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superfície de resposta, impacto do pH. 

 

 

Resumo 

O trabalho realizado nesta tese centra-se na produção de exopolissacáridos (EPS) 

bacterianos utilizando meio Schatz, suplementado com extrato de levedura e peptona, e glucose 

como fonte de carbono. 

 

Foram realizados ensaios de produção em frascos de agitação com diferentes bactérias 

marinhas, dos géneros Pseudoalteromonas e Psychrobacter, e com a bactéria Enterobacter A47. 

De modo a otimizar a produção de EPS, as estirpes foram escolhidas para prosseguir com ensaios 

em bioreactor. As bactérias marinhas foram capazes de produzir 1.33-1.91 g.L-1 de EPS, 

correspondendo a produtividades volumétricas de 0.67-0.96 gEPS.L-1.d-1. Por outro lado, a 

Enterobacter A47 foi capaz de sintetizar 1.81 g.L-1 de EPS, correspondendo a uma produtividade 

volumétrica de 0.91 gEPS.L-1.d-1. Os exopolissacáridos produzidos pelas bactérias marinhas eram 

compostos principalmente por glucose, enquanto que o produzido pela Enterobacter A47 era 

semelhante ao exopolissacárido rico em fucose – FucoPol – tipicamente produzido por esta 

cultura. 

 

De modo a otimizar a produção de EPS por Enterobacter A47 em condições salinas, foi 

estudado o impacto das concentrações de NaCl (0-40 g.L-1), extrato de levedura (0-4 g.L-1) e 

peptona (0-2 g.L-1) no crescimento celular e produção de EPS. Para tal foram utilizadas 

ferramentas estatísticas, tais como a metodologia de superfície de resposta e o desenho compósito 

central. Os resultados mostraram que a Enterobacter A47 tem a capacidade de crescer e sintetizar 

EPS na maioria das condições experimentais testadas. As concentrações ideais de NaCl, extrato 

de levedura e peptona foram determinadas como sendo 8.1 g.L-1, 0.8 g.L-1 e 0.4 g.L-1, 

respetivamente.  

 

Posteriormente, foi avaliado o impacto do pH na produção de EPS, assim como na 

composição do polímero, por Enterobacter A47. Verificou-se que o uso do meio Schatz 

modificado e o controlo do pH a 7.0 levou a um aumento na produção de EPS (3.49 g.L-1), 

correspondendo a uma produtividade volumétrica de 1.75 gEPS.L-1.d-1. Observou-se também que 

a diminuição de pH 7.0 para pH 6.0 teve pouco efeito sobre a produção de EPS (3.33 g.L-1), 

enquanto que a pH 8.0 foi observada uma redução significativa na síntese de EPS (0.79 g.L-1).  

Os exopolissacáridos produzidos eram ricos em fucose. 
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Keywords 
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methodology, impact of pH. 

 

 

Abstract 

This thesis is focused on the production of bacterial exopolysaccharides (EPS) using a 

Schatz medium, supplemented with yeast extract and peptone, and glucose as carbon source. 

 

Production assays were carried out in shake flasks with different marine bacteria, of the 

genera Pseudoalteromonas and Psychrobacter, and with the bacterium Enterobacter A47. In 

order to optimize EPS production, the strains were chosen to proceed with bioreactor assays. The 

marine bacteria were able to produce 1.33-1.91 g.L-1 of EPS, corresponding to volumetric 

productivities of 0.67-0.96 gEPS.L-1.d-1. On the other hand, Enterobacter A47 was able to 

synthesize 1.81 g.L-1 of EPS, corresponding to a volumetric productivity of 0.91 gEPS.L-1.d-1.      

The exopolysaccharides produced by marine bacteria were mainly composed of glucose, while 

the one produced by Enterobacter A47 was similar to the fucose rich exopolysaccharide – 

FucoPol – typically produced by this culture. 

 

In order to optimize EPS production by Enterobacter A47 in salt conditions, the impact 

of NaCl (0-40 g.L-1), yeast extract (0-4 g.L-1) and peptone (0-2 g.L-1) concentrations on cellular 

growth and EPS production was studied. Statistical tools, such as response surface methodology 

and central composite rotatable design, were used. The results showed that Enterobacter A47 has 

the ability to grow and synthesize EPS under most of the experimental conditions tested. The 

optimal NaCl, yeast extract and peptone concentrations were determined to be 8.1 g.L-1,                

0.8 g.L-1 and 0.4 g.L-1, respectively. 

 

Afterwards, the impact of pH on EPS production, as well as on the polymer´s 

composition, by Enterobacter A47 was also evaluated. It was found that the use of the modified 

Schatz medium and pH control at 7.0 led to an increase in EPS production (3.49 g.L-1), 

corresponding to a volumetric productivity of 1.75 gEPS.L-1.d-1. It was also observed that the 

decrease from pH 7.0 to pH 6.0 had little effect on EPS production (3.33 g.L-1), whereas at pH 

8.0 a significant reduction in EPS synthesis (0.79 g.L-1) was observed. The exopolysaccharides 

produced were rich in fucose. 
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1. Introduction and Motivation 

 

1.1. Exopolysaccharides 

Exopolysaccharides (EPS) are high molecular weight (104-107 Da) carbohydrate 

polymers composed of monosaccharides linked by glycosidic bonds that make up a substantial 

component of the extracellular polymers surrounding most microbial cells (Nichols et al., 2005; 

Sutherland, 2001).  

Bacterial EPS are secreted by the cells, and may form a capsule that remains associated 

with the cell surface or a slime that is loosely bound to the cell surface (Kumar et al., 2007). The 

composition of these polymers includes neutral sugars, such as glucose, galactose and mannose, 

which are the most common monomers (Table 1.1). Other neutral sugars (e.g. rhamnose and 

fucose), some uronic acids (mainly glucuronic and galacturonic acids) and aminosugars                

(N-acetylaminosugars) are also frequently present (Table 1.1). Exopolysaccharides may be 

composed of a unique sort of monosaccharide (homopolysaccharides) or comprise two or more 

different monosaccharides (heteropolysaccharides) (Kumar et al., 2007). 

Some bacterial EPS have irregular structures (e.g. bacterial alginates), despite being 

composed of repeating units with varying sizes and degrees of ramification. Given the huge 

diversity of sugar components, the range of possible molecular structures is very large           

(Freitas et al., 2011). Moreover, the different glycosyl linkages and configurations increase this 

variability (Kumar et al., 2007). Bacterial EPS can not only contain carbohydrates, but might also 

contain several organic ester-linked substituents and pyruvate ketals that can confer the EPS an 

anionic character, increase its lipophilicity, and affect its capacity to interact with other 

polysaccharides and cations. Chemical composition, molecular structure, average molecular 

weight and distribution determine the properties of bacterial EPS (Freitas et al., 2011). 

 

Exopolysaccharides can be derived from many natural sources. They may be plant based 

(e.g. guar gum, starch and pectins), marine originated (e.g. carrageenan and alginate), animal 

originated (e.g. chitin and chitosan) or of microbial origin (e.g. xanthan, gellan and pullulan) 

(Kaur et al., 2012). Polysaccharides extracted from plants or algae can be directly replaced in 

traditional applications by some bacterial EPS, because of their improved physical properties 

(Freitas et al., 2011). Bacteria usually have higher specific growth rates and allow manipulation 

of the growth conditions for improving fermentation yields, productivity and biopolymers 

properties (Freitas et al., 2009). Due to this fact, several different EPS have been extensively 

studied over the last decades, such as xanthan, gellan and alginate.  

 Nowadays, xanthan, produced by Xanthomonas campestris, is the most widely accepted 

microbial polysaccharide. It is used in many manufactured foods, as well as in cosmetics and 
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personal care products (Freitas et al., 2011; Garcia-Ochoa et al., 2000). Gellan, synthesized by 

Sphingomonas paucimobilis, is mainly used in food applications due to its great gelling capacity 

that allows it to be used at a much lower concentration than agar (Bajaj et al., 2007;                   

Freitas et al., 2011). The use of alginate, produced by Pseudomonas aeruginosa and Azotobacter 

vinelandii, has increased in recent years, since it can not only be used in the food and paper 

industries, but also in the pharmaceutical and medical industries, due to its biocompatibility    

(Hay et al., 2013). 

 

 

Table 1.1 – Sugar and nonsugar components of bacterial exopolysaccharides (Nichols et al., 2005). 

Type Component Example Mode of linkage 

Sugar 

Pentoses 

D-Arabinose 

 

D-Ribose 

D-Xylose 

Hexoses 

D-Glucose 

D-Mannose 

D-Galactose 

D-Allose 

L-Rhamnose 

(6-Deoxy-L-mannose) 

L-Fucose 

(6-Deoxy-L-galactose) 

Amino sugars 

D-Glucosamine 

(2-Amino-2-deoxy-D-glucose) 

D-Galactosamine 

(2-Amino-2-deoxy-D-galactose) 

Uronic acids 
D-Glucuronic acid 

D-Galacturonic acid 

Nonsugar 

Acetic acid 

 

O-Acyl, N-Acyl 

Succinic acid O-Acyl 

Pyruvic acid Acetal 

Phosphoric acid Ester, diester 

Sulfuric acid Ester 
 
 

 
 

1.2. Microbial growth and EPS production 

 Maximum EPS production can be found in two different phases of microbial growth. 

Some studies found maximum production of EPS during the exponential phase                             

(Bozal et al., 1994), although most bacteria produce the largest quantity of EPS during the 

stationary phase under nitrogen limitation, suggesting that EPS synthesis for those strains was 

also induced by restricted growth conditions (Samain et al., 1997). 

Despite the factors leading to EPS synthesis are still not clearly elucidated, it is thought 

to be a response to environmental stress conditions (e.g. temperature, pH, light intensity, salinity) 

(Donot et al., 2012; Kumar et al., 2007). Although culture conditions generally do not affect the 
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type of monosaccharides in the EPS, they do affect the functional properties of the 

polysaccharides, such as molecular weight, conformation and monosaccharide ratios                

(Arias et al., 2003). Cultivation conditions for optimum cell growth will not necessarily be the 

same for EPS production (Kumar et al., 2007).  

During most EPS production processes, changes on the rheology of fermentation broth 

occur. Cultivation broths containing unicellular microorganisms of simple shape should behave 

as Newtonian fluids. However, in a number of industrially important cultivation processes the 

broth develops shear thinning behaviour. 

For a Newtonian fluid, there is a direct relationship between the shear stress and its shear 

rate. A non-Newtonian fluid is a fluid whose flow properties are not proportional to the shear rate, 

being non-linear and even time-dependent (Verbeeten, 2010). Shear thinning fluids are the largest 

and probably most important class of non-Newtonian fluids (Cross, 1965). 

The viscosity of fermentation broths may be influenced by the cultivation medium, the 

size of both cells and cell aggregates formed, biomass concentration, morphological parameters 

and the products being secreted into the solution (Alves et al., 2010). It also depends on the 

dissolved oxygen concentration (Al-Asheh et al., 2002). However, the change in flow behaviour 

is generally attributed to the increasing polymer concentration being produced, with a negligible 

contribution from the cells (Landon et al., 1993).    

 

 

1.3. Bacterial biosynthetic pathways 

 Bacterial EPS are synthesized by either Gram-positive or Gram-negative bacteria, by two 

very distinct mechanisms. EPS originated from Gram-positive bacteria are synthesized in the 

exterior of the cell by enzymes that were secreted by the bacteria or that are anchored to the cell 

surface (e.g. levan, dextrans and alternans). On the other hand, EPS originated from                   

Gram-negative bacteria are synthesized intracellularly and then secreted to the extracellular 

environment (e.g. xanthan, gellan and cellulose) (Sutherland, 2001; Vanhooren et al., 1998).  

The intracellular biosynthesis is regulated by enzymes that are located in various regions 

of the cell. In the cytoplasm, glucose-1-phosphate (G-1P) is converted to the key molecule in 

exopolysaccharide synthesis, uridine diphosphate glucose (UDP-Glucose) in a reaction catalyzed 

by uridine diphosphate-glucose pyrophosphorylase (Fig. 1.1). At this stage, intracellular enzymes 

catalyze the interconversion of UDP-Glucose into other sugars, such as UDP-Glucuronic acid, 

creating diverse sugar monosaccharides. Subsequently, in the cell periplasmic membrane, 

glycosyltransferases transfer the nucleotide diphosphate sugars (NDPs) to form the repeating unit 

attached to a glycosyl transporter lipid, an isoprenoid alcohol. Afterwards, the macromolecules 
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are polymerized and excreted to the exterior of the cell by one of two possible mechanisms, 

Wzx/Wzy- or ABC transporter dependent pathways (Kumar et al., 2007; Schmid et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.1 – Metabolic mechanism representing the sugar nucleoside synthesis that are involved in the 

biosynthesis of exopolysaccharides in Gram-negative bacteria (Kumar et al., 2007). 

