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Abstract 
Energy consumption is at the core of economic development, but its severe impacts on 

resources depletion and climate change have justified a call for its general reduction across all 

economic activities. Lowering households’ energy demand is a key factor to achieve carbon 

dioxide emission reductions as it has an important energy-saving potential. Households in the 

European Union (EU28) countries have a significant weight (25%) in the total final energy 

consumption. However, a wide range of variation is observed within the residential sector from 

7.6 to 37.4 GJ per capita/annum, with the lowest consumption indicator observed in Southern 

EU countries. 

Energy consumption in the residential sector is a complex issue, explained by a combination of 

different factors. To pinpoint how to reduce energy consumption effectively while deliver 

energy services, we need to look not just at technology, but also to the factors that drive how 

and in what extent people consume energy, including the way they interact with technology 

(i.e., energy efficiency). The main objective of this research is to understand the differences in 

energy consumption arising from different socio-demographic, technologic, behavioral and 

economic characteristics of residential households. 

This research brings to the spotlight the needs and benefits of looking deeper into residential 

sector energy consumption in a southern European country. Portugal and the municipality of 

Évora, in particular, were selected as case studies. Residential sector consumption is a moving 

target, which increase the complexity of adequate policies and instruments that have to address 

the bottleneck between increase demand for e.g. climatization due to current lack of thermal 

comfort and to comply with objectives of increased energy efficiency which ultimately intend to 

reduce energy consumption. This calls for different levels of knowledge to feed multiscale 

policies. This dissertation expands the understanding of energy consumption patterns at 

households, consumers’ role in energy consumption profiles, indoor thermal comfort, and the 

levels of satisfaction from energy services demand. In a country potentially highly impacted by 

climate change, with low levels of income and significant lower energy consumption per capita 

compared to the EU28 average, looking into these issues gains even more importance. The work 

combines detailed analysis at different spatial (national, city and consumers level) and time 

scales (hour to annual) taking advantage of diverse methods and datasets including smart 

meters’ data, door to door surveys and energy simulation and optimization modelling. 

The results identify (i) ten distinct residential sector consumer groups (e.g., under fuel poverty); 

(ii) daily and annual consumption patterns (W, U and flat); (iii) major energy consumption 

determinants such as the physical characteristics of dwellings, particularly the year of 



 x 

construction and floor area; climatization equipment ownership and use, and occupants’ profiles 

(mainly number and monthly income). It is (iv) recognized that inhabitants try to actively 

control space heating, but without achieving indoor thermal comfort levels. The results also 

show (v) that technology can overweight the impact of practices and lifestyle changes for some 

end-uses as space heating and lighting. Nevertheless, important focus should be given to the 

evolution in the future of uncertain parameters related with consumer behavior, especially those 

on climatization, related to thermal comfort and equipment’s use. Furthermore, the research 

work presents a (vi) bottom-up methodology to project detailed energy end-uses demand, and 

(vii) an integrated framework for city energy planning. 

This work sets the ground for the definition of tailor-made policy recommendations for targeted 

consumer groups (e.g., vulnerable consumers) and climatization behavior/practices to reduce 

peak demand, social support policies, energy efficiency instruments and measures, renewable 

energy sources integration, and energy systems planning. 

 

 

 

Keywords: Residential Sector, Determinants of Energy Consumption; Consumer Behavior, 

Energy Services Demand, Smart Meters, Integrated Energy Planning. 
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Resumo 
O consumo de energia está na base do desenvolvimento económico, mas os impactos no 

consumo de recursos e a contribuição para as alterações climáticas o que justifica a sua redução 

em todas as atividades económicas. O consumo de energia no sector residencial é um vector-

chave para a redução das emissões de dióxido de carbono, uma vez que tem um elevado 

potencial de poupança de energia. Este sector tem um peso significativo (25%) no consumo de 

energia final nos países da União Europeia 28. No entanto, existe uma ampla variação entre 

países no consumo de energia per capita (7.6 a 37.4 GJ) por ano, observando-se valores mais 

baixos na generalidade dos países do Sul da Europa. 

O consumo de energia no setor residencial é uma questão complexa, que pode ser explicada por 

uma combinação de características físicas, tecnológicas, demográficas, climáticas, 

características das habitações e comportamento dos ocupantes. De forma a identificar como 

reduzir eficazmente o consumo de energia mantendo ou aumentando os níveis de satisfação de 

serviços de energia, é necessário ter em conta não só a tecnologia (i.e., eficiência energética), 

mas também os fatores que determinam como, e em que medida as pessoas consomem energia, 

incluindo a forma como interagem com a tecnologia. O objetivo principal deste trabalho de 

investigação é a compreensão das diferenças no consumo de energia decorrentes de 

características distintas como sócio-demográficas, tecnológicas, comportamentais e económicas 

dos consumidores residenciais. 

A investigação realizada nesta dissertação identifica as necessidades e os benefícios de uma 

análise aprofundada do conhecimento do consumo de energia no setor residencial num país do 

Sul da Europa. Portugal e o município de Évora, em particular, foram selecionados como casos 

de estudo. O consumo no setor residencial é um alvo em movimento, o que aumenta a 

complexidade no desenho de políticas e instrumentos adequados que têm de lidar com a 

dicotomia entre o aumento da procura de serviços de energia (e.g. para climatização devido à 

falta de conforto térmico atual) e o cumprimento dos objetivos de maior eficiência energética 

que, em última análise, pretendem reduzir o consumo de energia, o que exige diferentes níveis 

de conhecimento para alimentar políticas e instrumentos de atuação a diferentes escalas. 

Esta dissertação avança o conhecimento na compreensão dos padrões de consumo de energia 

em habitações, o papel dos consumidores nos perfis de consumo eléctrico, o conforto térmico e 

os níveis de satisfação da procura de serviços energéticos. Num país que potencialmente será 

muito afetado pelas alterações climáticas, com baixos níveis de rendimento e consumo de 

energia per capita, significativamente inferior à média da UE28, a análise destas questões ganha 

ainda mais relevância. O trabalho combina análise detalhada em diferentes escalas espaciais 
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(nacional, municipal e consumidores) e temporais (hora a anual), aproveitando diversos 

métodos e conjuntos de dados, incluindo registos de contadores inteligentes, inquéritos porta a 

porta, modelos de simulação térmica de edifícios e de otimização de sistemas energéticos. 

Os resultados obtidos (i) identificam 10 grupos de consumidores distintos (por exemplo, 

associados a pobreza energética); (ii) analisam padrões diários e anuais de consumo (W, U e 

Plano); (iii) caracterizam os principais determinantes do consumo eléctrico, tais como 

características físicas das habitações (ano de construção e área), taxa de posse e padrões de uso 

de equipamentos de climatização, e perfis dos ocupantes (e.g., número e rendimento mensal). 

Os resultados focam ainda (iv) a identificação de comportamentos de consumo ativo para 

aquecimento de espaço, reconhecendo, no entanto, uma significativa falta de conforto térmico 

nas habitações da região; e mostram que (v) a tecnologia pode anular práticas e mudanças de 

estilo de vida para alguns usos finais como aquecimento de espaços e iluminação. No entanto, 

deve ser dada atenção à incerteza associada a parâmetros relacionados com o comportamento do 

consumidor, especialmente os relativos à climatização com impacto no conforto térmico e no 

uso de equipamentos. Para além disso, este trabalho de investigação apresenta (vi) uma 

metodologia bottom-up para projeções de procura detalhada de serviços de energia por uso final 

e (vii) uma estrutura integrada para o planeamento energético urbano. 

Este trabalho contribui para a definição de políticas e medidas para grupos de consumidores de 

energia específicos (e.g., consumidores vulneráveis); análise de comportamentos de 

climatização que possam ser geridos em picos de procura, políticas de apoio social, medidas e 

instrumentos de eficiência energética, integração de fontes de energia renováveis e planeamento 

de sistemas energéticos. 
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1.1 Relevance of the study 

1.1.1 Global greenhouse gases emissions and energy consumption trends 

The 2015 Paris climate change agreement has set a long-term goal of keeping the increase in 

global average temperature to well below 2°C above pre-industrial levels, aiming to limit the 

increase to 1.5°C, meaning that the increasing trends of the last decades of global greenhouse 

gases emissions (GHG) must reverted. After 2010, a declining growth in global CO2 emissions 

has occurred, starting from 5.7% (2010) down to 0.7% (2012). Afterwards, the global emissions 

have stalled, aligned with the slowing trend in annual emission growth, especially over the last 

three years, starting from 2.0% in 2013 to 1.1% in 2014 and further down to -0.1% in 2015 

(near 36 Gt CO2 from fossil fuel and industry) (Figure 1.1) (Olivier et al.; (2016); GCP (2016)). 

Several authors consider controversial whether the plateaued emission level will continue and 

results from structural changes (e.g. Jackson et al. (2016); Green and Stern (2016)). Olivier et 

al. (2016) and IEA (2016a) highlight that this trend is decoupled from the gross domestic 

product (GDP) trend, as global GDP kept up with an annual growth of 3.0% in 2015 compared 

to 2014. 

 

Figure 1.1 – Global CO2 emissions per regional from fossil-fuel use and cement production (Adapted from EC-JRC/PBL, 2016) 

Global primary energy consumption increased by 1.0% in 2015 compared to the previous year, 

bellow the 10-year average of 1.9%, despite the widespread fossil fuel prices decrease (Olivier 

et al., 2016). The sustainability debate is linked to the climate debate, within which reducing 

CO2 emissions is the highest priority (Ellegard and Palm, 2011). Current trends in energy supply 

and consumption of developed countries are patently unsustainable and must be altered, since 

regional improvements would be outstripped by the increased energy demand worldwide 

(OECD, 2012). Though, according to the World Energy Outlook 2016 (WEO) (IEA, 2016a), 
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primary energy demand is expected to increase by 43% between now and 2040 under the 

‘Current Policies Scenario’, by 31% under the ‘New Policies Scenario’ and by a mere 9% under 

the ‘450 Scenario’. The CO2 emissions associated with these scenarios could rise by 36%, 13%, 

and fall by 43% respectively (IEA, 2016a). 

Energy is at the heart of the global warming challenge, being critical for economic and social 

development (Zhao et al., 2012). By looking at the energy consumption profile trend from the 

Organization for Economic Co-operation and Development (OECD) countries, there are two 

broad (and complementary) means of reducing the energy related emissions of GHG. The first 

one is to develop renewable zero-emission energy sources, but this might continue to instigate 

energy consumption, while the second is to reduce final energy consumption among end-users. 

The later leads to a need for demand-side actions in order to reduce energy consumption with 

implications on energy supply security and affordability, climate change. It will also foster the 

growing share of renewable energy as primary energy sources for electricity generation. This 

last issue is particularly important, since it may cause future load planning problems. 

1.1.2. Residential sector 

In OECD countries, efforts have been focused on reducing coal and oil consumption, increasing 

energy efficiency, and mitigating the impacts of oil price fluctuation on the economy (Kowsari 

and Zerriffi, 2011; Brounen et al., 2012). Within these factors, the residential energy sector is 

crucial to achieve CO2 emission reductions as it has an important energy-saving potential, and 

its environmental controls are difficult to displace to other countries (Pablo-Romero et al., 

2017). Energy consumption in residential buildings represents a significant share of energy 

consumption in OECD countries which; however, is very distinct among the EU28 countries 

(12% in Luxembourg to 37% in Croatia) (PORDATA, 2016). 

These differences arise from different economic structures but also from different stages of 

energy efficiency and delivery of energy services. The increase demand for energy services in 

households (as total and per square meter), may be explained, partially, by new end-uses, 

increased degree of basic comfort and amenities, and widespread utilization of new types of 

loads/equipment and by patterns of use that offset the gains of increasing efficiency in 

households’ equipment (e.g., Jevons Paradox (Alcott, 2005)). 

In the last decade, the research in energy demand in households has assumed a higher 

importance, with energy scholars devoting substantial effort to understand it. Engineering, 

economics, psychology, sociology, and anthropology have been the main contributors to the 

field of household energy use with its own biases, frameworks, and techniques (Keirstead, 

2006; Volland, 2017). 
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Energy consumption in residential sector is a very complex topic depending on several factors 

from socio-economic (e.g. type of dwelling, dimension or income of the family), to behavioral 

(e.g. values, culture), technological (e.g. equipment efficiency), climate, as well as, local factors 

such as architectural traditions, building materials and technical characteristics of the dwelling 

(Howden-Chapman (2009); Kowsari and Zerriffi (2011), Sutterlin et al. (2011), Brounen et al. 

(2012); McLoughlin et al. (2012); Wyatt  (2013); Jones et al. (2015)). The dynamic aspects of 

these factors are also of high importance when making future energy projections and planning, 

since under or overestimating energy demand may cause energy scarcity or redundancy in 

resources (Ünler, 2008). 

We already know that energy efficiency (EE) is the low-hanging fruit of energy and climate 

policy, also on households. However, the estimates are based on the assumption that energy 

efficiency reduces energy demand in a linear and direct manner. Rather, as generally assumed in 

energy and climate forecasting and scenario planning, the economy is nonlinear, especially 

when responding to changes in the relative price of goods and services (Jenkins et al., 2011) as 

well as to cultural habits. Earlier research had found that technological improvements have 

gained more focus than behavioral related measures. In this sense, efficiency is not a way of 

changing lifestyle but changing technical equipment. This takes the responsibility away from 

the householders for the side effects, since the increasing demand in more items also includes an 

increased demand of energy (Gyberg and Palm, 2009). 

Energy efficiency policies and measures are crucial, as depicted in the WEO2016, where EE 

could reduce around 15% of the EU energy consumption by 2040 (IEA, 2016a). Nonetheless, 

efficiency alone is not sufficient to meet the targets of energy and emissions reduction, it is also 

needed to look beyond efficiency improvements towards the reduction of absolute energy 

demand. This is especially true in countries where the balance between complying with targets 

of energy consumption reduction and the demand for increased thermal comfort levels and other 

basic energy services still needs to be achieved. 

Conventional climate mitigation strategies (which generally ignore rebound effect, human 

behavior and other drivers behind energy consumption and energy savings) are dangerously 

over reliant on increased energy efficiency and technological improvements (Howden-

Chapman, 2009; Jenkins et al., 2011). Researchers have been exploring various dimensions of 

household energy use in order to design and implement strategies, not only to provide secure 

access to energy services, but also to facilitate the transition to modern fuels, eradicate energy 

poverty, address environmental concerns, and mitigate GHG emissions. Despite more than four 

decades of effort, our understanding of household energy use patterns and the variables 

associated with household energy use remains limited (Kowsari and Zerriffi, 2011; Wiesmann 

et al., 2011). This is probably due to the distinct patterns of consumption across regions and 
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countries as a consequence of socio-economic profiles and consumption habits and the lack of 

comprehensive and detailed data to support the identification of determinants of energy 

consumption and consumers with different behaviors. 

Energy policy strategies should encompass effective reduction of energy consumption wherever 

possible, while guaranteeing the maintenance or improvement of crucial energy services as 

heating and cooling. Since energy use is related, not only with technologies, but also with 

behavioral and socio-economic characteristics and changes, policies and measures must wide its 

scope and goals to cover effective determinants. Households’ energy use has unique 

characteristics that make it harder but challenging to assess and analyze when compared to other 

sectors, with complex interactions between energy, environmental, social and economic issues. 

1.1.3 Energy consumption in Europe 

Energy consumption is at the heart of economic development with severe impacts on the 

consumption of resources and climate change. Figure 1.2 shows the evolution of the total final 

energy and electricity consumption per capita of the EU countries from 1990 to 2015, while 

Figure 1.3 presents for the same period the residential sector final energy consumption per 

capita. We can see from both figures that the development among EU countries was very 

different. Numerous countries increased their total final energy consumption per capita 

consumption, with several EU southern countries being among them (e.g. Portugal, Spain, 

Malta, Greece) mainly due to increased energy services demand; others like Italy and the 

Netherlands remained quite stable and still, while others like Germany, Austria, Czech Republic 

and Estonia strongly reduced their per capita energy consumption due to different reasons, 

among others, increased energy efficiency, fuel switches, and structural economic changes. The 

trends in electricity consumption are significantly different, within an overall growth at EU28 

level of around 20% in the period. Countries like Portugal and Malta increased by 90% the 

electricity consumption per capita, Greece and Ireland around 60%, and the bulk of EU 

countries around 20%. This electrification trend might be driven by increasing energy services, 

fuel shifts due to electrical equipment and ease of use. 
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Figure 1.2 – Variation of total final energy and electricity consumption per capita from 1990 to 2015 for EU countries 

(PORDATA, 2016) 

In European Union (EU), residential buildings are responsible for around 25% of final energy 

consumption in 2015 (PORDATA, 2016), and serious efforts have been devoted to improve 

energy efficiency (EE) in buildings and appliances (Energy Performance of Buildings Directive, 

Eco-design and Labelling Directives, the Energy Efficiency Directive). According to the 

analysis of Serrano et al. (2017), European inhabitants live in bigger houses but spend less in 

energy per capita and even less when their income is higher. This decreasing trend could be 

because they have access to more efficient housing and appliances, improving energy 

efficiency. 

Looking at the consumption change from 1990 to 2015 at the residential sector level, the 

analysis is similar to the total final energy, with EU southern countries depicting a sharp 

increase in the 90’s followed by a significant reduction from 2004/2005 onwards, but most 

significantly after 2010; but with differences on the relative increase/decrease of consumption of 

the countries (Figure 1.3). These differences show that EU energy policies in the residential 

sector are not equally bringing the expected results on energy consumption reduction since there 

are other determinants of energy consumption besides technology that should be evaluated, such 

as consumer behavior in each country. 
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Figure 1.3 –Variation of final energy consumption per capita from 1990 to 2015 and 2010-2015 at residential buildings of EU 

countries (PORDATA, 2016) 

In 2014, energy intensity1 in the EU28 was 34% below 1990 levels (Figure 1.4). Since 2005, 

energy efficiency results have accelerated. Between 1990 and 2014, all EU28 showed an 

absolute or relative decoupling of GDP growth from gross inland energy consumption 

development. Portugal is the EU28 country where the improvements from 1990 basis where 

lower (-11%). At the higher end with significant reductions, are Eastern European countries as 

Lithuania (-68%); Romania (-62%), Bulgaria, and Estonia (-56%). For a matter of comparison, 

other Southern European countries as Spain Italy and Greece, reduced 18%, 15%, and 12% 

respectively. This reduction of energy intensity was influenced by improvements in energy 

efficiency — both for final users and for power generation — as well as by the increase of 

renewable energy in the power mix and by structural changes within the economy. The latter 

included an increase in the contribution of services to GDP and a shift within the industrial 

sectors from energy intensive industries to less energy intensive industries that have a higher 

value added (EEA, 2016). 

                                                        

1 Energy intensity is expressed as the ratio between gross inland energy consumption and GDP. 
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Figure 1.4 - Variation of energy intensity from 1990 to 2014 for EU28 countries 

1.1.4 Energy policies with impact on residential sector energy consumption  

As highlighted in previous sections, current energy policies are not being sufficient to achieve 

an effective energy consumption reduction with increased energy efficiency while increasing 

thermal comfort and living conditions of citizens. It is also true that tailor-made policies2 cannot 

be ignored since the knowledge on the way different demographic groups consume electricity is 

valuable to design and evaluate the effect of energy policy on different population groups. Since 

effectiveness of energy-efficiency policies is crucial, it is of key importance to understand 

energy-related practices and drivers as well as their social differences among countries. 

More than forty years after the 1970’s oil crisis, renewed attention to energy consumption, 

energy efficiency and energy savings in households is motivated by concerns about pollution, 

global warming, fossil fuel depletion; and it is essential to give a boost and revitalize programs 

for the promotion of energy efficiency and effective energy reduction at all levels of European 

society. 

Recently, the European Commission (EC, 2016) proposed to update the existing Energy 

Efficiency Directive that set 20% energy savings target by 2020 (when compared to the 

projected use of energy in 2020); by aligning energy efficiency targets with the EU 2030 

climate and energy framework (30% target for energy efficiency). 

                                                        

2 Under this work, we refer to tailor-made policies, policies addressed to specific segments of consumers 
and not to individual households. 
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Southern European countries energy efficiency policies are aligned with the relevant EU 

regulations and directives. Box 1.1 presents a brief identification of the example for Portugal of 

the national legislative framework addressing or affecting the residential sector energy 

consumption and energy efficiency. The level of acting of each policy is identified, as well as a 

short description. 

The majority of policies are developed at a strategic level, lacking in general proper 

effectiveness of instruments to deliver the expected results or are very focused in equipment 

replacement, as in the National Energy Efficiency Action Plans (NEEAP) with windows and 

insulation replacement, efficient lighting and heating equipment. In several energy related 

themes, Portugal is still behind compared to other EU countries. As an example, BPIE (2017) 

includes Portugal as slow starters for smart building revolution. 

The scope of the current work focuses on the assessment of residential sector energy 

consumption and energy services demand for a Southern European country. 
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Box 1.1 – Identification and description of selected policies affecting the residential sector energy consumption 

Title  Description Target 

Portugal Green Growth 
Commitment 2030 

The Commitment for Green Growth seeks to lay the foundations for a 
commitment to policies, goals and targets that foster a development model 
that will reconcile essential economic growth with lower consumption of 
natural resources, social justice and quality of life for the population.  

Goal 7 - Improve energy efficiency: From 129 toe/€M of GDP in 2013 to 122 
toe/€M of GDP in 2020 and 101 toe/€M of GDP in 2030. 

Multi-Sectoral 
Policy 

Energy efficiency target 
declared by Portugal under 
the EU Directive 
(2012/27/EU)  

Portugal set a target of 25% reduction in primary energy consumption by 
2020 compared to projections. 

Multi-Sectoral 
Policy 

Decree-Law nº 319/2009, 
3 November - 
Implementation of the EU 
Energy Services Directive 

It establishes the need to create conditions for promotion and development of 
a market for energy services and to develop measures to improve energy 
efficiency to consumers. It also promotes mechanisms, incentives and 
institutional frameworks - financial and legal - to overcome existing 
constraints and market failures preventing better efficiency in energy end-use 
through the spread of low-consumption equipment, and rationalization of 
energy consumption to be adopted by consumers.  

Buildings, 
Multi-Sectoral 
Policy, 

Decree-Law nº 68-A/2015, 
30 April - Transposition of 
Directive 2012/27/EU on 
energy efficiency 

Establishes a framework on energy efficiency and cogeneration, transposing 
to national law Directive 2012/27/EU of the European Parliament and the 
Council of 25 October 2012, on energy efficiency. 

Buildings, 
Multi-Sectoral 
Policy, 

Decree-Law nº 50/2010, 
20 May - Energy 
Efficiency Fund 

The Energy Efficiency Fund aims to fund the programmes and measures 
under the National Energy Efficiency Action Plan and has three main 
objectives: - To encourage efficiency by citizens and businesses, - To support 
energy efficiency projects in areas where until now such projects had not yet 
been developed, - To promote behavioral change in this area.  

Buildings 

Cabinet Resolution 
20/2013 of 10 April  

Adopted and published the 2013-16 NEEAP (Energy Efficiency Strategy – 
PNAEE 2016) and the 2013-20 National Renewable Energy Action Plan 
(Renewable Energy Strategy – PNAER 2020). This Cabinet Resolution also 
repealed the previous National Energy Strategy for 2020.  

Buildings, 
Multi-Sectoral 
Policy, 

Decree-Law n. º 118/2013 
transposes the Directive 
on the Energy 
Performance of Buildings 
(EPBD, 2002/91/EC, 
recast as 2010/31/EU)	 

Ensures regulatory application with regard to energy efficiency conditions and 
the use of renewable energy systems in accordance with the requirements and 
provisions of the Energy Performance Regulations for Residential Buildings 
(REH) in order to ensure the energy performance of buildings; identify 
measures to correct or improve energy performance for buildings and main 
types of technical building systems, thus also subject to minimum standards of 
energy efficiency, HVAC systems, preparation of hot water, lighting, use of 
renewable energy power management. 

Buildings 

Ordinance n. º 278-C/2014 
- Implementation of the 
Social Tariff 

Establishes the procedures and the other conditions required for the 
assignment, application and maintaining social tariff  

Buildings 
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1.2 Problem definition 
The discussion about the “energy paradox” i.e., the apparently irreconcilable contradiction 

between the profitability of energy-conserving technologies and the slow diffusion of these 

technologies, suggests that the market responds slowly (Brounen et al., 2012). Besides, the 

increasing technological progress to achieve the needs of comfort and safety - individual and 

collective results with an increase of the energy services demand worldwide (Carmona, 2006). 

As a result, energy reduction has been limited. Highly energy efficient houses consume more 

energy than expected and refurbishments of buildings rarely reduce their carbon footprints. 

Also, despite all the different tax incentives and subsidies towards energy savings (Vassileva et 

al., 2012) and energy use awareness and labeling campaigns, increasing new uses and energy 

services demand offsets in part those initiatives. 

Obtaining knowledge about physical, technological, demographic, climatic and behavioral 

characteristics of a dwelling and its occupants is important in order to address the complexity of 

these intertwining factors that determine the energy consumption patterns in the residential 

sector. Moreover, this improved knowledge will help (i) a better energy planning through more 

accurate, reliable methodologies encompassing several energy determinants; (ii) to feed targeted 

oriented policies, e.g. to specific groups of consumers, such those under fuel poverty or 

neighborhoods and (iii) to be integrated in a boarder framework of policy analysis (i.e. country 

or city level) evaluating the role of energy policies and instruments for the residential sector. 

This dissertation use several intertwined concepts that are defined in Box 1.2. Energy efficiency 

relates to energy consumption and energy conservation as illustrated in Figure 1.5. The 

horizontal axis indicates the change in energy consumption, increasing from left to right. The 

vertical axis shows the change in benefits derived from the energy consumption, increasing 

from bottom to top. The left-hand side of the graph corresponds to energy conservation (SEI, 

2009). The green dotted line that moves from the bottom left quadrant to the top right quadrant 

separates the graph into two areas associated with increasing or decreasing energy efficiency. 

This scheme shows that EE may coincide with increasing energy consumption (top-right 

quadrant to the left of the green dotted line), as long as the benefits of energy consumption are 

increasing at a faster rate than the energy consumption itself. A decline in energy use with 

increasing benefits (top-left quadrant) always corresponds to increasing energy efficiency (SEI, 

2009). Energy conservation is presented in the bottom-left quadrant to the right of the green 

dotted line. 
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Box 1.2 - Overview of key concepts 

Energy services refer to a measure of the service provided to final consumers by their own use of energy in any of its 

forms; it encompasses the short and long term components of service demand (e.g. consumer behavior and area of 

households) but only the direct component of service demand (e.g. lighting, cooking); therefore, not considering the 

range of indirect (embodied) energy services (e.g. food, furniture). 

Energy consumption refers to all energy consumed by the final consumer for all energy uses within the residential 

sector (e.g. electricity, natural gas).  

Energy efficiency is the use of less energy to provide the same level of performance, comfort, and convenience 

(energy service). According to Directive 2006/32/CE it is the ratio between an output of performance, service, goods 

or energy, and an input of energy (e.g. substitution of CFL lamps by LEDs). 

Energy savings or energy consumption reduction is the amount of saved energy determined by measuring and/or 

estimating consumption before and after implementation of one or more energy efficiency measures, whilst ensuring 

normalization for external conditions that affect energy consumption (Directive 2006/32/CE) (e.g. improving the 

efficiency class of an equipment through substitution but maintaining the level of use). In this research, energy 

savings and energy consumption reduction are used interchangeably, reflecting the combined result from both 

technological and non-technological drivers. 

Energy conservation is the act of reducing or going without a service to save energy. It is not usually related to 

improving EE, but has the advantage that there is not the need to an initial investment. It generally relates to changes 

in energy consumption habits, behavioral changes, translating in many situations in the need to perform some 

sacrifices in terms of comfort and/or use of goods and services of poor quality (Bertoldi and Rezessy, 2008).  

 

 

Figure 1.5 – Energy Efficiency, energy consumption and energy conservation (Adapted from SEI (2009)) 

Therefore, and as above-mentioned there are numerous examples of energy efficiency measures 

that have not always resulted in lower energy consumption (e.g. due to rebound effect), which 

may partially offset the improvements in efficiency through greater use of equipment or 

improved comfort (increased energy services demand). Thus, reducing energy consumption also 
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does not mean the need to reduce energy services demand. All these variations are a result of the 

interactions between the different energy consumption determinants. 

1.2.1 Determinants of energy consumption 

Determinants of energy consumption can be defined as the numerous factors that may affect 

energy consumption in the residential sector. This section explores the existing backbone of 

research with the aim to better define the problem to which the research carried by this 

dissertation contributes to solve and highlight. 

Households do consume energy to provide end-uses services delivered by energy. The 

consumption of energy to deliver energy services is embedded within an extremely complex 

system involving elements of technical (e.g., equipment efficiency), economic (e.g., energy 

prices), social (e.g., gender), cultural (e.g., cooking practices), and psychosocial origin. 

According to Kowsary and Zerriffi (2011), all these determinants are interrelated and the study 

of energy consumption in the residential sector should take these interdependencies into 

account, as well as the physical environment (e.g., climate) (Masera et al., 1997). In the 

residential sector, population and households are key; but to be able to significantly reduce 

energy consumption in households while fulfilling the demand for energy services, we have to 

know not only about the households’ physical characteristics, but also how the various family 

members use the available equipment. 

Understanding the determinants that govern energy consumption has been the subject of 

abundant international literature for more than 30 years (Cayla et al., 2011). Van Raaij and 

Verhallen (1983) in their research in the 1980s, recognized several factors that drive household 

electricity consumption behavior, such as energy-related attitudes, personality, socio-

demographic factors, building characteristics, energy prices, feedback and general information 

about energy use. 

Already in the 1970s, but mainly from the late 1980s, literature has demonstrated and some 

authors estimated the effect of factors that could not be explained by technology (e.g. Wei et al., 

2007; Gram-Hanssen, 2011). Early in 1978, Socolow showed that identical homes in Princeton, 

equal in terms of building characteristics, design, size, and equipment, with the same 

technological set-up, had different energy consumption levels (Socolow, 1978). Several other 

authors presented similar findings for other locations: Gram-Hanssen (2011)) for Denmark 

concluded that for heat consumption in technically completely identical houses, the 

consumption can vary by a factor of three. Santin et al. (2009) for the Netherlands showed that 

occupant characteristics and behavior significantly affect energy use (4.2%), but building 

characteristics still determine a large part of the energy use in a dwelling (42%); thus, indicating 
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that user practices are important though only to a limited degree are determined by objective 

occupant characteristics (Larsen et al., 2010). 

A study of Abrahamse (2007) unveiled that household energy consumption is related to socio-

demographic variables which are completely different from the drivers of energy savings. For 

instance, households with higher incomes or larger in size often use more energy, while 

psychological variables are less adequate to explain energy consumption patterns, since the 

latter are determined by socioeconomic barriers and opportunities. 

Housing characteristics such as size, type, density and envelope affect energy consumption. It 

has been posited that low density development, along with associated increase in housing area, 

increasing number of energy consuming appliances have contributed to rapid growth in energy 

consumption, even while efficiency standards have been tightening (Kaza, 2010), both at the 

household level and electrical equipment. 

Dilaver (2009), in a study for Turkey, suggests that household total final consumption 

expenditure and real energy prices are important drivers of residential electricity demand. 

Despite it, Summerfield et al. (2010), for the UK, mentioned that energy prices are relatively 

inelastic with an estimated elasticity of 0.20. Azevedo et al. (2011) corroborate these findings 

suggesting that, given their analysis of the price inelastic behavior in EU regions, public policies 

aimed at fostering a transition to a more sustainable energy system will require more than an 

increase in electricity retail price if they are to induce needed conservation efforts and the 

adoption of more efficient technologies by households. 

Kelly (2011) identified for England the number of household occupants, floor area, household 

income, dwelling efficiency, household heating patterns and living room temperature as the 

main drivers behind residential energy consumption. For Germany, Gruber and Scholmann 

(2006) showed that electricity consumption is strongly influenced by the number of existing 

equipment, household area and annual income. Bartiaux and Gram-Hanssen (2005) exposed for 

Belgium and Denmark that family size; household area and number of equipment are strong 

determinants for electricity consumption. Rhodes et al. (2014) work indicated that variables 

such as working from home, hours of television watched per week, and education levels have 

significant correlations with average profile shape, but might vary across seasons. 

Ndiaye and Gabriel (2011) applied a principal component analysis to 221 households in 

Canada, found the main factors affecting household electricity consumption were: the number 

of occupants; the type of ownership; the average number of weeks of vacation away from the 

house; and the type of fuel used in space heating and air conditioning. Jones et al. (2015) 

focused their research in determining socio-economic and dwelling factors that contribute to 

electrical energy demand in UK residential buildings, highlighting higher consumption in 
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households with more children and teenagers and in households with high annual incomes. 

Ürge-Vorsatz et al. (2015) based on a Kaya identity approach disclosed the number of 

households, persons per household, floor space per capita, and specific energy consumption as 

drivers for residential heating and cooling. 

According to Foster et al. (2000) social and cultural factors such as cooking habits and 

household characteristics may make households behave contrary to economic predictions based 

on income and relative fuel prices. There are; therefore, a range of non-economic variables that 

are important in explaining household decisions regarding energy use. 

All the referred examples are illustrative of the need of looking to the variety of factors that may 

be responsible to high energy consumption in households. Notwithstanding these factors are 

deeply context dependent, which means that applied research in concrete cases is crucial to 

understand not only the behavior and role of these factors but also to deepening the knowledge 

on the combination and interrelations between these factors. 

Table 1.1 presents an extensive revision of the existing literature on factors affecting household 

energy consumption covered by several authors for different world regions. Although these 

factors are presented in isolation from each other, in the real world they are closely interrelated. 

According to Kowsari and Zerrifi (2011), the determining factors of household energy use can 

only be found at the household level (i.e. micro-level). The aggregated level of energy demand 

is made up of day-to-day decisions at the household level that are affected by a variety of 

socioeconomic factors. Where micro-level data is used, it has often no sufficient quality, 

necessary to answer many of the questions, since much of the research on household energy use 

in this area is based on disaggregated data taken from large-scale surveys. 
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Table 1.1 – Determinants behind residential energy consumption  

Categories Determinants Authors 

Endogenous Factors (household characteristics) 

Economic 
Characteristics 

Income, expenditure 

ESMAP (2003); Leiwen and O’Neill (2003); Elias and Victor, 
(2005); Zachariadis and Pashourtidou (2007) Kaza (2010); 
Nguyen-Van (2010), Raty and Carlsson-Kanyama (2010); Cayla 
et al., 2011; Kowsari and Zerriffi (2011); Lescaroux (2011); 
Wiesmann et al. (2011); Brounen et al. (2012). Vassileva et al. 
(2012), Rhodes et al. (2014); Pablo-Romero et al. (2016) 

Non-Economic 
Characteristics 

Household size, type and 
year of construction;  

Occupants gender, age, 
education, household 
composition,  

Information, job or 
occupation, family 
dimension 

ESMAP (2003); Leiwen and O’Neill (2003); Myors et al., 2005; 
Heltberg (2004); Gruber and Scholmann (2006); Guptaa and 
Kohlin (2006); Farsi et al. (2007); Antunes (2008); Ewing and 
Rong (2008); Schlag and Zuzarte (2008); Larsen et al. (2010); 
Kaza, (2010); Paço and Varejão (2010), Raty and Carlsson-
Kanyama (2010); Rue du Can et al. (2010); Cayla et al. (2011); 
Ellegård and Palm (2011); Energaia et al. (2011); Gram-Hanssen 
(2011); Hamza and Gilroy (2011); Kelly (2011); Kowsari and 
Zerriffi (2011); Ndiaye and Gabriel (2011); Wiesmann et al. 
(2011); Brounen et al. (2012); Hojjati and Wade (2012); 
Vassileva et al. (2012); Bedir et al. (2013); Rhodes et al. (2014); 
Jones et al. (2015); Huebner et al. (2015); Ürge-Vorsatz et al. 
(2015); Risch and Salmon (2017); Seebauer and Wolf (2017); 
Yoo et al. (2017) 

Behavioral and 
Cultural 
Characteristics 

Preferences, personality, 
practices, attitude, 
lifestyle, social status, 
religion, ethnicity, 
environmental awareness 
and concern, values 

Socolow (1978); Lutzenhiser (1993); Kempton and Schipper 
(1994); Wei et al. (2007); Gram-Hanssen (2008); Oikonomou et 
al. (2009); Urge-Vorsatz et al. (2009); Santin et al. (2009); Raw 
and Varnham (2010), Larsen et al., (2010); Gram-Hanssen 
(2011); Kowsari and Zerriffi (2011); Sutterlin et al. (2011); Yun 
and Steemers (2011); Carlo and Ahamada (2012); Vassileva et 
al. (2012): Kavousian et al. (2013); Blight et al. (2013); Bartiaux 
et al. (2016), Sonnberger and Zwick (2016); Huebner and 
Schipworth (2017); O’Neill and Xiu (2017) 

Exogenous Factors (external conditions) 

Physical Environment 
Geographic location, 
urbanization level, 
climatic condition 

Bhatt and Sachan (2004); Elias and Victor (2005); Halicioglu 
(2007); Zachariadis and Pashourtidou (2007); Filippín and 
Larsen (2009); Kaza (2010); Raty and Carlsson-Kanyama 
(2010); Rue du Can et al. (2010), Steemers (2011); Lescaroux 
(2011); Wiesmann et al. (2011); Hojjati and Wade, (2012); Zhao 
et al. (2012), Kavousian et al. (2013) 

Policies and Energy 
Supply Factors 

Energy policies, 
environmental policies, 
subsidies, market and 
trade policies; Prices and 
affordability, availability, 
accessibility, reliability 
of energy supply. 

Van Raaij and Verhallen (1983); Guptaa and Kohlin (2006); 
Halicioglu (2007); Herter et al. (2007); Zachariadis and 
Pashourtidou (2007); Schlag and Zuzarte (2008); Alberini and 
Filippini (2011); Azevedo et al. (2011); Filippini (2011); 
Lescaroux (2011); Butler (2016); Yoo et al. (2017) 

Technology 
Characteristics 

Conversion efficiency, 
cost and payment 
method, complexity of 
operation 

Kelly (2011); Lescaroux (2011); Jones et al. (2015) 
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1.2.2 The Challenges 

To pinpoint how to effectively reduce energy consumption and GHG emissions, increase energy 

efficiency, deliver energy services demanded, it is crucial to look not just at technology but also, 

at the factors that drive people to consume energy, including how people interact with 

technology. Energy demand has many human and social dimensions that researchers need to 

understand, because they are likely to exacerbate in the years ahead. For example, ageing 

population may need more heating and other energy-dependent services and climate change 

could cause more buildings to overheat, leading to a greater uptake of air conditioning. 

Despite the continuously increasing energy efficiency of the sector, non-technical factors have 

influenced the amount of energy consumption thus resulting in an overall net increase in final 

energy consumption for the last 25 years. Challenge: investigate the inner patterns of energy 

consumption in the residential sector, identifying the drivers behind energy consumption in 

Portugal at different scales (country, city, consumers), since changes in household behavior and 

other drivers governing energy service demand should be incorporated in energy analysis to 

have a realistic view of household energy use (Kowsari and Zerriffi, 2011). 

Energy saving is; therefore, not only a matter of more efficient technology in terms of end-use 

or supply, but also in terms of demand (people’s behavior and lifestyle, climate, etc.) While 

politicians express a need for a more environmental (and also economic savings) oriented 

attitude towards energy saving actions, the implementation of the necessary measures reaching 

the expected outcomes is revealing to be more difficult. Challenge: How could the determinants 

for energy consumption be feedforward into energy policy design and instruments definition? 

However, much of the current debate regarding energy efficiency in the housing market focuses 

on the physical and technical determinants of energy consumption, neglecting the role of the 

economic behavior of resident households (Brounen et al., 2012) and on the structural 

differences that exist behind energy consumption in different regions and from different energy 

consumers. For Azevedo et al. (2011), there is no substantial prior literature on international 

comparison on residential electricity consumption to highlight the importance of the underlying 

factors. Challenge: The knowledge on the determinants and consumer groups is of great interest 

to feed in future energy planning strategies both at a local/household level and at multi sectoral 

policies from strategic planning. 

Projections of future energy needs relied on final energy consumption, usually sustained by 

quantitative models as namely econometric or technological They lock future options of energy 

resources and technologies available to satisfy energy needs, limiting the ability to consider 

alternative energy paths for the future. Challenge: energy services have been approached in a 

simplified or absent way, which call for more studies and in depth analysis capable to project 
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the determinants behind future ESD. Daioglu et al. (2012) also identified this gap, bringing up 

that most energy models describe future residential energy demand supported on simple 

relations between energy consumption and income or GDP per capita. 

An interlinked problem refers to the current policy framework that mainly covers the promotion 

of EE and partly neglects other dimensions for the reduction of energy consumption (Bartiaux et 

al., 2016). This is somewhat justified by the lack of knowledge on the determinants of energy 

consumption at households, due to the underlying complexity of mixing socio-economic (e.g. 

tendency to increasing single families), cultural and lifestyles factors (urban vs. rural likely), 

which vary across countries and also within the same country. Several authors point out this 

research gap (Haas et al. (1998); Lopes et al. (2005); EMF (2011); Santin et al. (2009), Gram-

Hanssen (2011), Huebner et al. (2015)). It is important to know the characteristics of target 

groups when devising and applying policy instruments for energy consumption reduction, 

increased thermal comfort and RES penetration. For example, if women and men differ 

regarding their energy use and emission profiles, policy instruments should perhaps be 

differentiated in order to achieve maximum impact (Raty and Carlsson-Kanyama, 2010), 

aligned with this, Huebner and Schipworth (2017) discuss the role of downsizing (e.g. dwelling 

size) as an option to the elderly. 

The impact of the behavior of household members on the energy consumption of a household 

might be significant. Within the same buildings with the same installations, energy consumption 

could be reduced by an average of 37% by a more rational economic behavior (e.g. EURECO, 

(2002); Vekemans (2003); Desmedt et al. (2009). Gram-Hanssen (2011) have also demonstrated 

for Nordic countries that energy savings should go beyond EE and devote great relevance to the 

influence of the household occupants and how they use the technologies. A study for 

Netherlands also mentioned that the variation in energy consumption is still large for dwellings 

with the same characteristics, where occupant characteristics and behavior significantly affect 

energy use (Santin et al., 2009). However, different conclusions may arise from other EU 

regions, namely southwestern countries since patterns of consumption are greatly affected by 

changes in geographic (e.g. less heating needs and more cooling needs due to expected impact 

of climate change), sociologic (e.g. different environmental awareness or lifestyles), economic 

parameters (e.g. lower per capita income). According to Lescaroux (2011), in terms of policy 

implications, a country-by-country approach is required when setting energy efficiency 

achievements objectives. Challenge: Identification and characterization of different consumer 

groups and what drive that consumption.	

Several studies identified the potential and the challenges of policies looking for the reduction 

of energy and GHG emissions (e.g., NAPEE (2008); Fraunhofer et al. (2009); Granade et al. 

(2009)). EMF (2011) recognized an increasingly importance in combining richness in 
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technology coverage with realism in market behavioral responses, being required additional 

research about the behavior of consumers and its weight. There is a need for an improved 

comprehensiveness of the city planning process towards sustainable energy use driven by 

integrated approaches (e.g., Zanon and Verones (2013); WEF (2016)). Russo et al. (2016) also 

underscores that planning and management processes are needed to support decision making 

processes in order to design and operate cities infrastructures and services. Keirstead et al. 

(2012) concluded that, despite the diversity of modelling practices of urban energy systems, 

studies usually compartmentalize the assessments focusing on specific aspects of energy use 

and mostly use exogenous input data. Challenge: How to integrate consumer behavior, detailed 

data and all energy consuming sectors within energy system analysis? 

1.2.3 The Opportunities 

Electricity is a key energy carrier used around the world and across all end use sectors. It is 

expected to continue to grow, with a shift away from fossil fuels (IEA, 2016a). But electricity 

use in households is invisible being a lifestyle enabler; so, infrequent billing based upon 

estimations prevents awareness inside households (Abreu et al., 2012). A common method to 

stimulate consumers to a rational energy use behavior is to measure all energy related activities. 

The figures help the consumers to recognize energy consumption and take control over the 

energy flow (Gyberg and Palm, 2009). 

The technological advancement with metering, communications and computation are enabling 

utilities to monitor and save huge amounts of data related to their operation. The deployment of 

electricity meters with two-way communication capabilities is allowing the registering of high 

resolution data (Viegas et al., 2016). In this context, smart meters have been gaining higher 

interest in demand-side management initiatives and are seen as an important instrument for 

giving energy consumption feedback to households and to be used as tools to understand 

consumers’ behaviors. Smart meters facilitate detailed electricity consumption information to be 

captured, processed, and communicated at frequent intervals. As smart meters are replacing 

traditional electricity meters in large parts of Europe, there is now a unique opportunity to 

realize comprehensive consumer feedback systems, extract knowledge from the consumption 

patterns enabling the use of this technologies to other applications and not only as mere remote 

metering applications (Weiss et al., 2013). The dissemination of smart meters is; therefore, of 

major importance and an opportunity both to promote household’s occupants’ awareness on 

electricity consumption, and to get insights on the household energy consumption profiles. Also, 

acknowledging the temporal aspect of electricity use is significant because electricity is 

expensive to store and thus is typically produced at the rate of consumption (Rhodes et al., 

2014). 
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The electricity use in households may no longer be a black box and perhaps not only a private 

issue just for the family to take under consideration, showing all the importance of transforming 

into an asset this big data that be might be seen as a burden to the electricity Distribution 

System Operators (DSO’s). Information and knowledge may be converted into an asset for 

different kinds of stakeholders: consumers, energy services companies (ESCO’S), DSO’s, 

electricity sellers, policy makers. 

