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Abstract

Using a remarkable matched employer-employee dataset, this thesis investigates how wage

dispersion evolved in Portugal and whose components contributed more to this variation,

highlighting the impact of peer effects in both individual wages and wage inequality. A re-

gression model with high dimensional fixed effects is used. The results show that, contrary

to the case of Germany, wage dispersion in Portugal has decreased over the last decade.

Person effects are the main contributors, with its contribution rising over time, contrasting

with the declining role of firm effects. The role of peer effects in wage dispersion ranges

between 4.2% and 6.6%, with a one standard deviation increase impacting on individual

wages with that same magnitude.

Keywords: Wage Dispersion, Peer Effect, High Dimensional Fixed Effects, Variance Decomposition

1 Introduction

Firm heterogeneity has been found to play an important role in explaining wage dispersion.

Consequently, shedding light on how one important intrinsic characteristic of firms, the quality

of their workforce, is pertinent departing, at the same time, from the usual attribution of variation

to different wage posting and/or wage bargaining policies. Indeed, Battisti (2013) found that

the quality of the co-workers of an individual worker contributes to wage dispersion while,

simultaneously, reducing the contribution of the firm component.

On the other hand, as stressed in Cornelissen, Dustmann, and Schönberg (2013), the existence

of peer effects may lead firm productivity to outstrip the aggregation of individual workers’
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productivities by virtue of an improved performance of a worker after his interaction with a

more productive co-worker. Hence, this consists on a reason for the existence of firms. If peer

effects are negligible, this reason will not be in force. Therefore, and in accordance with Bloom

et al. (2015), people could be more productive when working from home than when they work

in a physical establishment, interacting with their peers.

This thesis intends to unravel the extent to which peer effects are relevant in the Portuguese labor

market and whether they influence wage dispersion, the latter inserted in the broader picture of

figuring out which components contribute more to wage inequality. It aims to provide new

insights on wage inequality in Portugal, since most of the research done up to this point only

covers the period until the end of the XX century.

The remaining sections of this paper are organized in the following way: section 2 consists on

an overview of the literature related with this study; section 3 gives a brief synopsis of past

research on wage dispersion in Portugal; sections 4 and 5 lay out the empirical methodology of

the research and the characteristics of the data, respectively; section 6 provides the key findings

on the role of peer effects and its impact on inequality, while section 7 concludes.

2 Literature Review

Wage inequality has received consideration due to its increase in many countries. Previous

studies have identified demand-side (technological change and alterations in the trade pattern

resulting from amore integrated world economy) and supply-side (increase in the relative supply

of high-education workers) explanations, along with labour market institutional changes (the re-

duction of union density or the evolution of minimumwage legislation) as possible explanations

for this trend, as stressed in Dunne et al. (2000) and Faggio, Salvanes, and Reenen (2007).

Card, Heining, and Kline (2013) address the observable increase of wage inequality in West

Germany through a different approach. They decompose wage variation into a worker-specific

and an employer-specific components. The rationale behind this is the existence of firm specific

wage premiums, in which equally skilled workers receive higher wages in some firms. To put

it differently, there is a distinction between the rising variation originated from individuals’
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portable skills and the one from firms’ pay premiums that impact wage inequality. They find

that the exacerbation of wage inequality was driven by an increasing dispersion of the worker-

specific component of pay, along with the employer-specific component and an increase of their

covariance, indicating an increment of positive assortative matching.

The pervasiveness of firm specific wage premiums in the labour market leads to an unmistakable

relevance of the study of its impact on wage differentials, notably concentrating on the effect

of employer characteristics on wages. Groshen (1991) reported their importance using US data

for intra-industry wage differentials whereas Card, Cardoso, and Kline (2016) demonstrate their

importance for the gender wage gap using Portuguese data. Rent-sharing, strategic wage posting

behaviour, efficiency wage premiums and compensating differentials are explanations given to

the existence of firm specific wage premiums. Card et al. (2016) look at the firm switching

literature (which propounds that gains or losses in wages due to workers changing firms can be

anticipated) and reconciled it with rent-sharing estimates obtained through the study of how firm

productivity impacts workers’ wages. Hence, it is possible to connect rent-sharing elasticities

with wage inequality. As a matter of fact, if we observe either increasing differences on produc-

tivity or rising differences in the share of rents that employees obtain at diverse workplaces, then

we are able to explain part of the increase in wage inequality. Alternatively, one could focus on

models of imperfect competition of the labour market, taking into account the market power of

firms arising from the different valuations that workers’ exhibit of job amenities. Under those

circumstances, search frictions are not necessary for firms to have some monopsony power in

setting wages. Furthermore, Van Reenen (1996) studies quasi-rents’ sharing arisen from break-

through innovations, where he finds that although technological change increases average firm

wages, it does not seem to influence the shape of the wage structure. Notwithstanding this result,

it does not exclude the possibility of technological diffusion having an effect on wage inequal-

ity, through, for instance, the increase of demand for high skilled workers to face the spread

of new technologies, as predicted by the skill-biased technical change argument in Davis and

Haltiwanger (1991).

In this framework, Battisti (2013) found, for the region of Veneto in Italy, that the inclusion of

spillover effects of the characteristics of co-workers on a variance decomposition of the wage
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of an individual leads to a decline on the part of wage variation explained by firm effects. Ac-

cordingly, the composition of a firm’s workforce seems to be a prominent component of the

effect that firms’ characteristics have on wages. On that account, it is pertinent to determine

the extent to which employees’ quality drives firm heterogeneity. This reasoning derives from

the possible existence of technological spillovers, which refer to the productivity-enhancing ex-

change of knowledge accruing from interactions among employees. The conceivable increment

of spillovers is of concern to the enlargement of wage inequality, as it could result in increasing

productivity differences among firms. As a matter of fact, Cornelissen, Dustmann, and Schön-

berg (2013) stress that the existence of peer effects may give rise to a larger long-term inequality

if high skilled workers gather in the same peer groups.

Although peer effects are originally considered in an education setting, evidence on their exis-

tence at the workplace began with studies on specific occupations, which take the form of real

data on a single firm or occupation (for example, Mas and Moretti (2009) focus on the existing

peer effect in a supermarket chain, providing evidence on the prevalence of peer pressure) or of a

laboratory experiment. In light of the need to determine whether extrapolation of these findings

to the labor market as a whole is possible, Cornelissen, Dustmann, and Schönberg (2013) focus

on this issue while considering the impact peer effects have on wages instead of on productivity.

The authors identify “peer pressure” as one way through which the productivity of one worker is

enhanced by another, since falling short of what a peer has achieved may trigger a larger effort

from the part of the worker. On the other hand, there may exist “knowledge spillovers” whereby

communication among workers leads to the development or improvement of skills that would

not occur otherwise.1 These factors entail that workers have a higher productivity when their

co-workers’ productivity is high.

