DE GRUYTER OPEN

Rosário Fernandes*

The maximum multiplicity and the two largest multiplicities of eigenvalues in a Hermitian matrix whose graph is a tree

Abstract: The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, M_1 , was understood 5 fully (from a combinatorial perspective) by C.R. Johnson, A. Leal-Duarte (Linear Algebra and Multilinear Algebra 46 (1999) 139-144). Among the possible multiplicity lists for the eigenvalues of Hermitian matrices whose graph is a tree, we focus upon $\overline{M_2}$, the maximum value of the sum of the two largest multiplicities when the largest multiplicity is M_1 . Upper and lower bounds are given for $\overline{M_2}$. Using a combinatorial algorithm, cases of equality are computed for $\overline{M_2}$. 10

Keywords: Eigenvalue multiplicities; Symmetric matrices; Trees; Two largest multiplicities

MSC: 15A18, 05C38, 05C50

DOI 10.1515/spma-2015-0001 Received September 10, 2013; accepted December 4, 2014

1 Introduction

Let *T* be a tree on $n \ge 2$ vertices. We denote by S(T) the collection of all *n*-by-*n* complex Hermitian matrices whose graph is *T*. No restriction is placed upon the diagonal entries of matrices in S(T).

For convenience, when $A \in S(T)$, we place in non-increasing order the multiplicities of the eigenvalues of A. We refer to such a list of multiplicities as the unordered multiplicity list and we denote it by $(m_1(A), m_2(A), \dots, m_{k(A)}(A))$, where k(A) is the number of distinct eigenvalues of A. So, $m_i(A)$ is the *j*th 20 largest multiplicity of an eigenvalue in the multiplicity list of A.

Definition 1.1. Let $\mathcal{L}(T)$ be the set of all positive integer lists (unordered multiplicity lists) (p_1, p_2, \dots, p_s) satisfying:

- (1) $p_1 \ge p_2 \ge \ldots \ge p_s \ge 1$;
- (2) $\sum_{i=1}^{s} p_i = n;$
- (3) There is an $A \in S(T)$ with $(m_1(A), m_2(A), \ldots, m_{k(A)}(A)) = (p_1, p_2, \ldots, p_s)$.

For $j \ge 1$, we denote by

$$M_j(T) = \max_{(p_1,p_2,\ldots,p_s)\in\mathcal{L}(T)}(p_1+\ldots+p_j)$$

It is well known that $M_1(T)$ is equal to the path cover number P(T), the smallest number of nonintersecting induced paths of T that cover all the vertices of T; this is the same as $\max(p-q)$, where p is the number of paths remaining when q vertices have been removed from T in such a way as to leave only induced paths [3]. 30

Remark 1.2. In [7] a combinatorial algorithm was given to compute $M_2(T)$. It is easy to see that if $(p_1, p_2, \ldots, p_s) \in \mathbb{R}$ $\mathcal{L}(T)$ then

CC) BY-NC-ND © 2015 Rosário Fernandes, licensee De Gruyter Open.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

15

^{*}Corresponding Author: Rosário Fernandes: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, E-mail: mrff@fct.unl.pt

6 — Rosário Fernandes

(1) $p_1 \leq M_1(T)$.

5

- (2) $p_1 + p_2 \le M_2(T)$.
- (3) $p_1 + p_2 \ge 2$, $p_2 \ne 0$ (because if *T* is a tree and $A \in S(T)$ then the largest and the smallest eigenvalues of *A* have multiplicities one. So, each list in $\mathcal{L}(T)$ has at least two 1's, [4]).
- (4) Using the definition of $M_1(T)$, there exists $(p_1, p_2, \ldots, p_s) \in \mathcal{L}(T)$ such that $p_1 = M_1(T)$.

Given $M_1(T)$ and $M_2(T)$, we cannot say there exists a list $(p_1, p_2, \ldots, p_s) \in \mathcal{L}(T)$ such that $p_1 = M_1(T)$ and $p_2 = M_2(T) - M_1(T)$. For example, [7], the double star $D_{3,3}$ has $M_1(D_{3,3}) = 4$, $M_2(D_{3,3}) = 6$ but $(4, 2, 1, 1) \notin \mathcal{L}(D_{3,3})$ (we can prove this using the Parter-Wiener theorem [5]). $M_1(D_{3,3}) = 4$ because $(4, 1, 1, 1, 1) \in \mathcal{L}(D_{3,3})$, for example, consider the matrix

 $M_2(D_{3,3}) = 6$ because $(3, 3, 1, 1) \in \mathcal{L}(D_{3,3})$, for example, consider the matrix

ΓO	0	0	1	0	0	0	0]
0	0	0	1	0	0	0	0
0	0	0	1	0	0	0	0
1	1	1	-2	1	0	0	0
0	0	0	1	3	1	1	1
0	0	0	0	1	1	0	0
0	0	0	0	1	0	1	0
0	0	0	0	1	0	0	1

So, it is important to know when given $M_2(T)$, we can say that there is a list $(p_1, p_2, ..., p_s) \in \mathcal{L}(T)$ such that $p_1 = M_1(T)$ and $p_2 = M_2(T) - M_1(T)$.

Let $\overline{M_2}(T)$ (or simply $\overline{M_2}$) denote the maximum value of the sum of the two largest integers among the lists $(p_1, p_2, \ldots, p_s) \in \mathcal{L}(T)$, when $p_1 = M_1(T)$, i.e.,

$$\overline{M_2}(T) = \max_{(M_1(T), p_2, \dots, p_s) \in \mathcal{L}(T)} (M_1(T) + p_2).$$

Using the definition of $M_2(T)$, we have $\overline{M_2}(T) \le M_2(T)$. In this paper we give upper and lower bounds for $\overline{M_2}$ and in some cases, a method for calculating $\overline{M_2}$.

10 2 Assignments

Let *T* be a tree on $n \ge 2$ vertices. If $A \in S(T)$ and *v* is a vertex of *T* then A(v) denotes the principal submatrix of *A* resulting from deleting row and column associated with *v*, and $m_A(\lambda)$ denotes the multiplicity of eigenvalue λ of matrix *A*. The Parter theorem, [8], indicates that if $A \in S(T)$ and $m_A(\lambda) \ge 2$, then there is at least one vertex *v* of *T*, of degree at least 3, such that $m_{A(v)}(\lambda) = m_A(\lambda) + 1$. Moreover, *v* may be chosen 15 so that λ is an eigenvalue of at least three principal submatrices of *A* associated with branches of *T* at *v*. So, we refer to any vertex *v* of degree greater or equal to 3 as a *high-degree vertex*, or HDV. The Parter theorem was refined by Wiener [9] and more fully in [5]. A vertex *v* of *T* is a *Parter vertex* for $A \in S(T)$ and λ when

 $m_A(\lambda) \ge 1$ and $m_{A(\nu)}(\lambda) = m_A(\lambda) + 1$. The Parter theorem guarantees the existence of at least one Parter HDV

15

for any multiple eigenvalue. If a principal submatrix of *A* associated with some branch at *v* again has λ as a multiple eigenvalue, then this theorem may again be applied to that branch. Parter vertices for λ may be removed in this fashion until (fully) fragmenting *T* into many subtrees when λ occurs as an eigenvalue in such a submatrix associated with the subtree at most once. Such a set of Parter vertices is called a *fully fragmented Parter* set for λ , and it is known that each successive Parter vertex is also a Parter vertex for *A* and λ in the 5 original tree.

If *X* is a set or collection (or graph), then |X| denotes the cardinality of (number of vertices in) *X*. If *V* is a set of vertices and *X* is a graph then $V \cap X$ denotes the set of vertices in both *V* and *X*. If *X* is a tree then $\mathcal{P}(X)$ denotes the collection of all subtrees of *X*, including *X*.

Definition 2.1. [7] (Assignment) Let T be a tree on $n \ge 2$ vertices and let

$$\left(p_1, p_2, \ldots, p_k, 1^{n-\sum_{i=1}^k p_i}\right)$$

be a non-increasing list of positive integers, with $\sum_{i=1}^{k} p_i \leq n$. The notation 1^l denotes that the last l entries of 10 the list are 1. Note that some of the p_i 's may be 1. An assignment \mathcal{A} of $(p_1, p_2, \ldots, p_k, 1^{n-\sum_{i=1}^{k} p_i})$ to T is a collection $\mathcal{A} = ((\mathcal{A}_1, V_1), \ldots, (\mathcal{A}_k, V_k))$ of k collections \mathcal{A}_i of subtrees of T and k collections V_i of vertices of T, with the following properties.

- (1) (Specification of Parter vertices) For each integer i between 1 and k,
 - (1a) Each subtree in A_i is a connected component of $T V_i$.
 - (1b) $|\mathcal{A}_i| = p_i + |V_i|$.
 - (1c) For each vertex $v \in V_i$, there exists a vertex x adjacent to v such that x is in one of the subtrees in A_i .
- (2) (No overloading) We require that no subtree S of T is assigned more than |S| integers; define

$$c_i(S) = |\mathcal{A}_i \cap \mathcal{P}(S)| - |V_i \cap S|,$$

the difference between the number of subtrees contained in S and the number of Parter vertices in S for the ith integer. So, we require that

$$\sum_{i=1}^{k} \max(0, c_i(S)) \leq |S|, \text{ for each } S \in \mathcal{P}(T).$$

If this condition is violated at any subtree, then that subtree is said to be overloaded.

