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The determinants of teacher effectiveness in Portuguese schools 

 

Abstract 

This work project analyses the impact of teachers on student exam scores and the determinants 

of teacher effectiveness in Portuguese schools. The main findings are that teachers are an 

important component of student achievement and that unobservable characteristics explain 

most differences in teacher quality. Having a master’s degree has no impact on teacher quality. 

Unlike their female counterparts male teachers exhibit losses in their teaching effectiveness 

over the years. We also find positive and significant peer effects between teachers. 
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I. Introduction 

It is well established among researchers, the educational community, and policy makers, that 

teachers are a fundamental element in the student’s learning process. But how can we measure 

this impact? How relevant is it for a student to have a better or worse teacher? And what exactly 

makes a good teacher? Can we use observable characteristics to identify good teachers? The 

answer to such questions involves a two-step approach: first is it necessary to obtain a measure 

of teacher quality, then analyse what determines it. In the first step, researchers often resort to 

Teacher Value Added estimation techniques. Unfortunately such research is highly dependent 

on extensive datasets that are seldom available outside the US and UK. It is relevant to conduct 

such an analysis in different educational contexts. Therefore we employ data from the 

Portuguese public school system to investigate the impact that teacher quality has on Portuguese 

Language and Mathematics national exam scores, our measures of student achievement, and 

access the impact that different teacher observable characteristics have on teacher value added. 

We do this by estimating the teacher value added for two-year periods corresponding to the 5th 

and 6th grades.  

We find that teachers are indeed a relevant determinant of student achievement with up to 13% 

percent of the variation in student test scores in the Portuguese Language exam being 

determined by Portuguese Language teachers and up to 16% of the variation in Mathematics 

test scores being explained by Mathematics teachers. Teacher value added also shows a relevant 

degree of variability, with a 1 S.D. improvement in our measure of teacher quality leading to 

an increase of 3.94 points out of 100 in 6th grade exam scores for Portuguese Language and 6.9 

points for Mathematics over the two year period a teacher follows a student. This correspond 

to impacts equivalent to 0.246 SD in the exam score distribution for Portuguese Language and 
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0.31 SD for Mathematics.1 Noticing that most studies are performed with yearly exams (instead 

of exams every two years like we do) our results are comparable with other estimates in the 

literature.  Aaronson et al. (2007) find that a 1SD increase in teacher quality has an impact of 

0.15 SD in Mathematics yearly test scores using data from grades 3 to 11. Rockoff (2004) finds 

an impact of 0.1 SD in both English and Mathematics yearly test scores from grades 2 to 6. 

More recently, Chetty, Friedman, and Rockoff (2014) find an impact of 0.14 SD for 

Mathematics and 0.1 SD for English using grades 3 to 8.  

We then use teacher observable characteristics to test if they are able to predict our measure of 

teacher quality. Using traditional specifications to access the determinants of teacher 

effectiveness we find that at most 1.2% of teacher quality can be explained by variables such 

as experience, gender and training. This has relevant policy implications. In particular, in the 

Portuguese case, teachers are allocated to public schools according to a national ranking based 

on teacher observable characteristics, with more experience and higher graduation grades 

giving priority in the allocation process. There is no compelling evidence on the literature 

(Gordon, Kane and Staiger (2006), Hanushek, Kain, O'Brien and Rivkin (2005)) of the 

relationship of such variables with educational outcomes nor that allocating teachers according 

to them improves student achievement, a result confirmed here.  

However, we show that, unlike what is pointed by most literature, experience is indeed relevant 

after the first years of teaching but not in a positive manner. Once we make the distinction 

between male and female teachers, we find that male teachers experience a negative and 

statistically significant decrease in quality after 17 years of teaching. This suggests that 

experience is most likely capturing human capital depreciation associated with aging, that is 

not significant for female teachers.  

                                                           
1 The standard deviations in the 6th grade exam score distributions are 16.125 for Portuguese and 22.1057 for 

Mathematics 
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In order to fully employ the measure of teacher quality obtained, we then extend this analysis 

to investigate to which degree teacher peer effects are relevant for an individual teacher 

effectiveness. We also investigate to which extent having a differentiated ability to teach 

different kinds of students affects teacher performance as well as if there are gains/losses in 

teaching in a school where a teacher differentiated teaching ability matches the one of his/her 

colleagues.  

In Section II we revise the literature on the determinants of teacher effectiveness and 

measurement of teacher value added, in Section III a description of the Portuguese Educational 

system is presented, in Section IV we describe the data used, in Section V we expose our 

empirical strategy both at the level of the estimation of teacher value added and its determinants 

and in Section VI we analyse the results obtained. Finally, in Section VII we conclude.  

II. Literature Review 

The idea that education is conjointly produced by community, families, schools, and students 

in an input-output relationship can be traced back to the “Coleman Report” (Coleman, (1968)), 

which emphasized the importance of student peer effects and family’s socioeconomic 

background as being the major determinants of educational output. These relations would be 

latter on explored by economists under the concept of educational production function 

(Hanushek (1979)) and research expanded the focus to several other educational inputs such as 

schools and teachers.  

