CORE

Rosário Fernandes*

The maximum multiplicity and the two largest multiplicities of eigenvalues in a Hermitian matrix whose graph is a tree

Abstract

The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, M_{1}, was understood 5 fully (from a combinatorial perspective) by C.R. Johnson, A. Leal-Duarte (Linear Algebra and Multilinear Algebra 46 (1999) 139-144). Among the possible multiplicity lists for the eigenvalues of Hermitian matrices whose graph is a tree, we focus upon $\overline{M_{2}}$, the maximum value of the sum of the two largest multiplicities when the largest multiplicity is M_{1}. Upper and lower bounds are given for $\overline{M_{2}}$. Using a combinatorial algorithm, cases of equality are computed for $\overline{M_{2}}$.

Keywords: Eigenvalue multiplicities; Symmetric matrices; Trees; Two largest multiplicities
MSC: 15A18, 05C38, 05C50

DOI 10.1515/spma-2015-0001
Received September 10, 2013; accepted December 4, 2014

1 Introduction

Let T be a tree on $n \geq 2$ vertices. We denote by $\mathcal{S}(T)$ the collection of all n-by- n complex Hermitian matrices whose graph is T. No restriction is placed upon the diagonal entries of matrices in $\mathcal{S}(T)$.

For convenience, when $A \in \mathcal{S}(T)$, we place in non-increasing order the multiplicities of the eigenvalues of A. We refer to such a list of multiplicities as the unordered multiplicity list and we denote it by ($m_{1}(A), m_{2}(A), \ldots, m_{k(A)}(A)$), where $k(A)$ is the number of distinct eigenvalues of A. So, $m_{j}(A)$ is the j th 20 largest multiplicity of an eigenvalue in the multiplicity list of A.

Definition 1.1. Let $\mathcal{L}(T)$ be the set of all positive integer lists (unordered multiplicity lists) ($p_{1}, p_{2}, \ldots, p_{s}$) satisfying:
(1) $p_{1} \geq p_{2} \geq \ldots \geq p_{s} \geq 1$;
(2) $\sum_{i=1}^{s} p_{i}=n$;
(3) There is an $A \in \mathcal{S}(T)$ with $\left(m_{1}(A), m_{2}(A), \ldots, m_{k(A)}(A)\right)=\left(p_{1}, p_{2}, \ldots, p_{s}\right)$.

For $j \geq 1$, we denote by

$$
M_{j}(T)=\max _{\left(p_{1}, p_{2}, \ldots, p_{s}\right) \in \mathcal{L}(T)}\left(p_{1}+\ldots+p_{j}\right)
$$

It is well known that $M_{1}(T)$ is equal to the path cover number $P(T)$, the smallest number of nonintersecting induced paths of T that cover all the vertices of T; this is the same as $\max (p-q)$, where p is the number of paths remaining when q vertices have been removed from T in such a way as to leave only induced paths [3].

Remark 1.2. In [7] a combinatorial algorithm was given to compute $M_{2}(T)$. It is easy to see that if $\left(p_{1}, p_{2}, \ldots, p_{s}\right) \in$ $\mathcal{L}(T)$ then

[^0](1) $p_{1} \leq M_{1}(T)$.
(2) $p_{1}+p_{2} \leq M_{2}(T)$.
(3) $p_{1}+p_{2} \geq 2, p_{2} \neq 0$ (because if T is a tree and $A \in \mathcal{S}(T)$ then the largest and the smallest eigenvalues of A have multiplicities one. So, each list in $\mathcal{L}(T)$ has at least two 1's, [4]).
(4) Using the definition of $M_{1}(T)$, there exists $\left(p_{1}, p_{2}, \ldots, p_{s}\right) \in \mathcal{L}(T)$ such that $p_{1}=M_{1}(T)$.

Given $M_{1}(T)$ and $M_{2}(T)$, we cannot say there exists a list $\left(p_{1}, p_{2}, \ldots, p_{s}\right) \in \mathcal{L}(T)$ such that $p_{1}=M_{1}(T)$ and $p_{2}=M_{2}(T)-M_{1}(T)$. For example, [7], the double star $D_{3,3}$ has $M_{1}\left(D_{3,3}\right)=4, M_{2}\left(D_{3,3}\right)=6$ but $(4,2,1,1) \notin \mathcal{L}\left(D_{3,3}\right)$ (we can prove this using the Parter-Wiener theorem [5]). $M_{1}\left(D_{3,3}\right)=4$ because ($4,1,1,1,1) \in \mathcal{L}\left(D_{3,3}\right)$, for example, consider the matrix

$$
\left[\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

$M_{2}\left(D_{3,3}\right)=6$ because $(3,3,1,1) \in \mathcal{L}\left(D_{3,3}\right)$, for example, consider the matrix

$$
\left[\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 3 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] .
$$

So, it is important to know when given $M_{2}(T)$, we can say that there is a list $\left(p_{1}, p_{2}, \ldots, p_{s}\right) \in \mathcal{L}(T)$ such that $p_{1}=M_{1}(T)$ and $p_{2}=M_{2}(T)-M_{1}(T)$.

Let $\overline{M_{2}}(T)$ (or simply $\overline{M_{2}}$) denote the maximum value of the sum of the two largest integers among the lists $\left(p_{1}, p_{2}, \ldots, p_{s}\right) \in \mathcal{L}(T)$, when $p_{1}=M_{1}(T)$, i.e.,

$$
\overline{M_{2}}(T)=\max _{\left(M_{1}(T), p_{2}, \ldots, p_{s}\right) \in \mathcal{L}(T)}\left(M_{1}(T)+p_{2}\right)
$$

Using the definition of $M_{2}(T)$, we have $\overline{M_{2}}(T) \leq M_{2}(T)$. In this paper we give upper and lower bounds for $\overline{M_{2}}$ and in some cases, a method for calculating $\overline{M_{2}}$.

2 Assignments

Let T be a tree on $n \geq 2$ vertices. If $A \in \mathcal{S}(T)$ and v is a vertex of T then $A(v)$ denotes the principal submatrix of A resulting from deleting row and column associated with v, and $m_{A}(\lambda)$ denotes the multiplicity of eigenvalue λ of matrix A. The Parter theorem, [8], indicates that if $A \in \mathcal{S}(T)$ and $m_{A}(\lambda) \geq 2$, then there is at least one vertex v of T, of degree at least 3 , such that $m_{A(v)}(\lambda)=m_{A}(\lambda)+1$. Moreover, v may be chosen so that λ is an eigenvalue of at least three principal submatrices of A associated with branches of T at v. So, we refer to any vertex v of degree greater or equal to 3 as a high-degree vertex, or HDV. The Parter theorem was refined by Wiener [9] and more fully in [5]. A vertex v of T is a Parter vertex for $A \in \mathcal{S}(T)$ and λ when $m_{A}(\lambda) \geq 1$ and $m_{A(v)}(\lambda)=m_{A}(\lambda)+1$. The Parter theorem guarantees the existence of at least one Parter HDV
for any multiple eigenvalue. If a principal submatrix of A associated with some branch at v again has λ as a multiple eigenvalue, then this theorem may again be applied to that branch. Parter vertices for λ may be removed in this fashion until (fully) fragmenting T into many subtrees when λ occurs as an eigenvalue in such a submatrix associated with the subtree at most once. Such a set of Parter vertices is called a fully fragmented Parter set for λ, and it is known that each successive Parter vertex is also a Parter vertex for A and λ in the original tree.

If X is a set or collection (or graph), then $|X|$ denotes the cardinality of (number of vertices in) X. If V is a set of vertices and X is a graph then $V \cap X$ denotes the set of vertices in both V and X. If X is a tree then $\mathcal{P}(X)$ denotes the collection of all subtrees of X, including X.

Definition 2.1. [7] (Assignment) Let T be a tree on $n \geq 2$ vertices and let

$$
\left(p_{1}, p_{2}, \ldots, p_{k}, 1^{n-\sum_{i=1}^{k} p_{i}}\right)
$$

be a non-increasing list of positive integers, with $\sum_{i=1}^{k} p_{i} \leq n$. The notation 1^{l} denotes that the last entries of 10 the list are 1 . Note that some of the p_{i} 's may be 1 . An assignment \mathcal{A} of $\left(p_{1}, p_{2}, \ldots, p_{k}, 1^{n-\sum_{i=1}^{k} p_{i}}\right)$ to T is a collection $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right), \ldots,\left(\mathcal{A}_{k}, V_{k}\right)\right)$ of k collections \mathcal{A}_{i} of subtrees of T and k collections V_{i} of vertices of T, with the following properties.
(1) (Specification of Parter vertices) For each integer i between 1 and k,
(1a) Each subtree in \mathcal{A}_{i} is a connected component of $T-V_{i}$.
(1b) $\left|\mathcal{A}_{i}\right|=p_{i}+\left|V_{i}\right|$.
(1c) For each vertex $v \in V_{i}$, there exists a vertex x adjacent to v such that x is in one of the subtrees in \mathcal{A}_{i}.
(2) (No overloading) We require that no subtree S of T is assigned more than $|S|$ integers; define

$$
c_{i}(S)=\left|\mathcal{A}_{i} \cap \mathcal{P}(S)\right|-\left|V_{i} \cap S\right|,
$$

the difference between the number of subtrees contained in S and the number of Parter vertices in S for the ith integer. So, we require that

$$
\sum_{i=1}^{k} \max \left(0, c_{i}(S)\right) \leq|S| \text {, for each } S \in \mathcal{P}(T)
$$

If this condition is violated at any subtree, then that subtree is said to be overloaded.