Definition 2.2. [7] A collection $\mathcal{A} = ((\mathcal{A}_1, V_1), \dots, (\mathcal{A}_k, V_k))$ of k collections \mathcal{A}_i of subtrees of T and k collec- 20 tions V_i of vertices of T is:

- (1) an assignment candidate of $(p_1, p_2, ..., p_k, 1^{n-\sum_{i=1}^k p_i})$ to *T* when *A* satisfies condition 1, but not necessarily 2 of Definition 2.1.
- (2) a near-assignment of $(p_1, p_2, ..., p_k, 1^{n-\sum_{i=1}^k p_i})$ to *T* when *A* satisfies conditions 1*a*, 1*b*, 2, but not *necessarily* 1*c* of Definition 2.1. 25
- (3) a near-assignment candidate of $(p_1, p_2, ..., p_k, 1^{n-\sum_{i=1}^k p_i})$ to *T* when *A* satisfies conditions 1*a*, 1*b*, but not necessarily 1*c* or 2 of Definition 2.1.

In [7] a simplification of assignments of the list $(p_1, p_2, 1^l)$ is considered.

Lemma 2.3. (Overloading Lemma) If T is a tree and A is an assignment candidate (or a near-assignment candidate) of the list $(p_1, p_2, 1^l)$ to T, but A is not an assignment (or a near-assignment, respectively), then 30 there must exist a single vertex in T that is overloaded by A.

Example 2.4. Let T be the following tree

and let $(3, 2, 1^3)$ be a list. If we consider $A = ((A_1, V_1), (A_2, V_2))$ where

$$A_1 = T - \{4, 5\}, A_2 = T - \{5\}, V_1 = \{4, 5\} and V_2 = \{5\},$$

then A_1 has 5 connected components and A_2 has 3 connected components. So, $|A_1| = 5$ and $|A_2| = 3$. A is an assignment candidate of $(3, 2, 1^3)$ to T but not an assignment because the subtree $\{6\}$ of T satisfies

 $\max(0, c_1(\{6\})) + \max(0, c_2(\{6\})) = 1 + 1 = 2 > 1 = |\{6\}|.$

If we consider $A' = ((A'_1, V'_1), (A'_2, V'_2))$, where

$$\mathcal{A}_{1}^{'} = T - \{4\}, \ \mathcal{A}_{2}^{'} = T - \{5\} \ V_{1}^{'} = \{4\} \ and \ V_{2}^{'} = \{5\}$$

then $\mathcal{A}_{1}^{'}$ has 4 connected components and $\mathcal{A}_{2}^{'}$ has 3 connected components. So, $|\mathcal{A}_{1}^{'}| = 4$ and $|\mathcal{A}_{2}^{'}| = 3$.

 \mathcal{A}' satisfies condition 1 of Definition 2.1.

If $S = \{1\}$ *or* $S = \{2\}$ *or* $S = \{3\}$ *, then*

 $\max(0, c_1(S)) + \max(0, c_2(S)) = 1 + 0 = |S|.$

If $S = \{4\}$ *or* $S = \{5\}$ *or* $S = \{7\}$ *or* $S = \{8\}$ *, then*

 $\max(0, c_1(S)) + \max(0, c_2(S)) = 0 + 0 < |S| = 1.$

If $S = \{6\}$ *then*

5

$$\max(0, c_1(S)) + \max(0, c_2(S)) = 0 + 1 = |S|.$$

Using Lemma 2.3, A' is an assignment of $(3, 2, 1^3)$ to T.

Example 2.5. Let T be the following tree

and let $(2, 2, 1^4)$ be a list. If we consider $A = ((A_1, V_1), (A_2, V_2))$, where

$$A_1 = T - \{5, 6, 7, 8\}, A_2 = T - \{6\}, V_1 = \{5, 6\} and V_2 = \{6\}$$

10 then A_1 has 4 connected components and A_2 has 3 connected components. So, $|A_1| = 4$ and $|A_2| = 3$. A is a near-assignment of $(2, 2, 1^4)$ to T (to prove condition 2 of Definition 2.1 use Lemma 2.3) but not an assignment because $6 \in V_1$ and there is not a vertex of T adjacent to 6 in a subtree of A_1 . Using the Overloading Lemma (Lemma 2.3), another important result appears.

Lemma 2.6. Let T be a tree. Then

there exists a near-assignment of the list $(p_1, p_2, 1^l)$ to T if and only if there exists an assignment of the list $(p_1, p_2, 1^l)$ to T.

Proof Suppose there exists a near-assignment $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$ of the list $(p_1, p_2, 1^l)$ to *T*. If \mathcal{A} satisfies 5 1*c* of Definition 2.1, then \mathcal{A} is an assignment of $(p_1, p_2, 1^l)$ to *T*.

Suppose that A does not satisfy 1*c*. Then V_1 or V_2 does not satisfy 1*c*. Suppose, without loss of generalization that V_1 does not satisfy 1*c*. So, there exists a vertex $v_1 \in V_1$ such that there is not a vertex *x* adjacent to v_1 in a subtree of A_1 .

Since $|\mathcal{A}_1| = p_1 + |V_1|$, remove v_1 from V_1 and remove a subtree R_1 from \mathcal{A}_1 . We obtain $\mathcal{A}'_1 = \mathcal{A}_1 \setminus R_1$ 10 and $V'_1 = V_1 \setminus \{v_1\}$. Since $|\mathcal{A}'_1| = p_1 + |V'_1|$, we conclude that $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}_2, V_2))$ is a near-assignment candidate of the list $(p_1, p_2, 1^l)$ to T.

If \mathcal{A}' is not a near-assignment, by Lemma 2.3, there must exist a single vertex y in T that is overloaded by \mathcal{A}' . Using the fact that \mathcal{A} is a near-assignment, $y = v_1$. But v_1 does not belong to \mathcal{A}'_1 . Consequently, $S = \{v_1\}$ satisfies condition 2 of Definition 2.1. Contradiction. Therefore, \mathcal{A}' is a near-assignment.

If \mathcal{A}' satisfies 1*c* of Definition 2.1, then \mathcal{A}' is an assignment of $(p_1, p_2, 1^l)$ to *T*. If \mathcal{A}' does not satisfy 1*c* of Definition 2.1, repeat the process.

Repeating this process we obtain an assignment because $p_1, p_2 \ge 1$ and in each process we have a collection of subtrees of *T* satisfying condition 1*a* of Definition 2.1.

Conversely, the proof is trivial.

Definition 2.7. *If* $A \in S(T)$ *and* S *is a subgraph of* T *then*

- (1) A[S] denotes the principal submatrix of A lying on rows and columns associated with the vertices of S.
- (2) *A*(*S*) denotes the principal submatrix of *A* resulting from deleting rows and columns associated with the vertices of *S*.

Using the interlacing theorem for Hermitian matrices [2], if *x* is a vertex of *T* (tree) and λ is an eigenvalue of $A \in S(T)$, then there is a simple relation between $m_{A(x)}(\lambda)$ and $m_A(\lambda)$:

$$m_{A(x)}(\lambda) = m_A(\lambda) - 1$$
 or $m_{A(x)}(\lambda) = m_A(\lambda)$ or $m_{A(x)}(\lambda) = m_A(\lambda) + 1$.

Definition 2.8. [7] Let *T* be a tree on $n \ge 2$ vertices. We call an assignment $\mathcal{A} = ((\mathcal{A}_1, V_1), \dots, (\mathcal{A}_k, V_k))$ of 25 $(p_1, p_2, \dots, p_k, 1^{n-\sum_{i=1}^k p_i})$ to *T* realizable if there exists a matrix $B \in S(T)$ with unordered multiplicity list $(p_1, p_2, \dots, p_k, 1^{n-\sum_{i=1}^k p_i})$, such that, for each *i* between 1 and *k*, if s_i is the eigenvalue of *B* associated with p_i , i.e., $m_B(s_i) = p_i$, then:

- (1) For each subtree R of T in A_i , $m_{B[R]}(s_i) = 1$.
- (2) For each connected component Q of $T V_i$ that is not in A_i , $m_{B[O]}(s_i) = 0$.
- (3) For each $x \in V_i$, x is a Parter vertex for B and s_i .

Remark 2.9. Note that if $C \in S(T)$ is a matrix that satisfies conditions 1 and 2 of Definition 2.8, then for each *i* between 1 and *k*, $m_C(s_i) = p_i \ge 1$.

Using the interlacing theorem for Hermitian matrices, if $x \in V_i$, then $m_{C(x)}(s_i)$ is equal to

$$m_{C}(s_{i}) - 1$$
 or $m_{C}(s_{i})$ or $m_{C}(s_{i}) + 1$.

By conditions 1 and 2 of Definition 2.8, $m_{C(V_i)}(s_i) = |\mathcal{A}_i|$. But \mathcal{A} is an assignment, so, $|\mathcal{A}_i| = p_i + |V_i|$. Thus,

$$m_{\mathcal{C}(x)}(s_i) = m_{\mathcal{C}}(s_i) + 1.$$

Therefore, C satisfies Definition 2.8.

□ 20

Using the last remark, we can rewrite Definition 2.8.

Definition 2.8 Let *T* be a tree on $n \ge 2$ vertices. We call an assignment $\mathcal{A} = ((\mathcal{A}_1, V_1), \dots, (\mathcal{A}_k, V_k))$ of $(p_1, p_2, \dots, p_k, 1^{n-\sum_{i=1}^k p_i})$ to *T* realizable if there exists a matrix $B \in S(T)$ with unordered multiplicity list $(p_1, p_2, \dots, p_k, 1^{n-\sum_{i=1}^k p_i})$, such that, for each *i* between 1 and *k*, if s_i is the eigenvalue of *B* associated with 5 p_i , i.e., $m_B(s_i) = p_i$, then:

- p_i , *i.e.*, $m_B(s_i) p_i$, *men*.
 - (1) For each subtree R of T in A_i , $m_{B[R]}(s_i) = 1$.
 - (2) For each connected component Q of $T V_i$ that is not in A_i , $m_{B[Q]}(s_i) = 0$.

