
© 2015 Rosário Fernandes, licensee De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Spec. Matrices 2015; 3:5–21

Rosário Fernandes*

The maximum multiplicity and the two largest
multiplicities of eigenvalues in a Hermitian
matrix whose graph is a tree
Abstract: The maximummultiplicity of an eigenvalue in a matrix whose graph is a tree,M1, was understood 5
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1 Introduction 15

Let T be a tree on n ≥ 2 vertices.We denote by S(T) the collection of all n-by-n complexHermitianmatrices
whose graph is T. No restriction is placed upon the diagonal entries of matrices in S(T).

For convenience, when A ∈ S(T), we place in non-increasing order the multiplicities of the eigen-
values of A. We refer to such a list of multiplicities as the unordered multiplicity list and we denote it by
(m1(A),m2(A), . . . ,mk(A)(A)), where k(A) is the number of distinct eigenvalues of A. So, mj(A) is the jth 20
largest multiplicity of an eigenvalue in the multiplicity list of A.

Definition 1.1. Let L(T) be the set of all positive integer lists (unordered multiplicity lists) (p1, p2, . . . , ps)
satisfying:

(1) p1 ≥ p2 ≥ . . . ≥ ps ≥ 1;
(2)

∑︀s
i=1 pi = n; 25

(3) There is an A ∈ S(T) with (m1(A),m2(A), . . . ,mk(A)(A)) = (p1, p2, . . . , ps).

For j ≥ 1, we denote by
Mj(T) = max

(p1 ,p2 ,...,ps)∈L(T)
(p1 + . . . + pj).

It is well known thatM1(T) is equal to the path cover number P(T), the smallest number of nonintersect-
ing induced paths of T that cover all the vertices of T; this is the same asmax(p − q), where p is the number
of paths remaining when q vertices have been removed from T in such a way as to leave only induced paths
[3]. 30

Remark 1.2. In [7] a combinatorial algorithmwasgiven to computeM2(T). It is easy to see that if (p1, p2, . . . , ps) ∈
L(T) then
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(1) p1 ≤ M1(T).
(2) p1 + p2 ≤ M2(T).
(3) p1 + p2 ≥ 2, p2 = ̸ 0 (because if T is a tree and A ∈ S(T) then the largest and the smallest eigenvalues of

A have multiplicities one. So, each list in L(T) has at least two 1’s, [4]).
(4) Using the definition of M1(T), there exists (p1, p2, . . . , ps) ∈ L(T) such that p1 = M1(T).5

Given M1(T) and M2(T), we cannot say there exists a list (p1, p2, . . . , ps) ∈ L(T) such that p1 = M1(T)
and p2 = M2(T) − M1(T). For example, [7], the double star D3,3 has M1(D3,3) = 4, M2(D3,3) = 6 but
(4, 2, 1, 1) ∉ L(D3,3) (we can prove this using the Parter-Wiener theorem [5]). M1(D3,3) = 4 because
(4, 1, 1, 1, 1) ∈ L(D3,3), for example, consider the matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

M2(D3,3) = 6 because (3, 3, 1, 1) ∈ L(D3,3), for example, consider the matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
1 1 1 −2 1 0 0 0
0 0 0 1 3 1 1 1
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

So, it is important to know when givenM2(T), we can say that there is a list (p1, p2, . . . , ps) ∈ L(T) such
that p1 = M1(T) and p2 = M2(T) −M1(T).

Let M2(T) (or simply M2) denote the maximum value of the sum of the two largest integers among the
lists (p1, p2, . . . , ps) ∈ L(T), when p1 = M1(T), i.e.,

M2(T) = max
(M1(T),p2 ,...,ps)∈L(T)

(M1(T) + p2).

Using the definition of M2(T), we have M2(T) ≤ M2(T). In this paper we give upper and lower bounds for M2

and in some cases, a method for calculating M2.

2 Assignments10

Let T be a tree on n ≥ 2 vertices. If A ∈ S(T) and v is a vertex of T then A(v) denotes the principal
submatrix of A resulting from deleting row and column associated with v, andmA(λ) denotes themultiplicity
of eigenvalue λ of matrix A. The Parter theorem, [8], indicates that if A ∈ S(T) and mA(λ) ≥ 2, then there is
at least one vertex v of T, of degree at least 3, such that mA(v)(λ) = mA(λ) + 1. Moreover, v may be chosen
so that λ is an eigenvalue of at least three principal submatrices of A associated with branches of T at v. So,15
we refer to any vertex v of degree greater or equal to 3 as a high-degree vertex, or HDV. The Parter theorem
was refined by Wiener [9] and more fully in [5]. A vertex v of T is a Parter vertex for A ∈ S(T) and λ when
mA(λ) ≥ 1 and mA(v)(λ) = mA(λ) + 1. The Parter theorem guarantees the existence of at least one Parter HDV
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for any multiple eigenvalue. If a principal submatrix of A associated with some branch at v again has λ as
a multiple eigenvalue, then this theorem may again be applied to that branch. Parter vertices for λ may be
removed in this fashion until (fully) fragmenting T intomany subtreeswhen λ occurs as an eigenvalue in such
a submatrix associated with the subtree at most once. Such a set of Parter vertices is called a fully fragmented
Parter set for λ, and it is known that each successive Parter vertex is also a Parter vertex for A and λ in the 5
original tree.

If X is a set or collection (or graph), then |X| denotes the cardinality of (number of vertices in) X. If V is a
set of vertices and X is a graph then V ∩ X denotes the set of vertices in both V and X. If X is a tree then P(X)
denotes the collection of all subtrees of X, including X.

Definition 2.1. [7] (Assignment) Let T be a tree on n ≥ 2 vertices and let(︁
p1, p2, . . . , pk , 1n−

∑︀k
i=1 pi

)︁
be a non-increasing list of positive integers, with

∑︀k
i=1 pi ≤ n. The notation 1

l denotes that the last l entries of 10

the list are 1. Note that some of the pi‘s may be 1. An assignment A of
(︁
p1, p2, . . . , pk , 1n−

∑︀k
i=1 pi

)︁
to T is a

collection A = ((A1, V1), . . . , (Ak , Vk)) of k collections Ai of subtrees of T and k collections Vi of vertices of T,
with the following properties.

(1) (Specification of Parter vertices) For each integer i between 1 and k,

(1a) Each subtree inAi is a connected component of T − Vi. 15
(1b) |Ai| = pi + |Vi|.
(1c) For each vertex v ∈ Vi, there exists a vertex x adjacent to v such that x is in one of the subtrees in

Ai.

(2) (No overloading)We require that no subtree S of T is assigned more than |S| integers; define

ci(S) = |Ai ∩ P(S)| − |Vi ∩ S|,

the difference between the number of subtrees contained in S and the number of Parter vertices in S for
the ith integer. So, we require that

k∑︁
i=1

max(0, ci(S)) ≤ |S|, for each S ∈ P(T).

If this condition is violated at any subtree, then that subtree is said to be overloaded.

Definition 2.2. [7] A collection A = ((A1, V1), . . . , (Ak , Vk)) of k collections Ai of subtrees of T and k collec- 20
tions Vi of vertices of T is:

(1) an assignment candidate of
(︁
p1, p2, . . . , pk , 1n−

∑︀k
i=1 pi

)︁
to T when A satisfies condition 1, but not nec-

essarily 2 of Definition 2.1.
(2) a near-assignment of

(︁
p1, p2, . . . , pk , 1n−

∑︀k
i=1 pi

)︁
to T when A satisfies conditions 1a, 1b, 2, but not

necessarily 1c of Definition 2.1. 25
(3) anear-assignment candidate of

(︁
p1, p2, . . . , pk , 1n−

∑︀k
i=1 pi

)︁
to T whenA satisfies conditions 1a, 1b, but

not necessarily 1c or 2 of Definition 2.1.