Definition 2.2. [7] A collection $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right), \ldots,\left(\mathcal{A}_{k}, V_{k}\right)\right)$ of k collections \mathcal{A}_{i} of subtrees of T and k collec- 20 tions V_{i} of vertices of T is:
(1) an assignment candidate of $\left(p_{1}, p_{2}, \ldots, p_{k}, 1^{n-\sum_{i=1}^{k} p_{i}}\right)$ to T when \mathcal{A} satisfies condition 1 , but not necessarily 2 of Definition 2.1.
(2) a near-assignment of $\left(p_{1}, p_{2}, \ldots, p_{k}, 1^{n-\sum_{i=1}^{k} p_{i}}\right)$ to T when \mathcal{A} satisfies conditions $1 a, 1 b, 2$, but not necessarily $1 c$ of Definition 2.1.
(3) a near-assignment candidate of $\left(p_{1}, p_{2}, \ldots, p_{k}, 1^{n-\sum_{i=1}^{k} p_{i}}\right)$ to T when \mathcal{A} satisfies conditions $1 a, 1 b$, but not necessarily $1 c$ or 2 of Definition 2.1.

In [7] a simplification of assignments of the list $\left(p_{1}, p_{2}, 1^{l}\right)$ is considered.
Lemma 2.3. (Overloading Lemma) If T is a tree and \mathcal{A} is an assignment candidate (or a near-assignment candidate) of the list $\left(p_{1}, p_{2}, 1^{l}\right)$ to T, but \mathcal{A} is not an assignment (or a near-assignment, respectively), then 30 there must exist a single vertex in T that is overloaded by \mathcal{A}.

Example 2.4. Let T be the following tree

and let $\left(3,2,1^{3}\right)$ be a list.
If we consider $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ where

$$
\mathcal{A}_{1}=T-\{4,5\}, \mathcal{A}_{2}=T-\{5\}, V_{1}=\{4,5\} \text { and } V_{2}=\{5\},
$$

then \mathcal{A}_{1} has 5 connected components and \mathcal{A}_{2} has 3 connected components. So, $\left|\mathcal{A}_{1}\right|=5$ and $\left|\mathcal{A}_{2}\right|=3$.
\mathcal{A} is an assignment candidate of $\left(3,2,1^{3}\right)$ to T but not an assignment because the subtree $\{6\}$ of T satisfies

$$
\max \left(0, c_{1}(\{6\})\right)+\max \left(0, c_{2}(\{6\})\right)=1+1=2>1=|\{6\}| .
$$

If we consider $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$, where

$$
\mathcal{A}_{1}^{\prime}=T-\{4\}, \mathcal{A}_{2}^{\prime}=T-\{5\} V_{1}^{\prime}=\{4\} \text { and } V_{2}^{\prime}=\{5\}
$$

then \mathcal{A}_{1}^{\prime} has 4 connected components and \mathcal{A}_{2}^{\prime} has 3 connected components. So, $\left|\mathcal{A}_{1}^{\prime}\right|=4$ and $\left|\mathcal{A}_{2}^{\prime}\right|=3$.
$5 \quad \mathcal{A}^{\prime}$ satisfies condition 1 of Definition 2.1.
If $S=\{1\}$ or $S=\{2\}$ or $S=\{3\}$, then

$$
\max \left(0, c_{1}(S)\right)+\max \left(0, c_{2}(S)\right)=1+0=|S| .
$$

If $S=\{4\}$ or $S=\{5\}$ or $S=\{7\}$ or $S=\{8\}$, then

$$
\max \left(0, c_{1}(S)\right)+\max \left(0, c_{2}(S)\right)=0+0<|S|=1
$$

If $S=\{6\}$ then

$$
\max \left(0, c_{1}(S)\right)+\max \left(0, c_{2}(S)\right)=0+1=|S|
$$

Using Lemma 2.3, \mathcal{A}^{\prime} is an assignment of $\left(3,2,1^{3}\right)$ to T.
Example 2.5. Let T be the following tree

and let $\left(2,2,1^{4}\right)$ be a list.
If we consider $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$, where

$$
\mathcal{A}_{1}=T-\{5,6,7,8\}, \mathcal{A}_{2}=T-\{6\}, V_{1}=\{5,6\} \text { and } V_{2}=\{6\}
$$

10 then \mathcal{A}_{1} has 4 connected components and \mathcal{A}_{2} has 3 connected components. So, $\left|\mathcal{A}_{1}\right|=4$ and $\left|\mathcal{A}_{2}\right|=3$.
\mathcal{A} is a near-assignment of $\left(2,2,1^{4}\right)$ to T (to prove condition 2 of Definition 2.1 use Lemma 2.3) but not an assignment because $6 \in V_{1}$ and there is not a vertex of T adjacent to 6 in a subtree of \mathcal{A}_{1}.

Using the Overloading Lemma (Lemma 2.3), another important result appears.
Lemma 2.6. Let T be a tree. Then
there exists a near-assignment of the list $\left(p_{1}, p_{2}, 1^{l}\right)$ to T if and only if there exists an assignment of the list $\left(p_{1}, p_{2}, 1^{l}\right)$ to T.

Proof Suppose there exists a near-assignment $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ of the list $\left(p_{1}, p_{2}, 1^{l}\right)$ to T. If \mathcal{A} satisfies 5 $1 c$ of Definition 2.1, then \mathcal{A} is an assignment of $\left(p_{1}, p_{2}, 1^{l}\right)$ to T.

Suppose that \mathcal{A} does not satisfy $1 c$. Then V_{1} or V_{2} does not satisfy $1 c$. Suppose, without loss of generalization that V_{1} does not satisfy $1 c$. So, there exists a vertex $v_{1} \in V_{1}$ such that there is not a vertex x adjacent to v_{1} in a subtree of \mathcal{A}_{1}.

Since $\left|\mathcal{A}_{1}\right|=p_{1}+\left|V_{1}\right|$, remove v_{1} from V_{1} and remove a subtree R_{1} from \mathcal{A}_{1}. We obtain $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \backslash R_{1} 10$ and $V_{1}^{\prime}=V_{1} \backslash\left\{v_{1}\right\}$. Since $\left|\mathcal{A}_{1}^{\prime}\right|=p_{1}+\left|V_{1}^{\prime}\right|$, we conclude that $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ is a near-assignment candidate of the list $\left(p_{1}, p_{2}, 1^{l}\right)$ to T.

If \mathcal{A}^{\prime} is not a near-assignment, by Lemma 2.3, there must exist a single vertex y in T that is overloaded by \mathcal{A}^{\prime}. Using the fact that \mathcal{A} is a near-assignment, $y=v_{1}$. But v_{1} does not belong to \mathcal{A}_{1}^{\prime}. Consequently, $S=\left\{v_{1}\right\}$ satisfies condition 2 of Definition 2.1. Contradiction. Therefore, \mathcal{A}^{\prime} is a near-assignment.

If \mathcal{A}^{\prime} satisfies $1 c$ of Definition 2.1, then \mathcal{A}^{\prime} is an assignment of $\left(p_{1}, p_{2}, 1^{l}\right)$ to T. If \mathcal{A}^{\prime} does not satisfy $1 c$ of Definition 2.1, repeat the process.

Repeating this process we obtain an assignment because $p_{1}, p_{2} \geq 1$ and in each process we have a collection of subtrees of T satisfying condition $1 a$ of Definition 2.1.

Conversely, the proof is trivial.

Definition 2.7. If $A \in \mathcal{S}(T)$ and S is a subgraph of T then
(1) $A[S]$ denotes the principal submatrix of A lying on rows and columns associated with the vertices of S.
(2) $A(S)$ denotes the principal submatrix of A resulting from deleting rows and columns associated with the vertices of S.

Using the interlacing theorem for Hermitian matrices [2], if x is a vertex of T (tree) and λ is an eigenvalue of $A \in \mathcal{S}(T)$, then there is a simple relation between $m_{A(x)}(\lambda)$ and $m_{A}(\lambda)$:

$$
m_{A(x)}(\lambda)=m_{A}(\lambda)-1 \quad \text { or } \quad m_{A(x)}(\lambda)=m_{A}(\lambda) \quad \text { or } \quad m_{A(x)}(\lambda)=m_{A}(\lambda)+1 .
$$

Definition 2.8. [7] Let T be a tree on $n \geq 2$ vertices. We call an assignment $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right), \ldots,\left(\mathcal{A}_{k}, V_{k}\right)\right)$ of 25 $\left(p_{1}, p_{2}, \ldots, p_{k}, 1^{n-\sum_{i=1}^{k} p_{i}}\right)$ to T realizable if there exists a matrix $B \in \mathcal{S}(T)$ with unordered multiplicity list $\left(p_{1}, p_{2}, \ldots, p_{k}, 1^{n-\sum_{i=1}^{k} p_{i}}\right)$, such that, for each i between 1 and k, if s_{i} is the eigenvalue of B associated with p_{i}, i.e, $m_{B}\left(s_{i}\right)=p_{i}$, then:
(1) For each subtree R of T in $\mathcal{A}_{i}, m_{B[R]}\left(s_{i}\right)=1$.
(2) For each connected component Q of $T-V_{i}$ that is not in $\mathcal{A}_{i}, m_{B[Q]}\left(s_{i}\right)=0$.
(3) For each $x \in V_{i}, x$ is a Parter vertex for B and s_{i}.

Remark 2.9. Note that if $C \in \mathcal{S}(T)$ is a matrix that satisfies conditions 1 and 2 of Definition 2.8, then for each i between 1 and $k, m_{C}\left(s_{i}\right)=p_{i} \geq 1$.

Using the interlacing theorem for Hermitian matrices, if $x \in V_{i}$, then $m_{C(x)}\left(s_{i}\right)$ is equal to

$$
m_{C}\left(s_{i}\right)-1 \quad \text { or } \quad m_{C}\left(s_{i}\right) \quad \text { or } \quad m_{C}\left(s_{i}\right)+1
$$

By conditions 1 and 2 of Definition 2.8, $m_{C\left(V_{i}\right)}\left(s_{i}\right)=\left|\mathcal{A}_{i}\right|$. But \mathcal{A} is an assignment, so, $\left|\mathcal{A}_{i}\right|=p_{i}+\left|V_{i}\right|$. Thus,

$$
m_{C(x)}\left(s_{i}\right)=m_{C}\left(s_{i}\right)+1
$$

Therefore, C satisfies Definition 2.8.