Definition 2.10. *If T* is a tree on $n \ge 2$ *vertices,* A *is a realizable assignment of* $(p_1, p_2, ..., p_k, 1^{n - \sum_{i=1}^{k} p_i})$ *to T* and $B \in S(T)$ *is a matrix that satisfies Definition 2.8, then we say that B realizes the assignment* A.

10 There are assignments that are not realizable. For instance see Example 2.3 in [7]. However when we study the list $(p_1, p_2, 1^l)$ we have the following result.

Theorem 2.11. [7] Given a tree T on $n = p_1 + p_2 + l$ vertices, a near-assignment of the list (p_1, p_2, l^l) to T, $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$, and any distinct real numbers α and β , then there exists $A \in S(T)$ satisfying the following conditions:

If R is a connected component of $T - V_1$, then

 α is an eigenvalue of A[R] if and only if $R \in A_1$.

Similarly, if S is a connected component of $T - V_2$, then

 β is an eigenvalue of A[S] if and only if $S \in A_2$.

15 Using Lemma 2.6, Theorem 2.11 and the new version of Definition 2.8 we obtain the following result.

Theorem 2.12. Given a tree T on $n = p_1 + p_2 + l$ vertices, a near-assignment A of the list (p_1, p_2, l^l) to T, and any distinct real numbers α and β , then

- (1) there exists a realizable assignment \mathcal{B} of $(p_1, p_2, 1^l)$ to T.
- (2) there exists $A \in S(T)$ that realizes the assignment \mathbb{B} with $m_A(\alpha) = p_1$ and $m_A(\beta) = p_2$.

20 Therefore, we immediately have as a consequence:

Corollary 2.13. For any tree T, if there exists a near-assignment of the list $(M_1(T), p_2, 1^l)$ to T, then

$$\overline{M_2}(T) \ge M_1(T) + p_2.$$

3 Upper and lower bounds for $\overline{M_2}$

In this section, using the reduction theorem for M_2 , [7], we directly compute $\overline{M_2}$ for particular trees. For other kind of trees, we give bounds on $\overline{M_2}$.

In [7], the authors directly computed M_2 for generalized stars (for the notion of generalized star see [6]).

25 Definition 3.1. [6] Let *T* be a tree and x_0 be a vertex of *T*. A generalized star *T* with central vertex x_0 is a tree such that $T - \{x_0\}$ is a union of paths (arms), each one of them is adjacent to x_0 by an endpoint.

Proposition 3.2. [7] Let *T* be a generalized star on $n \ge 2$ vertices, with *f* arms of length 1 and *g* arms of length at least 2. Then:

(A) If $g \ge 2$, then $M_2(T) = f + 2g - 2$.

- (B) If $g \le 1$ and T is not a path, then $M_2(T) = f + g$.
- (C) If T is a path, then $M_2(T) = 2$.

Definition 3.3. [7] (*Peripheral HDV*, *peripheral arm*) *Given a tree T and a high-degree vertex v*, *v* is a peripheral HDV of T if and only if there is a branch of T at v that contains all the other high-degree vertices in T. A peripheral arm of a tree T is a branch of T at a peripheral HDV such that the branch does not itself contain any HDV. 5

Definition 3.4. Throughout this section, we will consider a peripheral HDV v in a tree T.

The subtree of *T* consisting of *v* and its peripheral arms will be called *S* - however, if *v* is the only HDV in *T*, we will let *S* be *v* and all but one of its peripheral arms (chosen arbitrarily). The point is that *S* should be a generalized star containing everything except a single branch of *T* at *v*.

Let w be the one vertex adjacent to v that is not in S. We denote by $(T-S)+_w K_1$ the tree obtained from $T-S_{10}$ by putting a vertex adjacent to w.

Theorem 3.5. [7] (M_2 Reduction Theorem) Let T be a tree and v a peripheral HDV, with S as defined earlier in this section. Suppose that S has f arms of length 1 and g arms of length at least 2. Then:

- (A) If $g \ge 2$, then $M_2(T S) = M_2(T) f 2g + 2$. (B) If g = 1, then $M_2(T - S) = M_2(T) - f - 2g + 2$.
- (B) If $g \le 1$, then $M_2((T-S) +_w K_1) = M_2(T) f g + 1$.

In [1] a class of trees was introduced that contains the generalized stars, the superstars.

Definition 3.6. [1] Let *T* be a tree and x_0 be a vertex of *T*. A superstar *T* with central vertex x_0 is a tree such that $T - \{x_0\}$ is a union of paths.

The focus of this section is to directly compute $\overline{M_2}$ for a subclass of superstars.

Definition 3.7. Let *T* be a superstar with central vertex x_0 . A small pincer of *T* is a path, *P*, of $T - \{x_0\}$ such 20 *that:*

- (1) *P* is adjacent to x_0 by a vertex *u* of degree two in *P*.
- (2) At least one path of P u is a vertex.

Definition 3.8. Let *T* be a superstar with central vertex x_0 . *T* is a small superstar if all paths of $T - \{x_0\}$ are small pincers or are adjacent to x_0 by an endpoint (arms). 25

Example 3.9. The superstar *T* of Example 2.4 is a small superstar with central vertex 4. The superstar *T* of Example 2.5 is a small superstar with central vertex 5. All stars and generalized stars are small superstars.

The following superstar is not a small superstar

Definition 3.10. Let T be a tree and A an assignment of $(M_1(T), p_2, 1^l)$ to T.

(1) We refer to A as an $\overline{M_2}$ assignment to T.

(2) If $M_1(T) + p_2 = \overline{M_2}(T)$, we refer to A as an $\overline{M_2}$ -maximal assignment to T.

30

12 — Rosário Fernandes

5

Remark 3.11. Let *T* be a tree and $A = ((A_1, V_1), (A_2, V_2))$ an $\overline{M_2}$ assignment of $(M_1(T), p_2, 1^l)$ to *T*. Because $M_1(T) = |A_1| - |V_1|$,

- (1) All components of $T V_1$ are in A_1 .
- (2) We can assume that if $v \in V_1$ then v is a HDV.
- (3) Since all components of $T V_1$ are paths, if v if a peripheral HDV of degree greater or equal to 4 in T then $v \in V_1$.
- (4) If v is a peripheral HDV, $v \in V_1$ and all peripheral arms have length 1 then they are in A_1 and no one is in A_2 (see Lemma 2.3).

Remark 3.12. Let *T* be a tree and $A = ((A_1, V_1), (A_2, V_2))$ an $\overline{M_2}$ -maximal assignment of $(M_1(T), p_2, 1^l)$ to *T*. 10 Because $\overline{M_2}(T) = |A_1| - |V_1| + |A_2| - |V_2|$,

- (1) All components of $T V_2$ with more than one vertex are in A_2 .
- (2) We can assume that if $v \in V_2$ then v is a HDV.
- (3) All components of $T V_2$ with one vertex that are not components of $T V_1$ are in A_2 .
- (4) If v is a peripheral HDV, $v \in V_1$ and all peripheral arms have length 1 then using Remark 3.11, 4, we conclude that $v \notin V_2$.
 - (5) If v if a peripheral HDV, $v \in V_1$ and all peripheral arms have length 1, except one, then there is an $\overline{M_2}$ -maximal assignment of $(M_1(T), p_2, 1^l)$ to T such that $v \notin V_2$.

Remark 3.13. In some proofs we construct an $\overline{M_2}$ -maximal (or simply an $\overline{M_2}$) assignment of $(M_1(T), p_2, 1^l)$ to *T*. for some integer p_2 . In these cases, first we construct an $\overline{M_2}$ assignment of $(M_1(T), p_2, 1^l)$ to *T*, $\mathcal{A} =$

20 $((A_1, V_1), (A_2, V_2))$ by putting the elements in A_1 and in V_1 , next we put the elements in A_2 and in V_2 , using Remarks 3.11 and 3.12. This construction is in such a way that $M_1(T) = |A_1| - |V_1|$ and $M_1(T) + p_2 = |A_1| - |V_1| + |A_2| - |V_2|$. After using Lemma 2.3 we conclude condition 2 of Definition 2.1 and by Corollary 2.13, we say that $\overline{M_2}(T) \ge M_1(T) + p_2$.

Proposition 3.14. Let *T* be a small superstar on $n \ge 2$ vertices, with *f* arms of length 1, *g* arms of length at least 25 2 and h small pincers, with $f + g \ge 2$ or $h \ge 2$. Then:

- (A) If $g \ge 2$, then $\overline{M_2}(T) = 2h + f + 2g 2$.
- (B) If $g \leq 1$ and T is not a path, then $\overline{M_2}(T) = 2h + f + g$.
- (C) If T is a path, then $\overline{M_2}(T) = 2$.

Proof Let *x* be the central vertex of *T*. If *S* is a small pincer of *T*, by Theorem 3.5,

$$M_2((T-S) +_x K_1) = M_2(T) - 1.$$

Since *T* has *h* small pincers,

$$M_2(T') = M_2(T) - h,$$

where T' is obtained from T by removing all small pincers and by putting h vertices adjacent to x. Consequently, T' is a generalized star with f + h arms of length 1 and g arms of length at least 2. Using Proposition 3.2

 $M_2(T') = \begin{cases} f+h+2g-2 & \text{if } g \ge 2\\ f+h+g & \text{if } g \le 1 \text{ and } T' \text{ is not a path}\\ 2 & \text{if } T' \text{ is a path.} \end{cases}$

Therefore,

$$M_2(T) = \begin{cases} f + 2h + 2g - 2 & \text{if } g \ge 2\\ f + 2h + g & \text{if } g \le 1 \text{ and } T' \text{ is not a path}\\ 2 + h & \text{if } T' \text{ is a path.} \end{cases}$$

Note that if T' is a path with h = 2 and f = g = 0 then T is not a path and $M_2(T) = M_2(T') + h = 2 + 2 = 30$ 4 = f + 2h + g. By hypothesis, if h < 2 then $f + g \ge 2$. In this case, if T' is a path then h = 0 and f + g = 2. Consequently, T is a path.

