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Abstract

In this thesis, we construct a coherent presentation for the hypoplactic monoid of rank

n and characterize the confluence diagrams associated with it, then we use the theory

of quasi-Kashiwara operators and quasi-crystal graphs to prove that all confluence dia-

grams can be obtained from those diagrams whose vertices are highest-weight words. To

do so, we first give a complete rewriting system for the hypoplactic monoid of rank n,

then, using an extension of the Knuth–Bendix completion procedure called the homotopi-

cal completion procedure, we compute the previously mentioned coherent presentation,

which, from a viewpoint of Monoidal Category Theory, gives us a family of generators of

the relations amongst the relations. These coherent presentations are used for representa-

tions of monoids and are particularly useful to describe actions of monoids on categories.

The theoretical background is given without proof, since the main purpose of this thesis

is to present new results.

Keywords: Monoid, Presentation, Complete rewriting system, Homotopy relation, Finite

derivation type, Homotopical completion procedure, Coherent presentation, Confluence

diagram, Plactic monoid, Hypoplactic monoid
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Resumo

Nesta tese, construímos uma apresentação coerente para o monóide hipopláctico de carac-

terística n e caracterizamos os diagramas de confluência associados, utilizando depois a

Teoria dos operadores quasi-Kashiwara e dos grafos quasi-cristais para provar que todos

os diagramas de confluência podem ser obtidos dos diagramas cujos vértices são pala-

vras de maior peso. De forma a realizar esta tarefa, construímos primeiro um sistema de

reescrita completo para o monóide hipopláctico de característica n e depois, utilizando

o procedimento de completude homotópica, uma extensão do procedimento de comple-

tude de Knuth–Bendix, computamos a apresentação coerente atrás referida, que, dum

ponto de vista de Teoria de Categorias Monoidais, nos dá uma família de geradores das

relações entre as relações. Estas apresentações coerentes são usadas para representações

de monóides e são particularmente úteis para descrever ações de monóides em categorias.

A fundamentação teórica é dada sem demonstrações, dado que o principal objetivo desta

tese é apresentar novos resultados.

Palavras-chave: Monóide, Apresentação, Sistema de reescrita completo, Relação de homo-

topia, Tipo de derivação finita, Procedimento de completude homotópica, Apresentação

coerente, Diagrama de confluência, Monóide pláctico, Monóide hipopláctico
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1
Introduction

In Semigroup and Monoid Theory, one of the most interesting and widely-studied prob-

lems is the word problem, first introduced in Group Theory by M. Dehn [7]. Given a

presentation 〈A |R〉 for a monoidM, where A is an alphabet and R is a rewriting system,

we can formulate the word problem in the following way: for u,v ∈A∗, decide if u↔∗R v,

where ↔∗R is the Thue congruence generated by R. If R is finite and complete, then

the word problem is solved using the "normal form algorithm", that is, for u,v ∈ A∗, we

compute normal forms u0 and v0 for u and v, respectively, then we conclude that u↔∗R v

if and only if u0 = v0. The property of having solvable word problem is invariant for any

finite presentation defining the same monoid, however the property of having a finite

and complete rewriting system is not invariable under monoid presentations.

In [24], C. Squier, along with F. Otto and Y. Kobayashi, introduced the concept of

finite derivation type (FDT), a combinatorial property of presentations of monoids, and

showed that if a monoid is presented by a finite complete rewriting system, then it is

FDT. This property is also an invariant property of finite monoid presentations. Squier’s

theory has recently been further developed by Guiraud, Malbos and Mimram [9], using

the language of strict monoidal categories and higher-dimensional variations of them. In

this paper, they introduce the concept of coherent presentation and give an extension of the

Knuth–Bendix completion procedure, called the homotopical completion procedure, that

allows one to obtain a coherent presentation from a noetherian rewriting system for the

monoid being studied.

On the other hand, the plactic monoid, first studied by Schensted [21] and Knuth [14],

and studied later in depth by Lascoux and Schützenberger [16], is an important tool in

several aspects of representation theory and algebraic combinatorics, with applications

in a wide range of areas. It can be defined using the Knuth relations, or Young tableaux

and Schensted’s algorithm. In [4], a finite complete rewriting was constructed for the
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CHAPTER 1. INTRODUCTION

plactic monoid of rank n placn and from it, in [10], a coherent presentation for placn
was computed. The plactic monoid can also be defined using the theory of Kashiwara

operators and the crystal graph [13]. A similar structure, the hypoplactic monoid, studied

in depth by Novelli [19], initially defined using either the hypoplactic relations or quasi-

ribbon tableaux and Krob–Thibon’s algorithm, was also defined using the theory of quasi-

Kashiwara operators and the quasi-crystal graph in [3].

The main purpose of this thesis is the construction of a coherent presentation for

the hypoplactic monoid of rank n and the characterization of the confluence diagrams

associated with it, using the theory of quasi-Kashiwara operators and quasi-crystal graphs

to reduce the number of relevant diagrams. Given the significant extent of the theoretical

background and the fact that this thesis presents new results, we have chosen to give the

background without proof, otherwise the thesis would be exceedingly large compared to

the new content presented. However, we give several definitions which, while not used

directly in the obtained results, are fundamental to understand the concepts we deal with

and the tools used.

In Chapter 2, we give the theoretical background, in Combinatorial Semigroup Theory,

needed to reach the definitions of FDT and coherent presentations, and related results. In

Section 2.1, we present fundamental Semigroup Theory concepts and results. In Section

2.2, we recall the concepts of presentations and rewriting systems and other important

concepts and results of Combinatorial Semigroup Theory. In Section 2.3, we present basic

definitions and theorems regarding graphs. In Section 2.4, we finally present the concepts

of FDT and coherent presentation and give the homotopical completion procedure, which

will be the main tool used to construct a coherent presentation for hypon.

In Chapter 3, we start by giving some background on the plactic monoid, including

two possible definitions, one via the Knuth relations, the other via Young tableaux and

Schensted’s algorithm, and the Robinson–Schensted–Knuth correspondence. Afterwards,

we introduce the Kashiwara operators and the crystal graph, restricted to the context of

placn, and use them to give another definition of placn. We also give some important prop-

erties of the crystal graph and its interaction with the combinatorics of Young tableaux.

Then, we give a finite complete rewriting system on the column alphabet, which gives

us a presentation of placn from which we compute a coherent presentation for placn, us-

ing the homotopical completion procedure. We also characterize the related confluence

diagrams.

Chapter 4 mirrors the first three Sections of Chapter 3, since we first give some back-

ground on the hypoplactic monoid, including two possible definitions, one via the hy-

poplactic relations, the other via quasi-ribbon tableaux and the Krob–Thibon algorithm,

and an analogue of the Robinson–Schensted–Knuth correspondence. Then, we introduce

the quasi-Kashiwara operators and the quasi-crystal graph, restricted to the context of

hypon, and use them to give another definition of hypon. Afterwards, we present some

important properties of the quasi-crystal graph and its interaction with the combinatorics

of quasi-ribbon tableaux, which are used in the final results of this thesis.

2



Finally, in Chapter 5, we present new results and their respective proofs. We first

give a complete rewriting system, on the alphabet An, for hypon, then we introduce the

concept of uniform presentation and prove that the associated presentation for hypon is

indeed uniform with respect to the crystal structure. Afterwards, as mentioned before,

we use the homotopical completion procedure to compute a coherent presentation for

hypon. The main bulk of this chapter is the characterization of the confluence diagrams

associated with the coherent presentation. In the final part of this chapter, first we extend

the concept of uniform presentations to extended presentations, introducing the concept

of uniform extended presentations. Then, we use the aforementioned properties of the

quasi-crystal graph to prove that the coherent presentation for hypon that we computed

before is uniform with respect to the crystal structure, in other words, that we only require

those diagrams whose vertices are highest-weight words in order to construct all other

confluence diagrams, since the quasi-Kashiwara operators preserve the structure of these

diagrams.
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2
Introduction to Combinatorial Semigroup

Theory

This chapter contains the basic concepts and theorems that will be used throughout this

thesis. It mostly follows Chapter 1 of [18], except for Section 2.4, which follows [9] and

[10]. In the first section, we present basic definitions and results on Semigroup Theory.

We follow with a section on presentations and string rewriting systems. In the next section,

we present basic definitions and results on graphs. Finally, we introduce the concept

of coherent presentation, using the language of Combinatorial Semigroup Theory. This

concept and related results expand on the theory developed by C. Squier in the late 1980’s

and early 1990’s and were first introduced in [9], using the language of strict monoidal

categories and higher-dimensional variations of them.

2.1 Basic concepts and results on Semigroup Theory

In this section, we will present concepts and results from fundamental Semigroup Theory,

necessary for the understanding of this thesis. These and other fundamental results can

be found in [12]. Some definitions regarding partial orders and admissible relations are

taken from [2].

Let S be a non-empty set and let · be a binary operation on S, that is, a mapping from

S × S into S. We will refer to · as multiplication and, for x,y ∈ S, we represent x · y, the

image of the pair (x,y) by ·, simply by xy.

The pair (S, ·) is a semigroup if · is an associative binary operation on S. Instead of (S, ·),
we usually write just S. Let x1, . . . ,xn (n ∈ N) be elements of S, then, we can write x1 · · ·xn
without any ambiguity, as a consequence of the associative property.

A semigroup S is said to have an identity element 1S if, for any x ∈ S, x1S = x = 1Sx. If

it exists, then it is unique. If a semigroup has an identity element, it is called a monoid.

5



CHAPTER 2. INTRODUCTION TO COMBINATORIAL SEMIGROUP THEORY

Given a semigroup (S, ·), it is always possible to extend it to obtain a monoid (S1,∗):
If (S, ·) is already a monoid, then (S, ·) = (S1,∗); otherwise, we add an element 1 < S , take

S1 := S ∪ {1}, and define ∗ in the following way: For x,y ∈ S, x ∗ y = x · y, x ∗ 1 = x,1 ∗ x = x

and 1 ∗ 1 = 1.

Let M be a monoid and let x ∈M. We say x has an inverse if there exists an element x′

in M such that xx′ = x′x = 1M . If every element of M has an inverse, we say M is a group.

Given semigroups S and T , we say T is a subsemigroup of S if T ⊆ S and t1, t2 ∈ T
implies that t1t2 ∈ T . If T is a subsemigroup of S, and is also a monoid, then T is called

a submonoid; If T is also a group, then T is called a subgroup. Note that S need not

necessarily be a monoid, and that, even if S is a monoid, then the identities of S and T

need not coincide.

Let A be a non-empty subset of a semigroup S and let A be the collection of all

subsemigroups of S that contain A. The intersection
⋂
T ∈A contains A and not only is a

subsemigroup of S, it is also the least subsemigroup of S containing A. It is called the

subsemigroup of S generated by A, and is denoted by 〈A〉. If S = 〈A〉, then we say that S is

generated by A (or that A generates S), and the elements of A are called generators of S. If

A is a finite set that generates S, we say that S is a finitely generated semigroup.

We can also define the submonoid of a monoid M generated by A in a similar manner:

Let A be the collection of all submonoids of M that contain A∪ {1M}. The intersection⋂
T ∈A contains A and not only is a submonoid of M, it is also the least submonoid of

M with identity 1M containing A. It is called the submonoid of S generated by A, and is

denoted by 〈A〉. Similarly, if M = 〈A〉, then we say that M is generated by A as a monoid (or

that A generates M as a monoid), and the elements of A are called generators of M. If A is a

finite set that generates M, we say that M is a finitely generated monoid.

Let ρ ⊆ S × S be a binary relation on S. We say that ρ is:

• reflexive if x ρ x, for all x ∈ S;

• symmetric if x ρ y then y ρ x, for all x,y ∈ S;

• anti-symmetric if x ρ y and y ρ x then x = y, for all x,y ∈ S;

• transitive if x ρ y and y ρ z then x ρ z, for all x,y,z ∈ S.

If ρ is reflexive, symmetric and transitive, it is said to be an equivalence relation. An

equivalence relation on S partitions the set S into equivalence classes, such that each class

only contains elements ρ-related to one another.

If ρ is reflexive, anti-symmetric and transitive, it is said to be a (strict) partial order. The

most common symbols used for partial orders are ≤,�, and v. We write x < y to denote

that x ≤ y and x , y. A linear order is a strict partial order such that either x < y,x = y

or x > y, for x,y ∈ S. We say that a partial order is well-founded if there is no infinite

chain of the form x1 > x2 > . . . , for xi ∈ S, i ∈ N. A linear and well-founded order is called

6



2.2. ALPHABETS, PRESENTATIONS AND REWRITING SYSTEMS

a well-ordering. We say that < is admissible if, for all x,y,u,v ∈ S, whenever x < y then

uxv < uyv.

An equivalence relation ρ on S is said to be right (left) compatible if aρb implies axρbx

(a ρ b ⇒ xa ρ xb), for any a,b,x ∈ S. If ρ is both left and right compatible, it is called a

congruence.

Let S,T be semigroups. A mapping φ : S→ T from S to T is called a homomorphism if,

for any x,y ∈ S, we have φ(xy) = φ(x)φ(y). A homomorphism φ is called a monomorphism
or isomorphism if it is, respectively, injective or bijective. If there exists an isomorphism

φ : S→ T , we say that S and T are isomorphic and write S � T .

Let φ : S→ T be a homomorphism between semigroups S and T . Then, φ induces a

congruence on S, called the kernel of φ, denoted by kerφ and given by

kerφ = {(x,y) ∈ S × S | φ(x) = φ(y)}.

Let S be a semigroup and ρ a congruence on S. Consider the quotient set of S by ρ,

denoted by S/ρ. For any x ∈ S, let [x]ρ be the ρ-class of x, that is, [x]ρ = {y ∈ S | y ρ x}. We

define a multiplication on S/ρ in the following way: For x,y ∈ S, [x]ρ[y]ρ := [xy]ρ. With

this multiplication, the quotient set S/ρ is a semigroup and is called the quotient of S by

ρ. Furthermore, the natural mapping ρ\ : S→ S/ρ, given by x 7→ [x]ρ, for any x ∈ S, is an

epimorphism.

The following well known result can be found in [11, Theorem 5.4].

Theorem 2.1.1. Let φ : S → T be a homomorphism between semigroups and let ρ be a con-
gruence on S such that ρ ⊆ kerφ. Then, there exists a homomorphism ψ : S/ρ→ T such that
ψ ◦ ρ\ = φ. Moreover, ψ is injective if and only if ρ = kerφ.