Using the last remark, we can rewrite Definition 2.8.
Definition 2.8 Let T be a tree on $n \geq 2$ vertices. We call an assignment $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right), \ldots,\left(\mathcal{A}_{k}, V_{k}\right)\right)$ of $\left(p_{1}, p_{2}, \ldots, p_{k}, 1^{n-\sum_{i=1}^{k} p_{i}}\right)$ to T realizable if there exists a matrix $B \in \mathcal{S}(T)$ with unordered multiplicity list $\left(p_{1}, p_{2}, \ldots, p_{k}, 1^{n-\sum_{i=1}^{k} p_{i}}\right)$, such that, for each i between 1 and k, if s_{i} is the eigenvalue of B associated with $5 p_{i}$, i.e, $m_{B}\left(s_{i}\right)=p_{i}$, then:
(1) For each subtree R of T in $\mathcal{A}_{i}, m_{B[R]}\left(s_{i}\right)=1$.
(2) For each connected component Q of $T-V_{i}$ that is not in $\mathcal{A}_{i}, m_{B[Q]}\left(s_{i}\right)=0$.

Definition 2.10. If T is a tree on $n \geq 2$ vertices, \mathcal{A} is a realizable assignment of $\left(p_{1}, p_{2}, \ldots, p_{k}, 1^{n-\sum_{i=1}^{k} p_{i}}\right)$ to T and $B \in \mathcal{S}(T)$ is a matrix that satisfies Definition 2.8 , then we say that B realizes the assignment \mathcal{A}.

10 There are assignments that are not realizable. For instance see Example 2.3 in [7]. However when we study the list $\left(p_{1}, p_{2}, 1^{l}\right)$ we have the following result.

Theorem 2.11. [7] Given a tree T on $n=p_{1}+p_{2}+l$ vertices, a near-assignment of the list $\left(p_{1}, p_{2}, l^{l}\right)$ to T, $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$, and any distinct real numbers α and β, then there exists $A \in \mathcal{S}(T)$ satisfying the following conditions:

If R is a connected component of $T-V_{1}$, then
α is an eigenvalue of $A[R]$ if and only if $R \in \mathcal{A}_{1}$.
Similarly, if S is a connected component of $T-V_{2}$, then
β is an eigenvalue of $A[S]$ if and only if $S \in \mathcal{A}_{2}$.
Using Lemma 2.6, Theorem 2.11 and the new version of Definition 2.8 we obtain the following result.

Theorem 2.12. Given a tree T on $n=p_{1}+p_{2}+l$ vertices, a near-assignment \mathcal{A} of the list $\left(p_{1}, p_{2}, l^{l}\right)$ to T, and any distinct real numbers α and β, then
(1) there exists a realizable assignment \mathcal{B} of $\left(p_{1}, p_{2}, 1^{l}\right)$ to T.
(2) there exists $A \in \mathcal{S}(T)$ that realizes the assignment \mathcal{B} with $m_{A}(\alpha)=p_{1}$ and $m_{A}(\beta)=p_{2}$.

Corollary 2.13. For any tree T, if there exists a near-assignment of the list $\left(M_{1}(T), p_{2}, 1^{l}\right)$ to T, then

$$
\overline{M_{2}}(T) \geq M_{1}(T)+p_{2} .
$$

3 Upper and lower bounds for $\overline{\mathbf{M}_{\mathbf{2}}}$

In this section, using the reduction theorem for $M_{2},[7]$, we directly compute $\overline{M_{2}}$ for particular trees. For other kind of trees, we give bounds on $\overline{M_{2}}$.

In [7], the authors directly computed M_{2} for generalized stars (for the notion of generalized star see [6]).
Definition 3.1. [6] Let T be a tree and x_{0} be a vertex of T. A generalized star T with central vertex x_{0} is a tree such that $T-\left\{x_{0}\right\}$ is a union of paths (arms), each one of them is adjacent to x_{0} by an endpoint.

Proposition 3.2. [7] Let T be a generalized star on $n \geq 2$ vertices, with f arms of length 1 and g arms of length at least 2. Then:
(A) If $g \geq 2$, then $M_{2}(T)=f+2 g-2$.
(B) If $g \leq 1$ and T is not a path, then $M_{2}(T)=f+g$.
(C) If T is a path, then $M_{2}(T)=2$.

Definition 3.3. [7] (Peripheral HDV, peripheral arm) Given a tree T and a high-degree vertex v, v is a peripheral HDV of T if and only if there is a branch of T at v that contains all the other high-degree vertices in T. A peripheral arm of a tree T is a branch of T at a peripheral HDV such that the branch does not itself contain any HDV.

Definition 3.4. Throughout this section, we will consider a peripheral HDV v in a tree T.
The subtree of T consisting of v and its peripheral arms will be called S-however, if v is the only HDV in T, we will let S be v and all but one of its peripheral arms (chosen arbitrarily). The point is that S should be a generalized star containing everything except a single branch of T at v.

Let w be the one vertex adjacent to v that is not in S. We denote by $(T-S)+{ }_{w} K_{1}$ the tree obtained from $T-S 10$ by putting a vertex adjacent to w.

Theorem 3.5. [7] (M_{2} Reduction Theorem) Let T be a tree and v a peripheral HDV, with S as defined earlier in this section. Suppose that S has f arms of length 1 and g arms of length at least 2. Then:
(A) If $g \geq 2$, then $M_{2}(T-S)=M_{2}(T)-f-2 g+2$.
(B) If $g \leq 1$, then $M_{2}\left((T-S)+{ }_{w} K_{1}\right)=M_{2}(T)-f-g+1$.

In [1] a class of trees was introduced that contains the generalized stars, the superstars.
Definition 3.6. [1] Let T be a tree and x_{0} be a vertex of T. A superstar T with central vertex x_{0} is a tree such that $T-\left\{x_{0}\right\}$ is a union of paths.

The focus of this section is to directly compute $\overline{M_{2}}$ for a subclass of superstars.
Definition 3.7. Let T be a superstar with central vertex x_{0}. A small pincer of T is a path, P, of $T-\left\{x_{0}\right\}$ such 20 that:
(1) P is adjacent to x_{0} by a vertex u of degree two in P.
(2) At least one path of $P-u$ is a vertex.

Definition 3.8. Let T be a superstar with central vertex x_{0}. T is a small superstar if all paths of $T-\left\{x_{0}\right\}$ are small pincers or are adjacent to x_{0} by an endpoint (arms).

Example 3.9. The superstar T of Example 2.4 is a small superstar with cental vertex 4. The superstar T of Example 2.5 is a small superstar with central vertex 5. All stars and generalized stars are small superstars.

The following superstar is not a small superstar

Definition 3.10. Let T be a tree and \mathcal{A} an assignment of $\left(M_{1}(T), p_{2}, 1^{l}\right)$ to T.
(1) We refer to \mathcal{A} as an $\overline{M_{2}}$ assignment to T.
(2) If $M_{1}(T)+p_{2}=\overline{M_{2}}(T)$, we refer to \mathcal{A} as an $\overline{M_{2}}$-maximal assignment to T.

Remark 3.11. Let T be a tree and $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ an $\overline{M_{2}}$ assignment of $\left(M_{1}(T), p_{2}, 1^{l}\right)$ to T. Because $M_{1}(T)=\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|$,
(1) All components of $T-V_{1}$ are in \mathcal{A}_{1}.
(2) We can assume that if $v \in V_{1}$ then v is a HDV.
(3) Since all components of $T-V_{1}$ are paths, if v if a peripheral HDV of degree greater or equal to 4 in T then $v \in V_{1}$.
(4) If v is a peripheral $H D V, v \in V_{1}$ and all peripheral arms have length 1 then they are in \mathcal{A}_{1} and no one is in \mathcal{A}_{2} (see Lemma 2.3).

Remark 3.12. Let T be a tree and $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ an $\overline{M_{2}}$-maximal assignment of $\left(M_{1}(T), p_{2}, 1^{l}\right)$ to T.
Because $\overline{M_{2}}(T)=\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|+\left|\mathcal{A}_{2}\right|-\left|V_{2}\right|$,
(1) All components of $T-V_{2}$ with more than one vertex are in \mathcal{A}_{2}.
(2) We can assume that if $v \in V_{2}$ then v is a HDV.
(3) All components of $T-V_{2}$ with one vertex that are not components of $T-V_{1}$ are in \mathcal{A}_{2}.
(4) If v is a peripheral $H D V, v \in V_{1}$ and all peripheral arms have length 1 then using Remark 3.11, 4, we conclude that $v \notin V_{2}$.
(5) If v if a peripheral $H D V, v \in V_{1}$ and all peripheral arms have length 1 , except one, then there is an $\overline{M_{2}}$. maximal assignment of $\left(M_{1}(T), p_{2}, 1^{l}\right)$ to T such that $v \notin V_{2}$.

Remark 3.13. In some proofs we construct an $\overline{M_{2}}$-maximal (or simply an $\overline{M_{2}}$) assignment of $\left(M_{1}(T), p_{2}, 1^{1}\right)$ to T. for some integer p_{2}. In these cases, first we construct an $\overline{M_{2}}$ assignment of $\left(M_{1}(T), p_{2}, 1^{l}\right)$ to $T, \mathcal{A}=$ $20\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ by putting the elements in \mathcal{A}_{1} and in V_{1}, next we put the elements in \mathcal{A}_{2} and in V_{2}, using Remarks 3.11 and 3.12. This construction is in such a way that $M_{1}(T)=\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|$ and $M_{1}(T)+p_{2}=$ $\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|+\left|\mathcal{A}_{2}\right|-\left|V_{2}\right|$. After using Lemma 2.3 we conclude condition 2 of Definition 2.1 and by Corollary 2.13, we say that $\overline{M_{2}}(T) \geq M_{1}(T)+p_{2}$.

Proposition 3.14. Let T be a small superstar on $n \geq 2$ vertices, with f arms of length $1, g$ arms of length at least 252 and h small pincers, with $f+g \geq 2$ or $h \geq 2$. Then:
(A) If $g \geq 2$, then $\overline{M_{2}}(T)=2 h+f+2 g-2$.
(B) If $g \leq 1$ and T is not a path, then $\overline{M_{2}}(T)=2 h+f+g$.
(C) If T is a path, then $\overline{M_{2}}(T)=2$.