So, we conclude that

$$M_2(T) = \begin{cases} f + 2h + 2g - 2 & \text{if } g \ge 2\\ f + 2h + g & \text{if } g \le 1 \text{ and } T \text{ is not a path}\\ 2 & \text{if } T \text{ is a path.} \end{cases}$$

Since $\overline{M_2}(T) \leq M_2(T)$, we have

(A) If $g \ge 2$, then $\overline{M_2}(T) \le 2h + f + 2g - 2$.

(B) If $g \le 1$ and *T* is not a path, then $\overline{M_2}(T) \le 2h + f + g$.

(C) If *T* is a path, then $\overline{M_2}(T) \le 2$.

Conversely, since *T* is a tree,

$$M_1(T) = \begin{cases} f + h + g - 1 & \text{if } f + g \ge 2\\ h + 1 & \text{if } f + g \le 1. \end{cases}$$

We are going to construct an $\overline{M_2}$ assignment of $(M_1(T), p_2, 1^l)$, for some integer p_2 , to T (see Remark 3.13). 5 **Case 1** If $f + g \ge 2$, we put the central vertex of T in V_1 and we put the f + h + g paths obtained by removing the central vertex of T in A_1 .

If $g \ge 2$, we put the central vertex of T in V_2 and we put the h + g paths of length at least 2, obtained by removing the central vertex of T in A_2 . So, $|A_1| - |V_1| = f + g + h - 1 = M_1(T)$. Using Remark 3.13, $\overline{M_2}(T) \ge f + h + g - 1 + h + g - 1 = f + 2h + 2g - 2$.

If $g \le 1$, we put the central vertex of each small pincer of T in V_2 , we put the 2h + 1 subtrees obtained by removing the central vertex of all small pincers of T in A_2 . Since $|A_1| - |V_1| = f + g + h - 1 = M_1(T)$, using Remark 3.13, $\overline{M_2}(T) \ge f + h + g - 1 + 2h + 1 - h = f + 2h + g$.

Note that if *T* is a path and $f + g \ge 2$ then f + g = 2 and h = 0. Thus, if g = 2, then $\overline{M_2}(T) \ge f + 2h + 2g - 2 = 2$ and if $g \le 1$, then $\overline{M_2}(T) \ge f + 2h + g = 2$.

Case 2 If $f + g \le 1$ then $h \ge 2$ and *T* is not a path. We put the central vertex of each small pincer of *T* in V_1 and we put the 2h + 1 subtrees obtained by removing the central vertex of all small pincers of *T* in A_1 . We put the central vertex of *T* in V_2 and we put the f + h + g paths obtained by removing the central vertex of *T* in A_1 . We in A_2 . Since $|A_1| - |V_1| = h + 1 = M_1(T)$, by Remark 3.13, $\overline{M_2}(T) \ge h + 1 + f + g + h - 1 = f + g + 2h$.

Consequently,

- (A) If $g \ge 2$, then $\overline{M_2}(T) \ge 2h + f + 2g 2$.
- (B) If $g \le 1$ and *T* is not a path, then $\overline{M_2}(T) \ge 2h + f + g$.
- (C) If *T* is a path, then $\overline{M_2}(T) \ge 2$.

Therefore,

(A) If $g \ge 2$, then $\overline{M_2}(T) = 2h + f + 2g - 2$.

(B) If $g \le 1$ and *T* is not a path, then $\overline{M_2}(T) = 2h + f + g$.

(C) If *T* is a path, then $\overline{M_2}(T) = 2$.

Proposition 3.15. Let *T* be a tree and *v* a peripheral HDV, with *S* as defined earlier in this section. Suppose that *S* has 3 arms of length 1 and 0 arms of length at least 2 and $T \neq S$. Then

$$\overline{M_2}(T-S) + 2 \le \overline{M_2}(T) \le \overline{M_2}(T-S) + 3$$

Proof Let $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$ be an $\overline{M_2}$ -maximal assignment to T. We are going to construct an $\overline{M_2}$ assignment to T - S, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ (see Remark 3.13). Note that $M_1(T - S) = M_1(T) - 2$. Because v has degree 4, by Remark 3.11, 3, $v \in V_1$, the peripheral arms of S are in \mathcal{A}_1 and no one is in \mathcal{A}_2 . Using Remark 30 3.12, 4, $v \notin V_2$. So, let F be the component of $T - V_2$ containing S. By Remark 3.12, 1, F is in \mathcal{A}_2 .

Let $\mathcal{A}'_1 = \mathcal{A}_1 \setminus \{\text{the peripheral arms of } S\}, V'_1 = V_1 \setminus \{v\}, V'_2 = V_2 \text{ and } V'_2 = V_2$

$$\mathcal{A}_{2}^{'} = \begin{cases} \mathcal{A}_{2} \setminus \{F\} & \text{if } \mathcal{A}_{2} \neq \{F\} \\ T - S & \text{if } \mathcal{A}_{2} = \{F\} \end{cases}$$

15

20

25

By Remark 3.13, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ is an $\overline{M_2}$ assignment to T - S and $\overline{M_2}(T - S) \ge \overline{M_2}(T) - 2 - 1 = \overline{M_2}(T) - 3$.

Let $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$ be an $\overline{M_2}$ -maximal assignment to T - S. We are going to construct an $\overline{M_2}$ assignment to T, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ (see Remark 3.13). Note that $M_1(T) = M_1(T - S) + 2$. Let w be the 5 vertex of T - S adjacent to v in T. If $w \notin V_2$ then let R be the component of $(T - S) - V_2$ containing w and let P be the component of $T - V_2$ containing S.

Let $\mathcal{A}_{1}^{'} = \mathcal{A}_{1} \cup \{$ the peripheral arms of $S \}$, $V_{1}^{'} = V_{1} \cup \{v\}$, $V_{2}^{'} = V_{2}$ and

$$\mathcal{A}_{2}^{'} = \begin{cases} (\mathcal{A}_{2} \setminus \{R\}) \cup \{P\} & \text{if } R \in \mathcal{A}_{2} \text{ and } w \notin V_{2} \\ \mathcal{A}_{2} & \text{otherwise} \end{cases}$$

By Remark 3.13, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ is an $\overline{M_2}$ assignment to T and $\overline{M_2}(T) \ge \overline{M_2}(T-S) + 2$.

Proposition 3.16. Let *T* be a tree and *v* a peripheral HDV, with *S* as defined earlier in this section. Suppose that *S* has 1 arm of length 1 and 1 arm of length at least 2 (or *T* has 2 arms of length 1 and 0 arms of length at least 2) and $T \neq S$. Then

$$\overline{M_2}(T-S)+1 \leq \overline{M_2}(T) \leq \overline{M_2}(T-S)+2.$$

Proof Let $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$ be an $\overline{M_2}$ -maximal assignment to T. We are going to construct an $\overline{M_2}$ assignment to T - S, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ (see Remark 3.13). Note that $M_1(T - S) = M_1(T) - 1$.

10 Using Remark 3.11, 1, if v is in V_1 , then the peripheral arms of S - v are in A_1 . Using Remark 3.12, 5, without loss of generality, we can assume that $v \notin V_2$. Let F be the component of $T - V_2$ containing S. By Remark 3.12, 1 and 3, F is in A_2 .

Let $\mathcal{A}_{1}^{'} = \mathcal{A}_{1} \setminus \{\text{the peripheral arms of } S\}, V_{1}^{'} = V_{1} \setminus \{v\}, V_{2}^{'} = V_{2} \text{ and } V_{2} \text{ and$

$$\mathcal{A}_{2}^{'} = \begin{cases} \mathcal{A}_{2} \setminus \{F\} & \text{if } \mathcal{A}_{2} \neq \{F\} \\ T - S & \text{if } \mathcal{A}_{2} = \{F\} \end{cases}$$

By Remark 3.13, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ is an $\overline{M_2}$ assignment to T - S and $\overline{M_2}(T - S) \ge \overline{M_2}(T) - 1 - 1 = \overline{M_2}(T) - 2$.

If *v* is not in V_1 , since *v* has degree 3 in *T*, then $w \in V_1$. By Remark 3.11, 1, *S* is in A_1 . By Remark 3.12, 3, we can assume, without loss of generality, that $v \in V_2$ and the peripheral arms of *S* are in A_2 .

Let $\mathcal{A}'_1 = \mathcal{A}_1 \setminus \{S\}$, $V'_1 = V_1$, $V'_2 = V_2 \setminus \{v\}$, $\mathcal{A}'_2 = \mathcal{A}_2 \setminus \{\text{the peripheral arms of } S\}$.

By Remark 3.13, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ is an $\overline{M_2}$ assignment to T - S and $\overline{M_2}(T - S) \ge \overline{M_2}(T) - 1 - 1 = \overline{M_2}(T) - 2$.

Let $A = ((A_1, V_1), (A_2, V_2))$ be an $\overline{M_2}$ -maximal assignment to T - S. We are going to construct an $\overline{M_2}$ assignment to T, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ (see Remark 3.13). Note that $M_1(T) = M_1(T - S) + 1$. Let w be the vertex of T - S adjacent to v in T. If $w \notin V_2$ then let F be the component of $(T - S) - V_2$ containing w and let P be the component of $T - V_2$ containing S.

