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ABSTRACT

In this thesis, we construct a coherent presentation for the hypoplactic monoid of rank
n and characterize the confluence diagrams associated with it, then we use the theory
of quasi-Kashiwara operators and quasi-crystal graphs to prove that all confluence dia-
grams can be obtained from those diagrams whose vertices are highest-weight words. To
do so, we first give a complete rewriting system for the hypoplactic monoid of rank n,
then, using an extension of the Knuth-Bendix completion procedure called the homotopi-
cal completion procedure, we compute the previously mentioned coherent presentation,
which, from a viewpoint of Monoidal Category Theory, gives us a family of generators of
the relations amongst the relations. These coherent presentations are used for representa-
tions of monoids and are particularly useful to describe actions of monoids on categories.
The theoretical background is given without proof, since the main purpose of this thesis

is to present new results.

Keywords: Monoid, Presentation, Complete rewriting system, Homotopy relation, Finite
derivation type, Homotopical completion procedure, Coherent presentation, Confluence

diagram, Plactic monoid, Hypoplactic monoid
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REsumMmo

Nesta tese, construimos uma apresentagao coerente para o monodide hipoplactico de carac-
teristica n e caracterizamos os diagramas de confluéncia associados, utilizando depois a
Teoria dos operadores quasi-Kashiwara e dos grafos quasi-cristais para provar que todos
os diagramas de confluéncia podem ser obtidos dos diagramas cujos vértices sao pala-
vras de maior peso. De forma a realizar esta tarefa, construimos primeiro um sistema de
reescrita completo para o monodide hipoplactico de caracteristica n e depois, utilizando
o procedimento de completude homotdpica, uma extensao do procedimento de comple-
tude de Knuth-Bendix, computamos a apresentagdo coerente atras referida, que, dum
ponto de vista de Teoria de Categorias Monoidais, nos da uma familia de geradores das
relacgOes entre as relagoes. Estas apresentagoes coerentes sao usadas para representagoes
de monoides e sao particularmente uteis para descrever acoes de monoides em categorias.
A fundamentagao tedrica é dada sem demonstracoes, dado que o principal objetivo desta

tese é apresentar novos resultados.

Palavras-chave: Monobide, Apresentacao, Sistema de reescrita completo, Relacao de homo-
topia, Tipo de derivacao finita, Procedimento de completude homotdpica, Apresentacao

coerente, Diagrama de confluéncia, Mondide plactico, Monoéide hipoplactico
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CHAPTER

INTRODUCTION

In Semigroup and Monoid Theory, one of the most interesting and widely-studied prob-
lems is the word problem, first introduced in Group Theory by M. Dehn [7]. Given a
presentation (d | &) for a monoid M, where o is an alphabet and 2 is a rewriting system,
we can formulate the word problem in the following way: for u,v € 4%, decide if u <, v,
where <7, is the Thue congruence generated by %. If R is finite and complete, then
the word problem is solved using the "normal form algorithm", that is, for u,v € 4%, we
compute normal forms uy and v, for u and v, respectively, then we conclude that u <, v
if and only if uy = vy. The property of having solvable word problem is invariant for any
finite presentation defining the same monoid, however the property of having a finite

and complete rewriting system is not invariable under monoid presentations.

In [24], C. Squier, along with F. Otto and Y. Kobayashi, introduced the concept of
finite derivation type (FDT), a combinatorial property of presentations of monoids, and
showed that if a monoid is presented by a finite complete rewriting system, then it is
FDT. This property is also an invariant property of finite monoid presentations. Squier’s
theory has recently been further developed by Guiraud, Malbos and Mimram [9], using
the language of strict monoidal categories and higher-dimensional variations of them. In
this paper, they introduce the concept of coherent presentation and give an extension of the
Knuth-Bendix completion procedure, called the homotopical completion procedure, that
allows one to obtain a coherent presentation from a noetherian rewriting system for the

monoid being studied.

On the other hand, the plactic monoid, first studied by Schensted [21] and Knuth [14],
and studied later in depth by Lascoux and Schiitzenberger [16], is an important tool in
several aspects of representation theory and algebraic combinatorics, with applications
in a wide range of areas. It can be defined using the Knuth relations, or Young tableaux

and Schensted’s algorithm. In [4], a finite complete rewriting was constructed for the
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CHAPTER 1. INTRODUCTION

plactic monoid of rank n plac, and from it, in [10], a coherent presentation for plac,
was computed. The plactic monoid can also be defined using the theory of Kashiwara
operators and the crystal graph [13]. A similar structure, the hypoplactic monoid, studied
in depth by Novelli [19], initially defined using either the hypoplactic relations or quasi-
ribbon tableaux and Krob-Thibon’s algorithm, was also defined using the theory of quasi-
Kashiwara operators and the quasi-crystal graph in [3].

The main purpose of this thesis is the construction of a coherent presentation for
the hypoplactic monoid of rank 7 and the characterization of the confluence diagrams
associated with it, using the theory of quasi-Kashiwara operators and quasi-crystal graphs
to reduce the number of relevant diagrams. Given the significant extent of the theoretical
background and the fact that this thesis presents new results, we have chosen to give the
background without proof, otherwise the thesis would be exceedingly large compared to
the new content presented. However, we give several definitions which, while not used
directly in the obtained results, are fundamental to understand the concepts we deal with
and the tools used.

In Chapter 2, we give the theoretical background, in Combinatorial Semigroup Theory,
needed to reach the definitions of FDT and coherent presentations, and related results. In
Section 2.1, we present fundamental Semigroup Theory concepts and results. In Section
2.2, we recall the concepts of presentations and rewriting systems and other important
concepts and results of Combinatorial Semigroup Theory. In Section 2.3, we present basic
definitions and theorems regarding graphs. In Section 2.4, we finally present the concepts
of FDT and coherent presentation and give the homotopical completion procedure, which
will be the main tool used to construct a coherent presentation for hypo,,.

In Chapter 3, we start by giving some background on the plactic monoid, including
two possible definitions, one via the Knuth relations, the other via Young tableaux and
Schensted’s algorithm, and the Robinson-Schensted—Knuth correspondence. Afterwards,
we introduce the Kashiwara operators and the crystal graph, restricted to the context of
plac,, and use them to give another definition of plac,. We also give some important prop-
erties of the crystal graph and its interaction with the combinatorics of Young tableaux.
Then, we give a finite complete rewriting system on the column alphabet, which gives
us a presentation of plac, from which we compute a coherent presentation for plac,, us-
ing the homotopical completion procedure. We also characterize the related confluence
diagrams.

Chapter 4 mirrors the first three Sections of Chapter 3, since we first give some back-
ground on the hypoplactic monoid, including two possible definitions, one via the hy-
poplactic relations, the other via quasi-ribbon tableaux and the Krob-Thibon algorithm,
and an analogue of the Robinson-Schensted-Knuth correspondence. Then, we introduce
the quasi-Kashiwara operators and the quasi-crystal graph, restricted to the context of
hypo,,, and use them to give another definition of hypo,,. Afterwards, we present some
important properties of the quasi-crystal graph and its interaction with the combinatorics

of quasi-ribbon tableaux, which are used in the final results of this thesis.

2



Finally, in Chapter 5, we present new results and their respective proofs. We first
give a complete rewriting system, on the alphabet d,, for hypo,,, then we introduce the
concept of uniform presentation and prove that the associated presentation for hypo, is
indeed uniform with respect to the crystal structure. Afterwards, as mentioned before,
we use the homotopical completion procedure to compute a coherent presentation for
hypo,,. The main bulk of this chapter is the characterization of the confluence diagrams
associated with the coherent presentation. In the final part of this chapter, first we extend
the concept of uniform presentations to extended presentations, introducing the concept
of uniform extended presentations. Then, we use the aforementioned properties of the
quasi-crystal graph to prove that the coherent presentation for hypo,, that we computed
before is uniform with respect to the crystal structure, in other words, that we only require
those diagrams whose vertices are highest-weight words in order to construct all other
confluence diagrams, since the quasi-Kashiwara operators preserve the structure of these

diagrams.






CHAPTER

INTRODUCTION TO COMBINATORIAL SEMIGROUP

THEORY

This chapter contains the basic concepts and theorems that will be used throughout this
thesis. It mostly follows Chapter 1 of [18], except for Section 2.4, which follows [9] and
[10]. In the first section, we present basic definitions and results on Semigroup Theory.
We follow with a section on presentations and string rewriting systems. In the next section,
we present basic definitions and results on graphs. Finally, we introduce the concept
of coherent presentation, using the language of Combinatorial Semigroup Theory. This
concept and related results expand on the theory developed by C. Squier in the late 1980’s
and early 1990’s and were first introduced in [9], using the language of strict monoidal

categories and higher-dimensional variations of them.

2.1 Basic concepts and results on Semigroup Theory

In this section, we will present concepts and results from fundamental Semigroup Theory,
necessary for the understanding of this thesis. These and other fundamental results can
be found in [12]. Some definitions regarding partial orders and admissible relations are
taken from [2].

Let S be a non-empty set and let - be a binary operation on S, that is, a mapping from
S xS into S. We will refer to - as multiplication and, for x,y € S, we represent x -y, the
image of the pair (x,v) by -, simply by xy.

The pair (S, ) is a semigroup if - is an associative binary operation on S. Instead of (S, ),
we usually write just S. Let xq,...,x, (n € N) be elements of S, then, we can write x; ---x,
without any ambiguity, as a consequence of the associative property.

A semigroup S is said to have an identity element 1g if, forany x € S, x1g = x = 1gx. If

it exists, then it is unique. If a semigroup has an identity element, it is called a monoid.
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CHAPTER 2. INTRODUCTION TO COMBINATORIAL SEMIGROUP THEORY

Given a semigroup (S,-), it is always possible to extend it to obtain a monoid (S, *):
If (S,-) is already a monoid, then (S,-) = (S!,+); otherwise, we add an element 1 ¢ S , take
S1:=SU{1}, and define * in the following way: For x,y € S, x*y=x-y, x*1 =x,1*x=x
and 1+1=1.

Let M be a monoid and let x € M. We say x has an inverse if there exists an element x’
in M such that xx” = x’x = 1. If every element of M has an inverse, we say M is a group.

Given semigroups S and T, we say T is a subsemigroup of Sif T C S and t;,t, € T
implies that t1¢, € T. If T is a subsemigroup of S, and is also a monoid, then T is called
a submonoid; If T is also a group, then T is called a subgroup. Note that S need not
necessarily be a monoid, and that, even if S is a monoid, then the identities of S and T
need not coincide.

Let A be a non-empty subset of a semigroup S and let o be the collection of all
subsemigroups of S that contain A. The intersection (\r.4 contains A and not only is a
subsemigroup of S, it is also the least subsemigroup of S containing A. It is called the
subsemigroup of S generated by A, and is denoted by (A). If S = (A), then we say that S is
generated by A (or that A generates S), and the elements of A are called generators of S. If
A is a finite set that generates S, we say that S is a finitely generated semigroup.

We can also define the submonoid of a monoid M generated by A in a similar manner:
Let o be the collection of all submonoids of M that contain AU {1,,}. The intersection
(\1eq contains A and not only is a submonoid of M, it is also the least submonoid of
M with identity 1, containing A. It is called the submonoid of S generated by A, and is
denoted by (A). Similarly, if M = (A), then we say that M is generated by A as a monoid (or
that A generates M as a monoid), and the elements of A are called generators of M. If Ais a
finite set that generates M, we say that M is a finitely generated monoid.

Let p C S x S be a binary relation on S. We say that p is:

o reflexiveif xpx, forallxe S;
o symmetricif xpy thenypx, forallx,y € S;
e anti-symmetricif xpy and ypx thenx =y, forall x,y € S;

* transitiveif xpy and ypzthen xpz, forall x,y,z€S.

If p is reflexive, symmetric and transitive, it is said to be an equivalence relation. An
equivalence relation on S partitions the set S into equivalence classes, such that each class
only contains elements p-related to one another.

If p is reflexive, anti-symmetric and transitive, it is said to be a (strict) partial order. The
most common symbols used for partial orders are <, <, and E. We write x <y to denote
that x <y and x # y. A linear order is a strict partial order such that either x <y, x =
or x >y, for x,y € S. We say that a partial order is well-founded if there is no infinite

chain of the form x; > x, > ..., for x; € S,i € N. A linear and well-founded order is called
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2.2. ALPHABETS, PRESENTATIONS AND REWRITING SYSTEMS

a well-ordering. We say that < is admissible if, for all x,y,u,v € S, whenever x < y then
uxv < uyv.

An equivalence relation p on S is said to be right (left) compatible if ap b implies ax p bx
(apb = xapxb), for any a,b,x € S. If p is both left and right compatible, it is called a
congruence.

Let S, T be semigroups. A mapping ¢ : S — T from S to T is called a homomorphism if,
for any x,v € S, we have ¢(xv) = ¢(x)¢(v). A homomorphism ¢ is called a monomorphism
or isomorphism if it is, respectively, injective or bijective. If there exists an isomorphism
¢:S — T, wesay that S and T are isomorphic and write S = T.