Proof Let x be the central vertex of T. If S is a small pincer of T, by Theorem 3.5,

$$
M_{2}\left((T-S)+_{x} K_{1}\right)=M_{2}(T)-1
$$

Since T has h small pincers,

$$
M_{2}\left(T^{\prime}\right)=M_{2}(T)-h,
$$

where T^{\prime} is obtained from T by removing all small pincers and by putting h vertices adjacent to x. Consequently, T^{\prime} is a generalized star with $f+h$ arms of length 1 and g arms of length at least 2. Using Proposition 3.2

$$
M_{2}\left(T^{\prime}\right)= \begin{cases}f+h+2 g-2 & \text { if } g \geq 2 \\ f+h+g & \text { if } g \leq 1 \text { and } T^{\prime} \text { is not a path } \\ 2 & \text { if } T^{\prime} \text { is a path. }\end{cases}
$$

Therefore,

$$
M_{2}(T)= \begin{cases}f+2 h+2 g-2 & \text { if } g \geq 2 \\ f+2 h+g & \text { if } g \leq 1 \text { and } T^{\prime} \text { is not a path } \\ 2+h & \text { if } T^{\prime} \text { is a path. }\end{cases}
$$

Note that if T^{\prime} is a path with $h=2$ and $f=g=0$ then T is not a path and $M_{2}(T)=M_{2}\left(T^{\prime}\right)+h=2+2=$ $304=f+2 h+g$. By hypothesis, if $h<2$ then $f+g \geq 2$. In this case, if T^{\prime} is a path then $h=0$ and $f+g=2$. Consequently, T is a path.

So, we conclude that

$$
M_{2}(T)= \begin{cases}f+2 h+2 g-2 & \text { if } g \geq 2 \\ f+2 h+g & \text { if } g \leq 1 \text { and } T \text { is not a path } \\ 2 & \text { if } T \text { is a path. }\end{cases}
$$

Since $\overline{M_{2}}(T) \leq M_{2}(T)$, we have
(A) If $g \geq 2$, then $\overline{M_{2}}(T) \leq 2 h+f+2 g-2$.
(B) If $g \leq 1$ and T is not a path, then $\overline{M_{2}}(T) \leq 2 h+f+g$.
(C) If T is a path, then $\overline{M_{2}}(T) \leq 2$.

Conversely, since T is a tree,

$$
M_{1}(T)= \begin{cases}f+h+g-1 & \text { if } f+g \geq 2 \\ h+1 & \text { if } f+g \leq 1\end{cases}
$$

We are going to construct an $\overline{M_{2}}$ assignment of $\left(M_{1}(T), p_{2}, 1^{l}\right)$, for some integer p_{2}, to T (see Remark 3.13). 5
Case 1 If $f+g \geq 2$, we put the central vertex of T in V_{1} and we put the $f+h+g$ paths obtained by removing the central vertex of T in \mathcal{A}_{1}.

If $g \geq 2$, we put the central vertex of T in V_{2} and we put the $h+g$ paths of length at least 2, obtained by removing the central vertex of T in \mathcal{A}_{2}. So, $\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|=f+g+h-1=M_{1}(T)$. Using Remark 3.13, $\overline{M_{2}}(T) \geq f+h+g-1+h+g-1=f+2 h+2 g-2$.

If $g \leq 1$, we put the central vertex of each small pincer of T in V_{2}, we put the $2 h+1$ subtrees obtained by removing the central vertex of all small pincers of T in \mathcal{A}_{2}. Since $\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|=f+g+h-1=M_{1}(T)$, using Remark 3.13, $\overline{M_{2}}(T) \geq f+h+g-1+2 h+1-h=f+2 h+g$.

Note that if T is a path and $f+g \geq 2$ then $f+g=2$ and $h=0$. Thus, if $g=2$, then $\overline{M_{2}}(T) \geq f+2 h+2 g-2=2$ and if $g \leq 1$, then $\overline{M_{2}}(T) \geq f+2 h+g=2$.

Case 2 If $f+g \leq 1$ then $h \geq 2$ and T is not a path. We put the central vertex of each small pincer of T in V_{1} and we put the $2 h+1$ subtrees obtained by removing the central vertex of all small pincers of T in \mathcal{A}_{1}. We put the central vertex of T in V_{2} and we put the $f+h+g$ paths obtained by removing the central vertex of T in \mathcal{A}_{2}. Since $\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|=h+1=M_{1}(T)$, by Remark 3.13, $\overline{M_{2}}(T) \geq h+1+f+g+h-1=f+g+2 h$.

Consequently,
(A) If $g \geq 2$, then $\overline{M_{2}}(T) \geq 2 h+f+2 g-2$.
(B) If $g \leq 1$ and T is not a path, then $\overline{M_{2}}(T) \geq 2 h+f+g$.
(C) If T is a path, then $\overline{M_{2}}(T) \geq 2$.

Therefore,
(A) If $g \geq 2$, then $\overline{M_{2}}(T)=2 h+f+2 g-2$.
(B) If $g \leq 1$ and T is not a path, then $\overline{M_{2}}(T)=2 h+f+g$.
(C) If T is a path, then $\overline{M_{2}}(T)=2$.

Proposition 3.15. Let T be a tree and v a peripheral $H D V$, with S as defined earlier in this section. Suppose that S has 3 arms of length 1 and 0 arms of length at least 2 and $T \neq S$. Then

$$
\overline{M_{2}}(T-S)+2 \leq \overline{M_{2}}(T) \leq \overline{M_{2}}(T-S)+3 .
$$

Proof Let $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to T. We are going to construct an $\overline{M_{2}}$ assignment to $T-S, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ (see Remark 3.13). Note that $M_{1}(T-S)=M_{1}(T)-2$. Because v has degree 4, by Remark 3.11, 3, $v \in V_{1}$, the peripheral arms of S are in \mathcal{A}_{1} and no one is in \mathcal{A}_{2}. Using Remark 30 3.12, 4, $v \notin V_{2}$. So, let F be the component of $T-V_{2}$ containing S. By Remark 3.12, 1, F is in \mathcal{A}_{2}.

Let $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \backslash\{$ the peripheral arms of $S\}, V_{1}^{\prime}=V_{1} \backslash\{v\}, V_{2}^{\prime}=V_{2}$ and

$$
\mathcal{A}_{2}^{\prime}=\left\{\begin{array}{ll}
\mathcal{A}_{2} \backslash\{F\} & \text { if } \mathcal{A}_{2} \neq\{F\} \\
T-S & \text { if } \mathcal{A}_{2}=\{F\}
\end{array} .\right.
$$

By Remark 3.13, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ is an $\overline{M_{2}}$ assignment to $T-S$ and $\overline{M_{2}}(T-S) \geq \overline{M_{2}}(T)-2-1=$ $\overline{M_{2}}(T)-3$.

Let $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to $T-S$. We are going to construct an $\overline{M_{2}}$ assignment to $T, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ (see Remark 3.13). Note that $M_{1}(T)=M_{1}(T-S)+2$. Let w be the 5 vertex of $T-S$ adjacent to v in T. If $w \notin V_{2}$ then let R be the component of $(T-S)-V_{2}$ containing w and let P be the component of $T-V_{2}$ containing S.

Let $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\{$ the peripheral arms of $S\}, V_{1}^{\prime}=V_{1} \cup\{v\}, V_{2}^{\prime}=V_{2}$ and

$$
\mathcal{A}_{2}^{\prime}=\left\{\begin{array}{lr}
\left(\mathcal{A}_{2} \backslash\{R\}\right) \cup\{P\} & \text { if } R \in \mathcal{A}_{2} \text { and } w \notin V_{2} \\
\mathcal{A}_{2} & \text { otherwise }
\end{array} .\right.
$$

By Remark 3.13, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ is an $\overline{M_{2}}$ assignment to T and $\overline{M_{2}}(T) \geq \overline{M_{2}}(T-S)+2$.

Proposition 3.16. Let T be a tree and v a peripheral HDV, with S as defined earlier in this section. Suppose that S has 1 arm of length 1 and 1 arm of length at least 2 (or T has 2 arms of length 1 and 0 arms of length at least 2) and $T \neq S$. Then

$$
\overline{M_{2}}(T-S)+1 \leq \overline{M_{2}}(T) \leq \overline{M_{2}}(T-S)+2 .
$$

Proof Let $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to T. We are going to construct an $\overline{M_{2}}$ assignment to $T-S$, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right)\right.$, $\left.\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ (see Remark 3.13). Note that $M_{1}(T-S)=M_{1}(T)-1$.

Using Remark 3.11, 1, if v is in V_{1}, then the peripheral arms of $S-v$ are in \mathcal{A}_{1}. Using Remark 3.12, 5, without loss of generality, we can assume that $v \notin V_{2}$. Let F be the component of $T-V_{2}$ containing S. By Remark 3.12, 1 and $3, F$ is in \mathcal{A}_{2}.

Let $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \backslash\{$ the peripheral arms of $S\}, V_{1}^{\prime}=V_{1} \backslash\{v\}, V_{2}^{\prime}=V_{2}$ and

$$
\mathcal{A}_{2}^{\prime}=\left\{\begin{array}{ll}
\mathcal{A}_{2} \backslash\{F\} & \text { if } \mathcal{A}_{2} \neq\{F\} \\
T-S & \text { if } \mathcal{A}_{2}=\{F\}
\end{array} .\right.
$$

By Remark 3.13, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ is an $\overline{M_{2}}$ assignment to $T-S$ and $\overline{M_{2}}(T-S) \geq \overline{M_{2}}(T)-1-1=$ $\overline{M_{2}}(T)-2$.

If v is not in V_{1}, since v has degree 3 in T, then $w \in V_{1}$. By Remark 3.11, $1, S$ is in \mathcal{A}_{1}. By Remark 3.12, 3, we can assume, without loss of generality, that $v \in V_{2}$ and the peripheral arms of S are in \mathcal{A}_{2}.