In [7] a simplification of assignments of the list (p1, p2, 1l) is considered.

Lemma 2.3. (Overloading Lemma) If T is a tree and A is an assignment candidate (or a near-assignment
candidate) of the list (p1, p2, 1l) to T, but A is not an assignment (or a near-assignment, respectively), then 30
there must exist a single vertex in T that is overloaded byA.

Example 2.4. Let T be the following tree
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and let (3, 2, 13) be a list.
If we considerA = ((A1, V1), (A2, V2)) where

A1 = T − {4, 5}, A2 = T − {5}, V1 = {4, 5} and V2 = {5},

thenA1 has 5 connected components andA2 has 3 connected components. So, |A1| = 5 and |A2| = 3.
A is an assignment candidate of (3, 2, 13) to T but not an assignment because the subtree {6} of T satisfies

max(0, c1({6})) + max(0, c2({6})) = 1 + 1 = 2 > 1 = |{6}|.

If we considerA′ = ((A′1, V ′1), (A′2, V ′2)), where

A′1 = T − {4}, A′2 = T − {5} V ′1 = {4} and V ′2 = {5}

thenA′1 has 4 connected components andA′2 has 3 connected components. So, |A′1| = 4 and |A′2| = 3.
A′ satisfies condition 1 of Definition 2.1.5
If S = {1} or S = {2} or S = {3}, then

max(0, c1(S)) + max(0, c2(S)) = 1 + 0 = |S|.

If S = {4} or S = {5} or S = {7} or S = {8}, then

max(0, c1(S)) + max(0, c2(S)) = 0 + 0 < |S| = 1.

If S = {6} then
max(0, c1(S)) + max(0, c2(S)) = 0 + 1 = |S|.

Using Lemma 2.3,A′ is an assignment of (3, 2, 13) to T.

Example 2.5. Let T be the following tree
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and let (2, 2, 14) be a list.
If we considerA = ((A1, V1), (A2, V2)), where

A1 = T − {5, 6, 7, 8}, A2 = T − {6}, V1 = {5, 6} and V2 = {6}

thenA1 has 4 connected components andA2 has 3 connected components. So, |A1| = 4 and |A2| = 3.10
A is a near-assignment of (2, 2, 14) to T (to prove condition 2 of Definition 2.1 use Lemma 2.3) but not an

assignment because 6 ∈ V1 and there is not a vertex of T adjacent to 6 in a subtree ofA1.
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Using the Overloading Lemma (Lemma 2.3), another important result appears.

Lemma 2.6. Let T be a tree. Then
there exists a near-assignment of the list (p1, p2, 1l) to T if and only if there exists an assignment of the list

(p1, p2, 1l) to T.

Proof Suppose there exists a near-assignmentA = ((A1, V1), (A2, V2)) of the list (p1, p2, 1l) to T. IfA satisfies 5
1c of Definition 2.1, thenA is an assignment of (p1, p2, 1l) to T.

Suppose thatA does not satisfy 1c. Then V1 or V2 does not satisfy 1c. Suppose, without loss of general-
ization that V1 does not satisfy 1c. So, there exists a vertex v1 ∈ V1 such that there is not a vertex x adjacent
to v1 in a subtree ofA1.

Since |A1| = p1 + |V1|, remove v1 from V1 and remove a subtree R1 from A1. We obtain A′1 = A1 \ R1 10
and V ′1 = V1 \ {v1}. Since |A′1| = p1 + |V ′1|, we conclude that A′ = ((A′1, V ′1), (A2, V2)) is a near-assignment
candidate of the list (p1, p2, 1l) to T.

IfA′ is not a near-assignment, by Lemma 2.3, there must exist a single vertex y in T that is overloaded by
A′. Using the fact that A is a near-assignment, y = v1. But v1 does not belong to A′1. Consequently, S = {v1}
satisfies condition 2 of Definition 2.1. Contradiction. Therefore,A′ is a near-assignment. 15

IfA′ satisfies 1c of Definition 2.1, thenA′ is an assignment of (p1, p2, 1l) to T. IfA′ does not satisfy 1c of
Definition 2.1, repeat the process.

Repeating this process we obtain an assignment because p1, p2 ≥ 1 and in each process we have a col-
lection of subtrees of T satisfying condition 1a of Definition 2.1.

Conversely, the proof is trivial. � 20

Definition 2.7. If A ∈ S(T) and S is a subgraph of T then

(1) A[S] denotes the principal submatrix of A lying on rows and columns associated with the vertices of S.
(2) A(S) denotes the principal submatrix of A resulting from deleting rows and columns associated with the

vertices of S.

Using the interlacing theorem for Hermitian matrices [2], if x is a vertex of T (tree) and λ is an eigenvalue of
A ∈ S(T), then there is a simple relation between mA(x)(λ) and mA(λ):

mA(x)(λ) = mA(λ) − 1 or mA(x)(λ) = mA(λ) or mA(x)(λ) = mA(λ) + 1.

Definition 2.8. [7] Let T be a tree on n ≥ 2 vertices. We call an assignment A = ((A1, V1), . . . , (Ak , Vk)) of 25(︁
p1, p2, . . . , pk , 1n−

∑︀k
i=1 pi

)︁
to T realizable if there exists a matrix B ∈ S(T) with unordered multiplicity list(︁

p1, p2, . . . , pk , 1n−
∑︀k

i=1 pi
)︁
, such that, for each i between 1 and k, if si is the eigenvalue of B associated with

pi, i.e, mB(si) = pi, then:

(1) For each subtree R of T inAi, mB[R](si) = 1.
(2) For each connected component Q of T − Vi that is not inAi, mB[Q](si) = 0. 30
(3) For each x ∈ Vi, x is a Parter vertex for B and si.

Remark 2.9. Note that if C ∈ S(T) is a matrix that satisfies conditions 1 and 2 of Definition 2.8, then for each i
between 1 and k, mC(si) = pi ≥ 1.

Using the interlacing theorem for Hermitian matrices, if x ∈ Vi, then mC(x)(si) is equal to

mC(si) − 1 or mC(si) or mC(si) + 1.

By conditions 1 and 2 of Definition 2.8, mC(Vi)(si) = |Ai|. ButA is an assignment, so, |Ai| = pi + |Vi|. Thus,

mC(x)(si) = mC(si) + 1.

Therefore, C satisfies Definition 2.8. �
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Using the last remark, we can rewrite Definition 2.8.
Definition 2.8 Let T be a tree on n ≥ 2 vertices. We call an assignment A = ((A1, V1), . . . , (Ak , Vk)) of(︁
p1, p2, . . . , pk , 1n−

∑︀k
i=1 pi

)︁
to T realizable if there exists a matrix B ∈ S(T) with unordered multiplicity list(︁

p1, p2, . . . , pk , 1n−
∑︀k

i=1 pi
)︁
, such that, for each i between 1 and k, if si is the eigenvalue of B associated with

pi, i.e, mB(si) = pi, then:5

(1) For each subtree R of T inAi, mB[R](si) = 1.
(2) For each connected component Q of T − Vi that is not inAi, mB[Q](si) = 0.

Definition 2.10. If T is a tree on n ≥ 2 vertices,A is a realizable assignment of
(︁
p1, p2, . . . , pk , 1n−

∑︀k
i=1 pi

)︁
to

T and B ∈ S(T) is a matrix that satisfies Definition 2.8, then we say that B realizes the assignmentA.

There are assignments that are not realizable. For instance see Example 2.3 in [7]. However when we study10
the list (p1, p2, 1l) we have the following result.