Several authors have already conducted some research under consumer segmentation using 

smart meters’ data, but usually lacking such extensive and comprehensive datasets and tools 

(meters, surveys, energy simulation models, temperature data) to support and further inform the 

results (e.g. Kavousian et al. (2013); Hayn et al. (2014) Seo and Hong (2014); Wijaya et al. 

(2014); Mcloughlin et al. (2015); Ramos et al (2015); Zhou et al. (2017a); Zhou et al. (2017b)). 

The potential of smart-meter is highly amplified when combining the high-resolution data 

delivered by the smart meters with other tools as surveys. This could allow to extract the main 

determinants and patterns of energy consumption in households. Smart meters can act as 

support tools for tailored feedback evaluation, policy design and intervention at smaller scales 

from what is currently being done (e.g., consumer groups, neighborhoods). In this sense, it is 

underscored the importance of combining different tools to inform distinct level of policies. 

The increase knowledge on energy consumption patterns, energy services, behaviors and 

consumers is considered herein, as an opportunity, used as entry points for improved RES 

integration and better energy system analysis. 

All these opportunities combined are expected to inform the design and effectiveness of 

dedicated energy policies and instruments for the residential sector without compromising 

energy services demanded. 

1.2.4 Case Study 

This research was supported by Portugal as a case study, and the municipality of Évora in 

particular. As portrayed in Section 1.1.3, total and residential final energy consumption and 

energy intensities development, show very distinct past trends and current situation across EU 

countries. This calls for the need to look into different countries in the EU policy context, 

through case based approaches that are able to accommodate the particularities of the residential 

sector. The specificities of the residential energy consumption depend on distinct factors, as 

explained before. Notwithstanding, case based approaches can span multiple scales both spatial 

and temporal, since it can give insights to similar contexts. Portugal represents a proper case 

study due to different reasons that are described below. 
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First of all, Portugal has an effective potential to become a low carbon economy, already relying 

on a strong renewable power system and with increasing expectations due to its untapped 

potential specially for solar energy, which may have impact on households’ energy consumption 

profiles. Electricity consumption in the country was fully covered by hydro, wind and solar 

power during 107-hour run in 2016. Besides this, there is an expected convergence to achieve 

comparable energy per capita to other EU28 countries. In EU, there is a large regional disparity 

in annual per capita residential consumption. Despite a significant increase in the last decades, 

from 49.8 in 1990 to 64.9 GJ in 2015 for total final energy (30% increase) and 6.5 GJ to 7.6 GJ 

in 2015 (17% increase) for residential sector energy consumption, Portugal has still a relatively 

low per capita consumption of energy (PORDATA, 2016). Albeit this growth, and as seen in 

Figure 1.2, Portugal had in 2015, a per capita energy consumption (both total and residential), 

below almost all EU countries (27% and 66% respectively below EU28 average), even when 

compared to countries with similar climate conditions like Spain and Italy. 

As in other EU countries, last decades’ energy consumption trends are very irregular, which 

calls for a better understanding of consumers’ behavior. Since 1990, total Portuguese final 

energy consumption grew about 1.3% per annum, with 0.5%/year specifically in the residential 

buildings (PORDATA, 2016) (Figure 1.6). Though, in the last 10 years we have seen a 

significant reduction. Portuguese residential sector had consistently raised its final energy 

consumption between 1990 and 2005 (i.e. 33%). After this period, the final energy consumption 

has gone through a stabilization period and more recently (i.e. 2010-2015) through a significant 

decrease (-2.3%/year). The consumption growth followed an increase of energy services 

demand due to: 1) higher purchasing power that raised the standards of basic comfort and level 

of amenities, 2) the widespread utilization of relatively new types of loads whose penetration 

and use has experienced a very significant growth (Almeida, 2008) and 3) a higher number of 

households with larger areas and fewer people, demanding more equipment (Bertoldi and 

Atanasiu, 2007). The recent trends might be explained by increase energy efficiency, reduced 

thermal comfort levels inside households induced by higher energy prices and lower available 

income for energy expenses, still justified by the economic and financial crisis. 
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Figure 1.6 – Final Energy Consumption (Total and Residential) per capita in 2015 for selected EU countries (PORDATA, 2016) 

Another important reason is the significant electrification trend. Portugal has increased its 

electricity consumption per capita 90% since 1990, while the average EU28 only increased near 

20%. The Portuguese residential sector has also seen a shift in the mix of energy supply. In 

1990, electricity accounted for 21% of energy consumption and natural gas was not yet 

consumed in Portugal. In 2015, the share of electricity increased to 41% and the natural gas 

share increased to 32% since its introduction in 1998. These resulted in increased efficiency in 

energy use but also demonstrates the recent national trends of a society of consumption with 

higher ownership of electrical equipment. The rising weight of electricity in residential energy 

consumption also justify the increased importance of analysis using electricity smart meters’ 

data. 

Despite being a warm southern EU country with mild winters, several facts point Portugal as 

severely endangered by fuel poverty issues; with a widespread lack of thermal comfort inside 

households (both for heating and cooling) across the country (e.g. Magalhães and Leal (2014), 

Palma (2017)). As a result, around 30% of the population receives social tariff support for the 

payment electricity and natural gas bills. These issues will be further investigated in Chapter 

3.1. 

Further convergence of EU patterns of living could also be expected. In 2005, Portugal had a 

living space per person of around 37 m2, similar to United Kingdom value in 1991 (Boardman et 

al., 2005) showing large possibilities of increasing. This determinant factor is difficult to be 

influenced by policy; nevertheless, trends have to be taken into consideration when the goals of 

a policy are formulated since they have a strong impact on demand. 
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On the other hand, being located in the Iberian Peninsula, targeted as one of the most likely 

climate impacted regions on heating and cooling energy needs, with probable impacts on energy 

consumption and increased uncertainty in energy services demand projections. Portugal is 

among one of the warmest countries in Europe with high temperatures in the summer, and 

generally longer summers, where heating consumptions for buildings are, on the whole, much 

lower than in other European countries. According to Santos et al. (2006), a generalized 

increase of monthly cooling energy demand and a reduction of monthly heating energy demand, 

as well as a reduction of the heating season and a consequent extension of the cooling season is 

likely for Portugal due to expected climate change. 

Lastly, it presents high costs of energy for families. According to IEA (2016a), electricity prices 

in Portugal are relatively high by IEA standards and they have been increasing significantly 

over the past decade. From 2008 to 2013, final electricity prices increased annually on average 

by 8.8% for household customer. Electricity and natural gas prices for families with all taxes 

and levies included, were in 2016, 13% and 38%, respectively, higher compared to EU28 

average (PORDATA, 2016). Much of the price increase for household customers was the result 

of an increase	 in taxes and levies, in particular with the increase of value added tax (VAT) 

(from 6% to 23% as from October 2011), but also the result of a set of subsidies to ordinary 

producers, namely compensation for stranded costs due to the liberalization process and 

payment of feed- in tariffs for renewables and combined heat and power (IEA, 2016b). This 

increase in energy prices in conjunction with the depletion of families’ private consumption, 

explains also part of the decrease of electricity consumption observed recently in households 

(Azevedo et al., 2011). 

For all these reasons, Portugal was considered as a case study for this research, using the 

municipality of Évora for an in-depth analysis. This city has a smart grid project with 31 000 

smart meters with registries of 15 minutes’ electricity consumption (EDP Distribuição, 2016) 

and high solar PV potential both from rooftop (Moreira, 2016) and utility scale (Lourenço, 

2014). These represent important raw data that could be analyzed and combined in order to 

obtain detailed information and produce knowledge to support policy development and 

implementation. 

As stated before, residential energy sector consumption is derived from a combination of 

discrete and continuous choices from consumers. This work intends to address the problem of 

better understanding the determinants that drive energy consumption patterns at different levels 

in a southern European country, while acknowledging the existing bottleneck between the need 

for increased energy services demand fulfilment (specially for space heating and cooling) and 

the reduction of energy consumption through increased energy efficiency. 
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1.3 Research questions 
The main objective of this research is to understand the differences on energy consumption 

arising from different socio-demographic, technologic, behavioral and economic characteristics 

of residential households. 

To achieve this goal, four research questions were settled looking into different perspectives and 

taking advantage of different data sets, methods and spatial and temporal scales. 

RQ#1 – What are the main determinants governing electricity consumption patterns for 

different types of household consumers in Southern European countries? 

RQ#2 – Why to identify specific consumer groups and behaviors? 

RQ#3 – How, and in what extent, the uncertainty associated with the determinants of energy 

consumption will impact energy services demand and final energy consumption in the long 

term? 

RQ#4 – How multiple and detailed data and tools can be integrated to inform sustainable system 

planning and policy design? 
The answers to these questions and all the empirical findings are expected to contribute to 

advance the state-of-the art on the knowledge of residential energy consumption, especially in 

southern European countries and to integrate that knowledge into local, regional and national 

energy policies, both at the short and long term perspectives, guiding the decision-makers to 

chalk out appropriate, effective and environment-friendly policy instruments. 

1.4 Scientific outputs 
The work developed in this dissertation resulted in several conferences papers and presentations 

and peer reviewed publications as follows: 

Publications: 

• Gouveia, J.P., Seixas, J. (2016). Unraveling electricity consumption profiles in 

households through clusters: Combining smart meters and door-to-door surveys. Energy 

and Buildings. 116, 666–676. http://doi.org/10.1016/j.enbuild.2016.01.043 

• Gouveia, J.P., Seixas, J., Giannakidis, G. (2016). Smart City Energy Planning: 

Integrating Data and Tools. AW4City - International World Wide Web Conference 

2016, April 11-15, 2016, Montréal, Québec, Canada. ACM 978-1-4503-4144-8/16/04. 

http://dx.doi.org/10.1145/2872518.2888617  

• Gouveia, J.P., Seixas, J., Mendes, L., Shiming, L. (2015). Looking Deeper into 

Residential Electricity Consumption Profiles: The Case of Évora. 12th International 
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Conference on the European Energy Market, Lisbon, 19-22 May 2015, Portugal. doi: 

10.1109/EEM.2015.7216723 

• Gouveia, J.P.; Fortes, P.; Seixas, J. (2012). Projections of Energy Services Demand for 

Residential Buildings: Insights from a Bottom-up Methodology. Energy 47 (2012) 430-

442. http://doi.org/10.1016/j.energy.2012.09.042 

• Gouveia, J.P., Seixas, J., Long. G. Combining smart meters with surveys, and buildings 

energy simulation to assess consumer groups: the case of fuel poverty and fuel obesity. 

Submitted for publication. Under review. 

• Gouveia, J.P., Seixas, J., Mestre, A. Daily Electricity Consumption Profiles from Smart 

Meters - Proxies of Behavior for Space Heating and Cooling. Submitted for 

publication. Under review. 

• Gouveia, J.P., Seixas, J., Andrade, M., Bilo, N., Chiodi, A., De Miglio, R., Dias, L., 

Gargiulo, M., Giannakidis, G., Irons, D., Long, G., Nychtis, C., Nunes, V., Pollard, 

M., Rigopoulos, A., Robinson, D., Simoes, S., Valentim, A. Analytical Framework to 

support Integrated City Energy Planning. Submitted for publication, under review. 

Conferences: 

• Gouveia, J.P., Dias, L., Seixas, J., Simões, S. (2017). InSmart – Integrative Energy 

Planning for Cities Low Carbon Futures: Analytical Framework. 3rd Energy for 

Sustainability Conference, Funchal, 8th February 2017. 

• Gouveia, J.P., Simões, Dias, L., Seixas, J. (2016). The InSmart integrated approach 

towards modelling smart low carbon cities. European Energy Research Alliance 

Conference 2016, University of Birmingham, United Kingdom. 25th November 2016. 

• Gouveia, J.P., Seixas, J., Mestre, A. (2016). Daily Electricity Profiles from Smart 

Meters - Proxies of Active Behaviour for Space Heating and Cooling. BEHAVE 4th 

European Conference on Behaviour and Energy Efficiency. 8-9th September 2016.  

Coimbra, Portugal. 

• Gouveia, J.P., Seixas, J. (2016). Energy Use Equity: analysis from smart meters, 

surveys and energy simulations. 22nd Annual Conference of the International 

Sustainable Development Research Society. 3th-15th July 2016. Lisbon, Portugal 

• Gouveia, J.P., Seixas, J. (2016). Fuel Poverty and Fuel Obesity: what smart meters tell 

us. International Society for Ecological Economics Conference, 26-29th June 2016, 

Washington D.C., USA.  

• Gouveia, J.P., Seixas, J., Mestre, A., Miguel, L. (2016). Intertwining sectoral electricity 

consumption profiles at city level. 39th International Association for Energy Economics, 
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19-22nd June 2016, Norwegian School of Economics. Bergen. Norway. Available at: 

[http://www.iaee2016nhh.no/] 

• Gouveia, J.P., Seixas, J. (2016). Tracking fuel poverty with smart meters: the case of 

Évora. Energy Economics Iberian Conference. 4-5th February. Instituto Superior de 

Engenharia de Lisboa, Lisbon, Portugal. 

• Gouveia, J. P., Seixas, J., Shiming, L., Bilo, N., Valentim, A. (2015). Understanding 

electricity consumption patterns in households through data fusion of smart meters and 

door-to-door surveys. eceee 2015 Summer Study on energy efficiency. 1–6 June 2015. 

Club Belambra Les Criques, Presqu’île de Giens. Toulon/Hyères, France. ISBN: 978-

91-980482-7-8. 

• Gouveia, J. P., Seixas, J., Bilo, N., Valentim, A., Nunes, V., Giannakidis, G., Robinson, 

D., Irons, D., Gargiulo, M. (2014). Integrative Smart City Planning - Buildings and 

Mobility in Évora. 14th IAEE European Energy Conference - Sustainable Energy Policy 

and Strategies for Europe, At LUISS University, Rome, Italy. 28-31st October 2014. 

• Gouveia, J.P., Bilo, N., Gargiulo, M., Giannakidis, G., Gregório, V., Duncan, I., Nunes, 

V., Robinson, D., Seixas, J., Valentim, A. (2014). InSMART - Integrative Smart City 

Planning. Urban Futures Squaring Circles: Proceedings, International Conference on 

Urban Futures Squaring Circles 2050, Institute of Social Sciences of the University of 

Lisbon and Calouste Gulbenkian Foundation 10-11 October 2014, Portugal. Bina, O., 

Balula, L. and Ricci, A. (Eds.). 

• Gouveia, J.P., Dias, L., Fortes, P., Seixas, J. (2012). TIMES_PT: Integrated Energy 

System Modeling. Proceedings of the First International Workshop on Information 

Technology for Energy Applications. Edited by Paulo Carreira e Vasco Amaral. CEUR 

Workshop Proceedings Vol. 923. ISBN 978-989-8152-07-7 

• Gouveia, J.P. (2012). Forecasting energy for residential buildings: contributions from a 

bottom-up methodology of energy services demand. Workshop on Energy and Society, 

Lisbon, 22-24th March. Instituto de Ciências Sociais (University of Lisbon), Lisbon, 

Portugal. 

1.5 Dissertation outline 
This research was developed across two different lines of thought aiming to advance the state of 

the art in data processing using different tools and methods to produce knowledge to inform 

energy policies formulation and implementation at two levels: (i) tailor-made policies and (ii) 

integrated policies. 

Figure 1.7 represents the process of this research and how this dissertation is organized. This 

work is divided in six chapters that present different research contributions. Distinctive 
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knowledge flows are also presented. Blue arrows represent the outputs that were used as inputs 

in other stages of the research, the grey arrows symbolize the knowledge flows that are created 

by the process to inform the different policies, and the dash arrows are illustrative of the 

potential use of the generated outcomes for different ends. 

 

Figure 1.7 – Research Map 

Chapter 1 introduces the dissertation, presenting the relevance of the study and the problem 

formulation while explaining the scoping and the research questions directing the work. A data 

analysis was conducted to set the scene on current situation and past energy consumption trends 

across EU28. Literature review on previous work carried out regarding the determinants of 

energy consumption in the residential sector is presented and the case study is justified. 

Chapters 2 and 3 present the research developed in electricity consumption profiles to support 

tailor-made policies, while Chapters 4 and 5 develop approaches to energy services demand 

projections and to combine residential sector with all other energy consuming sectors, both to 

inform integrated and higher level policies. 

Chapter 2 presents two different analysis conducted for consumer segmentation assessment and 

characterization that respond to the first research question. One methodology is driven firstly by 

a socio-economic identification of the consumers. It distinguishes important determinants of 

consumption previously identified in the literature, and after their electricity consumption 
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profiles are compared. The other methodology relies on a cluster analysis supported on annual 

electricity consumption profiles that are further characterized taking into account socio-

economic, buildings’ characteristics and equipment ownership. The two assessments show 

relevant distinctions that exist across consumers, justifying the need of tailor-made policies in 

the energy arena. The fist assessment gave place to a scientific publication on the proceedings of 

the European Energy Markets Conference (2015) and the second to a paper published in Energy 

and Buildings (2016).  

Chapters 3 goes deeper in the analysis of distinct types of consumers and behavior patterns for 

the most significant end use in households (i.e. climatization). In this chapter, two innovative 

methodologies are proposed and discussed using high resolution temporal data to assess fuel 

poverty and thermal comfort gap spinning-off from the work carried out in the previous chapter, 

and to evaluate heating and cooling behavior. Insights for policy are provided from both 

analysis. These two-works answer RQ#2 and have been submitted for publication and are 

currently under review. 

Chapter 4 addresses a prospective long term analysis of several determinants of energy 

consumption within the different end uses. It is first presented a methodological approach to 

project energy services demand, evaluating the range of uncertainties of several of the 

parameters. These results are used as input in a country level energy system model to capture 

the impact of those energy services demand projections into final energy consumption, while 

underpinning the most significant results and policy recommendations. The work was published 

in Energy (2012) and answers RQ#3. 

Chapter 5 presents an analytical framework depicting a methodological process from data 

collection, modelling processing and results analysis to be applied in medium to long term cities 

energy planning. In this work, an integration of all city energy consuming sectors is considered 

within an energy system model used as an integrated city energy planning tool. One submitted 

publication and currently under review give body to this chapter contributing to answer the 

formulated research question (i.e. RQ#4). 

Chapter 6 presents the main findings of the dissertation and combines the answers for all the 

research questions. 
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2.1 Looking Deeper into 
Residential Electricity 
Consumption Profiles: The case 
of Évora	
 

ABSTRACT 

In order to stabilize or reduce households’ electricity demand while fulfilling energy service 

needs, preventing harmful environmental impacts and decreasing fossil fuel imports, a growing 

use of decentralized renewable energy sources, coupled with energy efficiency programs, is 

needed. We claim that successful design and implementation of these measures will be achieved 

by understanding of households’ electricity consumption patterns using high resolution data 

from smart metering coupled with the knowledge on socio-economic details. For that purpose, 

we analyzed daily off-peak and total electricity consumption for 2011-2013 from smart meters 

of 250 households in the city of Évora, for which a 110 questions door-to-door survey is also 

available. We concluded for significant variations on electricity consumption among different 

consumers’ profiles, following specific socio-economic characteristics. We estimated 12.7 MW 

of solar photovoltaic potential for auto-consumption based on segmented daily minimum 

consumption. Acquired knowledge can be used to target energy consumption reduction policies 

and optimize self-consumption capacity investment costs and electricity production surplus. 

 

 

KEYWORDS 

Electricity Consumption Profiles, Évora, Households, Self-Consumption, Smart Meters  
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2.1.1 Introduction 
The search for increased energy efficiency, greenhouse gases emissions reduction and increased 

share of renewable energy sources (RES), as established in the new European Union goals by 

2030 (EC, 2014) requires more decisive actions. In this context, energy consumption in 

buildings deserves special attention since they represent a significant share of energy 

consumption (around 20-30%) in European Union (EU) (Eurostat, 2011). In Portugal, 

residential buildings consume approximately one third of total electricity, with a growth of 70% 

from 1995 to 2012 (DGEG, 2014). This consumption is a complex issue that can be explained 

by a combination of physical, technological, demographic, climatic and behavioral 

characteristics of a building and its occupants (e.g. Howden-Chapman et al. (2009), Kowsari 

and Zerrifi (2011), Sutterlin et al. (2011), Brounen et al. (2012)). For policy making processes 

and in order to improve the design and implementation of better measures and effective policies 

an in-depth analysis of electricity consumption profiles gathered from smart meters’ data 

crossed with knowledge of the intertwined factors driving the consumption is necessary. 

The tailoring of energy efficiency measures based on specific household profiles enables the 

change of behavior and equipment towards the ultimate goal of an effective energy consumption 

reduction and load curve consumption peaks minimization. Moreover, self-consumption 

through decentralized electricity production is an attractive option for households as it allows 

better control over energy costs and demand, creating resilience in the network, along with 

greater efficiency and innovation. 

The downward trend in the price of photovoltaic (PV) solar panels (until recently one of the 

most expensive renewable energy technologies) has been remarkable. The reduction of the cost 

of solar panels had come down by a factor of five in the past six years and the cost of full PV 

systems, which include other electronics and wiring, by three (IEA, 2014). 

Following Moore's Law (reduction of costs based on the amount produced – economies of 

scale), it is estimated that in 10 years, the electricity produced by solar PV systems will be as 

cheap as the one generated by coal (Naam, 2011). Currently, the levelized cost of electricity 

from solar photovoltaic systems is estimated to be between 0.13–0.14-euro cents per kWh 

(Talavera et al., 2011). This level of production cost for solar photovoltaic indicates that grid 

parity has been achieved: a situation where the price of the electricity generated by a renewable 

energy system is at least equal to the price one pays for the electricity from the grid.  

Nevertheless, currently in Portugal, decentralized electricity installed capacity from RES 

through micro generation (<5.75 kW) is still modest (93.4 MW) representing only 0.5% of total 

installed capacity (MEE, 2014). This is in the course of changing; grid parity along with the 

new self-consumption legislation for Portugal (Decree-Law no.153/2014) should support further 
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deployment of micro generation renewable energy. From a feed-in tariff perspective, this 

legislation has the potential to promote producers to consume the electricity they produce. We 

argue that the successful design and implementation of cost-effective self-production electricity 

options will be achieved through the understanding of households’ electricity consumption 

patterns by using very high resolution data (e.g. hourly, daily) from smart metering. 

This work advances on in-depth data analysis of electricity consumption profiles taking Évora 

city (Portugal) as a case study. We analyze a dataset of daily off peak and total electricity 

consumption from 2011 to 2013 measured by smart meters of 250 households combined with an 

extensive door to door 110-question survey on household data, in order to identify target groups 

to derive insights on the factors governing electricity consumption and to support PV integration 

and estimation of its potential. 

The work presented here is being partly developed under the EU project InSMART, that 

involves four European cities (Évora, Cesena, Trikala and Nottingham) targeting innovative 

methods to integrative city planning, including buildings, public lighting, transport, waste, water 

and wastewater networks. Further description of the project can be seen in Gouveia et al. 

(2014). 

This paper is organized in 4 Sections. Section 2.1.2 summarizes the methods and presents the 

data used. Section 2.1.3 discloses results regarding electricity consumption profiles and off peak 

shares using selected electricity consumption determinants. Section 2.1.4 concludes, presents 

the limitations of the study and further work. 

2.1.2 Methodology and data 
With the growing deployment of smart meters and real-time home energy-monitoring services, 

data that allows studying the determinants of energy consumption inside households and 

electricity consumers’ profiles are becoming available.  

In order to unveil electricity consumers’ profiles (total and off-peak consumption) based on 

similar socio-economic characteristics to use as proxy information for future integration of RES 

in households for self-consumption, we combined smart meters’ data with household surveys. 

The survey encompassed information on dwellings’ location and physical characteristics, 

occupants’ socio-economic data (e.g. income, persons per household, age, gender, tenure) and 

ownership and use of electrical appliances. The fieldwork of the survey in the streets of Évora 

was carried out between July and August 2014. Due to onsite difficulties, time and transport 

logistics and interviewers’ availability constraints, we were able to collect 389 valid surveys, 

representing 97% of the total expected surveys (400 were initially defined). Regarding the 

spatial dissemination and as planned, the surveys were made extensively along the entire 
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municipality in order to collect information of a representative set of households. 37% of the 

surveys answers were collected in the rural areas, and the remaining in urban areas. 

Évora was selected has a case study since it has the first massive smart metering system (31 000 

smart meters in households) in Portugal - InovCity project (EDP Distribution, 2015). Therefore, 

making use of this valuable information, the surveys were linked to the smart meters’ database. 

Of the total number of surveys collected (i.e. 389) we were able to identify and link 64% of 

them with the smart meter database (275). The reasons for not obtaining a full match are 

twofold: 1) the interviewers were not able to identify the number of the meter so we were not 

able to link the survey to the smart meters’ database (32%) or 2) no smart meter is installed in 

that household (4%). 

Data from the 250 smart meters are available since 2010, but its data availability is dependent 

on the smart meters’ rollout in the municipality of Évora. Thus, a complete database including 

daily off-peak (00h00 to 07h00) and total (00h00 to 24h00) electricity was retrieved from 2011 

to 2013. Information on the type of tariff (dual and single tariff) and contracted power (kVa) 

was also obtained for improved knowledge on households. 

Combining these two sets of information provides an extensive and coherent dataset on 

household electricity consumption. Bearing in mind that residential electricity consumption has 

strong temporal variation, which is not captured with low-resolution consumption data such as 

monthly bills, these high-resolution electricity consumption data is vital. 

Statistical analysis performed over this very high temporal resolution data allows the 

characterization of the electricity consumption profiles as a function of several factors: dwelling 

location (urban vs. rural), contracted power, type of household, year of construction, occupants 

characteristics and other socio-economic determinants. Several electricity consumption profiles 

are evaluated and presented in the next section, appraising daily total and off peak electricity 

consumption. 

We use off-peak consumption as a proxy for the minimum base load of electricity consumption 

of Évora households in order to find adequate PV capacity. With this, it is possible to maximize 

PV production without grid feed-in injection and this way preventing over estimating of 

capacity and investment costs. In other words, we identify the city potential from dwellings self-

consumption provided by PV production. These findings are particularly relevant due to the 

recent publication of Decree-Law no.153/2014 which regulates PV production for self-

consumption, i.e. no grid injection. 
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2.1.3 Results 

2.1.3.1 Characterization of the dataset  

The dataset derived from the sampled smart metered houses in Évora is characterized by a daily 

average consumption for the three years of 9.82kWh per day, with seasonal peaks in winter 

days: maximum daily average consumption of 19.98kWh (in January 2011), while the minimum 

daily average consumption occurred during spring (May) with 6.71kWh per day (Figure 2.1). 

There are no significant changes in the consumption patterns clearly distinguishing the three 

years of analysis; however, we can observe that the year of 2011 has had higher maximum daily 

consumption (during winter). Data analysis also indicates that throughout the years the off-peak 

consumption pattern is similar to the total (off-peak consumption period in Évora represents, in 

average, 35% of daily total consumption). 

 

Figure 2.1. - Daily average of total and off-peak electricity consumption for the sampled meters (#250) 

Looking deeper into the off-peak consumption period of the sampled houses we can conclude 

that the average registry of the dataset is at 3.42 kWh but the minimum is set at 2.18 kWh. As 

portrayed in Figure 2.2, the majority (90%) of the minimum registries of daily off peak 

consumption locate below 6 kWh, with 70% under 4 kWh. Using this distribution as 

representative for the Évora city, we can set a PV potential for auto-consumption to secure the 

minimum base load of electricity consumption. 
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Figure 2.2. - Frequencies of distribution of the daily average off-peak consumption of the sampled meters 

2.1.3.2 Detailed analysis using consumers’ segmentation  

In order to get an in-depth understanding on what factors govern total and off-peak electricity 

consumption, we present data segmentation for a set of 13 determinants of electricity use in 

households (Table 2.1), and two examples of total electricity consumption profiles (Figures 2.3 

and 2.4).  

Table 2.1- Characterization of different categories of determinants of electricity use in households 

Determinants Categories within 
Determinants 

Annual Average Total 
Consumption (kWh) 

Off-Peak Consumption 
(%) 

Location 
Rural 9.59 35% 
Urban 9.98 35% 

Type of House 
Detached 10.66 37% 
Semi Detached 10.22 34% 
Terraced 8.91 35% 

Persons per Household 
1 and 2  7.73 33% 
3 and 4 11.15 37% 
Higher than 5 13.67 34% 

Education Levels 

Until 4th grade 7.62 31% 

From 5th to 12th 9.56 35% 
Graduation, MsC and 
PhD 13.37 39% 

Contracted Power 
Until 4.6 kVA 7.19 33% 
From 5.75 to 10.35 kVA 11.35 36% 
Higher than 13.8 kVA 17.24 33% 

Type of Tariff 
Single tariff 9.03 33% 
Dual tariff 11.43 34% 

Period of Construction 
Before 1945  9.37 32% 
Between 1946 and 1990  9.50 35% 
After 1991 11.33 35% 

Working Status 
Working 11.00 37% 
Retired 8.62 31% 
Student 9.05 36% 

Monthly Income Under 750€ 7.23 31% 
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Between 751€ and 
1500€ 9.93 35% 

Between 1501€ and 
2500€ 11.30 38% 

Higher than 2501€ 15.63 34% 

Bearing Structue 

Concrete 10.47 34% 
Masonry walls of loose 
stone 

5.77 31% 

Masonry Walls with 
plate 

9.78 36% 

Masonry Walls without 
plate 9.87 33% 

Type of Roof 
Flat 9.63 34% 
Sloped 9.83 35% 

Type of Glazing 
Double 11.33 37% 
Single 9.13 33% 

Household Contract 

Owner 10.43 35% 
Private rented 7.45 33% 
Public rented 6.74 34% 
Tenant for free 11.15 35% 

Evaluating total electricity consumption for different consumers’ profiles based on their similar 

socio-economic characteristics, we can identify relevant differences within groups of consumers 

of the same determinant (both in the annual average and in the yearly profiles). The following 

assertions can be made: 

There are clear distinctions within groups of contracted power and tariff, directly related to the 

amount and peaks of electricity. 

• Detached houses present significant higher levels of consumption compared to terraced 

houses, associated with their external walls characteristics, which might suggest poor insulation. 

• The period of construction categories also highlight significant differences, specially 

comparing houses built after 1991 with the other two groups. 

• Bearing structure (mainly comparing masonry walls with loose stone and concrete) and 

windows glazing type are such examples. Glazing type present a 4% difference on the share of 

off-peak electricity consumption. It is not straightforward to link glazing type and electricity 

consumption since it might be a result of a combination of several factors such has occupants’ 

characteristics and other buildings construction characteristics. 

Therefore, household occupants’ characteristics play an important role on electricity 

consumption, which is stated by the differences within education levels, working status, persons 

per household (Figure 2.3) and monthly income groups.  

• The number of occupants has a direct influence on the levels of total electricity 

consumption observed by the annual average consumption and by the yearly profiles. Yet, off-

peak consumption share does not behave similarly since higher number of persons per 

household does not mean higher levels of minimum consumption. Kaza (2010), Gram-Hanssen 

(2011) and Larsen et al. (2011) present the number and the use of appliances correlated to the 
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number of people living in the house; but for Kaza (2010) the space cooling and heating use is 

likely to be the same irrespective of number of people. Moreover, as suggested by Brounen et 

al. (2012) and Kavousian et al. (2013) there is a non-linear relationship between household 

electricity consumption and the number of occupants i.e. larger households having higher 

aggregate electricity consumption but a lower per capita consumption. 

• There is no statistical difference between rural and urban houses, concerning off-peak 

consumption share and total consumption, although interesting seasonal differences arise when 

evaluating the yearly profile (Figure 2.4). There is a clear distinction between urban and rural 

houses in winter and summer months, which should guide the design of effective measures for 

energy efficiency to “peak shaving” and for RES implementation for self-consumption. The 

lower electrical consumption of rural houses in the winter is justified by the use of biomass in 

fireplaces for space heating purposes. 

Through the evaluation of off-peak consumption as shares of total electricity consumption from 

Table 2.1, one might say that two very distinct off-peak profiles appear, supported on the 

combination of different categories of determinants; i.e. 1) combination of categories 

characterized by off-peak share average of around 32% and 2) with off-peak shares ranging 

from 36% to 39%.  

 

Figure 2.3 - Total Daily average electricity consumption disclosed for the number of persons per household 



 

 49 

 

Figure 2.4. Daily average of total electricity consumption for rural and urban houses 

The results on different profiles also unfolds that the population and households addressed by 

our survey are well distributed with different socio-economic status benefiting the outcomes of 

analysis. The evaluation of yearly consumption profiles and representativeness of off-peak 

consumption allow us to better define relevant consumers’ segments to address both tailored 

energy reduction policies as also set the potential for RES integration in households to fulfil 

base load needs. Next section presents an estimation of PV potential following this, for the 

municipality of Évora as an example. 

2.1.3.3 Photovoltaic potential based on daily off peak electricity consumption  

Supported in the off-peak distribution of the sampled households of Évora, represented in 

Figure 2.2, we calculated PV systems’ size per cluster so each household would produce up to 

the minimum hourly consumption. The objective is to prevent grid injection of excess produced 

power (with no storage e.g. batteries). We simulated commercially available PV panels to 

design PV systems’ size for houses ranging from: 

• Houses with minimum consumption of 0.29 kWh - 1 panel of 300 Wp. 

• Houses with minimum consumption of 1.29 kWh - 1.35 kWp system (six panels of 225 Wp). 

Considering the cluster distribution to be representative of the municipality of Évora and that all 

the households have feasible conditions to install the previous range of PV systems we applied 

it to the total number of residential households: 22774 (INE, 2011) to calculate the city optimal 

potential for PV self-consumption. 

The result is that the city could produce 19 GWh per annum of PV electricity from a total 

installed power of 12.7 MW. This would represent 22% of current total electricity consumption 



 50 

in residential households (84 GWh for 2013 (DGEG, 2015)) and circa 7% of the city total 

electricity consumption (261 GWh for 2013) (DGEG, 2015). 

2.1.4 Conclusions 
Stabilization or reduction of households’ electricity consumption while fulfilling electricity 

service needs has been pointed out as a major goal in developed countries to prevent harmful 

environmental impacts and fossil fuel imports. Decentralized RES technologies coupled with 

energy efficiency programs are relevant options to overcome that goal. 

The research presented in this paper suggests that combining electricity consumers through 

aggregation of similar socio-economic characteristics is a major contribution to the evaluation 

of different electricity profiles (total and off-peak) and to optimize self-production capacity 

investment expenditures and electricity production surplus when sizing electricity production 

systems (e.g. solar PV). 

Major conclusions from the case of the municipality of Évora refer to very distinct profiles of 

total electricity consumption arising from occupants’ features as income and the number of 

persons per house; and buildings characteristics as type of house and glazing. Furthermore, off-

peak data allows estimating that 19 GWh per annum could be auto-produced for households to 

fulfil minimum consumption base loads. 

Besides the achievements on the characterization of electricity profiles and PV potential based 

on minimum daily electricity consumption in Évora, this paper discloses the importance of the 

future widespread use of smart meters, which provide sufficient information to support the 

design and implementation of energy policies also delivering useful insights to those who 

design business models for energy at households’ level, when the related socio-economic  

background and other electricity consumption determinants are known. 

We acknowledge some limitations of this study, mainly regarding a ceteris paribus comparison 

for each determinant, and possible underestimation of PV potential due to the use of average 

minimum consumption profiles using off-peak period as proxy. The use of daily consumption 

data instead of hourly data also holds limitations for a more detailed assessment of the RES 

potential. 
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 2.2. Unraveling electricity 
consumption profiles in 
households through clusters: 
combining smart meters and 
door-to-door surveys 
 

ABSTRACT 

Improvements of energy efficiency and reduction of electricity consumption could be pushed by 

increased knowledge on consumption profiles. This paper contributes to a comprehensive 

understanding of the electricity consumption profiles in a Southwest European city through the 

combination of high-resolution data from smart meters (daily electricity consumption) with 

door-to-door 110–question surveys for a sample of 265 households in the city of Évora, in 

Portugal. This analysis allowed to define ten power consumption clusters using Ward’s method 

hierarchical clustering, corresponding to four distinct types of annual consumption profiles: U 

shape (sharp and soft), W shape and Flat. U shape pattern is the most common one, covering 

77% of the sampled households. The results show that three major groups of determinants 

characterize the electricity consumption segmentation: physical characteristics of a dwelling, 

especially year of construction and floor area; HVAC equipment and fireplaces ownership and 

use; and occupants’ profiles (mainly number and monthly income). The combination of the 

daily electricity consumption data with qualitative door-to-door survey-based data proved to be 

a powerful data nutshell to distinguish groups of power consumers, allowing to derive insights 

to support DSOs, ESCOs, and retailers to design measures and instruments targeted to effective 

energy reduction (e.g. peak shaving, energy efficiency). 

 

 

KEYWORDS 

Daily Electricity Consumption, Hierarchical Clustering, Consumers’ Segmentation, Smart Meters, 

Household Surveys; Electricity Demand Management.	  
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2.2.1. Introduction 
Greenhouse gases (GHG) emissions will hold steady or might even increase in developed 

countries if effective reduction of energy consumption will not be taken (Lomas, 2010), 

contrary to policy goals aiming a transition towards low carbon economies. The need for energy 

consumption reduction is also linked to energy supply security and affordability, and climate 

change strategies. Therefore, increased search for energy efficiency, GHG emissions reduction 

and increased share of renewable energy sources, as established in the European Union (EU) 

goals by 2030 (EC, 2014) requires more successful and directed actions. 

Energy consumption in residential buildings deserves special attention since they represent a 

significant share of final energy consumption in OECD (Organization for Economic Co-

operation and Development) countries, 27% in EU28 in 2013 (Eurostat, 2015). In Portugal, 

residential buildings consume approximately one third of total electricity, with a growth of 70% 

from 1995 to 2012 (DGEG, 2014). This consumption is a complex issue that can be explained 

by a combination of physical, technological, demographic, climatic and behavioural 

characteristics of a dwelling and its occupants.  

Understanding the determinants that govern energy consumption has thus been the subject of 

abundant international literature for more than 30 years (e.g. Van Raaij and Verhallen (1983); 

Bartiaux and Gram-Hanssen (2005); Gruber and Scholmann (2006); Kelly (2011)). More 

recently, Jones et al. (2015) presented a literature review of the existing research investigating 

the socio-economic, dwelling and appliance related factors that affect electricity consumption in 

the residential sector.  

In this area of study, smart meters have been gaining higher interest in demand side 

management initiatives and for utilities, and are seen as an important instrument for giving 

energy consumption feedback to households and for consumers’ profiles analysis (Weiss et al., 

2013). With growing deployment of smart meters and real-time home energy-monitoring 

services, adequate data allowing the study of electricity consumers’ profiles in households and 

its determinants are becoming available.  

Hayn et al. (2014) worked on daily electricity household profiles through segmentation based 

on lifestyles, socio demographic factors, and electric appliances and on new technologies for 

heat and electricity generation. Crossing the information delivered by the smart meters with the 

main determinants of energy consumption in each household, allows for market segmentation 

identifying consumers with similar needs and behaviors (McDonald and Dunbar, 2012). This 

valuable knowledge promotes individually and personalized feedback evaluation to households 

or groups of similar consumers being important for energy savings. Furthermore, tailoring of 

energy efficiency measures based on specific household profiles enables the change of behavior 
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and equipment with the ultimate goal of an effective energy consumption reduction and load 

curve consumption peaks minimization. 

There are studies on the residential electricity consumption profiles using smart metering data. 

Seo and Hong (2014) with a 30 households sample for Daegu in South Korea characterized 

power consumption patterns and presented summer load profiles. Rhodes et al. (2014) using 

103 homes for Austin in Texas determined representative residential electricity use profiles 

within each season drawing correlations to the different profiles based on survey data. Lee et al. 

(2014) demonstrated profiles of electricity consumption for 60 low energy-housing houses in 

South Australia. Ramos et al. (2015) identified daily load profiles of medium voltage customers 

applying several clustering algorithms; McLoughlin et al. (2015) presented a methodology for 

electricity load profile characterization through clusters for Ireland using 3941 customers. 

The Southwest European region have not yet been analyzed in terms of electricity consumer 

profiles, which has been seen as a bottleneck for the identification of opportunities for energy 

reduction and further energy efficiency achievements. Usually, there are statistics and 

knowledge regarding the national level, although, for effective opportunities of policy 

instruments or services towards energy efficiency and reduction there is the need for data and 

knowledge at a more local level. 

An analysis of the data available for Évora indicates that, 82% of the residential buildings are 

associated with single-family houses (mainly terraced houses) and only 8% with apartments 

(INE, 2011). This presents a relevant difference from the EU average countries with 64% of 

residential buildings being single-family houses and the remaining 36% being apartments 

(Economidou et al., 2011). 

A substantial share of the buildings stock in Évora, as in other European cities, is older than 50 

years. More than 20% of the residential buildings have been constructed before the 1940s when 

energy-building regulations were very limited. A large increase in construction in 1946-1990 is 

also evident, with the buildings constructed in this period representing around 56% of the 

current city stock (INE, 2011). 

This paper aims to identify, understand and explain representative yearly electricity 

consumption profiles of households, for the case study of Évora municipality. We applied a 

clustering approach to electricity consumption data, gathered from smart meters, and linked it 

with a dedicated survey for the same households to identify and characterize target groups of 

consumers. 

We argue that the proposed methodology and the achieved results are useful to derive insights 

to support utilities, retailers and ESCO’s for marketing segmentation and innovative policies for 
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effective energy reduction, as it is the case of tariff design, demand side management strategies, 

energy efficiency improvements, among others. 

The paper is organized in four sections. Section 2.2.2 describes the methods and discloses the 

data used. Section 2.2.3 presents selected results regarding electricity profiles by consumption 

clusters and related explaining variables. Section 2.2.4 concludes. 

2.2.2 Methods and data 
This section describes the methodology used. Through the combination of the smart metering 

dataset provided by an electricity distribution company as in Wyatt (2013) and Bartusch et al. 

(2012); and a door-to-door survey as in Kavousian et al. (2013) and Gram-Hanssen et al. 

(2004); we have made an in-depth analysis through segmentation of consumers based on 

clustering electricity consumption, aiming to identify distinct yearly electricity consumption 

profiles and to characterize their determinants. Figure 2.5 explains how the work was developed 

and how the different steps were addressed. Each step will be described next. 

 

Figure 2.5 – Study Methodology 

2.2.2.1 Door-to-door household survey 

The door-to-door survey consisted in 110 questions and encompassed information on location, 

socio-economic data (e.g. average monthly income, family size), equipment’s ownership and 

use (e.g. number of hours of use in a day) and physical characteristics of the dwellings (e.g. 

bearing structure).  
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The fieldwork of the survey was carried out through the municipality of Évora during July and 

August 2014, including urban and rural areas. The identification and selection of the locations 

to make interviews was supported on the existing internal districts of the municipality i.e. 

parishes, which are the lowest spatial unit with available statistical data. Évora municipality has 

twelve parishes, three in the urban area comprising around 80% of the population and nine in 

the rural areas. Therefore, for our purpose, four districts were identified: we combined all the 

rural parishes in one sector and the three urban parishes were individually kept as districts. 

Due to budget limitations, we set a maximum of 400 interviews to be done. Because of onsite 

difficulties, time and transport logistics and interviewers’ availability constraints, we were able 

to collect 389 valid surveys, representing 97% of the total expected surveys, being 37% of the 

surveys answers collected in rural areas, and the remaining in the urban area. This way we were 

able to capture different households’ characteristics and consumer types. 

2.2.2.2 Smart meters’ dataset 

This study also relies on data from a massive smart metering system conducted for the first time 

in Portugal in the municipality of Évora, within the InovCity project (EDP Distribuição S.A., 

2015). It contains measurements of electricity consumption registries gathered from 31 000 

household every 15 minutes since April 2010. The installed equipment’s in Évora are 

concentrators from EFACEC and Janz meters with PLC communication (FSK modulation) in 

the CENELEC-A frequency band (35-91 kHz). Data collection of load diagrams from the 

meters to the distribution transformer controller is done on a daily basis starting at 00:00 and for 

every 6 hours. The InovCity project is being carried out by the main Portuguese electricity 

distribution company, hence the smart meters component is integrated within a full smart city 

philosophy, which comprises better network management, remote and centralized control 

stations; electric mobility and distributed generation systems (EDP Distribuição S.A., 2015). 

Residential electricity consumption has strong temporal variation, which is not captured with 

low-resolution consumption data such as monthly bills, thus high-resolution electricity 

consumption data from smart meters is vital. Therefore, making use of this data, a sample was 

collected; the household surveys were linked to the smart meters’ database through the 

household meter number, while preserving the confidentiality of the house owners. As 

mentioned by Wijaya et al. (2014), consumer segmentation alone is not enough. Therefore, 

combining these two sources of information allows an extensive and coherent household data 

analysis to develop effective and efficient policies better targeting different consumers. 

Of the total number of collected surveys (i.e. 389), we were able to identify and link 64% of 

them with the respective smart meters (275). The reasons for the gap are twofold: 1) the 

interviewers were not able to identify the number of the meter so we were not able to link the 
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survey to the 31 000 smart meters’ database (32%) or 2) no smart meter is installed in that 

household (4%). 

Data availability is dependent on the smart meters’ rollout in the municipality, since not all the 

meters were installed in the beginning of the project (i.e. 2010). For our objective, while 

avoiding too much granularity (by using 15-minute data), daily electricity consumption data was 

retrieved for the years 2011 to 2014. By excluding 2010 data we were able to collect a more 

complete database. Despite the information acquired from the surveys referred only to 2014 

with possibilities of changes in household socio-economic details (e.g. tenure, number of 

people, income); we assumed that the characteristics mostly apply for the electricity profiles of 

2011-2014. 

Information on the type of tariff (dual and single) and contracted power (kVa) was also obtained 

for improved knowledge on the sampled households. The type of tariff is related to the costs of 

electricity, depending on the hours of consumption (day, night and weekends), while the 

contracted power (e.g. 1.15 kVA, 3.45 kVA, 6.9 kVA) constrains the number of electrical 

appliances that could be used simultaneously. 