In contrast to these arguments, Mas andMoretti (2009) enunciate the case where co-workersmay

engage in free-riding if the output of each worker is not completely observable, which turns out

to be burdensome if the employer wants to reward high effort. Moreover, as suggested in Kremer

(1993), if different workers have a different amount of human capital, a “skills incompatibility”
1An example, for the Portuguese case, is Martins and Jin (2010) that develop a learning model in which an
individual worker learns from the schooling of his co-workers. On the other hand, Lindquist, Sauermann,
and Zenou (2015) provide evidence that there are strategic complementarities (knowledge spillovers) between
trained workers and non-trained co-workers in a call center of a mobile network operator.
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problem may arise, implying that firms with a uniform labor force in terms of human capital

will have a higher productivity.

Setting his sights on determining how the quality of a worker’s peers impact his wage, Battisti

(2013) identifies, besides the presence of peer pressure, the existence of complementarities in the

production function of each individual to be one of the reasons why the degree of skills of a co-

worker matter for his wage, since the marginal productivity of each person will depend on peer

quality. Furthermore, the wage of a worker may be influenced by his reservation wage, which, in

turn, might depend on the groups of co-workers. To put it differently, an individual may accept

a lower wage when he has the opportunity to work alongside a peer group that he prefers. This

is a compensating differential rationale, entailing a wage reduction since an amenity – working

with preferred co-workers – exists. It is not possible to disentangle whether, in this context, the

spillover effect is positive or negative. Lastly, bargaining externalities are a factor to consider in

this setting. In case bargaining outcomes are positively correlated in a workplace, the extraction

of higher shares of surplus by high quality individuals will bring about an increase in wages

of peers. Therefore, having high skilled peers will increment a worker’s wage. However, if

wages are a fixed share of revenues and some groups comprise a larger bargaining power than

the remaining, this effect may be negative.

In this thesis I will explore the role of firm specific characteristics on wage inequality, with a

particular focus on peer effects in the Portuguese labour market. Previous studies have reported

that firms play a role in wage determination, albeit the paramount role of worker characteristics.

The primordial objective is to investigate the substantiality of firm’s heterogeneity in explaining

wage inequality. Additionally, this study will be focusing on productivity as a contributor to

firms’ wage premiums, relating it with peer effects. There has been a renewed interest in the

literature for the impact of co-workers’ characteristics in the context of the labour market. On

the other hand, to my knowledge, there isn’t a straightforward association of peer effects and

wage inequality using Portuguese data, in spite of their likely repercussion on productivity. The

availability of a remarkable employer-employee dataset enables the observation of the popu-

lation of firms and workers in the manufacturing and services private sector, empowering our

estimates and allowing us to examine time variations in the composition of firms and workers.
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3 Wage Inequality in Portugal

Most existing studies on wage inequality in Portugal concern the late 80’s and early 90’s. In

Cardoso (1997), Cardoso (1998) and Cardoso (1999), wage inequality in Portugal is the topic

under study. Having as a benchmark the period between 1983 and 1992, it is observed that

inequality in the labour market verified an upward trend. This growth was mainly due to an

increasingly stretched upper half of the wage distribution. The share of inequality originating

from worker characteristics was found to increase, mainly due to a sharp increment of returns

to schooling in high-paying firms. Furthermore, rising inequality was found to be generated by

changes in the employment structure, through the rise in the demand for more qualified workers

taking place within industries. Nevertheless, firms seemed to be valuing less labour market

experience and age, as progression mechanisms based on seniority diminished from 1983 to

1992. Modernization of the economy is usually appointed as the driving force stimulating the

upgrade of the quality of employees, which is accompanied by the observed increase in the

returns to education. On balance, inequality in the aforementioned period derives from high

wages being very high when compared to the remaining distribution. The Portuguese wage

distribution was, therefore, characterized by a compressed bottom and a stretched top. The fact

that education returns are higher for highly paid jobs, impacting positively on wage dispersion,

is also verified in Machado and Mata (2001).2 These authors find tenure to have more influence

at lower paid jobs, larger firms to pay more to all workers and that firms with foreign capital

increase wages more to those in higher paid jobs.

In Cardoso (2004), the Portuguese case is contrasted with the one of the UK: while in the latter

wage inequality verified an uninterrupted positive trend, in the former there seems to be a turning

point as inequality is found to be decreasing in the period 1994-1999. There is a relatively small

body of literature that analyses a more recent period.

Provided that wage dispersion has not been extensively studied for the Portuguese case, it is

relevant to disentangle the contribution that worker, firm and peer components have been having

2They verify that the tendency sharpens between 1982 and 1994. Hence, the rising returns to education coincide
with an increase in workers’ average level of schooling, which entails that there has simultaneously been a shift
in the demand for more skilled workers, whichmay reflect technological improvements. This is also highlighted
in Pereira and Martins (2000), along with the finding that dispersion is heightened with the level of education.
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in shaping it, while simultaneously comparing the results to what has been witnessed in other

countries.

4 Empirical Framework

4.1 Baseline wage regression and inclusion of spillovers

The methodological approach used in this study rests on the econometric framework developed

by Card, Heining, and Kline (2013), which intents on unravelling the extent to which individual-

specific or firm-specific characteristics impact on wage dispersion. Under those circumstances,

we are going to rely on the following equation, which is designated as the AKMmodel, specified

in Abowd, Kramarz, and Margolis (1994):

yit = αi + θJ(i,t) + x
′
itβ + ϵit , (1)

where y
it
is the logarithm of the real hourly wage for worker i at year t; x′

it consists on a vector

of observed time-varying characteristics of workers along with a set of year dummies;3 αi is a

time-invariant worker fixed effect, meaning it encompasses worker-specific characteristics that

are rewarded equally by firms; θJ(i,t) is a time-invariant establishment fixed effect, consisting

on the proportional pay premium given by firm j to all workers; and ϵit is the disturbance term

of the regression, which follows the conventional assumptions (zero mean, strict exogeneity).