LetM be a monoid andX a non-empty set. A mapping χ :M×X→ X is said to be a left
action of M on X if it satisfies the equalities χ(m1,χ(m2,x)) = χ(m1m2,x) and χ(1M ,x) = x,

for all m1,m2 ∈M,x ∈ X. We also say that M acts on X on the left and we usually represent

the element χ(m,x) by m · x, which allows us to rewrite the previous equalities in the

form m1 · (m2 · x) = (m1m2) · x and 1M · x = x. Similarly, we can define a right action of a

monoid on a set. We say that a monoid M acts on a set X (or that there exists an action
of M on X), if there exists simultaneously a left and a right action of M on X satisfying

the following equality, called the compatible property: (m1 · x) ·m2 =m1 · (x ·m2) for any

m1,m2 ∈M,x ∈ X. Note that every monoid acts on itself by multiplication, both on the

left and on the right.

2.2 Alphabets, Presentations and Rewriting Systems

In this section, we recall the concepts of presentations and rewriting systems and their

application on the study of semigroups, which gives rise to the field of Combinatorial

Semigroup Theory. For further information on these subjects, see, for example, [12], [20]

or [2].
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CHAPTER 2. INTRODUCTION TO COMBINATORIAL SEMIGROUP THEORY

Let A be a non-empty set, which we will refer to as an alphabet. The elements of A

are called letters and finite sequences of letters are called words over the alphabet A. The

length of a word w is the number of letters that form w and is denoted by |w|. For a ∈ A,

the number of times the element a appears in a word w is denoted by |w|a. The empty

sequence is called the empty word, has length zero and is denoted by ε. For any two words

u,v over A, we write u = v if they are equal as words.

Suppose w = w1 . . .wk is a word over A, with w1, . . . ,wk ∈ A. For 1 ≤ i ≤ j ≤ k, we say

wi · · ·wj is a factor of w. (Note that a factor must be made up of consecutive letters.) For

i1, . . . , im ∈ {1, . . . , k} such that i1 < · · · < im, we say that wi1 · · ·wim is a subsequence of w. (Note

that a subsequence may not be necessarily made up of consecutive letters, unlike a factor.)

The set of all non-empty words over A is denoted by A+, and the set of all words

over A, including the empty word, is denoted by A∗. When equipped with the binary

operation of concatenation of words, A+ forms a semigroup, called the free semigroup over
A, and A∗ forms a monoid, with the empty word as the identity element, and is called the

free monoid over A.

Throughout this text, we will consider Ato be the set of natural numbers viewed as an

infinite ordered alphabet: A= {1 < 2 < 3 < · · · }. Also, for n ∈ N, we will denote by An the

set of the first n natural numbers viewed as a finite ordered alphabet: An = {1 < 2 < · · · < n}.
A weak composition α is a finite sequence (α1, . . . ,αm) with terms in N∪ {0}. The terms

αh up to the last non-zero terms of the sequence are the parts of α. The length of α,

denoted by l(α), is the number of its parts. The weight of α, denoted by |α|, is the sum

of its parts, that is, |α| = α1 + · · ·+αm. For example if α = (0,1,3,0,2,0) then l(α) = 5 and

|α| = 6. We shall identify weak compositions whose parts are the same, that is, weak

compositions which only differ in a tail of terms 0.

A composition is a weak composition whose parts are exclusively in N. For a composi-

tion α = (α1, . . . ,αl(α)), let us denote by D(α) the set {α1,α1 +α2, . . . ,α1 + · · ·+αl(α)−1}.
We say that a non-increasing finite sequence λ = (λ1, . . . ,λm) with terms in N is a

partition. Note that a partition is a particular kind of weak composition, thus, we define

and denote the length and weight of λ in the exact same way as before.

We now define the weight function (not to be confused with the weight of a weak

composition), which informally is the function that counts the number of times each

element appears in a word. More formally, it is defined by

wt : A∗→ (N∪ {0})A, w 7→ (|w|1, |w|2, . . . ).

Since words are finite sequences, then wt(·) has an infinite tail of elements 0, thus we

only consider its prefix up to the last non-zero term. Hence wt(·) is a weak composition.

We compare weights using the following order:

(α1,α2, . . . ) ≤ (β1,β2, . . . )⇔
k∑
i=1

αi ≤
k∑
i=1

βi ,

for any k ∈ N.

8



2.2. ALPHABETS, PRESENTATIONS AND REWRITING SYSTEMS

When wt(w1) <wt(w2), for words w1,w2 ∈A∗, we say that w1 has lower weight than w2

(and that w2 has higher weight than w1).

We now relate alphabets with semigroups and introduce notions that allow us to apply

combinatorial results to Semigroup Theory.

Proposition 2.2.1. LetM be a monoid. For any alphabet Aand any mapping θ : A→ S, there
is a unique extension of θ to a homomorphism from A∗ into M, also denoted by θ, defined
by θ(a1 · · ·an) = (θa1) · · · (θan), for any a1, . . . , an ∈ A. The image of this homomorphism is
the submonoid of M generated by θ(A), and this submonoid is equal to M if and only if θ is
surjective.

A monoid presentation P is a pair 〈A |R〉 such that R is a binary relation in the free

monoid over the alphabet A. The set R is know as a rewriting system and its elements as

rewriting rules. We say that P is finite if both Aand R are finite.

Let R be a rewriting system over A∗. We define a binary relation→R on A∗, called a

single-step reduction, in the following way: For any u,v ∈A∗,

u→R v⇔ (u = w1r+1w2)∧ (v = w1r−1w2),

for some (r+1, r−1) ∈ R and w1,w2 ∈ A∗. We denote the transitive and reflexive closure

of →R by →∗R, and the equivalence relation that →R induces by ↔∗R. Note that this

equivalence relation is in fact the smallest congruence on the free monoid A∗ that contains

R, called the Thue congruence generated by R.

We say R is:

• noetherian if there is no infinite descending chain w1 →R w2 →R · · · , with wn ∈
A+,n ∈ N;

• confluent if, for u,w1,w2 ∈ A∗, whenever u →∗R w1 and u →∗R w2 then there exists

v ∈A∗ such that w1→∗R v and w2→∗R v;

• locally confluent if, for u,w1,w2 ∈ A∗, whenever u →R w1 and u →R w2 then there

exists v ∈A∗ such that w1→∗R v and w2→∗R v.

If R is both noetherian and confluent, it is called complete.

Let u ∈A∗. If there is no word v ∈A∗ such that u→R v, we say that u is irreducible. If

u,v ∈A∗ are such that u↔∗R v and v is irreducible, we say v is a normal form for u.

The next results are consequences of Lemma 1.1.10, Corollary 1.1.8, and Theorem 1.1.12,

respectively, in [2].

Proposition 2.2.2. Let R be a noetherian rewriting system on an alphabet A. Then, for every
u ∈A∗, u has at least one normal form.

Proposition 2.2.3. Let R be a confluent rewriting system on an alphabet A. Then, for every
u ∈A∗, u has at most one normal form.

9
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Corollary 2.2.4. Let R be a complete rewriting system on an alphabet A. Then, for every
u ∈A∗, u has a unique normal form.

Let u,v ∈A∗. The words u and v are said to overlap if, up to symmetry, one of the two

following cases occur:

(i) v is a factor of u, that is, there exist a,c ∈A∗ such that u = avc; or

(ii) u overlaps with v on the left, that is, there exist words a,b,c over the alphabet A,

with b non-empty, such that u = ab and v = bc.

Furthermore, if both u and v are left sides of rewriting rules in R, that is, there exist

u′ ,v′ ∈ A∗ such that (u,u′), (v,v′) ∈ R, then in case (i) and if whenever a and c are both

empty, then u′ , v′, then the pair of words {u′ , av′c} is called a critical pair. In case (ii) we

say that uc = av is an overlap ambiguity of R and the pair {u′c,av′} is also a critical pair of

R.

We say that a critical pair {u,v} of R is resolved if there exists w ∈A∗ such that u→∗R w

and v→∗R w.

The following result follows from [1, Corollary 6.2.5] and [2, Theorem 1.1.13].

Proposition 2.2.5. Let R be a noetherian rewriting system on an alphabet A. The following
conditions are equivalent:

• R is confluent;

• R is locally confluent;

• All critical pairs of R are resolved.

Note that, by Proposition 1.5.10 in [12], given a rewriting system R on an alphabet

Aand words u,v ∈ A∗, we have u↔∗R v if and only if there is a finite sequence of words

w0, . . . ,wn ∈ A∗,n ∈ N such that w0 = u,wn = v and either wi →R wi+1 or wi ←R wi+1, for

all i = 1, . . . ,n− 1.

Proposition 2.2.6 ([2, Theorem 2.2.4]). Let R be a rewriting system on an alphabet A. Then,
the following two statements are equivalent:

• R is noetherian;

• There exists an admissible well-founded partial order < on A∗ that is compatible with R

(in the sense that v < u for each rule (u,v) ∈R).

Definition 2.2.7 (The length-plus-lexicographic order [2, Definition 2.2.2(d)]). We define

the length-plus-lexicographic order, denoted by <lenlex, induced by the natural order on A

in the following way: Let u = u1 · · ·uk ,v = v1 · · ·vl be words in A∗. Then,

u <lenlex v ⇔ (k < l) ∨
(
k = l ∧ (∃i)

(
ui < vi ∧ (∀j < i)(uj = vj )

))
.

10
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It is easy to see that the length-plus-lexicographic order is an admissible well-ordering,

thus, it is an admissible well-founded partial order on A∗. If a rewriting system R on A

is compatible with the length-plus-lexicographic order, then it is noetherian.

The quotient of the free monoid A∗ by the Thue congruence↔∗R is called the monoid
defined by the presentation P = 〈A | R〉 and is denoted by M(P). Consider the natural

mapping ρ : A→ M(P), a 7→ [a]↔∗R. The homomorphism extension of ρ to A+ is an

epimorphism from A∗ onto M(P), by Proposition 2.2.1, hence ρ(A) generates M(P). By

this reason, the elements of Aare called the generating symbols. If there is no ambiguity,

it is usual to identify a word on A with its corresponding congruence class of M(P),

hence we identify the generating symbols with the generators of M(P) and Awith the

generating set of M(P).

Let u,v ∈A∗. If u↔∗R v, we say that u and v represent the same element of M(P) and

denote it by u ≡R v. We also say that M(P) satisfies the relation u ≡ v. Since, by definition,

M(P) satisfies all relations in R, a rewriting rule (r+1, r−1) is also called a defining relation
and written in the form r+1 ≡ r−1.

Let M be a monoid and ρ : A→ M a mapping from A to M. If its homomorphism

extension is an epimorphism from A∗ onto M, we call the alphabet Aa generating set for
M. Also, if↔∗R= kerρ, for a rewriting system R, we say that M is defined by P= 〈A |R〉.
In this case, due to Theorem 2.1.1, there exists an isomorphism ψ : M(P) → M such

that ψ ◦φ = ρ, where φ : A∗ →M(P) is the natural homomorphism. More generally, a

monoid M is said to be defined by a monoid presentation P= 〈A |R〉 if M and M(P) are

isomorphic. It is also possible to identify elements of A∗ with elements ofM, by extending

the identification presented above, under the mapping ρ. If ρ(u) ≡ ρ(v), we say that M

satisfies the relation u ≡ v, for u,v ∈A∗.
To define the notions of semigroup presentation and of semigroup S(P) defined by

P = 〈A | R〉, just replace A∗ with A+, in the definitions given above. For most of the

text, we will work mostly with monoid presentations, and we shall refer to them just as

presentations, as long as there is no confusion with semigroup presentations.

2.3 Graphs

In this section we will present some basic definitions and theorems regarding graphs,

according to Serre [22].

An (oriented) graph is a quintuple Γ = (V ,E, ι,τ, −1), where V = V (Γ ) is the (non-empty)

set of vertices, E = E(Γ ) is the set of edges, and ι : E → V and τ : E → V are mappings,

respectively called the initial and terminal mapping. Given e ∈ E, the vertices ιe and τe are

respectively know as the start and end of e, and are collectively known as the extremities
of e. Orientation on the graph is given by the inverse mapping −1 : E→ E, a mapping that

satisfies, for all e ∈ E, e , e−1, ι(e−1) = τ(e), τ(e−1) = ι(e) and (e−1)−1 = e.

A non-empty path p on Γ is a finite sequence (e1, . . . , en) of edges ei ∈ E, with n ∈ N,

such that τei = ιei+1, for i = 1, . . . ,n − 1. It is usual to write p in the form e1 · · ·en. Since

11
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p has n elements, we say p has length n and write l(p) = n. We also extend the notions

of start, end and extremities to paths, by defining ιp := ιe1 and τp := τen. If, for vertices

u,v ∈ V , ιp = u and τp = v (or ιp = v and τp = u), we say p joins u and v. We say a path

p is closed if ιp = τp. We define the inverse path of p as the path e−1
n · · ·e−1

1 and denote it

by p−1. For each v ∈ V , we define an empty path 1v with no edges, such that ι1v = τ1v = v

and 1−1
v = 1v .

Definition 2.3.1. Given a presentation P = 〈A | R〉, define a unique graph associated

to P, denoted by Γ (P). Its set of vertices is the free monoid A∗ (or the free semigroup

A+), and the edges are quadruples of the form e = (w1, r+1 = r−1,ε,w2), where w1,w2 ∈
A∗, (r+1, r−1) ∈R and ε = ±1.

The initial and terminal vertices and the inverse mapping are defined, respectively, by

ιe = w1rεw2, τe = w1r−εw2 and e−1 = (w1, r+1 = r−1,−ε,w2). We say that an edge is positive

if ε = +1 and negative otherwise. Also, for each word w ∈ A∗, there is an empty path 1w
with no edges.

Note that, given any words u,v ∈A∗, we have u→R v if and only if there is a positive

edge e of Γ (P) such that ιe = u and τe = v. Thus, we have u↔∗R v if and only if there is a

path in Γ (P) that joins u and v.

Let Γ = (V ,E, ι,τ,−1 ) be a graph and letM be a monoid. We say thatM acts on the left of
the graph Γ ifM acts on the left of the sets V and E, respectively, and, for any m ∈M,e ∈ E,

we have ι(m · e) =m · ιe,τ(m · e) =m · τe and (m · e)−1 =m · e−1. We can extend this action to

paths in the following way: given edges e1, . . . , en ∈ E andm ∈M, for p = e1 . . . en, we define

m · p := (m · e1) · · · (m · en). We define a right action of M on Γ in a similar way. We say that

M acts on Γ if M simultaneously acts on the left and on the right on Γ and if both actions

on the set of vertices and on the set of edges are compatible.