A data trimming of the electricity dataset was made. The electricity registries from the 

Distribution System Operator (DSO) have the information per meter of accumulated electricity 

consumption.  To have the daily electricity consumption we had to subtract the registry of the 

previous day from the registry of the day. Following Torsten et al. (2013) meters with annual 

readings with less than 80% of available electricity readings were discarded. Thus, we screened 

the full data set of 275 meters to identify major data faults (i.e. missing of sporadically daily 

registries; missing several days/months in sequence). 10 meters were excluded in this step. 

For further analysis, the daily electricity consumption data were averaged for the four years 

(2011-2014), preserving the intra-annual variability for each household. This approach will 

allow us to identify important and distinctive profiles of consumption and make typification of 

consumers’ characteristics (e.g. dwelling characteristics and occupants’ profiles) for each 

electricity consumption profile. The 265 meters remained with few days with missing data (less 

than 1%), for which we imputed values based on the average values of the neighboring days. 

2.2.2.3 Data analysis methods 

An exploratory data analysis of the final sample of 265 households’ daily electricity 

consumption data sets from smart meters was made, as well as a clustering analysis. The cluster 

analysis was carried over the daily means (per household), i.e., averaged over 2011-2014 for 

each day. After the previous explained electricity data trimming, we applied a hierarchical 

clustering using the Ward’s Method (Ward, 1963) with a measured interval through the squared 
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Euclidean distance, allowing an analysis of variance approach to evaluate the distances between 

clusters. This method is regarded as very efficient; however, it tends to create clusters of small 

size (Statsoft, 2015). Therefore, through an iterative process, we evaluated the clustering results 

for a number of clusters ranging from 3 to 12. We concluded that still maintaining robustness 

and statistical significance of the clustering, only increasing the number of clusters allows to 

capture distinct yearly consumption patterns that would be interesting to unravel and compare, 

in order to create types of consumer for which different policy and energy reduction measures 

could be targeted. The 10 clusters option with similar means and standard deviations were 

selected for further profiles analysis. It met a good balance option to illustrate differences of the 

annual profiles with significant number of meters/surveys. 

After allocating each survey to the correspondent cluster, a screening of the answers of the 

surveys was made in order to recognize the most relevant parameters (e.g. dwelling 

characteristics, occupants’ profiles, electrical appliances ownership and use) that further explain 

the electricity consumption patterns and major similarities/distinctions within clusters allowing 

an increased knowledge on the clusters segmentation. 

From the information collected in the households survey, we retain the following variables to 

characterize the households: (i) location (Urban and Rural) (as in e.g. Halicioglu (2007); Raty 

and Carlsson-Kanyama (2010), (ii) dwelling type (as in Bedir et al. (2013); McLoughlin et al. 

(2012), (iii) dwelling age (Wiesmann et al. (2011); Brounen et al. (2012)), (iv) dwelling total 

floor area (e.g. Baker and Rylatt (2008); Kavousian et al. (2013)), (v) type of glazing and 

windows framing, (vi) bearing structure and (vii) type of external walls. The following socio-

economic variables, which might influence electricity consumption, were selected: (i) the 

number of occupants (according to Bartiaux and Gram-Hanssen (2005); Brounen et al. (2012)), 

(ii) education of the household responsible person (e.g. Gram-Hanssen (2004)), (iii) household 

income (Lam (1998; Santamouris et al., 2007) and (iv) employment status (e.g. Cramer et al., 

1985; Yohanis et al., 2008). For factors associated with electrical appliances and heating and 

cooling equipment we selected the following variables: (i) ownership of heating and cooling 

technologies (as in Bedir et al. (2013); Tso and Yau (2007)), (ii) ownership of white electrical 

appliances (as in Leahy and Lyon (2010); McLoughlin et al. (2012)), (iii) type of tariff and (iv) 

contracted power. 

Statistical analysis performed over very high temporal resolution data allows the 

characterization of the electricity consumption profiles. Significant differences and similarities 

within cluster groups were assessed, which can be useful to support market segmentation and 

tariff design for DSOs and to improved knowledge on groups of consumers for ESCO’s and for 

electricity retailers to feed specific energy and pricing reduction recommendations. 
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2.2.3. Results and discussion  
In this section, we aim to explore the results from the clustering analysis portraying the different 

yearly consumption profiles, and its most relevant determinants gathered from survey data to 

explain household electricity consumption clustering. Figure 2.6 presents the daily electricity 

consumption for the sampled meters (265 households) averaged for the four years with 

consistent available data (2011, 2012, 2013, and 2014) and the corresponding daily minimum 

temperature. A higher daily average consumption in the winter months of December and 

January and in the summer month of July is apparent, presenting a strong inverse correlation 

with the minimum daily temperatures (r=-0.82) (Figure 2.6), maximum daily temperatures (r=-

0.77) and with the daily average temperature (r=-0.80). These correlations show a potential 

direct link between electricity consumption and the use of cooling and heating systems. 

  
Figure 2.6 – Daily average electricity consumption for the sampled households (265) and minimum daily temperature for Évora 

(both averaged 2011-2014)  

2.2.3.1 Electricity data clustering from smart meters 

The clustering method applied split the 265 smart meters’ dataset into 10 clusters, showing a 

distinct distribution of meters (with at least 25 meters per cluster) within clusters with mean 

daily electricity consumptions below 12 kWh (cluster 1 to 5), totaling 217 meters (more than 

82%) and the other five clusters. The remaining 47 meters are included in clusters 6 to 10 fitting 

the high levels of consumption and/or variability with daily median consumption of almost 28 

kWh (i.e. cluster 8) (Figure 2.7). 

The box-and-whisker plot unveils the descriptive statistics of the clusters (Ci) regarding their 

dispersion and skewness, and the existing outliers. The distribution of electricity consumption 

data from C1 to C5 is similar, with C1 presenting the lowest statistics (median 3.99 kWh and 
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standard deviation of 2.10 kWh) and C2 the highest variance (standard deviation of 4.26 kWh). 

The short box plots within these clusters (and also C9 and C10 at a certain extent) suggests that, 

generally, the consumption data have similar profiles. Differences within these clusters can be 

further evaluated in Table 2.2. Clusters C6 to C8 present tall box plots depicting significant 

variances (standard deviations ranging from 6 to 11 kWh) within clusters already unveiling 

possible differences among the seasons of the year. Cluster C7 shows the highest data 

variability (standard deviation of 10.87 kWh) and highest consumption. With the exception of 

clusters C6 and C7, all the other clusters have a consistent distribution of data within the second 

and third-quartile. 

 

Figure 2.7 – Box and whisker plot with clusters distribution and number of meters per cluster 

Table 2.2 advances on the annual electricity consumption profiles of each one of the ten clusters 

allowing to identify important distinctions of inter annual consumption patterns. Three 

distinctive profiles can be concluded, named a) U profile; b) W profile, c) Flat profile. The 

rationale behind this identification is a visual analysis further supported on the evaluation of the 

differences between the levels of electricity consumption in winter and in summer. This 

segmentation has the objective of acknowledging the different yearly electricity consumption 

patterns of household consumers and to further evaluate them. 
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Table 2.2 – Annual electricity consumption profiles by cluster (2011-2014 average) 

Cluster 1 Cluster 2 

  

Cluster 3 Cluster 4 

  

Cluster 5 Cluster 6 

  

Cluster 7 Cluster 8 

  

Cluster 9 Cluster 10 
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Under the U Profile we include six clusters (77% of the sampled households): C1, C2, C3, C4, 

C7 and C8 (in orange). This profile could be further disaggregated, in the Sharp U profile (C1, 

C2, C3 and C7) and the Soft U profile (C4, C6 and C8) branches. Soft U profile is characterized 

by differences of electricity consumption on winter and the remaining seasons of the year 

(around 50% lower in summer) possible explained by the lower ownership and use of cooling 

electrical when compared to electricity-supported systems. Sharp U profiles present a higher 

difference on winter and the remaining seasons (around 70% lower in summer in some clusters) 

portraying the inexistence or low use of cooling equipment in the summer compared to a strong 

use of electricity-based technologies for space heating in the colder months of winter 

(December, January and February) which is corroborated by the findings in Tables 2.3 to 2.6. 

Under the W Profile (in blue), we include clusters C6, C9 and C10 (12% of our sample), which 

present clear distinctions of electricity consumption between summer and winter and the inter-

seasons period. These clusters with high values of daily consumption present a strong hump-

shaped consumption in summer, most prominent in C9 and C10. These profiles suggest that the 

respective households might have high ownership rates and use of HVAC systems for cooling 

and low use of electrical equipment for heating in the winter (C6) or both high use of electrical 

systems for cooling and heating (C9 and C10). Nevertheless, we acknowledge that C6 is not a 

very distinct W profile, looking more as a transition profile between a Soft W and Soft U. 

Cluster C5 (in green) is in the lower levels of consumption of all the sampled data, and we 

considered it as having an annual Flat consumption profile (11% of the sampled households) 

since the consumption has small intra annual variations. The minimum of electricity 

consumption is 62% of the maximum consumption value. This type of profile could be 

explained by the inexistence of electrical equipment for cooling or heating being the electricity 

consumption only linked to end uses like cooking, lighting, washing cloths and dishes and other 

electric equipment (e.g. televisions, computers) which usually do not have seasonal variations. 

For an in-depth characterization of the electricity consumption of the households behind the 

four recognizable distinct profiles, we crossed the meters’ data of each cluster with the 

correspondent survey results. Considering the statistical behavior and yearly patterns presented 

previously, three clusters are selected as examples of each profile to present the results: a) U 

profile - Cluster 1 and Cluster 7, b) W Profile - Cluster 9 and c) Flat profile – Cluster 5. The 

selection was based on distinct consumption profile of clusters regarding the mean (low, 

medium, high), dispersion (low and high) and annual profile (similar along the year or different 

in winter and/or summer months). 

Van Raaij and Verhallen (1983) recognized several factors that drive household electricity 

consumption behavior, such as energy-related attitudes, personality, socio-demographic factors, 
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building characteristics, energy prices, feedback and general information about energy use. 

Kelly (2011) identified for England the number of household occupants, floor area, household 

income, dwelling efficiency, and household heating patterns and living room temperature as the 

main drivers behind residential energy consumption. For Germany, Gruber and Scholmann 

(2006) showed that electricity consumption is strongly influenced by the number of existing 

equipment, household area and annual income. Bartiaux and Gram-Hanssen (2005) exposed for 

Belgium and Denmark that family size; dwelling area and number of equipment are strong 

determinants for electricity consumption. 

Tables 2.3 to 2.6 disclose selected variables collected in the surveys, to be compared throughout 

the chosen clusters. By evaluating the survey results for the households in each cluster, it is 

possible to identify important similarities and differences regarding socio-economic 

determinants, dwelling characteristics and appliances use and ownership, which could further 

explain the different clusters’ aggregation and levels of consumption and profiles. 
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Table 2.3 - Summary of selected variables characterizing the Dwellings of Clusters 1, 5, 7 and 9 

Shape of 
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profile 
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Characteristics of Dwellings 

Location 
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Table 2.4 - Summary of selected variables characterizing the Household Occupants of Clusters 1, 5, 7 and 9 

Shape of 
Annual 

Electricity 
profile 

Cluster 

Characteristics of Household Occupants 
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of 
persons 

per 
household 

Age of Household Members 
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(%) 
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(%) 

Household 
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Table 2.5 - Summary of selected variables characterizing the Appliances Ownership of households in Clusters 1, 5, 7 and 9 

Shape of 
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Electricity 
profile 
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**When percentages are higher than 100% it means that some households own more than one equipment. 
***For cooking appliances, more than 100% ownership can mean twofold: a) more than two stoves per household, b) dual fuel stoves (electricity and gas) 

 

Note: PVC - poly(vinyl chloride), HVAC - heating, ventilation, and air conditioning; DHW - domestic hot water; CWM - cloth washing machines; CDM - cloth drying machines; DWM - dish washer machines; IL - 
incandescent lamps; TFL - tubular fluorescent lamps; CFL - compact fluorescent lamps; HL - halogen lamps; LED - light emitting diode 
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Table 2.6 - Summary of selected variables characterizing the contracted power of households in Clusters 1, 5, 7 and 9 

Shape of 
Annual 

Electricity 
profile 

Cluster 

Contracted Power Characteristics 

Contracted Power (%) Type of Tariff (%) 

≤3.45kVA  4.6-
6.9kVA 

≥6.9kVA Single Dual 

U Shape (soft) C1  78   20   2   71   29  

Flat C5  31   66   3   69   31  

U Shape 
(sharp) C7  -     56   44   56   44  

W Shape C9  -     62   38   38   62  

 

Cluster 1 is characterized by a predominance of terraced dwellings located in urban areas, in 

small houses (around 90 m2) built between 1946 and 1990 period. Following the period of 

construction, materials and techniques, the predominant bearing structure of the dwellings 

comprised in this cluster is masonry wall with or without plate associated with brickwork single 

layered in the external walls. The majority of the dwellings (83%) have single glazing and 

wooden window framing. 

Regarding occupants’ characteristics, we can say that this clusters’ households are portrayed by 

the smallest families of all clusters (average of two persons per household), generally older than 

65 years old with low levels of education (secondary level), retired and with households’ 

monthly average income below 750€. It is in this cluster that the level of owner occupied 

houses is the lowest, with a relative important share of rented houses (38%). 

The electricity profile of this cluster (Soft U Shape), defined by a significant difference of 

consumption on winter months is backed up by the survey results with predominant ownership 

and use of electric heating equipment (88%). Only 46% of these cluster dwellings have cooling 

equipment. From which, near 80% own fan coils, that consume a lot less than HVAC systems. 

Still, it is in this cluster that the ownership and use of fans is the lowest. 

In C1, the overall smallest ownership of white appliances, computer equipment and lamps from 

all the clusters combined with the dominant number of houses (78%) with low contracted power 

(under 3.45 kVA) also explain the lowest levels of daily electricity consumption in this cluster 

when compared to others. 71% of the houses in this cluster still have single tariffs not taking 

advantage of the lowest prices at night of dual tariffs. 
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Being the cluster with the higher number of dwellings from our sample (21%), C1 is, as seen, 

characterized by the lowest electricity consumption levels and annual consumption profile 

portraying the lack of fulfilment of thermal comfort levels inside households both in summer 

and winter, suggesting a case of fuel poverty. As described in a project from EPEE (2009), by 

Moore (2012) and Thomson and Snell (2013), backing up our results, the combination of low 

incomes, low performance dwellings with defective insulation (windows, walls, roofs) and older 

households are enablers of fuel poverty. Also, consistent with our findings, Wand (2013), under 

EU fuel poverty network, pointed out that currently in Portugal, around 28% of the population 

is unable to keep their home adequately warm. 

Cluster 5: Opposing with C1, C5 is characterized by a high share of households located on 

rural areas (66%), and with higher prevalence of more recent built houses of the semi-detached 

type. Furthermore, other characteristics describing the households within this cluster are: 

average size dwellings around 117m2, built after 1946 but with a high share built after 1991, 

also shown in the higher number of concrete houses (33%). Increased share of insulation levels 

justified by the entrance of more restraining thermal regulations also represent important 

differences when compared to C1. The sampled houses of this cluster have a similar distribution 

of single and double-glazing but the majority of them has aluminum framing in the windows 

(64%). 

Regarding occupation, C5 is established by higher number of occupants inside the households 

(2.86), contrasting with C1 concerning the age of occupants, household income, employment 

status and household occupation status: 64% of the occupants aged below 50 years, and 51% 

working full time reflected on medium levels of monthly income (i.e. 53% of houses earning 

between 751 and 1500€). 

The construction characteristics combined with the very high ownership and use of non-

electricity based equipment for cooking (103%), heating (57%) and DHW (97%), enable us to 

better understand the annual flat electricity consumption profile. When available, the space 

heating falls back predominantly on fireplaces, and the space cooling is majorly carried out with 

fans. Consistent with the increase in daily average consumption when compared to C1, C5 has 

66% of the households with contracted power between 4.6 and 6.9 kVA, and a very high share 

of single tariff users.  The electricity consumption profile of C5 portrays a standard comfort 

household. 

Cluster 7 has the highest share of urban dwellings. It presents an even occurrence of the three 

considered types of houses (terraced, detached and semi-detached), thus not being an 

explanatory variable distinguishing the houses in this cluster compared to other clusters. 
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Construction characteristics (e.g. period of construction, external wall and glazing) of dwellings 

are very similar to the ones illustrating C1. 

The deepest differences on the amount and the seasonality of electricity consumption between 

C1 and C7 include the higher average household area (40% higher in C7), and the number of 

persons per household (2.44), suggesting more space heating needs in winter months. In this 

cluster, the bulk of the age of the household members is below 64 years old, 80% of the 

monthly income are above 750€ and directly related to the high levels of education of the head 

of the family (63% have at least a graduation). These socio-economic characteristics are 

effective drivers of the C7 electricity consumption profile. 

Regarding appliances ownership, C7 presents one of the highest levels of penetration of space 

heating equipment (89%), from which 73% have electric heaters or HVAC (the majority bought 

after the 2005 summer heat wave in Portugal). 67% of the houses in this cluster own equipment 

for cooling but the lion share being fan coils which once again explain the sharp difference of 

seasonal consumption. 

Besides all the previous characteristics, the very high daily average consumption is also justified 

by the high penetration of white appliances and other electrical equipment. The penetration of 

refrigerators (133%), freezers (100%), microwaves (111%), dish washing machines (89%), 

electric stoves (67%) and number of lamps per household are higher than in the previous 

assessed clusters, showing a clear evidence of consumers with higher levels of disposable 

income. 

Regarding contracted power, all the dwellings in C7 households have at least 4.6 kVA (72%), 

with once again a dominance of single tariffs contracts (56%). We may state that C7 portray 

what we may name as ‘fat energy’ households with opportunities for potential reduction of 

electricity consumption, either through energy efficiency options and/or more rational energy 

behaviors. 

Cluster 9: The electricity consumption in this cluster households follow a W profile, 

recognizable by the high levels of consumption in winter and summer months when compared 

to the inter seasons months. The dwellings are predominantly located in rural areas (63%), with 

a strong predominance of houses constructed after 2006 with high average floor areas (162 m2). 

In the research carried out by Zhao et al. (2012), there is a clear distinction between the patterns 

of energy use in urban and rural households, due to higher energy services demand in urban 

households. In our work this is not recognizable. Despite the important share of houses in rural 

areas, they are still close (less than 30 km) to the urban city environment, therefore, with similar 

urban patterns consumption. 
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 Dwelling characteristics, as bearing structure, type of wall and windows (87% with double 

glazing and 63% with aluminum framing) arise to distinctively characterize this cluster. 

Similarities within other important explaining determinants of electricity consumption such as 

household occupants include: the average number of four persons per household; 59% aged 

between 18 and 49 years old; 100% of the adult members have at least the secondary level of 

education; 50% of the members either have full time jobs (50%) or are students (38%); 50% of 

the households have an income level above 2500€ per month, the highest share of all clusters. 

The high income relates with the ownership of electrical equipment both impacting the quantity 

and quality of the appliances (e.g. Reiss and White (2005)). A large body of literature has also 

concluded that energy consumption increases with income (Kaza (2010); Cayla et al. (2011); 

Brounen et al. (2012)). However, the opposite has also been identified by other studies (e.g. 

Foster et al., 2000). All these socio-economic features can typify middle to high-class family, 

with two working adults and two children, and explaining the high consumption levels 

throughout the year but especially in winter and summer seasons. 

When evaluating the survey results for the houses in C9, we can conclude that the identical 

levels of consumption in winter and summer are validated by the dominance of air conditioning 

systems for cooling and a mix of electric (36%) and non-electric (64%) equipment for heating. 

The lower ownership and use levels of electrical heating equipment, as oil heaters and HVAC, 

closes down the gap between both seasons (i.e. winter and summer) consumption. Also, 

supporting the high daily electricity consumption is one of the higher ownership levels of white 

appliances, computers and lamps of all the clusters. Desktops, laptops, refrigerators, freezers, 

microwaves, cloth washing machines and televisions have all ownership levels higher than 

100%. Cloth drying machines have in this cluster the highest penetration rate of all the clusters. 

This high daily consumption cluster has the double of the average lamps per household (i.e. 20) 

of the lowest consumption cluster – C1. As expected by the electricity consumption profile, 

40% of the houses have a contracted power higher than 6.90 kVA with 62% taking advantage of 

dual tariff pricing. C9 also can be considered ‘fat energy’ households with a different profile, 

with opportunities for effective reduction of electricity consumption. 

The relationship between area, persons per household and consumption portrayed in this cluster 

is also referred by Larsen et al. (2010), Kaza (2010) and Gram-Hanssen (2011) that present the 

number and the use of appliances correlated to the number of people living in the house; but for 

Kaza (2010), the space cooling and heating use is likely to be same irrespective of number of 

people. However, it is more energy efficient to live more people together, as families with more 

members consume less electricity per capita (Larsen et al. (2010); Wiesmann et al. (2011)). 
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Our analysis suggests to conclude for three major groups of determinants that influence the 

residential electricity consumption segmentation: (i) physical characteristics of a dwelling, 

especially year of construction and total floor area; (ii) electrical heating/cooling equipment and 

fireplaces ownership and use; and (3) occupants’ profiles (mainly number of occupants and 

monthly income). 

2.2.3.2 Insights for policy and stakeholders 

The characterization of the dwellings, in terms of construction type, socio-economic factors and 

equipment, beneath the consumption of the clusters highlight and explain the wide range of 

electricity consumption profiles, within consumers of the same region. This illustrates the 

relevance of consumer segmentation for policies and measures design and implementation, 

tailored to energy reduction. 

Following other studies outcomes (e.g. Leiwen and O’Neill, 2003), our results unfold that 

higher average household area also reveals higher energy consumption. However, when 

comparing the clusters on household occupants we can state that there is (but not on all clusters) 

a non-linear relationship between household electricity consumption and the number of 

occupants, as also suggested by Brounen et al. (2012), Kavousian et al. (2013) and Hayn et al. 

(2014). 

According to these four clusters evaluation, we can say that tariff while being similar to several 

clusters is not a paramount explanatory variable of the segmentation. Furthermore, we might 

also conclude that gender, type of household occupation contract (contrary to the findings of 

Ndiaye and Gabriel (2011)) and relation of household members are also variables that not 

significantly distinct the consumption profiles. Other determinants collected in the surveys 

which do not make a distinction between clusters; therefore, not being group specific to tackle 

individually measures are: penetration of electric equipment for DHW, high substitution of 

incandescent lamps for compact fluorescent lamps and widespread ownership of refrigerators 

and cloth washing machines near or above 100%. 

Our results on typification of electricity consumption profiles and description of the 

characteristics of the households beneath them, unfolds important results for several 

stakeholders in the electricity services supply chain. The DSO would benefit from better 

handling the peak demand, making use of seasonal tariffs and balancing changes in contracted 

power. Besides, in constrained budget availability and knowing the number of consumers in 

each cluster, it is important to target measures to the most relevant group of consumers. For 

example, the U and W shape consumers could benefit from changes of contracted power in the 

seasonal variations of electricity consumption, reducing their annual expenses with electricity. 
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Electricity retailers and ESCO’s can also benefit from the detailed awareness of consumers’ 

profiles at local level, in order to make tailor-made measures targeted to groups of consumers 

with similar needs, equipment and socio-economic profiles. In fact, there is a significant 

difference between groups of consumers within the same municipality, with some consumers 

struggling to achieve minimum comfort levels in winter and summer months, while others 

consuming three times the average along the year, which require a well-balanced interplay of 

policies and measures. For some consumers, focusing on improvement of dwelling 

characteristics through insulation measures, improvement of roofs, walls and window materials 

is decisive. For others, the ultimate goal of energy reduction coupling energy efficiency 

measures (i.e. equipment’s substitutions) and behavioral changes might be the focus. 

2.2.4 Conclusions  
This paper examines how the combination of smart meter data and door-to-door survey 

information can deliver important results and meaningful knowledge regarding households’ 

electricity consumption profiles. Exploratory analysis and hierarchical clustering were applied. 

The annual consumption profiles were extensively characterized and explained through socio-

economic characterization of the household members, dwellings characteristics and equipment 

ownership. 

The analysis of the electricity consumption profiles of 10 clusters, showed four distinct types of 

annual consumption patterns in the municipality of Évora: U shape (soft and sharp), W shape 

and Flat, which might bring different insights for public policies and stakeholders decisions. U 

shape profile is the most common one, covering 77% of the sampled houses, and is 

characterized by a significant difference of electricity consumption between winter and the rest 

of the year unraveling the low ownership levels of air conditioning system for space cooling in 

Évora (confirming also the pattern at national level). 

Based on three major groups of electricity consumption determinants: dwelling’s physical 

characteristics, especially year of construction and total floor area; electrical heating/cooling 

equipment and fireplaces ownership and use; and occupants’ profiles, mainly number of 

occupants and monthly income), we typify and distinguish three main groups of consumers: fuel 

poverty, standard comfort, and “fat energy” households. Therefore, future policies and 

measures, as well as energy services companies, should take into account these differences to 

better serve simultaneously energy efficiency and thermal comfort levels. 

The fieldwork was conducted in a southwestern European city; however, the methodology can 

be applied to any region equipped with a smart metering network. This paper also discloses the 

importance of the future widespread use of smart meters, to benefit both the consumers interest 

and the stakeholders of the electricity services supply chain. In fact, despite acknowledging that 
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such a consistent dataset of information with an extensive characterization of consumers is still 

rare and it is unlikely to be collected by electricity retailers or DSOs, we consider that the 

outcomes of our analysis could also be used as a starting point for utilities looking at peak 

shaving and electricity demand shifting inside households derived from market segmentation. 
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3.1 Combining smart meters with 
surveys, and buildings energy 
simulation to assess consumer 
groups: the case of fuel poverty 
and fuel obesity 
 

ABSTRACT 

Fuel poverty is a recognized and increasing problem in several European countries. A growing 

body of literature covers this topic, but dedicated analysis for Portugal are scarce despite the 

high perception of this condition. This paper contributes to fill this knowledge gap focusing on a 

European southwestern city while bringing new data sets and analysis to the assessment of 

consumer groups and to policy discussion. We combine electricity smart meters’ registries with 

socio-economic data, collected from door-to-door surveys, to understand the extent and the 

determinants of fuel poverty and fuel obesity conditions carried by two contrasting consumer 

groups based on the amount of electricity consumption. We complement the analysis with 

buildings energy simulation of typologies presented in those groups, to figure out the heating 

and cooling thermal performance gaps. The existence of these gaps allowed confirming and/or 

discarding the initial hypothesis of the poverty or obesity conditions. Our results also disclose 

socio-economic variables, as income, and consumers’ behavior as key determinants of 

electricity consumption. We also identify a severe lack of thermal comfort levels inside 

households of both groups, either in cooling (98% for fuel poverty and 87% for fuel obesity) 

and heating seasons (98% for fuel poverty and 94% for fuel obesity). Major conclusion refers 

that electricity consumption cannot be used alone to segment consumer groups. This assessment 

may serve to support energy policy measures and instruments targeted to different consumers' 

groups. For example, distinct campaigns and differentiated incentives may apply to achieve 

energy efficiency and reduction while keep or improve comfort levels. 

 

KEYWORDS 

Fuel Poverty; Fuel Obesity; Smart Meters; Surveys; Buildings Energy Simulation; Thermal 

Comfort.   
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3.1.1 Introduction 
The first United Nations Sustainable Development Goal refers ‘end poverty in all its forms 

everywhere’ and the seventh ‘ensure access to affordable, reliable, sustainable and modern 

energy for all’. Among other objectives, these goals set the background for analysis of energy 

equity issues and fuel poverty eradication (UN, 2015). Fuel poverty (FP) is increasingly 

becoming a problem in European countries as acknowledge by the European Council Directive 

2009/72/EC and European Commission (2015). Atanasiu et al. (2014) estimate that between 50 

and 125 million people are unable to afford proper indoor thermal comfort. Nevertheless, 

despite the pan-European dimension of the problem, no consistent and common definition of 

fuel poverty is used in Europe Union (EU) countries. 

For the purpose of this paper, we adopt the definition used in the Republic of Ireland and United 

Kingdom (UK), stating that fuel poverty occurs when ‘households are unable to afford 

adequate energy services in the home at reasonable cost, while spending more than 10% of its 

disposable income on energy services’ (Department of Communications, Energy and Natural 

Resources, 2011; Department of Energy and Climate Change, 2013). This includes all uses of 

energy and considers the thermal comfort levels needed and not just what is effectively being 

consumed. For this matter, the combination of low incomes (Wright, 2004; Saunders et al., 

2012; Moore, 2012); low performance dwellings with defective insulation (i.e. windows, walls, 

roofs) (Shortt and Rugkasa, 2007, Morrison and Shortt, 2008), older household occupants 

(EPEE, 2009) and high costs of energy (Atanasiu et al., 2014) are enablers of fuel poverty. 

Commonly, proxy indicators have been used to estimate fuel poverty, such as the ones included 

in the EU Statistics on Income and Living Conditions (EU - SILC) like: inability to keep home 

adequately warm; arrears on utility bills; the presence of a leaking roof, damp walls, floors or 

foundation, or rot in window frames or floor (Thomson and Snell, 2013). For Thomson and 

Snell (2014) the surveys behind those indicators were not designed to measure fuel poverty and 

as such provide imperfect estimates of the problem and are insufficient to identify the source of 

the problem. 

As recognized by Thomson and Snell (2013), knowledge on fuel poverty in UK and Ireland is 

well established, with a strong focus on heating demand (Healy and Clinch, 2002a). A lot of 

work has also been also carried out focusing on the impacts of fuel poverty on health (Healy, 

2003; Marmot Review Team, 2011) since the impact of temperature and damp upon the body 

are significant (Sumby et al., 2009). 

Despite a growing body of literature covering several European countries (e.g. Brunner et al., 

2012; Atanasiu et al., 2014; Pye et al., 2015; Schumacher et al., 2015), fuel poverty is a 

particular problem for southern European member states, as acknowledged by Thomson and 
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Snell (2013) and Wand (2013), and are expected to suffer from summer average temperature 

and heat waves increase, as a consequence of climate change impacts. Evaluation of countries 

where the heating might not be the only problem, as in EU southern countries (e.g. Portugal), 

has been recurrently dismissed. For Bouzarovski (2014), due to the major social and 

geographical differences in the incidence of energy poverty within the EU, policies tackling this 

issue are best delivered at the regional scale. 

Despite being a warm southern EU country with mild winters, several facts point Portugal as 

severely endangered by fuel poverty issues. Healy and Clinch (2002b) set Portugal within the 

group of EU countries with the poorest housing status (as Greece, Ireland and UK) with 

consequences in the levels of excess winter deaths. Between 2007-2012, Portugal has ranked 

first or second in this EU28 ranking. 

In 2014, Portugal had 27.5% of people at risk of poverty; 20.9% of people with arrears on utility 

bills, 28.3% of people enabled to keep home adequately warm, 35.7% living in a dwelling not 

comfortably cool during summer time (2012 data) and 32.8% of dwellings with leakages and 

damp walls (Eurostat, 2015). Portugal is one of the European countries with a high inequality of 

income distribution; with a GINI index of 34.5% in 2014, above the 31% for EU28 average 

(PORDATA, 2016a), whilst around 30% of the population receives social tariff support for the 

payment of the electricity and natural gas bills. A combination of these indicators sets the scene 

to identify the share of people at risk of poverty who are affected by fuel poverty. According to 

Bouzarovski (2014), Portugal ranks in the top three EU countries of fuel poverty risk, mainly 

justified by the lack of thermal comfort levels inside households. Simões et al. (2016) delve into 

this issue using CENSUS 2011 data to map vulnerable elderly people in 29 municipalities 

across the country. In Portugal, there is no legal definition of fuel poverty in place and data 

availability for analyzing is limited and with no monitoring system. Additionally, in 2016, the 

electricity and natural gas prices for families, with all taxes included, were respectively 13% 

and 38%, higher compared to EU28 average (PORDATA, 2016b). All these indicators have 

continuously been increasing in recent years stressing the need for an in-depth and dedicated 

studies on fuel poverty for Portugal. 

For our analysis, two very contrasting electricity consumer groups were selected, building on 

earlier work from Gouveia and Seixas (2016). This paper assesses the household electricity 

consumption profiles of these two contrasted consumers’ groups aiming to disclose fuel poverty 

conditions. We use a group of consumers under possible fuel obesity conditions, for a better 

comparison analysis while extending the validation of the methodology. Under this paper, we 

use the expression fuel poverty to refer to depict households characterized by typical enablers of 

fuel poverty as depicted above, and fuel obesity to refer a household with the highest electricity 

consumption of the city or region. While the former may suggest energy deprivation for basic 
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energy needs, the later might suggest inefficient and unsustainable energy consumption 

practices. 

We combine electricity smart meters’ registries with data collected from door-to-door surveys 

(e.g. socio-economic of household's occupants, dwellings characteristics and equipment 

ownership and use) to extract the determinants of energy consumption. We bring in additional 

data sources as energy simulation data for a better understanding of thermal comfort levels in 

consumers with significant distinct consumption levels. The Portuguese municipality of Évora 

is used as a case study. Numerous authors already acknowledged those parameters as important 

determinants of energy consumption (e.g. Kowsari and Zerriffi (2011); Ndiaye and Gabriel 

(2011); Bedir et al. (2013); Rhodes et al. (2014); Jones et al. (2015); Huebner et al. (2015); 

Ürge-Vorsatz et al. (2015); Risch and Salmon (2017); Seebauer and Wolf (2017); Yoo et al. 

(2017)). 

The combination of those three data sources is innovative and contributes to fill the knowledge 

gap on contrasting energy consumer groups as in possible fuel poverty and fuel obesity 

conditions in Portugal, whilst assessing the heating and cooling thermal comfort performance 

gap to validate the hypothesis of the existence of such groups. The determinants of energy use 

are coupled with households’ energy simulations to verify socio-economic energy behavior. 

The rest of this paper is organized as follows. In Section 3.1.2, the case study, methodology and 

the three different datasets used are described. The results, discussion and characterization of 

the consumers under fuel poverty and fuel obesity are depicted in Section 3.1.3. The conclusion 

is presented in Section 3.1.4. 

3.1.2 Methods 
The methods adopted in our study combines qualitative and quantitative data from household 

surveys, daily electricity consumption data and energy simulation of buildings typologies to 

track fuel poverty and possible fuel obesity groups at a municipality level, conveying a 

disaggregated analysis as pointed by Scarpellini et al. (2015). This approach brings new data 

sets to the fuel poverty discussion and assessment, namely for Portugal. Figure 3.1 depicts the 

overall process and the specific goals and methods used. Their interactions are explained in next 

sections. 
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Figure 3.1 – Overall methodology to identify contrasting consumers and to assess their thermal comfort gap 

3.1.2.1 Case study – municipality of Évora, Portugal 

The municipality of Évora is located in Alentejo region, in Portugal, covering 1307 km2, with 

almost 57 000 inhabitants (INE, 2011). In 2014, the residential sector represented 15% of the 

overall city final energy consumption. The per capita annual final energy consumption was 

around 48 GJ, which compares with 61 GJ for the average of the country (PORDATA, 2014). 

Évora, with a Mediterranean climate type (Köppen-Geiger climate classification), has an annual 

average temperature of 15.8ºC, but high monthly thermal amplitudes are observed. August 

presents the highest temperature monthly average (23.3ºC) and January the lowest (9.3ºC). The 

lowest temperature ever recorded was -5ºC and the highest 44.5ºC (IPMA, 2016). These 

specificities on climate require specific dwellings construction, that should foster solar gains in 

the winter, and restrict the solar gains in the summer, promoting strong thermal inertia and 

evaporative cooling (Gonçalves and Graça, 2004). 

The Portuguese Decree Law n. º 118/2013 sets the conditions for the energy performance of 

residential buildings in Portugal, and defines a heating season indoor thermal comfort 

temperature of 18ºC and for the cooling season of 25ºC. The difference between the two indoor 

temperatures (the one from the energy balance and the comfort temperature) drives the 

existence of space heating and cooling needs, depending on the season. In turn, the temperature 

difference between the air inside and outside a dwelling lead to heat flows between these two 

places. 
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3.1.2.2 Door-to-door surveys (A) 

Data for buildings and households' characterization is available in the EU at the CENSUS each 

10 years. Surveys on households’ energy are increasingly available in several developed 

countries and carry significant knowledge on energy related issues (e.g. EIA, 2009; INE and 

DGEG, 2011). However, most of these studies and statistics are presented at national or multi 

regional level, with no city spatial detail. Therefore, the information cannot be combined for a 

comprehensive analysis, missing the characterization of the determinants of energy 

consumption and of groups of consumers at municipal/city scale. 

We conducted 389 door-to-door surveys during summer 2014 (Gouveia et al., 2015) aiming to 

characterize the residential buildings and to identify distinct groups of electricity consumers of 

the municipality of Évora, within the EU INSMART project (www.insmartenergy.com). The 

survey included 110 questions covering information about location, physical characteristics of 

the dwelling (e.g. load bearing structure, type of windows, insulation of external walls and 

roofs), socio-economic details of the occupants (e.g. number of persons, age, gender), 

appliances characteristics, use and ownership. 

Thomson and Snell (2014) proposed a survey exclusively dedicated to evaluate fuel poverty, 

which allowed us to follow some of their recommendations to the EU SILC survey and for a 

future EU28 household survey on fuel poverty. Our survey therefore included questions 

regarding the heating and air conditioning equipment, energy efficiency questions concerning 

insulation and window glazing, the type of energy sources used for primary and secondary 

heating and socio-economic details, as income and age of occupants. 

3.1.2.3 Electricity smart meters (B) 

Évora was the first region in Portugal (in 2010) equipped with a massive electricity smart 

metering system (around 31 000 meters delivering 15 minutes’ registries) (EDP Distribuição, 

2015), which brought new, high resolution and big data sets on electricity consumption. The 

increasing availability of detailed and high granular power consumption data makes it easier to 

assess of how energy is being used in households. 

Cross referencing survey and smart meter data makes it possible through analytical processing, 

data mining and data visualization to identify and highlight relevant consumption profiles, 

portray vulnerable consumers, assess potential role of energy efficiency measures and possible 

energy equity issues in energy use. After a data wrangling and cleansing to identify missing of 

sporadically daily registries; missing several days/months in sequence, a final sample of 265 

meters with electricity consumption data averaged daily for four years (2011-2014) was used, 

preserving the intra-annual variability for each household (Gouveia and Seixas, 2016). 
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3.1.2.4 Consumers segmentation and characterization (C) 

From the two data sets, an in-depth analysis and identification of different consumers was made 

through segmentation, using clustering analysis of electricity consumption, applying Ward’s 

Method. The objective was the identification of distinct yearly electricity consumption profiles 

and daily consumption levels, to uncover distinct groups of electricity consumers. The door to 

door surveys were used to support and explain that segmentation and to characterize the 

households within the groups. Data from the surveys portray the determinants driving energy 

consumption and the characteristics (e.g. dwelling characteristics, occupants’ profiles, electrical 

appliances ownership and use) of each group, allowing to isolate key consumers to consider for 

policy development and implementation. 

From the information collected with the households’ survey, we retain the following variables 

to characterize the households in each group: (i) location (Urban and Rural), (ii) dwelling type, 

(iii) dwelling age, (iv) dwelling total floor area, (v) type of glazing and windows framing, (vi) 

bearing structure and (vii) type of external walls. The socio-economic variables, which might 

influence electricity consumption, were selected: (i) the number of occupants (ii) education of 

the household responsible person (iii) household income and (iv) employment status. Factors 

associated with electrical appliances and heating and cooling equipment were also selected: (i) 

ownership of heating and cooling, (ii) ownership of white electrical appliances, (iii) type of 

tariff and (iv) contracted power. 

From the analysis previously developed in Gouveia and Seixas (2016), ten clusters of 

consumers were established, two groups are highlighted and deeper analyzed in this paper due 

to their significant different average daily consumption (i.e. 4 kWh vs. 28 kWh) and different 

monthly electricity consumption levels portrayed in the annual profile. One of the two consumer 

groups, is recognized to be in fuel poverty due to their consumption levels and socio-economic 

characterization, while the other group, present high average daily consumption levels (total and 

per square meter) suggesting obesity patterns of electricity use including inefficient equipment 

use or redundant consumption. Therefore, in the context of this research these to designations 

are used to convey those two contrasting groups. 

3.1.2.5 Energy simulation of buildings (D and E)  

This paper describes a more detailed assessment, cross validating these results of consumer 

groups with energy simulations of heating and cooling needs for those households’ building 

typologies. This allows levels of indoor thermal comfort, for both heating and cooling, to be 

confirmed. It also enables the testing of whether they are being effectively delivered and at what 
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extent the results from the electricity consumption profiles are reliable while used as a method 

for tracking fuel poverty and fuel obesity patterns and consumers.  

The city residential building stock was characterized with a selection of relevant building 

typologies based on building form (e.g. detached, semi-detached and terraced houses), period of 

construction (e.g. pre-1945, 1946-1990, after 1991), number of floors (e.g. one or higher) and 

roof types (e.g. sloped, flat) using statistical information from the CENSUS 2011 (INE, 2011). 

Relevant criterion for the selection of typologies was the frequency of more than 5% 

representation in each civil parish and the availability of data for its characterization. 

Therefore, 10 representative residential buildings typologies were defined (Gouveia et al., 

2015), as presented in Table 3.1. The majority of the residential buildings in the city were 

constructed in the 1946-1990 period (TP2, 5, 8 and 9), which account for over 60% of the stock. 

Of this group, TP8s, terraced houses built between 1946 and 1990, are the most common type 

of housing found in the city representing over a quarter of the stock alone. The older (pre-1945) 

and more modern (post 1991) properties each represent just under 20% of the stock each. Most 

of the older and newer buildings are terraced properties, TP7 and TP10 respectively. The 10 

typologies were expanded into 26 sub-types, to include additional characteristics collected in the 

surveys. The sub-typologies were then allocated to each consumer group according to the 

building type presented. 

Table 3.1 –Representative buildings sub typologies identified for the city of Évora 

Typology 
Code 

Building 
Type 

Period of 
Construction 

Number 
of 

Floors 
Roof type 

Room 
in roof 

Wall 
Material 

Roof 
Insulated 

TP1.1_1 Detached Until 1945 1 Pitched No Brick Single No 

TP2.1_1 Detached Between 1946-
1990 

1 Pitched No Brick Single No 

TP2.1_14 Detached Between 1946-
1990 

1 Steep No Brick Single No 

TP2.2_1 Detached Between 1946-
1990 

2 Pitched No Brick Single No 

TP2.2_12 Detached Between 1946-
1990 

2 Pitched Yes Brick Single No 

TP3.1_1 Detached After 1991 1 Pitched No Brick Single No 

TP3.2_1 Detached After 1991 2 Pitched No Brick Single No 

TP4.1_1 Semi-
detached 

Until 1945 1 Pitched No Brick Single No 

TP4.2_7 Semi-
detached 

Until 1945 2 Pitched No Stone No 

TP5.1_1 
Semi-

detached 
Between 1946-

1990 1 Pitched No Brick Single No 

TP5.2_5 
Semi-

detached 
Between 1946-

1990 2 Pitched No 
Brick 

Double No 

TP5.2_52 
Semi-

detached 
Between 1946-

1990 2 Pitched No 
Brick 

Double No 

TP6.1_1 Semi-
detached 

After 1991 1 Pitched No Brick Single No 
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TP6.1_11 
Semi-

detached After 1991 1 Pitched Yes Brick Single Yes 

TP6.2_5 
Semi-

detached After 1991 2 Pitched No 
Brick 

Double No 

TP5.2_51 Semi-
detached 

After 1991 2 Pitched Yes Brick 
Double 

Yes 

TP7.1_1 Terraced Until 1945 1 Pitched No Brick Single No 

TP7.2_1 Terraced Until 1945 2 Pitched No Brick Single No 

TP8.1_1 Terraced 
Between 1946-

1990 1 Pitched No Brick Single No 

TP8.2_1 Terraced 
Between 1946-

1990 2 Pitched No Brick Single No 

TP9.2_13 Terraced Between 1946-
1990 

2 Flat No Brick Single No 

TP10.1_1 Terraced After 1991 1 Pitched No Brick Single No 

TP10.1_12 Terraced After 1991 1 Pitched Yes Brick Single No 

TP10.2_1 Terraced After 1991 2 Pitched No Brick Single No 

TP10.2_11 Terraced After 1991 2 Pitched Yes Brick Single Yes 

TP10_2_13 Terraced After 1991 2 Flat No Brick Single No 

 

The energy simulations to assess heating and cooling of the buildings typologies were carried 

out using Design Builder (DB, 2015) and EnergyPlus (DOE and NREL, 2015), building upon 

the data collected on the surveys to fully characterize each residential typology; delivering 

results for energy services demand on space heating and cooling. The simulation of the energy 

use of the housing stock of Évora was carried out in accordance with the methodology described 

in Long et al. (2015). 

The World Health Organization provides guidance on what temperatures should be achieved in 

homes, to ensure that occupants feel comfortable and remain healthy. Temperatures between 

18ºC and 24ºC are generally agreed to be the ‘comfort zone’ and pose little risk to health 

(WHO, 1987). Following these recommendations and the Portuguese regulation (i.e. Decree 

Law n. º 118/2013), we defined the set point temperatures for the energy simulation during 

heating and cooling season as 18°C and 25°C, respectively. National legislation considers to be 

applicable across the whole of the dwelling and throughout the heating and cooling seasons. A 

lower level of thermal comfort for a reduced time schedule and conditioned dwelling area was 

modelled in order to better consider real conditions in Évora. The time schedule and the 

conditioned area used in the simulations differ by sub typology, based on the survey results. An 

average conditioned household area of 71%, 3.8 hours of heating systems operating hours and 

1.8 of cooling operating hours were considered per day. 