An objective of this study is to investigate how the wage structure has changed over the course

of the years. With this intention, intervals of seven years will be considered. In each of these

intervals separate linear models will be fitted, as done in Card, Heining, and Kline (2013). This

procedure entails the usage of high-dimensional fixed effects, whereby estimation by the usual

OLS formula is hindered, since the dimension of the matrices for the fixed effects render it un-

feasible to use the formerly specified formula. Acknowledging this limitation, we resort to an

3In our case, it includes the following observed time varying characteristics of employees: age, age squared,
tenure and tenure squared.
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algorithm developed by Guimarães and Portugal (2010) to circumvent the problem.4 Conse-

quently, we are able to solveminα,θ,β

∑
i

∑
t

[
yit − αi − θJ(i,t) − x

′
itβ

]2. One point that should
not be overlooked concerns the identification of the worker and firm fixed effects. Thereupon,

identification is achieved by considering the largest connected set of observations. In other

words, firms are linked by worker mobility, so that as workers move from firm to firm, we are

able to disentangle the fixed effect of that firm, enabling us to further determine the worker fixed

effect because, after knowing and accounting for the one correspondent to the firm, the remain-

ing differences in pay would result from worker-specific characteristics. Henceforth, there is

the widespread need of relying on a connected set to have identifiable employer and employee

fixed effects.5

On the other hand, departing from the research in which our base model hinges on, we will focus

on the contribution of co-workers’ characteristics towards the wage of an individual. Accord-

ingly, we resort to Arcidiacono et al. (2012) by constructing a spillover effect consisting on the

linear combination of individual fixed effects. Hence, the model to be estimated is:

yit = αi + θJ(i,t) + x
′
itβ + γα−i + ϵit, (2)

where α−i = 1
Nijt∼i

∑
k∈Nijt∼i

αk is the mean of the person fixed effects of the co-workers of

worker i (is gauged without including worker i) and γ is its coefficient (the impact that the peer

effect has on the logarithm of an individual i’s real hourly wage).6 In this setting, the co-workers

of worker i are all workers that, in a given year, are in the same firm as i.7 There is the need to

4This consists on an iterative gradient algorithm. In the context of Y = A1α + A2θ + Bβ + ϵ, we obtain the

following matrix:

 α = (A
′

1A1)
−1A

′

1(Y −A2θ −Bβ)

θ = (A
′

2A2)
−1A

′

2(Y −A1α−Bβ)

β = (B
′
B)−1B

′
(Y −A1α−A2θ)

.
We are able to solve it by alternating between the estimation of β and α and θ , without having to worry about

the dimensionality of A1and A2, avoiding inversion of large matrixes by estimating β first and then adding the
fixed effect components as additional covariates. The estimation procedure converges, attributing the value of 1
to the coefficients ofA1α andA2θ. Therefore, the estimation is done on a first stage by giving starting values for
α′s and θ′s and, conditional on them, estimating the coefficients of the explanatory variables; subsequently, we
take the former values as given and re-estimate α′s and θ′s; this process goes on until convergence is achieved.
This is possible by virtue of the decline of the sum of squared errors in each step, enabling the minimization of
the least squares problem independently of the starting values given.

5The stata command group3hd was used for this purpose.
6k is a co-worker of i
7In this study, we consider the case defined as “static” by Arcidiacono et al. (2012), which propounds ability of a
worker to be fixed over time, being an individual’s wage, in our case, a function of its person fixed effect along
with the mean of the person fixed effects of the co-workers of its peer group.
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outline that this variable will be identified even in regressions that include a worker fixed effect

because the aforementioned variable takes different values across the time span in study due to

changes in the composition of the group of co-workers over time.

The main assumption underlying this procedure is proportionality which states that, as defined

in Arcidiacono et al. (2012), the relative role that each of the components of the characteristics

of an individual has on directly impacting an individual’s wage is the same in the case of the peer

effect.8 Analogously, a prerequisite that the residuals of any two observations are not correlated

exists, so that identification is possible, enabling the obtainment of a consistent estimate of γ.

Accordingly, unobservables varying over time that influence changes in the composition of the

peer group of a worker can’t exist if, concurrently, those unobservables also impact on that

worker’s wage, which calls for the assumption that E
[
ϵit|αi, θJ(i,t), x

′
it, α−i

]
= 0.

Bearing in mind these assumptions, we are able to solve:

minα,θ,β,α−i

∑
i

∑
t

[
yit − αi − θJ(i,t) − x

′
itβ − γα−i

]2, by applying an algorithm similar to the

formerly described in the case without acknowledgement of spillovers, where we can estimate

individual and peer group fixed effects at the same time.9 In fact, workers within a firm usually

have similar wages by virtue of having similar characteristics and working on the same environ-

ment, resulting in an overestimation of the peer effect. Hence, this spillover shall be computed

by changes in the composition of the peer group, implying that we need panel data. In essence,

variations in the quality of the peer group due to co-workers joining and leaving the firm is ex-

ploited, along with changes in the quality of the peer group of a worker deriving from the fact

that he moved to another firmwhich has a different workforce. The possibility that the exclusion

of co-workers’ attributes due to their unobservability might underestimate the repercussions the

peer effect has on individual wages is circumvented by the usage of the average of the fixed

effects of the co-workers.

In the context of equation (2), some problems need to be surmounted. Among them is the

reflection problem which, as stressed by Manski (1993), Sacerdote (2001) and Angrist (2014),

derives from the mutual impact that an individual and his peer have on each other, hampering the
8Under these conditions, Theorem 1 of Arcidiacono et al. (2012) can be used, so that consistency and asymptotic
normality of γ̂ can be derived.

9 The spillover effect is identifiable if peer groups comprise variations in size.
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disentanglement of the effect that a peer has on the outcome of a worker. This is circumvented

by considering the average fixed effect of the co-workers instead of their wages or effort. In

addition, alertness regarding the incidental parameters problem (in which biased estimates of

γ stem from the estimation of individual unobserved heterogeneity when we have a non-linear

panel data model) should be present. Nevertheless, due to the aforementioned assumptions

imposed by Arcidiacono et al. (2012), fixed effects estimators will not be inconsistent in this

setting, as the necessary mechanisms to consistently estimate γ are present.

Furthermore, endogenous sorting needs to be accounted for. In light of this necessity, Cornelis-

sen, Dustmann, and Schönberg (2013) outline that the inclusion of worker fixed effects enables

the accountability of any prevailing sorting of high ability individuals into highly skilled peer

groups. Furthermore, the addition of firm fixed effects allows any sorting of high ability em-

ployees into high-wage firms to be taken into consideration. Hence, a spurious correlation be-

tween a worker’s wage and the peer quality of the group he his inserted in is avoided. Lastly,

the incorporation of year dummies in the model facilitates the acknowledgement of the chance

that employers attract high ability workers while simultaneously increasing wages, considering

shocks idiosyncratic to a firm.

All things considered, one could envisage that the peer group in this study, by including all

workers in the firm, is rather large, as usually workers interactionswith all their co-workers differ

in size. Notwithstanding, Cornelissen, Dustmann, and Schönberg (2013) show that including

irrelevant workers, by virtue of little interaction happening between them, is not a source of bias

of γ if individuals randomly choose with whom they interact, whereas not including relevant

peers is found to cause a downward bias in γ̂.

Determining whether the measure of the peer effect implemented in this study is the most ade-

quate could be an interesting addition by future research, through, for instance, the attribution

of different weights to individuals that are more alike the specific worker and those who aren’t

or by giving a larger weight to workers in the same occupation who likely interact more with

each other. Furthermore, the prospect that high skilled co-workers may impact wages more than

lower quality peers, having a dissimilar impact on wage dispersion, could also be investigated.