Let ¢ : S — T be a homomorphism between semigroups S and T. Then, ¢ induces a

congruence on S, called the kernel of ¢, denoted by ker¢ and given by

kerg = ((x,y) € S x S | $(x) = ()}

Let S be a semigroup and p a congruence on S. Consider the quotient set of S by p,
denoted by S/p. For any x € S, let [x], be the p-class of x, that is, [x], ={y € S |y p x}. We
define a multiplication on §/p in the following way: For x,y € S, [x],[y], := [xy],. With
this multiplication, the quotient set S/p is a semigroup and is called the quotient of S by
p. Furthermore, the natural mapping pf: S — S/p, given by x - [x],, for any x € S, is an
epimorphism.

The following well known result can be found in [11, Theorem 5.4].

Theorem 2.1.1. Let ¢ : S — T be a homomorphism between semigroups and let p be a con-
gruence on S such that p Cker¢. Then, there exists a homomorphism 1 : S/p — T such that
o pf = . Moreover,  is injective if and only if p = kerd.

Let M be a monoid and X a non-empty set. A mapping x : MxX — X is said to be a left
action of M on X if it satisfies the equalities x(my, x(my,x)) = x(mymy, x) and x(1p,x) = x,
for all my,m, € M, x € X. We also say that M acts on X on the left and we usually represent
the element x(m,x) by m - x, which allows us to rewrite the previous equalities in the
form my - (m, - x) = (mym;) - x and 1), - x = x. Similarly, we can define a right action of a
monoid on a set. We say that a monoid M acts on a set X (or that there exists an action
of M on X), if there exists simultaneously a left and a right action of M on X satisfying
the following equality, called the compatible property: (m; - x)-m, = my - (x - m,) for any
my,my € M,x € X. Note that every monoid acts on itself by multiplication, both on the
left and on the right.

2.2 Alphabets, Presentations and Rewriting Systems

In this section, we recall the concepts of presentations and rewriting systems and their
application on the study of semigroups, which gives rise to the field of Combinatorial
Semigroup Theory. For further information on these subjects, see, for example, [12], [20]
or [2].



CHAPTER 2. INTRODUCTION TO COMBINATORIAL SEMIGROUP THEORY

Let d be a non-empty set, which we will refer to as an alphabet. The elements of o
are called letters and finite sequences of letters are called words over the alphabet . The
length of a word w is the number of letters that form w and is denoted by |w|. For a € 4,
the number of times the element a appears in a word w is denoted by |w|,. The empty
sequence is called the empty word, has length zero and is denoted by ¢. For any two words
u,v over 9, we write u = v if they are equal as words.

Suppose w = wy ... wy is a word over o, with wy,...,wy € sf. For 1 <i <j <k, we say
w;---w;j is a factor of w. (Note that a factor must be made up of consecutive letters.) For
i1,---,im €{1,..., k} such that i; <--- <1, we say that w; ---w; isasubsequence of w. (Note
that a subsequence may not be necessarily made up of consecutive letters, unlike a factor.)

The set of all non-empty words over o is denoted by /¥, and the set of all words
over d, including the empty word, is denoted by #*. When equipped with the binary
operation of concatenation of words, d* forms a semigroup, called the free semigroup over
d, and o* forms a monoid, with the empty word as the identity element, and is called the
free monoid over d.

Throughout this text, we will consider o to be the set of natural numbers viewed as an
infinite ordered alphabet: o = {1 <2 <3 <.--}. Also, for n € N, we will denote by d,, the
set of the first n natural numbers viewed as a finite ordered alphabet: o, = {1 <2 <--- <n}.

A weak composition « is a finite sequence (ay, ..., a,,) with terms in NU {0}. The terms
ap up to the last non-zero terms of the sequence are the parts of a. The length of a,
denoted by I(«), is the number of its parts. The weight of a, denoted by |«|, is the sum
of its parts, that is, |a| = a1 +--- + a,,,. For example if @ =(0,1,3,0,2,0) then /(a) =5 and
|a| = 6. We shall identify weak compositions whose parts are the same, that is, weak
compositions which only differ in a tail of terms 0.

A composition is a weak composition whose parts are exclusively in N. For a composi-
tion a = (ay,...,q)(q)), let us denote by D(a) the set {a;, @y + ay,..., a1+ + ay(q)-1}-

We say that a non-increasing finite sequence A = (Aq,...,1,,) with terms in N is a
partition. Note that a partition is a particular kind of weak composition, thus, we define
and denote the length and weight of A in the exact same way as before.

We now define the weight function (not to be confused with the weight of a weak
composition), which informally is the function that counts the number of times each

element appears in a word. More formally, it is defined by
wt: sl —» (NU{O)?, w (wly,lwl...).

Since words are finite sequences, then wt(-) has an infinite tail of elements 0, thus we
only consider its prefix up to the last non-zero term. Hence wt(:) is a weak composition.

We compare weights using the following order:

k k
(1,00, ) < (B fo) o Y ai<) By
i=1 i=1

for any k e N.



2.2. ALPHABETS, PRESENTATIONS AND REWRITING SYSTEMS

When wt(wy) < wt(w;), for words wy, w, € o, we say that wy has lower weight than w,
(and that w, has higher weight than wy).
We now relate alphabets with semigroups and introduce notions that allow us to apply

combinatorial results to Semigroup Theory.

Proposition 2.2.1. Let M be a monoid. For any alphabet A and any mapping 0 : d — S, there
is a unique extension of 0 to a homomorphism from d* into M, also denoted by 0, defined
by 6(ay---a,) = (Oay)---(Oay), for any ay,...,a, € d. The image of this homomorphism is
the submonoid of M generated by O(d), and this submonoid is equal to M if and only if 0 is

surjective.

A monoid presentation P is a pair (s | R) such that R is a binary relation in the free
monoid over the alphabet df. The set R is know as a rewriting system and its elements as
rewriting rules. We say that & is finite if both o and % are finite.

Let & be a rewriting system over o*. We define a binary relation —g on %, called a

single-step reduction, in the following way: For any u,v € of*,
U—gve (u=wrgwy)A@=wrjw),

for some (r.1,7_1) € R and w;,w, € A*. We denote the transitive and reflexive closure
of —»g by —¢,, and the equivalence relation that —g induces by <{,. Note that this
equivalence relation is in fact the smallest congruence on the free monoid o* that contains
R, called the Thue congruence generated by R.

We say R is:

* noetherian if there is no infinite descending chain wy —g w, —g -+, with v, €
d*,neN;

* *

* confluent if, for u,w;,w, € 4%, whenever u —g, w; and u —g w, then there exists

*

v € A" such that w; —%, v and w, —¢, v;

* locally confluent if, for u,w,,w, € 4*, whenever u —g w; and u —g w; then there

*

exists v € A* such that w; —g, v and w, —g, v.

If R is both noetherian and confluent, it is called complete.

Let u € d*. If there is no word v € o such that u —g v, we say that u is irreducible. If
u,v € 4* are such that u <—>’§R v and v is irreducible, we say v is a normal form for u.

The next results are consequences of Lemma 1.1.10, Corollary 1.1.8, and Theorem 1.1.12,

respectively, in [2].

Proposition 2.2.2. Let R be a noetherian rewriting system on an alphabet . Then, for every
u € d*, u has at least one normal form.

Proposition 2.2.3. Let R be a confluent rewriting system on an alphabet d. Then, for every
u € dl*, u has at most one normal form.
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Corollary 2.2.4. Let R be a complete rewriting system on an alphabet . Then, for every

u € dA*, u has a unique normal form.

Let u,v € d*. The words u and v are said to overlap if, up to symmetry, one of the two

following cases occur:
(i) v is a factor of u, that is, there exist a,c € o1* such that u = avc; or

(ii) u overlaps with v on the left, that is, there exist words a,b,c over the alphabet d,

with b non-empty, such that u = ab and v = bc.

Furthermore, if both u and v are left sides of rewriting rules in R, that is, there exist
u’,v’ € d* such that (u,u’),(v,v’) € R, then in case (i) and if whenever a and c are both
empty, then u” # v’, then the pair of words {u’,av’c} is called a critical pair. In case (ii) we
say that uc = av is an overlap ambiguity of R and the pair {u’c,av’} is also a critical pair of
R.

We say that a critical pair {u,v} of R is resolved if there exists w € #* such that u —g, w
and v —¢, w.

The following result follows from [1, Corollary 6.2.5] and [2, Theorem 1.1.13].

Proposition 2.2.5. Let R be a noetherian rewriting system on an alphabet d. The following

conditions are equivalent:
* R is confluent;
* R is locally confluent;
* All critical pairs of R are resolved.

Note that, by Proposition 1.5.10 in [12], given a rewriting system & on an alphabet
g and words u,v € d*, we have u <, v if and only if there is a finite sequence of words
wo,..., w, € 4%, n € Nsuch that wy = u,w,, = v and either w; »¢ w;,; or w; «qg w;,, for

alli=1,...,n-1.

Proposition 2.2.6 ([2, Theorem 2.2.4]). Let R be a rewriting system on an alphabet d. Then,

the following two statements are equivalent:
* R is noetherian;

* There exists an admissible well-founded partial order < on A* that is compatible with R
(in the sense that v < u for each rule (u,v) e R).

Definition 2.2.7 (The length-plus-lexicographic order [2, Definition 2.2.2(d)]). We define
the length-plus-lexicographic order, denoted by <., induced by the natural order on o

in the following way: Let u = uy ---uy, v = vy ---v; be words in of*. Then,
U <jotex v & (k<) V (k:l A @) < A (V] <), :vj))).

10
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It is easy to see that the length-plus-lexicographic order is an admissible well-ordering,
thus, it is an admissible well-founded partial order on d*. If a rewriting system % on o
is compatible with the length-plus-lexicographic order, then it is noetherian.

The quotient of the free monoid &* by the Thue congruence <y, is called the monoid
defined by the presentation P = (o | R) and is denoted by M(P). Consider the natural
mapping p : d — M(P),a — [a].; . The homomorphism extension of p to o is an
epimorphism from of* onto M (%), by Proposition 2.2.1, hence p(d) generates M(%). By
this reason, the elements of o are called the generating symbols. If there is no ambiguity,
it is usual to identify a word on o with its corresponding congruence class of M (%),
hence we identify the generating symbols with the generators of M(%) and o with the
generating set of M(P).

Let u,v € d*. If u &, v, we say that u and v represent the same element of M (%) and
denote it by u =g v. We also say that M (%) satisfies the relation u = v. Since, by definition,
M(P) satisfies all relations in R, a rewriting rule (r,1,7_1) is also called a defining relation
and written in the form r,; =r_;.

Let M be a monoid and p : § - M a mapping from o to M. If its homomorphism
extension is an epimorphism from of* onto M, we call the alphabet o a generating set for
M. Also, if «¢, = kerp, for a rewriting system R, we say that M is defined by P = (d | R).
In this case, due to Theorem 2.1.1, there exists an isomorphism ¢ : M(%) — M such
that o ¢ = p, where ¢ : d* — M(PP) is the natural homomorphism. More generally, a
monoid M is said to be defined by a monoid presentation P = (d | R) if M and M(P) are
isomorphic. It is also possible to identify elements of A* with elements of M, by extending
the identification presented above, under the mapping p. If p(u) = p(v), we say that M
satisfies the relation u = v, for u,v € of*.

To define the notions of semigroup presentation and of semigroup S(P) defined by
P = (d | R), just replace A* with of*, in the definitions given above. For most of the
text, we will work mostly with monoid presentations, and we shall refer to them just as

presentations, as long as there is no confusion with semigroup presentations.

2.3 Graphs

In this section we will present some basic definitions and theorems regarding graphs,
according to Serre [22].

An (oriented) graph is a quintuple ' = (V,E, 1,7, '), where V = V(I') is the (non-empty)
set of vertices, E = E(T') is the set of edges, and 1: E — V and 7 : E — V are mappings,
respectively called the initial and terminal mapping. Given e € E, the vertices te and e are
respectively know as the start and end of e, and are collectively known as the extremities
of e. Orientation on the graph is given by the inverse mapping ~! : E — E, a mapping that
satisfies, foralle € E, ez e !, i(e7!) = 1(e), T(e7') = 1(e) and (e7!)~! =ve.

A non-empty path p on I is a finite sequence (ey,...,e,) of edges ¢; € E, with n € N,

such that te; = 1e;,1, for i = 1,...,n— 1. It is usual to write p in the form e ---e,. Since

11
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p has n elements, we say p has length n and write I[(p) = n. We also extend the notions
of start, end and extremities to paths, by defining ip := 1e; and 7p := te,,. If, for vertices
u,veV,ip=uand tp=v (orip=vand tp = u), we say p joins u and v. We say a path
p is closed if ip = Tp. We define the inverse path of p as the path ¢,!---e;! and denote it
by p~!. For each v € V, we define an empty path 1, with no edges, such that 11, =71, = v
and 1;! = 1,.