3.1.2.6 Thermal comfort performance gap 
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Following the methodology presented in Simões et al. (2016), we estimated the thermal comfort 

performance gap per square meter (kWh/m2) for the two distinct consumer groups. This was 

based on the difference between the daily electricity consumption for heating and cooling, in the 

heating season (5.3 months – 162 days) and cooling season (4 months – 122 days) and the final 

energy (i.e. electricity) that would be needed to ensure the indoor thermal comfort levels to meet 

the indoor reference temperatures. 

We estimated the daily electricity consumption per square meter for space heating and cooling 

considering the share from total electricity use, consumed for space heating (9.1%) and cooling 

(1.6%), following the national survey carried out to residential dwellings in Portugal (INE and 

DGEG, 2011). The final energy (electricity) associated with the energy services demand output 

from the sub typologies simulation work was calculated using electrical heating (i.e. 90%) and 

cooling (100%), from the door to door surveys; the ownership rate of heating and cooling 

technologies per consumer group from the surveys and average energy efficiencies of space 

heating and cooling technologies obtained from ETSAP (2012); e.g. open fireplace=0.35; air 

conditioner= 2.38. 

The next section presents the results achieved for the different steps. We intertwine it with a 

wider discussion about potential fuel poverty and fuel obesity in the studied consumer groups, 

uncovered by the datasets and methodologies used. 

3.1.3 Results and discussion 
In this section, we present and explore the results for the two selected consumer groups, from 

the three datasets, door-to-door surveys, smart meters and building's energy simulation. We aim 

to understand how to characterize those groups of consumers that may be useful to guide 

researchers and electricity market stakeholders to capture such consumers' group from smart 

meters. Moreover, such characterization is of high interest to suggest the integration of 

renewable energy sources, and to propose energy efficiency or/and energy reduction measures, 

based on the thermal comfort performance gap gathered in the heating and cooling season. 

3.1.3.1 Smart meters and surveys 

Primary objectives of the combination of residential buildings survey and electricity 

consumption data analysis were twofold: 1) aggregate groups of consumers based on their 

annual consumption profiles and 2) highlight the main differences and similarities amongst the 

determinants of consumption of the households of each group. This first assessment allows us to 

use an eagle eye into fuel poverty and possible fuel obesity issues. 
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The clustering method applied in Gouveia and Seixas (2016), split the sample in 10 clusters. For 

the purpose of this paper, we extracted the two extreme consumer groups that may represent 

households possibly under fuel poverty (FP) and under fuel obesity (FO). The box-and-whisker 

plot (Figure 3.2) discloses the descriptive statistics of those consumer groups (regarding their 

dispersion and skewness), and the outliers. The distribution of electricity consumption data from 

the two groups is very distinct, with the Fuel Poverty group presenting the lowest statistics with 

a very low daily average, standard deviation, minimum and maximum levels of daily 

consumption (Table 3.2). All the descriptive statistics of the Fuel Obesity group are around 

sevenfold higher than Fuel Poverty group, except the annual consumption per square meter, 

which is still four times higher in the FO group. 

Since the households are located in the same city, being similarly impacted by climate 

conditions, we exclude weather as a determinant that justifies the differences of the 

consumption profiles of the two groups. Nonetheless, the electricity consumption profiles 

(Figure 3.3) and its comparison with average daily temperatures indicate seasonal patterns of 

consumption due to energy consumption for climatization, mostly noticeable in the heating 

season where the role of electricity for climatization is clear. The correlation of FP daily load 

profile with the average daily temperature, points to -0.72 while of FO to -0.82, meaning that 

the impact of heating season (i.e. low temperatures with high electricity consumption) prevails 

over the cooling season. 

Both groups present around twofold increase in electricity consumption in winter compared to 

summer. This might be portraying the inexistence or low use of space cooling equipment in the 

summer compared to a higher use of electricity-based technologies for space heating in the 

colder months of winter (December, January and February). 

Table 3.2 – Descriptive statistics of daily electricity consumption for both consumer groups 

Consumer 
Group N 

Minimum 
(kWh) 

Mean 
(kWh) 

Maximum 
(kWh) 

Standard 
Deviatio
n (kWh) 

Annual 
Consumption 

(kWh) 

Annual 
Consumption 

per square 
meter 

(kWh/m2) 

Fuel Poverty 366 3.2 4.2 6.1 0.82 1541 17.1 

Fuel Obesity 366 20.3 28.2 44.2 5.8 10314 61.4 
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Figure 3.2- Daily electricity consumption (box and whisker plot) and number of households (black squares) per consumer group 

 
Figure 3.3 – Electricity consumption profile along the year for the two distinct consumer groups and average daily temperatures 

(both averaged 2011-2014) 

A number of authors identified determinants of energy consumption for diverse regions based 

on different datasets and methodologies: Hojjati and Wade (2012), presented heating and 

cooling use as very sensitive to living space, while Vassileva et al. (2012) indicated surface area 

as the variable closest to energy consumption. Also for Rue du Can et al. (2010), the growth of 

floor space per household is one of the major drivers explaining the increase in energy 

consumption in developed countries. In mild climates, however, floor space may be of less 

importance as a driving force of energy consumption, as Kaza (2010) and Kowsari and Zerriffi 

(2011) showed for larger households with higher total energy consumption, but have lower per 

capita energy consumption due to economies of scale and volume to surface ratio. 
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The survey results allow to better understand the consumption levels and patterns of both 

consumer groups portrayed in the previous figures. As depicted in Table 3.3, several dwellings 

characteristics arise as significant determinants of the differences in the households’ electricity 

use. 

While the majority of households in both groups are located in urban areas (»60%), there are 

significant differences in type of houses - detached houses (18% in FP vs. 44% in FO), dwelling 

size (90m2 in FP vs. 168m2 in FO); age of construction (91% previous to 1990 in FP vs. 75% in 

FO); bearing structure (76% masonry walls in FP vs. 57% in FO) and wall (brickwork single 

layer, rammed earth and stone represent 91% in FP vs. 53 in FO) and windows materials (83% 

have single glazing and wooden window (60%) framing in FP vs. 71% of aluminum and single 

glazing (75%) in FO. All these variables de per se might explain the different levels of 

electricity consumption between both groups, since each of them plays a significant role in 

energy needs for heating and cooling, affecting the thermal comfort of occupants. 

From our results, when addressing occupants’ characteristics, we also identify important 

variables that explain the sevenfold difference in consumption between the two consumer 

groups. The consumers under fuel poverty can be styled by small families (2 persons per 

household), with older members (42% over 65 years old) and low levels of education (64% 

under the 9th grade with zero graduates). 47% are retired with only 30% working full time, 

resulting in 60% of the households with an average monthly income of less than 750€. The 

potential Fuel Obesity households are characterized by a higher number of persons per 

household (2.8), less elderly people but with more children (27% over 65 years old and 14% of 

occupants under 18 years old). The household members have higher levels of education and 

with full time jobs - 62% graduated, 46% working full time while only 30% are retired which is 

a significant contrast to the other group, resulting in 33% of the households’ average monthly 

incomes being above 2501€. 

Our assessment is in line with other authors’ assessment on the role of occupants on energy 

consumption. According to Brounen et al. (2012), the age of the head of the household is 

significantly related to gas consumption, but age is not monotonically related to electricity 

consumption. The elderly may spend more time at home, but they seem to have fewer energy-

consuming appliances– elderly households consume about two to four percent less electricity 

than middle-aged married couples do. The small difference between single elderly households 

and elderly households with two or more people may result from the fact that all elderly 

households typically spend more time in their residence, which obviates any economies of scale 

that are more common among families (Brounen et al., 2012). Ellegård and Palm (2011) also 

identified occupant age as an important aspect influencing the use of appliances. 
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Energy conversion technologies also play a key role in household energy use, explaining 

differences, both in the amount and variability, in consumption throughout the year. Comparing 

the two groups, once again significant differences of ownership and type of equipment arise. 

For space heating, only 46% of the households under fuel poverty have heating equipment and 

the bulk (i.e. 90%) are electrical. The households under the FO group have almost 90% of 

heating equipment ownership (with 71% electrical and the remainder being fireplaces). Despite 

a lower share of electrical equipment in these households group, the energy use is still much 

higher. Regarding cooling equipment, the difference is also meaningful, not only in the 

ownership levels (46% FP vs. 75% FO) but also in the type of equipment (73% fans in FP vs. 

75% air conditioners in FO). Nonetheless, a disparity can be recognized in the yearly 

consumption profile in both groups to the information on ownership collected from the survey, 

which identifies that the existence of the equipment does not mean that it is being used. This is 

especially true for air conditioning systems, as also shown in national statistical consumption 

data for space cooling representing just 1.6%. 

Contrasting ownership of white appliances and other electrical equipment (as televisions, 

computers, lighting systems) is also identified, with the group under FP not reaching saturation 

in several uses (67% owns computers; dish washer 29%, freezers 61%), while in the FO group, 

a saturation in several end-uses and equipment (e.g. microwaves, washing machines) is 

observed. For this group, there might be an excess ownership of several appliances, with 

households having more than one (1.6 computers; 1.14 refrigerators, 2.3 televisions). 

Table 3.3 – Survey variables related to dwellings and occupants’ characteristics and equipment ownership 

 
The approach anchored on the use of daily electricity consumption data evaluated by a cluster 

analysis, proved to be a powerful tool for consumer segmentation (Gouveia and Seixas, 2016). 
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The combination with survey data has proved effective to characterize the two groups of interest 

for the analysis in this paper. The socio-economic data combined with the annual consumption 

profiles uncovers potential lack of thermal comfort levels inside households both in summer and 

winter for the FP consumer group, but it is not clear for the FO group and needs further 

enlightenment. The high levels of daily electricity consumption (over 40 kWh/day) together 

with its descriptive socio-economic variables could indicate fuel obesity patterns. Yet, when 

looking deeper in the two distinct annual consumption profiles, different conclusions might be 

drawn. In a region with very hot summers (average temperature around 23ºC) that might require 

high cooling demand, substantial differences in summer and winter months’ electricity 

consumption might suggest lack of thermal comfort levels, in summer months.  

3.1.3.2 Energy simulation of buildings typologies and thermal comfort 

performance gap 

From the predefined 27 buildings sub-typologies, 15 are present within the Fuel Poverty group; 

while 10 exist in the Fuel Obesity group, showing a wide diversity of buildings characteristics 

among similar electricity consumers profiled groups. A breakdown of the results of the 

EnergyPlus simulations for the energy services demand for regulated heating and cooling (i.e. 

heating and cooling under temperature set points according to the current regulation), shows 

differences in annual energy services demand for climatization per square meter across the sub 

typologies of the same group (Figure 3.4), as expected. This is explained by the different 

bearing structures, construction materials and other dwelling variables extracted from the door 

to door surveys. However, the similar average heating (77 kWh/m2 for FP group dwellings and 

81 kWh/m2 in FO) and cooling demand (5.7 kWh/m2 for FP group dwellings and 6 kWh/m2 for 

FO) suggests that, for our case study, behavior and socio-demographic characteristics are more 

significant determinants of energy consumption than building construction characteristics. 

Following the methodology described in section 3.1.2.5, we assessed the thermal comfort 

performance gap for both consumer groups, calculating the difference between the final 

electricity consumption required to fulfill the regulated thermal comfort level and the real 

electricity consumption, derived from the meters for space heating and cooling. As depicted in 

Figure 3.5, the results reveal a severe thermal comfort gap within the fuel poverty consumer 

group namely 98.5% for space heating and 98% for space cooling, even in a very reduced 

climatization schedule. These outcomes backup our previous conclusions from the annual 

consumption profile and survey results, which pointed for characteristics of fuel poverty 

conditions. The simulation results further stress the conclusions from the annual electricity 

profile analysis, where fuel poverty issues related to cooling demand are also of utmost 

importance, particularly in countries/regions expected to suffer from average temperature 
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increase due to climate change, as the case study. We conclude that fuel poverty is prevalent 

amongst the households in this group though a detailed appraisal of individual households could 

suggest that not all households might be under fuel poverty in equal measure. 

 
Figure 3.4 – Heating and cooling annual energy demand for the typologies of the two consumer groups: fuel poverty (top) and 

fuel obesity (bottom) 

In the case of the potential fuel obesity group, and contrary to what could be expected from the 

annual consumption profiles and socio-economic determinants, the thermal comfort 

performance gap appears still very high. Despite the levels of consumption in this group are 

around sevenfold the other consumers group, the calculated gap is 94% for space heating and 

87% for space cooling, still high values and close to the other group. This is due to the similar 

average demand for space heating and cooling between the two groups, but bigger households 

in the FO group. Real measured consumption is still far from fully satisfaction of “ideal” indoor 

thermal comfort levels and was also revealed by the substantially lower consumption in summer 

identified in the annual consumption profiles. But these conclusions can only be straightforward 

applied to the cooling season, since we are assessing just electricity for climatization. For space 
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heating, in households with both electric and non-electric climatization, the use of e.g. 

fireplaces, may partly bridge this gap, presenting this estimations as conservative. Nonetheless, 

these performance gaps are aligned with the results from Palma (2017), where a widespread 

lack of thermal comfort across the majority of Portuguese civil parishes was assessed (i.e. 

88.2% gap for space heating and 94% for space cooling in the city of Évora), under less 

conservative schedules and household conditioned areas. 

The thermal comfort performance gaps for both groups allow to derive some important 

conclusions for this region and sample. The results stress the importance of addressing the fuel 

poverty problem and the need for increased awareness and policy support. From the surveys, we 

identified the ownership of both space cooling and heating equipment, but these results clearly 

show that having the equipment does not mean it is used. This can be partly justified by the high 

costs of energy for families, as stated in Section 1, when compared to EU28 average. According 

to IEA (2016), electricity prices in Portugal are relatively high by IEA standards and they have 

been increasing significantly over the past decade. From 2008 to 2013, final electricity prices 

increased annually on average by 8.8% for household customer. 

 
Figure 3.5 – Heating and cooling thermal performance gaps for both consumer groups 

Another important outcome from the results is the significance of behavior and of socio-

economic details (as income). Therefore, income is a relevant determinant that explains the 

consumption differences from both groups. Seebauer and Wold (2017) identify the influence of 

income on electricity consumption, highlighting that instead of influencing daily electricity 

consuming routines, the income level could drive appliance purchases, setting a household’s 
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base electricity load, which is also aligned with the idea of bringing for discussion the fuel 

obesity group. 

Energy prices and a general low ownership of cooling equipment in the city (and country) partly 

explain the high thermal performance gap for both consumer groups in the cooling season. 

However, in Portugal, as other Mediterranean countries, the use of traditional cooling 

techniques (opening windows during the night, shading device) are very common, allowing the 

occupants to minimize higher indoor temperatures. We argue that these cultural habits partly 

explain the high values of thermal comfort gaps, also in the Fuel Obesity group. Further 

analysis should be carried, for example based on direct inquiries of the occupants on their 

thermal comfort, instead of assessing it through energy consumption analysis. 

We acknowledge some boundaries to our performance gaps results derived from the 

assumptions used, as follows: a) despite supported by information of ownership and use of other 

energy sources from the door to door surveys, our methodology only address electricity 

consumption, b) we assume average equipment efficiencies for the conversion of energy 

services calculated from the simulations to final energy demand; and c) due to lack of local 

information, we use national indicators on the electricity consumption used for heating and 

cooling. 

However, despite these limitations, we were able to draw important conclusions on consumer 

segmentation groups, deepening the understanding on consumers under fuel poverty conditions 

and the main drivers for that. But it becomes evident that our first perception in defining the 

second group of consumers, as a fuel obesity group, based on the electricity consumption levels, 

can be understood as panglossian after an accurate analysis of the actual thermal comfort gaps. 

This raises the importance of combined assessments supported by multiple datasets for robust 

conclusions. 

Therefore, despite the differences in electricity consumption patterns, both consumer groups 

still need to increase their consumption to achieve a better indoor comfort and reduce related 

health problems. To overcome this thermal comfort gap, a strong increase in energy 

consumption should be expected, which will affect the EU policy goals on energy consumption 

and emissions reduction. Therefore, we consider of utmost importance that tailor-made policies 

and information campaigns addressing (i) high-income households should focus on support 

increased use of more efficient equipment, lifestyle changes and adoption of renewable energy 

sources, and (ii) low-income households should focus on incentives either for efficient 

equipment or renewables use, or either to burden energy costs. Energy policies and measures 

can help to tackle the expected energy consumption in the future, but with clear differences on 

how to approach and target each consumer groups. 
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In Portugal, energy subsidies (named as social tariff) have been provided for the fuel poor 

households minimizing the high-energy costs but they do not provide a sustainable long-term 

solution not addressing the root causes of the problem. On the opposite, energy renovation 

measures of households at fuel poverty risk can give a long-term sustainable answer improving 

the energy performance of buildings. These solutions can compete with higher energy 

consumption from e.g. heaters and air conditioners in providing space heating and cooling 

services demand. Though, while insulation measures can be used as a protective measure in 

buildings, insulation by the interior increases the risk of overheating. Note that in a country like 

Portugal and at Évora specifically, some measures, such as external insulation, might cause 

much more thermal discomfort in the summer worsening the problem. 

Modernization and retrofit of buildings and energy equipment is therefore an effective solution 

for energy poor households as presented by Bouzarovski and Petrova (2015), but identifying 

and funding those households might be an issue, even in high income countries, with the ability 

for extensive data collection. Our methodology presents an alternative approach for such 

identification. 

Another alternative solution to overcome the thermal comfort gap is the increase of use of 

locally produced electricity from renewable sources. Évora has a high solar PV rooftop potential 

(40MW) (Moreira, 2016). Therefore, this strategy could be very important to help increase 

thermal comfort levels without an increase in energy costs to both groups of consumers. Also, 

green and cool roofs, smart glazing, thermochromics materials inducing changes in the color of 

the building’s façade that reduce heating and cooling needs are solutions that will overcome the 

thermal comfort needs without increasing energy consumption. 

3.1.4 Conclusions 
This paper presented an approach to characterize distinct groups of consumers, shedding the 

light on how to track fuel poverty and understanding the existence or not of a fuel obesity 

group. Combining electricity smart meters’ dataset with socio-economic data, building structure 

characteristics and equipment use from household surveys and comparing this data with 

building energy simulations allowed the identification of key energy consumption determinants. 

Our research illustrates the relevance of consumer segmentation to derive different consumer 

groups’ characteristics, which should be taken into account by policies and measures. 

Acknowledging the differences of consumer groups, and the determinants behind them, the 

design and implementation of measures and instruments may be tailored to ensure its goals, as 

energy reduction, increase of indoor thermal comfort levels, energy efficiency increase and 

renewable energy integration into buildings. 
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Our approach and methodology delivered results compatible with fuel poverty group and with 

potential fuel obesity group, regarding electricity consumption. Different consumption profiles 

were explained by the socio-economic details and climatization behavior of the households' 

occupants. Though, just looking to levels of consumption might be misleading in addressing the 

broader picture of thermal comfort and energy consumption for space heating and cooling, as 

also underscored by the energy simulation of the building typologies of both consumer groups. 

Despite focusing on electricity consumption, these results provide policy makers and relevant 

stakeholders, such as ESCOS, energy utilities, and the general population with highlights to 

recognize both problems (i.e. fuel poverty and lack of thermal comfort) and include them in 

current policies and measures whilst also providing a comprehensive picture of its evolution 

over time. 
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3.2 Daily Electricity Consumption 
Profiles from Smart Meters - 
Proxies of Behavior for Space 
Heating and Cooling 
 

ABSTRACT 

Daily electricity consumption profiles from smart meters are explored as proxies of active 

behavior regarding space heating and cooling. The influence of the environment air temperature 

(multiple maximum and minimum daily thresholds) on electricity consumption was explored 

for a final sample of 19 households located in southwestern Europe (characterized by hot, dry 

summers and cool, wet winters), taking the full year of 2014. Statistical analysis of the 

deviations from hourly average electricity consumptions for each temperature thresholds was 

performed for each household. Firstly, these deviations could act as proxies highlighting 

possible lack of thermal comfort on space cooling, and partially on space heating, supported by 

door-to-door survey data, on socio-economic details of occupants, buildings bearing structure 

and equipment’s ownership and use. Secondly, meaningful differences of consumers’ behavior 

on electricity consumption pattern were identified as a response for space heating and cooling to 

the environment air temperatures thresholds. Additionally, statistical clusters of active and non-

active behavior groups of households were assessed, showing the electricity use for space 

heating. This paper illustrates the importance of the widespread use of smart-meters data on the 

increasingly electrified buildings sector, to understand whether and how thermal comfort could 

be achieved through active climatization behavior of its occupants. This is particularly 

important in regions where automatic HVAC systems are almost absent. 

 

 

KEYWORDS 

Daily Load Profiles; Smart Meters; Residential Sector; Household Surveys, Heating and 

Cooling; Cluster Analysis. 
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3.2.1 Introduction 
Much attention has been given to the potential strategic role of renewable energy in the transition to a 

clean energy future. However, increased end-use energy efficiency and energy conservation offers 

comparable, if not greater, such potential in the short-term. Demand side actions are key for the 

reduction of energy consumption, with impacts on energy supply security and affordability, and 

climate mitigation and adaptation. Notwithstanding, this should be addressed carefully since, in some 

cases, consumers may not be in a favorable position for a direct reduction of consumption. 

Different dimensions of household energy use have been explored by researchers, to design and 

implement strategies to provide secure access to energy services and to facilitate the transition to 

modern fuels, eradicate fuel poverty, address environmental concerns and mitigate greenhouse gas 

emissions. Yet, despite more than three decades of effort, our understanding of household energy use 

patterns and the variables underlying them still have a large potential to be improved (Kowsari and 

Zerriffi (2011); Wiesmann et al. (2011)). This is particularly valid when taking into account very high 

temporal resolution data, as electricity consumption from smart meters, allowing the identification of 

detailed consumption patterns. Research carried out by a large plethora of authors already identified 

several determinants that drive energy consumption at the household level (e.g. Leiwen and O’Neill 

(2003); Elias and Victor (2005); Ellegård and Palm (2011); Hamza and Gilroy (2011); Kowsari and 

Zerriffi (2011); Lescaroux (2011); Hojjati and Wade (2012)). We contribute for this discussion 

harnessing a comprehensive dataset, which includes smart meter registries and a household door to 

door survey from a southwestern European region. 

Increased availability of smart meters’ data plays an important role in the understanding of household 

energy use, since it allows a deeper knowledge on how different consumers deal with electricity 

consumption along the day to fulfil their multiple energy services. Smart meter data mining to 

compute electricity consumption profiles for different time granularities is a tool to identify few 

distinct and representative clusters of consumers from a huge number of users (Kang and Lee, 2015). 

When a lot of consumers exist in a smart grid environment, it is certain that there are many consumers 

who share similar characteristics and load patterns. Clustering analysis is an important tool in data 

mining, intelligent decision-making, and pattern recognition (Cios et al., 1998). Several authors 

already evaluated electricity consumers’ segmentation through different methods, e.g. ant colony 

clustering (Chicco et al., 2012, 2013), normal (Ramos et al., 2015) and fuzzy k-means (Tsekouras et 
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al., 2007), neural methods, self-organizing maps (Beckel et al., 2012), while using different time 

frames (i.e. hourly, daily, seasonal, annual). Kwac et al. (2014) segmented household energy 

consumption using hourly data for the United States; McLoughlin et al. (2015) characterized diurnal, 

intra daily, seasonal into a series of profile classes of electricity use for Ireland. Macedo et al. (2015) 

typified load curves for demand side management in Brazil.  

Consumption and consumers’ profiles have been key for many purposes, namely electricity tariff 

design; consumers’ segmentation to target specific energy efficiency and energy consumption 

reduction measures; generation of real time alerts; indoor thermal comfort assessment, among others 

(Ardakanian et al., 2014). However, this type of analysis usually relies only on electricity consumption 

data (e.g. Beckel et al., 2014) while missing other fundamental data, like the socio-economic details of 

the consumers and the weather conditions affecting directly cooling and heating demand. Rhodes et al. 

(2014a, 2014b), Wijaya et al. (2014), Cetin et al. (2014), Cetin and Novoselac (2015), Kipping and 

Tromborg (2015), Gouveia and Seixas (2016), Viegas et al. (2016) already combined electricity 

consumption profiling with survey data. Pampuri et al. (2016) states the difficulty of relating the 

summer electricity surplus with space cooling because often data do not cover a full year. 

Weather conditions are one of the main determinants for residential energy consumption, driving 

annual fluctuations in energy use for space heating and cooling demand (Hojjati and Wade, 2012) and, 

to some extent, of other uses, like water heating (Kaza, 2010). Residential power demand can range in 

magnitude from a few hundred of watts to lower tens of kilowatts, and can be two times larger in a 

cold country than in a ‘moderate’ one, and half in a hot country (Lescaroux, 2011). A cooler year in a 

warm climate region will reduce overall energy consumption, as the demand for space cooling will be 

reduced. Residential electrical use pat- terns fluctuate differently during the day due to space-

conditioning setpoints, time of year, weather, occupant behavior and schedules (Rhodes et al., 2014a). 

Occupant behaviors (e.g. adjust thermostat) have a big impact on buildings energy consumption. 

However, the occupant behavior in buildings is still not well understood. According to O’Neill and 

Niu (2017), the occupants' expectation of comfort or satisfaction in the built environment drives the 

occupant to perform various controls that have a big impact on building energy consumption. 

Different authors have been showing the relation between climate temperature, behavior and 

electricity consumption. For example, Zachariadis and Pashourtidou (2007) conducted a study in 

Cyprus, showing that weather fluctuations seem to be the most significant cause of short-term 
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variation in electricity consumption (albeit with small elasticity values), while the effect of income and 

prices is not significant. Yun and Steemers (2011) also identified climate as the single most significant 

parameter for cooling demand, followed by behavioral issues. Ali et al. (2011) found that both 

temperature and humidity were significant indicators of energy use and were able to accurately 

forecast the aggregated load. Wiesmann et al. (2011) acknowledged, through top-down models, 

regional and climate effects significantly related to electricity consumption. Hart and Dear (2004) 

showed that heating and cooling devices have a strong impact on energy consumption. Parker (2003) 

exposed the relationships between consumption and temperature for different months and during the 

day, using a large sample located in a region with mild winters (Central Florida). Lee et al. (2014) and 

Fischer et al. (2016) point out the role and link of outside air temperature to total and peak power 

demand. Models from Perez et al. (2017) for Texas describe that energy consumption with relation to 

outdoor dry-bulb temperature is negligible up until a change-point, after which air conditioning energy 

use increases linearly. However, Elexon (2013) stated the relationship between environment 

temperature and energy services demand is fairly straightforward: when temperatures fall, heating load 

increases, when temperatures rise, load decreases until any cooling load (air conditioning perhaps) is 

applied. Though, for Ardakanian et al. (2014), the relationship between energy consumption and 

external temperature is not exact, making it difficult to estimate the consumption of temperature-

sensitive appliances from whole-house smart meter data. 

We argue that these assessments apply primarily to households with high levels of climatization and 

subsequent thermal comfort provided by centralized sources, like district heating or buildings’ boilers. 

For regions where among others, climate conditions, type of dwellings, income levels and operation 

and maintenance of the systems do not justify the investment in centralized equipment, as Portugal or 

Spain; individual devices, as fans and electric heaters, are wide adopted as space cooling and heating 

providers. In these cases, energy consumption depends primarily of individual decisions along the day, 

which is a function of different factors as the environment air temperature, economic conditions and 

buildings’ characteristics.  

We consider that smart meter detailed data are key to capture when and under what conditions heating 

and cooling devices are used in those regions. Crossing electricity consumption data sets with other 

data sources focused on buildings’ characteristics and socio-economic conditions provide insights to 

fully understand the different profiles and consumer groups. In this paper, we explore the potential of 
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smart meters’ data for a different purpose of its mainstream use. The main objective is to conclude if 

detailed (hourly) electricity consumption data at the household level can be used as a proxy of active 

consumer behavior regarding space cooling and heating, as a response to outside temperature 

thresholds. We go deeper on understanding how residential electricity daily consumers’ profiles 

respond to a range of daily minimum and maximum environment air temperature from a nearby 

weather station (IPMA, 2016), while taking households’ members socio-economic details, buildings 

bearing structure, equipment ownership (collected in a door to door survey). Active vs. non-active 

consumers’ behavior are key for different purposes, for example the identification of thermal comfort 

gaps, and peak loads expectations, as a function of environment air temperature peaks in summer and 

winter, and thus its management through demand side. 

We conducted an analysis of hourly electricity registries from smart meters at households for the full 

year of 2014 for the city of Évora, in Portugal according to six distinct environment temperatures 

thresholds (≤5ºC, ≤10ºC, ≤15ºC, ≥25ºC, ≥30ºC, ≥35ºC). Évora has a Mediterranean climate type, 

according to the Köppen-Geiger climate classification (characterized by hot, dry summers and cool, 

wet winters). This city is one of the Portuguese cities with higher thermal amplitudes (both daily and 

yearly) (further information in Section 2.2., Part B). 

A clustering analysis was performed over households’ consumption focusing on heating season to 

extract similar active behaviors. The analysis novelty refers to the profiles analysis and clustering of 

differences between daily and average consumption profiles for the extraction of heating/cooling 

behavior as a function of outside temperature. Such results are significant contributions for southern 

European countries that rely mostly on individual devices and passive measures, and then are much 

dependent from other factors than only from environment air temperature, namely for policy makers 

and ESCOs. 

The paper follows with a section on the methods and datasets used to the development of the work 

(Section 3.2.2). Section 3.2.3 presents the results and section 3.2.4 discusses and section 3.2.5 

concludes presenting the final remarks. 

3.2.2 Methods and data 
This section depicts the overall methodological process and presents the datasets used to conduct the 

study. We combine results from a household door-to-door survey data, a smart metering dataset and 
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registries of minimum and maximum daily outside temperatures. Figure 1 illustrates how the data was 

collected, divided in two different parts: I - datasets on household electricity consumption and 

characterization, and II - datasets on daily temperatures. Daily load profiles are explored according to 

temperatures thresholds and electricity consumption deviations are computed to typify groups of 

consumers with distinct active behaviors for climatization. Within this paper, we use the concept of 

deviation as variations of electricity consumption from each household hourly average. 

 
Figure 3.6 – Overall Methodology and data used 

3.2.2.1 Case study 

This study was conducted in Évora municipality in Portugal, chosen as a case study fourfold: 1) the 

existence of a smart grid project with high resolution registries on electricity consumption (EDP 

Distribuição, 2015); 2) the Mediterranean climate type, according to the Köppen-Geiger climate 

classification with an annual average temperature of 15.9°C, but with high monthly thermal 

amplitudes; 3) the low national ownership of air conditioners and centralized heating systems making 
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more significant the consumers behavior influence; and 4) the location in the Iberian Peninsula, 

targeted as one of the most likely impacted regions on thermal comfort due to climate change, namely 

on energy consumption. 

In 2014, the residential sector represented around 15% of the total final energy consumption of the 

municipality (DGEG, 2016). No regional statistics are available by end uses, but extrapolating the 

national average applied for the city with the survey results, space heating represents 8% (of which, 

near 90% supplied by electricity) and space cooling just 0.8% (all electricity) (DGEG and INE, 2011). 

This indicates that other forms of energy are also used for heating, as gas in boilers or biomass in 

fireplaces, however for cooling all technologies, if available, are solely electric. 

3.2.2.2 Characterization of data  

Part 1 - Household electricity consumption datasets and characterization 

As depicted in Figure 3.6, this study relies on smart-metered electricity consumption data and a door-

to-door household survey data for thirty households. Our sample was retrieved from a larger database 

of households where door-to-door surveys were conducted in Évora during July and August 2014. 

Door-to-door household survey 

The survey included 110 questions covering information about location, physical characteristics of the 

dwelling (e.g. load bearing structure, type of windows, insulation of external walls and roofs), socio 

economic details of the occupants (e.g. number of persons, age, gender, income), appliances 

characteristics, use and ownership. For our purpose, the survey allows to evaluate the ownership and, 

if existing, the identification of the type and use of heating and cooling equipment (e.g. fireplaces, 

electric heaters, A/C, gas boilers, fans) and to characterize the socio-economic details of the 

inhabitants to better frame and discuss our results. The sample used herein considers different type of 

buildings, family structures, tariff scheme (which relates to electricity costs) and contracted power 

(e.g. 3.45 kVA, 6.9 kVA) to evaluate their daily load profiles. 

Smart meters data 

Detailed electricity registries are derived from the InovCity project, implemented by the Portuguese 

DSO (EDP Distribuição, 2015) since April 2010, for the first time in Portugal, in the municipality of 

Évora. A massive smart metering system (i.e. 31 000 meters) provide electricity consumption data 
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every 15 minutes for different economic sectors (i.e. residential, services, public lighting, industries, 

and others). 

The household surveys were matched to the smart meter’s database through the household meter 

number, while preserving the confidentiality of the house owners, resulting in an initial sample of 30 

households. Electricity consumption data from the DSO database for the full year of 2014 was 

retrieved for the sampled households. 

In order to obtain representative and robust profiles per household to be easily visualized and 

interpreted, we performed a data validation and trimming for the sample of 30 households. The first 

step was to assess the percentage of missing registries per household for the full year, with households 

discarded if missing data was above 20%. This validation procedure reduced our sample to 19 

households that will be used in this research, with an average percentage of missing data of 14% of the 

15 minutes’ data (ranging from a minimum of 8% to a maximum of 19% by meter). Missing data in 

the dataset is in general a consequence of communication/readings problems (e.g. GPRS) and did not 

had a specific daily or monthly pattern.  

To handle the missing data, in order to have a complete dataset for these households, the approach was 

to impute missing 15 minutes’ registries based on a mean imputation method of the observed values 

for neighbouring periods. When 15 minutes’ registries existed in a given hour, the imputation used the 

mean of the previous and next 15-minute timestamp. If a full hour or a full day was missing in the 

dataset, we used the mean of the available data of 15 minutes’ registries electricity consumption from 

the next and previous corresponding hours or days. After having the full dataset of 15 minutes’ 

registries (i.e. 35040 values) per household, these data were integrated to hourly data (i.e. 8760 values) 

to reduce unnecessary granularity for the purpose of our work.  

Final sample characterization 

Figure 3.7 depicts a box and whisker plot characterizing and showing the descriptive statistics and 

variability of the final 19 sampled households’ hourly electricity consumption regarding dispersion 

and variability, as well as outliers. The households’ sample is characterized by an hourly average 

consumption of around 0.30 kWh, while the maximum hourly consumption is registered to 6.6 kWh. 

The average maximum hourly consumption was 4.1 kWh, whilst the average annual electricity 

consumption is of 4263 kWh, above the national average of 3673 kWh (DGEG and INE, 2010). 
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The distribution of electricity consumption data is very diverse across the households: households #2, 

#4, #21 and #23 present the lowest medians (near 0.16 kWh) and household #12 depicting the highest 

value, of almost 0.7 kWh. The variance is also very distinct within the sample, households #2 and #11 

showing the lowest hourly consumptions standard deviations (i.e. average of 0.23 kWh) and household 

#9 presenting the highest standard deviation (0.9 kWh). These differences will be further evaluated in 

the section of the results. 

 

Figure 3.7 – Box and whisker plot describing the 19 final sampled households’ hourly electricity consumption for the year 2014 

The door-to-door surveys reveal that the sample is represented by a majority of semi-detached houses 

(63%) and terraced houses (26%) in the urban area of the municipality. The bulk of houses were 

constructed after 1991 (63%) when building regulations started to be applied and have average 

household areas of 114 m2. 68% of the houses have concrete as the load bearing structure with external 

walls of brickwork double layer, only 47% have insulation (extruded polystyrene of 3 cm). The 

windows framing is mainly represented by aluminum (74%) and 67% present double-glazing. Almost 

90% of the houses are owner occupied and the remaining private rented. The households have an 

average of 3.2 members, 18% are elderly people older than 65 years and 21% of the members have 

less than 18 years of age. Near 50% of the household members work full time, 23% are retired and the 

remainder are students or have other working status. These households have an average monthly 

income distributed as follows: 16% above 2 501€, 21% between 1 501€ and 2 500€ and 63% have 

an income between 751€ and 1 500€. Our sample do not have any household significantly poor, with 

a monthly income of less than 750€. 
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This sample tend for newer and more semi-detached houses when compared to the type of houses in 

the region (i.e. Alentejo) as shown by the CENSUS (INE, 2011), with 37% terraced, 14% semi-

detached and 28% detached houses; 41% of the houses constructed after 1991 and 32% with concrete 

bearing structure. In the region, the number of persons per household is 2.5 and 66% of the houses are 

owner occupied. 

Regarding the equipment ownership, 100% of the households have some type of heating equipment 

while for cooling the rate is more modest, 64% (11% of them have only fans, which have very 

different implications for buildings performance). All the households use gas for domestic hot water, 

95% have gas stoves, thus with no influence in the analysis for electricity consumption profiles. 

Regarding other electric equipment, all the houses have either a desktop computer or a laptop (over 

200% ownership) and televisions (274%). The ownership of white appliances is also saturated: 

refrigerators (116%), freezer (100%), microwaves (100%) and cloth and dish washing machines 

(100%). 

Part 2 - Dataset on daily temperatures  

As presented in Figure 3.6, we assess the daily external temperatures for the city of Évora. The highest 

monthly average occurs in August (24.1°C) and the lowest in January (9.6°C). The climatological 

normal (1971-2010) points the lowest temperature ever recorded at -2.9°C and the higher at 46°C 

(IPMA, 2016), portraying this city has one of the Portuguese cities with higher thermal amplitudes 

(both daily and yearly). 

We use daily temperature data from Évora station (Latitude: 38º32'11.55'' N, Longitude: 7º53'16.65'' 

W and altitude: 246 m) for the period between 1st of January to the 31st of December 2014. For this 

year, the average daily minimum temperature was 10ºC and the average daily maximum temperature 

was 22.7ºC (IPMA, 2016).  

For the purpose of our analysis, we select six distinct environment temperatures thresholds (5ºC, 10ºC, 

15ºC, 25ºC, 30ºC, 35ºC), as well as the days that surpassed these thresholds (Figure 3.8 and Table 

3.4). We use extreme outside temperatures instead of using HDD and CDD, as a pre-step to inform 

this work. We privilege the use of daily extreme outside temperatures (maximums and minimums) 

since we want to evaluate the use of whole-house electricity smart meters’ data as proxies of active 

climatization behavior. The days under the thresholds are considered to belong in the same bin and are 

analyzed together being used to further assess the daily load profiles of the households’ sample. Those 
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thresholds were chosen to reflect successive potential indoor thermal discomfort (i.e. in 5 ºC steps) 

that could trigger active space heating and cooling behavior. Minimum temperatures above 15ºC (i.e. 

60 days) and maximum temperatures under 25ºC (i.e. 214 days) are not considered.  

 

Figure 3.8 – Daily minimum (left) and maximum (right) temperatures in 2014 for Évora, Portugal  

 

Table 3.4 – Number of days in 2014 with the minimum and maximum temperatures surpassing the thresholds 

Daily Minimum Temperature 
(ºC) 

Number of Days 
(#) 

Daily Maximum 
Temperature (ºC) 

Number of Days (#) 

Tmin > 15°C 60 Tmax < 25°C 214 

Tmin ≤15°C 305 Tmax ≥25°C 151 

Tmin ≤10°C 162 Tmax ≥30°C 67 

Tmin ≤5°C 68 Tmax ≥35°C 19 

3.2.2.3 Assessment of load profiles and consumer groups by temperature thresholds 

We compared the daily load profiles of the electricity consumption hourly averages from 365 days per 

each household with the load profiles averaged over the hourly electricity consumption registered in 

the 305, 162 and 68 days for the heating season and to the 151, 67 and 19 days in the cooling season, 

that surpassed the temperature thresholds (Table 1). This will allow to identify if and when the 

electricity consumption react to different daily temperature thresholds in the heating and cooling 

seasons. The temperature setpoints of major reaction were identified as a trigger for active 

climatization behavior. The results are illustrated by a combination of individual analysis of selected 
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households’ average daily electricity consumption profiles and aggregated average profile of the 

whole sample. 

The hourly consumption deviations were calculated for each household, by subtracting the hourly 

average consumption in a specific temperature threshold from the hourly annual average consumption. 

An analysis of the deviations of hourly electricity consumption was conducted for all the temperature 

thresholds in order to group and distinguish consumers that actively consume electricity for heating 

and/or cooling purposes, from those that do not. We performed a cluster analysis over the hourly 

deviations for the most extreme temperatures thresholds (i.e. Tmin ≤5°C for heating season and Tmax 

≥35°C for the cooling season). A hierarchical clustering was applied using Ward’s Method (Ward, 

1963) with a measured interval through the squared Euclidean distance, which increases the 

importance of large distances, while weakening the importance of small distances. This clustering 

method allows for an analysis of variance approach to evaluate the distances among clusters, thus 

identifying homogenous groups of cases. Ward's method uses the F value (like an ANOVA) to 

maximize the significance of differences between cluster, however it is prone to outliers and the 

creation of small clusters that in this case do not apply since we have chosen to have only two clusters, 

since we wanted to confront consumer profiles with active and non-active behavior (Statistics 

Solution, 2016). 

Finally, a complete understanding of the households and the determinants that might be influencing 

the active behavior of its occupants for climatization purposes was supported by the analysis of the 

answers of the corresponding surveys per cluster. This process allows for the recognition of the most 

significant similar/distinct parameters (e.g. dwelling characteristics, occupants profiles, electrical 

appliances ownership and use) that further explain the electricity daily consumption patterns and 

climatization practices. 

The combination of statistical data analysis of high resolution (hourly) electricity consumption data as 

a function of external temperatures along the year, with an extensive survey on the households’ 

characteristics provides a comprehensive dataset for consumers’ segmentation with active 

climatization behavior. This knowledge may be used either by policy makers on policies targeting fuel 

poverty, thermal comfort levels and energy efficiency measures; and by ESCO’s and energy providers 

for direct consumer feedback and tailor-made initiatives of tariff design, energy efficiency 

recommendations and equipment substitution. 
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3.2.3 Results 
In this section, we aim to unfold the major results that address the objectives of the paper, presenting 

electricity consumption profiles for the different temperature thresholds assessed, the hourly 

temperatures change that drive the consumers’ segmentation and the survey results to support the 

characterization of the different consumer groups. 

3.2.3.1 Electricity consumption profiles  

As depicted in Figure 3.9, we developed profiles aiming to understand the different electricity 

consumption behavior that could arise from different external temperatures. Daily consumption 

follows a typical residential profile, with a small rise in the morning increasing until lunch hours, the 

largest peak occurring at the end of the afternoon, and the lowest consumption observed during the 

night. We recognize the differences of the daily electricity load profiles with changes on the external 

temperature, by comparing them with the hourly averaged load curve for the year 2014 (Figure 3.9, in 

green). Table 3.5 depict the hourly standard deviation for the 7 different daily load profiles under 

analysis for a better understanding of the hourly data variation. 

To look for the active behavior of households, we will focus the analysis on the impact of lower daily 

minimum temperature and higher maximum temperatures. From Figure 3.9, we may conclude that 

consumers have higher electricity consumption levels for heating (above the average) than for space 

cooling (below the annual average), revealing a predominance of active behavior for heating. Looking 

deeper in the heating behavior (blue lines), we can see that for the days with Tmin ≤5°C, as stated in 

Table 1, the average minimum increase of hourly consumption is 25% (between 2 a.m. and 7 a.m.) and 

the average maximum increase is almost 50% (between the 6 p.m. and 11 p.m.), corresponding to a 

daily average increase of 38%. For the days with temperatures lower than 10ºC, the hourly 

consumption increases between 14% and 33%. Taking the daily average, the increase of the electricity 

consumption is around 23%. For temperatures lower than 15ºC, the difference of electricity 

consumption is less significant with an annual hourly average increase between 2% and 6%, and an 

average increase of 4%. 

The increase of electricity for the Tmin ≤5°C and Tmin ≤10°C is substantiated through the surveys of 

the sample households, since near 47% of the households have exclusively electric equipment for 

space heating purposes, 16% use a mix of electricity (i.e. A/C and electric heaters) with fireplaces, and 
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the remaining use just fireplaces for heating. For space cooling provision, 53% of the households have 

air conditioners, 11% have only fans and the remaining 36% have no equipment at all for space 

cooling. 