 

 
 

 

1.4. Marine bacteria and EPS production 

  
 

1.4.1. Marine environment as potential source of research  

 

More than 70% of the surface of the planet is covered by sea water, which contains an 

exceptional biological diversity, representing more than 95% of the whole biosphere         

(Dufourcq et al., 2014; Spízek et al., 2010). The deep sea is, therefore, the largest ecosystem of 

our planet: about 50% of the surface of the planet is below 3000 m depth. However, it is one of 

the less studied. The marine environment includes a variety of habitats, from the lower edge of 

the continental shelf to the deeper areas of the trenches, each of which has defined geochemical 

and physical characteristics that support some of the greatest biodiversity on the planet        

(Dionisi et al., 2012).  

 

Marine bacteria are commonly found in intertidal zones, deep seas and extreme places, 

such as hydrothermal sources or polar seas. In a world where competition is very selective, this 

presence demonstrates their excellent ability to adapt to the environment, through the 

development of sophisticated metabolic pathways, which help them to survive                    

(Dufourcq et al., 2014; Harvey, 2008). Despite the incredible capacity of marine bacteria to 
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develop different adaptation mechanisms, including the synthesis of EPS, not many in-depth 

studies have been conducted yet. Thus, the oceans are an open and very promising research field 

for EPS discovery (Dufourcq et al., 2014). 

 

Recently, marine bacteria of the genera Pseudoalteromonas, Alteromonas and Vibrio  

(Nichols et al., 2005) have started to be studied as potential sources of EPS, which can be used in 

high-value applications, such as food, medical, pharmaceutical and cosmetics industry         

(Freitas et al., 2011; Poli et al., 2010). Ecologically, these polymers serve important functions in 

marine environments, where they may be involved in microbial adhesion to solid surfaces and 

biofilm formation, or mediating the fate and mobility of heavy metals and trace metal nutrients 

(Holmström et al., 1999; Poli et al., 2010). 

So far, there are very few commercially available EPS produced by marine bacteria. One 

such example is HE800 EPS, an exopolysaccharide composed by equal amounts of glucuronic 

acid and hexosamine (N-acetylglucosamine and N-acetylgalactosamine), produced by the deep 

sea bacterium Vibrio diabolicus. It is a hyaluronic acid-like polymer and its commercial name is 

Hyalurift. The efficiency of this exopolysaccharide was evaluated on the restoration of bone 

integrity for critical size defects (Senni et al., 2011). 

 

 

1.4.2. Genera Pseudoalteromonas and Psychrobacter 

 

Members of the genus Pseudoalteromonas are generally found in eukaryotic hosts 

(Holmström et al., 1999), associated with marine animals (i.e. tunicate and mussels)            

(Ivanova et al., 1998) and marine algae (Egan et al., 2001). This genus was first suggested after 

division of the genus Alteromonas into Alteromonas and Pseudoalteromonas, by Gauthier et al. 

in 1995, based on comparative analysis of 16s rRNA sequences. Members of this genus display 

the following characteristics: are Gram-negative straight rods (2-3µm), isolated from sea water, 

sediments, sea ice, surfaces of stones, marine algae or marine invertebrates. All of them are 

aerobic, utilize carbon substrates as carbohydrates, alcohols, organic acids or amino acids, also 

are non-spore forming and non-bioluminescent. They have a single polar flagellum, sheathed or 

unsheathed, for mobility and require Na+ for growth (Holmström et al., 1999).   

Bacteria of the genus Pseudoalteromonas, which currently comprise 49 species   

(Duhaime et al., 2016), have recently received significant levels of attention because they are 

readily cultivated and are widespread in the marine environment (Ivanova et al., 2001). This genus 

has attracted significant interest for two reasons. First, Pseudoalteromonas species are frequently 

found in association with eukaryotic hosts in the marine environment, and studies of such 

associations will elucidate the mechanisms important for microbe-host interactions. Second, 
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numerous Pseudoalteromonas strains were shown to synthesize a range of bioactive molecules, 

that are active against a variety of target organisms (Egan et al., 2001; Hoyoux et al., 2001; 

Kobayashi et al., 2003). This feature appears to be important for this genus and may benefit 

Pseudoalteromonas cells in their competition for nutrients or colonization of surfaces     

(Bowman, 2007).  

 

 The genus Psychrobacter was originally described by Juni and Heym (1986). Initially the 

strains were referred to as “Moraxella-like” organisms and the strains that were competent for 

genetic transformation were grouped together as members of the genus Psychrobacter which, at 

present, belongs to the family Moraxellaceae (Bowman, 2006). Psychrobacter species are 

primarily isolated from a wide variety of sources including sea water, fish, poultry, meat products 

and clinical sources. Members of this genus display the following characteristics: Gram-negative, 

spherical to rod-shaped, non-motile, strictly aerobic, chemoheterotrophic, oxidase-positive,   

cold-adapted and osmotolerant (Maruyama et al., 2000; Romanenko et al., 2002). Psychrobacter 

species are neutrophilic, growing best at pH 6.0-8.0, and are able to grow in a wide range of 

temperatures and salt concentrations (Bowman, 2006). 

 

In particular, the strains Pseudoalteromonas atlantica MD12-331 A, Pseudoalteromonas 

shioyasakiensis MD12-375, Pseudoalteromonas mariniglutinosa MD12-501 and Psychrobacter 

submarinus MD12-530 b, used in the present study, were isolated from a marine sediment sample 

collected at 15 m depth, at Desertas Islands (Roca et al., 2016).  

 

 

1.5. Enterobacter A47 (DSM 23139) 

 

 The Gram-negative bacterium Enterobacter A47 (DSM 23139) synthesizes a high 

molecular fucose-containing EPS, named FucoPol (Alves et al., 2010). FucoPol is a 

heteropolysaccharide composed of fucose (32-36 mol%), glucose (28-37 mol%), galactose       

(25-26 mol%), glucuronic acid (9-10 mol%) and acyl groups, namely succinyl (2-3 wt.%), 

pyruvyl (13-14 wt.%) and acetyl (3-5 wt.%) (Torres et al., 2015). Fucose-containing 

polysaccharides may have biological activity, since fucose have proven to promote acceleration 

of wound healing and scavenge free radicals (Péterszegi et al., 2003). Moreover, it was reported 

that fucose has anti-inflammatory (Cescutti et al., 2005) and anti-aging properties                     

(Fodil-Bourahla et al., 2003), enhancing its biological properties that can be incorporated into 

pharmaceutical and cosmetic products. 

The composition of FucoPol changes depending on the physicochemical factors of the 

cultivation conditions, which makes this process very versatile, since the distinct EPS produced 
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by Enterobacter A47 possess different properties that can be useful in different applications 

(Freitas et al., 2014). This feature can be useful to obtain tailored EPS production by simply 

altering the cultivation conditions (Torres et al. 2012).  

 
 

1.6. Motivation 

Bacterial exopolysaccharides are biocompatible, non-toxic and ecofriendly 

macromolecules that can be easily obtained from renewable sources. Additionally, 

exopolysaccharides obtained from microorganisms have different structural composition, 

presenting a high diversity of interesting properties (More et al., 2014). Over the past years, 

microbial polysaccharides have been raising commercial interest in alternative to polysaccharides 

extracted from plants or algae. This fact is related to their use in high-value applications, such as 

pharmaceutical, cosmetics and biomedicine, in which traditional polymers fail to comply with the 

required degree of purity or lack some specific functional properties (Freitas et al., 2011).  

 

Marine environments have been identified as an excellent source of EPS-producing 

microorganisms. Currently, marine bacteria are being studied more in details and are used as a 

source of new EPS, especially for industries looking for high added value products, due to their 

improved properties (Finore et al., 2014). As so, the objective of this master’s thesis was to study 

the production of bacterial EPS synthesized by different marine bacteria, of the genera 

Pseudoalteromonas and Psychrobacter, and Enterobacter A47. This work aimed to assess the 

effect of a Schatz medium, supplemented with yeast extract and peptone and using glucose as 

carbon source, on bacterial growth. The ability of each strain to produce EPS was also evaluated, 

as well as the polymer´s composition.  

 

Enterobacter A47 revealed to be one of the best EPS producers, comparing to the other 

strains, under the tested conditions. Moreover, the polymer produced by this bacterium presented 

a higher fucose content, which is very interesting since fucose is one of the rare sugars difficult 

to obtain in Nature. So, Enterobacter A47 was selected for further optimization studies.  

In order to optimize EPS production by Enterobacter A47 in salt conditions, the impact 

of NaCl, yeast extract and peptone concentrations on cellular growth and EPS production was 

assessed. Additionally, the influence of pH on EPS production, as well as on the polymer´s 

composition, by Enterobacter A47 was also studied. 
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2. Materials and methods 

 

2.1. Biopolymer production  

 

2.1.1. Microorganisms  

  

Pseudoalteromonas atlantica MD12-331 A, Pseudoalteromonas shioyasakiensis     

MD12-375, Pseudoalteromonas mariniglutinosa MD12-501, Psychrobacter submarinus      

MD12-530 b and Enterobacter A47 (DSM 23139) were preserved in glycerol (20% v/v) and 

stored at -80 °C. Culture reactivation was performed by growing the stock cultures in an agar 

plate (CHROMagarTM Orientation) for 24 hours (Enterobacter A47) and 48 hours (marine 

bacteria) at 30 °C, to obtain isolated colonies. Afterwards, inocula were prepared by placing an 

isolated colony from the plate into 200 mL of Schatz medium, supplemented with yeast extract 

and peptone, and using glucose as carbon source. Incubation occurred for 24 hours          

(Enterobacter A47) and 32 hours (marine bacteria) in an orbital shaker (New Brunswick 

Scientific), at 30 °C and 200 rpm. 

 

 

 

2.1.2. Cultivation media 
 

 

Schatz medium (Fondi et al., 2015) was used for all experiments with the following 

composition (per liter): KH2PO4, 1 g; NH4NO3, 1 g; NaCl, 30 g; MgSO4.7 H2O, 0.2 g;          

FeSO4.7 H2O, 0.01 g; CaCl2.2 H2O, 0.01 g. After autoclaving (20 min at 121 °C, 1 bar – Uniclave 

88, Portugal), the medium was supplemented with yeast extract, peptone and glucose solutions 

(autoclaved separately) to give concentrations of 4 g.L-1, 2 g.L-1 and 30 g.L-1, respectively. For 

the bioreactor experiments E2 – E4, a modified Schatz medium was used, in which the 

concentrations of NaCl, yeast extract and peptone were altered to 8.1 g.L-1, 0.8 g.L-1 and                

0.4 g.L-1, respectively, according to the results determined in the design of experiments. 

 

Every step involved in the handling of the bacterial strain was carried out in a laminar 

flow chamber (Heraeus SB 48, Germany). 

 

 

 

2.1.3. Shake flask assays  

 
 

The experiments were performed in 500 mL baffled shake flasks with 200 mL of Schatz 

medium, supplemented with yeast extract and peptone, and using glucose as carbon source. The 
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medium was inoculated by placing an isolated colony from the plate into the culture medium and 

growth occurred at 30 °C and 200 rpm.  

 

The assays were run for 96 hours and 3 mL samples were periodically taken for 

measurement of the optical density at 550 nm and 450 nm, for marine bacteria and Enterobacter 

A47, respectively, and pH. At the end of the experiments, 20 mL samples were also collected for 

quantification of biomass and EPS.  

 

 

2.1.4. Bioreactor operation 
 

 

All assays were carried out in a bioreactor (BioStat B-plus, Sartorius, Germany) with an 

initial working volume of 2 L. Medium composition was the same as for the inocula. The 

bioreactor was inoculated aseptically with 10% (v/v) inocula and operated in batch mode.  

 

The temperature was maintained at 30.0 ± 0.1 °C and the pH was automatically controlled 

at 7.0 ± 0.05, in the assays with marine bacteria, by the automatic addition of NaOH (5 M) and 

HCl (5 M). In order to explore the effect of pH on the EPS production by Enterobacter A47, pH 

was automatically controlled at 6.0, 7.0 and 8.0 ± 0.05, according to each experiment. A silicon-

based antifoam (Sigma-Aldrich, Germany) was used in order to prevent the formation of foam 

throughout the process.  

 

The air flow rate was maintained at 2 SLPM (standard liters per minute) during the 

cultivation and the dissolved oxygen concentration (DO) was controlled at 30% of the air 

saturation by automatic adjustment of the stirrer speed (300-800 rpm) provided by two 6-blade 

impellers.  