Definition 2.3.1. Given a presentation P = (d | R), define a unique graph associated
to P, denoted by I'(P). Its set of vertices is the free monoid s* (or the free semigroup
d7*), and the edges are quadruples of the form e = (wy,7,1 = r_1,€,w,), where wy,w; €
A%, (ry1,7-1) € R and € = #1.

The initial and terminal vertices and the inverse mapping are defined, respectively, by
le =W Tcwy, Te = w r_ewy and e~ = (wy, 7, = r_1,—€,w,). We say that an edge is positive
if € = +1 and negative otherwise. Also, for each word w € o*, there is an empty path 1,
with no edges.

Note that, given any words u,v € d*, we have u —g v if and only if there is a positive

edge e of I'(?) such that e = u and e = v. Thus, we have u <, v if and only if there is a
path in I'(%) that joins u and v.

LetI'=(V,E,4, r,”! ) be a graph and let M be a monoid. We say that M acts on the left of
the graph T if M acts on the left of the sets V and E, respectively, and, for any me M,e € E,
we have 1(m-e)=m-1e,T(m-e)=m-teand (m-e)~! =m-e"!. We can extend this action to
paths in the following way: given edges ey,...,e, € Eand me M, for p =e; ...¢,, we define
m-p:=(m-ey)---(m-e,). We define a right action of M on I in a similar way. We say that
M acts on T if M simultaneously acts on the left and on the right on I' and if both actions

on the set of vertices and on the set of edges are compatible.

Definition 2.3.2. The concatenation product in 9f* induces natural left and right actions
of o* on I'(%), in the following way: For any x,y € o* and any vertex w € d*, we define
x-w=xw and w-y = wy; and for any edge e = (u,7,€,v), we define x- e = (xu,r,€,v) and

e-y =(u,r,€,vy). Both actions are compatible, thus of* acts on I'(%).

Let ' = (V,E,4, T,’l) be a graph. Let V; be a subset of V and E; be a subset of E.
The quintuple I = (Vy, Eg, 1, T,_l) is a subgraph of T if, for all e € E;, we have = E,
and te,te € V. If Ej is the set of all edges of I' with both extremities in V|, that is,
Ey={e€E|ie,te € Vy}, then the subgraph of I defined by V|, and E is known as the full
subgraph defined by V|, and denoted by Iy .

We say a graph T = (V,E, 1,7, 1) is connected if any two vertices in it are joined by a
path. It is easy to see that the binary relation on V, defined by u being related to v if and
only if there is a path starting in # and ending in v, for u,v € V, is in fact an equivalence
relation. The full subgraphs whose vertex sets are the equivalence classes of this relation

are known as the connected components of I'.
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Remark 2.3.3. Let P = (d | R). Recalling Definition 2.3.1, each congruence class of <, is
a connected component of the graph I'(%). Thus the set of elements of the monoid M(%)
(or the semigroup S(%)) is in bijection with the set of the connected components 7ty (I'(%))
of ['(P).

Let I} and I, be graphs. A mapping of graphs ¢ from I to I} is a pair of mappings
¢y : V(I1) — V(I;) and ¢g : E(I;) — E(I,), such that, for all e € E, ¢g(e) is a path on I
starting at ¢y (ze) and ending at ¢y (te), and Ppr(e™!) = (¢g(e))~!. As long as there is no
confusion, we shall write both ¢y and ¢ as ¢. This map can be extended to paths by
defining ¢(1,) := 14y, for all v € V(I1), and ¢(p) = ¢(e1)--- P(e,), for a non-empty path
p=ej...ep, withnelN.

2.4 Homotopy relations, finite derivation type and coherent

presentations

In this section, we will present three important concepts: the concept of homotopy rela-
tions and the concept of finite derivation type (FDT), a finiteness property of semigroup
presentations, first introduced by C. Squier in the 1990’s and further studied by F. Otto
and Y. Kobayashi (see [24]), and the concept of coherent presentation, which, as we have
said before, were first introduced in [9], using the language of strict monoidal categories
and higher-dimensional variations of them.

Let P = (d | R) be a finite monoid presentation and let I'(%) be the graph associated
with it. Consider the sets P(F(@)) of all paths in I'(%) and P(z)(l"(@)) of all ordered pairs
of paths in I'(%) which have a common start and a common end. An equivalence relation

~on P(2>(F(87°)) is called a homotopy relation if it satisfies the following conditions:

(H1) For any edges e; and e; of I'(%), we have
(e1-1ex)(tey - e) ~ (1eg - e3)(eq - Te).
(H2) If p ~ g, then, for any x,y € 4", we have x - p -y ~x-q-p;
(H3) If p,q1,92,7 € P(F(@)) are such that 7p = 141 = 19, Tq1 = 19, = ir and q; ~ g;, then
pair ~ pqzt;
(H4) If p € P(I(P)), then pp~™ ~ 1,,.

Notice that the collection of all homotopy relations on the set of paths in I'(?%) is closed
under arbitrary intersection, and that P(z)(l“(@)) is itself a homotopy relation. Thus, for
any subset X C P(Z)(F(Q)), there is a unique smallest homotopy relation ~x on the set of
paths in I'(%) that contains X, called the homotopy relation generated by X.

We say that & is of finite derivation type (FDT) if there is a finite subset X C P(z)(F(Sﬁ))

which generates P(Z)(T(Q)) as a homotopy relation, that is, P(z)(I‘(@)) is the only homo-
topy relation on the set of paths in I'(%) that contains X.

13
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Theorem 2.4.1 ([24, Theorem 4.3]). Let P and Py be finite monoid presentations defining
the same monoid. Then, Py is of FDT if and only if P is of FDT.

Thus, having FDT is an invariant property of finitely presented monoids, hence it
makes sense to refer to FDT monoids.

Recall the notion of critical pair of a rewriting system given in Section 2.2. Let ey, ¢;
be positive edges in I'(P), with te; = te,, for a presentation P = (o | R). We say the pair
(e1,ep) is a critical pair of edges if the left-hand sides of the underlying rewriting rules
overlap and lead to a critical pair. A resolution of a critical pair of edges (ey,e;) is a pair of
paths (p1,p2) such that ip; = tey,1p, = Tep, Tp; = Tp, and all edges of both p; and p, are
positive. For any resolvable critical pair (eq, e;), fix a resolution (py,p,). Denote by B the
set

{(elpl,ezpz) | (e1,e;) is a critical pair of R, and {py, p,} is the corresponding resolution }
(2.4.1)

Theorem 2.4.2 ([24, Theorem 5.2]). Let P = (A | R) be a presentation, where R is a complete
rewriting system, and let I' (%) be the graph associated with it. Let B C P(z)(l’(@)) be defined
as above. Then, B generates P(z)(T(@)) as a homotopy relation.

Observe that if R if finite, then B is also finite, thus & is of FDT.

Theorem 2.4.3 ([24, Theorem 5.3]). Let M be a finitely presented monoid. Let P = (A | R)
be a presentation, where R is a finite complete rewriting system. If M is presented by P, then
M is FDT.

Now, we are able to introduce some definitions, first given by [9], but presented here
using the language of Combinatorial Semigroup Theory.

An extended presentation of a monoid M is a pair (P | 6), where P = (dd | R) is a
presentation of M, R is a rewriting system and € is a subset of P<2>(r(9>)) in which the
pairs are oriented, that is, it is an analogue of a string-rewriting system for paths, with
the restriction that the paths in each pair have the same start and end. We can also write
an extended presentation as a triple (s | R | 6). An extended presentation is finite if both
P and 6 are finite.

A coherent presentation is an extended presentation such that ‘€ generates P(z)(I‘(@)).
Thus, if a monoid M admits a finite coherent presentation, it is FDT.

In the remaining of this section we provide tools to be able to construct coherent pre-
sentations. Let P = (o | R) be a presentation. The following four types of transformations
of (o | R) are called elementary Tietze transformations:

(Ty) - Add a generator: For we o and a¢ o, add a to of and (w,a) to R;
(T,) - Delete a generator: For ae d and w € (4 \ {a})* such that w —g a,

1. remove a from o;

14
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2. remove (w,a) from R;

3. for any (u,v) € R, replace any factor a of u and v by w;
(T3) - Add a relation: For u,v € o* such that u —¢, v but (u,v) € R, add (u,v) to R;

(T4) - Delete a relation: For u,v € o* such that u —{,, v, where R’ = R \ {(u,v)}, remove
(u,v) from R.

We say that a (finite) Tietze transformation is a (finite) sequence of elementary Tietze
transformations.

In [8], a corresponding notion of Tietze transformations was introduced for extended
presentations. Let (d | R | 6) be an extended presentation. The following six types of
transformations of (d | R | €) are called elementary Tietze transformations:

(T}) - Add a generator: For w € d* and a ¢ 9/, add a to o and (w,a) to R;
(T;) - Delete a generator: For a € f and w € (o \ {a})* such that w —g a,

1. remove a from d;

2. remove (w,a) from R;

3. for any (u,v) € R, replace any factor a of u and v by w;

4. for any (f, g) € €, remove any occurrence of (w,a) in f and g;

5. for any (f,g) € 6, replace any occurrence of a rule (#,v) in f and g by the rule
(u’,v"), where u or v have a factor a and (u’,v’) is obtained by replacing a in u

and v by w;
(T3) - Add arelation: For u,v € d* such that u —g, v but (u,v) ¢ R,

1. add (u,v) to R;

2. add (f,g) to 6, where f = (u,v) and g = (1, w), for w € of*\{v} such that u —g w

and w —¢, v;
(T;) - Delete a relation: For u,v € o* such that u —{,, v, where R' =R \ {(1,v)},

1. remove (u,v) from R;

2. for any (f,g) € 6, remove any occurrence of (#,v) in f and g;
(T3) - Add a pair of paths: For f ~¢ g but (f,g) €6, add (f,g) to 6;

(T¢) - Delete a pair of paths: For (f,g) € € such that f ~¢ g, where €’ = €\ {(f,g)},
remove (f,g) from 6.

The notion of (finite) Tietze transformation is analogous to the previous case.
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Theorem 2.4.4 ([8, Theorem 2.1.3]). The monoids presented by two (finite) extended pre-
sentations are isomorphic if, and only if, there exists a (finite) Tietze transformation between

them.

Thus, if a monoid M is presented by P = (d | R), where R is a noetherian rewriting
system, we can build a coherent presentation for M: We start with the extended presen-
tation (%P | €), where 6 is the empty set. Then, for each critical pair of edges (eq,e;) of
(2 ]6),

* if (e1,e,) admits a resolution, fix one resolution (py, p,), then add (e;py,e,p2) to 6;

* otherwise, since R is noetherian, both te; and te, have normal forms. Let uy,u; €
d* be those normal forms, let p; be the path from 7e; to u; and p, be the path
from te, to u;. Let < be the admissible well-founded partial order on d* that is
compatible with R (see 2.2.6).

- If v <u, add (uy,u;) to R. Let e5 be the edge with start u; and end u,. Add
(e1p1es, exp2) to 6.

— Otherwise add (u,uq) to R. Let e4 be the edge with start u, and end u;. Add
(e1p1,e2p2eq) to 6.

This procedure is called the homotopical completion procedure and can be seen in much
greater detail in [9]. The main feature of this homotopical completion procedure is that
extends the Knuth-Bendix completion procedure (see for instance [2, Subsection 2.4]) into
a tool for computing coherent presentations, by keeping track of homotopy generators
created when adding new rules. Note that, in general, the procedure is not guaranteed to
terminate.

In particular, if R is a complete rewriting system, then we can construct a coherent
presentation for M in the following way: By Theorem 2.4.2, we consider the subset 6 of
P(Z)(F(@)) as defined by (2.4.1). Thus, the extended presentation (& | €) is a coherent
presentation for M. Note that, since & is a complete rewriting system, to obtain (% | 6)
from &P = (d | R), we apply a Tietze transformation to & that consists only in elementary

Tietze transformations of type (T5).
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CHAPTER

THE PLACTIC MONOID

In this chapter, we shall discuss three possible ways to define the plactic monoid: via
generators and relations, tableaux and insertion, and crystals, and also the interaction of the
crystal structure with the combinatorics of Young tableaux (following [3]). We shall also
present a finite complete rewriting system for the plactic monoid of rank #n, from which

a convergent presentation for it can be computed (following [4] and [10]).

3.1 The plactic monoid, Young tableaux and insertion

Consider the ordered alphabet o = {1 <2 <...}. The plactic monoid, denoted by plac, is
presented by (s | Rpac), where Ry, is the set of relations of the form

(cab,acb) witha<b<c;
(bca,bac) witha<b<c,

known as the Knuth relations.

Let n € N and consider the finite ordered alphabet o, = {1 <2 <--- < n}. The plactic
monoid of rank 1, denoted by plac,, is presented by (s, | Rpiac), where in this case the set
of defining relations Ry, is naturally restricted to o, x of;.

We now proceed to introduce Young tableaux and related concepts, and then present
an equivalent definition of the plactic monoid using these tools.