 
Figure 3.9 – Daily average load profiles of the 19 households for the full year, for the six temperature thresholds 

Table 4.5 – Hourly standard deviation for the 7 different daily load profiles 

Hours/temper
atures 

Tmax ≥ 
35℃ Tmax ≥ 30℃ Tmax ≥ 25℃ Annual Tmin≤15℃ Tmin≤10℃ Tmin ≤5℃ 

00:00 - 01:00  0.21   0.19   0.18   0.26   0.27   0.37   0.46  

01:00 - 02:00  0.19   0.17   0.16   0.23   0.23   0.31   0.39  

02:00 - 03:00  0.15   0.15   0.14   0.17   0.17   0.23   0.28  

03:00 - 04:00  0.14   0.13   0.11   0.15   0.16   0.23   0.27  

04:00 - 05:00  0.14   0.12   0.11   0.15   0.15   0.23   0.27  

05:00 - 06:00   0.15   0.11   0.10   0.14   0.15   0.22   0.26  

06:00 - 07:00  0.13   0.11   0.10   0.16   0.17   0.26   0.31  

07:00 - 08:00  0.10   0.10   0.10   0.22   0.24   0.37   0.43  

08:00 - 09:00  0.13   0.13   0.13   0.21   0.22   0.31   0.37  

09:00 - 10:00  0.16   0.15   0.15   0.23   0.25   0.34   0.41  

10:00 - 11:00  0.18   0.15   0.15   0.25   0.27   0.37   0.43  

11:00 - 12:00  0.20   0.16   0.16   0.25   0.26   0.36   0.39  

12:00 - 13:00  0.27   0.22   0.20   0.28   0.29   0.38   0.43  

13:00 - 14:00  0.25   0.20   0.18   0.27   0.28   0.38   0.47  
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14:00 - 15:00  0.21   0.19   0.17   0.24   0.25   0.33   0.38  

15:00 - 16:00  0.24   0.20   0.18   0.23   0.23   0.30   0.33  

16:00 - 17:00  0.27   0.22   0.19   0.23   0.24   0.30   0.36  

17:00 - 18:00  0.23   0.20   0.18   0.25   0.26   0.34   0.39  

18:00 - 19:00  0.21   0.19   0.17   0.28   0.30   0.42   0.50  

19:00 - 20:00  0.23   0.22   0.19   0.31   0.33   0.48   0.58  

20:00 - 21:00  0.29   0.25   0.24   0.37   0.39   0.55   0.65  

21:00 - 22:00  0.24   0.22   0.21   0.33   0.36   0.51   0.62  

22:00 - 23:00  0.22   0.21   0.21   0.32   0.35   0.49   0.60  

23:00 - 00:00  0.28   0.23   0.21   0.29   0.31   0.42   0.51  

 

Since the cooling demand is only supplied by electricity, it would be expected that visible changes of 

consumption (active behavior) could be identified, although it is not the case. Besides, no significant 

changes of consumption are identified between moderate-maximum temperatures (Tmax≥25°C) and 

extreme temperatures (Tmax≥30°C and ≥35°C), around 4%. Different explanations may be found, 

such as the very low ownership of cooling equipment; the non-use of the equipment although the 

households have it (i.e. air conditioners or fans), due to electricity prices (15% higher in Portugal 

compared to EU average) or other constraints; the exclusive use of fans with low electricity 

consumption, not identified on the profiles. On another perspective, one may say that the households 

have different indoor temperature, which the occupants are most likely to feel comfortable, 

particularly in free-running buildings. 

Figure 3.10 presents two selected examples of households’ load profiles with different levels of 

consumption illustrating distinct behaviors for heating and cooling that could drive for a typification of 

consumers. These examples show households with different occupation schedules, while also 

depicting different consumption behaviors along the day for heating and cooling, with different 

setpoints temperatures for active climatization behavior. Household #12 has a fairly similar use of 

electricity all day long with a small peak at the evening period (21-23h). This household has four 

members (two of them retired) explaining the high consumption along the day. Despite being a 

household with dual tariff it is not portrayed in its daily profile. This household clearly reacts more to 

heating demand needs than cooling, mainly when outside air temperature is beneath 10 degrees 

Celsius. The survey results corroborate these findings since this household only have heating 

equipment (i.e. electric heater). 
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Figure 3.10 – Average daily load profiles of two selected households for the six temperature thresholds 

On the right (household #23), evaluating the different profiles, it seems that this household reacts (in 

different amounts) both to heating and cooling demand with active consumption of electricity, with 

slightly higher consumption for cooling during the day and more for heating during the night period. 

The survey once again backs up our results since this is a household with an air conditioning system 

that is used for both heating and cooling. The variations of electricity consumption along the day 

might be clarified by its members’ individual routines since it is a household with two students and 

two full time workers. The knowledge of other factors like income, age of household and construction 

materials from the surveys also allows us to refine this analysis. 

From this first part of the study, it becomes evident that according to this sample, it is difficult to state 

that the households present a widespread active behavior for cooling due to the small hourly variations 

of electricity consumption to the average. Variations could also be related to other kind of equipment 

as washing machines. Within this context, and justified by the abovementioned reasons, for the high 

external temperatures thresholds, electricity consumption profiles, the hourly deviations and 

consumers clustering that follow on the next sections will not be performed since the differences to the 

average consumption would be difficult to explain by active cooling behavior. Therefore, we will 

focus on low temperature thresholds towards active behavior assessment for space heating. 

3.2.3.2 Hourly electricity consumption anomalies for consumer typification  

In this section, we proceed with a deeper analysis for the heating season, based on the hourly 

electricity consumption anomalies, aiming to understand the variability among consumers and have a 

first look towards the aggregation of consumers according to their apparent climatization behavior. 
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Figure 3.11 presents the graphs of hourly temperature anomalies for the 19 households in the days 

corresponding to the three minimum temperatures thresholds (as stated in Table 3.4). With this 

approach, it is possible to observe the variability among households either (i) the amount of 

consumption, with several houses not consuming much more than the hourly averages; and (ii) the 

time of consumption along the day, with some households depicting two peaks of consumption while 

others have a trending peak around dinner time. This points to the need of typifying consumers in 

order to inform different levels of policies, improving energy efficiency, possibilities of demand 

shifting, complementary with solar systems, among others. 

The average hourly consumption anomalies per household were used for the hierarchical cluster 

analysis results splitting the nineteen sampled households into two clusters (active vs. non-active 

behavior): (1) six households (#4, #6, #9, #14, #20, #25) with visible active electricity consumption 

behavior on space heating, and (2) thirteen households (#1, #2, #3, #5, #11, #12, #13, #16, #17, #21, 

#22, #23, #26), with apparent non-active electricity behavior. Figure 3.12 presents the dendrogram for 

the heating season with low temperatures (i.e. Tmin) household clusters, displaying the distance level 

at which there was a combination of households and clusters. 

Comparing the daily load profiles illustrated in Figure 3.13, we can clearly observe a difference 

between both clusters, showing that these two groups of consumers have a distinct behavior on 

electricity consumption along the day, reflecting a climatization active behavior for very extreme 

minimum temperatures (under 5°C). The active household cluster (yellow line) presents two daily 

peaks, one during the morning and the highest during the evening, where our results suggest that is 

likely due to the use of electrical equipment for space heating. The hourly consumption increase in the 

active household cluster compared to the annual average hour of the all sample ranges from a lowest 

of 35% increase in the middle of the afternoon (16:00-17:00) to 82% during the night (20:00-21:00) 

when it is colder and the occupants are not sleeping yet. Comparing the two clusters, the hourly 

consumption varies from 51% to 171% in similar periods of the day. 
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Figure 3.11 – Heating season hourly consumption anomalies for the sampled household 

 
Figure 3.12 – Dendrogram from the cluster analysis of 19 households for heating season 

 
Figure 3.13 – Daily load curves for the two clusters of consumers, compared to the average of all sampled households for the 

heating season, with temperatures below 5°C 
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3.2.3.3 Understanding the drivers for consumers’ behavior  

For the reduction of energy consumption without disregarding the thermal comfort in the 

households, we have to address not only the profiles and levels of consumption at different 

temporal resolutions but also to track the main determinants of that consumption. Combining 

the clustering groups results with surveys allows for an in-depth characterization of the 

households behind the daily load profiles that, as aforementioned, may instigate lessons for 

different groups of stakeholders to deliver customized communication strategies and actions. 

Table 3.5 systematizes the main results from the correspondent surveys of the two clusters 

concluded previously, allowing to draw several insights. 

Table 3.6 – Insights on the determinants characterizing the two clusters regarding active heating behavior from the respective 

door-to-door surveys 

 Cluster 1 (Active behavior) Cluster 2 (Non-active behavior) 

Dwellings characterization  

Type of house (%) 
83% semi-detached houses 
17% terraced houses 

54% semi-detached houses; 31% terraced 
houses, 15% detached houses  

Year of construction (%) 50% constructed before and 50% after 1990 
31% constructed before and 69% after 
1990 

Average house area (m2) 116 m2 113 m2 

Load bearing structure of 
the building (%) 

67% masonry walls; 33% concrete 15% masonry walls; 85% concrete 

Insulation (%) 
50% without insulation; 50% with extrude 
polystyrene 

46% without insulation; 54% with 
extrude polystyrene 

Average external wall 
thickness (cm) 

35 cm  30 cm 

Framing material of 
windows (%) 

67% aluminum, 17% PVC, 17% wood 73% aluminum, 8% PVC, 15% wood 

Glazing type (%) 67% double glazing, 33% single glazing 62% double glazing, 38% single glazing 

Household members’ characterization  

Household occupation 
contract (%) 

83% owner; 17% private rented 77% owner; 23% private rented 

Number of household 
members 

3 persons per household 3.3 persons per household 

Age of household members 
(%) 

11% of members under 18 years old; 66% with 
ages between 18 and 64 years old, 17% with more 
than 65 years;  

26% of members under 18 years old; 
56% with ages between 18 and 64 years 
old, 19% with more than 65 years; 

Relation of household 
members (%) 

100% families 100% families 

Schooling degree of the 
head of family (%) 

83% with Graduation, MsC or PhD; 17% under 
6th grade 

23% with Graduation, MsC or PhD; 46% 
with the 9th or 12th grade; 31% under the 
6th grade 

Working status of the 
occupants (%) 

56% full time workers; 26% retired; 17% students 
47% full time workers; 21% retired; 23% 
students; 4% in another situation (e.g. 
unemployed) 
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 Cluster 1 (Active behavior) Cluster 2 (Non-active behavior) 

Average monthly income of 
the household (€) 

60% above 2501€; 17% between 1501€ and 
2500€; 33% below 1500€ 

23% between 1501€ and 2500€; 77% 
below 1500€ 

Equipment ownership and use    

Heating equipment 
ownership (%) 

100% ownership (67% with only electrical 
equipment; 33% with a mix of electrical 
equipment and fireplaces) 

100% ownership (38% with only 
electrical equipment; 15% with a mix of 
electrical equipment and fireplaces and 
38% with only fireplaces) 

Heating equipment use (%; 
hours) 

The 33% households with multi-systems estimate 
80% split of consumption time by electrical 
equipment and 20% by fireplaces. The 
perceptions of the household members indicate an 
average of 3.5 hours of use per day on the cooler 
days   

The 15% households with multi-systems 
estimate 50/50 split of consumption time 
by electrical equipment and fireplaces. 
The perceptions of the household 
members indicate an average of 2 hours 
of use per day on the cooler days.  

Cooling equipment 
ownership (%) 

67% AC either split or central; 33% do not have 
any cooling system 

38% AC either split or central; 15% only 
use fans, 44% do not have any cooling 
system 

Cooling equipment use 
(hours per day) 

The perceptions of the household members 
indicate an average of 2.5 hours of use per day on 
the hottest days   

The perceptions of the household 
members indicate an average of 1.5 hours 
of use per day on the hottest days   

Domestic hot water 
equipment (%) 

100% gas systems 100% gas systems 

Cooking Stoves (%) 
86% have exclusively gas stoves and 14% have a 
mix of gas and electricity stoves 

92% have exclusively gas stoves and 
15% have a mix of gas and electricity 
stoves and 8% have exclusively electric 
stoves 

Renewable energy source 
microgeneration systems 
(%) 

None of the households have microgeneration 
systems 

None of the households have 
microgeneration systems 

Electricity consumption and related characteristics  

Daily average electricity 
consumption (kWh) 

15.3 kWh/day 10 kWh/day 

Type of Tariff (%) 67% single tariff, 33% dual tariff 54% single tariff, 46% dual tariff 

Contracted Power (kVA) 83% equal or higher than 6.9 kVA 77% equal or higher than 6.9 kVA 

Notes: The type of tariff relates to the costs of electricity during the day, depending on the hours of consumption (day 
or night), while the contracted power (e.g. 3.45 kVA, 6.9 kVA, 10.35 kVA) constrains the number of electrical 
appliances that could be used simultaneously.  

Table 3.5 is divided into four groups of characteristics. The first one, ‘dwellings 

characterization’ reveals that all the constructive features may indicate that the houses in the 

‘active behavior’ cluster consume more since they have worst building constructive 

characteristics. The percentage of older houses is higher and only half of the sample has 

insulation. Notwithstanding, with regard to the other determinants in this part, the two groups 

are very similar. Santin et al. (2009) for the Netherlands already identified that building 

characteristics could determine near 42% of variation in space and water heating, leaving more 

than 50% of the changes for user practices. Gram-Hanssen (2011) also shed the light on the 
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importance of consumers in the heat consumption, where identical houses could have a heat 

consumption varying with a factor of 3. This suggests the importance of also identifying socio-

economic details, that may be crucial for the identification of the determinants for active 

climatization behavior. 

The second part refers to ‘householder members’ characterization’, to highlight the potential 

risk alert of some consumers in the cluster of ‘non-active behavior’. In fact, this cluster has a 

higher percentage of vulnerable consumers that should be theoretically be consuming more 

electricity for heating such as children and elderly people. In the same line of thought, this is 

also the group with more retired and unemployed people, which could be spending more time at 

home, and consequently consuming more electricity, which is not the case. The ‘active 

behavior’ group includes consumers with higher education and monthly average incomes. 

Analyzing the equipment ownership and use (third part of the table), we can see that the ‘non-

active electrical heating behavior’ has more houses with fireplaces, on the contrary there are 

more houses using electrical equipment for heating in the “active behavior” cluster, which 

means that if we supported this typification with regard to the total energy consumption it 

would be better conclusions could be highlight regarding the thermal comfort level inside the 

households. The estimated hours of use by the household members’ backup our cluster results, 

showing that people perceptions are aligned with their effective consumption. 

The ownership of several other electrical equipment such as lamps, refrigerators, computers, 

televisions, microwaves, cloth washing and dryer machines, dish washing machines, is similar 

across the households of both clusters and its use does not relate to outside temperature; 

therefore, are not presented as potential determinants of active consumption for heating. None 

of the households have microgeneration systems, which shows the potential of the integration of 

PV and solar thermal panels a recommendation in order to fulfil the needs for an increased use 

of electricity consumption or space heating bridging the gap on the lack of thermal comfort. 
The last part of the table, ‘electricity consumption and related characteristics’, shows the lower 

or inexistent active behavior for heating is also portrayed in the lower average daily 

consumption. On the other hand, the type of tariff and the contracted power across the groups 

are very similar, which shows the need for diverse type of information for DSO and energy 

retailers, since the ones currently available are not enough to assess the type of consumers and 

the patterns of consumption for tailor made policy and measures design. 

3.2.4 Discussion  
The deployment of a smart grid environment generates large volume of data that carries 

important knowledge to support new functions and models. Transforming big data into useful 
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information to improve efficiency in the management, planning and operation of the power grid, 

to evaluate the potential for residential demand response programs as well in resolving the 

issues of sustainability and energy conservation is a key scientific challenge. Our focus on 

thermal comfort compared to other end-use energy services is justified by its importance on 

peak electricity demand. 

From our analysis, we identified that consumers in this region have higher electricity 

consumption levels for space heating than for space cooling, revealing a predominance of active 

behavior for space heating. This might suggest that electrical cooling is unnecessary much of 

the year, and thus adoption of capital-intensive air conditioning systems is significantly lower 

but it might also indicate significant unmet demand for indoor thermal comfort services as 

discussed by Waite et al. (2017) while comparing different cities. 

Therefore, this study offers more quantifiable insights into heating patterns rather than cooling, 

understanding electricity load patterns in a Mediterranean climate zone. The lowest temperature 

setpoint (Tmin<5ºC) impacts hourly electricity consumption deviations from 25% to 50%; 

while in the highest temperature days’ profiles (Tmax≥35ºC) it is only identified a 4% 

deviation. Lee et al. (2014) presented lower threshold temperature of electricity demand for 

heating and cooling of around 27°C and 19°C of daily maximum temperature for houses in a 

village in South Australia. Perez et al. (2014) indicate 25ºC and Perez et al. (2017) a lower 

figure - 19.8ºC, as the temperature threshold in their sampled houses in Austin, Texas, where 

after which the energy consumption increases fairly linearly related to maximum outdoor 

temperature. In Perez et al. (2014), in some cases, daily energy use from A/C for individual 

houses increased by a factor of 8.  

In our analysis, the two distinct clusters derived from hourly electricity consumption deviations 

associated to extreme lower temperature and combined with the door-to-door surveys enabled 

for a better understanding and typification of households’ climatization behavior regarding 

space heating. 

The first level of heating and cooling consumption inertia towards outside temperature changes 

is due to the thermal inertia associated with building type and structure (i.e. house or multi 

apartment; type of wall, insulation, bearing structure) which minimize the impact of variations 

of outside temperatures, providing less changes in the indoor temperature (Silva, 2006). 

Also, the adaptive comfort of different households could explain the second level of 

energy consumption inaction when outside temperatures tend to rise or fall. Adaptive 

comfort builds on the principle that people experience differently and adapt, up to a 

certain extent, to a variety of indoor conditions, depending on their clothing, their 

activity and general physical condition (BUILD UP, 2009). Usually the use of passive 
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adaptive measures is the first option (e.g. natural ventilation, shades), therefore not 

reflected on energy consumption. From our results this seems to happen until reaching 

very high outdoor temperatures. 

The Portuguese legislation (i.e. Decree Law 118/2013), derived from the recast of Energy 

Performance of Building Directive of 2010 (EC, 2010), defines setpoint temperatures to 

calculate heating and cooling demands regarding thermal comfort levels. Several authors argue 

the problems of these analytical methods on overheating because they do not contemplate the 

household occupants’ ability to adapt. This aspect is especially important in southwestern 

European countries, where a large proportion of households still rely on natural ventilation for 

cooling and shading devices (e.g. Oliveira et al. (2015); Barbosa et al. (2015); Mulville and 

Stravoravdis (2016)). 

Despite acknowledging that the sample include households with different type of buildings, 

bearing structures, insulation levels, family structures that directly impact on indoor 

temperature, we can state that there is a general lack of thermal comfort inside households for 

both space heating (mainly in the households that do not have neither electrical or other type of 

space heating equipment) and space cooling; explained in some extent by recognized fuel 

poverty issues in the country (e.g. Bouzarovski, (2013); Gouveia and Seixas (2016); and Simões 

et al. (2016)). 

Our knowledge on the low ownership of cooling equipment and the outcomes of the analysis 

conducted pointed that, according to this sample, the use of electricity for space cooling is 

negligible. This reinforces the lack of thermal comfort inside households, in face of maximum 

temperatures registered in several days above 30°C and 35°C. The theoretical thermal comfort 

inside households is far from being achieved portrayed in the gap between cooling and heating 

needs and effective final energy consumption. This problem has already been disclosed for 

Portugal by Gouveia et al., (2012) and Palma (2017); but also for other countries (e.g. Sunnika-

Blank and Galvin, 2012; Wilde, 2014; Majcen et al. (2015) and Calì et al., (2016)) portraying 

the inability to keep households adequately warm/cool. 

The knowledge produced with this analysis can be used to support the assessment of thermal 

comfort levels and adaptive comfort inside households, while understanding the impact of 

external minimum temperatures on load profiles due to active climatization actions. Regarding 

the analysis on maximum temperatures, we consider that the methodology presented herein may 

be applied for the case of high ownership rates and use of cooling equipment. 

On another perspective, southwestern European countries are expected to be a region highly 

impacted by climate change and extreme weather events. According to Santos et al. (2006), a 

generalized increase of monthly cooling energy demand and a reduction of monthly heating 
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energy demand, as well as a reduction of the heating season and a consequent extension of the 

cooling season, is likely for Portugal, exacerbating the problem of lack of thermal comfort. 

The results highlight the importance of policies targeted to different socio economic contexts 

and climate conditions, instead of the current one-fits-all energy policy measures and 

instruments. It is the case of effective reduction of energy consumption, taken as necessary to 

accomplish energy and climate targets, which should go further over energy conservation 

practices. It is not possible to prescribe policy measures and instruments to reduce energy 

consumption in regions with proved lack of thermal comfort, which is the case of the sample 

houses in the region analyzed in this study, and the lion share of Portuguese households. Our 

results suggest it is crucial to pay higher attention to the specificities of the countries and 

vulnerable consumers (e.g. old people, poor, ill people, single parents with small children) to 

address fair and tailor-made designed policies and measures towards energy efficiency and 

energy consumption reduction. 

Compared with the European Union (EU28), Portugal had in 2014 still a relatively low final 

energy consumption per capita (1698 MWh, i.e. 27% below EU28 average) and electricity 

consumption per capita (4.3 MWh, i.e. 20% below EU28 average) (Pordata, 2016). The per 

capita energy consumption was below even when compared to countries with similar climate 

conditions like Spain (-11%) and Italy (-18%). Therefore, it becomes paramount to highlight 

that Portugal still need to promote the conditions to increase thermal comfort inside households, 

which may imply the increase of the energy consumption. 

The following limitations are recognized in this study, namely: a) smart meters´ data include 

cumulative consumption for all the end uses in a household (e.g. lighting, cooking, heating, 

washing machines) which could hamper our conclusions, though none of the other uses are 

consistently correlated with extreme outside temperature, as cooling and heating demand; b) the 

number of households may be considered low to extrapolate the results, but still enables to test 

the methodology; c) even though we have survey data to complement the average load profiles 

assessment, this might be limiting since not all the households fully use electricity for 

climatization purposes. A full assessment of thermal comfort would only be possible with 

comprehensive information on gas and biomass use. 

3.2.5 Final remarks 
In this paper, we investigated if high-resolution electricity consumption variations over the 

course of a typical day for different external temperatures thresholds can be interpreted as a 

proxy for active behavior of the households’ occupants regarding space heating and cooling. 

Data analysis was supported on hourly electricity consumption registries of 2014 for a final 

sample of nineteen households located in Évora municipality, Portugal. 
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We evaluated the influence of different external air temperature thresholds, namely maximum 

daily temperatures (25°C, 30°C and 35°C) and minimum daily temperatures (15ºC, 10ºC and 

5ºC), on daily electricity consumption profiles. The assessment of temperature-driven daily load 

curve changes as proxies for active cooling and heating demand behavior shed the light on 

important issues on energy use for indoor thermal comfort. Hourly consumption deviations, 

stated as deviations of electricity consumption from average, were used to evaluate and 

highlight changes in consumption on the daily profiles, allowing the clustering of 

households with similar active climatization behavior. 

The load curve (either as a total, per household or cluster of households) may be explained by 

the ownership of heating and cooling equipment, the income level, the house bearing structure 

but also from consumer behavior for climatization purposes during the day. Our results reveal 

that there are three types of consumers, ones that may not consume energy for space cooling and 

heating, others that only at very high outside temperatures consume energy and still others that 

may have a more active behavior. 

These findings have high value for a wide range of applications within smart grids, namely for 

the forecasting of peak loads based on weather extremes and grid optimization. Moreover, the 

combination of smart meters with surveys produces knowledge on how, when and why people 

consume electricity, to inform policy makers and distinct energy stakeholders. It is important to 

know the characteristics of the target groups when devising and applying policy instruments for 

energy savings. Identify the active from the non-active behavior consumers is a crucial step to 

select where policy instruments on energy efficiency and reduction must apply. The 

combination of those two data sources enables in-depth analysis of the consumers’ profiles, the 

demand side management alternatives, energy efficiency measures and also, the impact of 

changes in pricing tariffs. This could be particularly important for large groups of stakeholders, 

for example those dealing more directly with people, such as the municipalities and social 

support institutions, but also for ESCOS, DSO. 
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Projections of Energy Services 

Demand for Residential Buildings: 
Insights from a Bottom-Up 

Methodology  
 

ABSTRACT 

Projections of energy demand are important for energy security supply and low carbon futures, 

and usually rely on final energy consumption trends methods, limiting the opportunity for future 

options. Methods supported by energy services are much preferred to estimate future energy 

demand, since they are better suited to accomplish end-users needs. Final energy can then be 

assessed through complementary tools, as technological models, resulting in deeper knowledge 

on the relation between energy services and technology options. This paper presents a bottom-

up methodology to project detailed energy end-uses demand in the Portuguese residential 

buildings until 2050, aiming to identify the parameters governing energy services demand 

uncertainty, through a sensitivity analysis. The partial equilibrium TIMES (The Integrated 

MARKAL-EFOM System) model was used to assess technology options and final energy needs 

for the range of parameters variations for each end-use, allowing to conclude on the impact of 

uncertainty of energy services demand in final energy. Main results show that technology can 

overweight behavioral practices and lifestyle changes for some end-uses as in space heating and 

lighting. Nevertheless, important focus should be given to uncertain parameters related with 

consumer behavior, especially those on heating and other electric end-uses, as thermal comfort 

and equipment’s use. 
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4.1 Introduction 
Energy demand projections are a very complex topic depending on several factors, from socio-

economic, to behavioral, technological and climatic. Under or overestimating energy demand may 

cause energy scarcity or redundancy in resources (Ünler, 2008) emphasizing the importance of a 

reliable long-term energy planning. 

Projections of future energy needs mostly rely on final energy consumption, usually sustained by 

quantitative models, namely econometric (e.g. Anderson (1973); Boucinha et al. (2006); 

Amarawickrama and Hunt (2008), Dilaver and Hunt (2011)) or technological (e.g. Strachan et al. 

(2007), Schulz (2007), IEA (2011)). An extensive review on energy models for demand projections is 

provided by Suganthi and Samuel (2012), while methods targeting the residential energy demand are 

focused in Madlener (1996) and Labenderia et al. (2006). 

We support that projections of energy demand based on final energy greatly locks future options of 

energy resources and technologies available to satisfy energy needs, limiting the ability to consider 

alternative energy paths for the future. By focusing on final energy, there is the perception that fuels 

and technologies are the only important elements of energy systems (Sovacool, 2011). But since final 

energy consumption is driven by the demand for the services it provides, like cooking and heating 

(Haas et al., 2008) we argue that energy projections should be driven primarily by Energy Services 

Demand (ESD). 

An extensive portfolio of modeling techniques (bottom-up and top-down) to project energy needs is 

reviewed in Sartori et al. (2009). Projections supported by ESD following a bottom-up approach 

ought to provide better predictions than trend analysis of historical values (Schipper et al., 1985). A 

bottom-up approach extrapolates the estimated energy consumption of a representative set of 

individual houses to regional and national levels explaining much better the changes in energy use 

(Swan and Ugursal, 2009). Furthermore, estimates from bottom-up tools can be used to feed more 

encompassing energy models to replicate baseline projections. Brounen et al. (2012) identifies that 

although acknowledged as important, social and demographic characteristics of households are often 

ignored in the engineering literature about energy efficiency, due to a lack of detailed data. As stated 

by Ruijven et al. (2010), energy demand is a crucial point factor in model uncertainties but despite its 

relevance, medium to long-term studies on energy and climate policy devote small effort and attention 

on ESD. 

Energy services have been approached in a simplified way (e.g. Van Regemorter and Kanudia, (2006) 

and Gomez et al. (2011)) or absent (e.g. IEA (2011) and WWF (2011)), which call for more studies 

and in-depth analysis capable to identify and assess the drivers behind future ESD. Daioglou et al. 

(2012) also identified this gap, bringing up that most energy models describe future residential energy 
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demand supported on simple relations between energy consumption and income or GDP (Gross 

Domestic Product) per capita.  

In this paper and following the definition by Haas et al. (2008) and Reister and Devine (1981) energy 

services refer to a measure of the service provided to final consumers by their own use of energy in 

any of its forms; it encompasses the short and long term components of service demand (e.g. 

consumer behavior and area of households) but only the direct component of service demand (e.g. 

lighting, cooking); therefore, not considering the range of indirect (embodied) energy services (e.g. 

food, furniture).  

Energy consumption in buildings deserves special attention since they represent a significant share of 

energy consumption in Organization for Economic Co-operation and Development (OECD) countries 

(e.g. 20 to 30% in European Union (EU) (Eurostat, 2011). In the last years (i.e. 2000-2009), energy 

consumption in EU buildings has almost not changed, but has been increasing in the southwestern 

European countries (Eurostat, 2011), highlighting the importance to understand and assess the drivers 

of ESD in those countries. 

This paper presents a bottom-up methodology to project detailed end-uses energy services demand in 

the Portuguese residential buildings up to 2050, aiming to identify the parameters governing energy 

services demand uncertainty, through a sensitivity analysis. The partial equilibrium TIMES (The 

Integrated MARKAL-EFOM System) model was used to assess technology options and final energy 

needs for the range of parameters variations for each end-use, allowing to conclude on the impact of 

uncertainty of energy services demand in final energy consumption. Final goal is to identify in what 

end-uses, and in what parameters in particular, should policies target for an effective energy 

consumption reduction. 

This paper advances the state of the art by presenting valuable knowledge on relevant and highly 

uncertain drivers supporting ESD and related final energy projections in the long term. The case study 

application improves the understanding of the energy demand specificities for European southwest 

region, aiming to contribute to identify where efforts in energy policy should focus either at national 

and regional level. 

The paper is structured in four Sections. The next section describes the general framework used to 

estimate both ESD and final energy for the residential sector up to 2050, presenting also the case 

study. It introduces the parameters used and the variations considered on the sensitivity analysis 

performed. The results are described and discussed in Section 4.3 and Section 4.4 concludes. 
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4.2 Modeling framework 
In order to achieve the above-mentioned goal, research work was developed in two steps:  

1) Applying a bottom-up methodology to project ESD for the different end-uses of the 

residential sector, namely space heating and cooling, water heating, lighting, cooking, refrigeration 

and electric appliances (e.g. dishwashing, cloth washing, among others) (Section 4.2.1.1). A 

Reference scenario (REF) was built, serving as a benchmark for the analysis of future ESD. A range 

of plausible variations of the parameters defining the REF scenario end-use services demand was 

assessed, resulting in around 140 ESD sensitivity analysis scenarios. 

2) Selecting a set of 21 scenarios corresponding to the highest and lowest variation of each 

parameter for each end-use plus da REF, serving as input for the technological optimization model 

TIMES_PT to estimate final energy demand and technology portfolio (Section 4.2.2). 

As mentioned by Pachauri and Spreng (2003), energy services themselves cannot be measured in 

energy units but it is possible to measure energy requirements for energy services through the 

consumption at the level of useful energy. The starting point for developing projections for future 

energy services is establishing the useful energy demand for the different end-uses in a base year 

(2005). This is generally estimated as a function of the energy input (i.e. final energy) and the 

efficiency of the technologies (Eq. 1). 

Useful energy demandn = (Final energy Consumptionn × Efficiencyn)        (1) 

For the future, the demand for a particular energy service is generally related with a consuming unit. 

The common projection driver to generate the demand for energy services is the evolution of number 

of households until 2050 (HouTn), which depends on total population expectation (Popn) and on the 

evolution of the number of persons per household (PHn) as follows: 

HouTn = Popn / PHn             (2) 

4.2.1 Energy services demand 

4.2.1.1 Methodology projection by end-use 

Howell et al. (2005) underlined that energy use in the residential sector can be best understood by 

focusing on specific end-use functions and their drivers. The relevance of each end-use in the overall 

energy consumption is highly dependent on climate, physical dwelling characteristics, appliances and 

system characteristics, ownership, and occupancy behavior (Sartori et al., 2009). We computed ESD 

projections for 10 different end-uses of the residential sector and these variables were taken into 

account in the methodology to some extent. 
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Space Heating and Cooling 

Household characteristics as the size, age and climate related location of the estimated households 

(HouTn) governs its energy needs (Lombard et al., 2008). We considered four categories: 1) single 

house in the North of the country, 2) multi-apartment in the North, 3) single house in the South and 4) 

multi-apartment in the South. To accommodate differences on construction techniques and on the 

building envelope, we breakdown the stock of households into three periods regarding the year of 

construction: “pre-1990”, “1990-2005” and “post 2005”. This buildings typology describes the 

original state of the buildings and does not take into consideration later renovation measures.  

Since an integrated building design considering the high number of requirements and building 

components that influence energy performance, is an inherently difficult problem to formulate and 

solve (Jaffal et al., 2012), we used the steady state approach presented in Decree Law n. º 80/2013 

resulting from the Energy Performance of Building Directive and its recast on 2010 was applied to 

estimate the useful energy demand for heating and cooling. Useful energy demand for heating refers 

to the useful energy required to maintain the temperature of the inner space at 20°C during the heating 

season, while useful energy demand for cooling refer to the useful energy required to maintain the 

temperature of the inner space at 25°C during the cooling season, considering 50% of relative 

humidity. Construction characteristics as type of insulation, glass fraction, and solar factor of glazing 

depending upon the age of the house are considered in this methodology. Heating needs 

(kWh/m2·year) (Nic) was obtained (Eq. 3) through the balance between: 

• Heat lost by the envelope (Qt) (kWh/year); 

• Heat lost by air exchange (Qv) (kWh/ year); 

• Total net gains (QGU) (kWh/year) = internal gains + solar gains. 

Nic = (Qt + Qv – QGU)/ Sn,           (3) 

where Sn = net floor area (m2). The methodology to compute the cooling needs (Nvc, kWh/m2·year) 

(Eq. 4) is very similar. For the heating needs, the Heating Degree-Days (HDD) parameter was used 

(Popescu et al., 2009); while for the cooling needs, we applied the air–sun temperature (fictitious 

temperature that represents the combined effect of solar radiation in the environment and the heat 

exchanges by radiation and convection between the surface and surroundings). These methodologies 

can be stated as complementary, because while for the winter the gains minimize the needs and the 

losses increase them, for the summer it is the opposite.  

Nvc = [Qg × (1-η)] / Sn,                (4) 

where Qg = total gains (kWh/year), defined as the sum between gains by air exchange and the total 

net gains, and (1-η) is utilization factor of solar and internal gains in the cooling season. Differences 
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in features like HDD, average monthly solar radiation (kWh/m2.month) and months of heating season 

result in different needs of households depending on the location. Generally, the residential buildings 

stock is not equally distributed in a country; accordingly, the HDD were weighted based on the 

population distribution in the different Portuguese areas.  

We derived the total heating ESD for the residential buildings in year n (NiTn, kWh/year) as 

described in Eq. 5, and for cooling energy demand (NvTn, kWh/year) by Eq. 6. 

NiTn = Σ (Nic[N,S;SH,MA;<1990,1990-2005,>2005] × Sn[N,S;SH,MA] × HouTn [N,S;SH,MA;<1990,1990-2005,>2005]),     (5) 

NvTn = Σ (Nvc[N,S;SH,MA;<1990,1990-2005,>2005] × Sn[N,S;SH,MA] × HouTn[N,S;SH,MA;<1990,1990-2005,>2005]),    (6) 

where Sn [N,S; SH,MA] states for the households average area (m2) according to location (N – North, S – 

South) and type (SH – single house, MA – multi apartment) and HouTn[N,S; SH,MA; <1990, 1990-2005,>2005] refers 

to the number of households in the year n for each location, type and age. 

Water Heating 

Energy for water heating refers to the useful energy needed to heat Domestic Hot Water (DHW) until 

60°C, for bathing and washing and primarily depends on the number of persons per household. We 

estimated the energy needed for DHW per household for the year n (Dhwn, kWh/year·household) 

through Eq. 7: 

Dhwn = [PHn × CRdhw × ΔT × nd × 4187] / 3600000,       (7) 

where CRdhw refers to the daily average water consumption for DHW (liters), ∆T states to the 

temperature increase needed (45ºC) to reach the reference temperature in hot water, and nd the number 

of consumption days. The total ESD for DHW (DhwTn, kWh/year) can be written as (Eq. 8): 

DhwTn= Σ (Dhwn ×HouTn[N,S;SH,MA] × Odhwn),            (8) 

where Odhwn is the ownership rate of DWH equipment in year n (%); HouTn [N/S, SH/MA] is the number of 

households in the year n by location and type. 

Cooking 

The energy service demand for cooking in year n (Cn, kWh/year) was estimated through (Eq. 9): 

Cn = Cook × Ocookn ×HouTn,          (9) 

where Cook is the useful energy needed for cooking per household (kWh/year·household) and Ocookn 

the ownership rate of cooking equipment (%). 
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Refrigeration and Washing Machines 

The method to estimate the energy demand for refrigeration and washing machines (RWMn) can be 

described as a function of four elements: ownership of each appliance a in year n (i.e. refrigeration 

equipment, cloth washing and drying machines and dishwashers) (Oan, %), ownership of equipment 

per efficiency class (Oen, %), useful energy needed per equipment efficiency class e in year n (Een, 

kWh/year) and number of households (Eq. 10): 

RWMn = Σa [Oan ×HouTn × (Σe Oen × Een)].          (10) 

Lighting 

The number of light bulbs is the main condition for the demand of lighting services (Ln, kWh/year); 

therefore, we take into account the number of bulbs per household and their market share (e.g. LED 

(Light-Emitting Diode), incandescent light bulbs) (LBn) as well as its efficiencies to obtain the 

specific useful energy per light bulb in the base year (El, kWh). With this value and considering it 

constant for the future, we obtained ESD for lighting from Eq. 11: 

Ln = El × HouTn × LBn.         (11) 

Other Electrics 

The Other Electrics (OE) end-use in residential households includes electric appliances like 

televisions, computers, audio equipment and others. In recent years, the OE had increasing trends due 

to high penetration of small electric devices. Since there is no detailed data on these equipment 

ownerships and its efficiencies, we considered a simplified method stating the final energy 

consumption for OE equal to the useful energy needs. Useful energy per household for the base year 

(OEn0, kWh), from which the projections are made, is defined by Eq. 12, where Eoen0 is the final 

energy for other electrics. 

OEn0 = Eoen0 / HouTn0.           (12) 

For the future, an annual growth rate was considered to increase the OE energy demand (Eq. 13), 

where OEn (kWh) represents the useful energy demand in the year n for OE appliances and ten the 

growth rate of OE energy consumption from year n-1 to year n. 

OEn = [OEn-1 × (1 + ten)] × HouTn.          (13) 

4.2.1.2 Assumptions for Portugal 

Energy services can differ widely between countries due to cultural and social drivers (Sovacool, 

2011). Portugal was used as a case study, fourfold: 1) the location in Southern Europe, targeted as one 

of the most likely climate impacted regions on thermal comfort; 2) the expected increasing energy 

needs to achieve comparable energy per capita to other EU countries - Portugal had in 2009, a per 

capita energy consumption below almost all EU countries (23% below EU27 average), even when 
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compared to countries with similar climate conditions like Spain (12%) and Italy (15%); 3) the 

absence of comprehensive energy demand studies for Portugal, or with a focus only on electricity 

demand (e.g. Boucinha et al., 2006); 4) the publication of a recent study (i.e. DGEG, 2011b) showing 

profound changes in energy consumption habits in the Portuguese residential buildings, which makes 

this study very timely. 

Since 1990, total Portuguese final energy consumption has been steadily growing (about 2.5%/year), 

with 1.0%/year specifically in residential buildings (DGEG, 2011a). Residential sector is the third 

most consuming sector after transports and industry, representing 17% to 19% of the total final energy 

consumption from 1990 to 2010.  

Energy demand projections usually assume different population scenarios to accommodate future 

uncertainty (e.g. Auffhammer and Aroonruengsawat, 2011). Variations of population or number of 

households affect all the end-uses in a similar way. Despite acknowledging the importance of the role 

of population evolution in future energy demand (Brounen et al., 2012), we considered only one 

population scenario in our analysis once the scope of this paper is to focus on drivers that are usually 

not assessed in ESD projection. 

The population scenario until 2050 resulted from an update of the 2010 value from the new census 

(INE, 2011a) and the growth rates were taken from the central scenario of the Portuguese National 

Statistics (INE, 2009). It is deemed an increase of population until 2035 reaching almost 11 million 

people, followed by a decrease afterwards, achieving a value around 2050 similar to current values. It 

is expected a decrease in the number of persons per household in line with the trend since 1990, 

justified by a greater number of single-parent families and increasing income and urbanization of the 

population (Price et al., 1998). The scenario is characterized by the trends presented in Table 4.1, 

where the projections of GDP per capita are presented only for illustrative purposes. 

Table 4.1 - Demographic and economic variables evolution for Portugal until 2050 

Parameter 2005 2010 2020 2030 2040 2050 

Annual population 
(thousands) 10570 10556 10725 10791 10768 10588 

Persons per household 
(Inhabitant /household) 2.70 2.59 2.42 2.26 2.11 1.96 

GDP per capita 
(1000€2000/person) 12.75 12.41 14.20 18.50 24.19 31.93 

Although the Portuguese dwelling stock comprised near 5.47 million in 2005 and 5.88 million 

housing units in 2010 (INE, 2011b) only households were considered in this work due to its effective 

occupancy. Hence, 3.92 million households in 2005 growing to 4.08 million in 2010 were considered. 

To classify the households by location, type and age for 2005 we firstly compiled data from the 

Portuguese National Statistics (INE, 2001; INE, 2008) with available information on type and 
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location. This was updated for 2010 with recent information from DGEG (2011a). Due to lack of 

studies, the 2010 shares were considered to be constant over the period of study, possibly omitting 

substantial future lifestyle changes. The estimation of the residential households’ stock for the time 

horizon, following Eq. 2 and according to the expected evolution of demographic variables (Table 

4.1) resulted in a 38% growth of the number of households from 2005 to 2050.  

To calculate the future stock of existing households by typology, an approach based on demolition 

and renovation rates was used. We assumed that only “pre-1990” households are properly subjected 

to demolition and renovation. After renovation, the household is considered to be as new, having the 

characteristics of a “post 2005” household. We applied the renovation and demolition rates for 

dwellings available in National Construction and Households Statistics (INE, 2011b) (0.019%/year 

and 0.053%/year respectively) to the existing household stock until 2020, and doubled rates 

afterwards, following the average European value (Anström et al. 2010). Table 4.2 presents the 

number of households per category for the base year and 2050. When compared with the rates 

mentioned by Anström et al. (2010) for Portugal, calculated as a mean value of France and Spain 

(0.082%/year), we found them smaller, probably explained by the existence in Portugal of policies 

promoting the construction of new households. 

Table 4.2 – Portuguese households grouped by age, location and type for 2005 and 2050 

 
Households Stock per category (thousands) 2005|2050 

Year Household 
Typology 

Households 
pre-1990 

existing in 
year n (2005 

| 2050) 

Proportion 
on total 

households’ 
stock (2005 

| 2050) 

Households 
built between 

1990-2005 
existing in 

year n (2005 | 
2050) 

Proportion 
on total 

households’ 
stock (2005 

| 2050) 

Households 
built post 2005 
existing in year 
n (2005 | 2050) 

Proportion 
on total 

households’ 
stock (2005 

| 2050) 

Total 
(2005 | 
2050) 

n= 2005 
|2050 

Single 
House 
North 

1158 | 904 30% | 17% 352 | 352 9% | 7% - | 552 0% | 10% 

3915 | 
5389 

Multi-
Apartment 

North 
482 | 593 12% | 11% 147 | 147 4% | 3% - | 362 0% | 7% 

Single 
House 
South 

745 | 524 19% | 10% 227 | 227 6% | 4% -| 320 0% | 6% 

Multi-
Apartment 

South 
616 | 758 16%| 14% 187 | 187 5% | 3% -| 463 0% | 9% 

 
Total 3002 | 2779 77% | 52% 913 | 913 23% | 17% - | 1697 0% | 31% 

 

The average household size (m2) by type of household and location were obtained in DGEG, 2011b). 

In 2005, Portugal had a living space per person of around 37m2 similar to United Kingdom value in 

1991 (Boardman et al., 2005) showing large possibilities of increasing. For the future, we used 
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differentiated growth rates for households in the North and South, following past trends (Table 4.3). 

The annual rate of change is constant over the years assuming that the trend in household’s sizes 

growth will remain stable. 

Table 4.3 – Household average size by type and location in 2005 and 2050 

Household type and location 2005 2050 

Single House North (m2) 101 121 

Multi-Apartment North (m2) 80 95 

Single House South (m2) 97 118 

Multi-Apartment South (m2) 92 112 

As stated in the beginning of Section 4.2, ESD estimations rely on the useful energy demand in the 

base year (2005). The computation of the useful energy provided according to Eq. 1 used reverse 

engineering, where the estimation of the useful energy was supported by the best available data 

through a decomposition of the Portuguese national energy balances (DGEG, 2011a) apportioning 

final energy consumption at the initial year to the various end-uses and using the performance 

characteristics of the existing technology stock compiled from several sources (e.g. ADENE (2006), 

INE (2008), REMODECE (2008), DGEG (2011b)) Figure 4.1 presents the share of final energy 

consumption per end-use in the Portuguese residential buildings in 2005. “Other Electric Equipment” 

include refrigeration (≈8%), washing and drying machines (≈4%) and other small electric appliances 

(≈10%), which consider computers. 

 

Figure 4.1 – Portuguese residential final energy consumption by end-use in 2005 

The methods to estimate the demand for the different end-uses until 2050 are explained, in detail, in 

the following section.  

4.2.1.3 Reference scenario and sensitivity analysis  

A Reference (REF) scenario was build intending to be a benchmark for the analysis of ESD 

projections. REF is consistent with current expectations followed by past recent trends, being a 
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plausible scenario for Portugal. REF is supported by a storyline previously used for prospective 

studies in Portugal (Seixas et al., 2012) and is a comprehensive scenario including all end-use sectors 

(i.e. Residential, Industry, Transports, Services and Agriculture). 

Projections of ESD can vary substantially according to the uncertainty behind the evolution of the 

parameters in each end-use. Therefore, a sensitivity analysis was performed taking variations over 

selected parameters to assess its uncertainties and specific impacts on future energy services 

estimations (e.g. 2050). A range of plausible variations supported on acceptable limits within a logical 

decision framework for each parameter was adopted, instead of systematic variations over all 

parameters, once this approach would probably not represent likely futures, not capturing individual 

end-use specificities. The analysis resulted in more than 140 sensitivity analysis scenarios, allowing 

the understanding on which parameters have more impact and uncertainty on ESD.  

Sensitivity analysis in similar studies, have been done through the assessment of variables that might 

affect directly final energy consumption, like primary energy prices (Daioglou et al. (2012) and 

Auffhammer and Aroonruengsawat (2011)); discount rates (Simões et al., 2008), climate change 

induced variations on heating and cooling consumption (Li et al. (2012)). Herein, we focus our 

analysis on the drivers governing energy services demand instead energy consumption. The approach 

adopted to perform the sensitivity analysis aim to capture the weight of household infrastructure, 

social, climate and behavioral changes in the energy services demand, including the uncertainty 

associated with specific parameters. 