Although there is a wide consensus around the educational community and literature that 

teachers are a decisive educational input (Hanushek, (2011), Hanushek, Kain, O'Brien, and 

Rivkin, (2005), Aaronson, Barrow and Sander (2007), Rockoff (2004)) 2, there is not consensus 

                                                           
2 Hanushek, Kain, O'Brien, and Rivkin (2005) find that a one SD increase in teacher quality raises student test 

scores by 0.22 SD in math;  Rockoff (2004) an impact of 0.1 SD in both reading and math; Aaronson, Barrow and 

Sander (2007) an impact of 0.13 grade equivalents in math scores. Hanushek, (2011), finds significative economic 

impacts from studying with higher quality teachers. 
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among scholars on what exactly are the characteristics of an effective teacher. In a 

comprehensive review Hanushek (2003) identifies a split in the literature with 41% of the 

studies finding experience to be significantly related with teacher performance. Authors such 

as Rockoff (2004), find that having more than 10 years of experience brings positive gains in 

teacher effectiveness3 while Staiger and Rockoff (2010), Hanushek, Kain, O'Brien and Rivkin 

(2005), find that experience is only relevant in the first years of teaching.  A common result 

found by authors such as Hanushek and Rivkin (2006, 2004), as well as Gordon, Kane and 

Staiger (2006), is that the level of certification is not relevant, a result that we also find for 

Portuguese schools. Overall this points to the notion that teachers do matter, but the 

characteristics of an effective teacher are mainly unobservable. 

The disentanglement of the effects of the inputs of the education production function is not an 

easy task, and the impact of teachers is no exception. Such estimation is complicated mainly 

due to a problem of non-randomness and limited data– as it is so common in Economics of 

Education. Indeed if teachers were simply randomly assigned to each student - with enough 

observations per teacher – the determination of most effective teachers could be obtained 

simply by looking at average student’s test results at the end of every schoolyear (Harris, 

(2009)). However this is not the case. Family’s housing and schooling decisions are based on 

household’s preferences and endowment (Tiebout (1956)).  There is considerable evidence that 

families react and enrol their children in schools that they perceive as being better, for instance 

using school rankings based on average scores in national exams (Nunes, Reis and Seabra 

(2015), Portugal). Also, there is evidence that there is student sorting within schools, at least in 

the USA, with least qualified teachers being assigned to underperforming students, and in 

teacher allocation between schools with more qualified and experienced teachers preferring to 

                                                           
3 Specifically the author finds that reading and test scores differ on 0.17 SD on average between beginning 

teachers and teachers with more than 10 years of experience.  
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move to schools with higher achieving student populations (Clotfelter, Ladd, and Vigdor 

(2006), Greenberg and McCall, (1974), Hanushek, Kain, and Rivkin (2004)). 

However even if educational inputs are determined by schools and families choices this 

nonrandomness could be easily overcome with enough data on all the inputs affecting the 

educational production function over time, including student’s individual ability (Todd and 

Wolpin, (2003)), which unfortunately are hard to obtain. 

In order to deal with this difficulties researchers usually employ Teacher-Value Added (TVA) 

models and a growing body of literature has been expanding under their use. Although different 

specifications can be used, TVA models have the common features of explaining current 

student achievement as a function of lagged student achievement measures and 

contemporaneous school and family inputs (including socioeconomic variables). Assuming that 

education is a cumulative process the lagged student achievement measures should capture 

previous educational inputs. The choice of the specification used depends mainly on the kind 

of data the researcher has at its disposal (Todd and Wolpin, (2003)). 

There isn’t however consensus over the applicability of such models with authors such as 

Gordon, Kane, and Staiger (2006) and Hanushek (2009) advocating not only for their feasibility 

but that teacher selection using TVA models can significantly increase student achievement. In 

contrast, Corcoran (2010) and Baker et al. (2010) advocate that teacher value added is an 

inadequate approximation to teacher quality. 

In order to access whether TVA models provide unbiased measures of teacher impact on student 

test scores Kane and Staiger (2008) conducted an experimental evaluation using data generated  

in Los Angeles Unified School District where teacher effects were estimated in a pre-

experimental period (with non-random assignment between students and teachers) and with 

random assignment.  The authors were able to conclude that the usual teacher-value added 

models are unbiased and relatively accurate predictors of the causal impact of a teacher on 
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student performance in the short-term finding also significant decay in the impact of a teacher 

over the years.4  

Chetty, Friedman, and Rockoff (2014) use tax records, teacher turnover events across schools 

and classes, and purposely omitted parent characteristics to access the unbiasedness of TVA 

estimates. They find not only that TVA estimates are unbiased predictors of a teacher’s impact 

on student achievement but also that students have positive long-term benefits for being 

assigned to high Value-Added teachers, such as higher college attendance rates and salaries. 

These results favour the use of TVA models.  

In an influential study, Rothstein (2008) develops a falsification method based on the idea that 

current TVA measures cannot “affect” past student scores. Using administrative data on public 

schools in North Carolina the author shows that this “effect” occurs from 5th grade teachers to 

learning in 4th grade – which obviously has no causal relationship - and concludes that 

commonly used TVA models do not obtain causal effects of teacher impacts on student test 

scores namely because classroom assignments are not independent conditional on typical 

controls such as student lagged scores and socioeconomic characteristics.  However, in a recent 

study Goldhaber and Chaplin (2015) argue that Rothstein’s falsification test can be helpful to 

identify the existence of student tracking but that this tracking can be the result of lagged 

achievement, which is a variable that is widely used in TVA models; therefore failing this test 

may not imply bias. In a theoretical exposition and simulations the authors show that the test 

will often falsify TVA models that are unbiased and will not falsify TVA models that are biased. 

The estimation of teacher value added outside the USA and UK is fairly limited5. Regarding 

the Portuguese case, Sousa (2016) analyses the determinants of teacher effectiveness for 

Portuguese secondary schools using 9th and 12th grade exam scores. The author’s findings 

                                                           
4 Unfortunately this study does not contemplate how the teacher’s allocation process between schools can affect 

the bias of TVA estimates, since the randomization was made within each school. 
5 Leigh (2010) in Australia, constitutes a noteworthy examples.  
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suggest that teachers are responsible for 49% of the variation in students’ performance after 

controlling for student’s lagged test scores, gender, social support, age and internet access. The 

author also finds that gender, experience, and distance from home are significative determinants 

of teacher value added.  