A Young diagram of shape A, where A is a partition, is a grid of cells, with left-justified
rows such that the h-th row has Ay cells, for h = 1,...,I(A). In this text, Young diagrams
will be top-left-aligned, that is, row length will be non-increasing top to bottom. If a

Young diagram has shape (1,1,...,1), it is called a column diagram and is said to have
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column shape. For example, the Young diagram of shape (4, 3, 2) is

(3.1.1)

A Young tableau is a Young diagram filled with symbols from o such that entries in
each row are non-decreasing from left to right, and entries in each column are (strictly)

increasing from top to bottom. For example, a Young tableau of shape (4, 3,2) is

2/2]5]
203]6] . (3.1.2)
45

A Young tableau of shape (1,1,...,1) is called a column.

A standard Young tableau of shape A is a Young tableau with entries from {1,...,|A[}
such that each symbol appears exactly once, entries in each row are increasing from left
to right, and entries in each column are increasing from top to bottom. For example, a

standard Young tableau of shape (4,3, 2) is

3/5/6
2|78 (3.1.3)
49

A tabloid is a grid of cells, filled with symbols from ¢, obtained by concatenating
columns, such that entries in each column are strictly increasing from top to bottom.
Compared to a tableau, there is no restriction on the relative heights of columns, nor is
there a condition on the order of entries in a row. Note that a tableau is a special case of a
tabloid and that the shape of a tabloid cannot in general be expressed using a partition.

An example of a tabloid is

503/4/1]2
45 |8
=, (3.1.4)
67
9

Let w =w; ---wy be a word in of*, with w; e o, fori =1,..., k. We say w is a row word if
w; <wjyq foralli=1,...,k—1. We say w is a column word if w; >w;,, foralli=1,...,k—1.

The column reading C(T) of a tabloid T is the word in ¢I* obtained by reading its
columns from left to right, and reading each column from bottom to top. For exam-
ple, the column reading of (3.1.2) is 421 532 62 5 and the column reading of (3.1.4) is
564397541 82.

Let w € d*. Note that every word over o* has a factorization into maximal decreasing
factors. Let wM)...w(¥) be such a factorization of w. Let Toid(w) be the tabloid whose
h-th column has height |wM| and is filled with the symbols of w  forh=1,...,k. Then,
C(Toid(w)) = w. If w is the column reading of a Young tableau T, it is called a tableau
word. By definition, it is immediate that w is a tableau word if and only if Toid(w) is a
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Young tableau. Thus, we conclude that not every word in of* is a tableau word. Also note
that the column reading of a column matches the definition of a column word, and the
column reading of a row matches the definition of a row word.

We will now see how the plactic monoid can be defined using Young tableaux, by
introducing an insertion algorithm that computes a (unique) Young tableau P(w) from a

word w € o*.

Algorithm 3.1.1 (Schensted’s algorithm).
Input: A Young tableau T and a symbol a € d.
Output: A Young tableau T « a.
Method:

* If ais greater than or equal to every entry in the topmost row of T, add a as an entry

at the rightmost end of the topmost row of T and output the resulting tableau.

* Otherwise, let z be the leftmost entry in the top row of T that is strictly greater
than a. Replace z by a in the topmost row and recursively insert z into the tableau
formed by the rows of T below the topmost (note that the recursion may end with

an insertion into an ‘empty row’” below the existing rows of T).

Let w = w;---wy be a word in #*. By applying the algorithm iteratively, we can
compute a unique Young tableau P(w): Starting with the empty word, we iteratively
insert the symbols wy,...,wy € 4 in order. After inserting the last symbol, we obtain the
tableau P(wq ---wy). This algorithm also allows us to compute a standard Young tableau

Q(w), in the following way:

Algorithm 3.1.2.

Input: A word w = wy ---wy, where w; e o, fori=1,... k.

Output: A Young tableau P(w) and a standard Young tableau Q(w).

Method: Start with an empty Young tableau Py and an empty standard Young tableau
Qq. Foreach i =1,...,k, insert the symbol w; into P,_; as per Algorithm 3.1.1; let P, be
the resulting Young tableau. Add a cell filled with i to the standard tableaux Q;_; in the
same place as the unique cell that lies in P, but not in P;_;; let Q; be the resulting standard
Young tableau. Output P for P(w) and Qy for Q(w).

The map w — (P(w),Q(w)) is the well known Robinson—Schensted—Knuth correspon-
dence, that is, a bijection between words in 9" and pairs consisting of a Young tableau
over d and a standard Young tableau of the same shape (For more information on the

subject, see [17, Subsection 5.3]). For example, the sequence of pairs (P;, Q;) produced

3 ]

during the application of Algorithm 3.1.2 to the word 3231 is:

1
0 (311, () (5257) [2 ,
— 3
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1]3] 1
Thus P(3231)= 2| and Q(3231) = 2|
13 (4]
The following result states the key combinatorial facts about tableaux:

3

Theorem 3.1.3 ([17, Theorem 5.1.1]). Let w € od*. The number of columns in P(w) is equal
to the length of the longest non-decreasing subsequence in w. The number of rows in P(w) is
equal to the length of the longest decreasing subsequence in w.

Thus, we are now able to present an alternative definition of the plactic monoid in

terms of tableaux. Define =, in the following way: For words u,v € 4%,
U =plac v © P(u) = P(v).

Using this definition, it follows that =, is in fact a congruence on o (see [14]). Thus,
the plactic monoid is the factor monoid 4/ =j,. The congruence =j,., known as the
plactic congruence, naturally restricts to a congruence on o}, and hence the plactic monoid
of rank 7 is the factor monoid o/ =,

Note that if w is a tableau word, then w = C(P(w)) and Toid(w) = P(w). Hence the
tableau words in o (respectively, d},) form a set of normal forms, called a cross-section,

for plac (respectively, plac,,).

3.2 Kashiwara operators and the crystal graph

We will now introduce the concepts of crystal graphs and Kashiwara operators, in the
context of plac,. For a more general introduction to crystal bases, see [6].

The Kashiwara operators é; and fi, with i € {1,...,n — 1}, are partially defined opera-
tors on dj. They are described in a combinatorial way using the bracketing rule. The
definitions of ¢; and f; start from the crystal basis for plac,, which will form a connected
component of the crystal graph:

1—Ls2—2 333 4. =2, n.

Each operator f; is defined so that it replaces a symbol a with the end symbol of a
directed edge labelled by i whenever such an edge starts at 4, and each operator ¢; is
defined so that it replaces a symbol a with the start symbol of a directed edge labelled by

i whenever such an edge ends at a:

a—i fi(a); éi(a) g
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3.2. KASHIWARA OPERATORS AND THE CRYSTAL GRAPH

Thus, by looking at the crystal basis given before, we have that:
e ¢;(i+1)=1,¢/(j)is undefined for j # i+ 1;
* fi(i)=i+1, f;(j) is undefined for j = i.

This definition is extended to 4}, \ d,, by the recursion:

{éi(u)v if & (u) > gi(u);
&i(uv) = 3
ueé;(v) if éj(u) < ¢pi(u),
Fluw) = {fi(f‘)v %f €i(u) > d}i(u);
ufi(v) if €(u) < di(u),

where €; and ¢; are auxiliary maps defined by

& (w) =max{k e NU{0}] & ¢(w) is defined]
W—/
k times

¢i(w) = max{k eNU{0}]| fi-- fi(w) is deﬁned}.
k times

Note that the definitions of & and f; are not circular, since they depend, via é; and
¢;, only on & and f; applied to strictly shorter words. The recursion stops when ¢;
and f; are applied to single letters, since we have already defined these applications by
using the crystal basis. Also note that, although not immediate, it is possible to see that
these operators are not only well-defined, but are also mutually inverse whenever they
are defined, that is, if &(w) is defined, then w = f;(¢;(w)) (and if fi(w) is defined, then
w =& (fi(w)).

The crystal graph for plac,, denoted by I'(plac,,), is the directed labelled graph with
vertex set o}, and, for u,v € o}, an edge from u to v labelled by i if and only if u = fi(v)
(or, equivalently, & (u) = v). Note that the operators & and f; preserve length. Therefore,
since there are finitely many words in dj, of each length, each connected component in
the crystal graph is finite. For any w € o}, denote the connected component of I'(plac,)
that contains the vertex w by I'(plac,, w).

A crystal isomorphism between two connected components is a weight-preserving la-
belled digraph isomorphism. In other words, if a map 6 : I'(plac,, u) — I'(plac,, v) verifies
the following properties, then it is called a crystal isomorphism:

* O is bijective;
* wt(0(w)) = wt(w), for all u € I'(plac,,, u);

* For all w,w’ e I'(plac,,u), there is an edge u — 1 yyifand only if there is an edge
O(u) —1— 8(v).
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CHAPTER 3. THE PLACTIC MONOID

The equivalent way of defining the plactic congruence =y, using the crystal graph
I'(plac,,) is as follows: For words u,v € o}, u =p,. v if and only if there exists a crystal
isomorphism 6 : I'(plac,,u) — I'(plac,,v) such that 6(u) = v. In other words, u and v
are related by the plactic congruence if and only if they appear in the same position in
isomorphic connected components of the crystal graph.

1

|

2

AN

—_
—_
[

—
N

w N
el

e 2 13 22
2 \ 2
3 23 32
lz
111 33
1
112 211 121
2\ 1\2 1\2
113 122 212 311 221 131
1 5 1 1 1 1 1
123 222 213 312 231 132 321
PINP) 2 1 2 1
133 223 313 322 331 232
A 2 I 2 |
233 323 332
2
333

Figure 3.1: Part of the crystal graph for plac;. Note that each connected component
consists of words of the same length. In particular, the empty word ¢ is an isolated vertex,
and the words of length 1 form a single connected component, which is the crystal basis
for plac;. The two connected components whose highest-weight words are 211 and 121
are isomorphic. However, the component consisting of the isolated vertices 321 and ¢ are
not, since they have different weights. (This figure is taken from [3, Fig. 1].)

3.3 Properties of the crystal graph

It is easy to see from the definition that the length of the longest path with edges only
labelled by i and ending (respectively, starting) in w, for a fixed i € {1,...,n—1} and word
w e o, is &;(w) (respectively, ¢;(w)).

An important property of the operators ¢; and f; is that they increase and decrease

weight, respectively, whenever they are defined, that is, if & (respectively f;) is defined,
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Figure 3.2: Three isomorphic components of the crystal graph for plac;. In the component
containing column readings of tableaux, the tableaux themselves are shown instead of
words. (This figure is taken from [3, Fig. 2])

then wt(é;(w)) > wt(w) (respectively, wt(fj(w)) < wt(w)). This happens because when we
apply the operator é; to a word, it replaces a letter i + 1 with the letter i, thus decreasing
the (i + 1)-th component and increasing the i-th component of the weight, which results
in an increase with respect to the weight order defined in Subsection 2.2. Similarly, f;
replaces a letter i with a letter i + 1, whenever defined, thus it decreases weight. Because
of this, these operators are also known as the Kashiwara raising and lowering operators,
respectively.

Another important property of the operators &; and f; is that they preserve the prop-
erty of being a tableau word and the shape of the corresponding tableau (see [13, Sec-
tion 3]). Also, all tableau words corresponding to tableaux of a given shape, with entries
in o, are located in the same connected component.

Note that, since every connected component in I'(plac,) is finite, there is at least a
vertex in each component whose weight is higher than all other vertices in that component.
In fact, this vertex is unique (see [23] for proofs and background) and is called the highest-
weight vertex. Note that this means there is no operator é; defined on this vertex.

Each connected component in I'(plac,,) corresponds to exactly one standard tableau,

in the sense that, if u,v are words in o}, then they are located in the same connected
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CHAPTER 3. THE PLACTIC MONOID

component if and only if their corresponding standard tableaux, Q(#) and Q(v), obtained
via the Robinson-Schensted—Knuth correspondence, are equal. Thus, considering a word
w € d;, the Robinson-Schensted—Knuth correspondence w (P(w),Q(w)) allows us
to first locate its connected component I'(plac,,w), via Q(w), and then locate w in that
component via P(w).

An interesting characterization of highest-weight tableau words is the following: a
tableau word is highest-weight if and only if its weight is equal to the shape of the cor-
responding tableau, that is, a tableau word whose corresponding tableau has shape A is
highest-weight if and only if, for each i € o,,, the number of symbols i it contains is A;.
Thus, a tableau whose reading is a highest-weight word must contain only symbols i on
its ith row, for all i € {1,...,1(A)}.

3.4 Column presentation and complete rewriting system for

the plactic monoid of rank n

In this section, we present the construction of a finite complete rewriting system for the
plactic monoid of rank 7, and the resulting column presentation, following [4].

Recall that plac,, is presented by (d,, | Rpjac), where

Rplac = {(acb, cab)la<b< c} U {(bac,bca) la<b< c}.

To construct a finite complete rewriting system presenting plac,, we introduce a new

set of generators. Let

G, = {ca | @ € o) is a column }

The idea is that each symbol ¢, represents the symbol « of plac,, hence the symbols
€1,€y,...,C, represent the original generating set for plac, and thus €6, also generates
plac,. We shall refer to this set as the column alphabet. Also notice that, since the set of
columns is finite, the set 6,, is finite.