As an illustration, (Cornelissen, Dustmann, and Schönberg 2013) divide each group in the top
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10%, middle 80% and bottom 10% workers. This possibility, alongside testing the chance that

improvements in group quality may influence the wage of an individual in a different manner

than a reduction, are further developments that can be carried out.

Another potential complication is the requirement that wages are flexible to a certain extent,

reacting to variations in the quality of the peer group, lest γ is not able to be properly identified.

Specifically, firms should pay differently to workers that have dissimilar individual productiv-

ities even if their observable characteristics are the same. Failing to have this characteristic in

the data would render it impossible to unravel any spillover effect on wages. Nonetheless, one

of the advantages of considering the peer group to comprise all the co-workers is the increased

likelihood of having wage flexibility, whereas focusing only on peers with the same occupation

could be troublesome in this sense.10

Finally, the conclusions will be augmented by considering the same specification but allowing

for the existence of time varying firm effects, meaning that there is a separate firm effect for each

year it appears in the data. Lengermann (2002) pinpoints themain advantage of this specification

which is the overpowering of the issue of omitted variables (the possible covariance between

the peer effect and time varying firm effects isn’t a problem in this situation).

4.2 Variance Decomposition

As stated above, this study’s main objective is to discern what is the impact that each of the

components defined above have on wage dispersion. In pursuance of this, the time period en-

compassed by the dataset used (between 1986 and 2013) is divided into seven-year intervals

where separate models as defined in (2) are fit. Subsequently, the estimates of the parameters

of interest are comparable, enabling us to decompose any changes in the structure of wages in

the following way:

V ar(yit) = V ar(αi)+V ar(θJ(i,t))+V ar(x
′
itβ)+γ2V ar(α−i)+2Cov(αi, θJ(i,t))+2Cov(αi, x

′
itβ)+

2γCov(αi, α−i)+2Cov(θJ(i,t), x
′
itβ)+2γCov(θJ(i,t), α−i)+2γCov(x

′
itβ, α−i)+V ar(ϵit) , (3)

10As mentioned in Dickens et al. (2007), Portugal is known for having downward nominal wage rigidity. In this
sense, the later period of our data (ranging from 2007 to 2013) may be characterized by lower wage flexibility
since inflation in this period has been low, which, along with nominal wage rigidities, does not allow large
variations of real wages.
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Alternatively, one could consider the following decomposition:

V ar(yit) = Cov(yit, yit) = Cov(yit, αi + θJ(i,t) + βx
′
it + γα−i + ϵit) = Cov(yit, αi) +

Cov(yit, θJ(i,t)) + Cov(yit, x
′
itβ) + γCov(yit, α−i) + Cov(yit, ϵit)

We can normalize the latter expression by dividing both sides by V ar(yit):

Cov(yit,αi)
V ar(yit)

+
Cov(yit,θJ(i,t))

V ar(yit)
+ Cov(yit,x

′
itβ)

V ar(yit)
+ γCov(yit,α−i)

V ar(yit)
+ Cov(yit,ϵit)

V ar(yit)
= 1, (4)

In the latter decomposition, we are able to disentangle the share of importance that each com-

ponent has on the variance of real wages.

One shortcoming pinpointed by Card, Heining, and Kline (2013) is the potential existence of

sampling errors in the estimated worker and firm fixed effects, giving rise to upward biases

on V ar(αi) and V ar(θJ(i,t)). In the same way, a downward bias in Cov(αi, θJ(i,t)) is likely to

materialize because of the formerly noticed sampling errors. In addition, due to the diminished

mobility of workers among firms in the division into intervals (since in each period less worker

movements are considered), the results obtained in each interval may have an additional source

of bias in these variables, as mentioned in Andrews et al. (2012). Despite these pitfalls, the

approach follows the one in this literature, overlooking them under the hypothesis that the biases

are analogous in all intervals considered, not translating into unfeasible comparisons.

4.3 Inclusion of a measure of productivity

Card et al. (2016) posit that firms have quite different values in measured productivity which

may spillover to the wages of workers. Concomitantly, it is relevant to look at how a measure

of productivity influences wage dispersion and how it will impact the share of inequality that is

explained by the firm effect.

Hence, our measure of productivity will be the following:

p = ln(Sales
nw

)− ln(cpi), (5)

where nw is the number of workers in the firm and cpi is the consumer price index.
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This measure, which is basically a sales per worker measure, has inherent problems in measur-

ing productivity deriving from not measuring labor quality, as identified in Card et al. (2016).

Nevertheless, the inclusion of a measure of the quality of the workforce through the average of

the fixed effects of the peers of a worker will lead these shortcomings to be attenuated. This

measure has, however, an extra complication when compared to value added per worker arising

from the proportion of intermediate inputs and services that are not produced by the firm but

purchased, implying that this is not a perfect measure of productivity, which should be taken

into account when interpreting the results.

Therefore, the model in this case is represented by the following equation:

yit = αi + θJ(i,t) + x
′
itβ + γα−i + λp+ ϵit, (6)

where λ is the the impact that sales per worker has on the logarithm of an individual i’s real

hourly wage.

5 Data Description

In this study, the dataset resorted to was Quadros de Pessoal (Personnel Records), which is a

matched employer-employee-job title dataset, annually recorded by the Portuguese Ministry of

Employment through a mandatory survey covering firms that have at least one wage earner. The

mentioned dataset encompasses observations of every wage earner in the period between 1986-

2013 (with the exception of 1990 and 2001), excluding employees of the Public Administration

and household servants.

Quadros de Pessoal comprises extensive information on employees’ features (for instance, age,

education, gender, work schedule, earnings, occupation and tenure) and firm’s characteristics

(such as size, sales, economic activity and location). In the furtherance of knowing more about

this dataset, see Cardoso, Guimarães, and Portugal (2012).

Furthermore, the aforementioned dataset evades some problems usually associated with panel

data such as panel attrition or measurement errors due to not only the compulsory character
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of the survey, but also because the provision of the information is done by the employer (the

reporting tends to be more inaccurate when given by the worker). Likewise, the need to obey

the requirements of being displayed in a public space at the firm and of its quality being verified

frequently by the Ministry of Employment leads to an improved truthfulness of the data.

Lastly, being a longitudinal dataset, by construction, enables employees to be tracked over the

years, along with matching them to the firm they are at, since each worker is identified through

a code based on their social security number, whilst each firm is also given a unique identifying

number.

In this study, the restrictions imposed on the dataset were the inclusion of only full time workers,

with ages comprised between 18 and 64 that had tenure inferior to 50 years. Additionally, wages

needed to be higher than 80% of the minimum wage. Individuals working in agriculture or

fishery industries were not included. Lastly, all firms included in the model have at least two

workers and the observations included belong to the largest connected set, as defined in the

previous section.