Theorem 2.11. [7] Given a tree T on n = p1 + p2 + l vertices, a near-assignment of the list (p1, p2, ll) to T,
A = ((A1, V1), (A2, V2)), and any distinct real numbers α and β, then there exists A ∈ S(T) satisfying the
following conditions:

If R is a connected component of T − V1, then

α is an eigenvalue of A[R] if and only if R ∈ A1.

Similarly, if S is a connected component of T − V2, then

β is an eigenvalue of A[S] if and only if S ∈ A2.

Using Lemma 2.6, Theorem 2.11 and the new version of Definition 2.8 we obtain the following result.15

Theorem 2.12. Given a tree T on n = p1 + p2 + l vertices, a near-assignment A of the list (p1, p2, ll) to T, and
any distinct real numbers α and β, then

(1) there exists a realizable assignmentB of
(︁
p1, p2, 1l

)︁
to T.

(2) there exists A ∈ S(T) that realizes the assignmentB with mA(α) = p1 and mA(β) = p2.

Therefore, we immediately have as a consequence:20

Corollary 2.13. For any tree T, if there exists a near-assignment of the list (M1(T), p2, 1l) to T, then

M2(T) ≥ M1(T) + p2.

3 Upper and lower bounds forM2

In this section, using the reduction theorem forM2, [7], we directly computeM2 for particular trees. For other
kind of trees, we give bounds on M2.

In [7], the authors directly computed M2 for generalized stars (for the notion of generalized star see [6]).

Definition 3.1. [6] Let T be a tree and x0 be a vertex of T. A generalized star T with central vertex x0 is a tree25
such that T − {x0} is a union of paths (arms), each one of them is adjacent to x0 by an endpoint.

Proposition 3.2. [7] Let T be a generalized star on n ≥ 2 vertices, with f arms of length 1 and g arms of length
at least 2. Then:

(A) If g ≥ 2, then M2(T) = f + 2g − 2.
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(B) If g ≤ 1 and T is not a path, then M2(T) = f + g.
(C) If T is a path, then M2(T) = 2.

Definition 3.3. [7] (Peripheral HDV, peripheral arm)Given a tree T and a high-degree vertex v, v is a peripheral
HDV of T if and only if there is a branch of T at v that contains all the other high-degree vertices in T. Aperipheral
arm of a tree T is a branch of T at a peripheral HDV such that the branch does not itself contain any HDV. 5

Definition 3.4. Throughout this section, we will consider a peripheral HDV v in a tree T.
The subtree of T consisting of v and its peripheral arms will be called S - however, if v is the only HDV in

T, we will let S be v and all but one of its peripheral arms (chosen arbitrarily). The point is that S should be a
generalized star containing everything except a single branch of T at v.

Let w be the one vertex adjacent to v that is not in S. We denote by (T − S)+w K1 the tree obtained from T − S 10
by putting a vertex adjacent to w.

Theorem 3.5. [7] (M2 Reduction Theorem) Let T be a tree and v a peripheral HDV, with S as defined earlier in
this section. Suppose that S has f arms of length 1 and g arms of length at least 2. Then:

(A) If g ≥ 2, then M2(T − S) = M2(T) − f − 2g + 2.
(B) If g ≤ 1, then M2((T − S) +w K1) = M2(T) − f − g + 1. 15

In [1] a class of trees was introduced that contains the generalized stars, the superstars.

Definition 3.6. [1] Let T be a tree and x0 be a vertex of T. A superstar T with central vertex x0 is a tree such
that T − {x0} is a union of paths.

The focus of this section is to directly compute M2 for a subclass of superstars.

Definition 3.7. Let T be a superstar with central vertex x0. A small pincer of T is a path, P, of T − {x0} such 20
that:

(1) P is adjacent to x0 by a vertex u of degree two in P.
(2) At least one path of P − u is a vertex.

Definition 3.8. Let T be a superstar with central vertex x0. T is a small superstar if all paths of T − {x0} are
small pincers or are adjacent to x0 by an endpoint (arms). 25

Example 3.9. The superstar T of Example 2.4 is a small superstar with cental vertex 4. The superstar T of
Example 2.5 is a small superstar with central vertex 5. All stars and generalized stars are small superstars.

The following superstar is not a small superstar

u u u u

u

u
u

uu
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@
@
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5 6

9 10
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4

Definition 3.10. Let T be a tree andA an assignment of (M1(T), p2, 1l) to T. 30

(1) We refer toA as an M2 assignment to T.
(2) If M1(T) + p2 = M2(T), we refer toA as an M2-maximal assignment to T.
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Remark 3.11. Let T be a tree and A = ((A1, V1), (A2, V2)) an M2 assignment of (M1(T), p2, 1l) to T. Because
M1(T) = |A1| − |V1|,

(1) All components of T − V1 are inA1.
(2) We can assume that if v ∈ V1 then v is a HDV.
(3) Since all components of T −V1 are paths, if v if a peripheral HDV of degree greater or equal to 4 in T then5

v ∈ V1.
(4) If v is a peripheral HDV, v ∈ V1 and all peripheral arms have length 1 then they are inA1 and no one is in

A2 (see Lemma 2.3).

Remark 3.12. Let T be a tree andA = ((A1, V1), (A2, V2)) anM2-maximal assignment of (M1(T), p2, 1l) to T.
Because M2(T) = |A1| − |V1| + |A2| − |V2|,10

(1) All components of T − V2 with more than one vertex are inA2.
(2) We can assume that if v ∈ V2 then v is a HDV.
(3) All components of T − V2 with one vertex that are not components of T − V1 are inA2.
(4) If v is a peripheral HDV, v ∈ V1 and all peripheral arms have length 1 then using Remark 3.11, 4, we

conclude that v ∈ ̸ V2.15
(5) If v if a peripheral HDV, v ∈ V1 and all peripheral arms have length 1, except one, then there is an M2-

maximal assignment of (M1(T), p2, 1l) to T such that v ∉ V2.

Remark 3.13. In some proofs we construct an M2-maximal (or simply an M2) assignment of (M1(T), p2, 1l)
to T. for some integer p2. In these cases, first we construct an M2 assignment of (M1(T), p2, 1l) to T, A =
((A1, V1), (A2, V2)) by putting the elements in A1 and in V1, next we put the elements in A2 and in V2, us-20
ing Remarks 3.11 and 3.12. This construction is in such a way that M1(T) = |A1| − |V1| and M1(T) + p2 =
|A1| − |V1| + |A2| − |V2|. After using Lemma 2.3 we conclude condition 2 of Definition 2.1 and by Corollary 2.13,
we say that M2(T) ≥ M1(T) + p2.

Proposition 3.14. Let T be a small superstar on n ≥ 2 vertices, with f arms of length 1, g arms of length at least
2 and h small pincers, with f + g ≥ 2 or h ≥ 2. Then:25

(A) If g ≥ 2, then M2(T) = 2h + f + 2g − 2.
(B) If g ≤ 1 and T is not a path, then M2(T) = 2h + f + g.
(C) If T is a path, then M2(T) = 2.

Proof Let x be the central vertex of T. If S is a small pincer of T, by Theorem 3.5,

M2((T − S) +x K1) = M2(T) − 1.

Since T has h small pincers,
M2(T ′) = M2(T) − h,

where T ′ is obtained from T by removing all small pincers and by putting h vertices adjacent to x. Conse-
quently, T ′ is a generalized star with f + h arms of length 1 and g arms of length at least 2. Using Proposition
3.2

M2(T ′) =

⎧⎪⎨⎪⎩
f + h + 2g − 2 if g ≥ 2
f + h + g if g ≤ 1 and T ′ is not a path
2 if T ′ is a path.