III. Portuguese Educational system  

The majority of Portuguese students attends public schools (87.5% of the student population in 

2014/2015)6. Education is compulsory until the age of 18 and is divided into two stages. The 

first stage, Ensino Básico, is divided into three cycles. The first one goes from the 1st to the 4th 

grade, the second comprises 5th and 6th grade and the third cycle goes from 7th to 9th grade. In 

the second stage, Ensino Secundário, students complete their secondary education and can have 

access to tertiary education. In the period under study, students performed national exams for 

Mathematics and Portuguese Language in the end of 4th, 6th, 9th and 12th grade.7 We use the 6th 

grade exams as dependent variable and 4th grade exams as control in our estimations.  

In primary education students are allocated to a single teacher that teaches most of the materials. 

From 5th grade onwards students have several courses, namely Mathematics and Portuguese 

Language, each taught by a different teacher. Students are allocated to schools according to 

parent’s preferences, with students whose home or parent’s working location is closer to a given 

school being given priority to that school. 

Regarding teachers, they are allocated to schools based on their preferences, with more 

experienced teachers and with higher grades upon graduation having priority relative to the 

other ones.8 Within a school, student-teacher pairing is up to the school principal, under the 

                                                           
6 DGEEC – Direcção Geral de Estatisticas da Educação e Ciência – state entity that provides quantitative support 

to the Ministry of Education 
7 During secondary education students also perform other national exams besides Mathematics and Portuguese 

Language. 
8 Teachers may be associated with a school district (Professores de Quadro de Agrupamento) or not (Professores 

Contratados). The former apply every four years to some of the 10 national administrative divisions of the 

Portuguese educational system, Quadros de Zona Pedagógica (QZP) and to schools within the QZP. The latter 
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administrative principle that it is preferable that teachers and students are placed with the same 

teacher over the years (e.g. the same math teacher in the 5th and 6th grade), a practice named 

“pedagogical continuity”.  

IV. Data and Descriptive Statistics 

In order to produce teacher value-added estimations this study uses an administrative dataset 

managed by DGEEC9.  This dataset contains data at the student and teacher levels such as 

student socioeconomic characteristics as well as records about the school and courses attended. 

Regarding teacher characteristics it contains information such as teacher’s education, training 

and years of experience.  

Student test scores were obtained by merging this dataset with another dataset that belongs to 

JNE – Júri Nacional de Exames – the entity responsible for managing the Portuguese national 

exams. These standardized exams are produced by the Ministry of Education and Science and 

are administered annually in different disciplines depending on the grade students are attending.   

Sample restrictions 

To its full extent the dataset contains data from the school year 2006/2007 up to 2014/2015. 

However, since Portuguese 6th grade students are graded on a scale that goes from 1 to 5 up to 

the school year 11/12, during this period students’ 6th grade exam cannot be approximated by a 

continuous function. From school year 11/12 until 14/15, 6th grade exam scores are reported on 

a scale ranging from 0 to 100. Therefore we restrict our teacher value-added estimations to these 

school years. The data comprises four cohorts: the first one, which we will denote cohort 1012, 

did the 4th grade exam in the school year 09/10 and the 6th grade exam in the school year 11/12 

                                                           
apply every year directly to schools without having a permanent link to the school; if they are not placed they go 

to a pool of teachers that are used to answer to emergency staff needs along the school year. 
9  DGEEC – Direcção Geral de Estatisticas da Educação e Ciência - produces statistical and quantitative analysis 

regarding science and education. 
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and the last one, which we will denote cohort 1315, did the 4th grade exam in the school year 

12/13 and the 6th grade exam in the school year 14/15.  

Also in order to isolate the effect of a teacher we start by restricting our sample to the cases 

where a given student i has the same teacher in both the 5th and 6th grade. This is a strong 

restriction as it excludes students that fail in the 5th grade. Also, it is reasonable to consider that 

students and teachers that are matched two different years may have specific characteristics, for 

instance, for being in schools with high turnover rates where teachers don’t want to be more 

than one year. Last but not least, the econometric methods used imply the usage of students for 

which a 6th and 4th grade exam can be matched. 

As pointed out by Kane and Staiger (2002), the measurement error associated with teacher 

fixed-effects estimations can be problematic: the noise associated with a low number of 

observations per teacher will lead to the wrong conclusion that best and worst performing 

teachers will be the ones with a lower number of observations. Therefore based on Aaronson et 

al. (2007) we restrict our estimations to teachers with a minimum number of 15 observations. 

Sample and Population characteristics  

In Table 1 we compare our restricted sample with all students for which a 6th grade exam is 

recorded from the school year 11/12 onwards, our population of interest. The results presented 

refer to Portuguese Language exams. The same results apply to the Mathematics exams. 

Summarizing, our restricted sample includes students that performed a 6th grade exam from the 

school year 11/12 up to 14/15,  had the same teacher on the 5th and 6th grade and this teacher 

had a minimum of 15 observations between these school years.  