Let $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{$ the peripheral arms of $S \}$, $V'_1 = V_1 \cup \{v\}$, $V'_2 = V_2$ and

$$\mathcal{A}_{2}^{'} = \begin{cases} (\mathcal{A}_{2} \setminus \{F\}) \cup \{P\} & \text{if } F \in \mathcal{A}_{2} \text{ and } w \notin V_{2} \\ \mathcal{A}_{2} & \text{otherwise} \end{cases}$$

By Remark 3.13, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ is an $\overline{M_2}$ assignment to T and $\overline{M_2}(T) \ge \overline{M_2}(T-S) + 1$.

25 Example 3.17. Let T be the following tree

Let H be the subtree obtained from T by removing vertices 11, 12, 13. By Proposition 3.16,

 $\overline{M_2}(H) + 1 \le \overline{M_2}(T) \le \overline{M_2}(H) + 2.$

Since *H* is a small superstar with central vertex 4, by Proposition 3.14, $\overline{M_2}(H) = 4 + 0 + 4 - 2 = 2$. So,

 $5 \leq \overline{M_2}(T) \leq 6.$

4 An algorithm for $\overline{M_2}$

The purpose of this section is to find simple reductions of the initial tree in such a way that we know the effect of each reduction on $\overline{M_2}$. The process may be continued until a small superstar, for which $\overline{M_2}$ is known (Proposition 3.14), or until a subtree for which $\overline{M_2}$ has bounds (Section 3).

Definition 4.1. (*Peripheral SHDV, peripheral super path*) Let *T* be a tree that is not a small superstar. A peripheral superstar high degree vertex (SHDV) v of *T* is an HDV vertex of *T* such that

- [(1) there is a unique subtree of T v, R, that contains high-degree vertices;
- [(2) T R is a small superstar;

[(3) if $w \in R$ and w is adjacent to v, then w does not satisfy 1, 2.

A peripheral super path of *T* at *v* (*v* is a SHDV) is a path of (T - R) - v. There are two kinds of peripheral super paths of *T* at *v* (SHDV): peripheral arms and small pincers.

Example 4.2. Consider the tree T of Example 3.17.

The vertices 4 and 8 are peripheral superstar high degree vertices.

The vertex 2 is not a peripheral superstar high degree vertex because it is adjacent to vertex 4 and this vertex 15 satisfies conditions 1 and 2 of Definition 4.1.

The subtree of T generated by vertices 1, 2, 3 *is a peripheral super path of T at* 4, *but it is not a peripheral arm of T at* 4 (*it is a small pincer*).

Definition 4.3. Throughout this section, we will consider a peripheral SHDV v in a tree T that is not a small superstar. The subtree of T consisting of v and its peripheral super paths will be called Q. Let w be the one 20 vertex adjacent to v that is not in Q.

Remark 4.4. Let *T* be a tree and $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$ an $\overline{M_2}$ assignment of $(M_1(T), p_2, 1^l)$ to *T*. Because $M_1(T) = |\mathcal{A}_1| - |V_1|$,

- (1) All components of $T V_1$ are in A_1 .
- (2) We can assume that if $v \in V_1$ then v has degree greater than two in T.

25

30

- (3) Since all components of $T V_1$ are paths, if v is a peripheral SHDV of degree greater or equal to 4 in T then $v \in V_1$ or there is at most one peripheral arm adjacent to v and the central vertex of each small pincer adjacent to v is in V_1 .
- (4) If v is a peripheral SHDV, $v \in V_1$ and all peripheral super paths adjacent to v have length 1 then they are in A_1 and no one is in A_2 (see Lemma 2.3).

5

5

Remark 4.5. Let *T* be a tree and $A = ((A_1, V_1), (A_2, V_2))$ an $\overline{M_2}$ -maximal assignment of $(M_1(T), p_2, 1^l)$ to *T*. Because $\overline{M_2}(T) = |A_1| - |V_1| + |A_2| - |V_2|$,

- (1) All components of $T V_2$ with more than one vertex are in A_2 .
- (2) We can assume that if $v \in V_2$ then v has degree greater than two in T.
- (3) All components of $T V_2$ with one vertex that are not components of $T V_1$ are in A_2 .
- (4) If v is a peripheral SHDV, $v \in V_1$ and all peripheral super paths adjacent to v have length 1, then using Remark 4.4, 4, we conclude that $v \notin V_2$.
- (5) If v is a peripheral SHDV, $v \in V_1$ and all peripheral super paths adjacent to v have length 1, except one, then there is an $\overline{M_2}$ -maximal assignment of $(M_1(T), p_2, 1^l)$ to T such that $v \notin V_2$.
- 10 Remark 4.6. In some proofs we construct an M₂-maximal (or simply an M₂) assignment of (M₁(T), p₂, 1^l) to T. for some integer p₂. In these cases, first we construct an M₂ assignment of (M₁(T), p₂, 1^l) to T, A = ((A₁, V₁), (A₂, V₂)) by putting the elements in A₁ and in V₁, next we put the elements in A₂ and in V₂, using Remarks 4.4 and 4.5. This construction is in such a way that M₁(T) = |A₁| |V₁| and M₁(T) + p₂ = |A₁| |V₁| + |A₂| |V₂|. After using Lemma 2.3 we conclude condition 2 of Definition 2.1 and by Corollary 2.13, 15 we say that M₂(T) ≥ M₁(T) + p₂.

Proposition 4.7. Let *T* be a tree that is not a small superstar and *v* a peripheral SHDV, with *Q* as defined earlier in this section. Suppose that *Q* has $h \ge 1$ small pincers and the degree of *v* in *T* is greater than 4. Let *H* be the graph obtained from *T* by removing one small pincer of *Q*. Then

$$\overline{M_2}(H) = \overline{M_2}(T) - 2.$$

Proof By Proposition 3.16, $\overline{M_2}(H) \ge \overline{M_2}(T) - 2$.

Let $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$ be an $\overline{M_2}$ -maximal assignment to H. We are going to construct an $\overline{M_2}$ assignment to T, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ (see Remark 4.6). Note that $M_1(T) = M_1(H) + 1$. Since the degree of v in T is greater than 4, we conclude that the degree of v in H is greater than 3. By Remark 4.4, 3 and Remark 4.5, 1, 20 3, we have $v \in V_1 \cup V_2$.

Suppose that $v \in V_1 \cap V_2$. Let *P* be the small pincer T - H. Let $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{P\}$, $V'_1 = V_1$, $V'_2 = V_2$ and $\mathcal{A}'_2 = \mathcal{A}_2 \cup \{P\}$. By Remark 4.6, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ is an $\overline{M_2}$ assignment to *T* and $\overline{M_2}(T) \ge \overline{M_2}(H) + 2$. Suppose that $v \in V_1 \setminus V_2$. Let *x* be the central vertex of the small pincer, *P*, of T - H. Let $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{P\}$, $V'_2 = V_2$, $\mathcal{A}'_2 = \mathcal{A}_2 \cup \{P\}$.

25 Let $A'_1 = A_1 \cup \{P\}$, $V'_1 = V_1$, $A'_2 = A_2 \cup \{$ the peripheral arms of P at $x\}$ and $V'_2 = V_2 \cup \{x\}$. By Remark 4.6, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ is an $\overline{M_2}$ assignment to T and $\overline{M_2}(T) \ge \overline{M_2}(H) + 2$. Suppose that $v \in V_2 \setminus V_1$. Let x be the central vertex of the small pincer, P, of T - H. Let $V'_1 = V_1 \cup \{x\}$, $A'_1 = A_1 \cup \{$ the peripheral arms of P at $x\}$., $A'_2 = A_2 \cup \{P\}$ and $V'_2 = V_2$. By Remark 4.6, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ is an $\overline{M_2}$ assignment to T and $\overline{M_2}(T) \ge \overline{M_2}(H) + 2$. 30 Consequently, $\overline{M_2}(T) = \overline{M_2}(H) + 2$.

Lemma 4.8. Let *T* be a tree that is not a small superstar. Suppose that *v* is a peripheral SHDV in *T* with *Q*, *w* as defined earlier in this section. Then, there exists an $\overline{M_2}$ -maximal assignment to *T*, $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$, in which $v \in V_1 \cup V_2$.

Moreover,

- 35 (1) If v has at least two peripheral arms of length at least 2, then there exists an $\overline{M_2}$ -maximal assignment, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ in which $v \in V'_1 \cap V'_2$.
 - (2) If v has at most one peripheral arm of length at least 2 and w has degree two in T, then there exists an $\overline{M_2}$ -maximal assignment, $\mathcal{A}^{"} = ((\mathcal{A}_1^{"}, V_1^{"}), (\mathcal{A}_2^{"}, V_2^{"}))$ such that v is in exactly one $V_1^{"}$ or $V_2^{"}$.
 - (3) If Q has f peripheral arms of length 1 and $g \le 1$ peripheral arms of length at least 2, f + g > 2 and $\mathcal{A}^{'''} = ((\mathcal{A}_1^{'''}, V_1^{'''}), (\mathcal{A}_2^{'''}, V_2^{'''}))$ is an $\overline{M_2}$ -maximal assignment to T, then $v \in V_1^{'''}$.

Proof Let $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$ be an $\overline{M_2}$ -maximal assignment to T in which $v \notin V_1 \cup V_2$. Suppose that Q has f peripheral arms of length 1 and g peripheral arms of length at least 2. We are going to construct an $\overline{M_2}$ -maximal assignment to T, $\mathcal{B} = ((\mathcal{B}_1, U_1), (\mathcal{B}_2, U_2))$ (see Remark 4.6).

If $f + g \ge 2$, then by Remark 4.4, 1, the component, *R*, of $T - V_1$ containing *v* is in A_1 . Note that the peripheral arms of *Q* might be in *R*.