The time span of the dataset was divided in the following four periods of seven years: 1986-

1993; 1993-1999; 1999-2006 and 2007-2013. These comprise the following number of obser-

vations: 7560726, 9576699, 11332464 and 12160252, respectively . The additional restriction

of eliminating the observations that had a higher value than the 99 percentile of the measure

of productivity and a lower value than the 1 percentile of the mentioned variable was made in

the estimation of equation (6), in order to account for the existing outliers in this variable. This

constraint reduces the number of observations for each period to 6860216, 8672027, 10159088

and 11337389, respectively.

6 Empirical Results

The evolution of wage dispersion in Portugal is represented in Figure 1. The graph shows the

standard deviation of the logarithm of wages and the gap between the 80th and 20th percentiles,

the 80th and 50th percentiles and the 50th and 20th percentiles of this variable. The trends in

all measures are identical. While in the late 80’s and 90’s it is possible to observe an increase in
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dispersion, being the early 90’s the period where a larger growth rate of the standard deviation

was verified, whereas from the 00’s onwards the variation was negligible or even negative.11

In fact, most years in the beginning of that period registered a small increase contrasting with

the timespan of 2006 to 2011 where only 2009 saw an increase in the standard deviation of the

logarithm of real hourly wages.12Hence, this picture diverges markedly from the one observed

in Card, Heining, and Kline (2013), where these measures grow throughout the whole period.

Furthermore, while in the former the higher growth rates were observed until the early 1990’s,

in the latter these increased from the mid-90’s onwards.

Figure 1: Measures of Wage Dispersion
This figure includes the standard deviation of the logarithm of real hourly wages along with the gaps between the 80th and 50th percentiles,
the 80th and 20th percentiles and the 50th and 20th percentiles, which are normalized since these variables consist on the differences in

percentiles divided by the corresponding gaps of a normally distributed variable.

With this is mind, the estimation of equations (1) and (2) was performed and the corresponding

variance decomposition is presented in Table 1.

First of all, it is possible to confirm the recent decline in wage dispersion noticed in the graphical

analysis, with the variance of wages reaching a level in the last interval close to the one in the

initial interval. In the case without the peer effect, it can be seen that worker time-invariant

characteristics account for a large extent of the variance of wages, between 53% and 76% (in

fact, it is increasing over time). Heterogeneity of firms contributes between 31% and 17% (it is

11The exceptions are the years of 1995, 1996 and 1997, with the latter registering a quite pronounced decline (the
standard deviation declined 3.30% when compared to 1996).

12The highest decline in our sample was verified in 2008: the standard deviation of the logarithm of real hourly
wages declined 5.21% when compared to 2007.
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Model of Equation (1) Model of Equation (2)

Interval 1 Interval 2 Interval 3 Interval 4 Interval 1 Interval 2 Interval 3 Interval 4

(1986-1993) (1993-1999) (1999-2006) (2007-2013) (1986-1993) (1993-1999) (1999-2006) (2007-2013)

Var(yit) 0.306 0.346 0.340 0.311 0.306 0.346 0.340 0.311

Cov (yit, αi) 53.16% 62.60% 66.08% 76.06% 45.55% 49.54% 59.89% 68.49%

γCov (yit, α−i) 6.56% 5.09% 4.22% 5.34%

Cov (yit, θJ(i,t)) 30.63% 23.80% 24.14% 16.72% 31.22% 31.11% 25.38% 17.79%

Cov (yit, x
′
itβ) 7.31% 5.02% 2.73% 2.59% 7.90% 5.78% 3.51% 3.80%

Cov (yit, ϵit) 8.90% 8.58% 7.04% 4.63% 8.77% 8.48% 6.99% 4.59%

σ2(αi) 45.16% 55.46% 59.05% 69.67% 37.86% 42.88% 52.64% 61.07%

γ2σ2(α−i) 1.41% 0.91% 0.54% 0.74%

σ2(θJ(i,t)) 22.11% 17.11% 17.59% 11.25% 24.72% 26.41% 20.63% 14.59%

σ2(x
′
itβ) 5.17% 3.13% 1.58% 0.98% 5.58% 3.62% 2.12% 2.14%

2Cov(αi, θJ(i,t)) 14.37% 11.94% 12.43% 10.24% 7.07% 5.26% 7.06% 4.57%

2γCov (αi, α−i) 7.09% 6.43% 5.85% 8.14%

2γCov (θJ(i,t), α−i) 2.83% 1.68% 1.38% 0.84%

γ 0.364 0.259 0.171 0.171

R2 0.911 0.914 0.930 0.954 0.912 0.915 0.930 0.954

Sample Size 7560726 9576699 11332464 12160252 7560726 9576699 11332464 12160252

Table 1: Variance Decomposition of Equations (1) and (2)

Equation (1) corresponds to the specification without the peer effect whereas equation (2) includes that effect. This table presents the two
alternative variance decompositions proposed in equations (3) and (4). It also includes, in the context of the model of equation (2), the

estimated effect that the quality of peers has on a worker’s wage (γ).

decreasing over time). Taking into account the decomposition of equation (3), it is noticeable

that the person effects become more variable over time while the firm effects and the covariate

index (x′
itβ) turn out to be less variable. Moreover, the role of the covariance between person

and firm effects has also a smaller role, ranging between 10% and 14%. Therefore, sorting of

high skilled workers into high wage firms (positive assortative matching) contributes to wage

dispersion. These results diverge from the ones presented by Card, Heining, and Kline (2013),

which is intuitive since their case is contrary to ours as inequality is increasing in Germany.

Secondly, if the case with peers is considered, gauging the impact of the quality of peers on

individual wages is possible: on average, a one standard deviation increase in the average of the

person effects of a worker’s peers (peer quality) results in an increase of hourly wages by 6.57%,

5.61%, 4.28% and 4.80% in intervals 1, 2, 3 and 4, respectively.13 Looking at the variance

decomposition, the contribution of the peer effect to wage dispersion ranges between 4.2% and

13This result is obtained by multiplying gamma with the standard deviation of the peer effect which takes the
following values from interval 1 to interval 4: 0.181, 0.217, 0.251 and 0.281 (see Table 3 in the appendix)
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6.6%. Even though this effect was declining between 1986 and 2006, it increased again in

the latest period. This observation may be twofold: there has been a decline in the number of

occupations where peer pressure and knowledge spillovers are mainly present and/or the rise

in qualifications people have when entering the labor market leads them no longer to acquire

that much knowledge from more experienced co-workers. Analogous to the conclusion in the

situationwithout the peer effect, person effects have the highest contribution, which is increasing

over time, while firm effects are also relevant but their contribution has been declining (this may

be the outcome of the rising representativeness of the minimum wage, that has been comprising

more and more workers and/or of collective bargaining). One interesting conclusion is that the

inclusion of the peer effect decreases the proportion of the wage variation that is explained by

the person effects and slightly increases the ones of the firm effect and the covariate index.14