Definition 2.3.2. The concatenation product in A∗ induces natural left and right actions

of A∗ on Γ (P), in the following way: For any x,y ∈ A∗ and any vertex w ∈ A∗, we define

x ·w = xw and w · y = wy; and for any edge e = (u,r,ε,v), we define x · e = (xu,r,ε,v) and

e · y = (u,r,ε,vy). Both actions are compatible, thus A∗ acts on Γ (P).

Let Γ = (V ,E, ι,τ,−1 ) be a graph. Let V0 be a subset of V and E0 be a subset of E.

The quintuple Γ0 = (V0,E0, ι,τ,
−1 ) is a subgraph of Γ if, for all e ∈ E0, we have e−1 ∈ E0

and ιe,τe ∈ V0. If E0 is the set of all edges of Γ with both extremities in V0, that is,

E0 = {e ∈ E | ιe,τe ∈ V0}, then the subgraph of Γ defined by V0 and E0 is known as the full
subgraph defined by V0 and denoted by ΓV0

.

We say a graph Γ = (V ,E, ι,τ, −1) is connected if any two vertices in it are joined by a

path. It is easy to see that the binary relation on V , defined by u being related to v if and

only if there is a path starting in u and ending in v, for u,v ∈ V , is in fact an equivalence

relation. The full subgraphs whose vertex sets are the equivalence classes of this relation

are known as the connected components of Γ .

12
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Remark 2.3.3. Let P= 〈A |R〉. Recalling Definition 2.3.1, each congruence class of↔∗R is

a connected component of the graph Γ (P). Thus the set of elements of the monoid M(P)

(or the semigroup S(P)) is in bijection with the set of the connected components π0 (Γ (P))

of Γ (P).

Let Γ1 and Γ2 be graphs. A mapping of graphs φ from Γ1 to Γ2 is a pair of mappings

φV : V (Γ1)→ V (Γ2) and φE : E(Γ1)→ E(Γ2), such that, for all e ∈ E, φE(e) is a path on Γ2

starting at φV (ιe) and ending at φV (τe), and φE(e−1) = (φE(e))−1. As long as there is no

confusion, we shall write both φV and φE as φ. This map can be extended to paths by

defining φ(1v) := 1φ(v), for all v ∈ V (Γ1), and φ(p) = φ(e1) · · ·φ(en), for a non-empty path

p = e1 . . . en, with n ∈ N.

2.4 Homotopy relations, finite derivation type and coherent

presentations

In this section, we will present three important concepts: the concept of homotopy rela-
tions and the concept of finite derivation type (FDT), a finiteness property of semigroup

presentations, first introduced by C. Squier in the 1990’s and further studied by F. Otto

and Y. Kobayashi (see [24]), and the concept of coherent presentation, which, as we have

said before, were first introduced in [9], using the language of strict monoidal categories

and higher-dimensional variations of them.

Let P= 〈A |R〉 be a finite monoid presentation and let Γ (P) be the graph associated

with it. Consider the sets P
(
Γ (P)

)
of all paths in Γ (P) and P (2)

(
Γ (P)

)
of all ordered pairs

of paths in Γ (P) which have a common start and a common end. An equivalence relation

∼ on P (2)
(
Γ (P)

)
is called a homotopy relation if it satisfies the following conditions:

(H1) For any edges e1 and e2 of Γ (P), we have

(e1 · ιe2)(τe1 · e2) ∼ (ιe1 · e2)(e1 · τe2).

(H2) If p ∼ q, then, for any x,y ∈A∗, we have x · p · y ∼ x · q · y;

(H3) If p,q1,q2, r ∈ P
(
Γ (P)

)
are such that τp = ιq1 = ιq2, τq1 = τq2 = ιr and q1 ∼ q2, then

pq1r ∼ pq2r;

(H4) If p ∈ P
(
Γ (P)

)
, then pp−1 ∼ 1ιp.

Notice that the collection of all homotopy relations on the set of paths in Γ (P) is closed

under arbitrary intersection, and that P (2)
(
Γ (P)

)
is itself a homotopy relation. Thus, for

any subset X ⊆ P (2)
(
Γ (P)

)
, there is a unique smallest homotopy relation ∼X on the set of

paths in Γ (P) that contains X, called the homotopy relation generated by X.

We say that P is of finite derivation type (FDT) if there is a finite subset X ⊆ P (2)
(
Γ (P)

)
which generates P (2)

(
Γ (P)

)
as a homotopy relation, that is, P (2)

(
Γ (P)

)
is the only homo-

topy relation on the set of paths in Γ (P) that contains X.
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Theorem 2.4.1 ([24, Theorem 4.3]). Let P1 and P2 be finite monoid presentations defining
the same monoid. Then, P1 is of FDT if and only if P2 is of FDT.

Thus, having FDT is an invariant property of finitely presented monoids, hence it

makes sense to refer to FDT monoids.

Recall the notion of critical pair of a rewriting system given in Section 2.2. Let e1, e2

be positive edges in Γ (P), with ιe1 = ιe2, for a presentation P= 〈A |R〉. We say the pair

(e1, e2) is a critical pair of edges if the left-hand sides of the underlying rewriting rules

overlap and lead to a critical pair. A resolution of a critical pair of edges (e1, e2) is a pair of

paths (p1,p2) such that ιp1 = τe1, ιp2 = τe2, τp1 = τp2 and all edges of both p1 and p2 are

positive. For any resolvable critical pair (e1, e2), fix a resolution (p1,p2). Denote by B the

set{
(e1p1, e2p2) | (e1, e2) is a critical pair of R, and {p1,p2} is the corresponding resolution

}
.

(2.4.1)

Theorem 2.4.2 ([24, Theorem 5.2]). Let P= 〈A |R〉 be a presentation, where R is a complete
rewriting system, and let Γ (P) be the graph associated with it. Let B ⊆ P (2)

(
Γ (P)

)
be defined

as above. Then, B generates P (2)
(
Γ (P)

)
as a homotopy relation.

Observe that if R if finite, then B is also finite, thus P is of FDT.

Theorem 2.4.3 ([24, Theorem 5.3]). Let M be a finitely presented monoid. Let P= 〈A |R〉
be a presentation, where R is a finite complete rewriting system. If M is presented by P, then
M is FDT.

Now, we are able to introduce some definitions, first given by [9], but presented here

using the language of Combinatorial Semigroup Theory.

An extended presentation of a monoid M is a pair 〈P | C〉, where P = 〈A | R〉 is a

presentation of M, R is a rewriting system and C is a subset of P (2)
(
Γ (P)

)
in which the

pairs are oriented, that is, it is an analogue of a string-rewriting system for paths, with

the restriction that the paths in each pair have the same start and end. We can also write

an extended presentation as a triple 〈A |R | C〉. An extended presentation is finite if both

P and C are finite.

A coherent presentation is an extended presentation such that Cgenerates P (2)
(
Γ (P)

)
.

Thus, if a monoid M admits a finite coherent presentation, it is FDT.

In the remaining of this section we provide tools to be able to construct coherent pre-

sentations. Let P= 〈A |R〉 be a presentation. The following four types of transformations

of 〈A |R〉 are called elementary Tietze transformations:

(T1) - Add a generator: For w ∈A∗ and a <A, add a to Aand (w,a) to R;

(T2) - Delete a generator: For a ∈Aand w ∈ (A\ {a})∗ such that w→R a,

1. remove a from A;
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2. remove (w,a) from R;

3. for any (u,v) ∈R, replace any factor a of u and v by w;

(T3) - Add a relation: For u,v ∈A∗ such that u→∗R v but (u,v) <R, add (u,v) to R;

(T4) - Delete a relation: For u,v ∈A∗ such that u→∗R′ v, where R′ = R\ {(u,v)}, remove

(u,v) from R.

We say that a (finite) Tietze transformation is a (finite) sequence of elementary Tietze

transformations.

In [8], a corresponding notion of Tietze transformations was introduced for extended

presentations. Let 〈A | R | C〉 be an extended presentation. The following six types of

transformations of 〈A |R | C〉 are called elementary Tietze transformations:

(T ∗1 ) - Add a generator: For w ∈A∗ and a <A, add a to Aand (w,a) to R;

(T ∗2 ) - Delete a generator: For a ∈Aand w ∈ (A\ {a})∗ such that w→R a,

1. remove a from A;

2. remove (w,a) from R;

3. for any (u,v) ∈R, replace any factor a of u and v by w;

4. for any (f ,g) ∈ C, remove any occurrence of (w,a) in f and g;

5. for any (f ,g) ∈ C, replace any occurrence of a rule (u,v) in f and g by the rule

(u′ ,v′), where u or v have a factor a and (u′ ,v′) is obtained by replacing a in u

and v by w;

(T ∗3 ) - Add a relation: For u,v ∈A∗ such that u→∗R v but (u,v) <R,

1. add (u,v) to R;

2. add (f ,g) to C, where f = (u,v) and g = (u,w), forw ∈A∗\{v} such that u→R w

and w→∗R v;

(T ∗4 ) - Delete a relation: For u,v ∈A∗ such that u→∗R′ v, where R′ = R\ {(u,v)},

1. remove (u,v) from R;

2. for any (f ,g) ∈ C, remove any occurrence of (u,v) in f and g;

(T ∗5 ) - Add a pair of paths: For f ∼C g but (f ,g) < C, add (f ,g) to C;

(T ∗6 ) - Delete a pair of paths: For (f ,g) ∈ C such that f ∼C′ g, where C′ = C\ {(f ,g)},
remove (f ,g) from C.

The notion of (finite) Tietze transformation is analogous to the previous case.
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Theorem 2.4.4 ([8, Theorem 2.1.3]). The monoids presented by two (finite) extended pre-
sentations are isomorphic if, and only if, there exists a (finite) Tietze transformation between
them.

Thus, if a monoid M is presented by P= 〈A |R〉, where R is a noetherian rewriting

system, we can build a coherent presentation for M: We start with the extended presen-

tation 〈P | C〉, where C is the empty set. Then, for each critical pair of edges (e1, e2) of

〈P | C〉,

• if (e1, e2) admits a resolution, fix one resolution (p1,p2), then add (e1p1, e2p2) to C;

• otherwise, since R is noetherian, both τe1 and τe2 have normal forms. Let u1,u2 ∈
A∗ be those normal forms, let p1 be the path from τe1 to u1 and p2 be the path

from τe2 to u2. Let < be the admissible well-founded partial order on A∗ that is

compatible with R (see 2.2.6).

– If v < u, add (u1,u2) to R. Let e3 be the edge with start u1 and end u2. Add

(e1p1e3, e2p2) to C.

– Otherwise add (u2,u1) to R. Let e4 be the edge with start u2 and end u1. Add

(e1p1, e2p2e4) to C.

This procedure is called the homotopical completion procedure and can be seen in much

greater detail in [9]. The main feature of this homotopical completion procedure is that

extends the Knuth–Bendix completion procedure (see for instance [2, Subsection 2.4]) into

a tool for computing coherent presentations, by keeping track of homotopy generators

created when adding new rules. Note that, in general, the procedure is not guaranteed to

terminate.

In particular, if R is a complete rewriting system, then we can construct a coherent

presentation for M in the following way: By Theorem 2.4.2, we consider the subset Cof

P (2)
(
Γ (P)

)
as defined by (2.4.1). Thus, the extended presentation 〈P | C〉 is a coherent

presentation for M. Note that, since R is a complete rewriting system, to obtain 〈P | C〉
from P= 〈A |R〉, we apply a Tietze transformation to P that consists only in elementary

Tietze transformations of type (T ∗5 ).
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The plactic monoid

In this chapter, we shall discuss three possible ways to define the plactic monoid: via

generators and relations, tableaux and insertion, and crystals, and also the interaction of the

crystal structure with the combinatorics of Young tableaux (following [3]). We shall also

present a finite complete rewriting system for the plactic monoid of rank n, from which

a convergent presentation for it can be computed (following [4] and [10]).

3.1 The plactic monoid, Young tableaux and insertion

Consider the ordered alphabet A= {1 < 2 < . . . }. The plactic monoid, denoted by plac, is

presented by 〈A |Rplac〉, where Rplac is the set of relations of the form

(cab,acb) with a ≤ b < c ;

(bca,bac) with a < b ≤ c ,

known as the Knuth relations.

Let n ∈ N and consider the finite ordered alphabet An = {1 < 2 < · · · < n}. The plactic
monoid of rank n, denoted by placn, is presented by 〈An |Rplac〉, where in this case the set

of defining relations Rplac is naturally restricted to A∗n ×A∗n.

We now proceed to introduce Young tableaux and related concepts, and then present

an equivalent definition of the plactic monoid using these tools.

A Young diagram of shape λ, where λ is a partition, is a grid of cells, with left-justified

rows such that the h-th row has λh cells, for h = 1, . . . , l(λ). In this text, Young diagrams

will be top-left-aligned, that is, row length will be non-increasing top to bottom. If a

Young diagram has shape (1,1, . . . ,1), it is called a column diagram and is said to have
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column shape. For example, the Young diagram of shape (4,3,2) is

. (3.1.1)

A Young tableau is a Young diagram filled with symbols from A such that entries in

each row are non-decreasing from left to right, and entries in each column are (strictly)

increasing from top to bottom. For example, a Young tableau of shape (4,3,2) is

1 2 2 5
2 3 6
4 5

. (3.1.2)

A Young tableau of shape (1,1, . . . ,1) is called a column.

A standard Young tableau of shape λ is a Young tableau with entries from {1, . . . , |λ|}
such that each symbol appears exactly once, entries in each row are increasing from left

to right, and entries in each column are increasing from top to bottom. For example, a

standard Young tableau of shape (4,3,2) is

1 3 5 6
2 7 8
4 9

(3.1.3)

A tabloid is a grid of cells, filled with symbols from A, obtained by concatenating

columns, such that entries in each column are strictly increasing from top to bottom.

Compared to a tableau, there is no restriction on the relative heights of columns, nor is

there a condition on the order of entries in a row. Note that a tableau is a special case of a

tabloid and that the shape of a tabloid cannot in general be expressed using a partition.

An example of a tabloid is
5 3 4 1 2

4 5 8
6 7

9

. (3.1.4)

Let w = w1 · · ·wk be a word in A∗, with wi ∈A, for i = 1, . . . , k. We say w is a row word if

wi ≤ wi+1 for all i = 1, . . . , k−1. We say w is a column word if wi > wi+1 for all i = 1, . . . , k−1.

The column reading C(T ) of a tabloid T is the word in A∗ obtained by reading its

columns from left to right, and reading each column from bottom to top. For exam-

ple, the column reading of (3.1.2) is 421 532 62 5 and the column reading of (3.1.4) is

5 643 9754 1 82.