Let $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \backslash\{S\}, V_{1}^{\prime}=V_{1}, V_{2}^{\prime}=V_{2} \backslash\{v\}, \mathcal{A}_{2}^{\prime}=\mathcal{A}_{2} \backslash\{$ the peripheral arms of $S\}$.
By Remark 3.13, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right)\right.$, $\left.\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ is an $\overline{M_{2}}$ assignment to $T-S$ and $\overline{M_{2}}(T-S) \geq \overline{M_{2}}(T)-1-1=$ $\overline{M_{2}}(T)-2$.

Let $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to $T-S$. We are going to construct an $\overline{M_{2}}$ assignment to $T, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ (see Remark 3.13). Note that $M_{1}(T)=M_{1}(T-S)+1$. Let w be the vertex of $T-S$ adjacent to v in T. If $w \notin V_{2}$ then let F be the component of $(T-S)-V_{2}$ containing w and let P be the component of $T-V_{2}$ containing S.

Let $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\{$ the peripheral arms of $S\}, V_{1}^{\prime}=V_{1} \cup\{v\}, V_{2}^{\prime}=V_{2}$ and

$$
\mathcal{A}_{2}^{\prime}=\left\{\begin{array}{lr}
\left(\mathcal{A}_{2} \backslash\{F\}\right) \cup\{P\} & \text { if } F \in \mathcal{A}_{2} \text { and } w \notin V_{2} \\
\mathcal{A}_{2} & \text { otherwise }
\end{array} .\right.
$$

By Remark 3.13, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ is an $\overline{M_{2}}$ assignment to T and $\overline{M_{2}}(T) \geq \overline{M_{2}}(T-S)+1$.

Let H be the subtree obtained from T by removing vertices 11, 12, 13. By Proposition 3.16,

$$
\overline{M_{2}}(H)+1 \leq \overline{M_{2}}(T) \leq \overline{M_{2}}(H)+2 .
$$

Since H is a small superstar with central vertex 4, by Proposition 3.14, $\overline{M_{2}}(H)=4+0+4-2=2$. So,

$$
5 \leq \overline{M_{2}}(T) \leq 6
$$

4 An algorithm for $\overline{\boldsymbol{M}_{2}}$

The purpose of this section is to find simple reductions of the initial tree in such a way that we know the effect of each reduction on $\overline{M_{2}}$. The process may be continued until a small superstar, for which $\overline{M_{2}}$ is known (Proposition 3.14), or until a subtree for which $\overline{M_{2}}$ has bounds (Section 3).

Definition 4.1. (Peripheral SHDV, peripheral super path) Let T be a tree that is not a small superstar. A peripheral superstar high degree vertex $(S H D V) v$ of T is an $H D V$ vertex of T such that
[(1) there is a unique subtree of $T-v, R$, that contains high-degree vertices;
[(2) $T-R$ is a small superstar;
[(3) if $w \in R$ and w is adjacent to v, then w does not satisfy $1,2$.
A peripheral super path of T at $v(v$ is a SHDV) is a path of $(T-R)-v$. There are two kinds of peripheral super paths of T at v (SHDV): peripheral arms and small pincers.

Example 4.2. Consider the tree T of Example 3.17.
The vertices 4 and 8 are peripheral superstar high degree vertices.
The vertex 2 is not a peripheral superstar high degree vertex because it is adjacent to vertex 4 and this vertex 15 satisfies conditions 1 and 2 of Definition 4.1.

The subtree of T generated by vertices 1, 2, 3 is a peripheral super path of T at 4, but it is not a peripheral arm of T at 4 (it is a small pincer).

Definition 4.3. Throughout this section, we will consider a peripheral SHDV vin a tree T that is not a small superstar. The subtree of T consisting of v and its peripheral super paths will be called Q. Let w be the one 20 vertex adjacent to v that is not in Q.

Remark 4.4. Let T be a tree and $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ an $\overline{M_{2}}$ assignment of $\left(M_{1}(T), p_{2}, 1^{l}\right)$ to T. Because $M_{1}(T)=\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|$,
(1) All components of $T-V_{1}$ are in \mathcal{A}_{1}.
(2) We can assume that if $v \in V_{1}$ then v has degree greater than two in T.
(3) Since all components of $T-V_{1}$ are paths, if v is a peripheral SHDV of degree greater or equal to 4 in T then $v \in V_{1}$ or there is at most one peripheral arm adjacent to v and the central vertex of each small pincer adjacent to v is in V_{1}.
(4) If v is a peripheral $S H D V, v \in V_{1}$ and all peripheral super paths adjacent to v have length 1 then they are in \mathcal{A}_{1} and no one is in \mathcal{A}_{2} (see Lemma 2.3).

Remark 4.5. Let T be a tree and $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ an $\overline{M_{2}}$-maximal assignment of $\left(M_{1}(T), p_{2}, 1^{l}\right)$ to T. Because $\overline{M_{2}}(T)=\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|+\left|\mathcal{A}_{2}\right|-\left|V_{2}\right|$,
(1) All components of $T-V_{2}$ with more than one vertex are in \mathcal{A}_{2}.
(2) We can assume that if $v \in V_{2}$ then v has degree greater than two in T. to T. for some integer p_{2}. In these cases, first we construct an $\overline{M_{2}}$ assignment of $\left(M_{1}(T), p_{2}, 1^{1}\right)$ to $T, \mathcal{A}=$ $\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ by putting the elements in \mathcal{A}_{1} and in V_{1}, next we put the elements in \mathcal{A}_{2} and in V_{2}, us$\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ by putting the elements in \mathcal{A}_{1} and in V_{1}, next we put the elements in \mathcal{A}_{2} and in V_{2}, us-
ing Remarks 4.4 and 4.5. This construction is in such a way that $M_{1}(T)=\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|$ and $M_{1}(T)+p_{2}=$ $\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|+\left|\mathcal{A}_{2}\right|-\left|V_{2}\right|$. After using Lemma 2.3 we conclude condition 2 of Definition 2.1 and by Corollary 2.13, 15 we say that $\overline{M_{2}}(T) \geq M_{1}(T)+p_{2}$.

Proposition 4.7. Let T be a tree that is not a small superstar and v a peripheral SHDV, with Q as defined earlier in this section. Suppose that Q has $h \geq 1$ small pincers and the degree of v in T is greater than 4. Let H be the graph obtained from T by removing one small pincer of Q. Then

$$
\overline{M_{2}}(H)=\overline{M_{2}}(T)-2 .
$$

Proof By Proposition 3.16, $\overline{M_{2}}(H) \geq \overline{M_{2}}(T)-2$.
Let $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to H. We are going to construct an $\overline{M_{2}}$ assignment to $T, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ (see Remark 4.6). Note that $M_{1}(T)=M_{1}(H)+1$. Since the degree of v in T is greater than 4, we conclude that the degree of v in H is greater than 3. By Remark 4.4, 3 and Remark 4.5, 1,
(3) All components of $T-V_{2}$ with one vertex that are not components of $T-V_{1}$ are in \mathcal{A}_{2}.
(4) If v is a peripheral $\operatorname{SHDV}, v \in V_{1}$ and all peripheral super paths adjacent to v have length 1 , then using Remark 4.4, 4, we conclude that $v \notin V_{2}$.
(5) If v is a peripheral $S H D V, v \in V_{1}$ and all peripheral super paths adjacent to v have length 1, except one, then there is an $\overline{M_{2}}$-maximal assignment of $\left(M_{1}(T), p_{2}, 1^{l}\right)$ to T such that $v \notin V_{2}$.

Remark 4.6. In some proofs we construct an $\overline{M_{2}}$-maximal (or simply an $\overline{M_{2}}$) assignment of ($M_{1}(T), p_{2}, 1^{l}$)

3, we have $v \in V_{1} \cup V_{2}$.
Suppose that $v \in V_{1} \cap V_{2}$. Let P be the small pincer $T-H$.
Let $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\{P\}, V_{1}^{\prime}=V_{1}, V_{2}^{\prime}=V_{2}$ and $\mathcal{A}_{2}^{\prime}=\mathcal{A}_{2} \cup\{P\}$.
By Remark 4.6, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ is an $\overline{M_{2}}$ assignment to T and $\overline{M_{2}}(T) \geq \overline{M_{2}}(H)+2$.
Suppose that $v \in V_{1} \backslash V_{2}$. Let x be the central vertex of the small pincer, P, of $T-H$.
Let $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\{P\}, V_{1}^{\prime}=V_{1}, \mathcal{A}_{2}^{\prime}=\mathcal{A}_{2} \cup\{$ the peripheral arms of P at $x\}$ and $V_{2}^{\prime}=V_{2} \cup\{x\}$.
By Remark 4.6, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ is an $\overline{M_{2}}$ assignment to T and $\overline{M_{2}}(T) \geq \overline{M_{2}}(H)+2$.
Suppose that $v \in V_{2} \backslash V_{1}$. Let x be the central vertex of the small pincer, P, of $T-H$.
Let $V_{1}^{\prime}=V_{1} \cup\{x\}, \mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\{$ the peripheral arms of P at $x\}$., $\mathcal{A}_{2}^{\prime}=\mathcal{A}_{2} \cup\{P\}$ and $V_{2}^{\prime}=V_{2}$. By Remark 4.6, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ is an $\overline{M_{2}}$ assignment to T and $\overline{M_{2}}(T) \geq \overline{M_{2}}(H)+2$.
Consequently, $\overline{M_{2}}(T)=\overline{M_{2}}(H)+2$.
Lemma 4.8. Let T be a tree that is not a small superstar. Suppose that v is a peripheral SHDV in T with Q, w as defined earlier in this section. Then, there exists an $\overline{M_{2}}$-maximal assignment to $T, \mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$, in which $v \in V_{1} \cup V_{2}$.