Let a, g be columns such that u = uy---ug and v = vy --- vy, with uy,...,ug,vq,..., v, € 4,
are their respective column readings. We write a > f8 if and only if k >/ and u; <v;, for
alli=1,...,1. Notice that a > f if and only if @ can appear immediately to the left of § in
the planar representation of a tableau.

Define a set of rewriting rules § on 6}, as follows:

S= {cacﬁ — ¢, |a %t B A P(ap) consists of one column y}u
U {cacﬂ =y | a # B A P(ap) consists of two columns, with

left column y and right column 5}. (3.4.1)
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3.5. COHERENT PRESENTATION FOR THE PLACTIC MONOID OF RANK N

In [4], it is proven that (6, | S) presents plac, and that (6, | S) is a finite complete
rewriting system. The proof relies on three important tools: the length-plus-lexicographic
order, the uniqueness of the tableau obtained from Schensted’s algorithm and the follow-

ing lemma:

Lemma 3.4.1 ([4, Lemma 3.1]). Suppose a and B are columns with a * p. Then P(ap) has
at most two columns. Furthermore, if P(a ) has exactly two columns, the left column has more

symbols than a.

3.5 Coherent presentation for the plactic monoid of rank n

In [10], the homotopical completion procedure was applied to the presentation (6, | )
in order to obtain a coherent presentation for plac,,. Since (6, | §) is a finite complete
rewriting system, the main contribution of this article was the explicit construction of
the confluence diagrams, that is, the diagrams representing the critical pairs of edges and

their resolutions.

Theorem 3.5.1 ([10, Theorem 3.2.2.]). Consider the extended presentation (8, |S | X), where
B, is the column alphabet, S is as defined in (3.4.1) and X is as defined in (2.4.1), that is, if

for any resolvable critical pair (ey,e;) of S, we fix a resolution (py,p,), then
X = {(elpl,ezpz) | (e1,e,) is a critical pair of S, and (py, p,) is the correspondent resolution }

Then, (6, | S | X) is a coherent presentation for plac,,.

Left-hand side of rules from the presentation (6,, | §) can overlap creating an overlap
ambiguity of the form CxCyCz) for any columns x, v,z such that x i yand y f z, which can
be represented diagrammatically in the form

CaCarCy
N
CxCyl;
S

CxCpCy

where a,a’” denote the two columns of the tableau P(xy) and b, b” denote the two columns
of the tableau P(yz). Note that some of these columns may be empty, thus their corre-
sponding symbols in €, will be the empty word.

Since, by Lemma 3.4.1, for columns a, 8 such that @ % B, P(ap) has, at most, two
columns, we have four types of critical pairs of edges. We will use a diagrammatic repre-
sentation of vertices and edges to represent each of those cases, and obtain what are the

so-called confluence diagrams:
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CHAPTER 3. THE PLACTIC MONOID

* ([10, Lemma 3.2.3.]) If P(xy) has only one column and P(yz) also has only one
column, then we have the following confluence diagram:

CxyCz

7N

CxCyCy Cxyz

N

CxCyz

* ([10, Lemma 3.2.3.]) If P(xy) has two columns and P(yz) has only one column, then
we have the following confluence diagram:

CaCp’Cy L) CaCu’z

N S
Cny Cy CyCy
x /
Cxcyz

where a,a” denote the two columns of the tableau P(xy) and u, u” denote the two
columns of the tableau P(xyz);

* ([10, Lemma 3.2.3.]) If P(xy) has only one column and P(yz) has two columns, then

we have the following confluence diagram:

& y\
CxCuCp L)Cu Cw Cp

where b,b’ denote the two columns of the tableau P(yz) and u,u” denote the two

columns of the tableau P(xb);

* ([10, Lemma 3.2.3.]) If P(xy) has two columns and P(yz) also has two columns, then
we have the following confluence diagram:
Cuca'cz%cacdcd'
N S
CxCyls CoCuCr
S N

CxChCry N CeCe'Cpy

where a,a’ denote the two columns of the tableau P(xy), b, b’ denote the two columns
of the tableau P(yz), d,d’ denote the two columns of the tableau P(a’z), e, e’ denote
the two columns of the tableau P(xb) and e, w,d” denote the three columns of the

tableau P(xyz). Note that, in this case, P(xyz) always has three columns.
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CHAPTER

THE HYPOPLACTIC MONOID

In this chapter, similarly to the previous one, we shall discuss three possible ways to de-
fine the hypoplactic monoid: via generators and relations, quasi-ribbon tableaux and insertion,
and quasi-crystals, and the interaction of the quasi-crystal structure with the combina-

torics of quasi-ribbon tableaux (following [3]).

4.1 The hypoplactic monoid, quasi-ribbon tableaux and

insertion

Consider the ordered alphabet of = {1 <2 <...}. The hypoplactic monoid, denoted by hypo,
is presented by (d | Rpjac U Rhypo), Where Ry, is the set of the Knuth relations given in
Section 3.1 and Rpyp, is the set of relations of the form

(cadb,acbd) witha<b<c<d;

4.1.1
(dbca,badc) witha<b<c<d. ( )

Let n € N and consider the finite ordered alphabet d,, = {1 <2 <--- <n}. The hypoplac-
tic monoid of rank n, denoted by hypo,, is the monoid presented by (o, | Rplac U Rhypo)
where in this case the sets of defining relations Rpj,c and Rpyp, are naturally restricted
to o, x d,.

We now proceed to introduce quasi-ribbon tableaux and related concepts, and then
present an alternative definition of the hypoplactic monoid using these tools. For further
information, see [15] and [19].

Let a be a composition. A ribbon diagram of shape « is an array of cells, with ay, cells
in the h-th row, for h =1,...,1(a), and counting rows from top to bottom, aligned so that

the leftmost cell in each row is below the rightmost cell of the previous row. For example,
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CHAPTER 4. THE HYPOPLACTIC MONOID

the ribbon tableau of shape (3,1,2,2) is:

Notice that a ribbon diagram cannot contain a 2 x 2 subarray, that is, of the form B}

Also, in a ribbon diagram of shape «a, the number of rows is I(a) and the number of cells
is |a|.

A quasi-ribbon tableau of shape « is a ribbon diagram of shape « filled with symbols
from d such that entries in each row are non-decreasing left to right and entries in each
column are strictly increasing from top to bottom. An example of a quasi-ribbon tableau
of shape (3,1,2,2) is:

1]2]4

(4.1.2)

Note that:

* For each a € d, the symbols a in a quasi-ribbon tableau all appear in the same row,
which must be the j-th for some j < g;

* The h row of a quasi-ribbon tableau cannot contain symbols from {1,...,h—1}.

A quasi-ribbon tabloid is a ribbon diagram of shape «a filled with symbols from o
such that entries in each column are strictly increasing from top to bottom, without any

restriction on rows. An example of a quasi-ribbon tabloid of shape (3,1,2,2) is:

Rk

5 (4.1.3)

78]

Note that a quasi-ribbon tableau is a special kind of quasi-ribbon tabloid.

‘O\U‘IN

A recording ribbon of shape « is a ribbon diagram of shape « filled with symbols from
{1,...,]al}, with each symbol appearing exactly once, such that entries in each row are
increasing from left to right (the same as in the quasi-ribbon tableau) and entries in each
column are decreasing from top to bottom (the opposite of the rule in a quasi-ribbon

tableau). An example of a recording ribbon of shape (3,1,2,2) is:

1]2]6
5
4|7
3|8

(4.1.4)

The column reading C(T) of a quasi-ribbon tabloid T is the word in o* obtained by
reading its columns from left to right, and reading each column from bottom to top. For
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example, the column reading of (4.1.2) is 1 2 654 76 8 and the column reading of (4.1.3)
is14652738.

Let w € of*, and let w(!) .. w(*) be its factorization into maximal decreasing factors. Let
QRoid(w) be the quasi-ribbon tabloid whose h-th column has height lw| and is filled
with the symbols of w  forh=1,...,k. Then, C(QRoid(w)) = w. Note that each maximal
decreasing factor of w corresponds to a column of QRoid(w). If w is the column reading
of a quasi-ribbon tableau T, it is called a quasi-ribbon word. By definition, it is immediate
that w is a quasi-ribbon word if and only if QRoid(w) is a quasi-ribbon tableau. Also, note
that w is a quasi-ribbon word if and only if, for all i = 1,...,k — 1, the smallest symbol of
w(*1) is greater than or equal to the greatest symbol of w'),

The following algorithm is an analogue of Schensted’s algorithm. It allows us to

compute a unique quasi-ribbon tableau QR(w) from a word w € o".

Algorithm 4.1.1 ([15, §7.2]).
Input: A quasi-ribbon tableau T and a symbol a € 4.

Output: A quasi-ribbon tableau T « a.
Method:

 If there is no entry in T that is less than or equal to a4, output the quasi-ribbon
tableau obtained by creating a new entry a and attaching (by its top-left-most entry)
the quasi-ribbon tableau T to the bottom of a.

* If thereisnoentryin T that is greater than a, output the word obtained by creating a
new entry a and attaching (by its bottom-right-most entry) the quasi-ribbon tableau
T to the left of a.

* Otherwise, let x and z be the adjacent entries of the quasi-ribbon tableau T such
that x < a < z. (Equivalently, let x be the right-most and bottom-most entry of T
that is less than or equal to g, and let z be the left-most and top-most entry that is
greater than a. Note that x and z could be either horizontally or vertically adjacent.)
Take the part of T from the top left down to and including x, put a new entry a to
the right of x and attach the remaining part of T (from z onwards to the bottom

right) to the bottom of the new entry g, as illustrated here:

E EI
—a= z , where x and z are vertically adjacent;
‘ x|a . .
Xz —a= , where x and z are horizontally adjacent.
z

Output the resulting quasi-ribbon tableau.
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CHAPTER 4. THE HYPOPLACTIC MONOID

Let w = w; ---wy be a word in d*. By applying the algorithm iteratively, we can com-
pute a unique quasi-ribbon tableau P(w): Starting with the empty word, we iteratively
insert the symbols from o, wy,...,wy in order. After inserting the last symbol, we ob-
tain the quasi-ribbon tableau QR(wy ---wy). This algorithm also allows us to compute a

recording ribbon RR(w), in the following way:

Algorithm 4.1.2 ([15, §7.2]).

Input: A word w = wy ---wy, where w; e o, fori=1,...,k.

Output: A quasi-ribbon tableau QR(w) and a recording ribbon RR(w).

Method: Start with an empty quasi-ribbon tableau Qy and an empty recording ribbon
Ry. For each i =1,...,k, insert the symbol w; into Q;_; as per Algorithm 4.1.2; let Q; be
the resulting quasi-ribbon tableau. Build the recording ribbon R;, which has the same
shape as Q;, by adding an entry i into R;_; at the same place as w; was inserted into Q;_;.
Output Q; for QR(w) and Ry for RR(w).

For example, the sequence of pairs (Q;, R;) produced during the application of Algo-
rithm 4.1.2 to the word 5231 is:

1
) (511, () (2 212 f) [2 e 3].

Thus QR(5231)=| 2|3 and RR(5231)= 2|3 .
5 1

Similarly to the plactic case, it is easy to see that the map w — (QR(w), RR(w)) is a
bijection between words in o* and pairs consisting of a quasi-ribbon tableau over of and a
recording ribbon of the same shape; this is an analogue of the Robinson-Schensted-Knuth
2 3
correspondence. For example, if QR(u#) = 3 |3 land RR(u)=| 2 | 4 then u =4323.
4 1

Thus, we are now able to present an alternative definition of the hypoplactic monoid in
terms of quasi-ribbon tableaux. First, we define the relation =hypo called the hypoplactic

congruence on 9, in the following way: For words u,v € d*,
U Zhypo v < QR(u) = QR(v).

This relation is also a congruence on o* and it is the smallest congruence containing
Rplac and Rpypo (see [19, §4]). Thus, the hypoplactic monoid is the factor monoid "/ =pyp0-
The congruence =y, naturally restricts to a congruence on o, and so the hypoplactic
monoid of rank n is the factor monoid o}/ =pypo-

Note that if w is a quasi-ribbon word, then w = C(QR(w)) and QRoid(w) = QR(w).
Hence the quasi-ribbon words in of* (respectively, o) form a cross-section for hypo

(respectively, hypo, ).
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Theorem 4.1.3 ([19, Theorem 5.12]). The smallest word with respect to the lexicographic
order of a non-empty hypoplactic class is its quasi-ribbon word.

4.2 Quasi-Kashiwara operators and the quasi-crystal graph

In this section, following [3], we will define the quasi-Kashiwara operators and the quasi-
crystal graph and present some important results, one of which is that isomorphisms
between components of this graph give rise to the hypoplactic monoid.

LetneNandie{l,...,n—1}. For any given word w € d;,, we say w has an i-inversion
if it contains a symbol i + 1 to the left of a symbol i. Equivalently, w has an i-inversion if
it contains a subsequence (i + 1)i. If the word w does not have an i-inversion, we say it is
i-inversion-free.