Therefore,

M2(T) =

⎧⎪⎨⎪⎩
f + 2h + 2g − 2 if g ≥ 2
f + 2h + g if g ≤ 1 and T ′ is not a path
2 + h if T ′ is a path.

Note that if T ′ is a path with h = 2 and f = g = 0 then T is not a path and M2(T) = M2(T ′) + h = 2 + 2 =
4 = f + 2h + g. By hypothesis, if h < 2 then f + g ≥ 2. In this case, if T ′ is a path then h = 0 and f + g = 2.30
Consequently, T is a path.
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So, we conclude that

M2(T) =

⎧⎪⎨⎪⎩
f + 2h + 2g − 2 if g ≥ 2
f + 2h + g if g ≤ 1 and T is not a path
2 if T is a path.

Since M2(T) ≤ M2(T), we have

(A) If g ≥ 2, then M2(T) ≤ 2h + f + 2g − 2.
(B) If g ≤ 1 and T is not a path, then M2(T) ≤ 2h + f + g.
(C) If T is a path, then M2(T) ≤ 2.

Conversely, since T is a tree,

M1(T) =
{︃
f + h + g − 1 if f + g ≥ 2
h + 1 if f + g ≤ 1.

Weare going to construct anM2 assignment of (M1(T), p2, 1l), for some integer p2, to T (see Remark 3.13). 5
Case 1 If f +g ≥ 2, we put the central vertex of T in V1 andwe put the f +h+g paths obtained by removing

the central vertex of T inA1.
If g ≥ 2, we put the central vertex of T in V2 and we put the h + g paths of length at least 2, obtained

by removing the central vertex of T in A2. So, |A1| − |V1| = f + g + h − 1 = M1(T). Using Remark 3.13,
M2(T) ≥ f + h + g − 1 + h + g − 1 = f + 2h + 2g − 2. 10

If g ≤ 1, we put the central vertex of each small pincer of T in V2, we put the 2h + 1 subtrees obtained by
removing the central vertex of all small pincers of T in A2. Since |A1| − |V1| = f + g + h − 1 = M1(T), using
Remark 3.13, M2(T) ≥ f + h + g − 1 + 2h + 1 − h = f + 2h + g.

Note that if T is a path and f +g ≥ 2 then f +g = 2 and h = 0. Thus, if g = 2, thenM2(T) ≥ f +2h+2g−2 = 2
and if g ≤ 1, then M2(T) ≥ f + 2h + g = 2. 15

Case 2 If f + g ≤ 1 then h ≥ 2 and T is not a path. We put the central vertex of each small pincer of T in
V1 and we put the 2h +1 subtrees obtained by removing the central vertex of all small pincers of T inA1. We
put the central vertex of T in V2 and we put the f + h + g paths obtained by removing the central vertex of T
inA2. Since |A1| − |V1| = h + 1 = M1(T), by Remark 3.13, M2(T) ≥ h + 1 + f + g + h − 1 = f + g + 2h.

Consequently, 20

(A) If g ≥ 2, then M2(T) ≥ 2h + f + 2g − 2.
(B) If g ≤ 1 and T is not a path, then M2(T) ≥ 2h + f + g.
(C) If T is a path, then M2(T) ≥ 2.

Therefore,

(A) If g ≥ 2, then M2(T) = 2h + f + 2g − 2. 25
(B) If g ≤ 1 and T is not a path, then M2(T) = 2h + f + g.
(C) If T is a path, then M2(T) = 2. �

Proposition 3.15. Let T be a tree and v a peripheral HDV, with S as defined earlier in this section. Suppose that
S has 3 arms of length 1 and 0 arms of length at least 2 and T = ̸ S. Then

M2(T − S) + 2 ≤ M2(T) ≤ M2(T − S) + 3.

Proof Let A = ((A1, V1), (A2, V2)) be an M2-maximal assignment to T. We are going to construct an M2

assignment to T − S, A′ = ((A′1, V ′1), (A′2, V ′2)) (see Remark 3.13). Note that M1(T − S) = M1(T) − 2. Because v
has degree 4, by Remark 3.11, 3, v ∈ V1, the peripheral arms of S are inA1 and no one is inA2. Using Remark 30
3.12, 4, v ∈ ̸ V2. So, let F be the component of T − V2 containing S. By Remark 3.12, 1, F is inA2.

LetA′1 = A1 \ {the peripheral arms of S}, V ′1 = V1 \ {v}, V ′2 = V2 and

A′2 =
{︃

A2 \ {F} ifA2 ≠ {F}
T − S ifA2 = {F}

.
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By Remark 3.13, A′ = ((A′1, V ′1), (A′2, V ′2)) is an M2 assignment to T − S and M2(T − S) ≥ M2(T) − 2 − 1 =
M2(T) − 3.

Let A = ((A1, V1), (A2, V2)) be an M2-maximal assignment to T − S. We are going to construct an M2

assignment to T, A′ = ((A′1, V ′1), (A′2, V ′2)) (see Remark 3.13). Note that M1(T) = M1(T − S) + 2. Let w be the
vertex of T − S adjacent to v in T. If w ∈ ̸ V2 then let R be the component of (T − S) − V2 containing w and let5
P be the component of T − V2 containing S.

LetA′1 = A1 ∪ {the peripheral arms of S}, V ′1 = V1 ∪ {v}, V ′2 = V2 and

A′2 =
{︃

(A2 \ {R}) ∪ {P} if R ∈ A2 and w ∉ V2

A2 otherwise
.

By Remark 3.13,A′ = ((A′1, V ′1), (A′2, V ′2)) is an M2 assignment to T and M2(T) ≥ M2(T − S) + 2. �

Proposition 3.16. Let T be a tree and v a peripheral HDV, with S as defined earlier in this section. Suppose that
S has 1 arm of length 1 and 1 arm of length at least 2 (or T has 2 arms of length 1 and 0 arms of length at least
2) and T ≠ S. Then

M2(T − S) + 1 ≤ M2(T) ≤ M2(T − S) + 2.

Proof Let A = ((A1, V1), (A2, V2)) be an M2-maximal assignment to T. We are going to construct an M2

assignment to T − S,A′ = ((A′1, V ′1), (A′2, V ′2)) (see Remark 3.13). Note that M1(T − S) = M1(T) − 1.
Using Remark 3.11, 1, if v is in V1, then the peripheral arms of S−v are inA1. Using Remark 3.12, 5, without10

loss of generality, we can assume that v ∉ V2. Let F be the component of T −V2 containing S. By Remark 3.12,
1 and 3, F is inA2.

LetA′1 = A1 \ {the peripheral arms of S}, V ′1 = V1 \ {v}, V ′2 = V2 and

A′2 =
{︃

A2 \ {F} ifA2 = ̸ {F}
T − S ifA2 = {F}

.

By Remark 3.13, A′ = ((A′1, V ′1), (A′2, V ′2)) is an M2 assignment to T − S and M2(T − S) ≥ M2(T) − 1 − 1 =
M2(T) − 2.

If v is not in V1, since v has degree 3 in T, then w ∈ V1. By Remark 3.11, 1, S is in A1. By Remark 3.12, 3,15
we can assume, without loss of generality, that v ∈ V2 and the peripheral arms of S are inA2.

LetA′1 = A1 \ {S}, V ′1 = V1, V ′2 = V2 \ {v},A′2 = A2 \ {the peripheral arms of S}.
By Remark 3.13, A′ = ((A′1, V ′1), (A′2, V ′2)) is an M2 assignment to T − S and M2(T − S) ≥ M2(T) − 1 − 1 =

M2(T) − 2.
Let A = ((A1, V1), (A2, V2)) be an M2-maximal assignment to T − S. We are going to construct an M220

assignment to T, A′ = ((A′1, V ′1), (A′2, V ′2)) (see Remark 3.13). Note that M1(T) = M1(T − S) + 1. Let w be the
vertex of T − S adjacent to v in T. If w ∉ V2 then let F be the component of (T − S) − V2 containing w and let
P be the component of T − V2 containing S.