Moreover,
(1) If v has at least two peripheral arms of length at least 2 , then there exists an $\overline{M_{2}}$-maximal assignment, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ in which $v \in V_{1}^{\prime} \cap V_{2}^{\prime}$.
(2) If v has at most one peripheral arm of length at least 2 and w has degree two in T, then there exists an $\overline{M_{2}}$-maximal assignment, $\mathcal{A}^{\prime \prime}=\left(\left(\mathcal{A}_{1}^{\prime \prime}, V_{1}^{\prime \prime}\right),\left(\mathcal{A}_{2}^{\prime \prime}, V_{2}^{\prime \prime}\right)\right)$ such that v is in exactly one $V_{1}^{\prime \prime}$ or $V_{2}^{\prime \prime}$.
(3) If Q has f peripheral arms of length 1 and $g \leq 1$ peripheral arms of length at least $2, f+g>2$ and $\mathcal{A}^{\prime \prime \prime}=\left(\left(\mathcal{A}_{1}^{\prime \prime \prime}, V_{1}^{\prime \prime \prime}\right),\left(\mathcal{A}_{2}^{\prime \prime \prime}, V_{2}^{\prime \prime \prime}\right)\right)$ is an $\overline{M_{2}}$-maximal assignment to T, then $v \in V_{1}^{\prime \prime \prime}$.

Proof Let $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to T in which $v \notin V_{1} \cup V_{2}$. Suppose that Q has f peripheral arms of length 1 and g peripheral arms of length at least 2 . We are going to construct an $\overline{M_{2}}$-maximal assignment to $T, \mathcal{B}=\left(\left(\mathcal{B}_{1}, U_{1}\right),\left(\mathcal{B}_{2}, U_{2}\right)\right)$ (see Remark 4.6).

If $f+g \geq 2$, then by Remark 4.4, 1 , the component, R, of $T-V_{1}$ containing v is in \mathcal{A}_{1}. Note that the peripheral arms of Q might be in R.

Let $\mathcal{B}_{1}=\left(\mathcal{A}_{1} \backslash\{R\}\right) \cup\{$ two peripheral arms of $Q\}, U_{1}=V_{1} \cup\{v\}, \mathcal{B}_{2}=\mathcal{A}_{2}$ and $U_{2}=V_{2}$.
By Remark 4.6 and the cardinality of $\mathcal{B}, \mathcal{B}=\left(\left(\mathcal{B}_{1}, U_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ is an $\overline{M_{2}}$-maximal assignment to T in which $v \in U_{1}$.

If $f+g \leq 1$, by Remark 4.4, 3 and Remark 4.5, 1 and 3, the central vertex of each small pincer of Q is in $V_{1} \backslash V_{2}$. By Remark 4.5, 1, the component, R, of $T-V_{2}$ containing v, is in \mathcal{A}_{2}.

Let $\mathcal{B}_{1}=\mathcal{A}_{1}, U_{1}=V_{1}, \mathcal{B}_{2}=\left(\mathcal{A}_{1} \backslash\{R\}\right) \cup\{$ two peripheral super paths of $Q\}$ and $U_{2}=V_{2} \cup\{v\}$.
By Remark 4.6 and the cardinality of $\mathcal{B}, \mathcal{B}=\left(\left(\mathcal{B}_{1}, U_{1}\right),\left(\mathcal{B}_{2}, U_{2}\right)\right)$ is an $\overline{M_{2}}$-maximal assignment to T in which $v \in U_{2}$. So, there exists an $\overline{M_{2}}$-maximal assignment to $T \mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ in which $v \in V_{1} \cup V_{2}$.
(1) By what we just proved, there exists an $\overline{M_{2}}$-maximal assignment to T,

$$
\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)
$$

in which $v \in V_{1} \cup V_{2}$. Suppose without loss of generality that $v \in V_{1} \backslash V_{2}$. We are going to construct an $\overline{M_{2}}$-maximal assignment to T, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$, in which $v \in V_{1}^{\prime} \cap V_{2}^{\prime}$. (see Remark 4.6). By 15 Remark 4.5, 1 and 3, the component, R, of $T-V_{2}$ containing v, is in \mathcal{A}_{2}. Note that the peripheral arms of Q might be in R.
Let $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1}, \mathrm{n} V_{1}^{\prime}=V_{1}, V_{2}^{\prime}=V_{2} \cup\{v\}$ and

$$
\mathcal{A}_{2}^{\prime}=\left(\mathcal{A}_{2} \backslash\{R\}\right) \cup\{\text { two peripheral arms of length at least two of } Q\} .
$$

Since $\left|\mathcal{A}_{2}\right|-\left|V_{2}\right|=\left|\mathcal{A}_{2}^{\prime}\right|-\left|V_{2}^{\prime}\right|$, by Remark 4.6 and the cardinality of $\mathcal{A}^{\prime}, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right)\right.$, $\left.\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ is an $\overline{M_{2}}$-maximal assignment to T, in which $v \in V_{1}^{\prime} \cap V_{2}^{\prime}$.
(2) By what we just proved, there exists an $\overline{M_{2}}$-maximal assignment,

$$
\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)
$$

in which $v \in V_{1} \cup V_{2}$. Suppose $v \in V_{1} \cap V_{2}$. We are going to construct an $\overline{M_{2}}$-maximal assignment 20 to $T, \mathcal{A}^{\prime \prime}=\left(\left(\mathcal{A}_{1}^{\prime \prime}, V_{1}^{\prime \prime}\right),\left(\mathcal{A}_{2}^{\prime \prime}, V_{2}^{\prime \prime}\right)\right)$, in which $v \in V_{1}^{\prime \prime} \backslash V_{2}^{\prime \prime}$. (see Remark 4.6) Using Remark 4.4, 1, each peripheral super path of Q is in \mathcal{A}_{1}. By Remark 4.5, 1, the longer arm of Q and the small pincers of Q are in \mathcal{A}_{2} and there is not a peripheral arm of length 1 of Q in \mathcal{A}_{2}. By Remark 4.5, 2, w $\notin V_{2}$. Let R be the component of $T-V_{2}$ containing w and let F be the component of $T-\left(\left(V_{2} \backslash\{v\}\right) \cup\right.$ $\{$ the central vertex of each small pincer of $Q\}$) containing v and w. By Remark 4.5, 1, $F \in \mathcal{A}_{2}$.
Let $\mathcal{A}_{1}^{\prime \prime}=\mathcal{A}_{1}, V_{1}^{\prime \prime}=V_{1}$,

$$
\begin{aligned}
\mathcal{A}_{2}^{\prime \prime}= & \left(\mathcal{A}_{2} \backslash\{\text { the peripheral super paths of length at least two of } Q, R\}\right) \cup \\
& \cup\{\text { the peripheral arms of each small pincer of } Q, F\}
\end{aligned}
$$

and $V_{2}^{\prime \prime}=\left(V_{2} \backslash\{v\}\right) \cup\{$ the central vertex of each small pincer of $Q\}$.
If Q does not have a longer arm or $R \notin \mathcal{A}_{2}$ then $\left|\mathcal{A}_{2}^{\prime \prime}\right|-\left|V_{2}^{\prime \prime}\right|>\left|\mathcal{A}_{2}\right|-\left|V_{2}\right|$. This is impossible because \mathcal{A} is an $\overline{M_{2}}$-maximal assignment to T. So, $v \notin V_{1} \cap V_{2}$.
If Q has a longer arm and $R \in \mathcal{A}_{2}$ then $\left|\mathcal{A}_{2}\right|-\left|V_{2}\right|=\left|\mathcal{A}_{2}^{\prime \prime}\right|-\left|V_{2}^{\prime \prime}\right|$. By Remark 4.6 and using the cardinality of $\mathcal{A}^{\prime \prime}, \mathcal{A}^{\prime \prime}=\left(\left(\mathcal{A}_{1}^{\prime \prime}, V_{1}^{\prime \prime}\right),\left(\mathcal{A}_{2}^{\prime \prime}, V_{2}^{\prime \prime}\right)\right)$ is an $\overline{M_{2}}$-maximal assignment to T, in which v in $V_{1}^{\prime \prime} \backslash V_{2}^{\prime \prime}$.
(3) Let $\mathcal{A}^{\prime \prime \prime}=\left(\left(\mathcal{A}_{1}^{\prime \prime \prime}, V_{1}^{\prime \prime \prime}\right),\left(\mathcal{A}_{2}^{\prime \prime \prime}, V_{2}^{\prime \prime \prime}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to T. By Remark 4.4, 1, each peripheral super path of Q belongs to $\mathcal{A}_{1}^{\prime \prime \prime}$ and $v \in V_{1}^{\prime \prime \prime}$.

Lemma 4.9. Let T be a tree that is not a small superstar. Suppose that v is a peripheral SHDV in T with Q, w as defined earlier in this section. Suppose that Q has f peripheral arms of length 1 and $g \leq 1$ peripheral arms of length at least 2 and the degree of w in T is 2. Then, there exists an $\overline{M_{2}}$-maximal assignment to $T, 35$ $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$, in which:
(1) If $f+g \geq 1$, then $v \in V_{1}$ and the central vertex of each small pincer of Q belongs to V_{2}.
(2) If $f+g=0$, then $v \in V_{2}$ and the central vertex of each small pincer of Q belongs to V_{1}.