For each i € {1,...,n— 1}, define the quasi-Kashiwara operators & and f; on o, as
follows: Let w € of;,.

« If w has an i-inversion, both ¢;(w) and f;(w) are undefined;

» If w is i-inversion-free, but w contains at least one symbol i + 1, then é;(w) is the
word obtained from w by replacing the left-most symbol i + 1 by i; if w contains no

symbol i + 1, then ¢&;(w) is undefined;

« If w is i-inversion-free, but w contains at least one symbol i, then f;(w) is the word
obtained from w by replacing the right-most symbol i by i + 1; if w contains no
symbol i, then f;(w) is undefined.

Paralleling the plactic case we define

€i(w) = max{k e NU({0}]| é;---é;(w) is deﬁned}
\/_/
k times

and
$i(w) = max{k e NU{0} | ;- fi(w) is defined),

~——
k times

foranyie{l,...,n—1}and w € o;,. In this case, notice that if w has an i-inversion, then
éi(w) = ¢;(w) = 0, and if w is i-inversion-free, then every symbol i is located to the left of
every symbol i + 1 in w, thus &;(w) = |w|;y; and ¢;(w) = [w;.

It is interesting to note that, if &;(w) (or fj(w)) is defined, then ¢&;(w) (respectively, f;(w))
is also defined and é;(w) = é;(w) (respectively, fi(w) = fi(w)) [3, Remark 1].

Lemma 4.2.1 ([3, Lemma 1]). Forall i € {1,...,n— 1}, the operators & and f; are mutually
inverse, that is, for any w € o},, if é(w) is defined, then w = f;(¢;(w)) (and if f;(w) is defined,
then w = &(fi(w))).
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The quasi-crystal graph for hypo,,, denoted by I'(hypo,,) is the labelled directed graph
with vertex set o, and, for all u,v € o}, and i € {1,...,n— 1}, an edge from u to v labelled
by i if and only if f;(u) = v (or, equivalently by the previous Lemma, &(v) = u).

Note that the operators ¢; and f; preserve length. Therefore, since there are finitely
many words in d;, of each length, each connected component in the quasi-crystal graph
is finite. For any w € d},, denote the connected component of I'(hypo,) that contains the
vertex w by I'(hypo,, w). A quasi-crystal isomorphism between two connected components
is a weight-preserving labelled digraph isomorphism.

Define a relation ~ on the free monoid d;, as follows: For words u,v € d},, u ~ v if
and only if there exists a quasi-crystal isomorphism 6 : I'(hypo,,,u) — I'(hypo,,v) such
that 6(u) = v. That is, u ~ v if and only if they appear in the same position in isomorphic
connected components of the quasi-crystal graph. In fact, not only is this relation a
congruence, it is equal to the hypoplactic congruence =y, thus the factor monoid o}/ ~

is actually the hypoplactic monoid of rank n (see the full proof in [3]).

4.3 Properties of the quasi-crystal graph

Similarly to the Kashiwara operators, the operators ¢; and f; increase and decrease weight,
respectively, whenever they are defined, that is, if & ( or £;) is defined, then wt(é;(w)) >
wt(w) (respectively, wt(f;(w)) < wt(w)). Because of this, these operators are also known as
the quasi-Kashiwara raising and lowering operators, respectively.

Note that every vertex of I'(hypo,,) has at most one incoming and at most one outgoing
edge with a given label.

Now we present some results which are relevant in the following chapter:

Proposition 4.3.1 ([3, Proposition 6]). Let a be a composition.

* The set of quasi-ribbon words corresponding to quasi-ribbon tableaux of shape a forms a

single connected component of I'(hypo,,);

* In this connected component, there is a unique highest-weight word w, which corresponds
to the quasi-ribbon tableau of shape o whose jth row consists entirely of symbols j, for

j=1,...,1(a). Furthermore, wt(w) = a.

Thus, the quasi-Kashiwara preserve shapes of quasi-ribbon tableaux. More generally,

we have the following results, the first one a consequence of [3, Proposition 14]:
Proposition 4.3.2. Letie{l,...,n—1}. Let w e dj,.

e If the quasi-Kashiwara operator é; is defined on w, then QRoid(é;(w)) and QRoid(w)

have the same shape;

o If the quasi-Kashiwara operator f; is defined on w, then QRoid(f;(w)) and QRoid(w)

have the same shape.
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Figure 4.1: The isomorphic components I;(1212) and I3(2121) of the quasi-crystal graph

I. (This figure is taken from (3, Fig. 3].)

Proposition 4.3.3 ([3, Proposition 9)). In every connected component in I'(hypo,,), there is a

unique highest-weight word.
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‘1 ; 2‘ 2121
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Figure 4.2: The isomorphic components I;(1212) (left) and I;(2121) (right) of the quasi-
crystal graph I, with symbols of I;4(1212) drawn as quasi-ribbon tableau instead of writ-
ten as words. The component I;(1212) consists of all quasi-ribbon words whose quasi-
ribbon tableaux have shape (2,2). None of the words in I}(2121) is a quasi-ribbon word.
(This figure is taken from [3, Fig. 4].)
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CHAPTER

COHERENT PRESENTATION FOR THE HYPOPLACTIC
MONOID OF RANK 11 AND CHARACTERIZATION OF

THE CONFLUENCE DIAGRAMS

In this section, we present new results and their respective proofs. We first give a finite
complete rewriting system J’ for the hypoplactic monoid of rank n, then we introduce
the concept of uniform presentation and prove that the presentation (s, | I’) for hypo,,
is indeed uniform with respect to the quasi-crystal structure. Then, proceeding as in
Section 3.5, we use the homotopical completion procedure to compute a coherent pre-
sentation for hypo, from (s, | I’), and then we characterize the confluence diagrams.
Afterwards, we extend the concept of uniform presentations to extended presentations,
introducing the concept of uniform extended presentations. Finally, we prove that the co-
herent presentation for hypo, that we computed before is uniform with respect to the

quasi-crystal structure.

5.1 Column presentation and complete rewriting system for

the hypoplactic monoid of rank n

Consider the two following rewriting systems on o;;:

g = {w — C(QR(w)) |lwed, ANw= C(QR(w)) Alw| < max{2n,4}};

g’ = {w(l)w(z) - C(QR(w(l)w(z))) | wY,w? are columns in s, and

wMw? is not a quasi-ribbon word } (5.1.1)
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Recall that, by definition, hypo, is presented by (o, | Rplac U Rhypo)- In [5], it was
proven not only that (,, | 7) presents hypo,,, but also that 7 is a finite complete rewriting
system. Unfortunately, the definition of J is not suited to our needs, so we take inspira-
tion from it and build the rewriting system J’. This new system will serve as our starting

point to obtain a coherent presentation for the hypoplactic monoid of rank n.
Proposition 5.1.1. (4, | ) is a finite complete rewriting system presenting hypo,,.

Proof. First, note that every rule in I’ holds in hypo,, since the quasi-ribbon words in d;,
form a cross-section for hypo,, therefore, for all w € o}, w =pypo C(QR(w)). Thus, every
rule in I’ is a consequence of the relations in Rpjac U Rhypo-

On the other hand, every relation in Rpj,c U Rpyp, is @ consequence of the rules in 7:

Leta,b,c,d € d,,. Consider the following cases:

e For a < b <c, the words ca and b are columns.

QR(cab) = QR(acbh) _Le ,

hence C(QR(cab)) = C(QR(acb)) =acb and (cab,acb) e T".

e For a<b <c, the words ca and b are columns.

a

blc

QR(bca) = QR(bac) =

7

hence C(QR(bca)) = C(QR(bac)) = bac and (bca, bac) e T.
Thus, every rule in Ry, is a consequence of the relations in F.

e Fora<b<c<d,thewords ca and db are columns.

QR(cadb) = QR(achd) = K

)

cld

hence C(QR(cadb)) = C(QR(acdb)) = acbd and (cadb,acdb) € T,

e Fora<b<c<d,the words ca and db are columns.

a
QR(dbca) = QR(badc)=| b | c |,
d

hence C(QR(dbca)) = C(QR(badc)) = badc and (dbca, badc) € T,

Thus, every rule in Ry,yp, is a consequence of the relations in J.
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Therefore, since hypo, is presented by (d,, | Rplac U Rhypo), We conclude that hypo,
is also presented by (s, | T7).

Note that there are only finitely many rules in J’, since there are finitely many
columns in o}, and C(QR(w)) is uniquely determined.

Let u,v € o}, and suppose that (u,v) € I’. Clearly, u # v and |u| = |[v|]. By Theo-
rem 4.1.3 we have v <j,, u since v is a quasi-ribbon word. Considering the length-plus-
lexicographic order as presented in Definition 2.2.7, we deduce that v <j,,jo, u. Thus,
since the length-plus-lexicographic order is an admissible well-ordering on o}, compati-
ble with I/, we conclude that (o, | I’) is noetherian by Proposition 2.2.6.

Let v € o}, be such that v is irreducible. We aim to show that v is a quasi -ribbon
word. In order to obtain a contradiction, suppose that v # C(QR( )) Let v(1)...v() be the
decomposition of v into maximal decreasing factors. Since v # C (QR( )) that is, v is not

a quasi-ribbon word, there exists i € {1,...,k — 1} such that the smallest symbol in v{*1) is

less than the greatest symbol in v/), Hence, also v()v(i*1) i

is not a quasi ribbon word, that
is,

7)(i)v(i+1) - C(QR(v(i)v(i”))).

But v(),v(*1) are columns, therefore v(v(i*1) g, (QR( i+ )) which implies

that

i+1) k)

..v(i)v( ..v( _)97 (QR( 1+1))) ..v(k)’

which is absurd, since v is irreducible. We have reached a contradiction.

Therefore, the irreducible words for (d,, | I’) are the quasi-ribbon words (note that a
quasi-ribbon word is an irreducible word for (s, | 7’)). Since the quasi-ribbon words in
dy form a cross-section for hypo,, we conclude that (s, | I”’) is confluent.

Hence, (s, | J’) is a finite complete rewriting system presenting hypo,,. O

We say that a presentation (o, | ) for hypo,, where R is a rewriting system on d, is
uniform with respect to the quasi-crystal structure if, for all defining relations (u,v) in R,

we have that:
o If ¢;(u) and ¢é;(v) are both defined, then (é','(u), é'i(v)) is a defining relation in R;
« If fi(u) and f;(v) are both defined, then (f( ), fi(v )) is a defining relation in R.

Proposition 5.1.2. The presentation (s, | F’) for hypo,, is uniform with respect to the quasi-
crystal structure.

Proof. Let g be a quasi-Kashiwara operator. Note that, by Proposition 4.3.1, the quasi-
Kashiwara operators preserve the property of being (or not) a quasi-ribbon word. Also
note that, by Proposition 4.3.2, the quasi-Kashiwara operators preserve the shapes of
quasi-ribbon tabloids, therefore, for w € o}, if QRoid(w) is made up of two columns,

then, if g is defined on w, QRoid(g(w)) is also made up of two columns.
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2) are columns in o}, and w is

Suppose w € o}, is such that w = w(Dw(?), where w(!), w!
not a quasi-ribbon word. Then, as consequence of the previous statements, if g is defined
on w, g(w) is also not a quasi-ribbon word and there are columns u!), 4(?) in of¥, such that
g(w) = uMu?, Thus, since w is the left-hand side of a rewriting rule in ", if g is defined
on w, then g(w) is also the left-hand side of a rewriting rule in J".

Recall that, for any u,v € o}, we have that u =, v if and only if they appear in the
same position in isomorphic connected components of the quasi-crystal graph. Thus, for
any word u € g, u and C(QR(u)) appear in the same position in isomorphic connected
components of the quasi-crystal graph, therefore, if g is defined on w, then g is defined on

C(QR(w)), hence g(C(QR(w))) = C(QR(g(w))). In conclusion, if g is defined on w, then
(g(w),g(C(QR(w)))) is a defining relation in J'.
Thus, the presentation (s, | 7’) for hypo,, is uniform with respect to the quasi-crystal

structure. O

Once again, recall that, for any u,v € o}, we have that u =y, v if and only if they
appear in the same position in isomorphic connected components of the quasi-crystal
graph. Thus, for a quasi-Kashiwara operator g, g is defined on u if and only if it is defined
on v.

Therefore, if a presentation & = (d,, | R) for hypo,, is uniform with respect to the
quasi-crystal structure, then, for any path p on I'(%*) such that p = p; - -- px, where py,..., px
are edges on I'(P), if g is defined on an extremity of p;, forany j =1,...,k, then g is defined
on both extremities of p;, for all j = 1,..., k. Furthermore, the path p' =p] ---p,’{, where p}
is the edge (g(tpj),g(rpj)), forall j=1,...,k, is also a path in I'(P);

5.2 Coherent presentation for the hypoplactic monoid of

rank n and characterization of the confluence diagrams

The following Theorem is an immediate consequence of Proposition 5.1.1 and the results

presented in Section 2.4.