Let w ∈A∗. Note that every word over A∗ has a factorization into maximal decreasing

factors. Let w(1) · · ·w(k) be such a factorization of w. Let Toid(w) be the tabloid whose

h-th column has height |w(h)| and is filled with the symbols of w(h) , for h = 1, . . . , k. Then,

C(Toid(w)) = w. If w is the column reading of a Young tableau T , it is called a tableau
word. By definition, it is immediate that w is a tableau word if and only if Toid(w) is a
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3.1. THE PLACTIC MONOID, YOUNG TABLEAUX AND INSERTION

Young tableau. Thus, we conclude that not every word in A∗ is a tableau word. Also note

that the column reading of a column matches the definition of a column word, and the

column reading of a row matches the definition of a row word.

We will now see how the plactic monoid can be defined using Young tableaux, by

introducing an insertion algorithm that computes a (unique) Young tableau P (w) from a

word w ∈A∗.

Algorithm 3.1.1 (Schensted’s algorithm).

Input: A Young tableau T and a symbol a ∈A.

Output: A Young tableau T ← a.

Method:

• If a is greater than or equal to every entry in the topmost row of T , add a as an entry

at the rightmost end of the topmost row of T and output the resulting tableau.

• Otherwise, let z be the leftmost entry in the top row of T that is strictly greater

than a. Replace z by a in the topmost row and recursively insert z into the tableau

formed by the rows of T below the topmost (note that the recursion may end with

an insertion into an ‘empty row’ below the existing rows of T ).

Let w = w1 · · ·wk be a word in A∗. By applying the algorithm iteratively, we can

compute a unique Young tableau P (w): Starting with the empty word, we iteratively

insert the symbols w1, . . . ,wk ∈A in order. After inserting the last symbol, we obtain the

tableau P (w1 · · ·wk). This algorithm also allows us to compute a standard Young tableau

Q(w), in the following way:

Algorithm 3.1.2.

Input: A word w = w1 · · ·wk , where wi ∈A, for i = 1, . . . , k.

Output: A Young tableau P (w) and a standard Young tableau Q(w).

Method: Start with an empty Young tableau P0 and an empty standard Young tableau

Q0. For each i = 1, . . . , k, insert the symbol wi into Pi−1 as per Algorithm 3.1.1; let Pi be

the resulting Young tableau. Add a cell filled with i to the standard tableaux Qi−1 in the

same place as the unique cell that lies in Pi but not in Pi−1; letQi be the resulting standard

Young tableau. Output Pk for P (w) and Qk for Q(w).

The map w 7→
(
P (w),Q(w)

)
is the well known Robinson–Schensted–Knuth correspon-

dence, that is, a bijection between words in A∗ and pairs consisting of a Young tableau

over A and a standard Young tableau of the same shape (For more information on the

subject, see [17, Subsection 5.3]). For example, the sequence of pairs (Pi ,Qi) produced

during the application of Algorithm 3.1.2 to the word 3231 is:

(, ), ( 3 , 1 ),
(

2
3
,

1
2

)
,

(
2 3
3

,
1 3
2

)
,

 1 3
2
3

,
1 3
2
4

.
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Thus P (3231) =
1 3
2
3

and Q(3231) =
1 3
2
4

.

The following result states the key combinatorial facts about tableaux:

Theorem 3.1.3 ([17, Theorem 5.1.1]). Let w ∈ A∗. The number of columns in P (w) is equal
to the length of the longest non-decreasing subsequence in w. The number of rows in P (w) is
equal to the length of the longest decreasing subsequence in w.

Thus, we are now able to present an alternative definition of the plactic monoid in

terms of tableaux. Define ≡plac in the following way: For words u,v ∈A∗,

u ≡plac v⇔ P (u) = P (v).

Using this definition, it follows that ≡plac is in fact a congruence on A∗ (see [14]). Thus,

the plactic monoid is the factor monoid A∗/ ≡plac. The congruence ≡plac, known as the

plactic congruence, naturally restricts to a congruence on A∗n, and hence the plactic monoid

of rank n is the factor monoid A∗n/ ≡plac.

Note that if w is a tableau word, then w = C(P (w)) and Toid(w) = P (w). Hence the

tableau words in A∗ (respectively, A∗n) form a set of normal forms, called a cross-section,

for plac (respectively, placn).

3.2 Kashiwara operators and the crystal graph

We will now introduce the concepts of crystal graphs and Kashiwara operators, in the

context of placn. For a more general introduction to crystal bases, see [6].

The Kashiwara operators ẽi and f̃i , with i ∈ {1, . . . ,n − 1}, are partially defined opera-

tors on A∗n. They are described in a combinatorial way using the bracketing rule. The

definitions of ẽi and f̃i start from the crystal basis for placn, which will form a connected

component of the crystal graph:

1 2 3 . . . n− 1 n1 2 3 n−2 n−1
.

Each operator f̃i is defined so that it replaces a symbol a with the end symbol of a

directed edge labelled by i whenever such an edge starts at a, and each operator ẽi is

defined so that it replaces a symbol a with the start symbol of a directed edge labelled by

i whenever such an edge ends at a:

a f̃i(a);
i ẽi(a) a.i
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Thus, by looking at the crystal basis given before, we have that:

• ẽi(i + 1) = i, ẽi(j) is undefined for j , i + 1;

• f̃i(i) = i + 1, f̃i(j) is undefined for j , i.

This definition is extended to A∗n \An by the recursion:

ẽi(uv) =

ẽi(u)v if ε̃i(u) > φ̃i(u);

uẽi(v) if ε̃i(u) ≤ φ̃i(u),

f̃i(uv) =

f̃i(u)v if ε̃i(u) ≥ φ̃i(u);

uf̃i(v) if ε̃i(u) < φ̃i(u),

where ε̃i and φ̃i are auxiliary maps defined by

ε̃i(w) = max
{
k ∈ N∪ {0} | ẽi · · · ẽi︸︷︷︸

k times

(w) is defined
}

φ̃i(w) = max
{
k ∈ N∪ {0} | f̃i · · · f̃i︸︷︷︸

k times

(w) is defined
}
.

Note that the definitions of ẽi and f̃i are not circular, since they depend, via ε̃i and

φ̃i , only on ẽi and f̃i applied to strictly shorter words. The recursion stops when ẽi
and f̃i are applied to single letters, since we have already defined these applications by

using the crystal basis. Also note that, although not immediate, it is possible to see that

these operators are not only well-defined, but are also mutually inverse whenever they

are defined, that is, if ẽi(w) is defined, then w = f̃i(ẽi(w)) (and if f̃i(w) is defined, then

w = ẽi(f̃i(w))).

The crystal graph for placn, denoted by Γ (placn), is the directed labelled graph with

vertex set A∗n and, for u,v ∈ A∗n, an edge from u to v labelled by i if and only if u = f̃i(v)

(or, equivalently, ẽi(u) = v). Note that the operators ẽi and f̃i preserve length. Therefore,

since there are finitely many words in A∗n of each length, each connected component in

the crystal graph is finite. For any w ∈ A∗n, denote the connected component of Γ (placn)

that contains the vertex w by Γ (placn,w).

A crystal isomorphism between two connected components is a weight-preserving la-

belled digraph isomorphism. In other words, if a map θ : Γ (placn,u)→ Γ (placn,v) verifies

the following properties, then it is called a crystal isomorphism:

• θ is bijective;

• wt(θ(w)) = wt(w), for all u ∈ Γ (placn,u);

• For all w,w′ ∈ Γ (placn,u), there is an edge u i v if and only if there is an edge

θ(u) i θ(v).
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CHAPTER 3. THE PLACTIC MONOID

The equivalent way of defining the plactic congruence ≡plac using the crystal graph

Γ (placn) is as follows: For words u,v ∈ A∗n, u ≡plac v if and only if there exists a crystal

isomorphism θ : Γ (placn,u) → Γ (placn,v) such that θ(u) = v. In other words, u and v

are related by the plactic congruence if and only if they appear in the same position in

isomorphic connected components of the crystal graph.

ε

1

2

3

1

2

11

12

13 22

23

33

1

2 1

1 2

2

21

31

32

2

1

111

112

113 122

123 222

133 223

233

333

1

2 1

1 2 1

2 1 2

1 2

2

211

212 311

213 312

313 322

323

1 2

1 1

2 1

2 1

121

221 131

231 132

331 232

332

1 2

1 1

2 1

2 1

321

Figure 3.1: Part of the crystal graph for plac3. Note that each connected component
consists of words of the same length. In particular, the empty word ε is an isolated vertex,
and the words of length 1 form a single connected component, which is the crystal basis
for plac3. The two connected components whose highest-weight words are 211 and 121
are isomorphic. However, the component consisting of the isolated vertices 321 and ε are
not, since they have different weights. (This figure is taken from [3, Fig. 1].)

3.3 Properties of the crystal graph

It is easy to see from the definition that the length of the longest path with edges only

labelled by i and ending (respectively, starting) in w, for a fixed i ∈ {1, . . . ,n− 1} and word

w ∈A∗n, is ε̃i(w) (respectively, φ̃i(w)).

An important property of the operators ẽi and f̃i is that they increase and decrease

weight, respectively, whenever they are defined, that is, if ẽi (respectively f̃i) is defined,
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1 1 1
2

1 1 2
2

1 1 1
3

1 2 2
2

1 1 3
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1 1 2
3

1 2 3
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1 1 3
3

1 2 2
3

1 3 3
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1 2 3
3

2 2 2
3

1 3 3
3

2 2 3
3
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1 2

1 2 1

2 1 2 1

2 1 2 1

2 1 2

1 2

1211

1212 1311

2212 1213 1312
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2 1 2 1
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2 1 2

1 2

1121

1221 1131
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2231 1331 1232

2331 1332 2232

3331 2332

3332

1 2

1 2 1

2 1 2 1

2 1 2 1

2 1 2

1 2

Figure 3.2: Three isomorphic components of the crystal graph for plac3. In the component
containing column readings of tableaux, the tableaux themselves are shown instead of
words. (This figure is taken from [3, Fig. 2])

then wt(ẽi(w)) > wt(w) (respectively, wt(f̃i(w)) < wt(w)). This happens because when we

apply the operator ẽi to a word, it replaces a letter i + 1 with the letter i, thus decreasing

the (i + 1)-th component and increasing the i-th component of the weight, which results

in an increase with respect to the weight order defined in Subsection 2.2. Similarly, f̃i
replaces a letter i with a letter i + 1, whenever defined, thus it decreases weight. Because

of this, these operators are also known as the Kashiwara raising and lowering operators,

respectively.

Another important property of the operators ẽi and f̃i is that they preserve the prop-

erty of being a tableau word and the shape of the corresponding tableau (see [13, Sec-

tion 3]). Also, all tableau words corresponding to tableaux of a given shape, with entries

in An, are located in the same connected component.

Note that, since every connected component in Γ (placn) is finite, there is at least a

vertex in each component whose weight is higher than all other vertices in that component.

In fact, this vertex is unique (see [23] for proofs and background) and is called the highest-
weight vertex. Note that this means there is no operator ẽi defined on this vertex.

Each connected component in Γ (placn) corresponds to exactly one standard tableau,

in the sense that, if u,v are words in A∗n, then they are located in the same connected
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CHAPTER 3. THE PLACTIC MONOID

component if and only if their corresponding standard tableaux, Q(u) and Q(v), obtained

via the Robinson–Schensted–Knuth correspondence, are equal. Thus, considering a word

w ∈ A∗n, the Robinson–Schensted–Knuth correspondence w 7→
(
P (w),Q(w)

)
allows us

to first locate its connected component Γ (placn,w), via Q(w), and then locate w in that

component via P (w).

An interesting characterization of highest-weight tableau words is the following: a

tableau word is highest-weight if and only if its weight is equal to the shape of the cor-

responding tableau, that is, a tableau word whose corresponding tableau has shape λ is

highest-weight if and only if, for each i ∈ An, the number of symbols i it contains is λi .

Thus, a tableau whose reading is a highest-weight word must contain only symbols i on

its ith row, for all i ∈ {1, . . . , l(λ)}.

3.4 Column presentation and complete rewriting system for

the plactic monoid of rank n

In this section, we present the construction of a finite complete rewriting system for the

plactic monoid of rank n, and the resulting column presentation, following [4].

Recall that placn is presented by 〈An |Rplac〉, where

Rplac =
{

(acb,cab) | a ≤ b < c
}
∪

{
(bac,bca) | a < b ≤ c

}
.

To construct a finite complete rewriting system presenting placn, we introduce a new

set of generators. Let

Cn =
{
cα | α ∈A+

n is a column
}
.

The idea is that each symbol cα represents the symbol α of placn, hence the symbols

c1, c2, . . . , cn represent the original generating set for placn and thus Cn also generates

placn. We shall refer to this set as the column alphabet. Also notice that, since the set of

columns is finite, the set Cn is finite.

Let α,β be columns such that u = u1 · · ·uk and v = v1 · · ·vl , with u1, . . . ,uk ,v1, . . . , vl ∈A,

are their respective column readings. We write α � β if and only if k ≥ l and ui ≤ vi , for

all i = 1, . . . , l. Notice that α � β if and only if α can appear immediately to the left of β in

the planar representation of a tableau.

Define a set of rewriting rules Son C∗n as follows:

S=
{
cαcβ → cγ | α � β ∧ P (αβ) consists of one column γ

}
∪

∪
{
cαcβ → cγcδ | α � β ∧ P (αβ) consists of two columns, with

left column γ and right column δ
}
. (3.4.1)

24



3.5. COHERENT PRESENTATION FOR THE PLACTIC MONOID OF RANK N

In [4], it is proven that 〈Cn | S〉 presents placn and that (Cn | S) is a finite complete

rewriting system. The proof relies on three important tools: the length-plus-lexicographic

order, the uniqueness of the tableau obtained from Schensted’s algorithm and the follow-

ing lemma:

Lemma 3.4.1 ([4, Lemma 3.1]). Suppose α and β are columns with α � β. Then P (αβ) has
at most two columns. Furthermore, if P (αβ) has exactly two columns, the left column has more
symbols than α.

3.5 Coherent presentation for the plactic monoid of rank n

In [10], the homotopical completion procedure was applied to the presentation 〈Cn | S〉
in order to obtain a coherent presentation for placn. Since (Cn | S) is a finite complete

rewriting system, the main contribution of this article was the explicit construction of

the confluence diagrams, that is, the diagrams representing the critical pairs of edges and

their resolutions.

