 230601.

[36] E. Jentzsch, Ö. Gül, and E. Öznergiz. “A comprehensive electric field analysis of a mul-
tifunctional electrospinning platform”. In: Journal of Electrostatics 71.3 (2013), pp. 294–
298.

[37] S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, and Z. Ma. An introduction to electro-
spinning and nanofibers. Vol. 90. World Scientific, 2005.

[38] L. G. Soares. “Obtenção por electrospinning e caracterização de fibras nanoestruturadas de
TiO2 e sua aplicação fotocatalítica”. In: (2013).

[39] C Lapointe, A Hultgren, D. Silevitch, E. Felton, D. Reich, and R. Leheny. “Elastic torque
and the levitation of metal wires by a nematic liquid crystal”. In: Science 303.5658 (2004),
pp. 652–655.

32



Appendix A

Appendix

Taking into account the Figure 3.1, the orientation of the molecules ~n in the transition layer is
given by:

nx = sinβ(y);ny = 0;nz = cosβ(y)

The magnetic field ~B is given by:

Bx = B;By = 0;Bz = 0

. Using the Frank energy density equation:

Fd =
1

2
K11(div ~n)2 +

1

2
K22(~n · rot ~n)2 +

1

2
K33(~n× rot ~n)2 − 1

2
ε0εa(~n · ~B)2 (A.1)

Where −1

2
ε0εa(~n · ~B)2 is the magnetic field component.

To resolve the equation it is necessary to do some calculations first:

div ~n =
∂nx
∂x

+
∂ny
∂y

+
∂nz
∂z

= 0

rot ~n =

∣∣∣∣∣∣∣∣
~e1 ~e2 ~e3
∂

∂x

∂

∂y

∂

∂z
nx 0 nz

∣∣∣∣∣∣∣∣ = ~e1

(
∂nz
∂y

)
+ ~e3

(
−∂nx
∂y

)

~n · rot ~n = (nx~e1 + nz~e3) ·
[(

∂nz
∂y

)
~e1 −

(
∂nx
∂y

)
~e3

]
= nx

∂nz
∂y
− nz

∂nx
∂y

=

= sinβ
∂ cosβ

∂β

∂β

∂y
− cosβ

∂ sinβ

∂β

∂β

∂y
= − sinβ2 ∂β

∂y
− cosβ2 ∂β

∂y
=

(
−∂β
∂y

)

(~n · rot ~n)2 =

(
∂β

∂y

)2

~n× rot ~n =

∣∣∣∣∣∣∣∣
~e1 ~e2 ~e3

nx 0 nz
∂nz
∂y

0 −∂nx
∂y

∣∣∣∣∣∣∣∣ = −~e2
(
−nx

∂nx
∂y
− nz

∂nz
∂y

)
=
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= nx
∂nx
∂β

∂β

∂y
− nz

∂nz
∂β

∂β

∂y
= − sinβ cosβ

∂β

∂y
+ cosβ sinβ

∂β

∂y
= 0

~n · ~B = (sinβ~e1 + cosβ~e3) · (Bx~e1 +By~e2 +Bz~e3) = B sinβ

(~n · ~B)2 = B2 sin2 β

replacing in the equation A.1:

Fd =
1

2
K22

(
∂β

∂y

)2

− 1

2
χaB

2 sin2 β (A.2)

Where χa = χ|| − χ⊥

Taking into account the minimum condition:

−∂fd
∂ni

+
d

dnj

∂fd
∂ni,j

We have:

∂

∂nx

(
1

2
χaB

2sinβ

)
= χaB

2cosβsinβ

d

dy


1

2
K22

(
∂β

∂y

)2

∂
(
∂β
∂y

)
 = K22

∂2β

∂y2

Coming to the equation A.3:

K22
∂2β

∂y2
+ χaB

2 cosβsinβ = 0 (A.3)

Considering now the equation A.4:

ξ(B) =

(
K22

χa

)1/2

B
(A.4)

Where ξ(B) is the persistence length.

replacing in the equation A.4 it comes:

ξ2
∂2β

∂y2
+ sinβcosβ = 0

This must be integrated. For that reason, we use a simple trick of multiplying the last equation
by dβ/dy:
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dβ

dy
ξ2
d2β

dy2
+
dβ

dy
sinβcosβ = 0

d

dy

[
ξ2

1

2

(
dβ

dy

)2
]

+
d

dy

(
−1

2
cos2 β

)
= 0

Because:

d

dy

[
1

2

(
dβ

dy

)2
]

= 2× 1

2

dβ

dy

d2β

dy2
=
dβ

dy

d2β

dy2

and

d

dy

(
−1

2
cos2 β

)
= −1

2
× 2 cosβ(−sinβ)

dβ

dy
= cosβ sinβ

dβ

dy

So we have:

d

dy

[
ξ2

1

2

(
dβ

dy

)2

− 1

2
cos2 β

]
= 0

ξ2
1

2

(
dβ

dy

)2

− 1

2
cos2 β = c

So we have:

ξ2
(
dβ

dy

)2

= cos2 β + c

Far from the wall, the conditions are: y →∞, β = π/2 and dβ/dy = 0, being c = 0.

Therefore:

ξ2
(
dβ

dy

)2

= cos2 β

ξ
dβ

dy
= ± cosβ

Where both options are possible, due to the possibility of rotating to both sides.
Considering the positive sign:

ξ
dβ

dy
= cosβ

dy

ξ
=

dβ

cosβ

If:

u =
π

2
− β ⇒ dy

ξ
=

dβ

cosβ
= − du

sinu
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To resolve the equation, we have to do a change of variable:

t = tan(u/z)

Getting:

sinu =
2t

1 + t2

and

du =
2dt

1 + t2

So we get that:

dy

ξ
=

−2dt

(1 + t2)
2t

(1 + t2)

= −dt
t

dy

ξ
= −dt

t
⇒ ln(t) = −y

ξ
+ c1

t = exp

(
− ξ
y

+ c1

)
= c2exp

(
−y
ξ

)

The conditions near the wall are: y = 0 and β = 0

So we have:

u =
π

2

t = tan
(π

4

)
= 1

1 = c2exp(0) = c2 → c2 = 1

Therefore:

t = exp

(
y

ξ

)
≡ tg

(
(π/2)− β

2

)
= exp

(
−y
ξ

)
Where ξ is the magnetic coherence length.

Considering:

t = exp

(
y

ξ

)
and
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ξ(B) =

(
K22

χa

)1/2

B

And replacing with K22 = 10−6; χa = 10−7 and B = 104 (SI), we can calculate:

ξ(B) = 3µm

With a very weak external perturbation, we can induce distortions on a scale comparable to
an optical wave-length.
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