 

Culture broth samples (20 mL) taken periodically during the cultivation runs were 

centrifuged at 8000 x g, for 10 min, (Sigma 4-16 KS, Germany) in order to separate the biomass 

from the cell-free supernatant. The cell-free supernatant was preserved at -20 °C for the 

determination of glucose concentration and for the quantification of the EPS produced. The cell 

pellet was used to determine the cell dry weight (CDW).  
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2.1.5. Experimental design assays 

 
 

To evaluate the impact of medium composition on Enterobacter A47 cell growth and 

EPS production, a statistical approach, namely response surface methodology (RSM) (Lundstedt 

et al., 1998) was applied. RSM was used to evaluate the impact and the interaction between the 

experimental variables (Xi): NaCl, yeast extract and peptone concentrations (g.L-1) and the 

observed responses (Yi): cell dry weight (CDW, g.L-1) and EPS production (EPS, g.L-1). A central 

composite rotatable design (CCRD), with three independent variables, was used to study the 

responses, where X1, X2 and X3 are NaCl, yeast extract and peptone concentrations (g.L-1), 

respectively (Table 3.7). This design was composed of seventeen experiments: eight factorial 

design points at levels ± 1; six experiments of axial level α = ± 1.682; and a central point with 

three replicas, to allow estimating the experimental error (Table 3.6). All experiments were 

carried out on a randomized order to prevent the effect of unexplained variability due to 

exogenous factors (Lundstedt et al., 1998; Torres et al., 2012, 2015). 

The systems behavior was evaluated by fitting the experimental data to the following 

second order model: 

 

Yp = b0 + b1X1 + b2X2 + b11X1
2 + b22X2

2 + b12X1X2                 

 Eq. 2.1 

 

Where Yp corresponds to the predicted responses, X1, X2 are the coded values of the 

independent variables; b0, bi, bj, bij (i, j = 1,2) are the coefficient estimates, where b0 is the 

interception, b1 and b2 the linear terms, b11 and b22 the quadratic terms and b12 the interaction term. 

In order to identify an appropriate reduced quadratic model, the significance of each source of 

variation was obtained from statistical analysis – analysis of variance (ANOVA) and multiple 

linear regression (MLR). The statistical analysis was carried out using the software Statistica, 

version 8.0 (StatSoft Inc., Tulsa, USA). The fitted model (Eq. 2.1) was evaluated for each 

response variables based upon the correlation coefficients (R2), regression parameter significance 

(p-value) and tested lack of fit. To be considered a good predictive tool, the model should satisfy 

the following criteria: a good correlation value (R2 > 0.7, which is acceptable for biological 

samples, according to Lundstedt et al., 1998), with statistical meaning (p-value < 0.05, for a 95% 

confidence level) and with no lack of fit (p-value > 0.05, for a 95% confidence level), i.e. the 

model error was in the same range as the pure error (Lundstedt et al., 1998). The factors and their 

interaction were also evaluated by p-value at 95% confidence level. The effect of NaCl, yeast 

extract and peptone concentrations on the response was given by statistics and the surface plots 

analysis. 
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The experiments were carried out in 500 mL baffled shake flasks containing 200 mL of 

Schatz medium, supplemented with yeast extract and peptone, and using glucose as carbon 

source. The amount of NaCl added was based on the design of experiments, as well as the quantity 

of yeast extract and peptone (Table 3.6). The medium was inoculated with 10% (v/v) of inoculums 

and growth occurred at 30 °C and 200 rpm.  

 

The assays were run for 32 hours and 5 mL samples were periodically taken for 

measurement of the optical density at 450 nm and determination of biomass. At the end of the 

experiments, 20 mL samples were also collected for EPS quantification. 

 

 

2.2. Analytical techniques  

 

 

2.2.1. Apparent viscosity  

 

In bioreactor runs, the apparent viscosity of the cultivation broth samples was measured 

using a rotational viscometer (FungiLab Alpha Series, Spain) during the assay. The viscosity, in 

centipoise (cP), was measured at different rotational speeds at room temperature (20 °C).  

 
 

 

 

2.2.2. Determination of cell growth  

 

Culture growth was followed by measuring the optical density of the culture broth at 550 

and 450 nm, for marine bacteria and Enterobacter A47, respectively (with a VWR V-1200 

spectrophotometer). The cell dry weight (CDW) was determined by gravimetry, after washing the 

cell pellet with deionized water (resuspension in water, centrifugation at 8000 x g, for 10 min, 

and, finally, resuspension in water and filtration through 0.20 µm filters) and dried at 100 °C, for 

24 hours. This analysis was performed in duplicate.  

 

 

2.2.3. Glucose concentration  

 

Glucose concentration in the cell-free supernatant was determined by high performance 

liquid chromatography (HPLC) using a VARIAN Metacarb column (BioRad) coupled to an 

infrared (IR) detector. The analysis was performed at 30 °C, with sulphuric acid (H2SO4 0.01 N) 

as eluent, at a flow rate of 0.5 mL.min-1. The samples were diluted (1:10 or 1:50, depending on 

the sample) in H2SO4 0.01 N and filtered using Vectra Spin Micro Polysulfone filters (Whatman), 
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which had a pore diameter of 0.2 μm, at 3000 rpm for 10 min. A standard calibration curve was 

constructed by preparing solutions with different glucose (99 %, Scharlau) concentrations:          

1.0 g.L-1, 0.5 g.L-1, 0.25 g.L-1, 0.125 g.L-1 and 0.0625 g.L-1 (calibration curves in appendix 6.1).  

 

 

2.2.4. Exopolysaccharide quantification  

 

For EPS quantification, the cell-free supernatant, which contained the polymer, was 

dialyzed using a 12000-14000 molecular weight cut-off membrane (Zellutrans Carl Roth – 

Regenerated Cellulose Tubular Membrane) against deionized water, with constant stirring. The 

water was changed frequently and the conductivity was measured throughout the dialysis process, 

until a value bellow 10 µS.m-1 was reached. Sodium azide, at a concentration of 10 mg.L-1, was 

added to avoid possible biological degradation of the polysaccharide during the dialysis process.  

Afterwards, the purified polymer was freeze dried (Scanvac, CoolSafe) for 48 hours, and 

weighed, allowing the determination of the polysaccharide content.    

 

 

2.3. Calculus  

 

 
 

2.3.1. Volumetric productivity  

 

The volumetric productivity (rp, g. L-1. d-1) of the EPS production process was determined 

as following: 

 

𝑟𝑃 = 
𝛥𝑃

𝛥𝑡
 

Eq. 2.2 

where ΔP corresponds to the variation of concentration of product (EPS, g.L-1) in a Δt interval 

(days).  
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2.4. Biopolymer characterization   

 

 

2.4.1. Sugar composition 

 
  

For the compositional analysis, polymer samples (~5 mg) were dissolved in deionized 

water (5 mL) and hydrolyzed with trifluoroacetic acid (TFA) (0.1 mL TFA 99%) at 120 °C, for               

2 hours. The hydrolysate was used for the identification and quantification of the constituent 

monosaccharides by HPLC using a CarboPac PA10 column (Thermo Dionex), equipped with 

pulsed amperometric detector (Dionex ICS3000, ThermoFisher Scientific Inc.). The analysis was 

performed at 30 °C with sodium hydroxide (NaOH 4 mM) as eluent, at a flow rate of                          

0.9 mL.min-1. D-(+)-galactose (99%, Fluka), D-(+)-glucose anidra (99%, Scharlau), D-(+)-fucose 

(98%, Sigma), D-(+)-xylose (99%, Merck), L-rhamnose monohydrate (99%, Fluka), D-(+)-

mannose (99%, Fluka), D-glucuronic acid (98%, Alfa Aesar) and D-(+)-galacturonic acid 

monohydrate (97%, Fluka) were used as standards (1-50 ppm).  
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3. Results and discussion 

 

3.1. Screening assay  

 

3.1.1. Shake flask assays   
 
 

 The screening assay was performed to see which bacteria, Pseudoalteromonas atlantica 

MD12-331 A, Pseudoalteromonas shioyasakiensis MD12-375, Pseudoalteromonas 

mariniglutinosa MD12-501, Psychrobacter submarinus MD12-530 b and Enterobacter A47, 

would grow better by using a Schatz medium (with 30 g.L-1 of NaCl), supplemented with yeast 

extract (4 g.L-1) and peptone (2 g.L-1), and glucose (30 g.L-1) as carbon source (standard 

conditions). Due to the frequent variation of the sea water composition (Sharqawy et al., 2010), 

in this study, a Schatz medium was used as culture medium. This medium was chosen because it 

is commonly used in studies with marine bacteria (Fondi et al., 2015; Wilmes et al., 2011).  

The assays were performed in 500 mL baffled shake flasks with 200 mL of culture 

medium and were run for 96 hours. The ability of each strain to produce EPS was also evaluated. 

 

Enterobacter A47 is a well-known EPS-producer able to grown on glycerol                      

(Alves et al., 2010; Torres et al., 2011, 2012, 2014), glucose, xylose (Freitas et al., 2014) and 

lactose (Antunes et al., 2015). Several strains of Pseudoalteromonas atlantica and 

Pseudoalteromonas shioyasakiensis have also been described to synthesize EPS (Matsuyama et 

al., 2014; Perkins-Balding et al., 1999). On the other hand, little is known about 

Pseudoalteromonas mariniglutinosa and Psychrobacter submarinus and their ability to produce 

EPS. 
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Table 3.1 – Cell dry weight (g.L-1) and EPS production (g.L-1) obtained in the screening assay, after 96 

hours shake flask cultivations on Schatz medium, supplemented with yeast extract and peptone, and using 

glucose as carbon source. 
 

Bacteria strain CDW (g.L-1) EPS (g.L-1) 

Pseudoalteromonas atlantica  

MD12-331 A 

 

Pseudoalteromonas shioyasakiensis 

MD12-375 

 

Pseudoalteromonas mariniglutinosa 

MD12-501 

 

Psychrobacter submarinus  

MD12-530 b 

 

Enterobacter A47 

1.70 

 

 

1.02 

 

 

0.98 

 

 

0.84 

 

 

2.26 

0.26 

 

 

0.24 

 

 

0.18 

 

 

0.14 

 

 

0.67 

  

 

 

The screening assay showed that all cultures were able to grow in Schatz medium, 

supplemented with yeast extract and peptone, and using glucose as carbon source (Table 3.1). 

Nevertheless, the marine bacteria with the highest cell growth was Pseudoalteromonas atlantica 

MD12-331 A that reached a CDW of 1.70 g.L-1, within 96 hours of cultivation (Table 3.1). Among 

the remaining marine bacteria tested, Pseudoalteromonas shioyasakiensis MD12-375 and 

Pseudoalteromonas mariniglutinosa MD12-501 had very similar cell growth (CDW values of 

1.02 g.L-1 and 0.98 g.L-1, respectively) (Table 3.1), but inferior to the one achieved by 

Pseudoalteromonas atlantica MD12-331 A.  

Concerning EPS production, by marine bacteria, the maximum value was attained by 

Pseudoalteromonas atlantica MD12-331 A that reached a production of 0.26 g.L-1 of EPS       

(Table 3.1). The other tested Pseudoalteromonas and Psychrobacter strains synthesized EPS as 

well, but in less quantity (0.14-0.24 g.L-1) (Table 3.1). According with the literature, 

Pseudoalteromonas atlantica MD12-331 A, Pseudoalteromonas mariniglutinosa MD12-501 and 

Psychrobacter submarinus MD12-530 b produced 1.46 g.L-1, 1.39 g.L-1 and 0.78 g.L-1 of EPS. It 

has also been reported that Pseudoalteromonas shioyasakiensis MD12-375 achieved an EPS 

production of 4.75 g.L-1 (Roca et al., 2016). These values are higher than those attained in the 

screening assay (0.14-0.26 g.L-1) (Table 3.1), which may have been due to differences in the 

culture medium (sea water was used instead of the Schatz medium) and in the duration of the 

assay (120 hours instead of 96 hours).   

Even though EPS production is a common trait within Pseudoalteromonas strains as a 

way of enhancing survival in extreme marine environments (Finore et al., 2014) very few have 

been studied in detail. So, in order to study and learn more about the strains selected and their 
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ability to produce EPS, by using a Schatz medium, supplemented with yeast extract and peptone, 

and glucose as carbon source, these strains were chosen to proceed with the bioreactor assays. 