Heating and cooling needs for REF were estimated following Eq. 3 and 4 for the different household 

archetypes and the results are described in Table 4.4. Twelve household archetypes were defined 

based on available information and national expertise on houses construction characteristics. 

Households constructed “post 2005” are assigned the best building envelope characteristics according 

to energy standards as defined in the Thermal Regulation for Buildings for Portugal (Decree Law n. º 

80/2006). According to Panão et al. (2011), heating energy demand calculations through the described 

methodology are reliable for a great number of buildings in Portugal, while for the cooling energy 

needs calculations, the methodology does not reproduce properly the thermal behavior of buildings. 

Albeit, the results achieved are in line with the expectations of Panão et al. (2011), that considers that 

traditional and passive architecture shows reduced cooling energy needs, under the Portuguese 

climate conditions. 

Table 4.4 - Heating and cooling needs for different household types for Portugal in REF scenario 

Heating needs (Nic) (kWh/m2·year) 

Household Type Households pre 
1990 Households 1990-2005 Households post 

2005 

Single House North 267.4 139.5 95.3 
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Multi-Apartment North 102.4 94.5 91.3 

Single House South 94.6 76.7 53.7 

Multi-Apartment South 68.7 57.0 51.4 

Cooling needs (Nvc) (kWh/m2·year) 

Household Type Households pre 
1990 

Households between 1990 and 
2005 

Households post 
2005 

Single House North 8.3 9.6 10.3 

Multi-Apartment North 6.9 8.3 8.8 

Single House and Multi-Apartment 
South 15.5 1.5 16.9 

Table 4.5 describes the assumptions for the parameters of REF scenario for all the end-uses and the 

variations assessed on the sensitivity analysis. 

Table 4.5 – Reference scenario parameters and sensitivity analysis variations 

 Reference Scenario Sensitivity analysis  

End-uses Parameters (2005 and 
future evolution) 

Comment/Sources (variations to the REF) 

Space Heating 
and Cooling 

[Eq. 5 and Eq. 6] 

Household area as in Table 
4.3 - 

1. Half of the growth rate 
2. Keep constant as in 2010 average areas 
3. Double of the growth rate 

Nic and Nvc as in Table 4.4 
and constant for the future. - 

1. -30% to +30% (with 5% steps) for 
heating 

2. -10% to +83% for cooling 

Growth of 0.25%/year for 
both heating and cooling 
thermal comfort levels. 

In 2005, the effective 
energy consumption 
(thermal comfort) for 
heating and cooling 
represented only 10% of 
the total energy needs. 
Projections of increase 
are duly justified by an 
increase of thermal 
comfort levels inside 
households. 

1. Keep constant as in 2005 figure (0%) 
2. Increase of 1.5, 2, 2.5 and 3% each 5 

year 

Water Heating  

[Eq. 7 and Eq. 8] 

Crdhw = 40 liters per person 
per day, constant until 2050 

Decree Law n. º 80/2006 3. -10% to 50% (between 36 to 60 liters) 

∆T = 45°C, constant until 
2050 

Decree Law n. º 80/2006 4. -10% to +10% (between 40.5°C to 
49.5°C) 

nd = 183 days/year, constant 
until 2050 

Expert judgment 5. -5% to +70% figures (between 173 
days to 310 days) 

Odhwn = 98% in 2005. 100% 
penetration was assumed 

Simões et al. (2008) 1. Keep constant as in 2010 figure (i.e. 
98%) 



 

 151 

from 2010 onwards. 2. Increase to 99% in 2015 and constant 
afterwards 

PHn as described in Table 1 - 
1. Keep constant as in 2010 
2. Double of the growth rate 
3. Half of the growth rate 

Cooking 

[Eq. 9] 

Ocookn = 100% in 2005 INE (2008) - 

Cook =1450 
kWh/year·household until 
2050 

Expert judgment 1. Variations of -30% to +30% (from 
≈1000 to 1900kWh/year) 

Refrigeration  

[Eq. 10] 

Oan for freezers: growing from 
68% (2005) to 71% in 2015 
and stabilizing afterwards. 

The main difficulty 
regarding the calculation 
of electric equipment’s 
demand is the availability 
of data with the necessary 
desegregation level. It 
was necessary to review 
and harmonize several 
sources of information 
(e.g. [3]; [40]; [43]; [56]) 
and to make assumptions 
regarding penetration rate 
of electrical equipment’s, 
efficiency classes’ 
breakdown for the base 
year and annual average 
consumption. 

Freezers ownership rate (Oan) 
1. Keep constant as in 2010 
2. 1% to 2% annual increase (reaching 

saturation in 2050 and 2030 respectively) 
3. Specific energy needs (Een) 30% to 
+30% 

Washing/Drying 
Machines 

Oan for dish washing 
machines: 35% in 2005 and 
increasing until 89% in 2050. 

Dish washing machines 
cycles: 4 per week 

Cloth drying machine cycles: 
2 per week 

Example for Washing Machines 
Ownership rate (Oan): 

1. Keep constant growth rate as in 2010 
2. Higher growth rate (e.g. reaching 

saturation in 2040) 
 
Specific energy needs per year (Een) 

1. Washing cycles per week – 2, 3, 5, 6 and 
7. 

Lighting 

[Eq. 11] 

LBn =11.4 light bulbs per 
household in 2005 

A systematic increase 
(1.4%/year) in the number of 
light bulbs is assumed. 

MEI (2008) 1. Keep constant as in 2010; 
2. 1% to 4% annual increase 

Specific energy needs (El) 
=35.96 kWh/bulb 

As explained in Section 
4.2.2.1 1. -30% to +30% 

Other Electrics 

[Eq. 13] 
Growth rate, ten = 0.5%/year Expert judgment 2. 0.75% to 3%/year from 2015 onwards 

As described in the above table, there are several parameters influencing the energy services demand 

for each end-use. Climate change, consumer behavior associated with the use of heating and cooling 

equipment (i.e. thermal comfort) and household characteristics (e.g. location, age, type) influencing 

directly the energy needs, are the drivers behind energy services demand for heating and cooling. For 

the other end-uses, consumer behavior, ownership of equipment and specific energy needs are also 

important drivers. A more detailed explanation of the values and variations used in the sensitivity 

analysis is presented. 

Heating/cooling energy demand derived from Eq. 3 and Eq. 4 and presented in Table 4.4, indicates 

the value of energy needs for a household, considering the hypothesis of a permanent heated/cooled 

area during the heating/cooling season. These needs are theoretical since in residential buildings, the 
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actual cooled and heated area represents only a small fraction of a household and the devices that 

supply this demand are switched-on only part of the time. As mentioned by Asimakopoulos et al. 

(2012), the partial coverage of the energy needs due to social and economic reasons is difficult to 

predict (i.e. evolution of poverty). Therefore, in sensitivity analysis addressing heating and cooling 

ESD, we explored the uncertainty patterns on thermal comfort levels evolution, with variations 

aiming to capture an increasing convergence between the energy needs inside households and 

effective energy consumption to supply these needs.   

According to Santos and Miranda (2012), a generalized increase of monthly cooling energy demand 

and a reduction of monthly heating energy demand, as well as a reduction of the heating season and a 

consequent extension of the cooling season is likely for Portugal due to expected climate change. 

Asimakopoulos et al. (2012) identifies for Greece an increase in cooling needs around 83% in 2041-

2050 and an average reduction of the heating energy needs to about 22.4% for the same period (A1B 

scenario). The variations considered for the heating and cooling specific energy needs accommodated 

this range. Households’ area projections were also assessed through variations in the growth rate to 

evaluate possible changes in Portuguese households. 

Concerning water heating (DHW) demand, variations on the penetration rate of DHW equipment 

below saturation was considered, as well as changes of future levels of water consumption, variations 

on the temperature to warm water and on the number of water consumption days. Since the number of 

persons per household also influences the DHW energy needs, we changed the future expectations of 

this parameter to accommodate uncertainty on the number of persons of the Portuguese families in the 

future. 

The evolution of consumption patterns justifies future variations in the energy needed for cooking 

(Cook) (e.g. going out for dinner more times) as for washing and drying machines (e.g. less washing 

cycles per week), giving rationale to evaluate the specific useful energy needs (Een). 

For lighting and considering that several energy policies are targeting this end-use to promote 

technology development, as increased LED penetration, the assumption that the useful energy per 

light bulb will be constant as used in the REF might not hold true. Furthermore, the number of 

consumption hours can also vary. To take all this in consideration in the sensitivity analysis we varied 

the value of El. The number of light bulbs per household was also changed, increasing past growth 

trends. 

For the OE end-use, a wide range of growth rates was considered to estimate future energy needs 

aiming to capture plausible future evolutions derived from changes in lifestyles, households’ occupant 

behavior and growing ownership of this equipment. 

This methodology neglects the influence of price and income elasticity of demand for energy services 

as well as a detailed analysis on the role that household occupants’ behavior may have on energy 
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consumption patterns (this can be further assessed by the analysis of information resulting from new 

experiences with smart metering). 

4.2.2. Final energy demand 

As previously stated, the demand for future energy services is satisfied by a technology portfolio and 

the respective final energy consumption profile, and thus technological development, energy 

efficiency improvements and insulation measures, among others, is accommodated through the 

TIMES_PT model (Simões et al., 2008). This supports our assumption that projections relying on 

energy services makes easier to understand and assess the role of each component in the final energy 

planning and policy. 

Once we intended to evaluate the range of the parameters used in ESD sensitivity analysis, only the 

highest and lowest variations scenarios for each end-use (i.e. 20 scenarios selected plus the REF) are 

presented for further analysis. 

TIMES_PT is a peer-reviewed linear programming optimization bottom-up technology model that 

results from the implementation for Portugal of the TIMES model generator, developed by Energy 

Technology Systems Analysis Programme (ETSAP) of the International Energy Agency. The generic 

model structure can be adapted to simulate a particular energy system at local, national or multi 

regional levels. 

In these types of models, primary and final energy carriers compete with each other and thus the 

energy demand exogenously fed into the model is the demand for energy services and materials. 

Depending on the availability and prices of primary energy resources introduced in the model, the 

quantities of final energy carriers (as electricity or natural gas) are endogenously generated while 

trying to satisfy the demand for energy services at minimum total system costs. The big advantage 

with this kind of large energy system models is that they can capture the competition of limited 

resources and track the energy flows from primary energy all the way to the demand. More 

information on TIMES development and equations can be found in Loulou et al. (2005a, 2005b) and 

Loulou et al. (2007). 

The TIMES_PT model represents the energy system of Portugal in 2005 and its possible long-term 

developments until 2050. The actual system encompasses all the steps from primary resources in 

place to the supply of the energy services demanded by energy consumers, through the chain of 

processes, which transform, transport, distribute and convert energy into services. Besides residential 

buildings, the model also represents the transport, services, industry and agriculture end-use sectors as 

well as primary energy supply, electricity generation and refining. Possible future developments of 

the system are driven by reference demands for energy services (e.g. commercial lighting, residential 

space heating, residential lighting and many others), the supply curves of the resources (e.g. amount 
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available at each price level), along with possible environmental constraints, which are provided as 

exogenous inputs to the model. 

The model outputs include installed capacities for electricity production, primary and final energy 

consumption, energy trade and greenhouse gases emissions in 5-year time steps (i.e. 2005, 2010, 

2015, etc.) TIMES_PT is supported by an up to date technological database from end-use 

technologies (e.g. boilers, refrigerators, cars) to energy production facilities, characterized by its 

economic and technological parameters. Specifically, on the residential sector, the database possesses 

more than 500 heating, cooling, water heating, cooking technologies as well as lighting and electric 

equipment (e.g. refrigerators, washing, drying and dish washing machines) divided per type and/or 

efficiency classes. The model also considers the improvement of the energy performance of existing 

buildings through higher thermal insulation levels on the envelope components (e.g. roof, floor and 

internal and external walls) and replacement of windows. TIMES_PT model has been used 

extensively for different purposes: research (Simões et al. 2008) and policy support studies as in 

Seixas et al. (2008), Seixas et al. (2010) and Seixas et al. (2012), with a close interaction and 

collaboration with private and public national energy stakeholders. 

The model was calibrated for 2005 and validated to 2010 according to final energy consumption 

statistics (DGEG 2011a), electricity installed capacity and energy trade (Seixas et al., 2012), and 

includes national energy related policies goals (e.g. energy efficiency targets from the National Action 

Plan for Energy Efficiency (MEI, 2008). Primary energy prices were taken from the Current Policies 

scenario of the World Energy Outlook 2011 (IEA, 2011) until 2035, and linear growth onwards. 

Climate policy (e.g. Carbon Dioxide (CO2) cap or price) is not considered once we wanted to analyze 

the impact of the ESD variations on final energy consumption without the influence of a CO2 

constraint. 

4.3 Results 
In the next sections, we present and assess the results of energy services demand and final energy for 

each end-use of the REF scenario and the sensitivity analysis.  

4.3.1. Projections of future energy services demand  

4.3.1.1 Reference scenario 

The estimates of the ESD REF scenario show an increase of almost 80% in 2050 compared to 2005 

values, near 1.3%/year. Regardless the end-use considered, it is expected an increasing energy 

demand, explained by the introduction of new electric equipment, more hours of use of computers and 

televisions, higher penetration of electric appliances and increasing thermal comfort levels converging 
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to European figures (Figure 4.2). Added to all these factors, the underlying role of socioeconomic 

factors and changes in the building stock also has a high effect on these developments. 

 

Figure 4.2 – Energy services demand trends for the different end-uses until 2050 (REF scenario) 

Space heating is projected to continue growing until 2050 (2% per year), representing near 28% of 

total ESD, due to increased levels of thermal comfort and ownership (almost all households will have 

heating systems). Regarding space cooling services demand, the increase is sharper (more than 

twofold), explained by the combination of: 1) low starting point in 2005 (i.e. low penetration) and 2) 

future increase of thermal comfort levels. These growing trends on thermal comfort inside households 

are supported by statistical data around Europe. Opposite to the findings of Rosa-Flores and Gálvez 

(2010) to Mexico, where changes affecting water heating and cooking promise to be more important 

that those affecting other electricity uses; for Portugal, we found that water heating demand has the 

lower growth rate from 2005-2050, being almost constant, as a result of fewer inhabitants per 

household and a decrease of the Portuguese population. All other end-uses demand grows more or 

less depending on the level of penetration in 2005 and the future ownership expectations. This 

increasing use is influenced for example by cheaper appliances, increased personal wealth and 

individualized lifestyles meaning that one household may have multiple versions of the same 

appliance. 

For validation purposes, the computed ESD of the REF was performed for 2010, through the 

comparison with the final energy consumption in residential households for that year. It was found 

that our calculated energy services for heating and cooling, supported on the useful energy needs from 

Table 4.4, surpass final energy consumption. Final energy consumption represented around 10% of 

the estimated ESD, which is line with the information described in Decree Law n. º 80/2006. For the 

other end-uses it is more difficult to make such an assessment but differences on final energy 

consumption and energy services can be explained by different factors, which are not fully captured 

by our calculations. Firstly, the useful energy computed for the several end-uses is theoretical and is 
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influenced by factors such as households’ occupant behavior through equipment utilization. Secondly, 

and even though we considered only households and not all the dwelling stock, households are not 

constantly occupied; therefore, not heated, cooled and using electrical equipment. Thirdly, when 

occupied, room conditioning is not applied all the time, for all the household area to the same indoor 

temperature. Finally, changes in the inter-annual HDD and energy prices may also explain less energy 

consumption. All this, fallout in lower final energy consumption than estimated ESD, thus we can say 

that energy services are currently in Portugal not being fully satisfied. 

4.3.1.2 Sensitivity analysis  

The trends of ESD for REF scenario and sensitivity scenarios, according to variations of the 

parameters used to compute energy services demand for heating are presented in Figure 4.3. 

Variations over households’ area (scenarios A1 to A3); thermal comfort (T1 to T5) and energy needs 

(N1-N12) are highlighted. For heating, the T5 and T1 scenarios represent the highest and lowest 

variation of ESD, all the other variations fall within this range. Therefore, these two scenarios were 

used as TIMES_PT inputs for assessing the final energy demand to fulfill heating needs. Thermal 

comfort is the main driver governing the heating ESD. 

 

Figure 4.3 – REF and sensitivity analysis scenarios assessed for heating demand 

Table 4.6 summarizes the impact of the variations for each end-use on the energy services demand of 

the REF scenario in 2050, from where were chosen the highest and lowest variations. 
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Table 4.6 – Impact of the parameters variations on the ESD of the REF scenario in 2050 

End-Uses Parameter Impact in ESD REF (2050) 

Space Heating 

[Eq. 3 and Eq. 5] 

Households Area (Sn[N/S, SH/MA, <1990, 1990-2005,>2005]) -15% to +18% 

Specific energy needs of new households 
("#$[&/(,(*/+,,			./001]) -6% to +6% 

Thermal Comfort -47% to +84% 

Space Cooling 

[Eq. 4 and Eq. 6] 

Households Area (Sn[N/S, SH/MA, <1990, 1990-2005,>2005]) -16% a +19% 

Specific energy needs of new households 
("4$[&/(,(*/+,,			./001]) -10% to +83% 

Thermal Comfort -47% to +84% 

Water Heating 

[Eq. 7 and Eq. 8] 

Ownership rate (Odhwn) -2.5% to -1% 

Temperature increase (∆6) -10% to +10% 

Daily average water consumption (CRdhw) -10% to +50% 

Number of water consumption days (nd) -5% to +70% 

Persons per household (PHn) -25% to +32% 

Cooking 

[Eq. 9] 
Specific energy needs (Cook) -30% to +30% 

Refrigeration 

[Eq. 10] 

Freezers Ownership rate (Oan) -4% to +16% 

Specific energy needs (Een) -30% to +30% 

Dish washing machines 

[Eq. 10] 

Ownership rate (Oan) -51% to +21% 

Specific energy needs (Een) -50% a +75% 

Cloth drying machines 

[Eq. 10] 

Ownership rate (Oan) -52% a +68% 

Specific energy needs (Een) +1% to +7% 

Cloth washing machines 

[Eq. 10] 
Specific energy needs (Een) -5% to +21% 

Lighting 

[Eq. 11] 

Number of light bulbs per household (LBn) -40% to +158% 

Specific energy needs (El) -30% to +30% 

Other Electrics 

[Eq. 13] 
Energy needs (OEn) +9% to +136% 

The results from the sensitivity analysis clearly demonstrate the relevance of supporting energy 

demand projections on energy services, allowing a clear knowledge of the assumptions behind them 

and the importance of each parameter: 

- For heating and cooling, the results indicate that the uncertainty associated with the increase of 

thermal comfort overcomes the uncertainty on the expansion in households’ size and on thermal 

behavior of buildings due to e.g. climate change. These results are in line with the ones presented by 

Young and Steemers (2011), where the behavioral patterns of air conditioning equipment use were the 

most influential elements in household cooling energy consumption. The physical characteristics of 

buildings appear to be marginal in terms of their effect on cooling energy consumption. 
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- For water heating, and since both the ownership of equipment and the range of temperature 

variations is not wide, the highest uncertainty is on the assumptions on social structure (i.e. family 

size) of a household and on the consumer behavior (water use and number of days of consumption), 

with an impact that could vary from -25% to 70% in the energy service demand of 2050, when 

compared to REF. 

- For the remaining end-uses, there is a pattern, where in general high variations in the specific energy 

needs related to changes in consumer behavior have a stronger impact in the ESD than the penetration 

rate of equipment. This holds true especially for the end-uses where the ownership of equipment is 

already high. Rosa-Flores and Gálvez (2010) also indicates technology penetration and utilization of 

equipment as very important variables affecting home energy use. 

4.3.2. Impact of energy services demand projections on final energy  

Final energy consumption to satisfy the projected ESD is an output of the TIMES_PT model, 

allowing to understand the role of technology and fuel switches on future energy demand. Our goal is 

to assess how and at what extent variations on thermal comfort, climate conditions and equipment 

ownership would change the patterns of final energy consumption. For the case of residential sector, 

TIMES model adds a layer of technology considering energy efficiency improvements and increasing 

thermal quality of the building envelope through insulation measures. 

4.3.2.1 Reference scenario 

Notwithstanding the significant growth (1.3%/year) in the demand for energy services, the final 

energy to satisfy it shows a lower growth (0.1%/year). This is explained in general by an increasing 

efficiency of the energy system through diversification of the fuel supply: changes from biomass, oil, 

heat, and liquefied petroleum gas to an increase use of solar collectors (8%/year); natural gas 

(3%/year) and electricity equipment (1%/year), and insulation measures improving the thermal 

behavior of existing buildings (4%/year). Previous work by Ruijven et al. (2010) projected fuel use in 

Western Europe to remain quite stable until 2030. The weight of residential sector in the total energy 

consumption in 2050 (15%) is projected to remain similar to 2005 (17%). 

The evolution of the ESD and final energy consumption between 2005 and 2050 for REF by end-use 

is presented in Figure 4.4. For visualization purposes kitchen appliances (e.g. washing machines, 

refrigeration) demand were all included on the other electric equipment. The decrease of energy 

consumption in the long run for cooking, lighting and space heating is fully explained by more 

efficient technologies based on natural gas and electricity in the first case, LEDs and compact 

fluorescent bulbs in the second and heat pumps and insulation measures in the latter. Our results for 

cooking are upheld by the results of Daioglou et al. (2012) which have also stated that the energy 

demand for cooking falls in households due to fuel switching. These results indicate that, in these end-



 

 159 

uses, the role of technology may significantly overweight behavioral practices and socio-economic 

changes. 

The decreasing trend results for heating energy consumption until 2050 are consistent with those 

presented in other studies (e.g. Aguiar et al. (2002), Olonscheck et al. (2011) and Rosenberg et al. 

(2012)). Straightforward comparisons are not possible since timeframes and baseline assumptions are 

not the same as in Aguiar et al. (2002), and diverse geographical and climate conditions are different 

as in Olonscheck et al. (2011) and Rosenberg et al. (2012). However, it should be considered that the 

Portuguese households have historically different characteristics regarding insulation measures that 

affect the thermal comfort levels. As demonstrated by the current energy per capita consumption, 

comparing to both EU27 average and with countries with similar climate conditions, Portugal still has 

lower levels of consumption as well as thermal comfort levels inside households. This supports our 

results that despite future increasing demand for space heating energy services, this might outcome in 

a small decrease of final energy consumption in 2050 compared to 2005. 

We find that energy consumption for cooling will keep increasing despite technological energy 

efficiency improvements. Young and Steemers (2011) also stated that the domestic cooling likely 

increase may undermine energy efficiency strategies related to the improvement of building design 

and fabric, and environmental systems for lighting, heating and cooling. Our findings for air 

conditioning evolution for Portugal (i.e. Mediterranean climate) are similar with the ones presented by 

others authors for similar climate conditions: Xu et al. (2012) for California identified that cooling 

energy consumption increase and heating energy consumption decrease over the next 100 years; Pilli-

Sihvola et al. (2010) presented results for Southern Europe, where increases in cooling outweighed 

decrease in heating. 

Concerning final energy demand for DHW, it is expected an increase since the energy services will be 

guaranteed with the use of less efficient renewable energy sources like boilers running on biomass 

pellets and solar collectors. Final energy growth rates for Other Electric equipment as refrigeration, 

kitchen appliances and small electric equipment suffer a consumption reduction due to efficiency 

improvements (e.g. refrigerators Class A or higher). Large appliances targeted by the EU Directives 

on labeling and the EU mandatory efficiency standards account for a decreasing share of the total 

consumption. This goes in line with Ruijven et al. (2010) findings, where technology improvement 

correlates negatively with future energy use. Smaller electric equipment (e.g. computers) raises their 

final energy consumption as a result of increasing equipment ownership, offsetting expected energy 

efficiency improvements. For these latest end-uses, and besides the likely continued improvements on 

energy efficiency, the policy focus and monitoring should be also devoted for consumers’ behavior. 

Brounen et al. (2012) in their results also showed that the variation in residential energy consumption 

is a function of both technical characteristics of the dwelling and the composition and background of a 

household. 
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Figure 4.4 – Comparison between the evolution of the demand for energy services and final energy between 2005 and 2050 for REF 

4.3.2.2 Sensitivity analysis 

Twenty ESD scenarios corresponding to the highest and lowest impact from each parameter for each 

end-use were considered as input for TIMES_PT model to assess its impact on final energy 

consumption. The results for each end-use show that the uncertainty on the assumptions behind the 

parameters is mostly tilted for higher levels of consumption, as illustrated by Figure 4.5. Heating and 

other electric equipment are the end-uses showing stronger impacts on final energy consumption, due 

to their high share in the total Portuguese residential consumption, and the high uncertainty range of 

the parameters (i.e. thermal comfort levels and OE growth rates). For DHW the impact is more 

relevant on lower levels of consumptions, while for lighting is the opposite. In cooking the 

uncertainty is equally distributed to higher and lower consumption. Finally, despite a strong increase 

in the final energy consumption for cooling observed for REF, the impact of uncertainty range of 

parameters is not wide. 

 

Figure 4.5 – Final energy consumption range between the REF and the Highest and Lowest variation scenario of each end-use in 2050 
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Sensitivity analysis results also indicate that extreme variations over energy services parameters from 

the REF could have a strong impact on both energy production and demand supply systems, namely 

by overestimating the production which leads to unnecessary economic costs or underestimated 

demand that induce problems regarding security of supply. 

For illustration purposes, the energy consumption for heating is expected to decrease -0.2% per 

annum in the REF, while, for the High space heating demand scenario (T5) (+84%) the growth rate is 

around 1.5%/year. This trend has an impact on fuel consumption in 2050 compared to the REF: 

electricity (≈+10%; 8 PJ); natural gas (≈+45%; 20 PJ) and oil products (≈+100%; 4 PJ) explained by 

increased adoption of heat pumps, electric heaters and natural gas and oil boilers. In the other hand, a 

Low space heating scenario (T1) (-47%), fallout in a consumption reduction of -2.3% per annum, with 

decrease use of electricity (-7%; 72 to 67 PJ), natural gas (-23%; 44 to 34 PJ) and oil products (-42%) 

in 2050 compared to the REF. No disruptive technological and fuel changes are expected to 

accomplish the ESD uncertainty range. 

For lighting, results estimate for a REF scenario a reduction of -0.51% per annum of the final energy 

consumption. In a Low lighting demand scenario (-40%), the reduction is expected to be sharper (-

1.63%/year) with a 3% reduction of electricity consumption in 2050 compared to REF. In a High 

lighting scenario (+158%), the electricity consumption is expected to increase 10% in 2050 

comparatively to REF, with an annual growth rate of 1.6% per annum for the period under analysis. 

Fouquet and Pearson (2011) also considers that long run trends and the relative stability of the price 

elasticity estimates for lighting suggest that increased efficiency is likely to be eroded by rising 

income levels. This idea falls better in our High scenario assumptions where the number of light bulbs 

per household and the hours of use are higher. 

Our results for both energy services and final energy consumption (REF and sensitivity analysis) 

support our assumption that improved knowledge on ESD drivers help to identify where policies 

should tackle to foster effective energy reduction - both energy efficiency increase as well as the 

drivers behind ESD, especially the ones more related to consumer behavior. As stated by Haas et al. 

(2008) it is necessary a shift from historical trend where efficiency improvements are lower than the 

increase in service demand. 

4.4 Conclusion 
This paper presents a bottom-up methodology to compute ESD in the residential buildings up to 2050. 

This research aims to increase the knowledge on households’ energy consumption profile in 

southwestern European region. Moreover, the research carried out in this paper allows for an 

improved understanding on the data of several parameters that drive the ESD in Portugal, avoiding the 

use of approximate values as in a study for the European households (i.e. Anström et al., 2010). 
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The use of a combined methodological strategy supported by an energy services bottom-up approach 

and a technological model gives insights on the complexity between energy services and energy 

consumption. The use of such a methodology has limitations, mainly due to the need of a substantial 

number of disaggregated information and the necessity of adapting or simplifying some parameters, 

which can increase uncertainty. We find that uncertainty on some end-uses energy services can have 

significant impact on future projections depending on the different parameters range. Nevertheless, 

the influence of underlying parameters on the projections of ESD, have been identified, discussed and 

evaluated through a sensitivity analysis. The weight of different parameters was explored and the 

impacts on ESD showed where monitoring efforts should be devoted in the future to minimize that 

uncertainty. Our results unfold that increased attention should be given to parameters more related to 

household occupants’ behavior (e.g. thermal comfort expectation; electrical equipment use) specially 

associated with heating and other electric equipment services demand. 

Since energy systems investments are made to provide ESD, the work presented herein shows the 

benefits of estimating final energy projections supported on energy services. This turned out to be a 

more understandable approach, in the sense that all the parameters governing ESD and final energy 

can be subject to specific analysis (i.e. climate, technology, behavior), depending on the purpose of 

the study. 

The case study results show that the demand for energy services will continue to increase in the long 

run (mainly cooling and lighting) due to the expected increase of thermal comfort levels and use of 

equipment. The introduction of buildings climate regulation with insulation rules, the compliance of 

energy efficiency policies and the substitution of a significant proportion of appliances, implies that 

the increase of ESD does not induce a similar increase of final energy consumption. Globally, for 

Portuguese households, the REF scenario shows that energy consumption growth is lower (0.1%/year) 

comparing to ESD (1.3%/year), although in some cases like lighting, cooking and space heating, a 

decrease of final energy is observed despite ESD increase. These results indicate that, in these end-

uses, the role of technology may significantly overweight behavioral practices and socio-economic 

changes. 

Ultimately, results from the technological model on sensitivity analysis show that the space heating 

and other electrics are the end-use with higher impact on final energy consumption. However, no 

disruptive technological and fuel changes are expected to accomplish the ESD uncertainty range. 

This paper addresses the heterogeneity of the different end-uses (e.g. floor space and appliance 

ownership) to improve extra options for a detailed analysis, a research gap identified by Ruijven et al. 

(2010) Our results illustrate that energy policies, namely on effective energy consumption reduction, 

should focus specific drivers behind each end-use on both technological and non-technological 

factors. 
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Nomenclature 

Subscripts 

• N,S – location in the country (North or South) 
• SH,MA- type of household (Single House or Multi apartment) 
• <1990, 1990-2005,>2005 – year of construction (before 1990 or between 1990-2005 or after 2005) 

Variables and Parameters 

• CRdhw - daily average water consumption for DHW (liters) 
• Cn - energy service demand for cooking (kWh/year) 
• Cook - useful energy needed for cooking per household (kWh/year·household) 
• Dhwn - useful energy needed for domestic hot water per household (kWh/year·household) 
• DhwTn – energy service demand for DHW (kWh/year) 
• Een - useful energy needed per equipment class (kWh/year) 
• El - specific useful energy per light bulb in the base year (kWh) 
• Eoen0 - final energy for other electrics (kWh) 
• HouTn - number of households  
• LBn - number of bulbs per household (bulbs/household) 
• Ln - energy service demand for lighting (kWh/year) 
• nd - number of water consumption days (days) 
• Nic - heating needs (kWh/m2·year)  
• NiTn - total heating ESD n (kWh/year) 
• NvTn – total cooling ESD (kWh/year) 
• Nvc - cooling needs (kWh/m2·year) 
• Qg - total gains (kWh/year) 
• QGU - total net gains = internal gains + solar gains (kWh/year)  
• Qt - heat lost by the envelope (kWh/year) 
• Qv - heat lost by air exchange (kWh/ year) 
• ∆T - temperature increase needed to reach the reference temperature in hot water (ºC) 
• RWMn – energy service demand for refrigeration and washing machines (kWh/ year) 
• Sn - net floor area (m2) 
• Oan - ownership of each appliance (i.e. refrigeration equipment, cloth washing and drying machines and 

dishwashers) (%)  
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• Ocookn - ownership rate of cooking equipment (%) 
• Odhwn - ownership rate of DWH equipment (%) 
• Oen – ownership rate of kitchen appliances per efficiency class (%)  
• OEn0 - useful energy per household for the base year for OE appliances (kWh/household) 
• OEn - useful energy demand in the year n for OE appliances (kWh) 
• PHn - number of persons per household (inhabitant /household) 
• Popn - annual population (inhabitant) 
• ten - growth rate of OE energy consumption from year n-1 to year n (%)  
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Analytical Framework to support 
Integrated City Energy Planning 

 

ABSTRACT 

Cities are core energy systems to consider towards promoting sustainability and climate protection. 

Multiple data sources are increasingly available at different temporal and spatial resolutions, covering 

the whole city energy system (i.e. supply, transport, distribution, and end-use), which facilitates an 

integrated energy planning towards sustainable energy policies and measures at the city level. This 

paper presents a structured analytical framework integrating multiple and complex data sources, 

models and tools over the city, required to feed an integrated energy planning process to deliver future 

sustainable energy paths, including untapped energy saving potential. The framework deals with the 

data pipeline gathering and analysis tools for a city energy system, and focuses on: 1) residential 

buildings, 2) transport and mobility, 3) other energy demand sectors (i.e. waste, water and sewage 

systems; industries, public lighting, public buildings, services and agriculture), and 4) energy supply 

system, including local renewables. Energy indicators are published in a geographic information 

system platform acting as the communication platform with local stakeholders (e.g. citizens, 

investors, city planners, decision makers) towards a co-design process, to feed an integrated energy-

planning tool. This tool includes a technology based energy system model developed until 2030, 

which generates cost-effective sustainable measures and a multi-criteria assessment, which helps 

prioritizing those measures by considering also social criteria. Selected results for Évora, in Portugal, 

illustrate how the proposed analytical framework integrates different data sources, tools and multi 

scale data granularity, advancing on integrated city energy planning. 
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5.1 Introduction 
The deployment of low carbon technologies for sustainable energy production and use requires the 

active engagement of local and regional communities. Several programmes and plans (e.g. IDB 

(2011); CoM (2012)) have involved cities working towards sustainable development, 

decarbonisation and improving quality of life for their citizens. Cities’ activities affect the 

environment in both negative and positive ways (Dodman et al. (2013), which leads to the need of 

cities to address climate change, reduce energy consumption and increase the use of renewable energy 

through the development of holistic plans rooted in environment, society and economy aspects. 

Though, city authorities will not be able to address increasing energy demands, changing 

demographics and ageing infrastructure, without the support of appropriate methods, and data analysis 

throughout the urban development value chain (WEF, 2016). 

At the same time, it has been recognized that there is a need for an improved comprehensiveness of 

the city planning process towards sustainable energy use driven by integrated approaches (WEF 

(2016); Keirstead et al. (2012); Zanon and Verones (2013)) supported by ex-ante cost-benefit 

evaluation, information and communication technologies and energy systems models. Russo et al. 

(2016) corroborates this need, underlining that planning and management processes are desired to 

support decision making processes in order to design and operate cities infrastructures and services. 

Consequently, innovative tools and models with extensive data gathering and analysis to evaluate and 

perform in-depth analysis of alternative measures, will help pave the way towards long term energy 

planning, fully capturing the economic, technical and social potential of each city in the most efficient 

way. Several authors have presented different perspectives and models for simulating future cities, 

regarding its energy use and planning (e.g. Kostevšek et al. (2013); Yamagata and Seya (213); Yeo 

et al. (2013); Chen and Chen (2015); Fonseca and Schlueter (2015)). 

Keirstead et al. (2012) reviewed 219 papers concluding that, despite the diversity of modelling 

practices of urban energy systems, the studies usually compartmentalize the assessments focusing on 

specific aspects of energy use and mostly use exogenous input data. A few examples; Falke and 

Schnettler (2016) cover only residential buildings for the design of energy supply systems and Aste et 

al. (2016) only evaluates the energy retrofit in public and zero emissions buildings. This split tends to 

miss synergies of technical solutions and of common policy instruments, conducting to serious 

inefficiencies. We argue that the integration of the different energy demand sectors of the city is 

crucial for proper decisions on investments, comparing the cost effectiveness of measures, for a short, 

medium and long term city energy planning. 

Integrated city energy systems have been approached by several authors: Mirakyan and Guio (2013) 

suggested a four phase-scheme for energy planning presenting methods and tools for each phase; 

Zhou et al. (2014) used a fractile-based interval mixed-integer programming to deliver solutions for 
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energy supply, electricity generation, air pollutants mitigation, and carbon dioxide control, among 

others; Neves et al. (2015) identified the need for a holistic perspective to local energy systems 

while using a local energy planning model focused on energy services demand; Cosmi et al. (2015) 

presented a methodology to characterize the whole energy system from policy background, energy 

uses and infrastructures as well as market behavior and community attitude for sustainable 

development; Mirakyan and Guio (2015) discussed the different types of uncertainties related to 

integrated energy planning. 

Although the growing availability of advanced computing and sensing capabilities facilitates the 

access to big data repositories with city information at several levels (Sanz et al., 2015), it still 

requires decision-makers to trust and understand the indicators and tools behind them. In this 

paper, we go beyond the identification and calculation of indicators, instead we depict the 

collection of different data sources and its analysis, and portray the interoperability of diverse 

types of data (with different temporal and spatial dimensions), to provide useful and comprehensive 

information and knowledge to an integrated energy-planning tool while considering all city 

demand sectors and its spatial patterns. 

The novelty of this paper lies in a structured analytical framework to integrate multiple data sources 

and methods, with different temporal and spatial resolution (e.g. door to door surveys, smart meters, 

stakeholders’ engagement, energy statistics), models (transport and mobility, buildings simulation, 

energy system optimization) and analysis tools (statistical, geographic information systems (GIS)), 

able to support an Integrated City Energy Planning (ICEP). In this sense, the paper is more 

methodological than result oriented, showing how comprehensive data gathering and processing steps 

are key to deliver future sustainable energy pathways while considering the interactions of energy use 

and production in the city. Compared to the above-mentioned studies, the focus given to all the data 

pipeline and planning process; from extensive data capture and modelling processes to results 

validation with stakeholders. 

This work has been developed under the FP7 European funded project InSMART – Integrated Smart 

City Planning, for four European cities: Évora (Portugal), Cesena (Italy), Nottingham (United 

Kingdom) and Trikala (Greece), with the support of scientific and technical organizations of the same 

countries. 

The paper is organized in four sections. The analytical framework and the data, tools and methods 

used are portrayed per energy demand sector in Section 5.2. The methodology is operationalized and 

discussed with selected results for the case study in Section 5.3. The conclusions are summarized in 

Section 5.4. 
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5.2 Analytical framework  
Integrated energy planning involves the economic, social and environmental dimensions of a city 

while characterizing all the energy demand sectors. It requires the combination of multiple data 

sources, tools and methods dealing with the different planning phases (Mirakyan and Guio (2013). In 

this section, the overall analytical framework is presented. It provides a structured process combining 

diverse spatiotemporal datasets and employing a suite of tools for each energy sector component. The 

process culminates with the integration of all the information within a GIS common platform to 

deliver a coherent dataset that can be used by integrated models and stakeholders. We argue that a 

coherent database of city indicators such as the one described enables city decision-makers to 

efficiently achieve their sustainable energy and climate targets. Brandoni and Polonara (2012) also 

disclose that the most definitive aspect in energy planning and effective policy execution is the 

availability of adequate data combined with detailed modelling and simulation to improve the 

knowledge of existing systems, namely on energy flows among different consumers and city districts 

and on alternative energy measures. 

The analytical framework bridges the gap between data needs and availability through collection from 

the ground up and analysis for all city energy sectors (i.e. residential buildings; transport and 

mobility; other energy demand sectors and supply side). It provides a description of the demand 

centers; namely the quantification of the stocks of processes and technologies (e.g. buildings, space 

heating technologies ownership, number of vehicles) and characterization of energy services required 

in the selected geographical units of a city (i.e. spatial districts). The framework makes use of multi-

scale data of diverse type and granularity including a) 15 minutes’ electricity consumption data from 

smart meters, b) monthly/annual statistical energy production and consumption data, c) detailed 

energy modelling of buildings archetypes, d) city transport characteristics and mobility flows, and e) 

door-to-door surveys. All this analysis and data allow for the representation of the municipality in a 

base year and supports the projections until 2030 of the energy system in the integrated City Energy 

Planning Tool. 

City energy’ indicators for the projected time horizon are mapped into a web based GIS platform 

allowing for geospatial analysis, bringing forward the awareness and participation of different levels 

of city stakeholders (e.g. municipality technicians, planners and decision-makers, utilities, transport 

companies, citizen groups, and market associations). The stakeholders’ participation at different 

stages of the framework is essential in assembling an acceptable, realistic and mostly beneficial city 

action plan. Energy indicators regarding the different city sectors will feed the ICEP tool that includes 

the city energy technological model linked with a multi-criteria assessment tool, as illustrated in 

Figure 5.1. 
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Figure 5.1 – General framework concept for an Integrated City Energy Planning  

The concept and operability of the analytical framework regarding data gathering and processing will 

be illustrated by the case conducted in the municipality of Évora, including the city and the 

surrounding rural areas (Section 5.3). An explanation of the data, tools and methods used for each 

component of the framework is portrayed in the next sections. 

5.2.1 Residential buildings  

Energy use from buildings represents a significant element of a city’s overall energy use (around 25-

30% (UN-Habitat, 2008)). Accurate representation and modelling of buildings energy demand allows 

for the support of policies towards the improvement of buildings energy performance and energy 

infrastructure planning (Ma and Cheng, 2016). In this section, we detail the multiple data sources 

available to provide a comprehensive range of indicators to characterize the residential sector within 

the ICEP. 

5.2.1.1 Housing statistics 

The residential sector is highly heterogeneous, due to building characteristics, householders’ behavior 

and occupant’s energy literacy; representing a major challenge in applying systematic energy 

planning methodologies. Therefore, relevant residential building archetypes should be considered, 

characterized by indicators usually available from national statistics (e.g. Census data), like the 



 176 

building form (e.g. detached, semi-detached and terraced houses, multi-apartment buildings), the 

period of construction (e.g. until 1945, 1946-1990, 1991-2000, after 2000), the number of floors (e.g. 

1, 2, 5 or higher) and the roof types (e.g. sloped, flat). These indicators should be addressed at the 

mostly detailed spatial unit available for a city, in order to get a relevant spatial pattern of the 

buildings archetypes. A materiality criterion for the settlement of spatial representativeness of the 

archetypes to be used could be the frequency of the indicators higher than 5% in each administrative 

division (e.g. civil parish). 

Definition of the building archetypes provide the guidelines for the type of buildings to address in the 

surveys, the energy simulation modelling (Section 5.2.1.4) and the structure for the residential sector 

in the ICEP tool, while accommodating spatial heterogeneity of energy flows. 

5.2.1.2. Door-to-door surveys on energy use at households 

Surveys of households’ energy use and characterization are a conventional method for detailed data 

collection, increasingly common in many developed countries (e.g. INE and ICESD (2011), NRC 

(2011)). However, few studies focus on the city spatial detail, missing the opportunity to characterize 

the determinants of energy consumption at the different spatial zones in the city. A robust 

characterization of the residential sector at district level requires a door-to-door survey to cover 

information about the physical characteristics of dwellings (e.g. load bearing structure, type of 

windows, insulation of external walls and roofs), socio-economic details and behavior of the 

occupants (e.g. number of persons, income, age, hours of use of equipment), appliances 

characteristics, use and ownership (see annex I). Reliable and significant results require the data to be 

spatially resolved and statistically significant. Therefore, the city building stock surveys should 

comply with city district minimum quotas based on the preponderance of each archetype in each city 

district. The survey results provide a highly-detailed snapshot of the city housing stock compiling 

information not usually available in such spatial detail. In our framework, this data will be used as 

inputs to the energy services demand models (Figure 5.1) (Section 5.2.1.4) and to provide the level of 

detail required to feed the integrated energy planning (Section 5.2.6). 

5.2.1.3. Electricity smart meters 

The increasing availability of smart meters, information and communication technologies included in 

home appliances and real-time home energy-monitoring services, provides data that allows for an 

exhaustive characterization of electricity consumption. Usually, consumers’ segmentation is based on 

electricity consumption profiles, however, the socio-economic characteristics of the households 

matched with detailed characterization of electricity consumption patterns by building archetype 

provide in-depth knowledge on consumers’ segmentation (Gouveia and Seixas, 2016). Smart meters’ 

data analysis provides the identification of differentiated daily to annual electricity consumption 

profiles into the ICEP tool where different energy policies and instruments can be evaluated for 
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specific groups of consumers (e.g. vulnerable consumers under fuel poverty) located in different city 

districts. Moreover, it is also valuable for the validation of the buildings simulation modelling work. 

5.2.1.4. Energy services demand modelling 

Energy services demand is key for integrated energy planning and usually is accomplished through 

building simulation. The objective of this component is to simulate the energy services demand in 

each household archetype, in current conditions, as well as under a range of energy retrofit measures 

to assess its impact and cost on energy consumption. The energy services demand on space heating 

and cooling and on electric appliances, differentiated by building archetypes throughout the year, are 

of outmost importance to the ICEP tool, as explained in Section 5.2.6. The simulation builds upon 

data collected from the surveys (e.g. wall, roof and insulation type). The following steps suggest how 

to gather a full perspective of the residential energy demand in each spatial unit within a city: 

1. Quantify, from the surveys, the likelihood of relevant features for energy consumption in 

households, like a shading device, bearing structure type, insulation or cooling system. 

2. Identify meaningful sub-archetypes from the pre-defined archetypes of the building stock, if 

significant architectural differences in each archetype (e.g. different roof designs, number of floors in 

the building) exist. They provide an approximation of the characteristics of the real city building 

stock. 

3. Construct energy models, using e.g. Design Builder (DB, 2015) for each of the sub-archetypes 

identified in step 2 and simulate them in an energy simulation model like EnergyPlus (DOE an 

NREL, 2015), to obtain the energy needs (heating, cooling and specific electricity) per building or per 

square meter. 

4. Perform sensitivity analysis on each sub-archetype model to identify the set of significant variables 

affecting energy use. For example, cooling set point, wall thickness, orientation and glazing ratio. 

5. With the final sub-archetypes defined, a synthetic building stock can be generated using probability 

density functions associated with each building parameter. This data should be supplemented by any 

local knowledge of the stock not identified in the surveys).  