Let $\mathcal{B}_1 = (\mathcal{A}_1 \setminus \{R\}) \cup \{\text{two peripheral arms of } Q\}, U_1 = V_1 \cup \{v\}, \mathcal{B}_2 = \mathcal{A}_2 \text{ and } U_2 = V_2.$

By Remark 4.6 and the cardinality of \mathcal{B} , $\mathcal{B} = ((\mathcal{B}_1, U_1), (\mathcal{A}_2, V_2))$ is an $\overline{M_2}$ -maximal assignment to T in which $v \in U_1$.

If $f + g \le 1$, by Remark 4.4, 3 and Remark 4.5, 1 and 3, the central vertex of each small pincer of Q is in $V_1 \setminus V_2$. By Remark 4.5, 1, the component, R, of $T - V_2$ containing v, is in A_2 .

Let $\mathcal{B}_1 = \mathcal{A}_1$, $U_1 = V_1$, $\mathcal{B}_2 = (\mathcal{A}_1 \setminus \{R\}) \cup \{\text{two peripheral super paths of } Q\}$ and $U_2 = V_2 \cup \{v\}$.

By Remark 4.6 and the cardinality of \mathcal{B} , $\mathcal{B} = ((\mathcal{B}_1, U_1), (\mathcal{B}_2, U_2))$ is an $\overline{M_2}$ -maximal assignment to T in which $v \in U_2$. So, there exists an $\overline{M_2}$ -maximal assignment to $T \mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$ in which $v \in V_1 \cup V_2$.

(1) By what we just proved, there exists an $\overline{M_2}$ -maximal assignment to *T*,

$$\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2)),$$

in which $v \in V_1 \cup V_2$. Suppose without loss of generality that $v \in V_1 \setminus V_2$. We are going to construct an $\overline{M_2}$ -maximal assignment to T, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$, in which $v \in V'_1 \cap V'_2$. (see Remark 4.6). By 15 Remark 4.5, 1 and 3, the component, R, of $T - V_2$ containing v, is in \mathcal{A}_2 . Note that the peripheral arms of Q might be in R.

Let $\mathcal{A}_{1}^{'} = \mathcal{A}_{1}, n V_{1}^{'} = V_{1}, V_{2}^{'} = V_{2} \cup \{v\}$ and

 $\mathcal{A}_{2}^{'} = (\mathcal{A}_{2} \setminus \{R\}) \cup \{\text{two peripheral arms of length at least two of } Q\}.$

Since $|\mathcal{A}_2| - |V_2| = |\mathcal{A}'_2| - |V'_2|$, by Remark 4.6 and the cardinality of \mathcal{A}' , $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ is an $\overline{M_2}$ -maximal assignment to T, in which $v \in V'_1 \cap V'_2$.

(2) By what we just proved, there exists an $\overline{M_2}$ -maximal assignment,

$$\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2)),$$

in which $v \in V_1 \cup V_2$. Suppose $v \in V_1 \cap V_2$. We are going to construct an $\overline{M_2}$ -maximal assignment 20 to $T, \mathcal{A}'' = ((\mathcal{A}''_1, V''_1), (\mathcal{A}''_2, V''_2))$, in which $v \in V''_1 \setminus V''_2$. (see Remark 4.6) Using Remark 4.4, 1, each peripheral super path of Q is in \mathcal{A}_1 . By Remark 4.5, 1, the longer arm of Q and the small pincers of Q are in \mathcal{A}_2 and there is not a peripheral arm of length 1 of Q in \mathcal{A}_2 . By Remark 4.5, 2, $w \notin V_2$. Let R be the component of $T - V_2$ containing w and let F be the component of $T - ((V_2 \setminus \{v\}) \cup \{$ the central vertex of each small pincer of $Q\})$ containing v and w. By Remark 4.5, 1, $F \in \mathcal{A}_2$. 25 Let $\mathcal{A}''_1 = \mathcal{A}_1, V''_1 = V_1$,

 $\mathcal{A}_{2}^{''} = (\mathcal{A}_{2} \setminus \{ \text{the peripheral super paths of length at least two of } Q, R \}) \cup \\ \cup \{ \text{the peripheral arms of each small pincer of } Q, F \}$

and $V_2^{"} = (V_2 \setminus \{v\}) \cup \{$ the central vertex of each small pincer of $Q\}$. If Q does not have a longer arm or $R \notin A_2$ then $|A_2^{"}| - |V_2^{"}| > |A_2| - |V_2|$. This is impossible because A is an $\overline{M_2}$ -maximal assignment to T. So, $v \notin V_1 \cap V_2$. If Q has a longer arm and $R \in A_2$ then $|A_2| - |V_2| = |A_2^{"}| - |V_2^{"}|$. By Remark 4.6 and using the cardinality of $A^{"}$, $A^{"} = ((A_1^{"}, V_1^{"}), (A_2^{"}, V_2^{"}))$ is an $\overline{M_2}$ -maximal assignment to T, in which v in $V_1^{"} \setminus V_2^{"}$. 30

(3) Let $\mathcal{A}^{'''} = ((\mathcal{A}_1^{'''}, V_1^{'''}), (\mathcal{A}_2^{'''}, V_2^{'''}))$ be an $\overline{M_2}$ -maximal assignment to *T*. By Remark 4.4, 1, each peripheral super path of *Q* belongs to $\mathcal{A}_1^{'''}$ and $v \in V_1^{'''}$.

Lemma 4.9. Let *T* be a tree that is not a small superstar. Suppose that *v* is a peripheral SHDV in *T* with *Q*, *w* as defined earlier in this section. Suppose that *Q* has *f* peripheral arms of length 1 and $g \le 1$ peripheral arms of length at least 2 and the degree of *w* in *T* is 2. Then, there exists an $\overline{M_2}$ -maximal assignment to *T*, 35 $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$, in which:

5

18 — Rosário Fernandes

- (1) If $f + g \ge 1$, then $v \in V_1$ and the central vertex of each small pincer of Q belongs to V_2 .
- (2) If f + g = 0, then $v \in V_2$ and the central vertex of each small pincer of Q belongs to V_1 .

Proof

5

(1) By 2 of Lemma 4.8, let $A = ((A_1, V_1), (A_2, V_2))$ be an $\overline{M_2}$ -maximal assignment to T such that v is exactly one V_1 or V_2 .

If f + g > 1, since v is a peripheral SHDV and $w \notin V_1$ (the degree of w in T is 2), by Remark 4.4, 1, each peripheral super path of Q belongs to A_1 and $v \in V_1$. In this case, because $v \notin V_2$ and A is an $\overline{M_2}$ -maximal assignment to T, we conclude that the central vertex of each small pincer of Q is in V_2 and the peripheral arms of each small pincer of Q are in A_2 .

Suppose that *f* + *g* = 1 and *v* ∈ *V*₂. then by Remark 4.4, 1, the central vertex of each small pincer of *Q* is in *V*₁ and the peripheral arms of each small pincer of *Q* are in *A*₁. By Remark 4.5, 1 and 3, the peripheral super paths of *Q* are in *A*₂. Since *w* has degree two in *T*, we can assume that *w* ∉ *V*₁ ∪ *V*₂. We are going to construct an *M*₂-maximal assignment to *T*, *A*[′] = ((*A*[′]₁, *V*[′]₁), (*A*[′]₂, *V*[′]₂)), in which *v* ∈ *V*₁ and the central vertex of each small pincer of *Q* is in *V*₂ (see Remark 4.6). Let *R* be the component of *T* − *V*₁ containing *v*, *w*. By Remark 4.4, 1, *R* ∈ *A*₁. Let *P* be the component of *T* − ((*V*₂ \ {*v*})) ∪ {the central vertex of each small pincer of *Q*}), containing *v* and *w*. Let *C* be the component of *T* − (*V*₁ ∪ {*v*}), containing *w*. Note that *B* ≠ *C*.

Let

 $\mathcal{A}'_1 = (\mathcal{A}_1 \setminus \{\text{the peripheral arms of each small pincer of } Q, R\}) \cup \cup \{C, \text{ the peripheral super paths of } Q\},$

 $V'_1 = (V_1 \setminus \{\text{the central vertex of each small pincer of } Q\}) \cup \{v\},\$

 $\mathcal{A}_{2}^{'} = (\mathcal{A}_{2} \setminus \{\text{the peripheral super paths of } Q, P\}) \cup \\ \cup \{\text{the peripheral arms of each small pincer of } Q, B\}$

and $V'_2 = (V_2 \setminus \{v\}) \cup \{\text{the central vertex of each small pincer of } Q\}.$

- Since $|\mathcal{A}'_1| |V'_1| = |\mathcal{A}_1| |V_1|$ and $|\mathcal{A}'_2| |V'_2| = |\mathcal{A}_2| |V_2|$ and by Remark 4.6, we get an $\overline{M_2}$ -maximal assignment to T, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$, where $v \in V'_1$ and the central vertex of each small pincer of Q belongs to V'_2 .
 - (2) By 2 of Lemma 4.8, let A = ((A₁, V₁), (A₂, V₂)) be an M₂-maximal assignment to *T* such that *v* is exactly one V₁ or V₂. Since f + g = 0, *v* is a peripheral SHDV and w ∉ V₁, if v ∈ V₁ then by Remark 4.4, 1, the peripheral super paths of *Q* are in A₁. Let *F* be the component of *T* − V₁ containing *w*. By Remark 4.4, 1, *F* ∈ A₁. Let *H* be the component of *T* − (V₁ \ {v}) ∪ {the central vertex of each small pincer of *Q*}) containing *w* and *v*. Let

 $\mathcal{A}_{1}^{'} = (\mathcal{A}_{1} \setminus \{\text{the peripheral super paths of } Q, F\}) \cup \\ \cup \{\text{the peripheral arms of each small pincer of } Q, H\},\$

 $V'_1 = (V_1 \setminus \{v\}) \cup \{\text{the central vertex of each small pincer of } Q\}$. Since $|\mathcal{A}'_1| - |V'_1| = |\mathcal{A}_1| - |V_1| + 1|$ we conclude that \mathcal{A} is not an $\overline{M_2}$ -maximal assignment to T. Impossible. Consequently, $v \notin V_1$ and $v \in V_2$. Therefore, the central vertex of each small pincer of Q belongs to V_1 .