Proof

(1) By 2 of Lemma 4.8, let $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to T such that v is exactly one V_{1} or V_{2}.
If $f+g>1$, since v is a peripheral SHDV and $w \notin V_{1}$ (the degree of w in T is 2), by Remark 4.4, 1 , each peripheral super path of Q belongs to \mathcal{A}_{1} and $v \in V_{1}$. In this case, because $v \notin V_{2}$ and \mathcal{A} is an $\overline{M_{2}}$-maximal assignment to T, we conclude that the central vertex of each small pincer of Q is in V_{2} and the peripheral arms of each small pincer of Q are in \mathcal{A}_{2}..
Suppose that $f+g=1$ and $v \in V_{2}$. then by Remark 4.4, 1, the central vertex of each small pincer of Q is in V_{1} and the peripheral arms of each small pincer of Q are in \mathcal{A}_{1}. By Remark 4.5, 1 and 3, the peripheral super paths of Q are in \mathcal{A}_{2}. Since w has degree two in T, we can assume that $w \notin$ $V_{1} \cup V_{2}$. We are going to construct an $\overline{M_{2}}$-maximal assignment to $T, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$, in which $v \in V_{1}$ and the central vertex of each small pincer of Q is in V_{2} (see Remark 4.6). Let R be the component of $T-V_{1}$ containing v, w. By Remark 4.4, 1, $R \in \mathcal{A}_{1}$. Let P be the component of $T-V_{2}$, containing w. Since $P \neq R$, by Remark 4.5, 1 and $3, P \in \mathcal{A}_{2}$. Let B be the component of $T-\left(\left(V_{2} \backslash\{v\}\right) \cup\{\right.$ the central vertex of each small pincer of $\left.Q\}\right)$, containing v and w. Let C be the component of $T-\left(V_{1} \cup\{v\}\right)$, containing w. Note that $B \neq C$.
Let

$$
\begin{aligned}
\mathcal{A}_{1}^{\prime}= & \left(\mathcal{A}_{1} \backslash\{\text { the peripheral arms of each small pincer of } Q, R\}\right) \cup \\
& \cup\{C, \text { the peripheral super paths of } Q\},
\end{aligned}
$$

$V_{1}^{\prime}=\left(V_{1} \backslash\{\right.$ the central vertex of each small pincer of $\left.Q\}\right) \cup\{v\}$,

$$
\begin{aligned}
\mathcal{A}_{2}^{\prime}= & \left(\mathcal{A}_{2} \backslash\{\text { the peripheral super paths of } Q, P\}\right) \cup \\
& \cup\{\text { the peripheral arms of each small pincer of } Q, B\}
\end{aligned}
$$

and $V_{2}^{\prime}=\left(V_{2} \backslash\{v\}\right) \cup\{$ the central vertex of each small pincer of $Q\}$.
Since $\left|\mathcal{A}_{1}^{\prime}\right|-\left|V_{1}^{\prime}\right|=\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|$ and $\left|\mathcal{A}_{2}^{\prime}\right|-\left|V_{2}^{\prime}\right|=\left|\mathcal{A}_{2}\right|-\left|V_{2}\right|$ and by Remark 4.6, we get an $\overline{M_{2}}$-maximal assignment to $T, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right)\right.$, $\left.\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$, where $v \in V_{1}^{\prime}$ and the central vertex of each small pincer of Q belongs to V_{2}^{\prime}.
(2) By 2 of Lemma 4.8, let $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to T such that v is exactly one V_{1} or V_{2}. Since $f+g=0, v$ is a peripheral SHDV and $w \notin V_{1}$, if $v \in V_{1}$ then by Remark 4.4, 1, the peripheral super paths of Q are in \mathcal{A}_{1}. Let F be the component of $T-V_{1}$ containing w. By Remark 4.4, $1, F \in \mathcal{A}_{1}$. Let H be the component of $T-\left(V_{1} \backslash\{v\}\right) \cup\{$ the central vertex of each small pincer of $\left.Q\}\right)$ containing w and v. Let

$$
\begin{aligned}
\mathcal{A}_{1}^{\prime}= & \left(\mathcal{A}_{1} \backslash\{\text { the peripheral super paths of } Q, F\}\right) \cup \\
& \cup\{\text { the peripheral arms of each small pincer of } Q, H\},
\end{aligned}
$$

$V_{1}^{\prime}=\left(V_{1} \backslash\{v\}\right) \cup\{$ the central vertex of each small pincer of $Q\}$. Since $\left|\mathcal{A}_{1}^{\prime}\right|-\left|V_{1}^{\prime}\right|=\left|\mathcal{A}_{1}\right|-\left|V_{1}\right|+1 \mid$ we conclude that \mathcal{A} is not an $\overline{M_{2}}$-maximal assignment to T. Impossible. Consequently, $v \notin V_{1}$ and $v \in V_{2}$. Therefore, the central vertex of each small pincer of Q belongs to V_{1}.

Theorem 4.10. ($\overline{M_{2}}$ Reduction Theorem) Let T be a tree that is not a small superstar and v a peripheral SHDV, with Q, w as defined earlier in this section. Suppose that Q has f peripheral arms of length $1, g$ peripheral arms of length at least 2 and h small pincers. Then:
(A) If $g \geq 2$, then $\overline{M_{2}}(T-Q)=\overline{M_{2}}(T)-f-2 g-2 h+2$.
(B) If $g \leq 1$ and the degree of w in T is 2 , then $\overline{M_{2}}\left((T-Q)+{ }_{w} K_{1}\right)=\overline{M_{2}}(T)-f-g-2 h+1$, where $\left({ }_{w} K_{1}\right)$ means that we put a vertex adjacent to w.
(C) If $g \leq 1$, the degree of w in T is greater than 2 and $f+g>2$ then

$$
\overline{M_{2}}\left((T-Q)+{ }_{w} S_{4}\right)=\overline{M_{2}}(T)-f-g-2 h+3,
$$

where S_{4} is the star with 3 arms of length 1 and $\left({ }_{w} S_{4}\right)$ means that S_{4} is adjacent to w by the central vertex.

Proof Part A: Let $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to $T-Q$. We are going to construct an $\overline{M_{2}}$ assignment to $T, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ (see Remark 4.6).

Let $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \cup\{$ the peripheral super paths of $Q\}, V_{1}^{\prime}=V_{1} \cup\{v\}, \mathcal{A}_{2}^{\prime}=\mathcal{A}_{2} \cup\{$ the peripheral super paths 5 of lenght at least two of $Q\}$ and $V_{2}^{\prime}=V_{2} \cup\{v\}$.

Since $M_{1}(T)=M_{1}(T-Q)+f+g+h-1$, by Remark 4.6, this creates an $\overline{M_{2}}$ assignment to $T, \mathcal{A}^{\prime}=$ $\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ and $\overline{M_{2}}(T) \geq \overline{M_{2}}(T-Q)+f+g+h-1+g+h-1=\overline{M_{2}}(T-Q)+f+2 g+2 h-2$.

Conversely, by Lemma 4.8, 1, there exists an $\overline{M_{2}}$-maximal assignment to $T, \mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$, in which v is in $V_{1} \cap V_{2}$. We are going to construct an $\overline{M_{2}}$ assignment to $T-Q, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$. By 10 Remarks 4.4, 1 and 4.5,1, each of the $f+g+h$ peripheral super paths of Q might be in \mathcal{A}_{1} and each of the $g+h$ peripheral super paths of length at least 2 of Q might be in \mathcal{A}_{2}.

Let $\mathcal{A}_{1}^{\prime}=\mathcal{A}_{1} \backslash\{$ the peripheral super paths of $Q\}, V_{1}^{\prime}=V_{1} \backslash\{v\}, \mathcal{A}_{2}^{\prime}=\mathcal{A}_{2} \backslash\{$ the peripheral super paths of lenght at least two of $Q\}$ and $V_{2}^{\prime}=V_{2} \backslash\{v\}$.

Since $M_{1}(T-Q)=M_{1}(T)-f-g-h+1$, by Remark 4.6, this creates an $\overline{M_{2}}$ assignment to $T-Q, \mathcal{A}^{\prime}=15$ $\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ and $\overline{M_{2}}(T-Q) \geq \overline{M_{2}}(T)-f-g-h+1-g-h+1=\overline{M_{2}}(T)-f-2 g-2 h+2$. So, we have $\overline{M_{2}}(T-Q)=\overline{M_{2}}(T)-f-2 g-2 h+2$.

Part B: Let $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to $(T-Q)+{ }_{w} K_{1}$. We are going to construct an $\overline{M_{2}}$ assignment to $T, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ (see Remark 4.6). Let R be the component of $\left((T-Q)+{ }_{w} K_{1}\right)-V_{1}$ containing K_{1} and let U be the component of $\left((T-Q)+{ }_{w} K_{1}\right)-V_{2}$ containing K_{1}. Since 20 degree of w in T is 2, without loss of generality, by Remarks 4.4, 2, and 4.5, 2, we can assume that $w \in R \cap U$. Consequently, $R \neq K_{1}$ and $U \neq K_{1}$. By Remarks 4.4, 1 and 4.5, 1, R is in \mathcal{A}_{1} and U is in \mathcal{A}_{2}.

Suppose that $f+g \geq 1$. Let P be the component of $T-\left(V_{1} \cup\{v\}\right)$ containing w and let H be the component of $T-\left(V_{2} \cup\{\right.$ the central vertex of each small pincer of $\left.Q\}\right)$ containing w and v.

Let $\mathcal{A}_{1}^{\prime}=\left(\mathcal{A}_{1} \backslash\{R\}\right) \cup\{$ the peripheral super paths of $Q, P\}, V_{1}^{\prime}=V_{1} \cup\{v\}, \mathcal{A}_{2}^{\prime}=\left(\mathcal{A}_{2} \backslash\{U\}\right) \cup 25$ \{the peripheral arms of each small pincer of $Q, H\}$ and $V_{2}^{\prime}=V_{2} \cup\{$ the central vertex of each small pincer of $Q\}$.

Since $M_{1}(T)=M_{1}\left((T-Q)+{ }_{w}\right)+f+g+h-1$, by Remark 4.6, this creates an $\overline{M_{2}}$ assignment to T, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ and $\overline{M_{2}}(T) \geq \overline{M_{2}}\left((T-Q)+{ }_{w} K_{1}\right)+f+g+h-1+2 h-h=\overline{M_{2}}\left((T-Q){ }_{w} K_{1}\right)+f+g+2 h-1$.

Suppose that $f+g=0$. Let B be the component of $T-\left(V_{2} \cup\{v\}\right)$ containing w and let C be the component 30 of $T-\left(V_{1} \cup\{\right.$ the central vertex of each small pincer of $Q\}$ containing w and v.

Let $\mathcal{A}_{1}^{\prime}=\left(\mathcal{A}_{1} \backslash\{R\}\right) \cup\{$ the peripheral arms of each small pincer of $Q, C\}, V_{1}^{\prime}=V_{1} \cup\{$ the central vertex of each small pincer of $Q\}, V_{2}^{\prime}=V_{2} \cup\{v\}$ and $\mathcal{A}_{2}^{\prime}=\left(\mathcal{A}_{2} \backslash\{U\}\right) \cup\{$ the peripheral super paths of $Q, B\}$.