In addition, accounting for the variance decomposition of equation (3), the same conclusions

hold for the variation of person effects and firm effects. Firstly, the increase in the variation of

the person effects over time may have been caused by the entrance in the labor market of high

skilled workers (with a higher person effect) concomitant with the permanence of less skilled

workers, which increases the dispersion of person effects. On the other hand, the decrease in

firm effects may arise due to smaller profits, which decreases the shared rents in firms that did

so. Moreover, the recent crisis may have led to a reduction of labor costs through a decline

in flexible wage components whose outcome would also be a decline in the variation of this

variable. On the other hand, firm effects are most of the times attributed to the existence of

market failures which are a source of labor market power.15 With the recent economic crisis,

less workers were available to move to another job because of the prominent need of job security

observed in those times. Consequently, immobility of workers increased, leading firms that did

not have or had little monopsony power to acquire it. This may have resulted in a lesser role in

wage dispersion by firm effects because the existing differences of market power amongst firms

were reduced.

14This goes against what was found for a region of Italy by Battisti (2013), where the contribution of the firm
effects declines significantly with the inclusion of the peer effect.

15Félix and Portugal (2016) identify the existence of search frictions (due to, for instance, imperfect information
on available jobs that would constitute an alternative), moving and learning costs, among others, as examples
of labor market failures.
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The variation of the peer effect has a small contribution to wage dispersion (between 0.5% and

1.4%). Matching between high skilled workers and highwage firms is also relevant, even though

in a smaller proportion than before (ranges between 4.6% and 7%). An additional impact is the

one of high skilled individuals sorting themselves into high quality peer groups, contributing

between 5.8% and 8% to wage inequality. This effect increased in the latest period, after a

continuous decline. The covariance between high wage firms and high quality peers contributes

between 0.8% and 2.8% to wage dispersion.

Comparing these outcomes with the ones on the full sample (see Table 4 in the appendix), person

effects are still the factor contributing more to wage dispersion, but in a smaller value than

in any of the periods, whilst only the first interval has a higher contribution of firm effects

than the correspondent value in the full model. Hence, splitting into periods is giving more

weight to person effects in detriment of firm effects. The contribution of the variation of person

effects is also smaller in the full model, while firm effects have a similar weight in both cases.

Positive assortative matching has a higher contribution in the full model (18%) than in any

interval.16 Relatively to the inclusion of the peer effect, a one standard deviation increase in

peer quality results in a wage increase of 3.91%, on average, ceteris paribus, which is somewhat

lower than what was noticed in the decomposition into periods. Battisti (2013) found this effect

to be of 7.81% for Veneto, Italy and Lengermann (2002) suggests this effect takes the value of

approximately 3% for the state of Illinois, United States of America. In Cornelissen, Dustmann,

and Schönberg (2013), small peer effects were also found for Germany. The authors advance

that this outcome likely derives from the prominent presence of occupations whereworkers don’t

observe the performance of their peers (which leads to a low peer pressure) and/or the lack of

high skilled and knowledge intensive jobs (which are the ones where knowledge spillovers are

more impactful). Relatively to the contribution of person effects to wage dispersion in this case,

it is only lower than the correspondent in the full model (49.21%) in the first period, whereas

for firm effects it is larger in the first two periods. In the full model, the contribution of the

peer effect is smaller in value than in any of the periods17. In the division into intervals, the

16As shown in Andrews et al. (2012), the estimation obtained for assortative matching in the division into intervals
may be downward biased due to less mobility of workers among firms.

17The contribution of the person effect variation is lower in the full model, with the exception of the first period;
the contribution of the variation of the peer effect is negligible in the full model.
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importance of positive assortative matching is much lower than in the full model, sorting of high

skilled workers into high quality peer groups has a much higher contribution to wage dispersion

and the covariance between high wage firms and high skilled peers is similar in both cases, only

with the latest interval presenting a smaller value.

6.1 Alternative specifications

When firm effects are time-varying (have firm-year fixed effects), the contribution of person

effects to the variance of wages suffers a slight decline in all intervals except in the last one

which observes a larger decrease, which is observable in Table 2.

Specification 1 Specification 2

Interval 1 Interval 2 Interval 3 Interval 4 Interval 1 Interval 2 Interval 3 Interval 4

(1986-1993) (1993-1999) (1999-2006) (2007-2013) (1986-1993) (1993-1999) (1999-2006) (2007-2013)

Var(yit) 0.306 0.346 0.340 0.311 0.298 0.337 0.331 0.302

Cov (yit, αi) 44.60% 48.07% 55.18% 57.47% 45.88% 49.96% 59.58% 68.33%

γCov (yit, α−i) 11.39% 7.66% 6.99% 7.43% 6.89% 5.27% 4.27% 5.87%

Cov (yit, θJ(i,t)) 23.58% 27.52% 26.23% 27.08% 29.49% 30.50% 25.41% 16.91%

Cov (p, yit) 1.16% 0.06% 0.26% 0.41%

Cov (yit, x
′
itβ) 12.99% 9.62% 5.73% 4.73% 7.89% 5.75% 3.51% 3.86%

Cov (yit, ϵit) 7.47% 7.13% 5.87% 3.29% 8.69% 8.45% 6.97% 4.62%

σ2(αi) 44.13% 45.02% 49.56% 50.73% 38.70% 43.86% 53.04% 61.36%

γ2σ2(α−i) 6.25% 2.68% 2.00% 2.10% 1.63% 1.00% 0.58% 0.93%

σ2(θJ(i,t)) 29.07% 27.09% 23.99% 24.74% 24.25% 26.85% 21.66% 15.02%

λ2σ2(p) 0.08% 0.00% 0.00% 0.01%

σ2(x
′
itβ) 11.53% 7.89% 4.19% 2.73% 5.57% 3.61% 2.10% 2.16%

2Cov(αi, θJ(i,t)) -10.17% -2.58% 1.61% 2.09% 4.64% 3.56% 5.13% 2.16%

2γCov (αi, α−i) 15.80% 10.47% 9.08% 9.52% 7.75% 6.91% 6.04% 9.07%

2λCov (αi, p) 0.77% 0.05% 0.27% 0.48%

2γCov (θJ(i,t), α−i) -6.95% -1.17% 0.62% 0.80% 2.15% 1.35% 1.16% 0.51%

2λγCov (p, α−i) 0.27% 0.01% 0.04% 0.09%

2λCov (θJ(i,t), p) 0.44% 0.05% 0.18% 0.21%

λ 0.015 0.001 0.003 0.005

γ 0.683 0.452 0.387 0.382 0.384 0.266 0.178 0.192

R2 0.925 0.929 0.941 0.967 0.913 0.916 0.930 0.954

Sample Size 7560726 9576699 11332464 12160252 6860216 8672027 10159088 11337389

Table 2: Alternative specifications of Equation (2)

Specification 1 corresponds to equation (2) but including time-varying firm effects whereas specification 2 corresponds to equation (3), which
differs from equation (2) due to the inclusion of a measure of productivity.