Theorem 3.5.1 ([10, Theorem 3.2.2.]). Consider the extended presentation 〈Cn | S |X〉, where
Cn is the column alphabet, S is as defined in (3.4.1) and X is as defined in (2.4.1), that is, if
for any resolvable critical pair (e1, e2) of S, we fix a resolution (p1,p2), then

X=
{
(e1p1, e2p2) | (e1, e2) is a critical pair of S, and (p1,p2) is the correspondent resolution

}
.

Then, 〈Cn | S |X〉 is a coherent presentation for placn.

Left-hand side of rules from the presentation 〈Cn | S〉 can overlap creating an overlap

ambiguity of the form cxcycz, for any columns x,y,z such that x � y and y � z, which can

be represented diagrammatically in the form

cxcycz

caca′cz

cxcbcb′

S

S

where a,a′ denote the two columns of the tableau P (xy) and b,b′ denote the two columns

of the tableau P (yz). Note that some of these columns may be empty, thus their corre-

sponding symbols in Cn will be the empty word.

Since, by Lemma 3.4.1, for columns α,β such that α � β, P (αβ) has, at most, two

columns, we have four types of critical pairs of edges. We will use a diagrammatic repre-

sentation of vertices and edges to represent each of those cases, and obtain what are the

so-called confluence diagrams:
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• ([10, Lemma 3.2.3.]) If P (xy) has only one column and P (yz) also has only one

column, then we have the following confluence diagram:

cxcycz

cxycz

cxcyz

cxyz

S

S

S

S

• ([10, Lemma 3.2.3.]) If P (xy) has two columns and P (yz) has only one column, then

we have the following confluence diagram:

cxcycz

caca′cz caca′z

cxcyz

cucu′

S

S

S

S

S

where a,a′ denote the two columns of the tableau P (xy) and u,u′ denote the two

columns of the tableau P (xyz);

• ([10, Lemma 3.2.3.]) If P (xy) has only one column and P (yz) has two columns, then

we have the following confluence diagram:

cxcycz

cxycz

cxcbcb′ cucu′cb′

cucu′b′

S

S

S

S

S

where b,b′ denote the two columns of the tableau P (yz) and u,u′ denote the two

columns of the tableau P (xb);

• ([10, Lemma 3.2.3.]) If P (xy) has two columns and P (yz) also has two columns, then

we have the following confluence diagram:

cxcycz

caca′cz

cxcbcb′

cacdcd′

cece′cb′

cecwcd′

S

S

S

S

S

S

where a,a′ denote the two columns of the tableau P (xy), b,b′ denote the two columns

of the tableau P (yz), d,d′ denote the two columns of the tableau P (a′z), e,e′ denote

the two columns of the tableau P (xb) and e,w,d′ denote the three columns of the

tableau P (xyz). Note that, in this case, P (xyz) always has three columns.
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The hypoplactic monoid

In this chapter, similarly to the previous one, we shall discuss three possible ways to de-

fine the hypoplactic monoid: via generators and relations, quasi-ribbon tableaux and insertion,

and quasi-crystals, and the interaction of the quasi-crystal structure with the combina-

torics of quasi-ribbon tableaux (following [3]).

4.1 The hypoplactic monoid, quasi-ribbon tableaux and

insertion

Consider the ordered alphabet A= {1 < 2 < . . . }. The hypoplactic monoid, denoted by hypo,

is presented by 〈A |Rplac ∪Rhypo〉, where Rplac is the set of the Knuth relations given in

Section 3.1 and Rhypo is the set of relations of the form

(cadb,acbd) with a ≤ b < c ≤ d ;

(dbca,badc) with a < b ≤ c < d .
(4.1.1)

Let n ∈ N and consider the finite ordered alphabet An = {1 < 2 < · · · < n}. The hypoplac-
tic monoid of rank n, denoted by hypon, is the monoid presented by 〈An |Rplac ∪Rhypo〉,
where in this case the sets of defining relations Rplac and Rhypo are naturally restricted

to A∗n ×A∗n.

We now proceed to introduce quasi-ribbon tableaux and related concepts, and then

present an alternative definition of the hypoplactic monoid using these tools. For further

information, see [15] and [19].

Let α be a composition. A ribbon diagram of shape α is an array of cells, with αh cells

in the h-th row, for h = 1, . . . , l(α), and counting rows from top to bottom, aligned so that

the leftmost cell in each row is below the rightmost cell of the previous row. For example,
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the ribbon tableau of shape (3,1,2,2) is:

.

Notice that a ribbon diagram cannot contain a 2× 2 subarray, that is, of the form .

Also, in a ribbon diagram of shape α, the number of rows is l(α) and the number of cells

is |α|.
A quasi-ribbon tableau of shape α is a ribbon diagram of shape α filled with symbols

from A such that entries in each row are non-decreasing left to right and entries in each

column are strictly increasing from top to bottom. An example of a quasi-ribbon tableau

of shape (3,1,2,2) is:
1 2 4

5
6 6

7 8

. (4.1.2)

Note that:

• For each a ∈A, the symbols a in a quasi-ribbon tableau all appear in the same row,

which must be the j-th for some j ≤ a;

• The h row of a quasi-ribbon tableau cannot contain symbols from {1, . . . ,h− 1}.

A quasi-ribbon tabloid is a ribbon diagram of shape α filled with symbols from A

such that entries in each column are strictly increasing from top to bottom, without any

restriction on rows. An example of a quasi-ribbon tabloid of shape (3,1,2,2) is:

1 4 2
5
6 3

7 8

(4.1.3)

Note that a quasi-ribbon tableau is a special kind of quasi-ribbon tabloid.

A recording ribbon of shape α is a ribbon diagram of shape α filled with symbols from

{1, . . . , |α|}, with each symbol appearing exactly once, such that entries in each row are

increasing from left to right (the same as in the quasi-ribbon tableau) and entries in each

column are decreasing from top to bottom (the opposite of the rule in a quasi-ribbon

tableau). An example of a recording ribbon of shape (3,1,2,2) is:

1 2 6
5
4 7

3 8

. (4.1.4)

The column reading C(T ) of a quasi-ribbon tabloid T is the word in A∗ obtained by

reading its columns from left to right, and reading each column from bottom to top. For
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example, the column reading of (4.1.2) is 1 2 654 76 8 and the column reading of (4.1.3)

is 1 4 652 73 8.

Let w ∈A∗, and let w(1) · · ·w(k) be its factorization into maximal decreasing factors. Let

QRoid(w) be the quasi-ribbon tabloid whose h-th column has height |w(h)| and is filled

with the symbols of w(h) , for h = 1, . . . , k. Then, C(QRoid(w)) = w. Note that each maximal

decreasing factor of w corresponds to a column of QRoid(w). If w is the column reading

of a quasi-ribbon tableau T , it is called a quasi-ribbon word. By definition, it is immediate

that w is a quasi-ribbon word if and only if QRoid(w) is a quasi-ribbon tableau. Also, note

that w is a quasi-ribbon word if and only if, for all i = 1, . . . , k − 1, the smallest symbol of

w(i+1) is greater than or equal to the greatest symbol of w(i).

The following algorithm is an analogue of Schensted’s algorithm. It allows us to

compute a unique quasi-ribbon tableau QR(w) from a word w ∈A∗.

Algorithm 4.1.1 ([15, §7.2]).

Input: A quasi-ribbon tableau T and a symbol a ∈A.

Output: A quasi-ribbon tableau T ← a.

Method:

• If there is no entry in T that is less than or equal to a, output the quasi-ribbon

tableau obtained by creating a new entry a and attaching (by its top-left-most entry)

the quasi-ribbon tableau T to the bottom of a.

• If there is no entry in T that is greater than a, output the word obtained by creating a

new entry a and attaching (by its bottom-right-most entry) the quasi-ribbon tableau

T to the left of a.

• Otherwise, let x and z be the adjacent entries of the quasi-ribbon tableau T such

that x ≤ a < z. (Equivalently, let x be the right-most and bottom-most entry of T

that is less than or equal to a, and let z be the left-most and top-most entry that is

greater than a. Note that x and z could be either horizontally or vertically adjacent.)

Take the part of T from the top left down to and including x, put a new entry a to

the right of x and attach the remaining part of T (from z onwards to the bottom

right) to the bottom of the new entry a, as illustrated here:

x

z ← a =
x a

z , where x and z are vertically adjacent;

x z ← a =
x a

z
, where x and z are horizontally adjacent.

Output the resulting quasi-ribbon tableau.
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Let w = w1 · · ·wk be a word in A∗. By applying the algorithm iteratively, we can com-

pute a unique quasi-ribbon tableau P (w): Starting with the empty word, we iteratively

insert the symbols from A, w1, . . . ,wk in order. After inserting the last symbol, we ob-

tain the quasi-ribbon tableau QR(w1 · · ·wk). This algorithm also allows us to compute a

recording ribbon RR(w), in the following way:

Algorithm 4.1.2 ([15, §7.2]).

Input: A word w = w1 · · ·wk , where wi ∈A, for i = 1, . . . , k.

Output: A quasi-ribbon tableau QR(w) and a recording ribbon RR(w).

Method: Start with an empty quasi-ribbon tableau Q0 and an empty recording ribbon

R0. For each i = 1, . . . , k, insert the symbol wi into Qi−1 as per Algorithm 4.1.2; let Qi be

the resulting quasi-ribbon tableau. Build the recording ribbon Ri , which has the same

shape as Qi , by adding an entry i into Ri−1 at the same place as wi was inserted into Qi−1.

Output Qk for QR(w) and Rk for RR(w).

For example, the sequence of pairs (Qi ,Ri) produced during the application of Algo-

rithm 4.1.2 to the word 5231 is:

(, ), ( 5 , 1 ),
(

2
5
,

2
1

)
,

(
2 3

5
,

2 3
1

)
,

 1
2 3

5
,

4
2 3

1

.

Thus QR(5231) =
1
2 3

5
and RR(5231) =

4
2 3

1
.

Similarly to the plactic case, it is easy to see that the map w 7→
(
QR(w),RR(w)

)
is a

bijection between words in A∗ and pairs consisting of a quasi-ribbon tableau over Aand a

recording ribbon of the same shape; this is an analogue of the Robinson–Schensted–Knuth

correspondence. For example, if QR(u) =
2
3 3

4
and RR(u) =

3
2 4

1
then u = 4323.

Thus, we are now able to present an alternative definition of the hypoplactic monoid in

terms of quasi-ribbon tableaux. First, we define the relation ≡hypo, called the hypoplactic
congruence on A∗, in the following way: For words u,v ∈A∗,

u ≡hypo v⇔QR(u) =QR(v).

This relation is also a congruence on A∗ and it is the smallest congruence containing

Rplac and Rhypo (see [19, §4]). Thus, the hypoplactic monoid is the factor monoid A∗/ ≡hypo.

The congruence ≡hypo naturally restricts to a congruence on A∗n, and so the hypoplactic
monoid of rank n is the factor monoid A∗n/ ≡hypo.

Note that if w is a quasi-ribbon word, then w = C(QR(w)) and QRoid(w) = QR(w).

Hence the quasi-ribbon words in A∗ (respectively, A∗n) form a cross-section for hypo

(respectively, hypon).
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Theorem 4.1.3 ([19, Theorem 5.12]). The smallest word with respect to the lexicographic
order of a non-empty hypoplactic class is its quasi-ribbon word.

4.2 Quasi-Kashiwara operators and the quasi-crystal graph

In this section, following [3], we will define the quasi-Kashiwara operators and the quasi-

crystal graph and present some important results, one of which is that isomorphisms

between components of this graph give rise to the hypoplactic monoid.

Let n ∈ N and i ∈ {1, . . . ,n− 1}. For any given word w ∈A∗n, we say w has an i-inversion
if it contains a symbol i + 1 to the left of a symbol i. Equivalently, w has an i-inversion if

it contains a subsequence (i + 1)i. If the word w does not have an i-inversion, we say it is

i-inversion-free.

For each i ∈ {1, . . . ,n − 1}, define the quasi-Kashiwara operators ëi and f̈i on A∗n as

follows: Let w ∈A∗n.

• If w has an i-inversion, both ëi(w) and f̈i(w) are undefined;

• If w is i-inversion-free, but w contains at least one symbol i + 1, then ëi(w) is the

word obtained from w by replacing the left-most symbol i + 1 by i; if w contains no

symbol i + 1, then ëi(w) is undefined;

• If w is i-inversion-free, but w contains at least one symbol i, then f̈i(w) is the word

obtained from w by replacing the right-most symbol i by i + 1; if w contains no

symbol i, then f̈i(w) is undefined.

Paralleling the plactic case we define

ε̈i(w) = max
{
k ∈ N∪ {0} | ëi · · · ëi︸︷︷︸

k times

(w) is defined
}

and

φ̈i(w) = max
{
k ∈ N∪ {0} | f̈i · · · f̈i︸︷︷︸

k times

(w) is defined
}
,

for any i ∈ {1, . . . ,n− 1} and w ∈ A∗n. In this case, notice that if w has an i-inversion, then

ε̈i(w) = φ̈i(w) = 0, and if w is i-inversion-free, then every symbol i is located to the left of

every symbol i + 1 in w, thus ε̈i(w) = |w|i+1 and φ̈i(w) = |w|i .
It is interesting to note that, if ëi(w) (or f̈i(w)) is defined, then ẽi(w) (respectively, f̃i(w))

is also defined and ëi(w) = ẽi(w) (respectively, f̈i(w) = f̃i(w)) [3, Remark 1].

Lemma 4.2.1 ([3, Lemma 1]). For all i ∈ {1, . . . ,n − 1}, the operators ëi and f̈i are mutually
inverse, that is, for any w ∈ A∗n, if ëi(w) is defined, then w = f̈i(ëi(w)) (and if f̈i(w) is defined,
then w = ëi(f̈i(w))).
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CHAPTER 4. THE HYPOPLACTIC MONOID

The quasi-crystal graph for hypon, denoted by Γ (hypon) is the labelled directed graph

with vertex set A∗n and, for all u,v ∈A∗n and i ∈ {1, . . . ,n− 1}, an edge from u to v labelled

by i if and only if f̈i(u) = v (or, equivalently by the previous Lemma, ëi(v) = u).

Note that the operators ëi and f̈i preserve length. Therefore, since there are finitely

many words in A∗n of each length, each connected component in the quasi-crystal graph

is finite. For any w ∈A∗n, denote the connected component of Γ (hypon) that contains the

vertex w by Γ (hypon,w). A quasi-crystal isomorphism between two connected components

is a weight-preserving labelled digraph isomorphism.