  

 

  

However, of all bacteria studied, Enterobacter A47 was the one with the highest cell 

growth, with a CDW of 2.26 g.L-1, and an EPS production of 0.67 g.L-1 (Table 3.1). Although, 

this bacterium is a well-known EPS producer, using glycerol byproduct from the biodiesel 

industry (Alves et al., 2010; Torres et al., 2011, 2012, 2014), as well as other carbon sources, 

including glucose (Freitas et al., 2014) , this culture had never been tested in a Schatz medium, 

nor in any other saline medium. Thus, in order for the results obtained to be explored, this 

bacterium was also chosen to proceed with the bioreactor assays. 

 

 
 

3.1.2. Bioreactor assays 
 

 

 Bioreactor experiments were conducted with the marine bacteria, Pseudoalteromonas 

atlantica MD12-331 A, Pseudoalteromonas shioyasakiensis MD12-375, Pseudoalteromonas 

mariniglutinosa MD12-501 and Psychrobacter submarinus MD12-530 b, and Enterobacter A47, 

in order to evaluate their performance under controlled conditions of pH (7.0), temperature          

(30 °C) and dissolved oxygen concentration (30%). 

Batch cultivations were performed in 2 L bioreactors using the standard Schatz medium 

(NaCl, 30 g.L-1), supplemented with yeast extract (4 g.L-1) and peptone (2 g.L-1), and glucose        

(30 g.L-1) as carbon source. 

 
 

 

3.1.2.1. Marine bacteria cultivation assays  

 

 Figure 3.1 presents the cultivation profiles of Pseudoalteromonas atlantica MD12-331 A 

(P1 – Fig. 3.1 a.), Pseudoalteromonas shioyasakiensis MD12-375 (P2 – Fig. 3.1 b.), 

Pseudoalteromonas mariniglutinosa MD12-501 (P3 – Fig. 3.1 c.) and Psychrobacter submarinus 

MD12-530 b (P4 – Fig. 3.1 d.). 
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Figure 3.1 – Cultivation profile of Pseudoalteromonas atlantica MD12-331 A (P1 – a.), 

Pseudoalteromonas shioyasakiensis MD12-375 (P2 – b.), Pseudoalteromonas mariniglutinosa MD12-501 

(P3 – c.) and Psychrobacter submarinus MD12-530 b (P4 – d.), wherein experimental results of CDW (●), 

EPS (×) and glucose (▲) are represented throughout the cultivation run. 

 

 

 

 
The strain that presented the greatest growth was Pseudoalteromonas mariniglutinosa 

MD12-501 (run P3) reaching a maximum CDW of 3.00 g.L-1, around 24 hours of cultivation   

(Fig. 3.1 c.). Pseudoalteromonas shioyasakiensis MD12-375 (run P2) attained a similar CDW 

(2.95 g.L-1) but it took a longer time (39 hours) (Fig. 3.1 b.). The other strains, Pseudoalteromonas 

atlantica MD12-331 A (run P1) and Psychrobacter submarinus MD12-530 b (run P4), reached 

slightly lower CDW values (2.61 and 2.53 g.L-1, respectively) within 39 hours (Fig. 3.1 a. and d.). 

In all runs, cell growth was observed in the first 15 hours of cultivation, but glucose 

consumption was very reduced during that period of time. Hence, in that period cell growth 

probably occurred due to yeast extract and/or peptone present in the medium which can be used 

as carbon sources. 

 

In terms of glucose consumption, glucose concentration decreased in the first 24 hours 

(from 31.09 g.L-1 to 0 g.L-1) for run P3, limiting the growth of the bacteria (Fig. 3.1 c.).  In runs 

P1, P2 and P4 glucose was also all consumed, but it took around 39 hours (Fig. 3.1 a., b., and d.). 

 

Regarding EPS production, 1.37 g.L-1, 1.68 g.L-1, 1.91 g.L-1 and 1.33 g.L-1 of EPS were 

produced in runs P1, P2, P3 and P4, respectively (Table 3.2). For all assays, EPS production was 
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improved during the stationary phase. The EPS production observed after glucose depletion might 

have been due to the consumption of other medium components, such as yeast extract and/or 

peptone, which may have functioned as substrate for the synthesis of EPS.  

 
 

 
 
 

Table 3.2 – Marine bacteria exopolysaccharide production studies comparison. 
 

Strain Location Carbon and 

nitrogen 

source 

Culture 

mode 

EPS  

(g.L-1) 

rp  

(g. L-1. d-1) 

References 

Pseudoalteromonas 

atlantica 

MD12-331 A 

Ocean 

sediments from 

Madeira 

Archipelago 

Glucose/ 

NH4NO3, 

yeast extract 

and peptone 

Batch 

Bioreactor 

30 °C 

 

1.37 

 

0.69 

 

This study 

Pseudoalteromonas 

shioyasakiensis 

MD12-375 

Ocean 

sediments from 

Madeira 

Archipelago 

Glucose/ 

NH4NO3, 

yeast extract 

and peptone 

Batch 

Bioreactor 

30 °C 

 

1.68 

 

0.84 

 

This study 

Pseudoalteromonas 

mariniglutinosa 

MD12-501 

Ocean 

sediments from 

Madeira 

Archipelago 

Glucose/ 

NH4NO3, 

yeast extract 

and peptone 

Batch 

Bioreactor 

30 °C 

 

1.91 

 

0.96 

 

This study 

Psychrobacter 

submarinus 

MD12-530 b 

Ocean 

sediments from 

Madeira 

Archipelago 

Glucose/ 

NH4NO3, 

yeast extract 

and peptone 

Batch 

Bioreactor 

30 °C 

 

1.33 

 

0.67 

 

This study 

Pseudoalteromonas 

SM20310 

Arctic sea ice of 

the Canada 

Basin 

Glucose/ 

Yeast extract 

and peptone 

Shake flasks  

15 °C 

0.57 0.19 Liu  

et al., 2013 

Alteromonas 

sp. JL2810 

Sea water from 

South China 

Sea 

Glucose/ 

NH4Cl 

Bioreactor 

25 °C 

0.77 0.13 Zhang 

et al., 2015 

Halomonas 

sp.TG39 

N.A. Glucose/ 

Yeast extract 

and peptone 

Shake flasks  

28 °C  

0.66 0.22 Gutierrez et 

al., 2009 

 

Saccharophagus 

degradans 

Salt marsh cord 

grass in the 

Chesapeake bay 

watershed 

Glucose/ 

NH4Cl and 

yeast extract 

Pulse-fed 

Bioreactor 

30 °C 

 

4.12 

 

1.37 

González-

García  

et al., 2015 

N.A.: data not available.  
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 Considering 48 hours the time frame of the cultivation assay, a volumetric productivity 

of 0.69 gEPS.L-1.d-1, 0.84 gEPS.L-1.d-1, 0.96 gEPS.L-1.d-1 and 0.67 gEPS.L-1.d-1 was achieved in runs 

P1, P2, P3 and P4, respectively (Table 3.2). These values are higher than those reported in the 

literature for other marine Pseudoalteromonas, Alteromonas or Halomonas EPS-producing 

strains (Table 3.2). For instance, Pseudoalteromonas SM20310, isolated from Arctic sea ice of 

the Canada basin, produced 0.57 g.L-1 of EPS after 3 days, corresponding to a productivity of  

0.19 gEPS.L-1.d-1. Also, a productivity of 0.13 gEPS.L-1.d-1 was achieved in a 6 days cultivation of 

Alteromonas sp. JL2810 and a productivity of 0.22 gEPS.L-1.d-1 was achieved in a 3 days cultivation 

of Halomonas sp. TG39, when grown on a cultivation medium with glucose as carbon source 

(Table 3.2). 

On the other hand, there are marine bacteria that have shown higher performances, such 

as Saccharophagus degradans, which produced 4.12 g.L-1 of EPS within 3 days of cultivation on 

glucose, corresponding to a productivity of 1.37 gEPS.L-1.d-1 (Table 3.2). However, Pantoea sp. 

BM39 is the highest EPS producer reported so far, with an EPS production of 21.3 g.L-1 within 

18 hours cultivation on glucose, corresponding to a volumetric productivity of 28.4 gEPS.L-1.d-1 

(González-García et al., 2015).  
 

 

Concomitant with EPS production, in all the assays, there was a small increase of the 

apparent viscosity of the broth (from 1 mPa.s at the beginning of the run, to 2 mPa.s within 48 h 

of cultivation, measured at 1.7 s-1). This increase in the broth’s viscosity may be related with the 

presence of EPS in the broth. For instance, Halomonas almeriensis, a species of moderately 

halophilic bacterium, excretes a low viscosity (3.5 mPa.s, measured at 12 s-1) exopolysaccharide 

with pseudoplastic behavior and high cation binding potential that can act as a bio-detoxifier and 

emulsifier (Llamas et al., 2012). Also, levan (a well-known exopolysaccharide produced by a 

large group of bacteria, such as Halomonas sp.) is a polymer with low viscosity (10 mPa.s, 

measured at 10 s-1) (Küçükasik et al., 2011). 

 

 

In summary, EPS production was improved during bioreactor cultivation for all the 

marine bacteria tested. In shake flasks, Pseudoalteromonas atlantica MD12-331 A, 

Pseudoalteromonas shioyasakiensis MD12-375, Pseudoalteromonas mariniglutinosa MD12-501 

and Psychrobacter submarinus MD12-530 b produced 0.26 g.L-1, 0.24 g.L-1, 0.18 g.L-1 and           

0.14 g.L-1, after a 96 hours cultivation, respectively, while in the bioreactor assays, EPS 

production reached 1.37 g.L-1, 1.68 g.L-1, 1.91 g.L-1 and 1.33 g.L-1, after a 48 hours cultivation. 

This corresponds to over 10-fold improvements of the polymer production for all strains.  
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Pseudoalteromonas mariniglutinosa MD12-501, which had not been the highest EPS 

producer in the shake flasks cultivation, reached the highest EPS production (1.91 g.L-1) during 

bioreactor cultivation. 
 

 

The EPS obtained in runs P1 – P4 were characterized in terms of sugar composition 

(Table 3.3). 

 
 

 
 

 

Table 3.3 – Sugar composition content of the exopolysaccharides produced by Pseudoalteromonas 

atlantica MD12-331 A (P1), Pseudoalteromonas shioyasakiensis MD12-375 (P2), Pseudoalteromonas 

mariniglutinosa MD12-501 (P3), Psychrobacter submarinus MD12-530 b (P4), Pseudoalteromonas sp. 

SM20310 and Pseudoalteromonas MD12-642. Fuc, fucose; Glc, glucose; Gal, galactose; Rha, rhamnose; 

Man, mannose; Xyl, xylose; GlcN, glucosamine; GlcNAc, N-acetylglucosamine; GalNAc,                               

N-acetylgalactosamine; GlcA, glucuronic acid; GalA, galacturonic acid. 
 

 Sugar composition (%mol)  

Bacteria 

strain 

Fuc Glc Gal Rha Man Xyl GlcN GlcNAc GalNAc GlcA GalA Refs. 

 

P1 

 

P2 

 

P3 

 

P4 

 

P. sp. 

SM20310 

 

P. MD12-

642 

 

– 

 

– 

 

12 

 

12 

 

 

– 

 

– 

 

96 

 

79 

 

44 

 

46 

 

 

11 

 

– 

 

– 

 

– 

 

18 

 

18 

 

 

9 

 

– 

 

4 

 

21 

 

14 

 

13 

 

 

2 

 

19 

 

– 

 

– 

 

– 

 

– 

 

 

72 

 

– 

 

– 

 

– 

 

– 

 

– 

 

 

1 

 

– 

 

– 

 

– 

 

– 

 

– 

 

 

– 

 

14 

 

– 

 

– 

 

– 

 

– 

 

 

4 

 

– 

 

– 

 

– 

 

– 

 

– 

 

 

2 

 

– 

 

– 

 

– 

 

3 

 

2 

 

 

– 

 

26 

 

– 

 

– 

 

9 

 

9 

 

 

– 

 

42 

 

This study 

 

This study 

 

This study 

 

This study 

 

 

Liu et al., 

2013 

Roca et al., 

2016 

 

 

 

The results obtained in this study indicate that the polymer produced by the bacterium 

Pseudoalteromonas atlantica MD12-331 A (run P1) was mostly composed of glucose (96 %mol) 

and presented a small content in rhamnose (4 %mol). The EPS produced in run P2, by 

Pseudoalteromonas shioyasakiensis MD12-375, was identical to that obtained in run P1. 

However, it had a lower glucose content (79 %mol), while the content in rhamnose was higher 

(21 %mol) (Table 3.3). 