Firm effects are smaller in the first two periods, increasing in the remaining (especially so in the
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latest intervals). The contribution of the covariate index is larger in all periods, as is the peer

effect. The effect that a one standard deviation increase in the quality of the co-workers has on

wages is an increase of 13.84%, 9.63%, 8.25% and 8.09%, respectively, being much larger than

in the original case. This seems to struck a discordant note when compared with the opposite

finding in (Lengermann 2002). Actually, this result implies that firms that choose to increase the

quality of workforce are, at the same time, decreasing the wage premium paid to their workers. A

possible explanation for this is the increase in the supply of high skilled workers associated with

a decrease in wages (when is not matched by a demand increase), effect that is further enhanced

in the latest period due to a decline in labor demand caused by the economic crisis. In fact, if we

look at the mean of the peer effect (which measures the average quality of the workforce), from

the third to the fourth period there has been an increase of approximately 32% of the mean value

of this variable (refer to Table 3 in the appendix). Concerning the contribution of the variation

of each component, person effects are less variable, as well as firm effects. In this setting,

the contribution of the variation of the peer effect is larger than in the original setting (ranging

between 2% and 6%), in the first two periods negative assortative matching is observed and the

contribution of the covariance between the quality of the peer group and firm heterogeneity is

also negative. A major difference in this case is the large contribution of sorting of workers into

high skilled peer groups (ranging between 9.1% and 15.8%). Contrasting these conclusions with

the full model (Table 4 in the appendix), person effects have a lower contribution, as does the

peer effect. In the full model, the contribution of the firm effect goes to zero. Therefore, in this

specification for the full model, the contribution of firm effects is “given” to the other two effects,

which is not as observable in the division into time intervals18. The full model entails negative

assortative matching, much higher than in any interval, contrasting with the large contribution of

sorting of high skilled workers into high quality peers which is much larger than in any period. A

more relevant outcome is the increase of wages by 13.21% due to an increase of a one standard

deviation in the peer effect.

In including a measure of productivity, by estimating equation (6), an increase of a standard

18In the case of the contribution of the variation of person, peer and firm effects: they are much higher in the
full model (the same happens with the covariate index); in the first period it is higher than in the full model,
being much smaller in the remaining intervals; the full model shows a much lower effect than in any period;
respectively.
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deviation in the peer effect impacts wages slightly more than in the original case (6.97%, 5.82%,

4.38% and 5.30%, respectively). Considering the variance decompositions analysed, the results

are identical to the original model with the difference that the positive assortative matching is

lower. The contribution of productivity, its variation and the covariance between it and person

effects, peer effect and firm effects are rather muted. When comparing this formulation to the

full model specification, the same deductions of the comparison made in the context of equation

(2) hold. These conclusions likely result from the fact that the firm effect already absorbs any

impact productivity would have on wages.

7 Conclusion

The main purpose of this study was to investigate whether the quality of the group of co-workers

of an individual had an impact in the dispersion of inequality, observing how this contribution

would vary over time, along with other more common sources of variation like person and firm

characteristics. Additionally, it set out to verify if alternative specifications such as enabling firm

effects to vary over time and including productivity would change any of the aforementioned

effects. As found in previous empirical research, peer spillovers have a small, but relevant,

positive effect on the logarithm of real hourly wages. In this case, the contribution it has for

wage dispersion ranges from 4.3% to 6.6%, being slightly lower (approximately 4%) for the

full model. Nevertheless, if firm-year fixed effects are introduced, the values obtained are much

higher.

Decomposingwage dispersion into person, peers and firm components, person effects contribute

the most for wage dispersion, increasing its role in the course of time (from 45.6% to 68.5%),

while firm effects are also relevant but with a declining contribution (from 31.2% to 17.8%).

Although peer effects have a smaller contribution, they should not be dismissed, especially be-

cause its contribution increased in the latest period, after a smooth decline. Two other factors

impacting wage inequality besides the variation in person and firm effects are the covariance be-

tween these two effects or, putting it differently, sorting of high skilled workers into high wage

firms (contribute between 4.6% and 7%) and sorting of high skilled workers into high quality
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peer groups (the covariance between the person and peer effects contributes between 5.9% and

8% to wage dispersion). The mentioned effects do not suffer alterations when accounting for

different firm productivity levels, which likely results from the retention by the firm effect of any

impact this variable might have. However, when considering time-varying firm fixed effects,

the variation of person and firm effects present a more reduced contribution to the variance of

wages, being the contribution of the variation of the peer effect larger than in the original setting.

On balance, this thesis can be added to the recent literature on peer effects in the workplace,

particularly to their impact on wages and its dispersion. It contributes to the study of wage

dispersion in Portugal by complementing the existing knowledge of the period until the mid-

1990’s and extending it for more recent years.

8 Bibliography

Abowd, John M., Francis Kramarz, and David N. Margolis. 1999. “High Wage Workers and
High Wage Firms.” Econometrica 67 (2): 251–333.

Andrews, M. J., L. Gill, T. Schank, and R. Upward. 2012. “High Wage Workers Match with
High Wage Firms: Clear Evidence of the Effects of Limited Mobility Bias.” Economics Letters
117: 824–27.

Angrist, Joshua D. 2014. “The Perils of Peer Effects.” Labour Economics 30: 98–108.

Arcidiacono, Peter, Gigi Foster, Natalie Goodpaster, and Josh Kinsler. 2012. “Estimating
Spillovers Using Panel Data, with an Application to the Classroom.” Quantitative Economics
3: 421–70.

Battisti, Michele. 2013. “High Wage Workers and High Wage Peers.” Ifo Working Paper. Vol.
168.

Bloom, Nicholas, James Liang, John Roberts, and Zhichun Jenny Ying. 2015. “Does Working
from Home Work? Evidence from a Chinese Experiment.” Quarterly Journal of Economics
130 (1): 165–218.

Card, David, Ana Rute Cardoso, and Patrick Kline. 2016. “Bargaining, Sorting, and the Gender
WageGap: Quantifying the Impact of Firms on the Relative Pay ofWomem.” Quarterly Journal
of Economics 131 (2): 633–86.

Card, David, Jörg Heining, and Patrick Kline. 2013. “Workplace Heterogeneity and the Rise of
West German Wage Inequality.” Quarterly Journal of Economics 128 (3): 967–1015.

22



Card, David, Patrick Kline, Jörg Heining, and Patrick Kline. 2016. “Firms and Labor Market
Inequality: Evidence and Some Theory.” IZA Discussion Paper 9850.