Define a relation ∼ on the free monoid A∗n as follows: For words u,v ∈ A∗n, u ∼ v if

and only if there exists a quasi-crystal isomorphism θ : Γ (hypon,u)→ Γ (hypon,v) such

that θ(u) = v. That is, u ∼ v if and only if they appear in the same position in isomorphic

connected components of the quasi-crystal graph. In fact, not only is this relation a

congruence, it is equal to the hypoplactic congruence ≡hypo, thus the factor monoid A∗n/ ∼
is actually the hypoplactic monoid of rank n (see the full proof in [3]).

4.3 Properties of the quasi-crystal graph

Similarly to the Kashiwara operators, the operators ëi and f̈i increase and decrease weight,

respectively, whenever they are defined, that is, if ëi ( or f̈i) is defined, then wt(ëi(w)) >

wt(w) (respectively, wt(f̈i(w)) <wt(w)). Because of this, these operators are also known as

the quasi-Kashiwara raising and lowering operators, respectively.

Note that every vertex of Γ (hypon) has at most one incoming and at most one outgoing

edge with a given label.

Now we present some results which are relevant in the following chapter:

Proposition 4.3.1 ([3, Proposition 6]). Let α be a composition.

• The set of quasi-ribbon words corresponding to quasi-ribbon tableaux of shape α forms a
single connected component of Γ (hypon);

• In this connected component, there is a unique highest-weight wordw, which corresponds
to the quasi-ribbon tableau of shape α whose jth row consists entirely of symbols j, for
j = 1, . . . , l(α). Furthermore, wt(w) = α.

Thus, the quasi-Kashiwara preserve shapes of quasi-ribbon tableaux. More generally,

we have the following results, the first one a consequence of [3, Proposition 14]:

Proposition 4.3.2. Let i ∈ {1, . . . ,n− 1}. Let w ∈A∗n.

• If the quasi-Kashiwara operator ëi is defined on w, then QRoid(ëi(w)) and QRoid(w)

have the same shape;

• If the quasi-Kashiwara operator f̈i is defined on w, then QRoid(f̈i(w)) and QRoid(w)

have the same shape.
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1212

1213

1313 1214
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3 1 3 1
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2

Figure 4.1: The isomorphic components Γ4(1212) and Γ4(2121) of the quasi-crystal graph
Γ4. (This figure is taken from [3, Fig. 3].)

Proposition 4.3.3 ([3, Proposition 9]). In every connected component in Γ (hypon), there is a
unique highest-weight word.
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Figure 4.2: The isomorphic components Γ4(1212) (left) and Γ4(2121) (right) of the quasi-
crystal graph Γ4, with symbols of Γ4(1212) drawn as quasi-ribbon tableau instead of writ-
ten as words. The component Γ4(1212) consists of all quasi-ribbon words whose quasi-
ribbon tableaux have shape (2,2). None of the words in Γ4(2121) is a quasi-ribbon word.
(This figure is taken from [3, Fig. 4].)
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Coherent presentation for the hypoplactic

monoid of rank n and characterization of

the confluence diagrams

In this section, we present new results and their respective proofs. We first give a finite

complete rewriting system T′ for the hypoplactic monoid of rank n, then we introduce

the concept of uniform presentation and prove that the presentation 〈An | T′〉 for hypon
is indeed uniform with respect to the quasi-crystal structure. Then, proceeding as in

Section 3.5, we use the homotopical completion procedure to compute a coherent pre-

sentation for hypon from 〈An | T′〉, and then we characterize the confluence diagrams.

Afterwards, we extend the concept of uniform presentations to extended presentations,

introducing the concept of uniform extended presentations. Finally, we prove that the co-

herent presentation for hypon that we computed before is uniform with respect to the

quasi-crystal structure.

5.1 Column presentation and complete rewriting system for

the hypoplactic monoid of rank n

Consider the two following rewriting systems on A∗n:

T=
{
w→ C

(
QR(w)

)
| w ∈A∗n ∧w , C

(
QR(w)

)
∧ |w| ≤max{2n,4}

}
;

T′ =
{
w(1)w(2)→ C

(
QR(w(1)w(2))

)
| w(1),w(2) are columns in A∗n and

w(1)w(2) is not a quasi-ribbon word
}
. (5.1.1)
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OF RANK N AND CHARACTERIZATION OF THE CONFLUENCE DIAGRAMS

Recall that, by definition, hypon is presented by 〈An | Rplac ∪Rhypo〉. In [5], it was

proven not only that 〈An |T〉 presents hypon, but also that Tis a finite complete rewriting

system. Unfortunately, the definition of T is not suited to our needs, so we take inspira-

tion from it and build the rewriting system T′. This new system will serve as our starting

point to obtain a coherent presentation for the hypoplactic monoid of rank n.

Proposition 5.1.1. (An |T′) is a finite complete rewriting system presenting hypon.

Proof. First, note that every rule in T′ holds in hypon, since the quasi-ribbon words in A∗n
form a cross-section for hypon, therefore, for all w ∈A∗n, w ≡hypon C

(
QR(w)

)
. Thus, every

rule in T′ is a consequence of the relations in Rplac ∪Rhypo.

On the other hand, every relation in Rplac ∪Rhypo is a consequence of the rules in T′:

Let a,b,c,d ∈An. Consider the following cases:

• For a ≤ b < c, the words ca and b are columns.

QR(cab) =QR(acb) =
a b

c
,

hence C
(
QR(cab)

)
= C

(
QR(acb)

)
= acb and (cab,acb) ∈T′.

• For a < b ≤ c, the words ca and b are columns.

QR(bca) =QR(bac) =
a

b c
,

hence C
(
QR(bca)

)
= C

(
QR(bac)

)
= bac and (bca,bac) ∈T′.

Thus, every rule in Rplac is a consequence of the relations in T′.

• For a ≤ b < c ≤ d, the words ca and db are columns.

QR(cadb) =QR(acbd) =
a b

c d
,

hence C
(
QR(cadb)

)
= C

(
QR(acdb)

)
= acbd and (cadb,acdb) ∈T′.

• For a < b ≤ c < d, the words ca and db are columns.

QR(dbca) =QR(badc) =
a

b c

d

,

hence C
(
QR(dbca)

)
= C

(
QR(badc)

)
= badc and (dbca,badc) ∈T′.

Thus, every rule in Rhypo is a consequence of the relations in T′.
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THE HYPOPLACTIC MONOID OF RANK N

Therefore, since hypon is presented by 〈An |Rplac ∪Rhypo〉, we conclude that hypon
is also presented by 〈An |T′〉.

Note that there are only finitely many rules in T′, since there are finitely many

columns in A∗n and C
(
QR(w)

)
is uniquely determined.

Let u,v ∈ A∗n and suppose that (u,v) ∈ T′. Clearly, u , v and |u| = |v|. By Theo-

rem 4.1.3 we have v <lex u since v is a quasi-ribbon word. Considering the length-plus-

lexicographic order as presented in Definition 2.2.7, we deduce that v ≤lenlex u. Thus,

since the length-plus-lexicographic order is an admissible well-ordering on A∗n compati-

ble with T′, we conclude that (An |T′) is noetherian by Proposition 2.2.6.

Let v ∈ A∗n be such that v is irreducible. We aim to show that v is a quasi-ribbon

word. In order to obtain a contradiction, suppose that v , C
(
QR(v)

)
. Let v(1) · · ·v(k) be the

decomposition of v into maximal decreasing factors. Since v , C
(
QR(v)

)
, that is, v is not

a quasi-ribbon word, there exists i ∈ {1, . . . , k − 1} such that the smallest symbol in v(i+1) is

less than the greatest symbol in v(i). Hence, also v(i)v(i+1) is not a quasi ribbon word, that

is,

v(i)v(i+1) , C
(
QR(v(i)v(i+1))

)
.

But v(i),v(i+1) are columns, therefore v(i)v(i+1) →T′ C
(
QR(v(i)v(i+1))

)
, which implies

that

v = v(1) · · ·v(i)v(i+1) · · ·v(k)→T′ v
(1) · · ·C

(
QR(v(i)v(i+1))

)
· · ·v(k),

which is absurd, since v is irreducible. We have reached a contradiction.

Therefore, the irreducible words for (An |T′) are the quasi-ribbon words (note that a

quasi-ribbon word is an irreducible word for (An |T′)). Since the quasi-ribbon words in

A∗n form a cross-section for hypon, we conclude that (An |T′) is confluent.

Hence, (An |T′) is a finite complete rewriting system presenting hypon.

We say that a presentation 〈An |R〉 for hypon, where R is a rewriting system on A, is

uniform with respect to the quasi-crystal structure if, for all defining relations (u,v) in R,

we have that:

• If ëi(u) and ëi(v) are both defined, then
(
ëi(u), ëi(v)

)
is a defining relation in R;

• If f̈i(u) and f̈i(v) are both defined, then
(
f̈i(u), f̈i(v)

)
is a defining relation in R.

Proposition 5.1.2. The presentation 〈An |T′〉 for hypon is uniform with respect to the quasi-
crystal structure.

Proof. Let g be a quasi-Kashiwara operator. Note that, by Proposition 4.3.1, the quasi-

Kashiwara operators preserve the property of being (or not) a quasi-ribbon word. Also

note that, by Proposition 4.3.2, the quasi-Kashiwara operators preserve the shapes of

quasi-ribbon tabloids, therefore, for w ∈ A∗n, if QRoid(w) is made up of two columns,

then, if g is defined on w, QRoid(g(w)) is also made up of two columns.
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Suppose w ∈A∗n is such that w = w(1)w(2), where w(1),w(2) are columns in A∗n and w is

not a quasi-ribbon word. Then, as consequence of the previous statements, if g is defined

on w, g(w) is also not a quasi-ribbon word and there are columns u(1),u(2) in A∗n such that

g(w) = u(1)u(2). Thus, since w is the left-hand side of a rewriting rule in T′, if g is defined

on w, then g(w) is also the left-hand side of a rewriting rule in T′.

Recall that, for any u,v ∈ A∗n, we have that u ≡hypo v if and only if they appear in the

same position in isomorphic connected components of the quasi-crystal graph. Thus, for

any word u ∈ A∗n, u and C
(
QR(u)

)
appear in the same position in isomorphic connected

components of the quasi-crystal graph, therefore, if g is defined on w, then g is defined on

C
(
QR(w)

)
, hence g

(
C
(
QR(w)

))
= C

(
QR(g(w))

)
. In conclusion, if g is defined on w, then(

g(w), g
(
C
(
QR(w)

)))
is a defining relation in T′.

Thus, the presentation 〈An |T′〉 for hypon is uniform with respect to the quasi-crystal

structure.

Once again, recall that, for any u,v ∈ A∗n, we have that u ≡hypo v if and only if they

appear in the same position in isomorphic connected components of the quasi-crystal

graph. Thus, for a quasi-Kashiwara operator g, g is defined on u if and only if it is defined

on v.

Therefore, if a presentation P = 〈An | R〉 for hypon is uniform with respect to the

quasi-crystal structure, then, for any path p on Γ (P) such that p = p1 · · ·pk , where p1, . . . ,pk
are edges on Γ (P), if g is defined on an extremity of pj , for any j = 1, . . . , k, then g is defined

on both extremities of pj , for all j = 1, . . . , k. Furthermore, the path p′ = p′1 · · ·p
′
k , where p′j

is the edge
(
g(ιpj ), g(τpj )

)
, for all j = 1, . . . , k, is also a path in Γ (P);

5.2 Coherent presentation for the hypoplactic monoid of

rank n and characterization of the confluence diagrams

The following Theorem is an immediate consequence of Proposition 5.1.1 and the results

presented in Section 2.4.

Theorem 5.2.1. Consider the extended presentation 〈An | T′ | X〉, where T′ is as defined in
(5.1.1) and X is as defined in (2.4.1), that is, if, for any resolvable critical pair (e1, e2) of T′,
we fix a resolution (p1,p2), then

X=
{
(e1p1, e2p2) | (e1, e2) is a critical pair of T′ , and (p1,p2) is the corresponding resolution

}
.

Then, 〈An |T′ |X〉 is a coherent presentation for hypon.

By the definition of the rules in T′, the presentation 〈An |T′〉 has exactly one kind of

critical pair of edges, which can be represented diagrammatically in the form:
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w(1)w(2)1w(2)2w(2)3w(3)

C
(
QR(w(1)w(2)1w(2)2 )

)
w(2)3w(3) w(1)w(2)1C

(
QR(w(2)2w(2)3w(3))

)
T′

T′

for any columns w(1),w(2),w(3) in A∗n such that w(i)w(i+1) is not a quasi-ribbon word,

for i = 1,2, and such that w(2) = w(2)1w(2)2w(2)3 , with w(2)1 ,w(2)2 ,w(2)3 ∈A∗n and w(2)1 ,w(2)3

possibly empty.

Since 〈An | T′〉 is complete, such a critical pair of edges is resolved. Thus, all conflu-

ence diagrams will have the following form:

w(1)w(2)1w(2)2w(2)3w(3)

C
(
QR(w(1)w(2)1w(2)2 )

)
w(2)3w(3) w(1)w(2)1C

(
QR(w(2)2w(2)3w(3))

)
...

...

C
(
QR(w(1)w(2))

)
w(3) w(1)C

(
QR(w(2)w(3))

)
...

...

C
(
QR(w(1)w(2)w(3))

)

T′
T′

T′

T′

T′

T′

T′ T′

T′

T′

We shall prove that:

• For i = 1,2, QR(w(i)w(i+1)) will have, at most, n+ 1 columns;

• QR(w(1)w(2)w(3)) will have, at most, 2n+ 1 columns;

• There exists a path from C
(
QR(w(1)w(2)1w(2)2)

)
w(2)3w(3) to C

(
QR(w(1)w(2))

)
w(3) that

has at most n+ 1 edges;

• There exists a path from w(1)w(2)1C
(
QR(w(2)2w(2)3w(3))

)
to w(1)C

(
QR(w(2)w(3))

)
that

has at most n+ 1 edges;

• There exists a path from C
(
QR(w(1)w(2))

)
w(3) to C

(
QR(w(1)w(2)w(3))

)
that has at

most n edges;

• There exists a path from w(1)C
(
QR(w(2)w(3))

)
to C

(
QR(w(1)w(2)w(3))

)
that has at

most n edges.