LetA′1 = A1 ∪ {the peripheral arms of S}, V ′1 = V1 ∪ {v}, V ′2 = V2 and

A′2 =
{︃

(A2 \ {F}) ∪ {P} if F ∈ A2 and w ∈ ̸ V2

A2 otherwise
.

By Remark 3.13,A′ = ((A′1, V ′1), (A′2, V ′2)) is an M2 assignment to T and M2(T) ≥ M2(T − S) + 1. �

Example 3.17. Let T be the following tree25
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u u u u uuu
uu u u
u u

1 2 4 7 8 12 13

53 9 11

6 10

Let H be the subtree obtained from T by removing vertices 11, 12, 13. By Proposition 3.16,

M2(H) + 1 ≤ M2(T) ≤ M2(H) + 2.

Since H is a small superstar with central vertex 4, by Proposition 3.14, M2(H) = 4 + 0 + 4 − 2 = 2. So,

5 ≤ M2(T) ≤ 6.

4 An algorithm forM2

The purpose of this section is to find simple reductions of the initial tree in such a way that we know the
effect of each reduction onM2. The process may be continued until a small superstar, for whichM2 is known
(Proposition 3.14), or until a subtree for which M2 has bounds (Section 3). 5

Definition 4.1. (Peripheral SHDV, peripheral super path) Let T be a tree that is not a small superstar. A periph-
eral superstar high degree vertex (SHDV) v of T is an HDV vertex of T such that

[(1) there is a unique subtree of T − v, R, that contains high-degree vertices;
[(2) T − R is a small superstar;
[(3) if w ∈ R and w is adjacent to v, then w does not satisfy 1, 2. 10

A peripheral super path of T at v (v is a SHDV) is a path of (T − R) − v. There are two kinds of peripheral
super paths of T at v (SHDV): peripheral arms and small pincers.

Example 4.2. Consider the tree T of Example 3.17.
The vertices 4 and 8 are peripheral superstar high degree vertices.
The vertex2 is not a peripheral superstar high degree vertex because it is adjacent to vertex4 and this vertex 15

satisfies conditions 1 and 2 of Definition 4.1.
The subtree of T generated by vertices 1, 2, 3 is a peripheral super path of T at 4, but it is not a peripheral

arm of T at 4 (it is a small pincer).

Definition 4.3. Throughout this section, we will consider a peripheral SHDV v in a tree T that is not a small
superstar. The subtree of T consisting of v and its peripheral super paths will be called Q. Let w be the one 20
vertex adjacent to v that is not in Q.

Remark 4.4. Let T be a tree and A = ((A1, V1), (A2, V2)) an M2 assignment of (M1(T), p2, 1l) to T. Because
M1(T) = |A1| − |V1|,

(1) All components of T − V1 are inA1.
(2) We can assume that if v ∈ V1 then v has degree greater than two in T. 25
(3) Since all components of T−V1 are paths, if v is a peripheral SHDV of degree greater or equal to 4 in T then

v ∈ V1 or there is at most one peripheral arm adjacent to v and the central vertex of each small pincer
adjacent to v is in V1.

(4) If v is a peripheral SHDV, v ∈ V1 and all peripheral super paths adjacent to v have length 1 then they are
inA1 and no one is inA2 (see Lemma 2.3). 30
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Remark 4.5. Let T be a tree and A = ((A1, V1), (A2, V2)) an M2-maximal assignment of (M1(T), p2, 1l) to T.
Because M2(T) = |A1| − |V1| + |A2| − |V2|,

(1) All components of T − V2 with more than one vertex are inA2.
(2) We can assume that if v ∈ V2 then v has degree greater than two in T.
(3) All components of T − V2 with one vertex that are not components of T − V1 are inA2.5
(4) If v is a peripheral SHDV, v ∈ V1 and all peripheral super paths adjacent to v have length 1, then using

Remark 4.4, 4, we conclude that v ∈ ̸ V2.
(5) If v is a peripheral SHDV, v ∈ V1 and all peripheral super paths adjacent to v have length 1, except one,

then there is an M2-maximal assignment of (M1(T), p2, 1l) to T such that v ∈ ̸ V2.

Remark 4.6. In some proofs we construct an M2-maximal (or simply an M2) assignment of (M1(T), p2, 1l)10
to T. for some integer p2. In these cases, first we construct an M2 assignment of (M1(T), p2, 1l) to T, A =
((A1, V1), (A2, V2)) by putting the elements in A1 and in V1, next we put the elements in A2 and in V2, us-
ing Remarks 4.4 and 4.5. This construction is in such a way that M1(T) = |A1| − |V1| and M1(T) + p2 =
|A1| − |V1| + |A2| − |V2|. After using Lemma 2.3 we conclude condition 2 of Definition 2.1 and by Corollary 2.13,
we say that M2(T) ≥ M1(T) + p2.15

Proposition 4.7. Let T be a tree that is not a small superstar and v a peripheral SHDV, with Q as defined earlier
in this section. Suppose that Q has h ≥ 1 small pincers and the degree of v in T is greater than 4. Let H be the
graph obtained from T by removing one small pincer of Q. Then

M2(H) = M2(T) − 2.

Proof By Proposition 3.16, M2(H) ≥ M2(T) − 2.
LetA = ((A1, V1), (A2, V2)) be anM2-maximal assignment to H. We are going to construct anM2 assign-

ment to T,A′ = ((A′1, V ′1), (A′2, V ′2)) (see Remark 4.6). Note thatM1(T) = M1(H) + 1. Since the degree of v in T
is greater than 4, we conclude that the degree of v in H is greater than 3. By Remark 4.4, 3 and Remark 4.5, 1,
3, we have v ∈ V1 ∪ V2.20

Suppose that v ∈ V1 ∩ V2. Let P be the small pincer T − H.
LetA′1 = A1 ∪ {P}, V ′1 = V1, V ′2 = V2 andA′2 = A2 ∪ {P}.
By Remark 4.6,A′ = ((A′1, V ′1), (A′2, V ′2)) is an M2 assignment to T and M2(T) ≥ M2(H) + 2.
Suppose that v ∈ V1 \ V2. Let x be the central vertex of the small pincer, P, of T − H.
LetA′1 = A1 ∪ {P}, V ′1 = V1,A′2 = A2 ∪ {the peripheral arms of P at x} and V ′2 = V2 ∪ {x}.25
By Remark 4.6,A′ = ((A′1, V ′1), (A′2, V ′2)) is an M2 assignment to T and M2(T) ≥ M2(H) + 2.
Suppose that v ∈ V2 \ V1. Let x be the central vertex of the small pincer, P, of T − H.
Let V ′1 = V1 ∪ {x},A′1 = A1 ∪ {the peripheral arms of P at x}.,A′2 = A2 ∪ {P} and V ′2 = V2.
By Remark 4.6,A′ = ((A′1, V ′1), (A′2, V ′2)) is an M2 assignment to T and M2(T) ≥ M2(H) + 2.
Consequently, M2(T) = M2(H) + 2. �30

Lemma 4.8. Let T be a tree that is not a small superstar. Suppose that v is a peripheral SHDV in T with Q, w
as defined earlier in this section. Then, there exists an M2-maximal assignment to T, A = ((A1, V1), (A2, V2)),
in which v ∈ V1 ∪ V2.

Moreover,

(1) If v has at least two peripheral arms of length at least 2, then there exists an M2-maximal assignment,35
A′ = ((A′1, V ′1), (A′2, V ′2)) in which v ∈ V ′1 ∩ V ′2.