6. If needed, use surface area (m2) per archetype to sum up energy usage (kWh/m2) value for the 

whole city (kWh). 

An extended description of the energy simulation methodology of residential buildings can be found 

in Long et al. (2015). Our approach provides an approximation of the characteristics of the city 

building stock and the distribution of the different archetypes across the city districts, delivering 

spatial energy services demand to feed the ICEP tool. Simulated energy services demand indicators 

also input the city GIS energy platform, taking the location of each archetype in each district, to 

identify consumption hotspots or regions of special interest (e.g. district heating network expansion; 
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city districts and archetypes where energy efficiency and renovation measures should be prioritized), 

and to visualize the potential of energy savings in a comprehensive way. Table 5.1 summarizes the 

key outcomes of the residential sector and Figure 5.2 depicts the data workflow towards the ICEP 

tool. 

Table 5.1 – Residential buildings key data per spatial unit 

Housing and energy 
statistics 

Door to door surveys Electricity smart meters Energy simulation 
modelling 

• Demographics 
(households, buildings and 
resident population) [A1] 

• Monthly final energy 
consumption by fuel [A2] 

• Local environment and 
infrastructure (e.g. degree 
days) [A3] 

• Building Archetypes [A4] 
• Demolition and new 

building construction rates 
[A5] 

• Heating and cooling set 
point from legislation [A6] 

• Energy consumption per 
fuel and end use [A7] 

• Building dimension (e.g. 
height, footprint area, 
number of floors), period 
of construction, bearing 
structure, type of 
insulation, windows 
framing and glass type, 
roof type [A8] 

• Number of household 
members, age, gender 
[A9] 

• Household average 
monthly income, tenure 
type [A10] 

• Ownership, technical 
characteristics' and use 
of equipment (space 
heating and cooling, 
water heating, 
refrigerators and coolers, 
televisions and 
computers, lamps, 
microwaves) [A11] 

• Smart meter number 
[A12] 

• Daily to annual 
electricity consumption 
profiles per building 
archetype and consumer 
type (based on 
15minutes temporal 
resolution of electricity 
consumption data (kWh) 
[A13] 

• Building energy 
performance 
(kWh/m2/year) per 
archetype and use (e.g. 
heating and cooling) and 
potential impact of energy 
efficiency measures (e.g. 
insulation, windows 
change) [A14] 

 

 

Figure 5.2– Data workflow of residential buildings targeted to the ICEP tool 
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5.2.2. Transports and mobility  

Transportation, including public, private, passenger and freight, plays a major role in all cities. In 

EU28, transport represents roughly a third of the total energy usage, the largest contribution of any 

sector and about a fifth of greenhouse gas emissions (GHG) (Eurostat, 2016) Within our framework, 

transport and mobility is tackled by the mobility flows among the different city zones and assessed 

through a transport-based energy use and emissions model to represent current and future situations. 

Usually, the majority of the spatially explicit data needed to support this type of models is not 

available. Therefore, door-to-door surveys with travel diaries beyond national statistics are good 

options, as well as relevant stakeholders’ involvement in the data collection process (i.e. municipality 

transport department, public transport companies). The key outcomes to feed the ICEP tool include 

the demand for passenger and freight mobility (pkm and tkm, respectively) by city zone and the 

vehicle stock characterization. 

To address the city mobility patterns with representative spatial detail, there is the need to split it into 

detailed zones, producing a map to be used as a show card during the surveys. Sufficient detail is 

necessary in order to get the respondents to identify the places they travel to and from on the map. 

These zones can be split considering natural or human made boundaries (e.g. creeks, rivers, railways), 

and different areas services (as municipal equipment as pools and gyms, residential, industrial and 

services). Aggregation of existing administrative zones may also be a possibility, if they include small 

populations and mobility flows while using the same roads. Since each city has its own spatial 

dynamics, experts and municipal authorities with local knowledge should work jointly to implement 

this approach. 

5.2.2.1. Door-to-door surveys for transportation and mobility 

Some European countries carry out travel surveys, either regularly or irregularly (e.g. Netherland, 

Germany, France, Sweden) (Pasaoglu et al., 2014), although they are rare for most of the EU 

countries at a national, regional or local level. If no consistent baseline information is available for 

mobility patterns and stock of vehicles characterization per detailed spatial units, a survey should be 

conducted. Dedicated transport and mobility surveys can also provide important data on households’ 

socio-economic characteristics, number and type of vehicles and on patterns of private transportation 

(locations and purposes) through travel diaries. Moreover, they can provide the characterization of 

mobility demand per vehicle, per person, journey purpose and distances covered on commuting, either 

within each zone or across the city zones. 

Minimum quotas of surveys collected at each city zone should be set to ensure the representativeness 

of residents within a city. Four variables are typically selected to capture the city mobility patterns: 

weekday and weekend; age of the interviewed (e.g. 18-34, 35-49, 50-64, 65+); working status (full 
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time, part time, student, retired, not working) and geographic location (e.g. by city minimum spatial 

statistical district). 

5.2.2.2. Transportation statistics and stakeholders’ involvement 

Data acquisition for transport and mobility should involve relevant city stakeholders (e.g. 

municipality transport department; public transport companies) as main contributors on existing city’s 

infrastructure, e.g. parking lots, speed limits definition, land use occupation, public transportation 

routes and schedules, and on the definition of future scenarios and expectations regarding city 

expansion, new roads or bike lanes, new major attractions or workplaces hubs. Other relevant 

information from national statistics include the number of households and car ownership, retail floor-

space and jobs per city zone; and characterization of the cities vehicle fleet by fuel type (e.g. petrol, 

diesel, electric) and emissions standards (i.e. Euro 1- Euro 6).  

5.2.2.3 Mobility and energy demand modelling 

Whilst energy efficiency in transport has been increased, there is still much improvement to achieve 

the EU targets (reduce transport emissions by 60% by 2050 (EEA, 2016). Therefore, a tool to test city 

mobility flows scenarios, covering transport as well as land use and behavioral change, is of high 

importance. A transport-based energy and carbon model covering the geographic scope of the city and 

the relevant surrounding areas, and parameterized for each city zone should be used to estimate the 

demand of mobility (i.e. passengers-kilometer (pkm) and tone-kilometer (tkm)) in each city zone and 

between different zones of the city. General inputs to the transport model include: a) specific city 

characteristics as zoning, distances, public transport services, land use; b) trip purposes, speeds, fares, 

vehicle types and modes; and c) energy and emissions parameters for the various transport choices 

(mode, destination, route). The outputs include mobility demand per vehicle type per zone-zone 

movement, trips per person, number of vehicles and related energy consumption and emissions.  

The spatial based mobility demand of the city is of utmost importance to feed the ICEP tool to drive 

the selection of measures towards the city sustainable mobility, taking a joint optimization of the 

overall city energy system while respecting the mobility conditions at the zone level. Table 5.2 lists 

the key data to compile per city district regarding the transport and mobility component, while Figure 

5.3 presents the data workflow. 

Table 5.2 – Transport and mobility key data per spatial unit  

Door to door surveys  Transportation statistics and 
stakeholders’ involvement 

Mobility demand modelling 

• Mobility patterns from travel diaries 
between city sectors [B1] 

• Number and type of private vehicles per 
capita [B2] 

• Demographics [B5] 
• Number of parking spaces (paid and 

free) [B6] 
• Number of private and public vehicles 

• Annual demand (people and vehicles) 
and distance traveled (pkm and tkm) per 
vehicle type [B13] 

• Annual number of public transport trips 
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• Mode share and average trip length 
information [B3] 

• Journey purpose splits [B4] 

(light and heavy for passengers and 
freight) [B7] 

• Public transports infrastructure (routes, 
tariffs, number of passengers) [B8] 

• Length and use of bicycle paths and 
lanes [B9] 

• Land use maps [B10] 
• Average speed maps [B11] 
• Fuel consumption [B12] 

per capita [B14] 
• Demand movements between city 

sectors, by vehicle type [B15] 

 

 

Figure 5.3 – Data workflow of transport and mobility sector towards ICEP tool 

5.2.3. Other energy demand sectors 

Our framework includes also other city energy demand sectors, namely: a) Public utilities (i.e. 

water/sewage infrastructures, waste chain and public lighting), b) Services buildings (i.e. hospitals, 

retails centers, schools, public administration buildings), c) Industry and d) Agriculture. Detailed 

public information on the characteristics and operation of the facilities of public utilities and 

industries is scarce, mostly if they are managed by private entities with confidentiality restrictions. 

Regarding the services and commercial buildings, there is usually a lack of consolidated knowledge 

of the buildings characterization and energy consumption for the different city districts, either through 

regular national/municipal statistics or sporadic surveys or studies. To overcome these barriers, 

multiple data sources, and procedures are combined to gather detailed, updated and harmonized 

information, including literature review of existing reports; electricity smart meters’ data per facility 

or aggregated by subsector; total energy demand and intensities per units of output (mainly for 

industries and agriculture); relevant stakeholders’ inputs concerning water and sewage facilities and 

services sectors.  

An exhaustive identification of indicators and variables to characterize the energy consumption can be 

compiled for each subsector to be sent to relevant stakeholders for data acquisition. Taking the public 

lighting as an example, relevant data include the type and number of luminaires and lamps in place by 

spatial unit, the respective electricity consumption and working hours. Street lighting is one of the 

most essential services provided by municipal authorities, and; therefore, the measures that reduce 
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energy consumption should not include turning off lamps, but its substitution through technological 

improvement or better use. The introduction of new technologies to be tested in the ICEP tool, like 

light emitting diodes or smart controls, will deliver high improvements in energy usage and lower 

costs. For other city utilities, services building and industries, when no detailed information per 

facility/building is available or collected, intensity indicators (e.g. energy use per square meter or per 

materials produced) can be used. 

Collecting information for services, industries and public utilities is a hard task due to many and 

differentiated stakeholders to contact, data selection and harmonization needed to support the ICEP 

tool for future city energy scenarios assessment. It should be underlined that the engagement of the 

municipality technical departments and private stakeholders during all the data collection process is 

paramount to get adequate and accurate information and knowledge. Table 5.3 outlines the key 

indicators from the data collection and Figure 5.4 presents the data workflow for the ‘Other sectors’ 

component of our framework. 

Table 5.3 – Key data for other sectors per spatial unit 

Literature review, statistics and stakeholders’ involvement Electricity smart meters 

Public Utilities 

• Final energy consumption by sub sector [C1]  

Street Lighting and Public Spaces [C2] 

• Urban green areas and fountains (location, size and associated electricity 
consumption) 

• Number and type of light operation control systems (e.g. photocell, 
astronomical time clock, tele parameterized, remote control, flow 
regulator) 

• Number and type of Luminaire (e.g. urban, rural, garden, decorative) and 
lamps (e.g. mercury, high and low pressure sodium, metal iodates, 
fluorescent and LED) 

Sewage and Water System [C3] 

• Percentage of population served by sewage collection per type (e.g. public 
sewage system, septic tanks) 

• Total domestic water consumption per capita 
• Number, characteristics and energy consumption of water and sewage 

treatment facilities and distribution systems (e.g. pumping stations) 

Waste Chain [C4] 

• Number and energy consumption of municipal solid wastes facilities (e.g. 
sorting centers, landfill) 

• Total monthly collected municipal solid wastes per capita per type (e.g. 
plastic, glass, paper, undifferentiated) 

• Number and energy consumption of waste collection vehicle fleet 

• 15 minutes’ temporal resolution of electricity 
consumption data (kWh) allows building daily 
to monthly electricity consumption load curves 
per type of utility or facility [C7] 
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Services Buildings [C5] 

• Number of services buildings (i.e. retail, hospitals, banks, schools, offices) 
• Square meters of services buildings per type Energy consumption of 

services buildings per type  
• Activity hours of services buildings per type 

• 15 minutes’ temporal resolution of electricity 
consumption data (kWh) allows building daily 
to monthly electricity consumption load curves 
per type of service [C8] 

Industries and Agriculture [C6] 

• Location of the main industrial sites and agriculture activities 
• Energy consumption per industry sub sector and agriculture 

• 15 minutes’ temporal resolution of electricity 
consumption data (kWh) allows building daily 
to monthly electricity consumption load curves 
per industry subsector and agriculture activities 
[C9] 

 

 
Figure 5.4– Data workflow of the other city energy demand sectors targeted to ICEP tool 

5.2.4. Energy supply and endogenous renewables potential 

The city energy system must also acknowledge the energy supply such as natural gas, district heating, 

electricity networks, oil products distribution, and local renewables. Therefore, the characterization of 

the city supply sources is essential to assess the current and future low-carbon energy supply 

alternatives, to comply with ambitious energy and environmental targets. An overview of the supply 

infrastructure of the city can be gathered from literature review of existing reports and maps, and 

energy statistics. The involvement of stakeholders (e.g. distribution system operators (DSO), energy 

companies, municipality technical departments) is very important due to the private and confidential 

nature of some of the needed information. If available, electricity smart meters’ data should be taken 

to characterize the city supply system, as of solar PV producers. Information on the current 

decentralized facilities (e.g. rooftop PV and solar thermal), the utility scale units (e.g. solar PV power 

plants, cogeneration plants) and on the coverage of existing supply networks should be acquired, 

taking its spatial location. 

For a city´s robust energy planning covering the next 10 to 20 years, the estimation of the spatial-

explicit technical potential of local renewables is of outmost importance to offer cost-effective options 

for the sustainable city energy system. Whenever appropriate, the endogenous technical potential of 

different renewable options, and creation/expansion of district heating and other energy supply 

networks, should also be assessed. Table 5.4 depicts the main data collected to be taken into account 

in the ICEP tool and Figure 5.5 portrays the data framework. 
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Table 5.4 – Energy supply and endogenous renewables potential key data per spatial unit 

Literature review, energy statistics and 
stakeholders’ involvement 

 Electricity smart meters  GIS and statistical analysis 

• Monthly energy production per type of 
technology (wind, biogas, biomass, geothermal) 
[D1] 

• Municipality land use restrictions (e.g. legal and 
infrastructures) [D2] 

• Altimetry maps [D3] 
• Irradiation Maps [D4] 
• Average Wind Speed and Number of Equivalent 

Full Load Hours [D5] 
• Heated water needs per person [D6]  
• District heating network [D7] 
• Natural gas consumption and distribution 

network [D8] 
• Annual biomass consumption [D9] 

• 15 minutes’ electricity 
production data (kWh) per 
facility (e.g. utility scale PV 
plant and rooftop) [D10] 

• Total suitable land for each renewable 
technology [D11] 

• Maps with optimal solar exposure 
[D12] 

• Total rooftop area available for PV or 
solar thermal technologies [D13] 

• Total building’s façade suitable for 
PV [D14] 

• Electricity capacity/production 
potential per technology [D15] 

• Total hot water needs per building 
archetype [D16] 

 

 

Figure 5.5 – Data workflow from the city supply and endogenous RES potential targeted to ICEP tool 

5.2.5. City energy GIS platform  

The mapping of the several energy data layers produced for the different city sectors (Tables 5.1 to 

5.4) is useful to provide a comprehensive visualization of the city’s energy services demand and 

energy consumption patterns, to fully understand where the energy hotspots are currently located and 

where key future transitions will mostly occur. The city energy GIS platform holds all ‘spatial’ and 

‘spatial enabled’ energy related data for the city energy sectors and is the first tool for data 

integration, connecting spatially the different energy system components. The GIS platform may 

display the energy indicators for future scenarios from the assessment of specific policy impacts 

obtained from the ICEP tool, acting as a powerful visualization tool to support stakeholders’ 

participation towards the design of energy policies and measures respecting their spatial features and 

effectiveness. The city GIS platform offer the significant features for energy planning, like: a) Display 

the energy production and consumption at the city spatial unit, depicting where energy is produced, 

distributed and consumed inside the city. Examples include the distribution of energy consumption 

indicators of the building stock, the mobility maps between city zones, the geographical distribution 
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of heat demand, energy savings potential, possible location of PV plants size/roof top. b) Monitor 

changes of energy production and consumption patterns in the city over time; d) Communicate the 

city’ energy system information to citizens, the public sector and the market (Kilias and Rigopoulos, 

2015), leveraging public and market awareness on energy efficiency and carbon emissions reduction. 

5.2.6. Integrated City Energy Planning (ICEP) tool  

This paper aims to present a comprehensive framework to deal with the multitude and complexity of 

data sources to characterize the different sectors settled in a city energy system, to feed the ICEP tool 

rather than to go in much detail on this tool. However, an explanation on how to use the wide range of 

datasets, with multiple spatial and temporal resolutions, towards its combination to deliver detailed 

future sustainable energy scenarios for the city is needed for clarity. 

The ultimate objective of the ICEP tool is the conclusion for the cost-effective and social-relevant 

optimum mix of measures and technologies to pave the way towards the achievement of cities’ 

sustainable targets, such as those stated in the Covenant of Mayors, or others, requiring high 

contributions of renewables and/or aggressive emissions reductions. Integrated energy system models 

are good candidates to be used to assess policy and technological strategies (IEA, 2016) while 

providing a consistent structure for its analysis. Nakata et al. (2011) provides an extensive revision of 

the application of energy system models for assessing different sectors. We use the technological-

based TIMES (The Integrated Markal-EFOM System) energy system model (Loulou et al., 2005) 

detailed for the different city’s energy sectors and spatially explicit for each city district, refined with 

the city stakeholders’ validation through a multi-criteria decision making tool. 

The TIMES model generator was developed as part of the IEA-ETSAP collaboration, using long term 

energy scenarios at different spatial scales to conduct in-depth energy and environmental analyses 

(e.g. Loulou et al. (2004); Gouveia et al. (2013); Sarbassov et al. (2013)). TIMES is a technology-

rich, bottom-up optimization model integrating the entire energy/emission system of the city, 

including the procurement, transformation, trade, and consumption of a large number of energy 

forms. For a detailed city planning, this kind of models should operate over the reference energy 

system at each city pre-defined spatial unit, i.e. the connected energy flows from supply to 

distribution to consumption delivering the multiple energy services (e.g. space cooling and heating, 

passenger and freight mobility) at the different end users (e.g. residential and services buildings, 

transport, industries, water and waste utilities) in each spatial unit. The reference energy system 

should be designed and validated according to statistics of a base year (e.g. 2013/2014). The 

TIMES_city model represents the municipality from the base year till 2035 in five-year time steps. 

Each year is subdivided into 32 time slices representing day, night and peak periods of the day for 

both week days (257 days) and weekends (remaining 108 days) and differentiated for each season 



 186 

(Summer, Winter and Inter-seasonal). This allows for a proper integration of the different levels of 

granularity of the data collected. 

The TIMES model is supported by an extensive database of technological options from which the 

cost-effective mix of technologies will be derived to supply the city energy services demand along the 

modelling time horizon. Therefore, a TIMES model at city level departs from the current energy 

system and generates future scenarios of cost-effective energy technologies, taking into consideration 

city planning goals and policies (e.g. expansion of a services hotspot in a specific city district, 

reducing the city overall GHG emissions, complying with a renewable target) while fulfilling the 

exogenous demand for energy services of the various city districts. Model outputs are: energy flows, 

energy commodity prices, GHG and air quality emissions; new supply infrastructures and demand 

device purchases, total installed capacity of technologies and energy expenditures. 

Under our methodological proposal, a shortlist of the most interesting alternative scenarios of 

measures from the modelling work should be cross-compared and ranked using of a comprehensive 

non-compensatory multi decision making method (MCDM). This process is typically conducted 

through workshops with the city stakeholders to consider non-technological factors in the selection of 

the measures to apply in the city. The application of multi-criteria decision making in energy planning 

problems have gained considerable ground between research communities (e.g. Haralambopoulos and 

Polatidis (2003); Pohekar and Ramachandran (2004); Løken (2007)). City stakeholders working in 

synergy to address city challenges has been recognized as a good practice, and its involvement in 

weighting the different sustainability concerns of the city, and in evaluating the ICEP tool results to 

address economic, environmental and social issues through MCDM procedures is a good opportunity 

to leverage stakeholders’ contributions to cities sustainable future. Selected measures after the 

MCDM can be subject to a detailed economic analysis to identify relevant investment needs and other 

costs indicators. Finally, a detailed and realistic implementation plan can be developed to describe the 

necessary steps, required resources and monitoring procedures for each city. 

The integrated framework presented in this sub-section underlines the need for detailed, spatial 

resolved and high-quality energy data to feed all the process up to the two integration tools – energy 

system model coupled with MCDM acting as an integrated energy-planning tool and the city energy 

GIS platform. However, for many cases, city energy datasets are just not available, and the efforts for 

its availability are a top priority for the local governance. Figure 5.6 shows how the multiple data sets, 

detailed in the previous sections, feed the reference energy system of a city TIMES model, and how 

selected outcomes, from a wide range of results, can be used for energy city planning. 
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Figure 5.6 – Integrated city energy planning structure and outcomes 

5.3. Results 
In this section, we unfold the diversity of datasets that fully describe in detail the city energy system 

for the case of Évora in Portugal to illustrate the operationalization of the proposed data pipeline and 

framework. Therefore, it is out of the scope of this paper to present in detail results from the city 

energy planning tool, as this would make the paper extremely lengthy. Nonetheless, we include a 

couple of questions at the end of each of the sub-sections that we consider should be addressed by the 

integrated tool, and we present very brief examples of the results we have obtained, aiming to 

illustrate the full set of final achievements for the city planning. 

Évora city is awarded a United Nations patrimonial and cultural world heritage; it is a major 

international tourist attraction city; it was the first city in Portugal equipped with a massive electricity 

smart metering system (EDP, 2016). It is located in the Alentejo region of Portugal covering 1307 

km2, with about 57 000 inhabitants (INE, 2011). The demographic and economic potential, the 

concentration of industrial and logistics make the municipality of Évora a strong and dynamic 

regional hub. Évora economy is mainly based on the services sector, including decentralized services 

of the central government. Industry includes electronics and electromechanical components and civil 

construction. The municipality of Évora has a per capita annual final energy consumption of around 
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48 GJ, which compares with 61 GJ for the average country (DGEG, 2016). The Sankey diagram of 

Figure 5.7 provides a comprehensive view of the current energy consumption profile of the different 

economic sectors and fuels used. 

 

Figure 5.7 – Sankey diagram of Évora energy system (2013) (data source: (DGEG, 2016). 

Évora is divided into 12 parishes: three urban (one in the historical center) and nine rural parishes. 

The population is concentrated in urban areas, with 80% living in urban areas and 8% living inside the 

city walls (PORDATA, 2016). We consider the area outside of the urban limits to the surrounding 

rural areas of the city to properly address the sustainability underlying the interplay of mobility and 

housing decisions, as presented by Science for Environment Policy (2015) and because there is no 

specific governance body at the city level but only at municipal level. For this reason, we take the 

whole municipality of Évora instead of only the city. 

GIS representation of energy indicators and the ICEP tool is implemented over four spatially explicit 

zones, that take distinctive features on energy use. All the nine rural parishes were combined in one 

single zone (1 - Rural), due to the very similar characteristics of the residential buildings, while the 

three urban parishes were considered individually (2 - Malagueira e Horta das Figueiras; 3 - S. 

Mamede, Sé e S. Pedro e St. Antão, 4 - Bacelo e Sra da Saúde), as shown in Figure 5.8 (left). 
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For the case of mobility patterns, we acknowledge, jointly with the municipality experts, the need for 

21 zones, taken the following guidelines: A – the zones never include areas from two parishes; B - 

aggregation of rural parishes (small populations and flows) that use the same roads to the city; C - 

disaggregation of urban parishes into units following barrier, like parishes bounded by creeks, 

railroads or other barriers to flow; and divided by different classes of land use (i.e. industrial, 

residential, retail). Following this methodology, the rural parishes were grouped into five zones and 

the urban parishes were disaggregated into 16 zones (Gouveia et al., 2015), as shown in Figure 5.8 

(right). The 21 zones were combined afterwards in the four districts for the integrated energy planning 

analysis. 

 

Figure 5.8 - Location of the city of Évora in Portugal and the four districts selected for integrated energy system spatial analysis (left) 

and the 21 city zones used for in-depth mobility analysis 

5.3.1 Residential buildings data collection 

5.3.1.1 Housing statistics 

Ten archetypes were taken based on a building stock characterization (INE, 2011), which account for 

around 80% of all the buildings. The remaining 20% represent very diverse set of distinct archetypes, 

difficult to characterize individually. Data analysis indicates that 92% of the residential buildings are 

associated with single-family houses (mainly terraced houses) and only 8% with apartments (INE, 

2011) which is quite different from the average EU countries with 64% and 36%, respectively 

(Economidou et al., 2011). A substantial share of the buildings stock in Évora, as in other European 

cities, is older than 50 years. Around 20% of buildings have been built before 1940 when energy-

building regulations were very few. A large increase in construction in 1946-1990 is also evident, 

representing around 56% of the current city stock (INE, 2011). Figure 5.9 displays how the buildings 

archetypes are distributed along the four city districts. 
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Figure 5.9 – Buildings archetypes representativeness in each city district 

5.3.1.2 Door-to-door surveys on energy use at households 

A minimum of 400 surveys was settled to provide a confidence interval of 95% +/- 5% for the total 

residential buildings in the municipality. To reduce the difficulties of the interviewers in defining 

where and which houses (i.e. archetypes) should be interviewed a pre-analysis of potential locations 

(i.e. where they are highly frequent) was done using the geographic database at neighborhood level. 

An extensive 110–question survey was performed between June and September 2014 across the 

municipality (37% of the surveys in rural area, and the remaining from urban areas) to collect 

information of a diverse but representative set of households from the ten archetypes. The survey 

included three groups of questions on: (1) general buildings features (age, height, type, location) and 

householders’ socio-economic profile (occupancy, income, households’ members age, gender), (2) 

dwellings construction characteristics, such as type of insulation, type of walls, and characteristics of 

the roof, (3) individual equipment usage and technical details. We experienced different levels of 

awareness: the first set of questions were generally well answered, the second got increased difficulty 

and; therefore, lower rates of valid answers, and the third set was poorly answered due to the 

extensive detail needed. We could collect 97% of the total expected surveys. Table 5.5 presents a 

sample of the data collected through the surveys, for two buildings archetypes. 
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Table 5.5 – Examples of buildings’ data gathered from door-to-door surveys for two archetypes of Évora 

 

5.3.1.3 Electricity smart meters 

The electricity DSO has in Évora around 31 000 smart meters with electricity registries available 

since 2011 (EDP, 2016). Matching the surveyed households and smart meters’ data availability 

resulted in 68% of the surveyed households with detailed electricity consumption data. The reasons 

for this gap are twofold: 1) the interviewers were not able to identify the number of the meter so we 

were not able to link the household survey to the meters’ database (25%) and 2) no smart meter was 

installed in that household (3%).We got a sample of 265 households with four complete years (2011 

to 2014) of high-resolution (15 min) electricity data. Figure 5.10 presents the annual profile of 

electricity consumption for three distinct building archetypes, corresponding to very distinct 

consumption profiles, which illustrates the diversity of analysis that can be delivered useful for 

different city stakeholders. 
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Figure 5.10 - Daily average electricity consumption (2011-2014 average) per building archetype 

5.3.1.4 Energy services demand modelling 

A crucial step of the analytical framework is to assess the residential buildings energy demand for 

heating, cooling and other end uses. The initial ten archetypes supported on the statistical analysis 

were expanded into 26 sub-archetypes using the methodology described in Section 5.2.1.4 while 

considering relevant differences, for example in number of floors, geometry and occupation of the 

roof, wall construction types. The construction materials and structures were defined for the 26 sub-

archetypes based on the statistical analysis of the survey data. The results of the EnergyPlus 

simulations, showing differences in annual total energy use across the archetypes, taking the energy 

use by demand for heating, cooling and electricity, are shown in Figure 5.11. The households with 

high-energy use (TP2.2_1, TP2.2_12 and TP5.2_51) are much large properties (i.e. average area 

>180m2), while the smallest properties (less than 100m2) (TP5.1_1, TP7.1_1 and TP8.1_1) show very 

low annual energy use. 

 
Figure 5.11 – Annual energy demand (kWh/year) for the residential building sub archetypes 
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As mentioned in Section 5.2.1.4, a sensitivity analysis was performed for all archetypes. The 

sensitivity analysis revealed a uniform impact for all the parameters tested across the archetypes 

(Long et al., 2015). Heating and cooling set points were the dominant factors affecting energy use in 

all archetypes. Lowering heating and raising cooling indoor temperature settings is the most effective 

way to reduce the household energy use. Improved heating/cooling control systems (e.g. thermostatic 

radiator values, room thermostats) may also assist in enabling residents to better control the heating 

and cooling set points. 

Air change ratio (i.e. infiltration rate) was also revealed as a significant parameter affecting building 

energy use. However, it is a difficult parameter to measure accurately and large reductions in 

infiltration rate can be difficult to achieve. Small reductions could; however, be made through 

replacement of leaky doors and windows and installation of draught proofing measures. The thickness 

and insulation of external walls are also significant parameters, making clear that the installation of 

insulation would reduce heating energy demand (Long et al., 2015). 

This detailed assessment from modelling simulating of archetypes, as representatives of the 

residential buildings stock, and extrapolating for the entire city, illustrates the importance to feed, in a 

reliable and consistent manner, the energy services demand of the 27 sub-archetypes for the ICEP 

tool. By using ICEP tool we could deliver answers for this sort of questions: 

(i) What are the cost effective technological options to provide thermal comfort per 

archetype at each city district? (We should expect different solutions for the historical city 

center district and for the rural district). 

By applying the ICEP tool for Évora we identified that insulation options were more cost effective in 

the rural district where there is a higher proportion of archetype 5 dwellings. In that zone, where a 

natural gas infrastructure is not available for dwellings, insulating walls and roofs is proportionally 

slightly more cost-effective than in the other city districts. 

(ii) What is the cost-effective reduction in energy consumption per dwelling till 2030?  

By applying the ICEP tool for Évora we estimated cost-effective reductions in energy consumption in 

residential buildings of 4% in 2030 vis-à-vis 2013 values (from 16.73 GJ/dwelling in 2013 to 16.12 

GJ/dwelling in 2030) in a Baseline scenario (i.e. without any imposed CO2 reduction target or a 

specific building retrofit measure). In this case, the energy savings are mostly due to the expected 

increase in deployment of building insulation options and more effective appliances. 

(iii) What is the impact of installing solar thermal hot water panels in 40% of dwellings by 

2030? 

With the ICEP tool, we have assessed that for the case Évora this would lead to lowering the energy 

consumption per dwelling in 7% in 2030 compared to 2013 values and leading to a reduction in the 
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residential sector CO2 emissions per capita from 0.60 tCO2/inhabitant in 2013 to 0.48 tCO2/inhabitant 

in 2030, due to the lower consumption of gas and electricity for water heating. With the ICEP tool we 

estimate that this would require a total investment of approximately 30 400 euros until 2030, which is 

mainly done in archetypes 5 and 8 located in city zone 2. 

5.3.2. Transports and mobility 

5.3.2.1 Door-to-door surveys for transportation and mobility 

As for the case of households, a minimum of 400 surveys was considered as necessary to provide 

a confidence interval of 95% +/- 5%, (i.e. if 50% or our samples state that they travel by car, we 

can be 95% certain that the true proportion of car drivers in the city lies between 45% and 55%). 

However, for randomness sake, the households surveyed for the mobility survey were different from 

those for the residential survey. 

A total of 460 transport surveys in the municipality of Évora were carried out from June to 

August 2014. Nearly 50% of the households had at least two light passenger vehicles with an 

average of 1.4 vehicles per household in the whole municipality. When assessing differences 

from rural and urban households, we conclude that the motorization rate is lower in rural houses 

(38% had at least two vehicles against urban households with 50%). Only 12% of the 

surveyed households had motorbikes. 

The survey results also disclose for Évora municipality that the people working full time or 

part time, the majority (89%) travels to just one location: 82% commuting by car, 5% by bus 

and 12% on foot. Looking at travel for all purposes, we get 46% of trips by car, only 2% by 

bus and 53% by walking or cycling. Regarding the spatial dynamics of mobility, 93% of the total 

trips registered started and ended within the municipality boundary. On average, people take just 

over 15 minutes doing one-way journey to their working place. Figure 5.12 shows the variation in 

travel purpose splits by modelled zone. Through the travel diaries, an important share of the 

working population (34%) from all zones goes to the historical city center zone, while only 10% 

of the surveyed population goes to work to the rural areas. 
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Figure 5.12 – Residential travel purpose split by modelled zones from the surveys 

5.3.2.2. Transportation statistics and stakeholders’ involvement 

The door-to-door survey only collects information on private mobility patterns. Public available 

reports, national and local statistics and municipal stakeholders were key to get information on the 

characterization of public transportation (i.e. buses, trains), parking (e.g. costs, size), and speed limits 

in specific zones of the municipality, as well as detailed information on routes, occupancy, schedules 

and tariffs/fares. 

5.3.2.3. Mobility and energy demand modelling 

An energy and carbon transport model was used for the mobility and energy demand assessment, 

supported by data collected through surveys. The model represents a typical day, with no attempt to 

model different days of the week or ‘peak’ and ‘off-peak’ travel conditions (Irons et al., 2014) 

Previous versions of the transport model were used for: improvements to bus priority and 

development of bus corridors, introduction of smartcard ticketing, measures to encourage shifts to 

public transport, walking or cycling, and low emission zones (e.g. MVA (2013a) and MVA (2013b)). 

The emissions model is based on a model developed from the United Kingdom Department for 

Transport and UK’s Transport Research Laboratory study (TRL, 2009), which makes use of data from 

the National Atmospheric Emissions Inventory (NAEI, 2015) and COPERT emissions coefficients 

(Emisia, 2012). 

The model is split in the 21 city zones plus a 22nd zone covering the area outside the municipality, 

allowing to assess traveling to and from the municipality. It was calibrated with the transport survey 

data by looking at mode shares and average trip lengths. The model provides for each of the years 

under study (in this case 2014, 2020 and 2030) (i) the mobility demand by zones (origin and 

destination), vehicle type and a comparison to current vehicle stocks, (ii) energy consumption, such as 

energy per fuel type, per person, per trip and split by vehicle type; (iii) and emissions outputs. Figure 
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5.13 illustrates the energy consumption per origin zone for the base year (2014). The origins mirror 

the distribution of buildings, since all the trips are modelled as two directional home-based journeys. 

The zones furthest away from the center have a high-energy usage due to large travel distances. The 

zones at southern of the historic center contain large amounts of retail and industrial land use being 

attractors to trips, although show low energy consumption, compared to the northern zones due to 

short distances to travel to reach these destinations (Pollard and Irons, 2015). The information created 

in this framework component to input in the GIS and in the ICEP tool generally consists of a coherent 

picture of the distribution of trips (from origin to destination sectors) and associated transport modes 

and the estimations of the respective total number of pkm and tkm travelled. 

Such data allowed the ICEP tool to answer question as:  

(i) Considering the future growth in transport demand, driven by any large land use 

development or regeneration projects, new residential areas, or new vehicles restrictions 

areas, what will be the optimal mobility choices, in terms of technology (e.g. private 

passenger cars vs. public transport) and routes?  

We have assessed that the optimal mobility strategic choices in the case of Évora are ensuring a shift 

of 15% from private cars mobility to public transportation from 2020 onwards, promoting the use of 

biofuels in the whole public transport fleet by 2030, and interdiction for all type of vehicles and 

concerning all purposes to the Évora Acropolis (a minor are within the city historic centre) from 2020 

onwards. 

(ii) What will be the impact on energy consumption and emissions, from different transport 

modes delivering future needs of passenger mobility?  

By applying the ICEP tool for Évora we estimated cost-effective reductions in CO2 emissions in the 

transport sector of 35% in 2030 vis-à-vis 2013 values in a Baseline scenario (i.e. without any imposed 

CO2 reduction target or a specific transport related measures). This is mainly due to the combination 

of two factors: a) reduction of travelled km due to the expected decrease in the population, coupled 

with b) a very significant cost-effective replacement of passenger cars with more efficient new 

vehicles. The energy consumption associated to passenger cars in Évora will vary from 2.57 GJ/1000 

vehicle.km in 2013 to 1.36 GJ/1000 vehicle.km in 2030). The car stock travelling in Évora in 2013 is 

already old, with an average age of 15 or more years. 
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Figure 5.13 –Total final energy demand (MJ) per origin zone (2014) 

5.3.3. Other energy demand sectors 

The scope of the analysis of the city utilities, industries, agriculture and services focus on the energy 

consumption for the four-city city districts, although relying on individual facilities data when 

available. Examples of results range from electricity consumption load curves (daily, seasonal, 

annual) differentiated by public lighting, water management facilities, industries, retail, agriculture 

and different services, to the energy consumption, number, size (when applicable), location of public 

lighting, schools, public buildings and waste/water facilities. 

To look at how the sectoral demand varies over the course of a typical day and year to input in the 

ICEP tool, we performed a set of data analysis over 15 minutes’ electricity consumption registries 

(Gouveia et al., 2016b). A sample data of more than 800 electricity smart meters was retrieved for 

three types of consumers: normal low voltage (i.e. less or equal to 13.8 kVA), special low voltage (i.e. 

from 13.8 kVA to 100 kVA) and special medium voltage (i.e. higher than 100 kVA) encompassing all 

the different energy demand sectors (EDP, 2016). 

A selected example of an output of this step is presented in Figure 5.14 referring on public lighting. 

Similar data for water and wastewater systems, waste chain, industries, agriculture and for the 

services buildings was also collected as depicted in Table 5.4. 

The electricity consumption for public lighting (including traffic lights) was 25 TJ in 2014 (DGEG, 

2016) corresponding to 5% of total electricity consumption in the municipality of Évora. This 

consumption varies through the year as a function of the daylight hours across seasons/days, which is 
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extracted from the analysis of the smart meters’ data and used as input as one of the characteristics of 

the public lighting sector in the ICEP tool. Information on the type of lamps and power per city 

district was retrieved from the DSO database (EDP, 2015a) which depicts the detailed consumption 

and type of lamps per city district. 

 

Figure 5.14 - Public lighting electricity consumption and number of lamps per type of technology by city district (2014) 

Data collected regarding the other energy demand sectors was used to support the ICEP tool to answer 

questions like:  

(i) What is the impact in terms of emission and energy consumption of decreasing the 

municipal solid waste production per capita in 20% from 2013 values? 

For the case of Évora this was found to lead to a reduction of CO2 emissions of 89.66 ktCO2 in 2030 

compared to a Baseline scenario, due to an energy saving of 950.87 GJ. These are relatively modest 

impacts compared to the total emissions and energy consumption in the city (i.e. they represent less 

than 1% emission and energy reductions) but; nonetheless, indicate a measure of the contribution for 

this sector. 

5.3.4 Energy supply and endogenous renewables potential 

This section shows selected results on the energy supply system and on the endogenous renewable 

potential estimations. The municipality of Évora is fully covered by the electricity grid, while the 

natural gas network only covers the urban districts. There are some infrastructures selling biomass, 

mostly informal, for residential heating and widespread fuel stations selling oil products for the 

transports. 
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Engaging the electricity utility in data gathering allows obtaining detailed information on the current 

electricity production (15 minute registries) from utility scale PV systems and roof top facilities, 

which is crucial for the characterization of different profiles: a) annual and seasonal electricity 

production, b) hourly electricity production and c) capacity factor (EDP, 2015b). 

Regarding city endogenous renewable potential, biogas, wind and geothermal were assessed with no 

significant potential while the solar photovoltaic (PV) technology was selected as the most important 

RES due to high solar incoming radiation (5040 Wh/m2/day) (PVGIS, 2016). Its potential was 

estimated at two levels: 

(a) Utility scale (PV track and concentrated photovoltaic systems with 1 MW, 10 MW, 20 MW and 

30 MW) through the spatial assessment of the characteristics of the available and suitable area for 

solar farms in the rural areas by using Solar GIS (GeoModel Solar, 2016) and ArcGIS/Arctoolbox – 

(Solar Analyst), while taking into consideration spatial planning regulations in place and scenarios of 

land use restrictions (Lourenço, 2014); 

(b) Building integrated PV (rooftop and façade) considering local specific buildings characteristics 

(e.g. optimal conditions in terms of orientation, and slopes between 25º and 35º) that determine the 

PV panels suitable area, following Byrne et al. (2015), and their performance, considering specific PV 

technologies (Hwang et al., 2012). The rooftops in each city district were analyzed through GIS tools 

and complemented with the households’ survey information, while the façade area was associated 

with the floor area as in IEA (2002). The results are presented at the district level (i.e. PV plant size), 

although, when appropriate, the estimations were made at building archetype level (i.e. for PV 

rooftop). 

Detailed information on both methodologies and results can be found in Dias et al. (2015). Figure 

5.15 depicts an example of results showing the location of current PV plants and the suitable locations 

for potential PV plants under different project size and land use restrictions scenarios. The utility scale 

PV potential in Évora rural areas can reach up to 1.5 GW, being the PV project sizes between 1 MW 

and 10 MW the most appropriate due to higher efficiency in terms of area occupancy. 

Data obtained at this step was fed into the ICEP to answer issues as:  

(i) At what extent, solar PV could supply the future city energy needs? 

We have studied different scenarios assessing the possible contribution of plant size and roof size PV 

options for Évora using the ICEP tool. We have found that the electricity generated within the 

municipality can vary from the 0.84 GWh in 2013 up to 9.19/41.54 GWh generated from PV in 2030. 

The range of the 2030 variation is due to the design of the two tested scenarios. In this first we 

estimated the impact of having roof size PV panels installed in dwellings corresponding to 10% of 

maximum feasible potential by 2020. In the latter, we studied the role of new plant size PV power 
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plants deployed in the municipality rural zone practically up to the maximum technical potential. 

These amounts of generated electricity from PV (both roof and plant size) lead to circa less 30% 

electricity imports from outside Évora. 

 

Figure 5.15 – Current PV plants and suitable locations of potential PV plants of 1 MW according to land use restrictions scenarios (Low, 

Equilibrium and High) 

5.3.5. Integrated City Energy Planning (ICEP) tool  

We argue that effective sustainable energy planning in cities requires detailed and spatially explicit 

datasets, driving the design and implementation of policies and measures targeted to local socio-

economic profiles and specific infrastructures characteristics. Otherwise, the implementation of 

policies and measures equally across all city districts or with no integration with other sectors is 

potentially ineffective and resource wasted. 

City managers and other stakeholders need to work together to address the needs of the citizens. The 

World Economic Forum (2016) identified several challenges (e.g. governance, budget constraints, 

demographics) city managers will face on their road towards a sustainable energy future. Smart 

regulation and robust planning is required to overcame those issues. 

Energy systems engineering provides a methodological scientific framework to arrive at realistic 

integrated solutions to complex energy problems, by adopting a holistic, systems-based approach, 

especially at decision making and planning stage (Zanon and Verones, 2013). The analytical 

framework proposed herein, including data collection pipeline and intermediate specific modeling 
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activities, intends to feed an integrated energy system model (e.g. TIMES_Évora) coupled with a 

MCDM used as the ICEP tool to the municipality of Évora. 

We recognize that the data and methods used have different uncertainty sources comprised in 

different temporal and spatial levels of detail. For integrated planning purposes, a common spatial 

organization needed to be adopted and then a coarser scale was taken, i.e., the four districts, to allow 

for a fully integrated assessment. However, the 10 archetypes are taken individually in each district. 

Moreover, the ICEP tool follows a kind of an agent-based approach supporting the idea that each 

archetype represents a typical family with specific socio-economic profile and then a willingness to 

pay for new technologies, including vehicles. In this sense, the 10 archetypes-in-the-four zones fully 

accomplishes either the high spatial detail gathered in data collection as the city spatial dynamics to 

generate pathways for sustainable energy futures. 

The proposed framework advances on a fully harmonized and coherent energy system analysis and 

planning supported by systematic and detailed data collection and integrating detailed city sectors 

modeling tools. This information sets the basis for proper development and comparison of alternative 

scenario. Alternative scenarios are built considering different pathways for the city regarding 

demographics evolution, economic sectors development, city districts evolution, enabling informed 

discussion of the different options and decision- making. Each scenarios’ outputs are expressed at 

each city district and mapped into the city GIS depicting the spatial distribution of the impact of 

energy related policies and measures assessed at the city district level. 

The capability of an energy system optimization model as TIMES serving the main purpose of a core 

planning tool (i.e. ICEP tool), while including inputs from relevant city stakeholders (e.g., 

municipality) along the data cascade collection, methodology, design of policy scenarios and 

validation of results, gives policy relevance. At the last stage, the alternative scenarios of measures 

were assessed with respect to non-technical criteria through a collaborative multi-criteria decision 

making method to address economic, environmental and social issues (e.g. using PROMEΤHEE - 

Preference Ranking Organization Method for the Enrichment of Evaluations) (VPSolutions, 2013), 

which in some cases changing the ranking of priority of some cost-effective solutions when social 

criteria were considered  

In all the process the city energy GIS platform is used as a core tool to communicate with the 

stakeholders allowing the visualization of the spatial distribution of energy demand and the 

comparison among the city sectors (e.g. transport vs buildings vs public lighting). 

The data framework towards the ICEP tool, as exposed in this paper, offers the opportunity to design 

new and innovative solutions bringing forward the value of multiple data to effective decisions, both 

at the citizen level and at the policy decision level. The analytical framework is highly supported on 

technical and specialized tools, though we consider that a strong stakeholder engagement and 
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participation during all the process will help city managers and urban planners to largely benefit from 

the outcomes of the ICEP. Furthermore, it is worth noting that the analytical framework, data 

collection process and multi model use was tested in four significantly different cities, showing 

operational proof of the capabilities of our methodology. Nevertheless, specific national contexts and 

interests of each city were taken into account along the process, and particularly in the details of 

representation of the system and in the scenarios definition. 