Since our group of analysis involves a very large sample, selected by imposing restrictions to 

the populations, instead of applying the typical t-tests we follow Imbens (2015) and analyse the 

normalized difference between the mean characteristics of the population and the mean 
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characteristics of the group of students selected10. A difference higher than 0.25 is considered     

large (Imbens and Woolridge (2007)). This is defined as: 

 

Δ𝑋,𝑘 =
𝑋𝑝,𝑘
̅̅ ̅̅ ̅ − 𝑋𝑠,𝑘

̅̅ ̅̅ ̅

√(𝑆𝑝,𝑘
2 + 𝑆𝑠,𝑘

2 )/2

 

where 𝑋𝑝,𝑘
̅̅ ̅̅ ̅ and 𝑋𝑠,𝑘

̅̅ ̅̅ ̅ refer to the average values of variable k in the population and restricted 

sample respectively, and 𝑆𝑝,𝑘
2  and 𝑆𝑠,𝑘

2  the corresponding variances.  

As we can see from the last column of Table 1, there are no significant differences between our 

restricted sample mean characteristics and the population characteristics with the exception of 

Age and our measure of the stability of the teaching staff11. In the sample we have younger 

students and schools with a more stable teaching staff.  

The restricted sample has 119657 observations, 40.4% of the population, distributed over 804 

schools. Each observation in the restricted sample corresponds to a 4th grade, 6th grade exam 

score pair that a given student i obtained. Regarding Mathematics we end up with 96494 

students – 40.5% of the population - and 819 schools from the original 882. 

 

 

 

 

 

                                                           
10 As pointed by Imbens (2015), the t-statistic is equivalent to the normalized difference between means multiplied 

by the square root of the number of observations in the sample. Therefore large samples would always have a 

tendency to have very large t-statistics. In practice we are analysing the degree of overlap between the covariate 

distributions of the two groups. 
11 Calculated as the probability that a Portuguese Language or Mathematics teacher in school-year t in school k 

was also in that school in the year t-1.   
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Table 1 – descriptive statistics  

Variable Description Mean Normalized 

difference Student level  Population Restricted Sample 

     

𝐴𝑖𝑡
6  6th grade exam score 57.32 59.29 -0.11 

national 
both parents are Portuguese 

nationals 
0.94 0.96 -0.06 

unemp one parent is unemployed 0.16 0.14 0.08 

female if the student is female 0.49 0.5 -0.03 

age age in the 6th grade 10.83 10.63 0.33 

computer if the family owns a computer 0.7 0.69 0.04 

mother_higher 
the mother has higher 

education than high-school 
0.17 0.18 -0.04 

father_higher 
the father has higher education 

than high-school 
0.11 0.11 -0.03 

SS_a 
receives social support of type 

a12 
0.21 0.22 -0.03 

SS_b 
receives social support of type 

b12 
0.24 0.2 0.08 

stability_sch 
stability of the teaching staff in  

a school 
0.93  0.98  -0.28 

Number of students  296088 119657  

Number of schools   867 804   
Note: All variables with the exception of Exam6, age, age_sch and stability_sch are dummy variables. 

 

The restrictions imposed lead to a reduction in the number of teachers being analysed. The 

number of teachers reduces from 5687 to 3038 for Portuguese and from 5374 to 2497 for 

Mathematics. In the Population, 25% of the teachers have less than 22 observations for 

Portuguese and 24 observations for Mathematics  

V. Empirical Approach 

Teacher Value Added 

The Teacher Value Added is obtained by estimating a model of the form: 

 
𝐴𝑖𝑡

6 = 𝜃𝐴𝑖,𝑡−2
4 + 𝜶𝑿𝒊𝒕+𝜹𝑺𝒌(𝒊,𝒕) + 𝜇𝑗(𝑖,𝑡) + ∑ 𝜌𝑚(𝑖,𝑡)𝐶𝑚(𝑖,𝑡)

𝑴

𝒎=𝟏

+ 𝜖𝑖𝑡 

 

(1) 

Where 𝐴𝑖𝑡
6  is the 6th grade exam score for student i in year t, 𝐴𝑖,𝑡−2

4  is the exam score in 4th grade, 

𝑿𝒊𝒕 is a vector of student- characteristics in year t described in table 1. Student i is allocated to 

                                                           
12 Social support given to low income families where Type A subsidies are given to the poorest families. It fully 

supports school meals and provides a voucher of 13EUR for school materials. Type B subsidies give half these 

benefits. 
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school k in years t and t-1 and 𝑺𝒌 is a vector of school inputs. The fixed effect of teacher j 

assigned to student i in years t and t-1 is measured explicitly by 𝜇𝑗  , the estimated teacher-fixed 

effect, that is our measure of teacher quality. In other to add robustness to our estimations, 

cohort level dummies 𝑪𝒎 are included in the model. These capture possible differences in the 

exams difficulty over time. School level characteristics 𝑺𝒌 include the average number of 

students in the school over the years nstudents_sch, the proportion of students in the school that 

receive school subsidies, SS_a_sch and SS_b_sch; the percentage of students whose mother has 

tertiary education, mother_higher_sch – the average students age, age_sch; and a measurement 

of the stability of the teaching staff, stability_sch, presented above. 

Implicitly the model assumes that student-level characteristics only impact student achievement 

on the year the exam is performed with the objective of not increasing the parameters of an 

already demanding model. The characteristics included however are highly stable over the 

course of these two years. 

Each model is estimated separately for Mathematics and Portuguese Language. The OLS 

estimation of the model is equivalent to applying the typical within-estimator in the sense that 

it also produces the same estimators for the coefficients (Cameron and Trivedi (2009)), with 

the advantage of  not considering teacher-fixed effects as nuisance parameters and explicitly 

including them in the model instead of subtracting the within group average to eliminate them. 

Cluster-robust standard errors are employed at the school-level in order to take into 

consideration likely correlations between observations within each school.  13 

Determinants of Teacher Value Added  

                                                           
13 As noted by Todd and Wolpin (2003) and Harris and Sass (2006) teacher value added models require  the 

imposition of assumptions regarding the nature of the learning process that are often disregarded by researchers. 