The sugar monomer composition of the EPS produced by Pseudoalteromonas 

mariniglutinosa MD12-501 (run P3) was evaluated and the presence of glucose (44 %mol), 

galactose (18 %mol), rhamnose (14 %mol), fucose (12 %mol), galacturonic acid (9 %mol) and 

glucuronic acid (3 %mol) was detected (Table 3.3). 
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The EPS produced by the bacterium Psychrobacter submarinus MD12-530 b (run P4) 

had a sugar composition similar to that attained in run P3, presenting small differences in the 

contents in glucose (46 %mol), rhamnose (13 %mol) and glucuronic acid (2 %mol) (Table 3.3). 

 

The production of EPS mainly rich in glucose, by Pseudoalteromonas strains sp. AM and 

sp. SM9913, has been reported by several authors (Al-Nahas et al., 2011; Qin et al., 2007).           

Liu et al. (2013) reported the production of an EPS composed of mannose (72 %mol) , glucose 

(11 %mol), galactose (9 %mol), N-acetylglucosamine (4 %mol), rhamnose (2 %mol),                           

N-acetylgalactosamine (2 %mol) and xylose (1 %mol) by Pseudoalteromonas sp. SM20310 

(Table 3.3). Pseudoalteromonas MD12-642 isolated from a marine sediment sample collected at 

Desertas Islands, as well as the strains used in runs P1 – P4, produced a polymer composed of 

galacturonic acid (42 %mol), glucuronic acid (26 %mol), rhamnose (19%mol) and glucosamine 

(14 %mol) (Table 3.3).  

 

 

 

3.1.2.2. Enterobacter A47 cultivation assay  

 

 Figure 3.2 presents the concentration profiles of biomass, EPS and glucose for the 

cultivation of Enterobacter A47 in Schatz medium (run E1). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 3.2 – Cultivation profile of Enterobacter A47 (run E1), wherein experimental results of CDW (●), 

EPS (×) and glucose (▲) are represented throughout the cultivation run. 
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 In this assay, Enterobacter A47 reached a maximum CDW of 3.20 g.L-1, within 22 hours 

of cultivation (Fig. 3.2). This value is much lower than those reported in literature                       

(5.80-13.58 g.L-1) for cultivation in Medium E* supplemented with different carbon sources 

(Table 3.4). 

The fact that the culture has grown less is not related with the carbon source used, once 

glucose has already been reported as one of the preferred substrates for both growth and EPS 

production by Enterobacter A47. In previous studies, a maximum CDW of 8.14 g.L-1 was attained 

at the end of the batch phase (22 hours of cultivation) (Freitas et al., 2014). However, in run E1 

the glucose concentration used (30 g.L-1) was half the concentration reported in the literature      

(60 g.L-1) (Freitas et al., 2014), hence the growth was lower. 

It has also been reported that an initial nitrogen concentration of 0.7 g.L-1 led to a high 

CDW value (8.14 g.L-1) (Freitas et al., 2014). In run E1, the nitrogen concentration used was    

1.02 g.L-1 and, as already observed, the increase in the initial concentration of nitrogen (1.20 and 

1.27 g.L-1) leads to higher growth by Enterobacter A47 (10.37 and 9.33 g.L-1, respectively) 

(Torres et al., 2014). Therefore, the lower CDW obtained in run E1 (3.20 g.L-1) may be the result 

of a different metabolic capacity by Enterobacter A47 towards the different nitrogen sources 

used. Enterobacter A47 did not show preferential growth with organic nitrogen (yeast extract and 

peptone – run E1) compared to inorganic nitrogen source ((NH4)2HPO4 – Freitas et al., 2014; 

Torres et al., 2014). 

As so, at run E1 the carbon to nitrogen ratio (C:N) (12:1, w/w) was lower than that 

reported in the literature (34:1, w/w) (Freitas et al., 2014). Nevertheless, this ratio is an important 

parameter for normal bacterial cellular growth and a high value of this ratio (10:1-20:1, w/w) was 

known to promote EPS synthesis (Torres et al., 2014). Thus, although the C:N ratio used in run 

E1 is within the mentioned range, this was not suitable for the production of EPS by Enterobacter 

A47. 

 In addition, since the effect of the salt concentration has never been evaluated for 

Enterobacter A47, the NaCl concentration used (30 g.L-1) may also have influenced the growth 

of the culture. For instance, Neysens et al. (2003) reported that for salt concentrations above            

5 g.L-1, Lactobacillus amylovorus DCE 471 grew more slowly and biomass production became 

less efficient.    

 

Glucose was totally consumed in less than 15 hours and the culture grew up to 1.40 g.L-1 

(Fig. 3.2). Then, the culture continued to grow, even without glucose, which shows that it must 

have used yeast extract and/or peptone as substrate for cell growth. 

 

Concerning EPS production, 0.57 g.L-1 of EPS were produced in the first 15 hours, while 

glucose was available (Fig. 3.2). Then the culture continued to produce, even after growth had 
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ceased. Indeed, after 25 hours, 1.22 g. L-1 of exopolysaccharide were already produced. At the 

end of the cultivation run, Enterobacter A47 had produced 1.81 g.L-1 of biopolymer. The EPS 

production observed after glucose depletion might have been due to the consumption of other 

medium components, such as yeast extract and/or peptone, which may have functioned as 

substrates for the culture. 

Concomitant with EPS production, there was a slight increase of the apparent viscosity 

of the broth from 1 to 9 mPa.s (measured at 1.7 s-1) throughout the cultivation run. This alteration 

in the rheology of the culture broth is probably due to the accumulation of the EPS in the 

cultivation broth (Alves et al., 2010). 

 

Regarding the assays previously carried out with the bacterium Enterobacter A47, the 

amount of EPS produced in run E1 was similar to that achieved using tomato paste as sole 

substrate under pH-stat mode (1.65 g.L-1) (Antunes et al., 2017). However, the value obtained 

was much lower than that reported (13.40 g.L-1) when glucose was used as carbon source                

(Freitas et al., 2014). 

Moreover, the amount of EPS produced was lower than all the others reported in previous 

studies (Table 3.4), which may have been due to differences in the C:N ratio and to the use of 

different nitrogen and carbon sources. As already mentioned, at run E1 the C:N ratio was lower 

than that used in previous studies and, as previously reported, EPS producing bacteria need a high 

C:N ratio to promote EPS synthesis (Torres et al., 2014). The type and concentration of the carbon 

and nitrogen sources has probably influenced EPS synthesis. 

In addition, as observed by Torres et al. (2014), increasing the initial nitrogen 

concentration led to higher Enterobacter A47 growth, but it was prejudicial for EPS synthesis. 

Although nitrogen source is necessary for cell growth and the synthesis of the enzymes necessary 

for polysaccharide formation, an excess of nitrogen generally reduces the conversion of the 

carbohydrate substrate to the polysaccharide (Torres et al., 2014). 

Besides that, the amount of EPS produced may have been lower due to differences in the 

cultivation mode, cultivation conditions and carbon source composition. In this work, several 

parameters were different, namely, the culture medium used was different, the mode of cultivation 

used was a batch mode, the air flow rate used was 2.0 SLPM instead of 0.4 SLPM, and the 

dissolved oxygen level was controlled at 30% instead of 10% (Antunes et al., 2017; Freitas et al., 

2014; Torres et al., 2011, 2012, 2014).  
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Table 3.4 – Parameters obtained in the bioreactor cultivations of Enterobacter A47 using different 

substrates and cultivation modes. 
 

  

Substrate Cultivation 

mode 

CDW (g.L-1) EPS (g.L-1) rp (g. L-1. d-1) References 

Glucose Batch mode 

E1 

 

3.20 

 

1.81 

 

0.91 

 

This study 

Glycerol Continuous 

feeding 

5.80 – 7.68 7.23 – 7.97 1.89 – 2.04 Freitas et al., 2014 

Torres et al., 2011, 

2012, 2014 

Glucose DO-stat 8.14 13.40 3.78 Freitas et al., 2014 

Tomato 

paste 

pH-stat 10.22 1.65 0.57 Antunes et al., 2017 

 DO-stat 9.81 3.43 1.16 Antunes et al., 2017 

 Continuous 

feeding 

4 g.L-1.h-1 

 

 

10.14 

 

 

3.99 

 

 

1.34 

 

 

Antunes et al., 2017 

 6 g.L-1.h-1 10.74 4.54 1.56 Antunes et al., 2017 

 11 g.L-1.h-1 13.58 8.77 2.92 Antunes et al., 2017 

 

 

 

Considering 48 hours the time frame of the cultivation assay, a volumetric productivity 

of 0.91 gEPS.L-1.d-1 was achieved in run E1 (Table 3.4). Comparing this value with the ones 

achieved in previous studies with the bacterium Enterobacter A47, it was slightly higher than that 

attained using tomato paste as sole substrate, under pH-stat mode (0.57 gEPS.L-1.d-1). However, 

the value obtained was lower than that reported in the literature (3.78 gEPS.L-1.d-1), when glucose 

was used as carbon source (Table 3.4). Furthermore, the value obtained was lower than all the 

others reported in literature, 1.16-2.92 gEPS.L-1.d-1, when glycerol and tomato paste, under          

DO-stat or at continuous feeding, were used as sole substrate (Table 3.4).  

 

 Concerning the assays carried out with marine bacteria, the value attained in run E1 was 

higher than that obtained for the Pseudoalteromonas and Psychrobacter strains tested in this study 

(runs P1, P2 and P4), except for Pseudoalteromonas mariniglutinosa MD12-501 (run P3), whose 

volumetric productivity was slightly higher (0.96 gEPS.L-1.d-1) (Table 3.2). 

 

The composition of the polymer synthesized can change depending on the type of carbon 

source used. Hence, the EPS obtained in this assay was characterized in terms of sugar 

composition (Table 3.5). 
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Table 3.5 – Sugar composition content of the exopolysaccharides produced by Enterobacter A47 from 

various substrates under different cultivation modes. 
 

  Sugar composition (%mol)  

Substrate 
Cultivation 

mode 
Fucose Galactose Glucose 

Glucuronic 

acid 
References 

Glucose 
Batch mode 

E1 

 

37 

 

23 

 

33 

 

6 

 

This study 

Glycerol 
Continuous 

feeding 
30 – 36 22 – 29 25 – 34 9 – 10 

Freitas 

 et al., 2014 

Torres et al., 

2011, 2012, 2014 

Glucose DO-stat 29 29 26 16 
Freitas  

et al., 2014 

Tomato 

paste 

pH-stat 20 45 24 11 
Antunes  

et al., 2017 

DO-stat 28 35 25 12 
Antunes 

 et al., 2017 

Continuous 

feeding 

4 g.L-1.h-1 

27 31 32 10 
Antunes 

et al., 2017 

6 g.L-1.h-1 33 27 29 11 
Antunes 

et al., 2017 

11 g.L-1.h-1 37 27 23 12 
Antunes 

et al., 2017 

 

 

 

The extracellular polysaccharide obtained was composed of fucose (37 %mol), galactose 

(23 %mol), glucose (33 %mol) and glucuronic acid (6 %mol) (Table 3.5). This sugar monomer 

profile is within the range of the monosaccharide profile reported for FucoPol, except for a 

slightly lower content in glucuronic acid (Table 3.5).  

 

According to the results, the cultivation conditions used in run E1 had a significant impact 

on EPS production and productivity, however the polymer´s composition was similar to that 

obtained in previous assays. 

 

 

3.1.2.3. Conclusions  

 

 From the bioreactor assays carried out with marine bacteria and Enterobacter A47, using 

the standard Schatz medium, the ones with the best results were Pseudoalteromonas 
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mariniglutinosa MD12-501 and Enterobacter A47, with an EPS production of 1.91 and 1.81 g.L-

1, and volumetric productivity values of 0.96 and 0.91 gEPS.L-1.d-1, respectively. 

Although Pseudoalteromonas mariniglutinosa MD12-501 presented slightly higher EPS 

production and productivity values, the polymer produced by Enterobacter A47 presented a 

higher fucose content, which is very interesting since fucose is one of the rare sugars difficult to 

obtain in Nature. Thus, Enterobacter A47 was selected to proceed with the studies. 
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3.2. Influence of NaCl, yeast extract and peptone concentrations on cell 

dry weight and EPS production by Enterobacter A47 
  

To improve bioreactor operational conditions, several optimizing strategies have been 

developed. Response surface methodology (RSM) is an efficient statistically strategy for 

designing experiments, building models, searching optimum conditions of factors for desirable 

responses and evaluating the relative significance of several affecting factors even in the presence 

of complex interactions (Song et al., 2007; Zhou et al., 2010).  

 

Tables 3.6 and 3.7 show the matrix of the central composite rotatable design (CCRD) and 

the observed responses studied CDW (g.L-1, Y1) and EPS (g.L-1, Y2). 