Theorem 4.10. ($\overline{M_2}$ Reduction Theorem) Let *T* be a tree that is not a small superstar and *v* a peripheral SHDV, with *Q*, *w* as defined earlier in this section. Suppose that *Q* has *f* peripheral arms of length 1, *g* peripheral arms of length at least 2 and h small pincers. Then:

- (A) If $g \ge 2$, then $\overline{M_2}(T-Q) = \overline{M_2}(T) f 2g 2h + 2$.
- 30 (B) If $g \le 1$ and the degree of w in T is 2, then $\overline{M_2}((T-Q) +_w K_1) = \overline{M_2}(T) f g 2h + 1$, where $(+_w K_1)$ means that we put a vertex adjacent to w.
 - (C) If $g \le 1$, the degree of w in T is greater than 2 and f + g > 2 then

$$\overline{M_2}((T-Q)+_w S_4)=\overline{M_2}(T)-f-g-2h+3,$$

20

where S_4 is the star with 3 arms of length 1 and $(+_w S_4)$ means that S_4 is adjacent to w by the central vertex.

Proof Part A: Let $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$ be an $\overline{M_2}$ -maximal assignment to T - Q. We are going to construct an $\overline{M_2}$ assignment to T, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ (see Remark 4.6).

Let $\mathcal{A}'_1 = \mathcal{A}_1 \cup \{$ the peripheral super paths of $Q\}$, $V'_1 = V_1 \cup \{v\}$, $\mathcal{A}'_2 = \mathcal{A}_2 \cup \{$ the peripheral super paths 5 of lenght at least two of $Q\}$ and $V'_2 = V_2 \cup \{v\}$.

Since $M_1(T) = M_1(T - Q) + f + g + h - 1$, by Remark 4.6, this creates an $\overline{M_2}$ assignment to $T, A' = ((A'_1, V'_1), (A'_2, V'_2))$ and $\overline{M_2}(T) \ge \overline{M_2}(T - Q) + f + g + h - 1 + g + h - 1 = \overline{M_2}(T - Q) + f + 2g + 2h - 2$.

Conversely, by Lemma 4.8, 1, there exists an $\overline{M_2}$ -maximal assignment to T, $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$, in which v is in $V_1 \cap V_2$. We are going to construct an $\overline{M_2}$ assignment to T - Q, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$. By 10 Remarks 4.4, 1 and 4.5, 1, each of the f + g + h peripheral super paths of Q might be in \mathcal{A}_1 and each of the g + h peripheral super paths of length at least 2 of Q might be in \mathcal{A}_2 .

Let $\mathcal{A}_1 = \mathcal{A}_1 \setminus \{\text{the peripheral super paths of } Q\}, V_1 = V_1 \setminus \{v\}, \mathcal{A}_2 = \mathcal{A}_2 \setminus \{\text{ the peripheral super paths of lenght at least two of } Q\}$ and $V_2 = V_2 \setminus \{v\}$.

Since $M_1(T - Q) = M_1(T) - f - g - h + 1$, by Remark 4.6, this creates an $\overline{M_2}$ assignment to T - Q, $A' = 15 ((A'_1, V'_1), (A'_2, V'_2))$ and $\overline{M_2}(T - Q) \ge \overline{M_2}(T) - f - g - h + 1 - g - h + 1 = \overline{M_2}(T) - f - 2g - 2h + 2$. So, we have $\overline{M_2}(T - Q) = \overline{M_2}(T) - f - 2g - 2h + 2$.

Part B: Let $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$ be an $\overline{M_2}$ -maximal assignment to $(T - Q) +_w K_1$. We are going to construct an $\overline{M_2}$ assignment to T, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ (see Remark 4.6). Let R be the component of $((T - Q) +_w K_1) - V_1$ containing K_1 and let U be the component of $((T - Q) +_w K_1) - V_2$ containing K_1 . Since 20 degree of w in T is 2, without loss of generality, by Remarks 4.4, 2, and 4.5, 2, we can assume that $w \in R \cap U$. Consequently, $R \neq K_1$ and $U \neq K_1$. By Remarks 4.4, 1 and 4.5, 1, R is in \mathcal{A}_1 and U is in \mathcal{A}_2 .

Suppose that $f + g \ge 1$. Let *P* be the component of $T - (V_1 \cup \{v\})$ containing *w* and let *H* be the component of $T - (V_2 \cup \{\text{the central vertex of each small pincer of } Q\})$ containing *w* and *v*.

Let $\mathcal{A}'_1 = (\mathcal{A}_1 \setminus \{R\}) \cup \{$ the peripheral super paths of Q, $P\}$, $V'_1 = V_1 \cup \{\nu\}$, $\mathcal{A}'_2 = (\mathcal{A}_2 \setminus \{U\}) \cup 25$ {the peripheral arms of each small pincer of Q, $H\}$ and $V'_2 = V_2 \cup \{$ the central vertex of each small pincer of $Q\}$.

Since $M_1(T) = M_1((T - Q) +_w K_1) + f + g + h - 1$, by Remark 4.6, this creates an $\overline{M_2}$ assignment to T, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ and $\overline{M_2}(T) \ge \overline{M_2}((T - Q) +_w K_1) + f + g + h - 1 + 2h - h = \overline{M_2}((T - Q) +_w K_1) + f + g + 2h - 1$.

Suppose that f + g = 0. Let *B* be the component of $T - (V_2 \cup \{v\})$ containing *w* and let *C* be the component 30 of $T - (V_1 \cup \{\text{the central vertex of each small pincer of } Q\}$ containing *w* and *v*.

Let $\mathcal{A}_{1}^{'} = (\mathcal{A}_{1} \setminus \{R\}) \cup \{\text{the peripheral arms of each small pincer of } Q, C\}, V_{1}^{'} = V_{1} \cup \{\text{ the central vertex of each small pincer of } Q\}, V_{2}^{'} = V_{2} \cup \{v\} \text{ and } \mathcal{A}_{2}^{'} = (\mathcal{A}_{2} \setminus \{U\}) \cup \{\text{the peripheral super paths of } Q, B\}.$

Since $M_1(T) = M_1((T - Q) +_w K_1) + h$, by Remark 4.6, this creates an $\overline{M_2}$ assignment to $T, A' = ((A'_1, V'_1), (A'_2, V'_2))$ and $\overline{M_2}(T) \ge \overline{M_2}((T - Q) +_w K_1) + 2h - h + h - 1 = \overline{M_2}((T - Q) +_w K_1) + f + g + 2h - 1.$ 35

Conversely, suppose that $f + g \ge 1$. By Lemma 4.9, 1, there exists an $\overline{M_2}$ -maximal assignment to T, $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$, in which v is in V_1 and the central vertex of each small pincer of Q is in V_2 . We are going to construct an $\overline{M_2}$ assignment to $(T - Q) +_w K_1$, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ (see Remark 4.6). By Remarks 4.4, 1 and 2, and 4.5, 1 and 3, each of the f + g + h peripheral super paths of Q might be in \mathcal{A}_1 , the peripheral arms of each small pincer of Q might be in \mathcal{A}_2 and $w \notin V_1 \cup V_2$. Let R be the component of $T - V_1$ containing w 40 and let P be the component of $T - V_2$ containing v and w. By Remarks 4.4, 1 and 4.5, 1, $R \in \mathcal{A}_1$ and $P \in \mathcal{A}_2$. Let R' be the component of $((T - Q) +_w K_1) - (V_1 \setminus \{v\})$ containing w and K_1 , and let P' be the component of $((T - Q) +_w K_1) - (V_1 \setminus \{v\})$ containing w and K_1 .

Let $\mathcal{A}_{1}^{'} = (\mathcal{A}_{1} \setminus \{R, \text{ the peripheral super paths of } Q\}) \cup \{R^{'}\}, V_{1}^{'} = V_{1} \setminus \{v\}, \mathcal{A}_{2}^{'} = (\mathcal{A}_{2} \setminus \{P, \text{ the peripheral arms of each small pincer of } Q\}) \cup \{P^{'}\}$ and $V_{2}^{'} = V_{2} \setminus \{\text{the central vertex of each small pincer of } Q\}.$ 45

Since $M_1((T-Q)+_wK_1) = M_1(T)-f-g-h+1$, by Remark 4.6, this creates an $\overline{M_2}$ assignment to $(T-Q)+_wK_1$, $A' = ((A'_1, V'_1), (A'_2, V'_2))$ and $\overline{M_2}((T-Q)+_wK_1) \ge \overline{M_2}(T)-f-g-h+1-2h+h=\overline{M_2}(T)-f-g-2h+1$.

Suppose that f + g = 0. By Lemma 4.9, 2, there exists an $\overline{M_2}$ -maximal assignment to T, $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$, in which v is in V_2 , the central vertex of each small pincer of Q is in V_1 and $w \notin V_1 \cup V_2$. We are going to construct an $\overline{M_2}$ assignment to $(T - Q) +_w K_1$, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$. By Remarks 4.4, 1 and 50

4.5, 1 and 3, each of the *h* small pincers of *Q* might be in A_2 and the peripheral arms of each small pincer of *Q* might be in A_1 . Let *R* be the component of $T - V_1$ containing *v*, *w* and let *P* be the component of $T - V_2$ containing *w*. By Remarks 4.4, 1 and 4.5, 1 and 3, $R \in A_1$ and $P \in A_2$. Let P' be the component of $((T - Q) +_w K_1) - (V_2 \setminus \{v\})$ containing wand K_1 , and let R' be the component of $((T - Q) +_w K_1) - (V_1 \setminus \{v\})$ containing with Q_1 containing *w* and K_1 .