5.4. Conclusions 
Cities are core energy systems pointing to sustainability and climate protection. Detailed and multiple 

data sources are increasingly available at different temporal and spatial resolutions, and this paper 

contributes to demonstrate how these datasets can be combined and jointly assessed with specific 

sector models to feed an integrated energy planning tool coupling an energy system model, to a 

MCDM to deliver science-based and social-accepted future sustainable pathways for the city. 

We present an analytical framework with an integrated vision of the territory intending to address 

incomplete interpretations and dispersed data of the energy system in cities, which usually generate 

multiple inefficiencies. Integrated city planning through data analytics, taking the city energy system 

from the supply to the demand components, driven by optimal cost-efficient assessment will allow to 

deliver policies and measures towards higher energy use efficiency towards sustainable energy future 

targets. 

The proposed analytical framework has been developed within EU InSMART project and applied to 

four cities. The main novelty of this approach is the process of data pipeline, highlighting data 

gathering procedures and data processing tools and models, depicting the whole process of analysis 

and showing typical results. The analytical framework can be used as a template for the planning of 

integrated energy systems at the city level supported by in-depth spatial detailed characterization of 

the different city energy demand sectors. A vast set of indicators are presented covering all the city 

energy sectors, as well as selected modeling tools and analysis, that can be adopted as guidelines to 

implement an integrated energy planning approach in cities. 

The paper demonstrate how to collect and assess the data to fully characterize the city energy system 

in different spatial units (e.g. district level): 1) residential buildings sector through the use of door-to-

door surveys, 15 minutes electricity consumption data from smart meters, statistical data and detailed 

energy simulation of representative buildings archetypes; 2) transport and mobility through door-to-

door surveys, information from stakeholders and transport model portraying energy and mobility 

flows within the city; 3) other sectors focusing on the characterization of public utilities 

infrastructures of waste, water and sewage, public lighting, industries and services, through high 

resolution smart meters data, national to regional statistics and stakeholders consultation; 4) energy 
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supply options through the assessments of RES potential taking the local level spatial planning 

constraints. 

The integration of the vast datasets into a GIS platform for visualization purposes allows the valuable 

participation of different city stakeholders, bringing forward a key advantage of this methodology. 

The stakeholders’ participation at different stages of the methodology is essential in assembling an 

acceptable, realistic and mostly beneficial city action plan. 

ICEP tool results show that for the case study city (Évora), the measures that have biggest impact in 

sustainable energy consumption of the municipality are not the ones under its direct influence (namely 

measures regarding residential buildings) which represents a challenge for a new generation of local 

energy policies. 

A fully optimized smart city planning requires heavy city analytics, namely through the collection and 

combination of a plethora of information from energy statistics by city district or blocks; sensors and 

metering within households, services buildings, public spaces and city utilities; smart technologies for 

transport management and roads; and stakeholders’ inputs through comprehensive procedures. This 

paper showed how to deal and manage such data complexity in an organized framework with the 

purpose to pave the way for a comprehensive and robust city planning, leverage the city role in 

assuring sustainable energy provision and climate protection. 
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6.1 General discussion 
The research carried out in this dissertation brought to the spotlight the needs and benefits of looking 

deeper into residential sector energy consumption in a southern European country. Residential sector 

consumption is a moving target prone to increase the complexity of policies and instruments that have 

to address this challenge, which calls for different levels of knowledge to feed multiscale policies. The 

motivation for this dissertation was to expand the understanding of energy consumption patterns, 

consumers’ role on energy consumption, indoor thermal comfort, and the levels of satisfaction of 

energy services demand. In a country potentially highly impacted by climate change, with low levels 

of income and significant lower energy consumption per capita compared to EU28 average, looking 

into these issues gains even more importance. The research work combined detailed analysis at 

different spatial (national, city, and consumers level) and time scales (hour to annual). 

While assessing the whole chain of the residential energy consumption, the electricity consumption 

and its determinants deserved a special focus. Current electricity consumption patterns and specific 

consumer groups using smart meters were evaluated. A look to the future and to the inclusion of the 

residential sector in an integrated perspective of an energy system was also carried out, assessing the 

uncertainty and impacts of variables changes in energy services demand and final energy 

consumption. 

Using Portugal and in particular the municipality of Évora as case studies, it is possible to present how 

the results and methodologies are relevant for a region where a balance between effective energy 

consumption reduction and increase thermal comfort levels is needed. The use of Évora also enabled 

to take advantage of the extensive and detailed smart meters data. Due to regional specificities and 

recognizing the need for detailed analysis and dedicated policies and measures the results may not be 

scaled up. 

The novel contributions of this research comprise both methodological and results advancements. The 

methodological advances give input to the research arena, while the obtained results can support 

policy development and bring societal and market value. Table 6.1 summarizes the main achievements 

of this research, pointing out some of the key insights for policy. Chapters 2 and 3 are positioned to 

deliver insights for policies tailored for local and consumer groups, while chapters 4 and 5 convey 

results to be integrated in multi-level and multi-sectoral policies. The results are intended to support 

the design and creation of more suitable instruments since they can integrate well-known energy 

consumer understanding. 

The outcomes described in Chapter 2, from the assessment of consumer groups and load profiles 

characterization, can support the design of new business models for ESCO’s, DSO’S or energy 

suppliers (value for market). The topics and results from Chapter 3 highlight the fuel poverty problem 

and current thermal comfort vulnerability of the region (value for society). From the abovementioned 

chapters and under a smart grid environment with big data available, the ability of effectively segment 
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and characterize groups of consumers and understand consumption patterns gain an add value. The 

focus on the consumers is paramount since it is needed to understand who they are, what, why and 

how they consume energy. For example, in the same city and neighborhood, we came up with 10 

clusters of electricity consumers, and the knowledge on the determinants governing such households. 

This is crucial to support, develop and roll out tailored, applicable and innovative engagement 

actions/policies to effectively combine steering changes in consumer behavior, energy services 

demand drivers, thermal comfort levels, energy technologies deployment and energy savings. 

The work carried out herein, transforming data to knowledge at different levels, is also valuable to 

energy suppliers, to tariff design or demand side management schemes and to assess the impacts and 

purpose of personalized services (e.g. integration of PV, energy efficiency measures, inter-sectoral 

electricity consumption/generation complementarities). All the chapters’ results contribute to deliver 

insights to support decision and policy-making, for local stakeholders as municipalities, regarding the 

determinants of consumption and assessment consumers and behaviors; for energy agencies to support 

measures targeting specific groups of consumers (e.g. vulnerable); and for national and regional long 

term energy planning. 

6.2 Answering research questions 
This section presents more detailed conclusions, summarizing the answers to the research questions 

addressed in the different chapters of this dissertation. 

RQ#1 - What are the main determinants governing electricity consumption for 
different types of household consumers? 

The first research question sets the ground for this work, while better understanding electricity 

consumption groups and drivers of electricity consumption. The process of identifying and 

characterizing consumer groups and electricity consumption patterns within a southwestern European 

region allowed to: i) extract and understand significant differences of consumers within the same 

region and with very different consumption patterns compared to other EU countries with different 

socio-economic and climate backgrounds. 

From the clustering analysis, it was identified 10 groups of distinct electricity consumers for the 

sample used within a city of around 56 000 inhabitants. The assessment for Évora shows that three 

major groups of determinants characterize the electricity consumption segmentation, explaining the 

differences between consumers: 1) physical characteristics of a dwelling, especially the year of 

construction and floor area; 2) HVAC equipment and fireplaces ownership and use; and 3) occupants’ 

profiles (mainly number of persons per household and average monthly income). 

The clustering approach and analysis from smart meters’ data also allowed to differentiate types of 

annual electricity consumption profiles, delivering significant knowledge on types of consumers in the 

region.; a U shaped (sharp and soft), a W shaped and a Flat annual profile. U shape pattern was the 
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most common one, covering 77% of the sampled households which could be also considered as 

majority in the whole country. U profiles present a visual difference of consumption on winter and the 

remaining seasons portraying the inexistence or low use of cooling equipment in the summer 

compared to a use of electricity-based technologies for space heating in the colder months of winter. 

These results are clearly aligned with the national statistics and general knowledge of the low space 

cooling equipment ownership and use in the country (i.e. 0.5% of households’ energy consumption 

(INE and DGEG, 2011)). W annual profile depicts clear distinctions of electricity consumption 

between summer and winter and the inter-seasons period. These consumer groups with high values of 

daily consumption present a strong hump-shaped consumption in summer. The profiles suggest that 

the respective households might have high ownership rates and use of HVAC systems for cooling and 

low use of electrical equipment for heating in the winter or both high use of electrical systems for 

cooling and heating. The knowledge extracted from these differentiated profiles backed up by the 

socio-economic and building structure details feed the definition of major policies and instruments 

especially targeted to each group of consumers with expected distinct impacts. 

The current results show the importance of regional and consumer group strategies on equipment 

substitution, insulation measures and the role of renewable energy integration in buildings, as also 

proposed in the Ljubljana declaration, within a European region that faces specific barriers for 

promoting EE and RES, as climatic conditions leading to a traditional low emphasis on insulation and 

ageing building stock (ELIH Med, MARIE and Proforbiomed, 2013). 

From the work developed in Chapter 2, we conclude that the knowledge on the drivers behind 

household energy consumption and typical consumption profiles is crucial to design energy policies 

and instruments that effectively assure the transition to low carbon and reliable energy systems. 

Crossing the consumption registries of electricity delivered by the smart meters with the main 

determinants of energy consumption in each household retrieved from qualitative door-to-door survey-

based data, proves to be a powerful method to distinguish groups of electricity consumers, allowing to 

derive insights for an individually feedback evaluation tailored to effective energy savings. 

RQ#2 – Why to identify specific consumer groups and behaviors? 

The work carried out in Chapter 3 suggests new uses for smart meters’ datasets as to recognize and 

better understand fuel poverty issues and consumers’ behavior on space heating and cooling. Howell 

et al. (2005) underlined that energy use in the residential sector can be best understood by focusing on 

specific end use functions and their drivers. The relevance of each end-use in the overall energy 

consumption is highly dependent on climate, physical dwelling characteristics, appliances and system 

characteristics, ownership, and occupancy behavior, as concluded previously when answering to 

RQ#1. In the work developed in the third Chapter, the importance of looking to vulnerable consumers 

and major end uses as climatization is acknowledged. These topics are particularly important in the 
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case study region, under the scope of a wider European energy policy focused on energy consumption 

reduction. 

In this chapter, and for answering the second research question, we evaluate both daily and annual 

electricity consumption profiles for two purposes: 1) look for very distinct consumer groups and 

characterize them, while estimating the satisfaction of thermal comfort levels from confronting 

electricity consumption with energy services demand modeling calculations for climatization, and 2) 

assess consumers’ behavior regarding electricity consumption when outside temperatures change. 

The research results advance on the state of the art since they enable a better understanding of 

consumers typification and daily routines; support the identification of specific consumer groups 

definition supported on their use of climatization equipment and allow for a closer look to the fuel 

poverty topic in Portugal. 

On the first part of the chapter, a new concept “fuel obesity” is brought to the table, to understand if a 

very high daily electricity consumption compared to, both the average and low consumption level 

consumer groups, is a consequence of overconsumption, unsustainable and inefficient energy use. 

Throughout the steps of the research, it was recognizable that while the assessment of electricity 

consumption levels and profiles might support the concept; when combining those results with the 

demand for energy services for the respective building typologies, the results still portray the lack of 

fulfilment of thermal comfort levels inside households both in heating and cooling season. This way it 

can be said that, combining smart meters and energy simulations allow for closing the circuit of 

analysis, making a clearer appraisal of energy services demand and energy consumption while 

supporting the assessment of equity issues on energy use that could serve to define targeted policy 

measures and incentives. This research lifts the veil on the concept of fuel obesity, that despite not 

being confirmed, future research in other regions and samples should pursue to better understand if it 

can be conveyed. 

Hence, from the second part of the chapter, it is concluded that high resolution hourly electricity 

consumption data at the household level could be used as a proxy of active consumer behavior 

regarding space heating. We consider that this would also apply for space cooling, nevertheless from 

our data and sample, this was not the case. The daily routines and behavior of distinct consumer 

groups on such an important end use as climatization needs to be correctly understood to have a better 

planning and targeted policies, programs and incentives. The assessment of temperature-driven load 

variations as proxies for active behavior is supported by the socio-economic details of the households 

(e.g. ownership of heating and cooling equipment, income level) in order to highlight factors that 

could confirm or mask (e.g. due to the ownership of other heating equipment based on gas or biomass) 

that relationship. This kind of analysis and findings have a high value for a wide range of applications 

within a smart grid environment. As also discussed in Rhodes et al. (2014) they could also serve as a 

starting point for utilities looking to reduce electricity use during peak times and to the advantages of 

policies such as time-of-use or real-time electricity structures that might affect consumers differently. 
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ESCO’s and consumer associations would benefit from this knowledge on the temporal shape of 

residential energy use and its determinants to better engage consumers and target the most 

significantly impacted houses on e.g. efficiency upgrades, group insulation improvement scheme and 

customized communication strategies. 

Ellegård and Palm (2011) states that policies aimed at promoting energy savings in the household 

sector must relate to and rely on individuals’ daily choices and household routines – what they do in 

their everyday lives. Energy efficiency policy instruments are mostly designed based on a normative 

perspective of market behavior of economic actors, which are assumed to receive the market signals 

and act on the grounds of their own rationality. Still, the economic rationality in energy use and energy 

saving behaviors is an often-entangled topic depending on various parameters (Oikonomou et al., 

2009). 

Energy conservation and energy efficiency are presently the most powerful tools in the transition to a 

clean energy future. However, the results from Chapter 2 and 3 also shed the light on the importance 

of the integration of PV and solar thermal systems in a high solar radiance region as Évora when 

detailed registries on consumption are available. This knowledge on the patterns of use and daily 

peaks could be used to feed new business models investment and micro grids definition; to better take 

advantage of RES investments, optimize PV self-production, minimize grid investments and address 

complementarity of consumption/production within different household groups our even with other 

energy consuming sectors. All this knowledge can further support decision makers and other energy 

stakeholders in developing e.g. demand side management actions, alternative tariff design, specific 

energy efficiency measures and peak shaving assessments. 

RQ#3 – How, and in what extent, the uncertainty associated with the determinants of 
energy consumption will impact energy services demand and final energy 
consumption in the long term? 

The answer to this research question is carried out in chapter four, where a bottom-up methodology to 

project detailed energy end uses demand in the Portuguese residential buildings until 2050 is 

proposed. Space heating and cooling, water heating, lighting, cooking, refrigeration and electric 

appliances (e.g. dish washing, cloth washing, among others) were considered, followed by ceteris 

paribus assessment of the energy consumption determinants. 

It is argued in this chapter of the dissertation that the planning of future energy systems, especially in 

the residential sector, should be supported by energy services demand instead of final energy 

consumption, allowing future options of energy resources and technologies available to satisfy energy 

needs, as well as encompassing the expected changes on the determinants of energy consumption (e.g. 

socio-economic; changes on climate, on private consumption, thermal comfort and on lifestyle). 
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A range of plausible variations of the parameters defining a Reference scenario end-use services 

demand was assessed, resulting in around 140 ESD sensitivity analysis scenarios. And a selection was 

made of a set of 21 scenarios corresponding to the highest and lowest variation of each parameter for 

each end-use plus the REF, serving as input for the technological optimization model TIMES_PT. The 

model estimated final energy demand and technology portfolio allowing to conclude on the impact of 

uncertainty of energy services demand in final energy. The use of a combined methodological strategy 

supported by an energy services bottom-up approach and a technological model gives insights on the 

complexity between energy services and energy consumption. 

This chapter recognizes energy consumption in the residential sector as a moving target stressing the 

importance of understanding the current determinants of energy consumption that distinguish energy 

consumers disclosed in the previous chapters, but also to recognize how they could change for the 

future under long term energy planning. 

The results underpinned that for some end uses, technology (and energy efficiency improvements) 

might outweight behavioral practices and lifestyle changes as in space heating and lighting. 

Nonetheless, it is recommended to give focus to uncertain parameters related with consumer behavior, 

especially those on space heating and other electric end uses, as thermal comfort and equipment use. 

For space heating and cooling, the results indicate that the uncertainty associated with the increase of 

thermal comfort overcomes the uncertainty on the expansion in households’ size and on thermal 

behavior of buildings due to e.g., climate change. These results are in line with the ones presented by 

Young and Steemers (2011), where the behavioral patterns of air conditioning equipment use were the 

most influential elements in household cooling energy consumption; and are also supported by the 

research findings from the previous chapters. 

The research carried out in this chapter allows for an improved understanding on the data of several 

parameters that drive energy services demand in Portugal, avoiding the use of approximate values as 

in other studies for the European households (i.e. Anström et al., 2010). Furthermore, it considers the 

heterogeneity of the different end-uses (e.g., floor space and appliance ownership) to improve extra 

options for a detailed analysis, a research gap identified by Ruijven et al. (2010); results illustrating 

once again that energy policies, namely for effective energy consumption reduction, should focus 

specific determinants behind each end-use on both technological and non-technological factors. 

RQ#4 - How multiple data and tools can be integrated to inform sustainable city 
planning and policy?  

The last research question is addressed in Chapter 5 showing how the work carried out in the previous 

chapters can be considered in the big picture, under city level energy planning. There is a critical need 

for improved comprehensive city planning driven by integrated approaches, supported by ex-ante cost-

benefit evaluation and using energy systems models towards cities sustainable energy use. Hence, 

innovative tools and models to assess and perform in-depth analysis of various alternative measures 
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will help to pave the way towards more efficient energy use, to fully capture the potential of each city 

in the most efficient (economical, technical) way. 

In the fifth chapter, we propose an analytical framework to integrate multiple data sources, from smart 

meters and surveys, models on different city’s energy components, and analysis tools over the city, 

required to feed an energy planning integrative tool to deliver future sustainable energy paths. The 

integrative tool takes the city energy system and focuses on the data gathering and analysis tools on: 1) 

residential buildings, 2) transport and mobility, 3) other energy consuming sectors (waste, water and 

sewage systems; public lighting and gardens, public buildings, services), and 4) energy supply system, 

including local renewables. Selected results for Évora city illustrate how the proposed analytical 

framework advances on integrative city planning and show how energy services demand projections 

and the knowledge of different groups of consumers and determinants could be included within a 

wider framework of analysis. 

It is shown that an improved understanding of the energy flows between city districts and at the 

building level/consumer level is necessary for the identification and evaluation of possible energy 

related measures to be considered for each energy consuming sector, and for the advance of urban 

sustainability governance. 

It is recognized that the availability of data for the characterization of EU buildings is far from ideal. 

Hence, in this chapter we delve into the collection of data needed for the residential sector as input for 

the integrative planning tool provided by multiple sources and a combination of statistical data 

analysis, dedicated household surveys, electricity smart meters’ data analysis, where available, and 

buildings simulation models. 

The measures with highest impact in sustainable energy consumption of the municipality are not the 

ones under the municipality direct influence (e.g. measures regarding residential buildings), which is a 

challenge for a new generation of local energy policies; and also stress the importance of our previous 

results for other type of stakeholders as ESCO’s, energy utilities, consumer groups. 

6.3 Final remarks 
This dissertation has covered the residential energy sector for Portugal, from the determinants and 

energy services demand, zooming in on targeted consumers and climatization behaviors to current and 

long term assessments. While transforming data to knowledge, the work delivers insights for different 

stakeholders, policy and acting levels. Table 6.1 synthetizes the work from problem design to the 

advancing of knowledge and societal insights. 
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Table 6. 1 – Dissertation overview: from problem design to advanced knowledge and societal insights 

Problem Identification Research Questions Advancing methods and knowledge Insights to policy and stakeholders 

Stabilization or reduction of households’ electricity consumption while fulfilling 
electricity service needs has been pointed out as a major goal in developed 
countries to prevent harmful environmental impacts and fossil fuel imports. 
The specificities of Residential sector and regional/country differences need to be 
identified in order to better understand energy consumption patterns, the 
determinants of energy consumption and the dichotomy of energy consumption 
reduction vs .indoor thermal comfort increase. This requires a detailed knowledge 
on consumers and electricity consumption patterns. 

RQ#1 - What are the 
main determinants 
governing electricity 
consumption for 
different types of 
household consumers? 

The successful design and implementation of residential sector 
instruments and measures can be achieved through the 
integration and better understanding of households’ electricity 
consumption patterns using high resolution data from smart 
metering coupled with the knowledge on socio-economic details. 
In this work, a consumer segmentation, identifying and 
characterizing different types of consumers was applied. Main 
contribution: screening tool to compare energy consumption 
patterns and consumer groups of households for a southwest 
European city. 

Set the ground for the definition of tailor-
made policy recommendations for targeted 
consumer groups (e.g. vulnerable consumer 
groups, inefficient consumers) and 
behavior/practices to peak demand 
management, social support policies, EE 
measures and instruments and RES 
integration. The methodologies could be used 
to diagnose houses that are the highest 
fluctuating energy consumers and trigger 
energy audits or the low energy consumers 
where support measures should be applied. 
Three major groups of determinants 
characterize the distinctions in electricity 
consumption segmentation: physical 
characteristics of a dwelling, especially year 
of construction and floor area; HVAC 
equipment and fireplaces ownership and use; 
and occupants’ profiles (mainly number and 
monthly income). Looking deeper to specific 
consumer groups, occupants’ behavior is the 
most significant determinant of electricity 
consumption, especially regarding space 
heating and cooling. 

Single evaluation of countries where space heating might not be the main problem 
as in EU northern countries (e.g. Portugal), have been recurrently dismissed. 
Several facts point Portugal as severely endangered by fuel poverty with low 
indoor thermal comfort. Ranking in the top of EU countries with the poorest 
housing status; 30% of people at risk of poverty, 28% of people enabled to keep 
home adequately warm, 36% living in a dwelling not comfortably cool during 
summer time; income distribution is more unequal compared to EU28; 30% of the 
population receives social tariff support for the payment electricity and natural gas 
bills; energy prices are significantly higher than EU28 average. Heating and 
cooling thermal performance gaps identified at local level to be around 90% 
(Palma, 2017). All these indicators have continuously been increasing in recent 
years stressing the need for an in-depth and dedicated studies on fuel poverty for 
Portugal. 

On the other end, it is also important to understand the patterns of consumption and 
behavior of high electricity consumption users for identify other types of policy 
and measures interventions. 

RQ#2 - Why to identify 
specific consumer 
groups and behaviors? 

A new methodology and new datasets to assess the fuel poverty 
thematic was applied; and a new approach was present to better 
understand consumers’ behavior for space heating and cooling. 
This knowledge may be used either by policy makers targeting 
fuel poverty, thermal comfort levels and energy efficiency 
measures; and by ESCO’s and energy providers for direct 
consumer feedback and tailor-made initiatives of tariff design, 
energy efficiency recommendations and equipment substitution. 
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Problem Identification Research Questions Advancing methods and knowledge Insights to policy and stakeholders 

Projections of energy demand are important for energy security 
supply and low carbon futures, and usually rely on final energy 
consumption trends methods, limiting the opportunity for future 
options. Methods supported by final energy are very limitative 
because future options are locked in. Projections of energy demand 
require approaches based on energy services, implying a deeper 
knowledge between energy services and technology options 

RQ#3 - How and in 
what extent, the 
uncertainty associated 
with the determinants 
of energy consumption 
will impact energy 
services demand and 
final energy 
consumption in the 
long term? 

Methods supported by energy services are much preferred to estimate 
future energy demand, since they are better suited to accomplish end-
users needs understanding the role of each energy consumption 
determinant. 

A bottom-up methodology was developed to project detailed energy 
end-uses demand in the Portuguese residential buildings until 2050, 
aiming to identify the parameters governing energy services demand 
uncertainty, through a sensitivity analysis. The partial equilibrium 
TIMES (The Integrated MARKAL-EFOM System) model was used 
to assess technology options and final energy needs for the range of 
parameters variations for each end-use. The impact of uncertainty of 
energy services demand in final energy was highlighted. Technology 
can overweight behavioral practices and lifestyle changes for some 
end-uses, as space heating and lighting. Nevertheless, important 
focus should be given to uncertain parameters related with consumer 
behavior, especially those on heating and other electric end-uses, as 
thermal comfort and equipment’s use. 

Main results show that technology can overweight 
behavioral practices and lifestyle changes for some end-
uses as in space heating and lighting. Nevertheless, 
important focus should be given to uncertain parameters 
related with consumer behavior, especially those on 
heating and other electric end-uses, as thermal comfort 
and equipment’s use. 

City authorities will likely not be able to address the increasing 
energy demand, changing demographics and ageing infrastructure, 
without the support of appropriate methods, and data analysis 
throughout the urban development value chain (WEF, 2016). There 
is a need for an improved comprehensiveness of the city planning 
process towards sustainable energy use driven by integrated 
approaches. Current studies usually compartmentalize the 
assessments on urban energy systems focusing on specific aspects of 
energy use and mostly use exogenous input data. 

RQ#4 - How multiple 
data and tools can be 
integrated to inform 
sustainable city 
planning and policy? 

Integrated city planning through data analytics, taking the city energy 
system from the supply to the demand components, driven by 
optimal cost-efficient assessment allow to deliver policies and 
measures towards higher energy use efficiency towards sustainable 
energy future targets. 

It is designed a structured process of data pipeline, highlighting data 
gathering procedures and data processing tools and models, depicting 
the whole process of analysis and showing typical results, required to 
feed an integrated energy planning process to deliver future 
sustainable energy paths. 

The analytical framework can be used as a template for 
the planning of integrated energy systems at the city 
level supported by in-depth spatial detailed 
characterization of the different city energy demand 
sectors. 

Data availability and accessibility increases the 
awareness of all stakeholders to new and innovative 
sustainable energy options. The results for Évora for the 
residential sector showed: 1) that the city can provide 
meaningful amounts of RES at affordable costs; 2) the 
need to review existing municipal programs for private 
buildings renovation in the historic center and provide 
access to credit schemes for residential owners towards 
passive energy efficiency measures in the building 
envelope.  
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Future work should comprise similar assessments and cluster analysis to the ones depicted in chapter 2 

at national level for other country regions to validate the results achieved herein and understand if they 

can be used for country level analysis. Another line of work, would be to integrate this knowledge for 

the residential sector consumption profiles with analysis of consumption profiles from other sectors 

under the scope of large RES integration, micro grids implementation, energy storage units at both 

utilities and individual scale, electric vehicles charging patterns, among others. 

Future research on the topics of Chapters 2 and 3 should consider the design and testing of the impact 

of targeted policies on overall energy consumption. Incentives and subsidies could be important factor 

for the penetration of more efficient equipment and improved thermal quality of buildings, increased 

use of a specific fuel and adoption of renewable energy technologies. The body of literature on the 

determinants of energy consumption and energy savings do not give a strong focus on this factor, 

showing that it should be better studied. As mentioned by Egger et al. (2012) in the residential sector, 

experts observed the removal of the financial incentives for energy efficiency in Portugal. 

One of the limitations of Chapters 2 and 3 refers to the analysis supported only on electricity 

consumption data. Further work should; therefore, include smart meter data from natural gas and 

knowledge on the biomass consumption to fully grasp energy consumption patterns, consumer groups 

typification and indoor thermal comfort understanding in the region. 

One have to bear in mind that, since the objectives and timelines of the project (i.e. INSMART) that 

supported the development of the work carried out for Chapter 5, were slightly different from the ones 

taken in this work, the energy services demand methodology (Chapter 4) and defined consumer groups 

(Chapters 2 and 3) were not directly used within the framework for the city energy planning. Future 

research on city/national energy planning level should take into account detailed inputs on consumer 

groups, assessing policies and instruments within a broader framework. 
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Annexes Contents 
For the development of this research different support tools were used such as smart meters’ data and 

surveys. The surveys presented herein were designed and carried out in the city within the EU 

InSMART project. This chapter only includes the questions made to the citizens in both surveys and 

do not include the overall design and recommendations to the interviewers. 

The annexes of this dissertation are the following: 

• Annex I – Residential Sector Survey 

• Annex II – Transport and Mobility Survey 

The residential sector survey results were used within the research and papers described in Chapter 2 

and Chapter 3. Both surveys were used to feed in the dedicated models (transportation and buildings 

energy simulation models) and the integrated city energy planning tool presented in Chapter 5. 
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Annex I – Residential Sector Survey 
1. General Data 

Building form  

Terraced house  

Detached  

Semi-detached 

Multi-family / apartment building 

 

£ 

£ 

£ 

£ 

Building Use  

Residential £               Mixed £ 

 

If mixed use, please provide information of specific uses by floor 

…………………………………………………………………………………………… 

…………………………………………………………………………………………… 

…………………………………………………………………………………………… 

…………………………………………………………………………………………… 

Address  

Total area (sq.m)  

Building height  

Number of Floors  

Area per floor (sq.m) Basement     ………………………… 

 Ground Floor ………………………… 

1st                ………………………… 

2nd               ………………………… 

3rd………………………… 

……………………………………………… 

 

Construction Year  

No of apartments  

Apartment number which 
is surveyed 

 

Floor at which apartment is 
located 

 

Apartment total area (sq.m)  

Refurbishment Year  

Type of Refurbishment 

 

 

Replacement of windows: 

Year: 

 

Roof Insulation: 

Year: 

 

Wall insulation: 

Year: 

 

Boiler replacement: 

 

£ 

……………………………… 

 

£ 

……………………………… 

 

£ 

……………………………… 

 

£ 
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Year: 

Other: ……………………………………… 

 

………………………………… 

 

Number of residents: Apartment …………………… Whole building ………………… 

Energy Certificate Yes £ No £ If yes what is the class:  

 

2. Occupant / Contact person data 

Type of Household Occupation Contract Owner-occupier  £  

Tenant (private rented) £ 

Tenant (public rented)  £  

Leasehold  £  

Shared ownership  £ 

Building manager  £ 

Family name / First name  

Age of primary resident  

Vocation / Working status Professional Full Time   £   

Professional Part Time £ 

 Retired £  

Student £ 

Other ……………………………………………………………… 

Number of household members  

Age of each household member  

Gender of each household member  

Relation of household members Family £ 

Another Couple £ 

Room mates £ 

Other ………………………………………………………….. 

Degree of Scholarship None £ 

4th Grade £ 

6th Grade £  

9th Grade £ 

12th Grade £  

Graduation, MsC, PhD £ 

Monthly Average Income Less than 750€£ 

Between 751 and 1500€ £ 

Between 1501 and 2500€ £ 

More than 2501€ £ 

Tel/ Fax  

e-mail  

 

3. Building Use data (for Non-residential building/Non-residential part of building) 

Operation hours: Monday – Friday: from  ………………- to……………… 
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Saturday – Sunday: from……………- to…………… 

Average number of occupants during:  

Working days (Mon – Fri)  

Saturday  

Sunday and Public holidays  

 

4. Building Envelope data 

Load bearing structure Concrete £  

Masonry walls with plate £  

Masonry walls without plate £  

Masonry walls with loose stone £ 

Other / do not know ……………………………………………… 

External walls Construction Type 

 

If Single Layer then choose: 

 

 

 

 

 

 

 

 

If Double Layer then choose: 

Single layer £  Double layer £  

 

£ Brickwork unplastered on one or two sides  

£ Brickwork plastered on both sides,  

£ Brickwork with brick finishing,  

£ Brickwork with stone finishing,  

£ Stone wall unplastered on one or both sides,  

£ Stone wall plastered on both sides  

£ Stone wall with brick finishing,  

£Other …………………………………………………………… 

 

£: Double brickwork unplastered on one or both sides,  

£: Double brickwork plastered on both sides,  

£: Double brickwork with brick finishing,  

£: Double brickwork with stone finishing,  

£: Double brickwork with slightly ventilated air layer,  

£: Stone wall with brick finishing,  

£: Concrete panels plastered on both sides,  

£Other ……………………………………………………………… 

External wall thickness (cm)  

Type of insulation Expanded Polystyrene £ 

Extruded Polystyrene £  

Polyurethane £ 

Glass wool  £ 

Stone wool  £ 

Cork £ 

Does no know/ Other ………………………………………………… 

Insulation layer thickness (cm)  

Position of Insulation Internal £   

External £  

Core £ 

Roof: 

 

 

 

Horizontal concrete roof  £ thickness: ……………… (cm)  

Sloped concrete roof £ 



 228 

 

 

 

 

Roof space under the sloped roof occupied 
and heated? 

Roof insulation layer thickness (cm) 

 

Type of insulation 

 

 

Sloped Concrete roof with tiles £ 

Horizontal concrete roof on which a sloped wooden frame covered with 
tiles is constructed £ 

Sloped wooden roof with tiles £ 

 

If sloped roof, please provide angle of slope (0): .................................. 

Yes £  No £   …………………………………….. 

 

Expanded Polystyrene £   

Extruded Polystyrene  £  

Polyurethane £  

Glass wool  £  

Stone wool  £ 

Does not know/ Other ……………………………………………… 

Type of windows:  

Framing material 

 

 

 

Glazing type 

Wood £  

Aluminum £  

Plastic £ 

 

Single £  

Double£ 

Triple £  

Special £ 

Ratio of window / wall area by orientation 
(%): 

South…………………… 

East…………………..… 

West………………….… 

North…………………… 

Type of shading system: Balcony / Overhang £ (1)  

Shutters £ (2) 

External Blinds  £ (3)  

Awning £ (4)  

Side fins £ (5)  

Other ..…………… (6) 

Shading type by orientation:  

South façade £(1)  £(2)  £(3)  £(4) £(5)£(6) Please write depth and 
width (m), if overhang 
or fin 

East façade £(1)  £(2)  £(3)  £(4) £(5)£(6) d 
……………………… 

w 
……………………… 

 

West façade £(1)  £(2)  £(3)  £(4) £(5)£(6)  

Flooring:  

Ceramic tiles £ 

Wood £ 

Mosaic £  

Concrete £ 

Other ………………………………………………… 
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If flooring material varies, please provide information by floor: 

Basement 

Gr. Floor 

1st 

2nd 

3rd 

…… 

 

Basement occupied and heated? 

 

Floor insulation layer thickness (cm) 

 

Type of insulation 

 

………………………………………………………… 

………………………………………………………… 

………………………………………………………… 

………………………………………………………… 

………………………………………………………… 

………………………………………………………… 

 

Yes £                                            No £ 

 

………………………… 

 

Expanded Polystyrene £ 

Extruded Polystyrene £  

Polyurethane £ 

Glass wool £ 

Stone wool £ 

Other …………………………………………………………………… 

 

4a. Conservatory 

Is there a conservatory attached? 

 

Yes £                                             No £ 

 

If Yes, please complete separately (especially for the conservatory), boxes (4), (6), (8), (9) 

 

 

5. Building layout 

 

Please, provide a draft layout of the building, with spatial dimensions, orientation, street width height of adjacent and  

opposite buildings.  

Please, provide photos of each façade and of the surrounding area.  

 

6. Space Heating system 

Type of heating system 

 

Diesel boiler   £  

Gas boiler £  

Heat pump £ 

Micro - CHP £    

A/C £  

Electric heater £ 

Fireplace £  

Fireplace with heat recovery £ 

Solar thermal £ 

Solid fuel burner on pellets £ 

Solid fuel burner on biomass £ 

Other …………………………………………………………………… 

If multiple systems, estimate % of heating 
needs covered by each system 
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Capacity (kW)  

Efficiency  

Type/Model  

Number of systems (if there are multiple 
systems of the same type e.g. two or more 

heat pumps) 

 

Installation year  

Operating hours per day   Winter Period: from  ………………- to……………… 

Operating hours per day   Spring/Autumn Period: from  ………………- to……………… 

to get operation profile 

Type of heating control Thermostat £ timer  £thermostatic valve  £ other.............................. 

 

7. Domestic Hot Water system 

Winter season 

please describe: 

 

 

 

Type: electric resistance £ solar thermal £ gas £ diesel £ 
biomass £  heat pump £ 

Other ....................................... 

Capacity kW): ……………………. 

Operating hours/day: …………………. 

 

Summer season 

please describe: 

 

Type: electric resistance £   solar £ gas £ diesel £ biomass £  
heat pump £ 

Other …………………………………………… 

Capacity kW): ……………………. 

Operating hours/day: …………………. 

 

For solar systems: Surface of solar panels … m2 

Is there a hot water storage vessel?  Yes£ No£ 

If yes, what is the volume (lt)  

 

8. Space Cooling system 

Type 

 

A/C Central  £ 

A/C split units  £  

Fan coil £ 

Other ……………………………………………………… 

Installation year  

Number of units  

Electric capacity per unit (kW)  

Cooling capacity per unit (kW)  

Operating hours per day  

Is it used for space heating as well?  

If yes, please give % 

Yes£                            No£ 

…………………………% 

Roof fans 

Number 

Power per fan 

 

……………………………… 

……………………………… 

 

9. Lighting system of individual apartments/households 
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Type of light bulbs: Number Power (W) Operating hours per day 

Incandescent     

Fluorescent    

Fluorescent compact (CFL)    

Halogen    

Light Emitting Diode (LED)    

 

10. Lighting system in common use areas of the building 

Type of light bulbs: Number Power (kW) Operating hours per day 

Incandescent     

Fluorescent    

Fluorescent compact (CFL)    

Halogen    

Light Emitting Diode (LED)    

Is there an automation system? What 
type? 

Time scheduling control £  

Occupancy sensors £ 

Other …………………………………………………… 

 

10.a Lighting system of non-residential part of building 

Type of light bulbs: Number Power (W) Operating hours per day 

Incandescent     

Fluorescent    

Fluorescent compact (CFL)    

Halogen    

Light Emitting Diode (LED)    

Type of luminaires ceiling mounted direct £ 

ceiling mounted with diffuser £ 

recessed down lighter£ 

pendant direct £ 

pendant indirect  £  

chandelier  £ 

free standing  £ 

wall-washer £ 

Is there an automation system; What type; Time scheduling control£ 

Occupancy sensors£ 

Other …………………………………………………… 

 

11. Other Electric equipment 

 Number Power (kW) Operating hours per day 

Computers - Desktop    

Laptops    

Copiers/Printers    

Refrigerator    

Fridges    

Electric stove    
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Gas Stove    

Microwave    

Cloth Washing machine    

Cloth Drying machine    

Cloth Washing and Drying machine    

Dish Washing machine    

Televisions    

 

12. Energy consumption data of the last three years 

Year 

Electricity 

(kWh) 

Diesel 

(lt) 

Natural Gas 

(Nm3) 

Other fuel 

2011     

2012     

2013     

Number of the electricity meter: 

 

13. Energy cost data of the last three years 

Year Electricity 

 (€) incl. tax 

Diesel 

 (€) incl. tax 

Natural Gas 

 (€) incl. tax 

Other fuel 

(€) incl. tax 

2011     

2012     

2013     

 

14. Onsite energy generation 

Is there a PV system on the building? If 
Yes please provide: 

 

Installed Capacity ….. KWp 

Is there another micro-generation system? 
If yes please describe: 

Type of system ….. 

Fuel Used….. 

Installed Capacity ….. kW 

 

15. Choices about Renewable energy sources 

All energy consumed in the city should be 
provided by renewable energy sources 

Totally Agree £ 

Agree £ 

Neutral £ 

Disagree £ 

Total Disagree £ 

Electricity generation and distribution 
should be made at a utility scale level 

Totally Agree £ 

Agree £ 

Neutral £ 

Disagree £ 

Total Disagree £ 

Electricity generation and distribution 
should be made at a decentralized level 

Totally Agree £ 

Agree £ 

Neutral £ 

Disagree £ 

Total Disagree £ 

On the Renewable energy sources I would like to be directly consulted and participate in the development of 
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development which option is preferred: renewable energy sources £ 

I would like that associations and NGO’s took part in the development of 
renewable energy sources.£ 

I would like that the Municipality departments would ne consulted and 
participate in the development of renewable energy sources £ 

I would prefer that the responsible authorities make the decisions £ 

Do not know £ 
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Annex II - Transport and Mobility 
Survey 
Screening Section 

S1.  Interviewer’s name: __________ 

S2.  City Sector Number: __________ 

S3.  Day of week:___________ Date:___________ Month:___________ Year:___________  

S4. Time (24hr clock):___________ 

S5. Gender  Male £     Female £ 

S6.  Please can you tell me which of the following age categories you are in? 

18-34 £ 

35-49 £ 

50-64 £ 

65+ £ 

 

S7.  Which of the following best describes your working status? 

Working full time (35+ hours per week) £ 

Working part time (<35 hours per week) £ 

Student £ 

Retired £ 

Not working £ 

Full-time Home Duties/Caring for Others £ 

Other (Please specify) ……………………………………………………………………… 
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Main Section 

[Read out] I’d like to start by asking you about the journeys you made yesterday, including those which you 

made for yourself and those in which you were accompanying others.  This will help us understand the type of 

journeys which you make.  For each journey, I’ll ask where it started and ended, what time you set off and how 

long the journey lasted, what the main reason for the journey was, how you travelled, and who, if anyone, you 

were travelling with.  

One journey is defined by a single trip for a single purpose, for example if you travelled to work, but stopped off 

at the shops on your way, then the first journey will be your trip to the shops, your second journey will be from 

the shop to work, etc.  Note that a trip from home to work and back again should be classified as two separate 

journeys. 

[Read out] Please think back to what you were doing yesterday. What was the first journey you made?  

[Prompt if necessary:] Did you get up and go to [work/college/ the shops]? 

[Interviewer: Please ask the respondent to complete a travel diary description for all journeys made on 

the preceding day, prompting, ‘and then what was the next thing you did that day?’.  Note that it does not 

matter whether the previous day’s travel was ‘typical’ or not] 
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ONE DAY TRAVEL DIARY FOR THE PREVIOUS DAY             

Date diary refers to (i.e. yesterday’s date): _________________________ Day of week diary refers to (i.e. what day was it yesterday?): Mon / Tues / Weds / Thurs / Fri / Sat / Sun  

Journey 

number 

In which sector did 

your journey start? 

In which sector did 

your journey end? 

What time did 

your journey 

begin?  

Journey purpose (to or 

from….) 

How long did your 

journey take? 

(in minutes) 

Main mode of transport 

If main mode is car, 

how many adults 

were in the car? 

If main mode is car, 

how many children 

were in the car?  

 

Enter sector number 

from map.  If outside 

sectors on map, enter 

name of nearest 

town/city 

Enter sector number 

from map.  If outside 

sectors on map, enter 

name of nearest 

town/city 

Estimate, using 24-

hour clock, e.g. 

20:15 

Enter number 1-11     

1:    Normal place of work                           

2:    Education (including 

escorting others) 

3:   Other work trip  

4:   Shopping 

 5:  Personal business (e.g. 

doctor/bank etc.) 

6:  Visiting friends/ family  

7:  Leisure 

8: Other (please specify) 

Estimate, in minutes, 

the length of time the 

journey took e.g. 20 

minutes 

If more than one mode, 

enter mode which is used 

for the greatest distance 

Enter number 1-9 

1: Car/van (driver) 

2: Car/van (passenger) 

3: Bus 

4: Train 

5: Motorbike/scooter 

6: Bicycle 

7 Walk 

8 other (specify) 

Enter the number of 

people in the car aged 

18+, including 

yourself e.g. if it was 

you plus one other 

adult, enter ‘2’  

Enter the number of 

people in the car aged 

0-17 

1         

2         

3         

4         

5         
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Q1.  Which of the following best describes the type of property you live in? 

 

Detached property £ 

Semi-detached property £ 

Terrace property £ 

Flat/ maisonette £ 

Other (specify) ……………………………… 

Q2. How many bedrooms are there in your property? 

1 bedroom £ 

2 bedrooms £ 

3 bedrooms £ 

4+ bedrooms £ 

Q3  How many people, including yourself and any children, live in your household? 

1 £ 

2 £ 

3 £ 

4 £ 

5 £ 

6 £ 

More than 6 (Please specify ____ ) 

Q4.  For each person living in your household, please can you tell me which age category they 

are in and whether they are male of female? [Interviewer: please tick correct age and gender 

for each person living in the household] 

Person 0-4 5-10 11-17 18-34 35-49 50-64 65+ Male Female 

1          

2          

3          

4          

5          

6          
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Q5.  How many cars/vans are available for use by members of your household? 

0 £ 

1 £ 

2 £ 

3 £ 

More than 3 (please specify ______ ) 

IF Answer to Q5 = 0, GOTO Q7 

Q6.  For each car in your household, please can you tell me it’s approximate age and the fuel it 

uses? [Interviewer: please tick correct age and fuel type for each car] 

Car 

Less 

Than 2 

Years 

Old 

At Least 2 

Years Old 

and Less 

Than 5 

At Least 5 

Years Old 

and Less 

Than 10 

10 

Years 

or 

Older 

Petrol Diesel Cng Hybrid Electric 

1          

2          

3          

4          

5          

 

Q7.  How many motorbikes/scooters are available for use by members of your household? 

0 £ 

1 £ 

2 £ 

3 £ 

More than 3 (please specify ______ ) 

Q8.  [If S7=’working full time’ or ‘working part time’, ask:] Earlier you said that you [work full 

time/ work part time]. Do you usually…? 

Work from home  [GOTO END] 

Travel to a single workplace [Continue] 

Travel to different locations [GOTO END] 
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Q9.  [If Q8=b ‘Travel to a single workplace, ask:] How many times per week do you usually travel 

to that location? 

1 £ 

2 £ 

3 £ 

4 £ 

5 £ 

More than 5 (please specify ______ ) 

Q10. Which mode do you normally use to travel to your normal place of work (please tick one 

only, choosing the mode which covers the longest part of the journey) 

1 Car/van (driver) £ 

2: Car/van (passenger) £ 

3: Bus £ 

4: Train £ 

5: Motorbike/scooter £ 

7: Bicycle £ 

8: Walk Other (Please specify __________) 

Q11.  [If Q8=b ‘Travel to a single workplace’, ask:] Which sector number from the map is your 

work place located.  If outside sectors on map, enter name of nearest town/city  

City Sector Number ________  

Q12.  [If Q8=b ‘Travel to a single workplace’, ask:] Approximately how long does it take you to 

travel to that location? (Please enter in minutes) 

________   minutes 