Theorem 5.2.1. Consider the extended presentation (s, | T | X), where T is as defined in
(5.1.1) and X is as defined in (2.4.1), that is, if, for any resolvable critical pair (e1,e;) of T,

we fix a resolution (py,p,), then
X = {(elpl,ezpz) | (e1,e,) is a critical pair of T, and (py,p,) is the corresponding resolution }
Then, (d, | T" | X) is a coherent presentation for hypo,,.

By the definition of the rules in ’, the presentation (s, | 7’) has exactly one kind of

critical pair of edges, which can be represented diagrammatically in the form:
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1)(2)14(2)21,(2)3,(3)

w( w( lw( 2w( 3w(
g/
g’

for any columns w1 w2 3 in o, such that w D+l is not a quasi-ribbon word,
for i = 1,2, and such that w(? = w1 w2223, with w?h, w22, w25 € o and w?h, w35
possibly empty.

Since (d,, | I’y is complete, such a critical pair of edges is resolved. Thus, all conflu-

ence diagrams will have the following form:

1) (21 49(2)24(2)3,(3)

w( 1w( 2w( 3w(

We shall prove that:
e Fori=1,2, QR(w(i)w(i“)) will have, at most, n + 1 columns;
. QR(w(l)w(Z)w(3)) will have, at most, 2n+ 1 columns;

* There exists a path from C(QR(w(l)w(z)lw(z)z))w(2)3w(3) to C(QR(w(l)w(z)))w(3) that

has at most n + 1 edges;

* There exists a path from w2 C(QR(w(z)zw(2)3w(3))) to w(l)C(QR(w(z)w“))) that
has at most n + 1 edges;

* There exists a path from C(QR(w(l)w(Z)))w(3) to C(QR(w(l)w(z)w(3))) that has at
most n edges;

* There exists a path from w(l)C(QR(w(z)w(3))) to C(QR(w(l)w(z)w(3))) that has at
most n edges.

Note that the length of the path from C(QR(w(l)w(z)))w(3) to C(QR(w(l)w(z)w(3))) may
be different from the length of the path from w(l)C(QR(w(2)w(3))) to C(QR(w(l)w(z)w(3))):
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For example, if we consider wl) = 65432, w?) = 54321 and w® = 4, we have
65432 54321 4 —g 21 32 43 54 654 —g 21 32 43 4 54 65
and

65432 54321 4 —g 65432 4321 54 —g 21 32 43 654 54 —g 21 32 43 454 65.

2)

Lemma 5.2.2. Let wD), w?) be columns in s, such that w'Mw'? is not a quasi-ribbon word.

Then, QR(wMw?)) will have, at most, n+ 1 columns.

Proof. Consider the application of Algorithm 4.1.2 to compute QR(wMw(?)). Since w!)

is a column, then QR(w'!)) is a quasi-ribbon tableau with a single column. Now, the
insertion of symbols from w?) into QR(w!)) can increase the number of columns by at
most one for each inserted symbol (see Algorithm 4.1.1). Since w(? is a column in o, it

has at most n symbols, and therefore QR(w(l)w(z)) has, at most, n+ 1 columns. O

2 3)

Lemma 5.2.3. Let w'),w?,w®) be columns in oA, such that wMw@ and w@wO) are not

quasi-ribbon words. Then, QR(wMw@w®) will have at most 2n+ 1 columns.

Proof. The proof follows the reasoning of the proof of the previous lemma. In this case,
each of w? and w® has at most # symbols, and therefore the insertion of the word

w w3 into QR(w)) will increase the number of columns by, at most 2n columns. [

We now present a technical lemma, which will be necessary in order to prove further

results.

Lemma 5.2.4. Let o, p and y be columns in d}, such that By is a quasi-ribbon word. Con-

sider the factorization of C(QR(aﬂ)) into maximal decreasing factors nV,...,n%). Then
n... q(k’l)C(QR(n(k)y)) is a quasi-ribbon word.

Proof. Let ay,...,ay,By,..., p1 € A, be such that a = a,---a; and B = B,--- f1.

If B; < ap, then QR(a ;) has right-most column with column reading a,,---a,p,, for
some s < p. Attending to Algorithm 4.1.2, since f; < f8,, for any 1 <i < g, the right-
most column of QR(ap) will have the form a,---a,B,---p;, for some 1 <t < g, and so
ﬂ(k) =ay- Py i

Now suppose that f, > a,. In this case f, is inserted into QR(a) by attaching g, by
its bottom-most entry. thus QR(af,) has right-most column B,. As in the other case, the
remaining symbols of g will be inserted either in the right most column above B, (if they
are greater or equal that a,) or in a column further left. Thus, the right-most column of
QR(ap) has the form B, --- B;, for some 1 <t < g, and so nk) = Bg-+ Bt

Since By is a quasi-ribbon word, every symbol in y is greater than or equal to ;.
Again by Algorithm 4.1.2, the tableau QR(1*)y) = QR(1*)) <~ y has the symbol g; as its
top-left most symbol. Therefore, (1) q(k_l)C(QR(q(k)y)) is a quasi-ribbon word. O
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A symmetrical lemma can be stated, which is proven using the symmetrical version

of the insertion algorithm, given in [5, Subsection 4.1].

Lemma 5.2.5. Let a, p and y be columns in dy, such that ap is a quasi-ribbon word. Con-
sider the factorization of C(QR(ﬁy)) into maximal decreasing factors nV,...,n%). Then
C(QR(aq(l)))q(z)---q(k) is a quasi-ribbon word.

Proposition 5.2.6. Let w be a column and B be a quasi-ribbon word in o}, such that wp is not
a quasi-ribbon word. Suppose QR(p) has r columns. There is a path, of length at most r, in
T((Qﬂn | OJ’))from wp to C(QR(wﬁ)), where for each edge of these paths the rewriting rule has

as left-hand side two of the maximal decreasing factors of the initial vertex.

Proof. Consider the factorization of f into maximal decreasing factors p(),..., ) (or
equivalently, the column readings of the columns of QR(f) from left to right).

Note that the rules in I’ are applied to pairs of columns that do not constitute a quasi-
ribbon word. Hence, if a rewriting rule is applied to wj, it must be applied to (some
factor of) the columns w and 1.

Consider the reading 7(!) of the right-most column of QR(wp!). In this way, we have
C(QR(wﬁ(l))) =1, for some word 1, € o Thus, if wp!) is not a quasi-ribbon word,
we have (wp),1;171)) € T’ and a rewriting rule can be applied to wp = wpV)--- ") and

we get

wﬁ(l) .../5(7) —q ,71;7(1)/3(2) ...ﬁ(r)_

If r = 1 or y1)g(?) is a quasi-ribbon word, then also 1,7V g(?)... (") is a quasi-ribbon
word, and the result holds.

Otherwise, 111 8(?) is not a quasi-ribbon word, and a rewriting rule can be applied to
mnMpR ... g0 Let ? be the reading of the right-most column of QR((1)(?)) and 1,
be such that C(QR(n(l)ﬁ(z))) = 11,1?). We obtain the single-step reduction

my VP g0 g iy Ppe).. g,

By Lemma 5.2.4, 17,11,1'?) is a quasi-ribbon word. If r = 2 or (2! is a quasi-ribbon
word, then also 7;17,17? ). ) is a quasi-ribbon word, and the result holds.

Suppose that 123 is not a quasi-ribbon word. A reasoning similar to the one
presented in the previous paragraph can be applied: We have C(QR(q(z)ﬁ(3))) = 11313,

with 7® a column, and

,71,72,7(2)ﬁ(3).../3(f) —q ,71,72,73,7(3)/5(4)...[5“)_

By Lemma 5.2.4, 17217317(3) is a quasi-ribbon word. Note that since 17117217(2) is a quasi-

ribbon word, then also 7717511313 is a quasi-ribbon word.
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Proceeding in this way, we will obtain a sequence of reductions as follows:

—q qlq(l)ﬁ(z).ﬁ(r)
=g g g

—g ﬂl...y]in(i)ﬁ(i+l)...ﬁ(7)

g C(QRwMw@w®)).

This process will stop if i reaches r or if 1) (i*1) is a quasi-ribbon word. As a consequence
of Lemma 5.2.4 we deduce that 1;_; 17" is a quasi-ribbon word, for k < i, and so that
11 ---1;n") is a quasi-ribbon word. Once the process stops we have quasi-ribbon words
mn ...,71.,7(1'), ﬂ(i)ﬁ(iﬂ) and /3(1'+1).../5(r)_ Thus 7, ...,71.;7(1')5(1'+1).../3(T) is a quasi-ribbon word,
which must be equal to C(QR(wﬁ)). Thus, the length of the path from wp to C(QR(w/}))
is i, which is at most r, since i <r.

O

A symmetrical proposition can be stated, which is proven using Lemma 5.2.5.

Proposition 5.2.7. Let w be a column and p be a quasi-ribbon word in d}, such that pw is not
a quasi-ribbon word. Suppose QR(p) has r columns. There is a path, of length at most r, in
F((sﬂn | g’))from pw to C(QR(ﬂw)), where for each edge of these paths the rewriting rule has
as left-hand side two of the maximal decreasing factors of the initial vertex.

The following corollary is immediate from Propositions 5.2.6 and 5.2.7

Corollary 5.2.8. Let w),w?),w®) be columns in o such that w'Mw? and w@w® are
not quasi-ribbon words and such that w® = w122 with wh w22, € o and
w1, w s possibly empty. There is a path, of length at most n+1, in F((&ﬂn | GJ’))

1. from C(QR(w(l)w(z)lw(z)Z))w(2)3w(3) to C(QR(w(l)w(z)))w(?’);
2. from w(l)w(z)l C(QR(w(Z)Zw(2)3w(3))) to w(l)C(QR(w(z)w(?’)))’

where for each edge of these paths the rewriting rule has as left-hand side two of the maximal
decreasing factors of the initial vertex.

The following proposition gives us an improvement over the boundaries established
in Propositions 5.2.6 and 5.2.7.

3)

Proposition 5.2.9. Let w'!),w®?),w®) be columns in o, such that w'Mw? and w?w® are

not quasi-ribbon words. There is a path, of length at most n, in F((dn | 97’))
1. from w(l)C(QR(w(z)w(3))) to C(QR(w(l)w(z)w(3)));
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2. from C(QR(w(l)w(2)))w(3) to C(QR(w(I)w(z)w(3))),

where for each edge of these paths the rewriting rule has as left-hand side two of the maximal
decreasing factors of the initial vertex.

Proof. We shall only present the proof of the first case, since the proof of the second case
is analogous due to Proposition 5.2.7, the symmetrical version of Proposition 5.2.6.

Let us consider the factorization of C(QR(w(z)w(3))) into maximal decreasing factors
ﬁ(l),...,ﬁ(” (or equivalently, the column readings of the columns of QR(C(QR(w(z)w(3))))
from left to right). Note that, by Lemma 5.2.2, we have r < n+ 1. Thus, by the proof
of Proposition 5.2.6, there is a path in F((Qﬂn | 97’)), of length i, for i <r <n+1, from

DC(QRww?)) to C(QR(wMww®)), of the form

DC(QR@Pw®)) = whp)... g
—g nln(l)ﬁ(z)ﬁ(r)
—qg r]l ;7217(2)5(3) ﬁ(")
—g 171172;73;7(3)ﬁ(4).../3(r)

—q ;11..7]17](1)/3(1+1).ﬁ(r)

—g ﬂl...nr_lﬁ(r_l)ﬁ(r)
-z C(QRwVw@w))

In order to obtain a contradiction, suppose that i = n + 1, that is,

(1)C(QR(w(2)w(3))) - w gl ... g
Sml C(QRwMww)).

J

Therefore, we have r = n+ 1. Hence there is at least one symbol 7 in f(1).-. ("), otherwise
we would have w?, w0 ¢ d;_,, which implies, by Lemma 5.2.2, that C(QR(w(z)w(3)))
would have at most n columns, thus r <n. Let f,,..., f; € o, be such that pIl) = Bq- B
Thus, since 7 is the greatest symbol of o}, we have g, = n.

Once again, recall that the rules in I’ are applied to pairs of columns that do not
constitute a quasi-ribbon word. Notice that, for any quasi-ribbon word u € o}, the word
unisstill a qua51 ribbon word. Therefore, if g("+1) = B4--- P1 is to be the right-hand side
of arule in J’, g must be greater than 1.

Then, since all symbols n must appear in the same row of a quasi ribbon tableau, and
B+ has at least two symbols, with B4 = n, we conclude that B ... g(*+1) has one and
only one symbol 7, which occurs in "1,

Let a("*1) = Bg-1+++P1- Notice that, since f = ... g+ is a quasi-ribbon word,

n+1)

B ... M a(n+1) is also a quasi-ribbon word. Also notice that, by definition of a1, n

does not occur in 1) ... g a("+1) thus it is a quasi-ribbon word in d;_,. Hence, by
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Lemma 5.2.2, it has at most 1 columns. But g1)-.. g("a("1) has the same number of
columns as B, which has 7+ 1 columns. Thus, we have reached a contradiction.