 

 

Table 3.6 – Matrix of the central composite rotatable design (CCRD), composed of seventeen experiments: 

eight factorial design points at levels ± 1; six experiments of axial level α = ± 1.682; and a central point 

with three replicas. 
 

 
  X1 (NaCl)    X2 Yeast extract)   X3 (Peptone)   

 Run 
Coded level 

Real value 

(g.L-1) 
Coded level 

Real value 

(g.L-1) 
Coded level 

Real value 

(g.L-1) 
 number 

 1 -1 8.1 -1 0.8 -1 0.4 

 2 1 31.9 -1 0.8 -1 0.4 

 3 -1 8.1 1 3.2 -1 0.4 

Factorial  4 1 31.9 1 3.2 -1 0.4 

design 5 -1 8.1 -1 0.8 1 1.6 

 6 1 31.9 -1 0.8 1 1.6 

 7 -1 8.1 1 3.2 1 1.6 

 8 1 31.9 1 3.2 1 1.6 

Central 

 

9 

 

0 

 

20.0 

 

0 

 

2.0 

 

0 

 

1.0 

point 10 0 20.0 0 2.0 0 1.0 

 11 0 20.0 0 2.0 0 1.0 

 

 

12 

 

-1.682 

 

0.0 

 

0 

 

2.0 

 

0 

 

1.0 

 13 1.682 40.0 0 2.0 0 1.0 

Axial 14 0 20.0 -1.682 0.0 0 1.0 

points 15 0 20.0 1.682 4.0 0 1.0 

 16 0 20.0 0 2.0 -1.682 0.0 

 17 0 20.0 0 2.0 1.682 2.0 
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Table 3.7 – Central composite rotatable design (CCRD) with three independent variables X1 (NaCl, g.L-1), 

X2 (yeast extract, g.L-1) and X3 (peptone, g.L-1), and the observed responses studied Y1 (CDW, g.L-1) and 

Y2 (EPS, g.L-1). 
 

Run 

number 

NaCl (g.L-1) 

X1 

Yeast extract (g.L-1) 

X2 

Peptone (g.L-1) 

X3 

CDW (g.L-1) 

Y1 

EPS (g.L-1) 

Y2 

1 8.1 0.8 0.4 1.40 0.48 

2 31.9 0.8 0.4 1.16 0.42 

3 8.1 3.2 0.4 0.88 0.28 

4 31.9 3.2 0.4 1.24 0.47 

5 8.1 0.8 1.6 1.50 0.50 

6 31.9 0.8 1.6 1.08 0.47 

7 8.1 3.2 1.6 0.96 0.30 

8 

 

31.9 3.2 1.6 1.28 0.51 

9 20.0 2.0 1.0 1.04 0.40 

10 20.0 2.0 1.0 1.02 0.40 

11 

 

20.0 2.0 1.0 1.08 0.43 

12 0.0 2.0 1.0 0.87 0.30 

13 40.0 2.0 1.0 0.00 0.00 

14 20.0 0.0 1.0 0.00 0.00 

15 20.0 4.0 1.0 1.28 0.55 

16 20.0 2.0 0.0 1.02 0.36 

17 20.0 2.0 2.0 1.06 0.45 

 

 

3.2.1. Influence of NaCl, yeast extract and peptone concentrations on cell dry weight  

 
 

The results obtained under the different NaCl, yeast extract and peptone concentrations 

tested are presented in Table 3.7. The highest CDW values (1.40-1.50 g.L-1) were achieved at low 

concentrations of NaCl and yeast extract (8.1 g.L-1 and 0.8 g.L-1, respectively).  

 

The results show that high concentrations of NaCl, yeast extract and peptone                    

(run 8 – 31.9 g.L-1, 3.2 g.L-1 and 1.6 g.L-1, respectively) and high concentration of yeast extract 

(run 15 – 4.0 g.L-1) also resulted in a similar CDW (1.28 g.L-1). 

 

The central point conditions (runs 9, 10 and 11) resulted in intermediate CDW values 

(1.02-1.08 g.L-1). Under the remaining conditions, the CDW was lower, except for runs 16 and 

17 (peptone concentration of 0.0 and 2.0 g.L-1, respectively), wherein similar CDW values (1.02 

and 1.06 g.L-1, respectively) were obtained.  

 

Within the concentration extremes tested (0.0 and 40.0 g.L-1 of NaCl, 0.0 and 4.0 g.L-1 of 

yeast extract, 0.0 and 2.0 g.L-1 of peptone), for the highest concentration of NaCl (run 13) and 

lower concentration of yeast extract (run 14) no cell growth was observed. In run 12, where no 
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NaCl was added to the medium, CDW was very low (0.87 g.L-1). On the other hand, the CDW 

was not significantly affected by peptone within the range 0.0-2.0 g.L-1.  

 

 The effect of NaCl or yeast extract or peptone concentration on the different responses 

evaluated by the one-to-one factor did not allow the identification of the interaction between the 

three variables, which was only possible using the response surface methodology (RSM).  

 RSM – ANOVA (analysis of variance) and MLR (multiple linear regression) – analysis 

used for CDW is summarized in Tables 3.8 and 3.10.  

 
 

 

Table 3.8 – Analysis of variance (ANOVA) of the second order model for parameter CDW. 

Source of variation CDW         

  Sum of squares 

Degrees of 

freedom Mean squared  F-value p-value 

Model         0.002 

NaCl (L) 0.068 1 0.068 72.750 0.013a 

NaCl (Q) 0.011 1 0.011 11.556 0.077 

YE (L) 0.022 1 0.022 23.694 0.040a 

YE (Q) 0.173 1 0.173 185.183 0.005a 

Peptone (L) 0.008 1 0.008 8.684 0.098 

Peptone (Q) 0.0003 1 0.0003 0.407 0.588 

NaCl.YE 0.224 1 0.224 240.482 0.004a 

NaCl.Peptone 0.006 1 0.006 6.482 0.126 

YE.Peptone 0.001 1 0.001 1.339 0.367 

Lack of fit 0.010 3 0.003 3.455 0.233 

Pure error 0.002 2 0.001     

Total SS 0.469 14       

R2 0.975         
       Adj. R2 (0.931); CV=16.3%; a Model terms are significant. 

 

 

 The model p-value = 0.002 means that the model is significant. An appropriate analysis 

of variance (ANOVA) of the second order model showed a good fit (R2 = 0.975), indicating that 

97.5% of the variability in the response could be explained by the model. The adjusted R2 is a 

corrected value for R2 after the elimination of unnecessary model terms. The value of the adjusted 

R2 (0.931) is also high to advocate for a high significance of the model. The p-value of the lack 

of fit was 0.233, indicating that the lack of fit was not significant relative to the pure error       

(Table 3.8). The coefficient of variation (CV) is the ratio of the standard error of estimate to the 

mean value of the observed response, and as a general rule a model can be considered reasonably 
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reproducible if the CV is not greater than 10%. CV of 16.3% showed that the statistical quality of 

the experimental results was acceptable (Mustafa et al., 2016). 

 

 

3.2.2. Influence of NaCl, yeast extract and peptone concentrations on EPS 

production  

 

The results obtained for EPS production under different NaCl, yeast extract and peptone 

concentrations tested are presented in Table 3.7. Maximum EPS concentrations (0.51-0.55 g.L-1) 

were achieved for the highest yeast extract concentration tested (4.0 g.L-1 – run 15), and for high 

concentrations of NaCl, yeast extract and peptone (run 8 – 31.9 g.L-1, 3.2 g.L-1 and 1.6 g.L-1, 

respectively).  

 

The results show that low concentrations of NaCl, yeast extract and peptone                      

(run 1 – 8.1 g.L-1, 0.8 g.L-1 and 0.4 g.L-1, respectively) and low concentrations of NaCl and yeast 

extract (run 5 – 8.1 g.L-1 and 0.8 g.L-1, respectively) and high concentration of peptone                  

(1.6 g.L-1), also resulted in a high EPS concentration (0.48-0.50 g.L-1).  

 

The central point conditions resulted in intermedium EPS concentrations, as well as for 

run 2 (0.40-0.43 g.L-1). Under the remaining conditions, EPS concentrations were lower, except 

for runs 4, 6 and 17, wherein a high EPS concentration was obtained (0.45-0.47 g.L-1). At runs 13 

and 14, no EPS production was observed since there was no growth. In the absence of salt           

(run 12) the EPS production was lower (0.30 g.L-1), however in this run the CDW was also lower. 

 

RSM (ANOVA and MLR) analysis used for EPS production is summarized in Tables 3.9 

and 3.10. 
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Table 3.9– Analysis of variance (ANOVA) of the second order model for parameter EPS production. 

Source of variation EPS         

  Sum of squares 

Degrees of 

freedom Mean squared  F-value p-value 

Model         0.005 

NaCl (L) 0.041 1 0.041 136.048 0.007a 

NaCl (Q) 0.005 1 0.005 17.526 0.053 

YE (L) 0.001 1 0.001 4.793 0.160 

YE (Q) 0.024 1 0.024 79.793 0.012a 

Peptone (L) 0.003 1 0.003 10.706 0.082 

Peptone (Q) 5x10-4 1 0.0005 1.630 0.330 

NaCl.YE 0.030 1 0.030 100.042 0.010a 

NaCl.Peptone 3x10-4 1 3x10-4 1.042 0.415 

YE.Peptone 1x10-5 1 1x10-5 0.042 0.857 

Lack of fit 0.003 3 9,9x10-4 3.307 0.241 

Pure error 6x10-4 2 3x10-4     

Total SS 0.094 14       

R2 0.962         
       Adj. R2 (0.893); CV=19.4%; a Model terms are significant. 

 

 

 Statistical analysis (RSM) was also used to evaluate the impact of NaCl, yeast extract and 

peptone concentrations on the quadratic model for describing EPS production. The model               

p-value = 0.005 means that the model is significant. The correlation coefficient (R2) and the 

adjusted correlation coefficient (adj. R2) were 0.962 and 0.893, respectively, which illustrated that 

there are excellent correlation between the independent variables and the fitted model can describe 

the independent variables well. The p-value of the lack of fit was 0.241, indicating that the lack 

of fit was not significant relative to the pure error (Table 3.9). The insignificant p-value thus 

indicates that the model was good and fitted well to the experimental data. CV of 19.4% showed 

that the statistical quality of the experimental results was acceptable (Mustafa et al., 2016). 

 
 

 

3.2.3. Multiple linear regression (MLR) 
 

 

 Multiple linear regression (MLR) gave information about linear (L), quadratic (Q) and 

interaction effect of NaCl, yeast extract and peptone concentrations on CDW and EPS production 

(Table 3.10). The CDW was affected mostly by the linear NaCl and yeast extract, the quadratic 

terms of yeast extract and the interaction between NaCl and yeast extract, for a significance level 

of 5% (p < 0.05). Linear NaCl, the quadratic terms of yeast extract and the interaction between 

NaCl and yeast extract are the factors which had a significant effect on EPS production, for a 

significance level of 5% (p < 0.05) (Table 3.10). 
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Table 3.10 – Multiple linear regression (MLR) analysis of the polynomial model: constants and p-values 

for linear, quadratic and interaction effects of NaCl, yeast extract and peptone concentrations for the 

responses CDW and EPS production. 

Effect CDW (Y1) p-Value EPS (Y2) p-Value 

Constant 0.999 3x10-4 0.386 6x10-4 

Linear 

NaCl (X1)  0.127 0.013a 0.098 0.007a 

YE (X2) - 0.072 0.040a - 0.018 0.160 

Pept. (X3) 0.048 0.098 0.018 0.082 

Quadratic 

NaCl * NaCl 

(X1
2)  

- 0.073 0.077 
- 0.051 0.053 

YE * YE (X2
2) 0.291 0.005a 0.108 0.012a 

Pept. * Pept. (X3
2) 0.017 0.589 - 0.007 0.330 

Interaction 

NaCl * YE 

(X1X2) 0.299 0.004a 

0.109 0.010a 

NaCl * Pept. 

(X1X3) 
- 0.061 0.126 

0.008 0.415 

YE * Pept.(X2X3) 0.028 0.367 - 0.002 0.857 

                              a Model terms are significant. 

 

 

3.2.4. Influence of NaCl, yeast extract and peptone concentrations on cell dry weight 

and EPS production – 3D response graphs 

 

The influence of NaCl, yeast extract and peptone concentrations and their interaction 

effects can be analyzed by using 3D response graphs. Figure 3.3 (1-3) show the 3D response 

graphs for CDW. The response surface graphs are drawn by varying two parameters and keeping 

the other parameter at zero level.  