Cardoso, Ana Rute. 1997. “Workers or Employers: Who Is Shaping Wage Inequality?” Oxford
Bulletin of Economics and Statistics 59 (4): 523–44.

———. 1998. “Earnings Inequality in Portugal: High and Rising?” Review of Income and
Wealth 44 (3): 325–43.

———. 1999. “Firms’ Wage Policies and the Rise in Labor Market Inequality: The Case of
Portugal.” Industrial & Labor Relations Review 53 (1): 87–102.

———. 2004. “Wage Mobility: Do Institutions Make a Difference? A Replication Study
Comparing Portugal and the UK.” IZA Discussion Paper 1086.

Cardoso, Ana Rute, Paulo Guimarães, and Pedro Portugal. 2012. “Everything You Always
Wanted to Know about Sex Discrimination.” IZA Discussion Paper, no. 7109.

Cornelissen, Thomas, Christian Dustmann, and Uta Schönberg. 2013. “Peer Effects in the
Workplace.” IZA Discussion Paper, no. 7617.

Davis, Steve J, and John Haltiwanger. 1991. “Wage Dispersion between and within U.S. Man-
ufacturing Plants, 1963-86.” Brookings Papers on Economic Activity 1991 (1991): 115–200.

Dickens, William T, Lorenz Goette, Erica L Groshen, Steinar Holden, Julian Messina, Mark E
Schweitzer, Jarkko Turunen, andMelanie EWard. 2007. “HowWages Change: Micro Evidence
from the InternationalWage Flexibility Project.” Journal of Economic Perspectives 21 (2): 195–
214.

Dunne, Timothy, Lucia Foster, John Haltiwanger, and Kenneth Troske. 2000. “Wage and Pro-
ductivity Dispersion in U.S. Manufacturing: The Role of Computer Investment.” NBER Work-
ing Paper 7465.

Faggio, Giulia, Kjell Salvanes, and John Van Reenen. 2007. “The Evolution of Inequality in
Productivity and Wages: Panel Data Evidence.” NBER Working Paper 13351.

Félix, Sónia, and Pedro Portugal. 2016. “Labor Market Imperfections and the Firm’s Wage
Setting Policy.” IZA Discussion Paper 10241.

Groshen, Erica L. 1991. “Sources of Intra-IndustryWageDispersion: HowMuchDo Employers
Matter?” Quarterly Journal of Economics 106 (3): 869–84.

Guimarães, Paulo, and Pedro Portugal. 2010. “A Simple Feasible Procedure to Fit Models with
High-Dimensional Fixed Effects.” Stata Journal 10 (4): 628–49.

Kremer, Michael. 1993. “The O-Ring Theory of Economic Development.” Quarterly Journal
of Economics 108 (3): 551–75.

Lengermann, Paul A. 2002. “Is It Who You Are Where You Work or with Whom You Work?
Reassessing the Relationship between Skill Segregation andWage Inequality.” LEHDTechnical
Paper 10.

23



Lindquist, Matthew J, Jan Sauermann, and Yves Zenou. 2015. “Network Effects on Worker
Productivity.” CEPR Discussion Paper 10928.

Machado, José A. F., and José Mata. 2001. “Earning Functions in Portugal 1982-1994: Evi-
dence from Quantile Regressions.” Empirical Economics 26: 115–34.

Martins, Pedro S., and Jim Y. Jin. 2010. “Firm-Level Social Returns to Education.” Journal of
Population Economics 23 (2): 539–58.

Mas, Alexandre, and Enrico Moretti. 2009. “Peers at Work.” American Economic Review 99
(1): 112–45.

Pereira, Pedro T., and Pedro S. Martins. 2000. “Does Education Reduce Wage Inequality?
Quantile Regressions Evidence from Fifteen European Countries.” IZA Discussion Paper, no.
120.

Sacerdote, Bruce. 2001. “Peer Effects with RandomAssignment: Results for Dartmouth Room-
mates.” The Quarterly Journal of Economics 116 (2): 681–704.

Van Reenen, John. 1996. “The Creation and Capture of Rents: Wages and Innovation in a Panel
of U.K. Companies.” Quarterly Journal of Economics 111 (1): 195–226.

Appendix

yit αi α−i θJ(i,t) x
′
itβ ϵit

Interval 1 (1986-1993)

mean 0.157 -4.33E-12 -1.01E-12 -1.47E-10 0.157 -2.89E-12

st deviation 0.553 0.340 0.181 0.275 0.131 0.164

Interval 2 (1993-1999)

mean 0.332 -3.33E-12 -2.18E-12 5.86E-11 0.332 -2.90E-12

st deviation 0.588 0.385 0.217 0.302 0.112 0.171

Interval 3 (1999-2006)

mean 0.463 -3.11E-12 1.30E-12 -2.06E-10 0.463 1.56E-13

st deviation 0.583 0.423 0.251 0.265 0.085 0.154

Interval 4 (2007-2013)

mean 0.467 -3.37E-12 1.71E-12 2.04E-11 0.467 6.80E-13

st deviation 0.557 0.436 0.281 0.213 0.082 0.119

Interval 4 - Interval 3

mean 1% 8% 32% -110% 1% 336%

st deviation -4% 3% 12% -20% -4% -23%

Table 3: Descriptive Statistics

Concerns the variables included in the estimation of Equation (2)
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Full Model

(1) (2) (3) (4)

Var(yit) 0.340 0.340 0.340 0.331

Cov (yit, αi) 51.08% 49.21% 62.72% 49.13%

γCov (yit, α−i) 3.75% 13.11% 3.91%

Cov (yit, θJ(i,t)) 27.49% 25.42% 0.89% 24.16%

Cov (p, yit) 1.09%

Cov (yit, x
′
itβ) 9.38% 10.15% 12.24% 10.22%

Cov (yit, ϵit) 12.04% 11.48% 11.19% 11.50%

σ(αi) 41.02% 39.09% 64.21% 39.29%

σ(α−i) 0.45% 5.13% 0.50%

σ(θJ(i,t)) 17.61% 16.42% 9.08% 15.64%

σ(p) 0.07%

σ(x
′
itβ) 7.63% 8.10% 17.37% 8.02%

Cov(αi, θJ(i,t)) 18.20% 14.06% -11.49% 12.40%

Cov (αi, α−i) 3.92% 20.56% 4.11%

Cov (αi, p) 0.89%

Cov (θJ(i,t), α−i) 2.38% -5.50% 2.27%

Cov (p, α−i) 0.15%

Cov (θJ(i,t), p) 0.78%

λ 0.013

γ 0.217 0.479 0.228

R2 0.885 0.885 0.887 0.885

Sample Size 37873532 37873532 37873532 34534575

Table 4: Variance Decomposition in the Full Model

Model (1) corresponds to the specification of equation (1), model (2) to the one of equation (2), model (3) to
the case with time-varying firm effects and model (4) to the specification that includes a measure of productivity.
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