Hence, we conclude that i <1, hence the length of the path from w(l)C(QR(w(z)w(3)))
to C(QR(w(l)w(z)w(3))) is at most . O

Now we extend the definition of uniform presentations to extended presentations.
Consider an extended presentation (% | €) for hypo,, where & = (d, | R) is a uniform
presentation for hypo,. We say that (% | 6) is a uniform extended presentation with respect
to the quasi-crystal structure if the following conditions are verified: Let (p, g) be a pair
of paths in € such that p =p;---p, and g = q; - -- g5, where p1,...,p;,q1,...,9s are edges in
[(%). Then,

* If ¢; is defined on an extremity of pjorq, foranyj=1,...,rorl=1,...,s,then (p’,q’)
is a pair of paths in 6, where p’ = p{ ---p; is such that p]’. is the edge (é’i(zp]-), Ei(’[p]')),
forall j=1,...,r,and q’ = q; ---q; is such that q; is the edge (é’i(tql), éi(rql)), for all

I=1,...,s;

. Ifﬂ is defined on an extremity ofpj orqpforanyj=1,...,rorl=1,...,s,then (p’,q’)
is a pair of paths in €, where p” = p] -+ p; is such that p]’- is the edge (ﬁ(zpj),ﬁ(ij)),
forall j=1,...,7, and q’ = q ---q; is such that g; is the edge (ﬁ(tql),ﬁ(rql)), for all
I=1,...,s.

Lemma 5.2.10. Let a,  be columns in d}, such that

1. 1.2 2 1. plp2. . p2
a=ap-ayap-capand p=p-- By By,

where a;,...,a%,ai,...a%,ﬁ},...,ﬁ%,ﬁf,...ﬁf e o}, are such that r = 0 in B2, k =0 in a,l and

B < a,%. Then, the following words are not quasi-ribbon words:
. “i"'“%C(QR(“f”'a%ﬁ));
* C(QR(ap}---B}))B? - BT
* aj--a{C(QR(ag--aipl-B}))p} - B}

Proof. We will only prove that a,l ---a%C(QR(a% e a12/3)) is not a quasi-ribbon word. The
proof of the other cases is analogous.

Suppose the bottom-most element of the left-most column of QR(a,% ---a?p) is greater
than or equal to aj. Therefore, we have that a,l -~ and the left-most column of
QR(ai---af/g’) do not form a column. In this case, since f{ < a,f, by the insertion al-
gorithm, the top-most element of the left-most column of QR(a} ---a{p) is less than a;,
thus a,l ~--a%C(QR(a,§ . a%/ﬂ)) is not a quasi-ribbon word.

Suppose the bottom-most element of the left-most column of QR(a,f-nalzﬁ) is less
than a]. Then, ali .-~} and the left-most column of QR(a]% ---a?p) form a column. Again,

since B < a]f, by the insertion algorithm, the top-most element of the second column
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of QR(a]fmafﬁ) is less than ai, thus a]} ~~a%C(QR(a,§~-a%ﬁ)) is not a quasi-ribbon
word. O

Proposition 5.2.11. The coherent presentation for hypo,, (d, | I’ | X), given in Theo-
rem 5.2.1 where for X the resolution paths are as described in Proposition 5.2.9, is a uniform

extended presentation with respect to the quasi-crystal structure.

Proof. Note that the underlying monoid presentation of (d,, | F’ | X) is the presentation
(d,, | T’) for hypo,,, which we have proven to be a uniform presentation with respect to
the quasi-crystal structure in Proposition 5.1.2.

For all critical pairs (eq,e;) of 7, fix a resolution (py,p,) as described in Proposi-
tion 5.2.9. Recall that

X = {(elpl,ezpz) | (e1,e) is a critical pair of T, and (p1,p;) is the correspondent resolution }

Recall that the critical pairs of I’ are of the form

((wu)w(znw(2>2w<2>3w<3>, C(QR(wu)w<2>1w<2>2))w<2)3w(3>),
(w<1>w<z>1w<z>zw<2>3w<s> L whw®ic(Q R(w(z)zw(z)aw(?’))))),

1) 5,(2) ,,(3) 3)

where w1, w(?) w3 are columns in d;, such that w2 and w?w® are not quasi-ribbon

words and such that w? = w1w22w@s, with w?h, w2, w?s e o*, and w?h,w?)s

possibly empty. The underlying rewriting rules of the critical pairs are
(wu)w(z)lw(z)z , C(QR(w<1>w<znw<2>z))) and (w<2>2w<2>3w<3> , C(QR(W(z)zw(zhw(?’)))).

Let g be a a quasi-Kashiwara operator. First, we need to prove that, if ¢ is defined on
wM @B then

((g(wu)w(znw(2>2w<2>3w<3>), g(C(QR(wu)w(znw<2>2))w<2)3w<3))),
(g(wu)w(z)] w<2>zw<2>3w<3>), g(wu)w(z)l c(Q R(w<2>zw<2>3w<3>))))] ,

is also a critical pair of I,

We need to further consider three possible cases:

o g(wWw@1p@2y2:30) = ¢(w el )22 (Dagy(3);
o g(wDw@hy@29(2)7)3)) = (DN g(1(2)2)7y(Ds4y(3);
o g(wDw@hy@29(2)37)3)) = p(D217)(2)2 (1D (3)),
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In the first case, we have, by the definition of the quasi-Kashiwara operators, that
g(wMwp2g)@s)B3)) = (1 Mgp(gy22)7)Ds)B3) = g(1p(Mgp(D1)g(2024)(2)34(3))
thus g(wMw(?11(2)2) is defined. Then, since (sd,, | T’} is a uniform presentation for hypo,,

with respect to the quasi-crystal structure and (w(l)w(2)1 wl (QR( (2 w(z)Z))) isa

defining relation in I, (g(w(l)w(Z)l w2 ) ( (QR( (2 w(z)z)))) is not only defined,

but is also a defining relation in J”’. Thus,
(g(w<1)w(2>1w(2>2w<2> 30 ) ( (QR(w M w(2>2))w<2)3w(3))) -
_ ( g(wmw(z)l )w<2>zw<2>3w<3> , g(c(Q R(wu)w(z)lw<2>z)))w<2>3w<3>)
and
(g(wu)wmlw(2>2w<2>3w<3>), g(wu)w(znC(QR(w(z>zw<2>3w<3>)))) _

- (g(wmw(z)l )w<2>zw<2>3w<3> , g(wmw(zn )C(QR(w(z)zw(Z)sw(z’))))'

Note that g(wMw?1) = g(wM)yw?r or g(wMw?1) = wlg(wh). Since the quasi-
Kashiwara operators maintain the shape of columns (see Proposition 4.3.2), we have
that g(w (1)) (or g(w®h), whichever is defined ) is still a column. Note that, if we factorize

(QR( 374/(3’))) into column words of maximal length, the last one must be different

2)2.,(2)3,,,(3) 2);

from w(®), otherw1se, w2233 would be a quasi-ribbon word (Notice that w(?2w(

is also a column). Thus,

g(c(QR(w“)w(Z)lw<2)2)))w<2>3w<3> ig(wu ) (QRw2w?w)),

therefore,
((g(wu)w(zn )w<z>zw<2>3w<3> , g(C(QR(wu)w(z)lwu)z )))wu)awm),
(g(wu)w(zn )w<2>2w<2>3w<3> , g(wmwun )C(QR(w(Z)zw(z)sw(3))))]'

is a critical pair of J.
The third case is analogous to the first, so we will now look at the second case. We
have , by the definition of the quasi-Kashiwara operators, that

= g(w w22y 20s(3) —
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thus g(wWwhw?2) and g(w?2w?3w3)) are defined. Then, since (s, | Ty is a uniform
presentation for hypo, with respect to the quasi-crystal structure and both

(wu)w(znw C(QR@w Ml w<2)z))) and (w<2>zw<2>3w<3>, c(Q R(wu)zw(z)aw(s))))

are defining relations in I,
(g(wu)wu)lw(z)z), g(c(QR(wu)wu)lw(z)z)))) and

), cfasuen)

are not only defined, but are also defining relations in J”’. Thus,

(g(w<1>w<2>1w<2>2w<2>3 (3 ),g( (QR@Mw1 (2 ))w(2)3w(3)))=
- (w<1>w<2>1 g(w(2)2 )w<2>3w( ( (QRwMw?: w<2)2)))w<2>3w<3>)
and

(g(w(l)w(z)lw(2)2 w(2)3w(3)) , g(w(l)w(2)1 C(QR(w(Z)zw(2)3W(3))))) =

_ (wu)w(z)l g(w<2>z)w<2>3w<3> My ( (QR@Phul? >3w<3>))))_

By the same reasoning as before, we have that g(w(?2) is a column. Note that, if we
factorize C(QR(w(z)Zw(2)3w(3))) into column words of maximal length, the last one must
be different from w® and its length must be different from |w'3)|. Thus, since the quasi-
Kashiwara operators preserve the shape of quasi-ribbon tableaux, we have that the length
of the last column of g(C(QR(w(2)2w(2)3w(3)))) is different from the lenght of w3, hence
they are different, thus

g(c(Q R(wu)w(z)lw<2>z)))w<z>3w<3> 2wy g(C(Q R(w(Z)zw(z)aw(?’)))),

thus

((wmw(zn g(w(2)2 )w(2)3w(3) , g(C(QR(wu)w(z)lwu)z )))wu)aw(a)),

(w(l)w(z)lg(w(z)z )w(2)3w(3) ) w(l)w(Z)lg(C(QR(w(2)2 w(2)3w(3)))))].

is a critical pair of .
It remains to show that for each pair of paths as described in Proposition 5.2.9, when-
ever a quasi-crystal operator can be applied to the initial vertex (and hence to all vertices

on the paths), the pair of paths that results of applying the operator to all the vertices
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and to the edges, is still a pair of paths in X. For any edge e on a path as described in
Proposition 5.2.9, the rewriting rule has as left-hand side two of the maximal decreasing
factors of the initial vertex. Since (s, | ') is uniform, for any such edge, the edge ¢’
resulting of applying a quasi-crystal operator (if possible) is also in T'((sd,, | T'}).

Now, we want to prove that in the edge e’ the underlying rewriting rule also has as
left-hand side two of the maximal decreasing factors of the initial vertex. One problem
that might arise is that, by coincidence, the right-hand side of the rule is the same whether
the rule has this property or not. We will prove, by contradiction, that this situation does
not occur.

Note that the quasi-crystal operators preserve the property of being a quasi-ribbon
word. Let a, p be columns in d}, such that af is the left-hand side of the underlying
rewriting rule in e. Consequently, C(QR(aﬁ)) is the right-hand side of the underly-
ing rewriting rule in e. Suppose a = a,l -~-a%a£---a% and g = B}---Bi B2+ p?, where
ap,..,ai,af,...al,pl,..., Bl B2,...p} € o}, are such that r = 0 in 2, k # 0 in a; and

B < a]%. Notice that g(C(QR(aﬁ))) is also a quasi-ribbon word and that g(C(QR(aﬁ))) =
c(or(gtap)))

Note that, by definition of the quasi-Kashiwara operators, if g is defined on a word
U = uy--uy,, then g(u) = uy---u;_1g(u;)u;yq - u,,, for a certain i € {1,...,m}. Suppose
that, in the edge ¢’, the underlying rewriting rule does not have as left-hand side two of
the maximal decreasing factors of the initial vertex. Then, C(QR(g(aﬁ))) has one of the

following forms, whichever is defined:
» glaj-+-a})C(QR(a} - aip));
. a,l---a}C(QR(g(a§-~-af/5)));
+ C(Qr(gtap}--p]))pz B3
» C(QR(ap}--B1))s(B? - B})
* glay-—ai)C(QR(af --afp}-B}))B? - Bf;
 af--alC[QR(g(a - a?pl-p])) |52 - B

- aj--afC(QR(af--aipl - B))g(B? - B)-

By Lemma 5.2.10, none of these words are quasi-ribbon words. Thus, we have reached
a contradiction, since C (QR( g(ap ))) is a quasi-ribbon word.

Hence, we deduce that in the edge ¢’ the underlying rewriting rule also has as left-
hand side two of the maximal decreasing factors of the initial vertex. Therefore, the pair
of paths resulting of applying a quasi-crystal operator is also a pair of paths in X.

Thus, (4, | T’ | L) is a uniform extended presentation with respect to the quasi-crystal

structure. O
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As a final consideration, note that the previous proposition allows us to construct,
from a confluence diagram G of (d,, | T’ | X) (where for X the resolution paths are as
described in Proposition 5.2.9), all confluence diagrams with initial vertices in the same
quasi-crystal component in I'(hypo, ) as the initial vertex of G. Thus, by Proposition 4.3.3,
since every quasi-crystal component in I'(hypo,,) has a unique highest-weight word, we
only need to consider those confluence diagrams of (s1,, | 7’ | ) whose vertices are highest-
weight words, in the sense that I is the set of all pairs of paths associated with the highest-

weight confluence diagrams and all other diagrams obtained from them by applying the
quasi-Kashiwara operators.
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