These include the assumption that the impact of educational inputs is age-invariant (its impact depends solely on 

the time the input was implied and the time span since its application, not the age it was applied) and additive 

separable with an equal rate geometric decay. However as the literature points out, even under these assumptions 

there is strong evidence that favours the unbiasedness of teacher Value-Added estimations.  
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In order to assess the determinants of teacher quality we use the teacher value added measure 

obtained using equation (1) for teacher j teaching the subject b –Mathematics or Portuguese 

Language -   𝜙𝑗𝑏̂ = 𝑇𝑉𝐴𝑗  and we regress them on a vector of teacher observable characteristics. 

We include both Mathematics and Portuguese Language teachers in the same regression adding 

also a dummy variable to differentiate between them14:  

 𝑇𝑉𝐴𝑗 = 𝛽0 + 𝛽1Pj + 𝛽2𝑇𝑗 + 𝛽3𝐹𝑗 + 𝛽4𝐸𝑗 +  𝛽5𝐵𝑗 + 𝑢𝑗  (2) 

where Pj; Tj; Fj and Bj are dummy variables. Pj is equal to one if teacher j changed school in the 

time period being considered ( denominated changed in regression outputs); Tj is equal to one 

if teacher j has an educational level higher than a bachelor degree (higher); Fj is equal to one if 

teacher j is female (female) and Bj is equal to one if he/she teaches mathematics (mathematics). 

𝐸𝑗 is a continuous variable that denotes the number of years of experience (exper). The model 

was further extended to allow an interaction between experience and gender. 

Peer effects and teacher differential  

Using the teacher value added specification presented on the previous section we extend our 

analysis to investigate whether teacher peer effects can affect a given teacher effectiveness. We 

also look at the specific impact of a specific characteristic not previously studied in the 

literature, which we label teacher differential. In order to do this we estimate the model:  

Where Dj is the teacher differential, a proxy to the extent a teacher has differentiated teaching 

capabilities for different kinds of students. 𝑇𝑉𝐴𝑗𝑘
̅̅ ̅̅ ̅̅ ̅̅  (mean_tva) is the average value added of 

teacher j colleagues (working in school k) and 𝐷𝑗𝑘
̅̅ ̅̅  (mean_differential) represents the school 

level teacher differential constructed as the average differential of teacher i’s colleagues. An 

                                                           
14 The model was also estimated separately for each type of teacher. The results where equivalent to the ones 

presented.   

 𝑇𝑉𝐴𝑗 = 𝛽0 + 𝛽1Dj + 𝛽3𝑇𝑉𝐴𝑗𝑘
̅̅ ̅̅ ̅̅ ̅̅ + 𝛽4𝐷𝑗𝑘

̅̅ ̅̅ + 𝛽5(Dj ∗  𝐷𝑗𝑘
̅̅ ̅̅ ) +  𝝆𝑴𝒌 + 𝜽𝑮𝒋 + 𝑢𝑗  

 

(3) 
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interaction term (Dj ∗  𝐷𝑗𝑘
̅̅ ̅̅ ) is included. Since it is considered that teacher value added may 

influence heterogeneously different types of students we include 𝑴𝒌, a 1 by 4 vector of the 

proportion of students with each score from 2 to 5 in the 4th grade Portuguese exams15 and  𝑮𝒋, 

a vector of teacher observable characteristics presented in equation (2). 

The teacher differential Dj is obtained by estimating the teacher value added model (1) using 

subsamples in order to include only low-achieving students (defined as having 4th grade exam 

scores 1 and 2) or only high-achieving students (defined as having 4th grade exam scores 4 and 

5) and taking the difference between the later estimation and the former.    

Such an analysis takes into consideration three possible sources of peer effects: from the 

average effectiveness of the colleagues’ -  𝑇𝑉𝐴𝑗𝑘
̅̅ ̅̅ ̅̅ ̅̅  - from their teaching profile 𝐷𝑗𝑘

̅̅ ̅̅  and from the 

degree of complementarity between one’s teaching profile and one’s colleagues Dj ∗  𝐷𝑗𝑘
̅̅ ̅̅ . Since 

our objective is to capture the extent to which the teaching staff effectiveness in a given school 

may affect an individual teacher’s performance, it is important that these indicators 𝑇𝑉𝐴𝑗𝑘
̅̅ ̅̅ ̅̅ ̅̅  and  

𝐷𝑗𝑘
̅̅ ̅̅  are not contaminated by the teachers own heterogeneity indicator. That is why for every 

teacher these indicators are calculated excluding each teacher’s own values.  Also teacher j 

individual differential Dj captures the effect due to the teacher own heterogeneity. School level 

clustered standard errors are used to consider possible correlation between teacher unobservable 

characteristics within a school.   

Variable Dj allows us to understand to which extent teachers that are unequally efficient with 

different types of students are better teachers on average or not and to which extent working 

with colleagues with different teaching profiles affects one’s teaching ability. The answer to 

such question is not immediate. One could consider the case of a teacher that puts an extra effort 

in teaching high achievers since they may provide more immediate and exciting outcomes. If 

                                                           
15 The proportions for Mathematics and the proportion of students having score 1 in the Portuguese Language 

exam were excluded due to being highly multicollinearity with the included proportions for Portuguese Language 
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this is the case this teacher may have a higher value-added for these students. On the other way 

around, if we assume a concave educational production function with some degree of 

substitutability between educational inputs, then with low achievers there is more room for an 

extra effort from the teacher to have a significant positive impact in student achievement and 

therefore increase the teacher value added. Obviously a causal interpretation from Dj would 

require the assumption that there are no external factors that affect this proxy for a teacher 

effectiveness profile and average teacher quality. Even if that is not the case such analysis would 

still have predictive and interpretative relevance.  