Note that the length of the path from C
(
QR(w(1)w(2))

)
w(3) to C

(
QR(w(1)w(2)w(3))

)
may

be different from the length of the path from w(1)C
(
QR(w(2)w(3))

)
to C

(
QR(w(1)w(2)w(3))

)
:
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For example, if we consider w(1) = 65432, w(2) = 54321 and w(3) = 4, we have

65432 54321 4→T′ 21 32 43 54 654→T′ 21 32 43 4 54 65

and

65432 54321 4→T′ 65432 4321 54→T′ 21 32 43 654 54→T′ 21 32 43 4 54 65.

Lemma 5.2.2. Let w(1),w(2) be columns in A∗n such that w(1)w(2) is not a quasi-ribbon word.
Then, QR(w(1)w(2)) will have, at most, n+ 1 columns.

Proof. Consider the application of Algorithm 4.1.2 to compute QR(w(1)w(2)). Since w(1)

is a column, then QR(w(1)) is a quasi-ribbon tableau with a single column. Now, the

insertion of symbols from w(2) into QR(w(1)) can increase the number of columns by at

most one for each inserted symbol (see Algorithm 4.1.1). Since w(2) is a column in A∗n, it

has at most n symbols, and therefore QR(w(1)w(2)) has, at most, n+ 1 columns.

Lemma 5.2.3. Let w(1),w(2),w(3) be columns in A∗n such that w(1)w(2) and w(2)w(3) are not
quasi-ribbon words. Then, QR(w(1)w(2)w(3)) will have at most 2n+ 1 columns.

Proof. The proof follows the reasoning of the proof of the previous lemma. In this case,

each of w(2) and w(3) has at most n symbols, and therefore the insertion of the word

w(2)w(3) into QR(w(1)) will increase the number of columns by, at most 2n columns.

We now present a technical lemma, which will be necessary in order to prove further

results.

Lemma 5.2.4. Let α, β and γ be columns in A∗n such that βγ is a quasi-ribbon word. Con-
sider the factorization of C

(
QR(αβ)

)
into maximal decreasing factors η(1), . . . ,η(k). Then

η(1) · · ·η(k−1)C
(
QR(η(k)γ)

)
is a quasi-ribbon word.

Proof. Let αp, . . . ,α1,βq, . . . ,β1 ∈A∗n be such that α = αp · · ·α1 and β = βq · · ·β1.

If βq < αp, then QR(αβq) has right-most column with column reading αp · · ·αsβq, for

some s ≤ p. Attending to Algorithm 4.1.2, since βi < βq, for any 1 ≤ i < q, the right-

most column of QR(αβ) will have the form αp · · ·αsβq · · ·βt, for some 1 ≤ t ≤ q, and so

η(k) = αp · · ·αsβq · · ·βt.
Now suppose that βq ≥ αp. In this case βq is inserted into QR(α) by attaching βq by

its bottom-most entry. thus QR(αβq) has right-most column βq. As in the other case, the

remaining symbols of β will be inserted either in the right most column above βq (if they

are greater or equal that αp) or in a column further left. Thus, the right-most column of

QR(αβ) has the form βq · · ·βt, for some 1 ≤ t ≤ q, and so η(k) = βq · · ·βt.
Since βγ is a quasi-ribbon word, every symbol in γ is greater than or equal to βq.

Again by Algorithm 4.1.2, the tableau QR(η(k)γ) =QR(η(k))← γ has the symbol βt as its

top-left most symbol. Therefore, η(1) · · ·η(k−1)C
(
QR(η(k)γ)

)
is a quasi-ribbon word.
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A symmetrical lemma can be stated, which is proven using the symmetrical version

of the insertion algorithm, given in [5, Subsection 4.1].

Lemma 5.2.5. Let α, β and γ be columns in A∗n such that αβ is a quasi-ribbon word. Con-
sider the factorization of C

(
QR(βγ)

)
into maximal decreasing factors η(1), . . . ,η(k). Then

C
(
QR(αη(1))

)
η(2) · · ·η(k) is a quasi-ribbon word.

Proposition 5.2.6. Let w be a column and β be a quasi-ribbon word in A∗n such that wβ is not
a quasi-ribbon word. Suppose QR(β) has r columns. There is a path, of length at most r, in
Γ
(
〈An |T′〉

)
from wβ to C

(
QR(wβ)

)
, where for each edge of these paths the rewriting rule has

as left-hand side two of the maximal decreasing factors of the initial vertex.

Proof. Consider the factorization of β into maximal decreasing factors β(1), . . . ,β(r) (or

equivalently, the column readings of the columns of QR(β) from left to right).

Note that the rules in T′ are applied to pairs of columns that do not constitute a quasi-

ribbon word. Hence, if a rewriting rule is applied to wβ, it must be applied to (some

factor of) the columns w and β(1).

Consider the reading η(1) of the right-most column of QR(wβ(1)). In this way, we have

C
(
QR(wβ(1))

)
= η1η

(1), for some word η1 ∈ A∗n. Thus, if wβ(1) is not a quasi-ribbon word,

we have (wβ(1),η1η
(1)) ∈ T′ and a rewriting rule can be applied to wβ = wβ(1) · · ·β(r) and

we get

wβ(1) · · ·β(r)→T′ η1η
(1)β(2) · · ·β(r).

If r = 1 or η(1)β(2) is a quasi-ribbon word, then also η1η
(1)β(2) · · ·β(r) is a quasi-ribbon

word, and the result holds.

Otherwise, η(1)β(2) is not a quasi-ribbon word, and a rewriting rule can be applied to

η1η
(1)β(2) · · ·β(r). Let η(2) be the reading of the right-most column of QR(η(1)β(2)) and η2

be such that C
(
QR(η(1)β(2))

)
= η2η

(2). We obtain the single-step reduction

η1η
(1)β(2) · · ·β(r)→T′ η1η2η

(2)β(3) · · ·β(r).

By Lemma 5.2.4, η1η2η
(2) is a quasi-ribbon word. If r = 2 or η(2)β(3) is a quasi-ribbon

word, then also η1η2η
(2)β(3) · · ·β(r) is a quasi-ribbon word, and the result holds.

Suppose that η(2)β(3) is not a quasi-ribbon word. A reasoning similar to the one

presented in the previous paragraph can be applied: We have C
(
QR(η(2)β(3))

)
= η3η

(3),

with η(3) a column, and

η1η2η
(2)β(3) · · ·β(r)→T′ η1η2η3η

(3)β(4) · · ·β(r).

By Lemma 5.2.4, η2η3η
(3) is a quasi-ribbon word. Note that since η1η2η

(2) is a quasi-

ribbon word, then also η1η2η3η
(3) is a quasi-ribbon word.
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Proceeding in this way, we will obtain a sequence of reductions as follows:

w(1)C
(
QR(w(2)w(3))

)
= w(1)β(1) · · ·β(r)

→T′ η1η
(1)β(2) · · ·β(r)

→T′ η1η2η
(2)β(3) · · ·β(r)

→T′ η1η2η3η
(3)β(4) · · ·β(r)

...
...

→T′ η1 · · ·ηiη(i)β(i+1) · · ·β(r)

...
...

→T′ C
(
QR(w(1)w(2)w(3))

)
.

This process will stop if i reaches r or if η(i)β(i+1) is a quasi-ribbon word. As a consequence

of Lemma 5.2.4 we deduce that ηk−1ηkη
(k) is a quasi-ribbon word, for k ≤ i, and so that

η1 · · ·ηiη(i) is a quasi-ribbon word. Once the process stops we have quasi-ribbon words

η1 · · ·ηiη(i), η(i)β(i+1) and β(i+1) · · ·β(r). Thus η1 · · ·ηiη(i)β(i+1) · · ·β(r) is a quasi-ribbon word,

which must be equal to C
(
QR(wβ)

)
. Thus, the length of the path from wβ to C

(
QR(wβ)

)
is i, which is at most r, since i ≤ r.

A symmetrical proposition can be stated, which is proven using Lemma 5.2.5.

Proposition 5.2.7. Let w be a column and β be a quasi-ribbon word in A∗n such that βw is not
a quasi-ribbon word. Suppose QR(β) has r columns. There is a path, of length at most r, in
Γ
(
〈An |T′〉

)
from βw to C

(
QR(βw)

)
, where for each edge of these paths the rewriting rule has

as left-hand side two of the maximal decreasing factors of the initial vertex.

The following corollary is immediate from Propositions 5.2.6 and 5.2.7

Corollary 5.2.8. Let w(1),w(2),w(3) be columns in A∗n such that w(1)w(2) and w(2)w(3) are
not quasi-ribbon words and such that w(2) = w(2)1w(2)2w(2)3 , with w(2)1 ,w(2)2 ,w(2)3 ∈ A∗n and
w(2)1 ,w(2)3 possibly empty. There is a path, of length at most n+ 1, in Γ

(
〈An |T′〉

)
1. from C

(
QR(w(1)w(2)1w(2)2)

)
w(2)3w(3) to C

(
QR(w(1)w(2))

)
w(3);

2. from w(1)w(2)1C
(
QR(w(2)2w(2)3w(3))

)
to w(1)C

(
QR(w(2)w(3))

)
,

where for each edge of these paths the rewriting rule has as left-hand side two of the maximal
decreasing factors of the initial vertex.

The following proposition gives us an improvement over the boundaries established

in Propositions 5.2.6 and 5.2.7.

Proposition 5.2.9. Let w(1),w(2),w(3) be columns in A∗n such that w(1)w(2) and w(2)w(3) are
not quasi-ribbon words. There is a path, of length at most n, in Γ

(
〈An |T′〉

)
1. from w(1)C

(
QR(w(2)w(3))

)
to C

(
QR(w(1)w(2)w(3))

)
;
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2. from C
(
QR(w(1)w(2))

)
w(3) to C

(
QR(w(1)w(2)w(3))

)
,

where for each edge of these paths the rewriting rule has as left-hand side two of the maximal
decreasing factors of the initial vertex.

Proof. We shall only present the proof of the first case, since the proof of the second case

is analogous due to Proposition 5.2.7, the symmetrical version of Proposition 5.2.6.

Let us consider the factorization of C
(
QR(w(2)w(3))

)
into maximal decreasing factors

β(1), . . . ,β(r) (or equivalently, the column readings of the columns of QR(C
(
QR(w(2)w(3))

)
)

from left to right). Note that, by Lemma 5.2.2, we have r ≤ n + 1. Thus, by the proof

of Proposition 5.2.6, there is a path in Γ
(
〈An | T′〉

)
, of length i, for i ≤ r ≤ n + 1, from

w(1)C
(
QR(w(2)w(3))

)
to C

(
QR(w(1)w(2)w(3))

)
, of the form

w(1)C
(
QR(w(2)w(3))

)
= w(1)β(1) · · ·β(r)

→T′ η1η
(1)β(2) · · ·β(r)

→T′ η1η2η
(2)β(3) · · ·β(r)

→T′ η1η2η3η
(3)β(4) · · ·β(r)

...
...

→T′ η1 · · ·ηiη(i)β(i+1) · · ·β(r)

...
...

→T′ η1 · · ·ηr−1η
(r−1)β(r)

→T′ C
(
QR(w(1)w(2)w(3))

)
.

In order to obtain a contradiction, suppose that i = n+ 1, that is,

w(1)C
(
QR(w(2)w(3))

)
= w(1)β(1) · · ·β(r)

→n+1
T′ C

(
QR(w(1)w(2)w(3))

)
.

Therefore, we have r = n+ 1. Hence there is at least one symbol n in β(1) · · ·β(r), otherwise

we would have w(2),w(3) ∈ A∗n−1, which implies, by Lemma 5.2.2, that C
(
QR(w(2)w(3))

)
would have at most n columns, thus r ≤ n. Let βq, . . . ,β1 ∈A∗n be such that β(n+1) = βq · · ·β1.

Thus, since n is the greatest symbol of A∗n, we have βq = n.

Once again, recall that the rules in T′ are applied to pairs of columns that do not

constitute a quasi-ribbon word. Notice that, for any quasi-ribbon word u ∈A∗n, the word

un is still a quasi-ribbon word. Therefore, if β(n+1) = βq · · ·β1 is to be the right-hand side

of a rule in T′, q must be greater than 1.

Then, since all symbols n must appear in the same row of a quasi-ribbon tableau, and

β(n+1) has at least two symbols, with βq = n, we conclude that β(1) · · ·β(n+1) has one and

only one symbol n, which occurs in β(n+1).

Let α(n+1) = βq−1 · · ·β1. Notice that, since β = β(1) · · ·β(n+1) is a quasi-ribbon word,

β(1) · · ·β(n)α(n+1) is also a quasi-ribbon word. Also notice that, by definition of α(n+1), n

does not occur in β(1) · · ·β(n)α(n+1), thus it is a quasi-ribbon word in A∗n−1. Hence, by
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Lemma 5.2.2, it has at most n columns. But β(1) · · ·β(n)α(n+1) has the same number of

columns as β, which has n+ 1 columns. Thus, we have reached a contradiction.

Hence, we conclude that i ≤ n, hence the length of the path from w(1)C
(
QR(w(2)w(3))

)
to C

(
QR(w(1)w(2)w(3))

)
is at most n.

Now we extend the definition of uniform presentations to extended presentations.

Consider an extended presentation 〈P | C〉 for hypon, where P = 〈An | R〉 is a uniform

presentation for hypon. We say that 〈P | C〉 is a uniform extended presentation with respect

to the quasi-crystal structure if the following conditions are verified: Let (p,q) be a pair

of paths in C such that p = p1 · · ·pr and q = q1 · · ·qs, where p1, . . . ,pr ,q1, . . . , qs are edges in

Γ (P). Then,

• If ëi is defined on an extremity of pj or ql , for any j = 1, . . . , r or l = 1, . . . , s, then (p′ ,q′)

is a pair of paths in C, where p′ = p′1 · · ·p′r is such that p′j is the edge
(
ëi(ιpj ), ëi(τpj )

)
,

for all j = 1, . . . , r, and q′ = q′1 · · ·q′s is such that q′l is the edge
(
ëi(ιql), ëi(τql)

)
, for all

l = 1, . . . , s;

• If f̈i is defined on an extremity of pj or ql , for any j = 1, . . . , r or l = 1, . . . , s, then (p′ ,q′)

is a pair of paths in C, where p′ = p′1 · · ·p′r is such that p′j is the edge
(
f̈i(ιpj ), f̈i(τpj )

)
,

for all j = 1, . . . , r, and q′ = q′1 · · ·q′s is such that q′l is the edge
(
f̈i(ιql), f̈i(τql)

)
, for all

l = 1, . . . , s.