(2) If v has at most one peripheral arm of length at least 2 and w has degree two in T, then there exists an
M2-maximal assignment,A′′ = ((A′′1, V ′′1), (A′′2, V ′′2)) such that v is in exactly one V ′′1 or V ′′2.

(3) If Q has f peripheral arms of length 1 and g ≤ 1 peripheral arms of length at least 2, f + g > 2 and
A′′′ = ((A′′′1 , V ′′′1 ), (A′′′2 , V ′′′2 )) is an M2-maximal assignment to T, then v ∈ V ′′′1 .40
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Proof Let A = ((A1, V1), (A2, V2)) be an M2-maximal assignment to T in which v ∉ V1 ∪ V2. Suppose that
Q has f peripheral arms of length 1 and g peripheral arms of length at least 2. We are going to construct an
M2-maximal assignment to T,B = ((B1, U1), (B2, U2)) (see Remark 4.6).

If f + g ≥ 2, then by Remark 4.4, 1, the component, R, of T − V1 containing v is in A1. Note that the
peripheral arms of Q might be in R. 5

LetB1 = (A1 \ {R}) ∪ {two peripheral arms of Q}, U1 = V1 ∪ {v},B2 = A2 and U2 = V2.
By Remark 4.6 and the cardinality of B, B = ((B1, U1), (A2, V2)) is an M2-maximal assignment to T in

which v ∈ U1.
If f + g ≤ 1, by Remark 4.4, 3 and Remark 4.5, 1 and 3, the central vertex of each small pincer of Q is in

V1 \ V2. By Remark 4.5, 1, the component, R, of T − V2 containing v, is inA2. 10
LetB1 = A1, U1 = V1,B2 = (A1 \ {R}) ∪ {two peripheral super paths of Q} and U2 = V2 ∪ {v}.
By Remark 4.6 and the cardinality of B, B = ((B1, U1), (B2, U2)) is an M2-maximal assignment to T in

which v ∈ U2. So, there exists anM2-maximal assignment to T A = ((A1, V1), (A2, V2)) in which v ∈ V1∪V2.

(1) By what we just proved, there exists an M2-maximal assignment to T,

A = ((A1, V1), (A2, V2)),

in which v ∈ V1 ∪ V2. Suppose without loss of generality that v ∈ V1 \ V2. We are going to construct
an M2-maximal assignment to T,A′ = ((A′1, V ′1), (A′2, V ′2)), in which v ∈ V ′1 ∩ V ′2. (see Remark 4.6). By 15
Remark 4.5, 1 and 3, the component, R, of T − V2 containing v, is in A2. Note that the peripheral arms
of Q might be in R.
LetA′1 = A1,n V ′1 = V1, V ′2 = V2 ∪ {v} and

A′2 = (A2 \ {R}) ∪ {two peripheral arms of length at least two of Q}.

Since |A2| − |V2| = |A′2| − |V ′2|, by Remark 4.6 and the cardinality of A′, A′ = ((A′1, V ′1), (A′2, V ′2)) is an
M2-maximal assignment to T , in which v ∈ V ′1 ∩ V ′2.

(2) By what we just proved, there exists an M2-maximal assignment,

A = ((A1, V1), (A2, V2)),

in which v ∈ V1 ∪ V2. Suppose v ∈ V1 ∩ V2. We are going to construct an M2-maximal assignment 20
to T, A′′ = ((A′′1, V ′′1), (A′′2, V ′′2)), in which v ∈ V ′′1 \ V ′′2. (see Remark 4.6) Using Remark 4.4, 1, each
peripheral super path of Q is in A1. By Remark 4.5, 1, the longer arm of Q and the small pincers of
Q are in A2 and there is not a peripheral arm of length 1 of Q in A2. By Remark 4.5, 2, w ∉ V2.
Let R be the component of T − V2 containing w and let F be the component of T − ((V2 \ {v}) ∪
{the central vertex of each small pincer of Q}) containing v and w. By Remark 4.5, 1, F ∈ A2. 25
LetA′′1 = A1, V ′′1 = V1,

A′′2 = (A2 \ {the peripheral super paths of length at least two of Q, R})∪
∪{the peripheral arms of each small pincer of Q, F}

and V ′′2 = (V2 \ {v}) ∪ {the central vertex of each small pincer of Q}.
If Q does not have a longer arm or R ∈ ̸ A2 then |A′′2| − |V ′′2| > |A2| − |V2|. This is impossible because A
is an M2-maximal assignment to T. So, v ∈ ̸ V1 ∩ V2.
If Q has a longer arm and R ∈ A2 then |A2|− |V2| = |A′′2|− |V ′′2|. By Remark 4.6 and using the cardinality
ofA′′,A′′ = ((A′′1, V ′′1), (A′′2, V ′′2)) is an M2-maximal assignment to T, in which v in V ′′1 \ V ′′2. 30

(3) Let A′′′ = ((A′′′1 , V ′′′1 ), (A′′′2 , V ′′′2 )) be an M2-maximal assignment to T. By Remark 4.4, 1, each peripheral
super path of Q belongs toA′′′1 and v ∈ V ′′′1 . �

Lemma 4.9. Let T be a tree that is not a small superstar. Suppose that v is a peripheral SHDV in T with Q,
w as defined earlier in this section. Suppose that Q has f peripheral arms of length 1 and g ≤ 1 peripheral
arms of length at least 2 and the degree of w in T is 2. Then, there exists an M2-maximal assignment to T, 35
A = ((A1, V1), (A2, V2)), in which:
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(1) If f + g ≥ 1, then v ∈ V1 and the central vertex of each small pincer of Q belongs to V2.
(2) If f + g = 0, then v ∈ V2 and the central vertex of each small pincer of Q belongs to V1.

Proof

(1) By 2 of Lemma4.8, letA = ((A1, V1), (A2, V2)) be anM2-maximal assignment to T such that v is exactly
one V1 or V2.5
If f + g > 1, since v is a peripheral SHDV and w ∈ ̸ V1 (the degree of w in T is 2), by Remark 4.4, 1,
each peripheral super path of Q belongs to A1 and v ∈ V1. In this case, because v ∉ V2 and A is an
M2-maximal assignment to T, we conclude that the central vertex of each small pincer of Q is in V2 and
the peripheral arms of each small pincer of Q are inA2..
Suppose that f + g = 1 and v ∈ V2. then by Remark 4.4, 1, the central vertex of each small pincer10
of Q is in V1 and the peripheral arms of each small pincer of Q are in A1. By Remark 4.5, 1 and 3,
the peripheral super paths of Q are in A2. Since w has degree two in T, we can assume that w ∉
V1 ∪ V2. We are going to construct an M2-maximal assignment to T, A′ = ((A′1, V ′1), (A′2, V ′2)), in
which v ∈ V1 and the central vertex of each small pincer of Q is in V2 (see Remark 4.6). Let R be
the component of T − V1 containing v, w. By Remark 4.4, 1, R ∈ A1. Let P be the component of15
T − V2, containing w. Since P = ̸ R, by Remark 4.5, 1 and 3, P ∈ A2. Let B be the component of
T − ((V2 \ {v}) ∪ {the central vertex of each small pincer of Q}), containing v and w. Let C be the com-
ponent of T − (V1 ∪ {v}), containing w. Note that B ≠ C.
Let

A′1 = (A1 \ {the peripheral arms of each small pincer of Q, R})∪
∪{C, the peripheral super paths of Q},

V ′1 = (V1 \ {the central vertex of each small pincer of Q}) ∪ {v},

A′2 = (A2 \ {the peripheral super paths of Q, P})∪
∪{the peripheral arms of each small pincer of Q, B}

and V ′2 = (V2 \ {v}) ∪ {the central vertex of each small pincer of Q}.
Since |A′1| − |V ′1| = |A1| − |V1| and |A′2| − |V ′2| = |A2| − |V2| and by Remark 4.6, we get an M2-maximal20
assignment to T,A′ = ((A′1, V ′1), (A′2, V ′2)), where v ∈ V ′1 and the central vertex of each small pincer of
Q belongs to V ′2.