The major drawback of such approach is that the inclusion of a teacher colleague’s average 

effectiveness 𝑇𝑉𝐴𝑘
̅̅ ̅̅ ̅̅ ̅ raises relevant questions regarding possible endogeneity problems. It is not 

unlikely that better teachers may simply be attracted to specific schools and therefore the 

estimator will be positively biased. However, teacher allocation process in Portugal is relatively 

well defined and dependent on a teacher’s preferences, graduation grade and experience, the 

latter one of these is controlled in our model. Also, if teacher preferences are determined by the 

quality of the students studying in the school, that is controlled for in our model, by the 

percentage of students having each possible 4th grade exam score. 

VI. Results 

Impact of teacher Value Added   

In Table 2 we present the estimation results for equation (1). All models presented use a 

minimum of 15 observations per teacher. The first two models use Portuguese Language exams 

with and without teacher Fixed-Effects and the last two use Mathematics exams with and 

without teacher Fixed-Effects.16 

                                                           
16 The same estimation procedure was applied for models with no restrictions on the minimum number of 

observations per teacher, and a minimum of 30, 60 and 90 students per teacher as well as without cluster-robust 

SE. In all of these cases the results were equivalent to the ones presented here. 
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The usage of school and teacher fixed effects is dependent on teachers moving between schools. 

This would imply that most of the teachers in our sample would be lost. Besides that, several 

authors present scepticism about the idea of using school-fixed effects to conduct an analysis 

with policy implications  (Harris 2009) since the teacher effect being captured is not the teacher 

value added relative to the mean teacher in a country or school district but relative to the mean 

teacher in the school. Producing accountability measures based on these types of models could 

generate incentives for teachers to compete between each other within schools.17  

The F-test for the joint significance of teacher effects reveals they are jointly significant at a 

1% significance level. We find that up to 13% percent of the variation in student test scores in 

Portuguese Language exam is determined by Portuguese Language teachers and up to 16% of 

                                                           
17 Also when using model selection indictors a model that includes school fixed effects does not outperform a 

model without. The adjusted 𝑅2 falls from 0.467 in the base model to 0.229 in the model that includes school fixed 

effects.  

Table 2 – Estimation Results 

 PT (1) PT (2) MAT (3) MAT (4) 

𝐴𝑖,𝑡−2
4  10.79*** 10.86*** 13.392*** 13.22*** 

1113.cohort -7.754*** -7.978*** -3.362 -3.34 

1214.cohort -0.229 -0.428** 4.357 3.98 

1315.cohort 9.134*** 9.271*** 9.824*** 10.24*** 

stability_sch 0.130 -0.149 -7.162** -2.3*** 

SS_a_sch 5.596 6.656*** 5.360 20.6*** 

SS_b_sch -8.804** -4.474*** -7.162 -1.53** 

mother_higher_sch 6.227 5.155*** 19.55** 18.3*** 

age_sch -2.266 -2.479*** 0.575 -2.42*** 

nstudents_sch -0.00371 0.000188 -0.00723 0.001** 

SS_a -1.859*** -1.954*** -3.547*** -3.87*** 

SS_b -3.200*** -3.369*** -6.525*** -6.99*** 

female 2.674*** 2.681*** -0.316*** -0.25** 

unemp -0.406*** -0.541*** -1.130*** -1.53*** 

national 0.302 0.702*** 0.612** 0.83*** 

computer 1.090*** 0.608*** 1.713*** 1.17*** 

father_higher 2.356*** 2.500*** 4.196*** 4.54*** 

mother_higher 3.263*** 3.475*** 5.810*** 6.12*** 

age -2.465*** -2.582*** -4.77*** -4.41*** 

_cons 70.28*** 72.09*** 51.13 74.81*** 

Teacher FE YES NO YES NO 

N 119657 119657 91719 91719 

R2 0.481 0.430 0.5145 0.4301 

adj. R2 0.467 0.430 0.501 0.43 

AIC 926644.6 937710.7 761950.6 776646.9 

BIC 916738.5 937904.6 762139.1 776835.4 

F 2483.5 2628.6 3390.59 3542.36 

Source: authors’ calculations  
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the variation in Mathematics test scores is explained by Mathematics teachers.18 By looking at 

Table 3 we can see that teachers can have a determinant impact on a student’s performance 

specially in Mathematics: If the 10% worse teachers were replaced by teachers of the same 

quality of the best 10%, that would have an impact of at least 10.04 points in the 6th grade 

national exam for Portuguese and 17.33 points for Mathematics on average. 

By looking at the dummy cohorts we see a significant variation in the difficulty of both the 

Mathematics and Portuguese Language exams.19  

From a policy point of view there has been a trend in Portugal to increase the stability of the 

teaching staff20. It is therefore relevant to notice that the stability of the teaching staff (stability) 

is not individually statistically significant under any specification for Portuguese Language. 