Figure 3.3 (1) shows the response graph for two varying parameters, NaCl and yeast 

extract concentrations, by keeping the third parameter (peptone concentration) at zero level, 

which indicates that at minimal (8.1 and 0.8 g.L-1, respectively) and at maximal (31.9 and              

3.2 g.L-1, respectively) of interaction parameters, the CDW is maximum (1.40-1.50 g.L-1). The 

relation between NaCl concentration with respect to peptone concentration is presented in     

Figure 3.3 (2). The results show that the increase of NaCl concentration until 20.0 g.L-1 and a 

peptone concentration up to 1.6 g.L-1 increase the CDW, remaining stable from these values on. 

Figure 3.3 (3) shows the response graph for two varying parameters, yeast extract and peptone 

concentration, by keeping the third parameter (NaCl concentration) at zero level. At extremes of 

interaction parameters, the CDW is maximum. The results suggest that CDW was not 

significantly affected by peptone concentration, but rather by yeast extract concentration.  
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Figure 3.3 – (1) Response surface plot of CDW as a function of NaCl and yeast extract concentrations;   

(2) Response surface plot of CDW as a function of NaCl and peptone concentrations; (3) Response surface 

plot of CDW as a function of yeast extract and peptone concentrations. 
 

 

 

Figure 3.4 (1-3) show the 3D response graphs for EPS production. The relation between 

NaCl concentration with respect to yeast extract concentration is presented in Figure 3.4 (1). The 

results show that at minimal (8.1 and 0.8 g.L-1, respectively) and maximal values (31.9 and           

3.2 g.L-1, respectively) of interaction parameters, the EPS production is maximum                      

(0.51-0.55 g.L-1). Figure 3.4 (2) shows the response graph for two varying parameters, NaCl and 

peptone concentration, by keeping the third parameter (yeast extract concentration) at zero level, 

which indicates that the increase of NaCl and peptone concentrations until 20.0 g.L-1 and               

1.6 g.L-1, respectively, increase the EPS production.  

According with literature, Khalifa et al. (2016) reported that Enterobacter cloacae MSR1 

exhibited the ability to grow on a medium with 40 g.L-1 of NaCl. Sheng et al. (2006) observed 

that the amount of EPS produced by Rhodopseudomonas acidophila increased at a NaCl 

concentration of 8 g.L-1. Also, Chen et al. (2006) reported that, in desert soil bacterium 
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Microcoleus vaginatus, exposure to NaCl (29.2 g.L-1) resulted in a nearly 50% increase in 

extracellular carbohydrate. On the other hand, the halotolerant strain Rhizobium meliloti EFB1 

produced 40% less exopolysaccharides in the presence of 17.5 g.L-1 of NaCl (Lloret et al., 1998).  

 
 

 

  

Figure 3.4 – (1) Response surface plot of EPS production as a function of NaCl and yeast extract 

concentrations; (2) Response surface plot of EPS production as a function of NaCl and peptone 

concentrations; (3) Response surface plot of EPS production as a function of yeast extract and peptone 

concentrations. 

 

 

The relation between yeast extract and peptone concentrations is presented in               

Figure 3.4 (3). The results show that at extremes of interaction parameters, the EPS production is 

maximum. However, low concentration of yeast extract (0.8 g.L-1) and high concentration of 

peptone (1.6 g.L-1) also resulted in a high EPS production (0.47-0.50 g.L-1). 

 

Concerning yeast extract and peptone concentrations, Meade et al. (1994) reported that, 

for Enterobacter cloacae, the use of yeast extract and peptone decreased EPS yields. However, 
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Hamedi et al. (2007) observed that 4.0 g.L-1 of yeast extract gave the best production of EPS for 

Agaricus blazei Murill DPPh 131. Furthermore, the results obtained, in the experimental design, 

are similar to those attained for Pseudoalteromonas rubra QD1-2, by Ding et al. (2014) who 

found that for this strain the optimum concentrations of yeast extract and peptone were              

3.125 g.L-1 and 2.21 g.L-1, respectively. 

 

 

3.2.5. Conclusions 

 

Enterobacter A47 was able to grow and synthesize EPS under most of the experimental 

conditions assessed.  

It was found that maximum CDW values were achieved at low concentration of NaCl  

(8.1 g.L-1). However, intermediate and high concentrations of NaCl (20.0 and 31.9 g.L-1) also 

resulted in a high CDW. Concerning EPS synthesis, it was observed that the optimum NaCl 

concentration range was 20-31.9 g.L-1. However, low concentrations of NaCl (8.1 g.L-1) also 

resulted in a high EPS production.  

Regarding yeast extract and peptone concentrations, it was found that maximum CDW 

values were achieved at low concentration of yeast extract (0.8 g.L-1). Nevertheless, high 

concentrations of yeast extract and peptone (3.2 and 1.6 g.L-1, respectively) and high 

concentration of yeast extract and intermediate concentration of peptone (4.0 and 1.0 g.L-1, 

respectively) also resulted in a high CDW. Concerning EPS production, it was verified that the 

optimum yeast extract and peptone concentrations range was 3.2-4.0 g.L-1 and 1.0-1.6 g.L-1, 

respectively. However, low concentrations of yeast extract and peptone (0.8 g.L-1 and 0.4 g.L-1, 

respectively) and low concentration of yeast extract (0.8 g.L-1) and high concentration of peptone 

(1.6 g.L-1), also resulted in a high EPS production. 

 

Thus, since the supplements used are expensive and low concentrations of NaCl, yeast 

extract and peptone (run 1 – 8.1 g.L-1, 0.8 g.L-1 and 0.4 g.L-1, respectively) also resulted in a high 

EPS production (0.48 g.L-1), these conditions, namely the use of the modified Schatz medium, 

were chosen to proceed with the Enterobacter A47 bioreactor assays. 
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3.3. Effect of pH on EPS production by Enterobacter A47 

 

This study aimed to assess the impact of pH on EPS production by Enterobacter A47, as 

well as on the polymer´s composition, using the modified Schatz medium described in the 

previous section.  

In order to evaluate the effect of the pH value on EPS production by Enterobacter A47, 

using the modified medium, batch fermentations were performed in 2 L bioreactors and pH values 

of 6.0, 7.0 and 8.0 were tested, and compared with the results obtained in run E1, in which the pH 

was 7.0 and the standard Schatz medium was used. 
 

 

Figure 3.5 shows the cultivation profiles of Enterobacter A47 at the three different pH 

conditions tested: (pH 6.0: E2 – Fig. 3.5 a.), (pH 7.0: E3 – Fig. 3.5 b.) and (pH 8.0: E4 – Fig. 3.5 

c.).  

 

 

  
 
 

Figure 3.5 – Cultivation profile of Enterobacter A47 at different pH values (pH 6.0: E2 – a.; pH 7.0: E3 – 

b.; pH 8.0: E4 – c.), wherein experimental results of CDW (●), EPS (×) and glucose (▲) are represented 

throughout the cultivation run. 

 
 

 

 

In runs E2 (pH 6.0) and E3 (pH 7.0), Enterobacter A47 reached maximum CDW values 

of 3.63 g.L-1 and 3.75 g.L-1, respectively, within 25 hours of cultivation (Fig. 3.5 a. and b.). 
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In run E4 (pH 8.0), Enterobacter A47 showed much lower growth, with a maximum 

CDW of 1.28 g.L-1 within 25 hours of cultivation (Fig. 3.5 c.). Also, in run E4 cell growth 

appeared to cease when glucose was depleted, unlike other assays where there was significant 

growth after glucose had been consumed. 

These values are much lower than those reported in literature (5.80-13.58 g.L-1) for the 

cultivation in Medium E* supplemented with different carbons sources (Table 3.11). Although 

the concentration of nitrogen used (0.48 g.L-1) was lower than the concentration used in run E1 

(1.02 g.L-1), the carbon source concentration remained unchanged (30 g.L-1). As such, the C:N 

ratio (25:1, w/w) remained lower than that reported in literature (34:1, w/w), when glucose was 

used as carbon source (Freitas et al., 2014). Thus, the CDW achieved was lower. However, the 

CDW obtained in runs E2 and E3 (3.63 g.L-1 and 3.75 g.L-1, respectively) was slightly higher than 

that of run E1 (3.20 g.L-1) (Table 3.11). 

 

In terms of glucose consumption, in runs E2 and E3, glucose was totally consumed in less 

than 15 hours and the culture grew to 1.94 g.L-1 and 1.98 g.L-1, respectively (Fig. 3.5 a. and b.), 

limiting the growth of the bacteria. In run E4 glucose was also completely consumed, but it took 

around 41 hours (Fig. 3.5 c.). 

 

Concerning EPS production, compared with the Schatz medium at pH 7.0 (run E1), with 

the modified Schatz medium (run E3) there was a significant increase in EPS production            

(3.49 g.L-1) (Table 3.11). Thus, it was found that the concentrations of NaCl, yeast extract and 

peptone in the culture medium had a significant effect on cell growth and EPS production by the 

bacterium Enterobacter A47, as had already been verified in the experimental design. 

It was observed that EPS production was also influenced by the pH value. In the assay at 

pH 6.0 (run E2) the EPS production (3.33 g.L-1) was similar to the production obtained in the 

assay at pH 7.0 (run E3), whereas at pH 8.0 (run E4) the production of EPS was much lower   

(0.79 g.L-1) (Table 3.11). 

 

In runs E2 and E3, in the first 15 hours were produced 0.58 g.L-1 and 0.63 g.L-1 of EPS, 

respectively, while glucose was available (Fig. 3.5 a. and b.). Then the cultures continued to 

produce, even after growth had ceased. Indeed, after 40 hours, 2.13 g.L-1 and 2.29 g.L-1 of EPS 

were already produced in runs E2 and E3, respectively. At the end of the assay, Enterobacter A47 

had produced 3.33 g.L-1 (run E2) and 3.49 g.L-1 (run E3) of biopolymer. The EPS production 

observed after glucose depletion might have been due to the consumption of other medium 

components, such as yeast extract and/or peptone, which may have functioned as carbon sources 

for the culture. 
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Concomitant with EPS production, in run E2, there was an increase of the apparent 

viscosity of the broth from 1 to 40 mPa.s (measured at 1.7 s-1 and 0.025 s-1, respectively). Also, 

in run E3, there was an increase of the apparent viscosity of the broth from 1 to 50 mPa.s 

(measured at 1.7 s-1 and 0.025 s-1, respectively) throughout the cultivation run.  

In run E4, the EPS production was much lower (0.79 g.L-1) and occurred while glucose 

was available. Regarding the apparent viscosity of the broth, there was only a small increase in 

the apparent viscosity from 1 to 3 mPa.s (measured at 1.7 s-1) throughout the cultivation run. 

 

 

Table 3.11 – Parameters obtained in the bioreactor cultivation of Enterobacter A47 using different 

substrates, pH values and cultivation modes. 
  

Substrate Cultivation 

mode 

pH CDW (g.L-1) EPS (g.L-1) rp (g. L-1. d-1) References 

 Batch mode 

E1 

 

7.0 

 

3.20 

 

1.81 

 

0.91 

 

This study 

Glucose E2 6.0 3.63 3.33 1.67 This study 

 E3 7.0 3.75 3.49 1.75 This study 

 E4 8.0 1.28 0.79 0.40 This study 

  5.6 N.A. 7.50 N.A.  

Glycerol Continuous 

feeding 

7.0 

8.4 

N.A. 

N.A. 

7.79 

2.67 

N.A. 

N.A. 

Torres et al., 

2012 

 

Glycerol 

 

Continuous 

feeding 

 

7.0 

 

5.80 – 7.68 

 

7.23 – 7.97 

 

1.89 – 2.04 

Freitas et al., 

2014 

Torres et al., 

2011, 2014 

 

Glucose DO-stat 7.0 8.14 13.40 3.78 Freitas et al., 

2014 

Tomato 

paste 

pH-stat, DO-stat 

or Continuous 

feeding 

7.0 9.81 – 13.58 1.65 – 8.77 0.57 – 2.92 Antunes et 

al., 2017 

N.A.: data not available. 

 

 

Regarding the results reported in the literature, the amount of EPS produced in runs E2 

and E3 was higher than that achieved under pH-stat mode (1.65 g.L-1) and similar to that obtained 

under DO-stat mode (3.43 g.L-1), using tomato paste as sole substrate (Antunes et al., 2017) 

(Tables 3.4 and 3.11). However, the values obtained were lower than that reported in the literature 

(13.40 g.L-1) (Freitas et al., 2014), when glucose was used as carbon source (Table 3.11). 

The quantity of EPS produced in run E4 was lower than all results previously reported 

(Table 3.11). At pH 8.0, there may have been changes that led to the cells becoming less viable, 
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which in turn may have led to a lower production of sugar nucleotide precursors involved in EPS 

synthesis. Therefore the control of pH at 8.0 was not an adequate strategy to obtain a high EPS 

production. 