(2) By 2 of Lemma4.8, letA = ((A1, V1), (A2, V2)) be anM2-maximal assignment to T such that v is exactly
one V1 or V2. Since f + g = 0, v is a peripheral SHDV and w ∉ V1, if v ∈ V1 then by Remark 4.4, 1, the
peripheral super paths of Q are inA1. Let F be the component of T − V1 containing w. By Remark 4.4,
1, F ∈ A1. Let H be the component of T − (V1 \ {v}) ∪ {the central vertex of each small pincer of Q})
containing w and v. Let

A′1 = (A1 \ {the peripheral super paths of Q, F})∪
∪{the peripheral arms of each small pincer of Q, H},

V ′1 = (V1 \ {v}) ∪ {the central vertex of each small pincer of Q}. Since |A′1| − |V ′1| = |A1| − |V1| + 1| we
conclude thatA is not anM2-maximal assignment to T. Impossible. Consequently, v ∉ V1 and v ∈ V2.
Therefore, the central vertex of each small pincer of Q belongs to V1. �25

Theorem 4.10. (M2 Reduction Theorem) Let T be a tree that is not a small superstar and v a peripheral SHDV,
with Q, w as defined earlier in this section. Suppose that Q has f peripheral arms of length 1, g peripheral arms
of length at least 2 and h small pincers. Then:

(A) If g ≥ 2, then M2(T − Q) = M2(T) − f − 2g − 2h + 2.
(B) If g ≤ 1 and the degree of w in T is 2, then M2((T − Q) +w K1) = M2(T) − f − g − 2h + 1, where (+wK1)30

means that we put a vertex adjacent to w.
(C) If g ≤ 1, the degree of w in T is greater than 2 and f + g > 2 then

M2((T − Q) +w S4) = M2(T) − f − g − 2h + 3,
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where S4 is the star with 3 arms of length 1 and (+wS4) means that S4 is adjacent to w by the central
vertex.

Proof Part A: LetA = ((A1, V1), (A2, V2)) be anM2-maximal assignment to T − Q. We are going to construct
an M2 assignment to T,A′ = ((A′1, V ′1), (A′2, V ′2)) (see Remark 4.6).

LetA′1 = A1 ∪ {the peripheral super paths of Q}, V ′1 = V1 ∪ {v},A′2 = A2 ∪ { the peripheral super paths 5
of lenght at least two of Q} and V ′2 = V2 ∪ {v}.

Since M1(T) = M1(T − Q) + f + g + h − 1, by Remark 4.6, this creates an M2 assignment to T, A′ =
((A′1, V ′1), (A′2, V ′2)) and M2(T) ≥ M2(T − Q) + f + g + h − 1 + g + h − 1 = M2(T − Q) + f + 2g + 2h − 2.

Conversely, by Lemma 4.8, 1, there exists an M2-maximal assignment to T, A = ((A1, V1), (A2, V2)), in
which v is in V1 ∩ V2. We are going to construct an M2 assignment to T − Q, A′ = ((A′1, V ′1), (A′2, V ′2)). By 10
Remarks 4.4, 1 and 4.5,1 , each of the f + g+ h peripheral super paths of Qmight be inA1 and each of the g+ h
peripheral super paths of length at least 2 of Q might be inA2.

LetA′1 = A1 \ {the peripheral super paths of Q}, V ′1 = V1 \ {v},A′2 = A2 \ { the peripheral super paths of
lenght at least two of Q} and V ′2 = V2 \ {v}.

Since M1(T − Q) = M1(T) − f − g − h + 1, by Remark 4.6, this creates an M2 assignment to T − Q, A′ = 15
((A′1, V ′1), (A′2, V ′2)) and M2(T − Q) ≥ M2(T) − f − g − h + 1 − g − h + 1 = M2(T) − f − 2g − 2h + 2. So, we have
M2(T − Q) = M2(T) − f − 2g − 2h + 2.

Part B: Let A = ((A1, V1), (A2, V2)) be an M2-maximal assignment to (T − Q) +w K1. We are going to
construct an M2 assignment to T, A′ = ((A′1, V ′1), (A′2, V ′2)) (see Remark 4.6). Let R be the component of
((T − Q) +w K1) − V1 containing K1 and let U be the component of ((T − Q) +w K1) − V2 containing K1. Since 20
degree of w in T is 2, without loss of generality, by Remarks 4.4, 2, and 4.5, 2, we can assume that w ∈ R ∩ U.
Consequently, R = ̸ K1 and U ≠ K1. By Remarks 4.4, 1 and 4.5, 1, R is inA1 and U is inA2.

Suppose that f + g ≥ 1. Let P be the component of T − (V1∪{v}) containing w and let H be the component
of T − (V2 ∪ {the central vertex of each small pincer of Q}) containing w and v.

Let A′1 = (A1 \ {R}) ∪ { the peripheral super paths of Q, P}, V ′1 = V1 ∪ {v}, A′2 = (A2 \ {U}) ∪ 25
{the peripheral arms of each small pincer of Q, H} and V ′2 = V2 ∪ { the central vertex of each small pincer of
Q}.

Since M1(T) = M1((T − Q) +w K1) + f + g + h − 1, by Remark 4.6, this creates an M2 assignment to T,
A′ = ((A′1, V ′1), (A′2, V ′2)) andM2(T) ≥ M2((T−Q)+w K1)+ f +g+h−1+2h−h = M2((T−Q)+w K1)+ f +g+2h−1.

Suppose that f + g = 0. Let B be the component of T − (V2∪{v}) containing w and let C be the component 30
of T − (V1 ∪ {the central vertex of each small pincer of Q} containing w and v.

Let A′1 = (A1 \ {R}) ∪ {the peripheral arms of each small pincer of Q, C}, V ′1 = V1 ∪ { the central vertex
of each small pincer of Q}, V ′2 = V2 ∪ {v} andA′2 = (A2 \ {U}) ∪ {the peripheral super paths of Q, B}.

Since M1(T) = M1((T − Q) +w K1) + h, by Remark 4.6, this creates an M2 assignment to T, A′ =
((A′1, V ′1), (A′2, V ′2)) and M2(T) ≥ M2((T − Q) +w K1) + 2h − h + h − 1 = M2((T − Q) +w K1) + f + g + 2h − 1. 35

Conversely, suppose that f + g ≥ 1. By Lemma 4.9, 1, there exists an M2-maximal assignment to T, A =
((A1, V1), (A2, V2)), in which v is in V1 and the central vertex of each small pincer of Q is in V2. We are going
to construct anM2 assignment to (T − Q) +w K1,A′ = ((A′1, V ′1), (A′2, V ′2)) (see Remark 4.6). By Remarks 4.4, 1
and 2, and 4.5, 1 and 3, each of the f + g + h peripheral super paths of Q might be inA1, the peripheral arms
of each small pincer of Q might be in A2 and w ∉ V1 ∪ V2. Let R be the component of T − V1 containing w 40
and let P be the component of T − V2 containing v and w. By Remarks 4.4, 1 and 4.5, 1, R ∈ A1 and P ∈ A2.
Let R′ be the component of ((T − Q) +w K1) − (V1 \ {v}) containing w and K1, and let P′ be the component of
(T − Q) +w K1) − (V2 \ {the central vertex of each small pincer of Q}) containing w and K1.