This variable was constructed before any sample restrictions were imposed and it is the 

probability that a given Portuguese or Mathematics teacher that teaches a school in year t was 

found in that same school in year t-1. This indicates therefore that, at least for students that are 

matched with the same teacher in the 5th and 6th grade, being in a school with a stable teaching 

                                                           
18 These values serve as an upper-bound of the explanatory power of teacher-effects and correspond to the R2 of 

an equation containing solely teacher fixed effects. The lower bound is obtained by the absolute variation in R2 

when we exclude the teacher fixed effects from a base model containing student and school characteristics. These 

values are 5.1%  for Portuguese and 6.4% for Mathematics  
19 Using model (1) as our base of analysis we can see that the cohort 1113 have on average less 7.754 points on 

the 6th grade exam score than the students in the cohort 1012, the base cohort. But students in the cohort 1315 have 

on average 9.134 more points in the 6th grade exam score than the average student in the base cohort. It is unlikely 

that such a variation is explained by overall student improvement in the 2 years of difference between these 

cohorts.  
20 See “Decreto- Lei nº20/2006”  (Law nº20/2006) and “Decreto-Lei nº83A/2014” (Law nº83A/2014)  for legal 

descriptions of the reforms. 

Table 3 – Distribution of teacher value added 

Percentile 

Rank 
Portuguese Mathematics 

Descriptive 

Statistics 

Portuguese Mathematics 

0.05 -6.64 -11.74 Min -14.78 -26.44 

0.10 -5.16 -8.94 Max 15.88 24.06 

0.25 -2.71 -4.94 Mean -0.13 -0.35 

0.50 -0.15 -0.32 Std. Dev. 3.94 6.90 

0.75 2.42 4.26 Variance 15.51 47.55 

0.90 4.88 8.39 Skewness 0.03 0.01 

0.95 6.52 10.62 Kurtosis 3.19 3.12 
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staff has no significant effect on the student’s performance or a negative impact as it is the case 

with mathematics. It is possible, however, that the stability of the student own teacher – that is 

having the same teacher in the 5th and 6th grade – is relevant for the learning process, which 

cannot be captured by our model.  

At the individual level we can see that students under lower socioeconomic conditions have on 

average worse performance. Individual socioeconomic variables such as SS_a, SS_b, unemp, 

father_higher, mother_higher and computer, account for up to 23% of the variation in 6th grade 

exam scores for Portuguese exams and 28.5%.21 We can also see that female students have on 

average more 2.674 points (on a scale from 0 to 100) on the national exam than male students 

for Portuguese, a result also find by Slater, Davies, and Burgess (2012) but underperform in 

mathematics on average by -0.316. We can also see that an individual’ mother tertiary education 

is more relevant for a student’s performance on average than a father’s tertiary education with 

the Wald test for their difference yielding a p-value close to 0. 

  Determinants of Teacher value added  

In Table 4 model (2) is represented by column output (2). Column (1) reproduces the same 

model while adding an interaction term between experience and gender. We can see that 

connecting the student/teacher records with the teacher’s characteristics does not allow the 

matching of all teachers. Table 5 presents descriptive statistics for the variables used. A striking 

result is that at most 1.2% of the variability in teacher value added can be explained by 

observable characteristics, a value in line with what is found in the literature for the variables 

included in the model. Leigh (2010), finds that variables such as having a master’s degree, 

gender, and experience explain less than 1% of the variability in teacher quality. 

                                                           
21 This value serves as an upper-bound indicator for the amount of variation explained by the referred variables. 

It corresponds to a R2 from regressing student scores solely on socioeconomic variables. The lower bounds are 

3.4% for Portuguese Language and 5.04% for Mathematics and are obtained as the absolute variation in the R2 

that occurs when individual characteristics are excluded from the base model. 
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Using a more comprehensive dataset Aaronson 

et al. (2007) finds that a model that includes 

tenure  and advanced degrees indicators 

explain at most 1% of the variation. When 

teacher ethnicity, experience, certifications and 

university ranking are included the R2 

increases to 7.7%  

A common result in the estimation of the 

determinants of teacher quality is that  

experience has a residual role, with few studies 

finding it as being statistically significant  

(Hanushek and Rivkin (2006)), commonly 

with only the first years of experience as being 

relevant (Gordon, Kane, and Staiger (2006), 

Aaronson et al. (2007), Hanushek, Kain, 

O'Brien and Rivkin (2005)). The p-value for 

experience in column (2) shows that experience 

is not individually statistically significant at a 

10% significance level. However once we 

decompose experience by gender a different 

result emerges. In Figure 1 we show the average 

marginal effects of experience decomposed by gender.  

We can see that female teachers are indeed not affected by experience in a statistically 

significant manner. Male teachers on the other hand are negatively affected by experience in a 

Table 4 – estimation results for model (2) – Portuguese and 

Mathematics 

  (1) (2) 

changed  -0.170 -0.159 

higher  -0.414 -0.390 

female  -0.364 1.539*** 

exper  -0.0596* 0.000370 

(female X exper)  0.0708*  

mathematics  0.0832 0.0667 

_cons  0.137 1.473*** 

N  3963 3963 

R2  0.012 0.011 

adj. R2  0.010 0.010 

AIC  24771.5 24773.9 

BIC  24815.5 24811.6 

F  6.828 7.557 
Source: author’s  calculations using MISI and JNE p-values: 

* p<0.1, ** p<0.05, *** p<0.01 

Table 5 - Descriptive Statistics 

Variable Mean Std. Dev. Min Max 

changed 0.03 0.17 0.00 1.00 

higher 0.08 0.28 0.00 1.00 

female 0.84 0.36 0.00 1.00 

exper 26.48 7.15 0.87 39.97 

mathematics 0.49 0.50 0.00 1.00 

 

Figure 1 – Decomposition of Experience effects by gender  

(male teachers decreasing) 
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statistically significant manner after 21 years of experience, an effect that is accentuated over 

the years.  Our sample includes 634 male teachers and the first quartile of experience is 21.8. 

It is worth nothing that in this sense experience is most likely capturing the ageing process of 

the teacher and not the number of years working in the profession.  