The fact that EPS production was lower than that reported in previous studies may be 

related to differences in the carbon and nitrogen sources concentration and composition, 

cultivation mode and cultivation conditions. In this work, as was referred for run E1, several 

parameters were different, namely, the culture medium, the cultivation mode (batch), the air flow 

rate (2.0 SLPM instead of 0.4 SLPM), and the dissolved oxygen level was controlled at 30% 

instead of 10% (Antunes et al., 2017; Freitas et al., 2014; Torres et al., 2011, 2012, 2014). 

 

The conclusions obtained are similar to those attained by Torres et al. (2012) who found 

that Enterobacter A47 produced the higher EPS concentration (7.79 g.L-1) at pH 7.0 (Table 3.11). 

Also, an optimal pH of 7.0 was reported for growth and EPS synthesis by E. agglomerans WD50 

(Prasertsan et al., 2006) and E. cloacae WD7 (Prasertsan et al., 2008). Similarly, in other genera 

it has been seen that EPS production depends on pH. For instance, Kiliç and Dönmez (2008) 

observed that the suitable pH level to obtain a maximum EPS yield by P. aeruginosa is 7.0. Also, 

according to Quintelas et al. (2011) the highest EPS production by the Arthrobacter viscosus was 

recorded at pH 7.0. 

Torres et al. (2012) also reported that, for Enterobacter A47, at pH 5.6 the EPS production 

(7.50 g.L-1) was similar to the production obtained at pH 7.0 (7.79 g.L-1), whereas at pH 8.4 the 

production of EPS was much lower (2.67 g.L-1) (Table 3.11).  

 

Considering 48 hours the time frame of the cultivation assay, a similar volumetric 

productivity was achieved in runs E2 and E3 (1.67 gEPS.L-1.d-1 and 1.75 gEPS.L-1.d-1, respectively), 

while that of run E4 was considerably lower (0.40 gEPS.L-1.d-1) (Table 3.11).  

 The values attained in runs E2 and E3 are higher than those obtained in previous studies 

(0.57-1.56 gEPS.L-1.d-1), using tomato paste as sole substrate (Antunes et al., 2017), under pH-stat 

mode, DO-stat mode, and under continuous feeding at 4 g.L-1.h-1 and 6 g.L-1.h-1 (Tables 3.4 and 

3.11). Moreover, the productivity values achieved are higher than the ones obtained for bacterial 

alginate (0.43-1.53 gEPS.L-1.d-1) (Peña et al., 2000) and are in the range of the ones presented for 

the EPS produced by Enterobacter cloacae WD7 (1.68 gEPS.L-1.d-1) (Prasertsan et al., 2008), using 

glucose or sucrose as substrates. However, the values obtained were lower than that reported in 

the literature (3.78 gEPS.L-1.d-1), when glucose was used as carbon source (Table 3.11). 

Furthermore, the values attained were lower than all the others reported in literature,                   

1.89-2.92 gEPS.L-1.d-1 (Table 3.11).  
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The sugar composition of the EPS obtained under the different pH values tested is 

provided in Table 3.12. 

 
 

Table 3.12 – Sugar composition content of the exopolysaccharides produced by Enterobacter A47 from 

various substrates under different pH values and cultivation modes. Fuc, fucose; Gal, galactose; Glc, 

glucose; GlcA, glucuronic acid; Rha, rhamnose; GlcN, glucosamine. 

 

   Sugar composition (%mol)  

Substrate Cultivation 

mode 

pH Fuc Gal Glc GlcA Rha GlcN References 

 Batch mode 

E1 

 

7.0 

 

37 

 

23 

 

33 

 

6 

 

– 

 

– 

 

This study 

Glucose E2 6.0 47 27 18 7 – – This study 

 E3 7.0 41 24 29 6 – – This study 

 E4 8.0 49 29 16 6 – – This study 

  5.6 13 13 58 8 6 2  

Glycerol  Continuous 

feeding 

7.0 

 

8.4 

 

 

36 

 

– 

26 

 

12 

28 

 

37 

10 

 

11 

– 

 

29 

– 

 

11 

Torres et al., 

2012 

 

Glycerol 

Continuous 

feeding 

 

7.0 

 

30 – 36 

 

22 – 29 

 

25 – 34 

 

9 – 10 

 

– 

 

– 

Freitas et al., 

2014 

Torres et al., 

2011, 2014 

 

Glucose DO-stat 7.0 29 29 26 16 – – Freitas et al., 

2014 

 

Tomato 

paste 

pH-stat,  

DO-stat or 

Continuous 

feeding 

 

7.0 

 

20 – 37 

 

27 – 45 

 

23 – 32 

 

10 – 12 

 

– 

 

– 

 

Antunes et 

al., 2017 

 
 

  

 

 

 

The glycosyl composition analysis of the exopolysaccharides revealed some differences 

when Enterobacter A47 was grown in the modified Schatz medium and in media with different 

pH. The results obtained in this study indicate that lower concentrations of NaCl, yeast extract 

and peptone (run E3) led to an increase in fucose (41 %mol), when compared to run E1, where 

the fucose content was 37 %mol. Concomitantly, there was a decrease in glucose (from 33 %mol 

to 29 %mol), while the content in glucuronic acid remained the same (6 %mol) (Table 3.12). This 

sugar monomer profile is different from typical FucoPol, namely, the polymer had a considerably 

higher fucose content, while the glucuronic acid content was lower. 
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Lowering the pH from 7.0 to 6.0 (run E2) had a much more noticeable effect on the 

composition of the EPS since fucose and galactose contents were increased to 47 %mol and          

27 %mol, respectively, while glucose content was reduced to 18 %mol. Additionally, there was 

also a slight increase in the glucuronic acid content to 7 %mol (Table 3.12). However, the sugar 

monomer profile is different from that obtained by Torres et al. (2012) at pH 5.6, namely, the 

polymer had higher fucose and galactose contents, while the glucose content was lower. In 

addition, the polymer obtained did not show rhamnose and glucosamine (Table 3.12).  

 

The pH increase from 7.0 to 8.0 also had large effects on the EPS composition, since the 

content in fucose and galactose also increased (49 %mol and 29 %mol, respectively), while the 

content in glucose decreased (16 %mol). The content in glucuronic acid remained the same when 

compared to the assay at pH 7.0 (run E3) (Table 3.12). Nevertheless,  the sugar monomer profile 

is different from that obtained by Torres et al. (2012) at pH 8.4, namely, the polymer had a higher 

galactose content, while the glucose and glucuronic acid contents were lower. Moreover, the 

polymer obtained had fucose, but did not show rhamnose and glucosamine (Table 3.12). 

 

 

3.3.1. Conclusions 
  
 

According to the results, the pH values tested in these assays seemed not only to have an 

impact in EPS production and productivity, but also in the polymer´s composition. Although the 

growth and EPS production have been lower than those obtained in previous studies, the fact that 

the polymer has a higher fucose content makes it very interesting, since fucose is a rare sugar that 

is difficult to obtain. In addition, it was observed that the highest EPS production (3.49 g.L-1) and 

productivity (1.75 gEPS.L-1.d-1), by Enterobacter A47, were reached at pH 7.0. 
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4. Conclusions and future work 

In this thesis, the production of bacterial exopolysaccharides was studied, using a Schatz 

medium, supplemented with yeast extract and peptone, and glucose as carbon source. 

In the shake flask assays, all the bacteria studied, Pseudoalteromonas atlantica MD12-

331 A, Pseudoalteromonas shioyasakiensis MD12-375, Pseudoalteromonas mariniglutinosa 

MD12-501 and Psychrobacter submarinus MD12-530 b and Enterobacter A47, were able to 

grow and produce EPS under the culture conditions tested. The cultures achieved EPS productions 

of 0.14-0.67 g.L-1, within 96 hours of cultivation, corresponding to volumetric productivities of 

0.04-0.17 gEPS.L-1.d-1.   

In the bioreactor assays, the marine bacteria were able to produce 1.33-1.91 g.L-1 of EPS, 

within 48 hours of cultivation, corresponding to volumetric productivities of                                    

0.67-0.96 gEPS.L-1.d-1, with the highest EPS production being achieved by Pseudoalteromonas 

mariniglutinosa MD12-501. The polymers produced by Pseudoalteromonas atlantica MD12-331 

A and Pseudoalteromonas shioyasakiensis MD12-375 were composed of glucose (96 %mol and 

79 %mol, respectively) and rhamnose (4 %mol and 21 %mol, respectively). The polymers 

produced by Pseudoalteromonas mariniglutinosa MD12-501 and Psychrobacter submarinus 

MD12-530 b were composed of glucose (44 and 46 %mol, respectively), galactose (18 %mol), 

rhamnose (14 and 13 %mol, respectively), fucose (12 %mol), galacturonic acid (9 %mol) and 

glucuronic acid (3 and 2 %mol, respectively). 

Furthermore, Enterobacter A47 was able to grow and synthesize 1.81 g.L-1 of EPS, within 

48 hours of cultivation, corresponding to a volumetric productivity of 0.91 gEPS.L-1.d-1. The 

extracellular polysaccharide obtained was composed of fucose (37 %mol), galactose (23 %mol), 

glucose (33 %mol) and glucuronic acid (6 %mol). Although Pseudoalteromonas mariniglutinosa 

MD12-501 presented slightly higher EPS production and productivity values, the polymer 

produced by Enterobacter A47 presented a higher fucose content, which is very interesting since 

fucose is one of the rare sugars difficult to obtain in Nature. Thus, Enterobacter A47 was selected 

for further optimization studies.  

However, in future studies, the culture conditions of marine bacteria can still be 

optimized. 

 

The influence of NaCl, yeast extract and peptone concentrations on cellular growth and 

EPS production by Enterobacter A47 was also evaluated. The optimal NaCl, yeast extract and 

peptone concentrations were determined to be 8.1 g.L-1, 0.8 g.L-1 and 0.4 g.L-1, respectively, due 

to the high EPS production achieved. Moreover, the reduction in the concentration of the 

supplements used implied a considerable diminution of the overall EPS cost production, since 

yeast extract and peptone are expensive. 
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In future studies, exopolysaccharide production by Enterobacter A47 can be further 

optimized in terms of carbon source concentration. Moreover, operational parameters, such as 

dissolved oxygen concentration and aeration, can also affect cell growth and polymer synthesis 

and, hence, their effect should be studied. Additionally, other bioreactor operation modes (e.g. 

fed-batch, continuous) may also be tested, as well as feeding strategies (e.g. pulses).  

 

In this work, the impact of pH on EPS production, as well as on the polymer´s 

composition, using the modified Schatz medium by Enterobacter A47 was also investigated. It 

was found that the use of the modified Schatz medium and pH control at 7.0 led to an increase in 

EPS production, when compared to the standard conditions. In fact, an EPS production of          

3.49 g.L-1 was achieved, within 48 hours of cultivation, corresponding to a volumetric 

productivity of 1.75 gEPS.L-1.d-1. It was also observed that the decrease from pH 7.0 to pH 6.0 had 

little effect on EPS production (3.33 g.L-1), whereas at pH 8.0 a significant reduction in EPS 

synthesis (0.79 g.L-1) was observed. 

The extracellular polysaccharides obtained at pH 6.0, 7.0 and 8.0 were composed of 

fucose (47, 41 and 49 %mol, respectively), galactose (27, 24 and 29 %mol, respectively), glucose 

(18, 29 and 16 %mol, respectively) and glucuronic acid (7, 6 and 6 %mol, respectively). As a 

function of pH, Enterobacter A47 revealed the ability to synthesize different exopolysaccharides, 

a feature that can be further exploited to obtain tailored polymer compositions. In addition, the 

polymers obtained had a high fucose content, which, as previously mentioned, is very important. 

Thus, future studies can be done to increase the productivity of this fucose-enriched polymer.  

Moreover, in the future, the total nitrogen must be determined, and NH4
+ and NO3

- must 

be quantified, since they can be used as nitrogen source. 

 

Also, in future studies, the functional properties (e.g. rheology, film-forming capacity, 

emulsion forming and stabilizing capacity, flocculation) of the distinct exopolysaccharides, 

synthesized by Enterobacter A47, should be further explored in order to determine if their 

different physical-chemical characteristics conferred them different interesting properties. 
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6. Appendixes 
 

6.1. Glucose calibration curves 

 

 

 

 

 

 

 

 

 

 
Figure 6.1 – Glucose calibration curve used in runs P1 – P4. 

 

  

 

 

 

 

 

 

 

 

 

Figure 6.2 – Glucose calibration curve used in runs E1 – E3. 
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Figure 6.3 – Glucose calibration curve used in run E4. 
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