Lemma 5.2.10. Let α, β be columns in A∗n such that

α = α1
k · · ·α

1
1α

2
k · · ·α

2
1 and β = β1

r · · ·β1
1β

2
r · · ·β2

1 ,

where α1
k , . . . ,α

1
1 ,α

2
k , . . .α

2
1 ,β

1
r , . . . ,β

1
1 ,β

2
r , . . .β

2
1 ∈ A∗n are such that r , 0 in β2

r , k , 0 in α1
k and

β1
1 < α

2
k . Then, the following words are not quasi-ribbon words:

• α1
k · · ·α

1
1C

(
QR(α2

k · · ·α
2
1β)

)
;

• C
(
QR(αβ1

r · · ·β1
1)
)
β2
r · · ·β2

1 ;

• α1
k · · ·α

1
1C

(
QR(α2

k · · ·α
2
1β

1
r · · ·β1

1)
)
β2
r · · ·β2

1 .

Proof. We will only prove that α1
k · · ·α

1
1C

(
QR(α2

k · · ·α
2
1β)

)
is not a quasi-ribbon word. The

proof of the other cases is analogous.

Suppose the bottom-most element of the left-most column of QR(α2
k · · ·α

2
1β) is greater

than or equal to α1
1 . Therefore, we have that α1

k · · ·α
1
1 and the left-most column of

QR(α2
k · · ·α

2
1β) do not form a column. In this case, since β1

1 < α
2
k , by the insertion al-

gorithm, the top-most element of the left-most column of QR(α2
k · · ·α

2
1β) is less than α1

k ,

thus α1
k · · ·α

1
1C

(
QR(α2

k · · ·α
2
1β)

)
is not a quasi-ribbon word.

Suppose the bottom-most element of the left-most column of QR(α2
k · · ·α

2
1β) is less

than α1
1 . Then, α1

k · · ·α
1
1 and the left-most column of QR(α2

k · · ·α
2
1β) form a column. Again,

since β1
1 < α

2
k , by the insertion algorithm, the top-most element of the second column
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of QR(α2
k · · ·α

2
1β) is less than α1

k , thus α1
k · · ·α

1
1C

(
QR(α2

k · · ·α
2
1β)

)
is not a quasi-ribbon

word.

Proposition 5.2.11. The coherent presentation for hypon, 〈An | T′ | X〉, given in Theo-
rem 5.2.1 where for X the resolution paths are as described in Proposition 5.2.9, is a uniform
extended presentation with respect to the quasi-crystal structure.

Proof. Note that the underlying monoid presentation of 〈An | T′ |X〉 is the presentation

〈An | T′〉 for hypon, which we have proven to be a uniform presentation with respect to

the quasi-crystal structure in Proposition 5.1.2.

For all critical pairs (e1, e2) of T′, fix a resolution (p1,p2) as described in Proposi-

tion 5.2.9. Recall that

X=
{
(e1p1, e2p2) | (e1, e2) is a critical pair of T′ , and (p1,p2) is the correspondent resolution

}
.

Recall that the critical pairs of T′ are of the form((
w(1)w(2)1w(2)2w(2)3w(3) , C

(
QR(w(1)w(2)1w(2)2)

)
w(2)3w(3)

)
,(

w(1)w(2)1w(2)2w(2)3w(3) , w(1)w(2)1C
(
QR(w(2)2w(2)3w(3))

)))
,

wherew(1),w(2),w(3) are columns in A∗n such thatw(1)w(2) andw(2)w(3) are not quasi-ribbon

words and such that w(2) = w(2)1w(2)2w(2)3 , with w(2)1 ,w(2)2 ,w(2)3 ∈ A∗n, and w(2)1 ,w(2)3

possibly empty. The underlying rewriting rules of the critical pairs are(
w(1)w(2)1w(2)2 , C

(
QR(w(1)w(2)1w(2)2)

))
and

(
w(2)2w(2)3w(3) , C

(
QR(w(2)2w(2)3w(3))

))
.

Let g be a a quasi-Kashiwara operator. First, we need to prove that, if g is defined on

w(1)w(2)w(3), then(g(w(1)w(2)1w(2)2w(2)3w(3)
)
, g

(
C
(
QR(w(1)w(2)1w(2)2)

)
w(2)3w(3)

))
,(

g
(
w(1)w(2)1w(2)2w(2)3w(3)

)
, g

(
w(1)w(2)1C

(
QR(w(2)2w(2)3w(3))

))) ,
is also a critical pair of T′.

We need to further consider three possible cases:

• g(w(1)w(2)1w(2)2w(2)3w(3)) = g(w(1)w(2)1)w(2)2w(2)3w(3);

• g(w(1)w(2)1w(2)2w(2)3w(3)) = w(1)w(2)1g(w(2)2)w(2)3w(3);

• g(w(1)w(2)1w(2)2w(2)3w(3)) = w(1)w(2)1w(2)2g(w(2)3w(3)).
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In the first case, we have, by the definition of the quasi-Kashiwara operators, that

g(w(1)w(2)1w(2)2w(2)3w(3)) = g(w(1)w(2)1w(2)2)w(2)3w(3) = g(w(1)w(2)1)w(2)2w(2)3w(3),

thus g(w(1)w(2)1w(2)2) is defined. Then, since 〈An |T′〉 is a uniform presentation for hypon
with respect to the quasi-crystal structure and

(
w(1)w(2)1w(2)2 , C

(
QR(w(1)w(2)1w(2)2)

))
is a

defining relation in T′,
(
g
(
w(1)w(2)1w(2)2

)
, g

(
C
(
QR(w(1)w(2)1w(2)2)

)))
is not only defined,

but is also a defining relation in T′. Thus,(
g
(
w(1)w(2)1w(2)2w(2)3w(3)

)
, g

(
C
(
QR(w(1)w(2)1w(2)2)

)
w(2)3w(3)

))
=

=
(
g
(
w(1)w(2)1

)
w(2)2w(2)3w(3) , g

(
C
(
QR(w(1)w(2)1w(2)2)

))
w(2)3w(3)

)
and(
g
(
w(1)w(2)1w(2)2w(2)3w(3)

)
, g

(
w(1)w(2)1C

(
QR(w(2)2w(2)3w(3))

)))
=

=
(
g
(
w(1)w(2)1

)
w(2)2w(2)3w(3) , g

(
w(1)w(2)1

)
C
(
QR(w(2)2w(2)3w(3))

))
.

Note that g(w(1)w(2)1) = g(w(1))w(2)1 or g(w(1)w(2)1) = w(1)g(w(2)1). Since the quasi-

Kashiwara operators maintain the shape of columns (see Proposition 4.3.2), we have

that g(w(1))
(
or g(w(2)1), whichever is defined

)
is still a column. Note that, if we factorize

C
(
QR(w(2)2w(2)3w(3))

)
into column words of maximal length, the last one must be different

from w(3), otherwise, w(2)2w(2)3w(3) would be a quasi-ribbon word (Notice that w(2)2w(2)3

is also a column). Thus,

g
(
C
(
QR(w(1)w(2)1w(2)2)

))
w(2)3w(3) , g

(
w(1)w(2)1

)
C
(
QR(w(2)2w(2)3w(3))

)
,

therefore,(g(w(1)w(2)1

)
w(2)2w(2)3w(3) , g

(
C
(
QR(w(1)w(2)1w(2)2)

))
w(2)3w(3)

)
,(

g
(
w(1)w(2)1

)
w(2)2w(2)3w(3) , g

(
w(1)w(2)1

)
C
(
QR(w(2)2w(2)3w(3))

)).
is a critical pair of T′.

The third case is analogous to the first, so we will now look at the second case. We

have , by the definition of the quasi-Kashiwara operators, that

g(w(1)w(2)1w(2)2w(2)3w(3)) = g(w(1)w(2)1w(2)2)w(2)3w(3) =

= w(1)w(2)1g(w(2)2w(2)3w(3)) = w(1)w(2)1g(w(2)
2 )w(2)3w(3),
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thus g(w(1)w(2)1w(2)2) and g(w(2)2w(2)3w(3)) are defined. Then, since 〈An |T′〉 is a uniform

presentation for hypon with respect to the quasi-crystal structure and both(
w(1)w(2)1w(2)2 , C

(
QR(w(1)w(2)1w(2)2)

))
and

(
w(2)2w(2)3w(3) , C

(
QR(w(2)2w(2)3w(3))

))
are defining relations in T′,(
g
(
w(1)w(2)1w(2)2

)
, g

(
C
(
QR(w(1)w(2)1w(2)2)

)))
and(

g
(
w(2)2w(2)3w(3)

)
, g

(
C
(
QR(w(2)2w(2)3w(3))

)))
are not only defined, but are also defining relations in T′. Thus,(
g
(
w(1)w(2)1w(2)2w(2)3w(3)

)
, g

(
C
(
QR(w(1)w(2)1w(2)2)

)
w(2)3w(3)

))
=

=
(
w(1)w(2)1g

(
w(2)2

)
w(2)3w(3) , g

(
C
(
QR(w(1)w(2)1w(2)2)

))
w(2)3w(3)

)
and(
g
(
w(1)w(2)1w(2)2w(2)3w(3)

)
, g

(
w(1)w(2)1C

(
QR(w(2)2w(2)3w(3))

)))
=

=
(
w(1)w(2)1g

(
w(2)2

)
w(2)3w(3) , w(1)w(2)1g

(
C
(
QR(w(2)2w(2)3w(3))

)))
.

By the same reasoning as before, we have that g(w(2)2) is a column. Note that, if we

factorize C
(
QR(w(2)2w(2)3w(3))

)
into column words of maximal length, the last one must

be different from w(3) and its length must be different from |w(3)|. Thus, since the quasi-

Kashiwara operators preserve the shape of quasi-ribbon tableaux, we have that the length

of the last column of g
(
C
(
QR(w(2)2w(2)3w(3))

))
is different from the lenght of w(3), hence

they are different, thus

g
(
C
(
QR(w(1)w(2)1w(2)2)

))
w(2)3w(3) , w(1)w(2)1g

(
C
(
QR(w(2)2w(2)3w(3))

))
,

thus(w(1)w(2)1g
(
w(2)2

)
w(2)3w(3) , g

(
C
(
QR(w(1)w(2)1w(2)2)

))
w(2)3w(3)

)
,(

w(1)w(2)1g
(
w(2)2

)
w(2)3w(3) , w(1)w(2)1g

(
C
(
QR(w(2)2w(2)3w(3))

))).
is a critical pair of T′.

It remains to show that for each pair of paths as described in Proposition 5.2.9, when-

ever a quasi-crystal operator can be applied to the initial vertex (and hence to all vertices

on the paths), the pair of paths that results of applying the operator to all the vertices
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and to the edges, is still a pair of paths in X. For any edge e on a path as described in

Proposition 5.2.9, the rewriting rule has as left-hand side two of the maximal decreasing

factors of the initial vertex. Since 〈An | T′〉 is uniform, for any such edge, the edge e′

resulting of applying a quasi-crystal operator (if possible) is also in Γ (〈An |T′〉).
Now, we want to prove that in the edge e′ the underlying rewriting rule also has as

left-hand side two of the maximal decreasing factors of the initial vertex. One problem

that might arise is that, by coincidence, the right-hand side of the rule is the same whether

the rule has this property or not. We will prove, by contradiction, that this situation does

not occur.

Note that the quasi-crystal operators preserve the property of being a quasi-ribbon

word. Let α, β be columns in A∗n such that αβ is the left-hand side of the underlying

rewriting rule in e. Consequently, C
(
QR(αβ)

)
is the right-hand side of the underly-

ing rewriting rule in e. Suppose α = α1
k · · ·α

1
1α

2
k · · ·α

2
1 and β = β1

r · · ·β1
1β

2
r · · ·β2

1 , where

α1
k , . . . ,α

1
1 ,α

2
k , . . .α

2
1 ,β

1
r , . . . ,β

1
1 ,β

2
r , . . .β

2
1 ∈ A∗n are such that r , 0 in β2

r , k , 0 in α1
k and

β1
1 < α

2
k . Notice that g

(
C
(
QR(αβ)

))
is also a quasi-ribbon word and that g

(
C
(
QR(αβ)

))
=

C
(
QR

(
g(αβ)

))
.

Note that, by definition of the quasi-Kashiwara operators, if g is defined on a word

u = u1 · · ·um, then g(u) = u1 · · ·ui−1g(ui)ui+1 · · ·um, for a certain i ∈ {1, . . . ,m}. Suppose

that, in the edge e′, the underlying rewriting rule does not have as left-hand side two of

the maximal decreasing factors of the initial vertex. Then, C
(
QR

(
g(αβ)

))
has one of the

following forms, whichever is defined:

• g(α1
k · · ·α

1
1)C

(
QR(α2

k · · ·α
2
1β)

)
;

• α1
k · · ·α

1
1C

(
QR

(
g(α2

k · · ·α
2
1β)

))
;

• C
(
QR

(
g(αβ1

r · · ·β1
1)
))
β2
r · · ·β2

1 ;

• C
(
QR(αβ1

r · · ·β1
1)
)
g(β2

r · · ·β2
1);

• g(α1
k · · ·α

1
1)C

(
QR(α2

k · · ·α
2
1β

1
r · · ·β1

1)
)
β2
r · · ·β2

1 ;

• α1
k · · ·α

1
1C

(
QR

(
g(α2

k · · ·α
2
1β

1
r · · ·β1

1)
))
β2
r · · ·β2

1 ;

• α1
k · · ·α

1
1C

(
QR(α2

k · · ·α
2
1β

1
r · · ·β1

1)
)
g(β2

r · · ·β2
1).

By Lemma 5.2.10, none of these words are quasi-ribbon words. Thus, we have reached

a contradiction, since C
(
QR

(
g(αβ)

))
is a quasi-ribbon word.

Hence, we deduce that in the edge e′ the underlying rewriting rule also has as left-

hand side two of the maximal decreasing factors of the initial vertex. Therefore, the pair

of paths resulting of applying a quasi-crystal operator is also a pair of paths in X.

Thus, 〈An |T′ |X〉 is a uniform extended presentation with respect to the quasi-crystal

structure.
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As a final consideration, note that the previous proposition allows us to construct,

from a confluence diagram G of 〈An | T′ | X〉 (where for X the resolution paths are as

described in Proposition 5.2.9), all confluence diagrams with initial vertices in the same

quasi-crystal component in Γ (hypon) as the initial vertex of G. Thus, by Proposition 4.3.3,

since every quasi-crystal component in Γ (hypon) has a unique highest-weight word, we

only need to consider those confluence diagrams of 〈An |T′ |X〉whose vertices are highest-

weight words, in the sense that X is the set of all pairs of paths associated with the highest-

weight confluence diagrams and all other diagrams obtained from them by applying the

quasi-Kashiwara operators.
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