It seems that there is a depreciation in teaching abilities for male teachers over time which is 

not verified (at least in a significant manner) for female teachers. Since studies analysing 

teacher quality determinants analyse the effects of experience in an aggregate fashion, the 

negative signal provided by male teachers is not enough to show experience as being 

statistically relevant.  

From a policy point of view this implies that reforms that delay the retirement of teachers, 

especially male teachers, may generate an opportunity cost in terms of human capital 

accumulation for students. 

Peer effects and teacher differential    

In Table 6 we present the estimation output for the model in eq. (3) an extension of eq. (2). The 

models simply differ on the covariates being included. Using column (1) as our base of analysis 

we can see that mean teacher peer effect is individually statistically significant at a 1% 

significance level. An increase in one point in a given teacher colleague’s value added increases 

this teacher value added by 0.772 points on average, ceteris paribus. In other words a 1SD 

improvement on the mean peer effectiveness improves a teacher value by 0.34 SD.22 Using 

other specifications, (columns (2) and (3)) results do not change.  

                                                           
22 The standard deviation in Mean Peer Effectiveness is 2.5, since the coefficient associated with it is 0.772 an 

improvement in 1 SD in mean peer effectiveness increases the teacher value added by 1.93 points which is 

equivalent to an average improvement of 0.34 SD in Teacher Effectiveness when we analyse both classes 

combined. Separately it corresponds to an improvement in 0.49 SD for Portuguese Language teachers and 0.28 

SD for Mathematics teachers. 



21 
 

However we can see that there is a statistically significant negative relationship between the 

colleagues differential and a given teacher effectiveness: working with colleagues where the 

average difference between the value added for high achievers versus low achievers increases 

by one point decreases the individual teacher value added by 0.0405 points. So it is not only the 

colleague’s average effectiveness that matters, the difference in effectiveness is also relevant.  

Interestingly there are statistically significant gains from this asymmetry at a 10% significance 

level, although of a weaker magnitude, as can be seen by the interaction term, which suggests 

that there are gains of complementarity between a given teacher differential and her/his 

colleagues: even if a colleague’s differential is undesirable this can be slightly mitigated for the 

individual teacher if her/his differential matches the one of the colleagues.  

VII. Conclusion  

Table 6 – Determinants of teacher value added 
 (1) (2) (3) 

teacher_differential -0.00820   

mean_tva 0.772*** 0.776*** 0.785*** 

mean_differential -0.0405** -0.0407**  

(teacher_diff X mean_diff) 0.00490*   

changed -0.156 -0.164 -0.164 

higher -0.234 -0.229 -0.240 

female -0.327 -0.340 -0.353 

exper -0.0617* -0.0629* -0.0635* 

(female X exper) 0.0705** 0.0707** 0.0706** 

mathematics 0.0840 0.113 0.110 

School_grades2_pt 45.00** 45.52** 41.98** 

School_grades3_pt 43.78** 44.20** 41.04** 

School_grades4_pt 43.85** 44.29** 40.77** 

School_grades5_pt 46.74** 47.28** 43.84** 

_cons -43.80** -44.19** -40.82** 

N 3943 3943 3943 

R2 0.134 0.133 0.132 

adj. R2 0.131 0.130 0.130 

AIC 24137.6 24138.2 24139.1 

BIC 24231.8 24219.8 24214.5 

F 59.07 68.67 73.60 
Source: author’s calculations using MISI and JNE p-values: * p<0.1, ** p<0.05, *** p<0.01; In order to give 

robustness to our analysis schools where less than 5 teachers have an estimated teacher value added or with 

less than 10 teachers in the population records are excluded, the number of schools being analysed is 504. 
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Under a teacher value added approach this study uses data on 119657 Portuguese students of 

Portuguese Language and 91719 students of Mathematics to produce the most comprehensive 

teacher value added estimation made in Portugal in terms of the number of schools, teachers 

and students considered. Also it is the first one for 5th and 6th grade teachers. We found that 

teachers are a relevant component of student achievement: Replacing the 10% worse teachers 

by teachers of the same quality of the best 10%, would have an impact of at least 10.04 points 

in the 6th grade national exam for Portuguese and 17.33 points for Mathematics on average (in 

a scale from 0 to 100). 

The determinants of teacher effectiveness were analysed. We show that observable 

characteristics play a residual role in the determination of teacher value added. Also it was 

clarified the nature of the relevance of experience and effectiveness differences among male 

and female teachers. We show that the difference in effectiveness found between male and 

female teachers can be accounted by the depreciation of male teacher’s effectiveness. This 

contradicts the general finding that experience is not relevant after the first years in the 

profession.  

It was also shown the existence of relevant peer effects at the teacher level within a school as 

well as the existence of gains in having an appropriate matching between a teacher teaching 

profile and a school teaching profile.            

Although measurement error was taken into account, further lines of research could be followed 

in order to tackle this common problem in a more sophisticated manner that would not require 

the restrictions in the number of observations per teacher. In order to produce such estimates 

researchers such as  have been developing empirical Bayesian statistical methods that weight 

teacher estimates based on estimated measurement errors associated with them. Kane and 

Staiger (2008) and Chetty, Friedman, and Rockoff (2014) constitute some examples of such 

approach. 
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As we have shown the group of students in our estimation sample is mostly representative of 

the general populations. But since we impose that teachers follow the same student for at least 

two years, the teachers being captured have lower turnover rates. Therefore although our results 

can be extrapolated to the population of teachers that are associated with a given school 

(Professores do quadro de agrupamento) the extrapolation of results to high turnover teachers 

(such as Professores contratados) should be done with caution.  
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