LetA′1 = (A1 \ {R, the peripheral super paths of Q})∪ {R′}, V ′1 = V1 \ {v},A′2 = (A2 \ {P, the peripheral
arms of each small pincer of Q}) ∪ {P′} and V ′2 = V2 \ {the central vertex of each small pincer of Q}. 45

SinceM1((T−Q)+wK1) = M1(T)−f −g−h+1, by Remark 4.6, this creates anM2 assignment to (T−Q)+wK1,
A′ = ((A′1, V ′1), (A′2, V ′2)) and M2((T − Q) +w K1) ≥ M2(T) − f − g − h + 1 − 2h + h = M2(T) − f − g − 2h + 1.

Suppose that f + g = 0. By Lemma 4.9, 2, there exists an M2-maximal assignment to T, A = ((A1, V1),
(A2, V2)), in which v is in V2, the central vertex of each small pincer of Q is in V1 and w ∉ V1 ∪ V2. We
are going to construct an M2 assignment to (T − Q) +w K1, A′ = ((A′1, V ′1), (A′2, V ′2)). By Remarks 4.4, 1 and 50
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4.5, 1 and 3, each of the h small pincers of Q might be in A2 and the peripheral arms of each small pin-
cer of Q might be in A1. Let R be the component of T − V1 containing v, w and let P be the component of
T − V2 containing w. By Remarks 4.4, 1 and 4.5, 1 and 3, R ∈ A1 and P ∈ A2. Let P′ be the component of
((T − Q) +w K1) − (V2 \ {v}) containing wand K1, and let R′ be the component of ((T − Q) +w K1) − (V1 \
{the central vertex of each small pincer of Q}) containing w and K1.5

Let A′1 = (A1 \ {R, the peripheral arms of each small pincer of Q}) ∪ {R′}, V ′1 = V1 \ { the central vertex
of each small pincer of Q}, V ′2 = V2 \ {v} andA′2 = (A2 \ {P, the peripheral super paths of Q}) ∪ {P′}.

Since M1((T − Q) +w K1) = M1(T) − h, by Remark 4.6, this creates an M2 assignment to (T − Q) +w K1,
A′ = ((A′1, V ′1), (A′2, V ′2)) and M2((T − Q) +w K1) ≥ M2(T) − 2h + h − h + 1 = M2(T) − f − g − 2h + 1.

So, we have M2((T − Q) +w K1) = M2(T) − f − g − 2h + 1.10
Part C: Let A = ((A1, V1), (A2, V2)) be an M2-maximal assignment to (T − Q) +w S4. We are going to

construct an M2 assignment to T,A′ = ((A′1, V ′1), (A′2, V ′2)). Let x be the central vertex of S4.
By Lemma 4.8, 3 and by Remark 4.4, 1, x ∈ V1 and the peripheral arms of S4 are inA1. By Remark 4.5, 4,

x ∉ V2. Let R be the component of ((T − Q) +w S4) − V2 containing S4. By Remark 4.5, 1, R is in A2. Let R′ be
the component of T − (V2 ∪ {the central vertex of each small pincer of Q}) containing v.15

Let A′1 = (A1 \ {the peripheral arms of S4}) ∪ {the peripheral super paths of Q}, V ′1 = (V1 \ {x}) ∪ {v},
V ′2 = V2 ∪ { the central vertex of each small pincer of Q} andA′2 = (A2 \ {R})∪ { the peripheral arms of each
small pincer of Q, R′}.

Since M1(T) = M1((T − Q) +w S4) + f + g + h − 3, by Remark 4.6, this creates an M2 assignment to T,
A′ = ((A′1, V ′1), (A′2, V ′2)) andM2(T) ≥ M2((T −Q)+w S4)+ f + g+h−3+2h−h = M2(T −Q+w S4)+ f + g+2h−3.20

Conversely, letA = ((A1, V1), (A2, V2)) be an M2-maximal assignment to T. By Lemma 4.8 3, v is in V1.
If v ∈ V2 then by Remark 4.5, 1, the longer arm and the small pincers of Q are in A2. By Remark 4.4, 1 ,

each of the f + g + h peripheral super paths of Q might be in A1. If w ∈ ̸ V2, then let F be the component of
T−V2 containingw. LetH be the component of T−((V2 \{v})∪{the central vertex of each small pincer of Q})
containing v.25

Let B1 = A1, U1 = V1, B2 = (A2 \ {F, the longer arm and the small pincers of Q} ∪{ the peripheral arms
of each small pincer of Q, H} and U2 = (V2 \ {v}) ∪ {the central vertex of each small pincer of Q}.

By Remark 4.6, this creates an M2 assignment to T, B = ((B1, U1), (B2, U2)). Using the cardinality of B
we conclude that g = 1, w ∉ V2 and F ∈ A2.

We are going to construct,A′ = ((A′1, V ′1), (A′2, V ′2)), anM2 assignment to (T−Q)+w S4. Let x be the central30
vertex of S4. Let R′ be the component of ((T − Q) +w S4) − (V2 \ {v}) containing x.

Let A′1 = (A1 \ {the peripheral super paths of Q}) ∪ {the peripheral arms of S4}, V ′1 = (V1 \ {v}) ∪ {x},
A′2 = (A2 \ {F, the longer arm and the small pincers of Q} ∪ {R′} and V ′2 = V2 \ {v}.

SinceM1((T−Q)+w S4) = M1(T)−f −g−h+3, by Remark 4.6, this creates anM2 assignment to (T−Q)+w S4,
A′ = ((A′1, V ′1), (A′2, V ′2)) andM2((T −Q)+w S4) ≥ M2(T)− f − g− h+3−1−1− h+1+1 = M2(T)− f − g−2h+3.35

If v ∈ ̸ V2, using the maximality of |A2| − |V2|, then the central vertex of each small pincer of Q is in V2.
We are going to construct anM2 assignment to (T −Q) +w S4,A′ = ((A′1, V ′1), (A′2, V ′2)). By Remarks 4.4, 1 and
4.5, 1 and 3, each of the f + g + h peripheral super paths of Q might be inA1 and the peripheral arms of each
small pincer of Q might be inA2. Let R be the component of T − V2 containing v. Let R′ be the component of
((T − Q) +w S4) − V2 containing x (x is the central vertex of S4).40

Let A′1 = (A1 \ {the peripheral super paths of Q}) ∪ {the peripheral arms of S4}, V ′1 = (V1 \ {v}) ∪ {x},
A′2 = (A2 \{R, the peripheral arms of each small pincer of Q∪{R′} and V ′2 = V2 \{ the central vertex of each
small pincer of Q}.

SinceM1((T−Q)+w S4) = M1(T)−f −g−h+3, by Remark 4.6, this creates anM2 assignment to (T−Q)+w S4,
A′ = ((A′1, V ′1), (A′2, V ′2)) and M2((T − Q) +w S4) ≥ M2(T) − f − g − h + 3 − 2h + h = M2(T) − f − g − 2h + 3.45

Consequently, we have M2((T − Q) +w S4) = M2(T) − f − g − 2h + 3. �

Example 4.11. Let T be the tree of Example 3.17. Let Q be the subtree of T generated by vertices 1, 2, 3, 4, 5, 6.
Since Q is a small superstar (T is not a small superstar) with 1 arm of length 1, 1 small pincer, and 7 is a vertex
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of T with degree 2, by Theorem 4.10,

M2(T) = M2((T − Q) +w K1) + 2,

where w is the vertex 7. So, (T − Q) +w K1 (that is a small superstar with central vertex 8) is the tree

u u u u u
u u
u

4 7 8 12 13

9 11

10

By Proposition 3.14,
M2(((T − Q) +w K1) − J) = 2 + 4 − 2 = 2.

Therefore,
M2(T) = 6.

�
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