Let $\mathcal{A}'_1 = (\mathcal{A}_1 \setminus \{R, \text{ the peripheral arms of each small pincer of } Q\}) \cup \{R'\}, V'_1 = V_1 \setminus \{\text{ the central vertex of each small pincer of } Q\}, V'_2 = V_2 \setminus \{v\} \text{ and } \mathcal{A}'_2 = (\mathcal{A}_2 \setminus \{P, \text{ the peripheral super paths of } Q\}) \cup \{P'\}.$

Since $M_1((T - Q) +_w K_1) = M_1(T) - h$, by Remark 4.6, this creates an $\overline{M_2}$ assignment to $(T - Q) +_w K_1$, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ and $\overline{M_2}((T - Q) +_w K_1) \ge \overline{M_2}(T) - 2h + h - h + 1 = \overline{M_2}(T) - f - g - 2h + 1$.

10 So, we have
$$\overline{M_2}((T-Q) +_w K_1) = \overline{M_2}(T) - f - g - 2h + 1$$
.

Part C: Let $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$ be an $\overline{M_2}$ -maximal assignment to $(T - Q) +_w S_4$. We are going to construct an $\overline{M_2}$ assignment to $T, \mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$. Let *x* be the central vertex of S_4 .

By Lemma 4.8, 3 and by Remark 4.4, 1, $x \in V_1$ and the peripheral arms of S_4 are in A_1 . By Remark 4.5, 4, $x \notin V_2$. Let *R* be the component of $((T - Q) +_w S_4) - V_2$ containing S_4 . By Remark 4.5, 1, *R* is in A_2 . Let R' be 15 the component of $T - (V_2 \cup \{$ the central vertex of each small pincer of $Q\}$) containing v.

Let $\mathcal{A}'_1 = (\mathcal{A}_1 \setminus \{\text{the peripheral arms of } S_4\}) \cup \{\text{the peripheral super paths of } Q\}, V'_1 = (V_1 \setminus \{x\}) \cup \{v\}, V'_2 = V_2 \cup \{\text{ the central vertex of each small pincer of } Q\} \text{ and } \mathcal{A}'_2 = (\mathcal{A}_2 \setminus \{R\}) \cup \{\text{ the peripheral arms of each small pincer of } Q, R'\}.$

Since $M_1(T) = M_1((T - Q) +_w S_4) + f + g + h - 3$, by Remark 4.6, this creates an $\overline{M_2}$ assignment to T, 20 $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ and $\overline{M_2}(T) \ge \overline{M_2}((T - Q) +_w S_4) + f + g + h - 3 + 2h - h = \overline{M_2}(T - Q +_w S_4) + f + g + 2h - 3$. Conversely, let $\mathcal{A} = ((\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2))$ be an $\overline{M_2}$ -maximal assignment to T. By Lemma 4.8 3, v is in V_1 .

If $v \in V_2$ then by Remark 4.5, 1, the longer arm and the small pincers of Q are in A_2 . By Remark 4.4, 1, each of the f + g + h peripheral super paths of Q might be in A_1 . If $w \notin V_2$, then let F be the component of $T - V_2$ containing w. Let H be the component of $T - ((V_2 \setminus \{v\}) \cup \{$ the central vertex of each small pincer of $Q\})$ 25 containing v.

Let $\mathcal{B}_1 = \mathcal{A}_1$, $U_1 = V_1$, $\mathcal{B}_2 = (\mathcal{A}_2 \setminus \{F, \text{the longer arm and the small pincers of } Q\} \cup \{\text{ the peripheral arms of each small pincer of } Q, H\}$ and $U_2 = (V_2 \setminus \{v\}) \cup \{\text{the central vertex of each small pincer of } Q\}$.

By Remark 4.6, this creates an $\overline{M_2}$ assignment to T, $\mathcal{B} = ((\mathcal{B}_1, U_1), (\mathcal{B}_2, U_2))$. Using the cardinality of \mathcal{B} we conclude that g = 1, $w \notin V_2$ and $F \in \mathcal{A}_2$.

We are going to construct, $A' = ((A'_1, V'_1), (A'_2, V'_2))$, an $\overline{M_2}$ assignment to $(T - Q) +_w S_4$. Let x be the central vertex of S_4 . Let R' be the component of $((T - Q) +_w S_4) - (V_2 \setminus \{v\})$ containing x.

Let $\mathcal{A}'_1 = (\mathcal{A}_1 \setminus \{\text{the peripheral super paths of } Q\}) \cup \{\text{the peripheral arms of } S_4\}, V'_1 = (V_1 \setminus \{v\}) \cup \{x\}, \mathcal{A}'_2 = (\mathcal{A}_2 \setminus \{F, \text{ the longer arm and the small pincers of } Q\} \cup \{R'\} \text{ and } V'_2 = V_2 \setminus \{v\}.$

Since $M_1((T-Q)+_w S_4) = M_1(T)-f-g-h+3$, by Remark 4.6, this creates an $\overline{M_2}$ assignment to $(T-Q)+_w S_4$, 35 $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ and $\overline{M_2}((T-Q)+_w S_4) \ge \overline{M_2}(T)-f-g-h+3-1-1-h+1+1 = \overline{M_2}(T)-f-g-2h+3$. If $v \notin V_2$, using the maximality of $|\mathcal{A}_2| - |V_2|$, then the central vertex of each small pincer of Q is in V_2 . We are going to construct an $\overline{M_2}$ assignment to $(T-Q)+_w S_4$, $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$. By Remarks 4.4, 1 and 4.5, 1 and 3, each of the f + g + h peripheral super paths of Q might be in \mathcal{A}_1 and the peripheral arms of each small pincer of Q might be in \mathcal{A}_2 . Let R be the component of $T - V_2$ containing v. Let R' be the component of

40 $((T - Q) +_w S_4) - V_2$ containing *x* (*x* is the central vertex of S_4).

Let $\mathcal{A}'_1 = (\mathcal{A}_1 \setminus \{\text{the peripheral super paths of } Q\}) \cup \{\text{the peripheral arms of } S_4\}, V'_1 = (V_1 \setminus \{v\}) \cup \{x\}, \mathcal{A}'_2 = (\mathcal{A}_2 \setminus \{R, \text{ the peripheral arms of each small pincer of } Q \cup \{R'\} \text{ and } V'_2 = V_2 \setminus \{\text{ the central vertex of each small pincer of } Q\}.$

Since $M_1((T-Q)+_w S_4) = M_1(T)-f-g-h+3$, by Remark 4.6, this creates an $\overline{M_2}$ assignment to $(T-Q)+_w S_4$, 45 $\mathcal{A}' = ((\mathcal{A}'_1, V'_1), (\mathcal{A}'_2, V'_2))$ and $\overline{M_2}((T-Q)+_w S_4) \ge \overline{M_2}(T)-f-g-h+3-2h+h=\overline{M_2}(T)-f-g-2h+3$.

Example 4.11. Let *T* be the tree of Example 3.17. Let *Q* be the subtree of *T* generated by vertices 1, 2, 3, 4, 5, 6. Since *Q* is a small superstar (*T* is not a small superstar) with 1 arm of length 1, 1 small pincer, and 7 is a vertex

of T with degree 2, by Theorem 4.10,

$$\overline{M_2}(T) = \overline{M_2}((T-Q) +_w K_1) + 2,$$

where w is the vertex 7. So, $(T - Q) +_{w} K_1$ (that is a small superstar with central vertex 8) is the tree

By Proposition 3.14,

 $\overline{M_2}(((T-Q)+_w K_1)-J) = 2+4-2 = 2.$

Therefore,

$$\overline{M_2}(T) = 6.$$

5

20

Acknowledgement: This work was partially supported by *Fundação para a Ciência e Tecnologia* and was done within the activities of the *Centro de Estruturas Lineares e Combinatórias*.

References

- [1] R. Fernandes. On the inverse eigenvalue problems: the case of superstars. *Electronic Journal of Linear Algebra* **18** (2009), 442-461.
- [2] R. Horn and C.R. Johnson., Matrix Analysis, *Cambridge University Press* New York (1985).
- [3] C.R. Johnson and A.Leal Duarte., The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, *Linear and* 10 *Multilinear Algebra* **46** (1999), 139-144.
- [4] C.R. Johnson and A.Leal Duarte., On the possible multiplicities of the eigenvalues of a Hermitian matrix whose graph is a tree, *Linear Algebra and Applications* **248** (2002), 7-21.
- [5] C.R. Johnson, A.Leal Duarte and C.M. Saiago., The Parter-Wiener theorem: refinement and generalization, *SIAM Journal* on Matrix Analysis and Applications 25 (2) (2003), 352-361.
 15
- [6] C.R. Johnson, A.Leal Duarte and C.M. Saiago., Inverse eigenvalue problems and lists of multiplicities of eigenvalues for matrices whose graph is a tree: The case of generalized stars and double generalized stars, *Linear Algebra and its Applications* **373** (2003), 311-330.
- [7] C.R. Johnson, C. Jordan-Squire and D.A. Sher., Eigenvalue assignments and the two largest multiplicities in a Hermitian matrix whose graph is a tree, *Discrete Applied Mathematics* **158** (2010), 681-691.
- [8] S. Parter., On the eigenvalues and eigenvectors of a class of matrices, *Journal of the Society for Industrial and Applied Mathematics* **8** (1960), 376-388.
- [9] G. Wiener., Spectral multiplicity and splitting results for a class of qualitative matrices, *Linear Algebra and its Applications* 61 (1984), 15-18.