Since $M_{1}(T)=M_{1}\left((T-Q){ }_{w} K_{1}\right)+h$, by Remark 4.6, this creates an $\overline{M_{2}}$ assignment to $T, \mathcal{A}^{\prime}=$ $\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ and $\overline{M_{2}}(T) \geq \overline{M_{2}}\left((T-Q)+{ }_{w} K_{1}\right)+2 h-h+h-1=\overline{M_{2}}\left((T-Q)+{ }_{w} K_{1}\right)+f+g+2 h-1$.

Conversely, suppose that $f+g \geq 1$. By Lemma 4.9, 1, there exists an $\overline{M_{2}}$-maximal assignment to $T, \mathcal{A}=$ $\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$, in which v is in V_{1} and the central vertex of each small pincer of Q is in V_{2}. We are going to construct an $\overline{M_{2}}$ assignment to $(T-Q){ }_{w} K_{1}, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right)\right.$, $\left.\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ (see Remark 4.6). By Remarks 4.4, 1 and 2, and 4.5, 1 and 3, each of the $f+g+h$ peripheral super paths of Q might be in \mathcal{A}_{1}, the peripheral arms of each small pincer of Q might be in \mathcal{A}_{2} and $w \notin V_{1} \cup V_{2}$. Let R be the component of $T-V_{1}$ containing $w 40$ and let P be the component of $T-V_{2}$ containing v and w. By Remarks 4.4, 1 and 4.5, 1, $R \in \mathcal{A}_{1}$ and $P \in \mathcal{A}_{2}$. Let R^{\prime} be the component of $\left((T-Q)+{ }_{w} K_{1}\right)-\left(V_{1} \backslash\{v\}\right)$ containing w and K_{1}, and let P^{\prime} be the component of $\left.(T-Q)+{ }_{w} K_{1}\right)-\left(V_{2} \backslash\{\right.$ the central vertex of each small pincer of $\left.Q\}\right)$ containing w and K_{1}.

Let $\mathcal{A}_{1}^{\prime}=\left(\mathcal{A}_{1} \backslash\{R\right.$, the peripheral super paths of $\left.Q\}\right) \cup\left\{R^{\prime}\right\}, V_{1}^{\prime}=V_{1} \backslash\{v\}, \mathcal{A}_{2}^{\prime}=\left(\mathcal{A}_{2} \backslash\{P\right.$, the peripheral arms of each small pincer of $Q\}) \cup\left\{P^{\prime}\right\}$ and $V_{2}^{\prime}=V_{2} \backslash\{$ the central vertex of each small pincer of $Q\}$.

Since $M_{1}\left((T-Q)+_{w} K_{1}\right)=M_{1}(T)-f-g-h+1$, by Remark 4.6, this creates an $\overline{M_{2}}$ assignment to $(T-Q)+_{w} K_{1}$, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ and $\overline{M_{2}}\left((T-Q)+{ }_{w} K_{1}\right) \geq \overline{M_{2}}(T)-f-g-h+1-2 h+h=\overline{M_{2}}(T)-f-g-2 h+1$.

Suppose that $f+g=0$. By Lemma 4.9, 2, there exists an $\overline{M_{2}}$-maximal assignment to $T, \mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right)\right.$, $\left.\left(\mathcal{A}_{2}, V_{2}\right)\right)$, in which v is in V_{2}, the central vertex of each small pincer of Q is in V_{1} and $w \notin V_{1} \cup V_{2}$. We are going to construct an $\overline{M_{2}}$ assignment to $(T-Q){ }_{w} K_{1}, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$. By Remarks 4.4, 1 and 50
4.5, 1 and 3, each of the h small pincers of Q might be in \mathcal{A}_{2} and the peripheral arms of each small pincer of Q might be in \mathcal{A}_{1}. Let R be the component of $T-V_{1}$ containing v, w and let P be the component of $T-V_{2}$ containing w. By Remarks 4.4, 1 and 4.5, 1 and $3, R \in \mathcal{A}_{1}$ and $P \in \mathcal{A}_{2}$. Let P^{\prime} be the component of $\left((T-Q)+{ }_{w} K_{1}\right)-\left(V_{2} \backslash\{v\}\right)$ containing wand K_{1}, and let R^{\prime} be the component of $\left((T-Q)+{ }_{w} K_{1}\right)-\left(V_{1} \backslash\right.$
\{the central vertex of each small pincer of $Q\}$) containing w and K_{1}.
Let $\mathcal{A}_{1}^{\prime}=\left(\mathcal{A}_{1} \backslash\{R\right.$, the peripheral arms of each small pincer of $\left.Q\}\right) \cup\left\{R^{\prime}\right\}, V_{1}^{\prime}=V_{1} \backslash\{$ the central vertex of each small pincer of $Q\}, V_{2}^{\prime}=V_{2} \backslash\{v\}$ and $\mathcal{A}_{2}^{\prime}=\left(\mathcal{A}_{2} \backslash\{P\right.$, the peripheral super paths of $\left.Q\}\right) \cup\left\{P^{\prime}\right\}$.

Since $M_{1}\left((T-Q)+{ }_{w} K_{1}\right)=M_{1}(T)-h$, by Remark 4.6, this creates an $\overline{M_{2}}$ assignment to $(T-Q)+{ }_{w} K_{1}$, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ and $\overline{M_{2}}\left((T-Q)+{ }_{w} K_{1}\right) \geq \overline{M_{2}}(T)-2 h+h-h+1=\overline{M_{2}}(T)-f-g-2 h+1$.

So, we have $\overline{M_{2}}\left((T-Q)+{ }_{w} K_{1}\right)=\overline{M_{2}}(T)-f-g-2 h+1$.
Part C: Let $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to $(T-Q)+{ }_{w} S_{4}$. We are going to construct an $\overline{M_{2}}$ assignment to $T, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$. Let x be the central vertex of S_{4}.

By Lemma 4.8, 3 and by Remark 4.4, 1, $x \in V_{1}$ and the peripheral arms of S_{4} are in \mathcal{A}_{1}. By Remark 4.5, 4, $x \notin V_{2}$. Let R be the component of $\left((T-Q){ }_{w} S_{4}\right)-V_{2}$ containing S_{4}. By Remark 4.5, 1, R is in \mathcal{A}_{2}. Let R^{\prime} be
the component of $T-\left(V_{2} \cup\{\right.$ the central vertex of each small pincer of $\left.Q\}\right)$ containing v.
Let $\mathcal{A}_{1}^{\prime}=\left(\mathcal{A}_{1} \backslash\left\{\right.\right.$ the peripheral arms of $\left.\left.S_{4}\right\}\right) \cup\{$ the peripheral super paths of $Q\}, V_{1}^{\prime}=\left(V_{1} \backslash\{x\}\right) \cup\{v\}$, $V_{2}^{\prime}=V_{2} \cup\{$ the central vertex of each small pincer of $Q\}$ and $\mathcal{A}_{2}^{\prime}=\left(\mathcal{A}_{2} \backslash\{R\}\right) \cup\{$ the peripheral arms of each small pincer of $\left.Q, R^{\prime}\right\}$.

Since $M_{1}(T)=M_{1}\left((T-Q)+{ }_{w} S_{4}\right)+f+g+h-3$, by Remark 4.6, this creates an $\overline{M_{2}}$ assignment to T, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$ and $\overline{M_{2}}(T) \geq \overline{M_{2}}\left((T-Q)+{ }_{w} S_{4}\right)+f+g+h-3+2 h-h=\overline{M_{2}}\left(T-Q+{ }_{w} S_{4}\right)+f+g+2 h-3$. Conversely, let $\mathcal{A}=\left(\left(\mathcal{A}_{1}, V_{1}\right),\left(\mathcal{A}_{2}, V_{2}\right)\right)$ be an $\overline{M_{2}}$-maximal assignment to T. By Lemma $4.83, v$ is in V_{1}.
If $v \in V_{2}$ then by Remark 4.5, 1, the longer arm and the small pincers of Q are in \mathcal{A}_{2}. By Remark 4.4, 1, each of the $f+g+h$ peripheral super paths of Q might be in \mathcal{A}_{1}. If $w \notin V_{2}$, then let F be the component of $T-V_{2}$ containing w. Let H be the component of $T-\left(\left(V_{2} \backslash\{v\}\right) \cup\{\right.$ the central vertex of each small pincer of $\left.Q\}\right)$ containing v.

Let $\mathcal{B}_{1}=\mathcal{A}_{1}, U_{1}=V_{1}, \mathcal{B}_{2}=\left(\mathcal{A}_{2} \backslash\{F\right.$, the longer arm and the small pincers of $Q\} \cup\{$ the peripheral arms of each small pincer of $Q, H\}$ and $U_{2}=\left(V_{2} \backslash\{v\}\right) \cup\{$ the central vertex of each small pincer of $Q\}$.

By Remark 4.6, this creates an $\overline{M_{2}}$ assignment to $T, \mathcal{B}=\left(\left(\mathcal{B}_{1}, U_{1}\right),\left(\mathcal{B}_{2}, U_{2}\right)\right)$. Using the cardinality of \mathcal{B} we conclude that $g=1, w \notin V_{2}$ and $F \in \mathcal{A}_{2}$.

We are going to construct, $\mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$, an $\overline{M_{2}}$ assignment to $(T-Q)+{ }_{w} S_{4}$. Let x be the central vertex of S_{4}. Let R^{\prime} be the component of $\left((T-Q)+{ }_{w} S_{4}\right)-\left(V_{2} \backslash\{v\}\right)$ containing x.

Let $\mathcal{A}_{1}^{\prime}=\left(\mathcal{A}_{1} \backslash\{\right.$ the peripheral super paths of $\left.Q\}\right) \cup\left\{\right.$ the peripheral arms of $\left.S_{4}\right\}, V_{1}^{\prime}=\left(V_{1} \backslash\{v\}\right) \cup\{x\}$, $\mathcal{A}_{2}^{\prime}=\left(\mathcal{A}_{2} \backslash\{F\right.$, the longer arm and the small pincers of $Q\} \cup\left\{R^{\prime}\right\}$ and $V_{2}^{\prime}=V_{2} \backslash\{v\}$.

Since $M_{1}\left((T-Q){ }_{w} S_{4}\right)=M_{1}(T)-f-g-h+3$, by Remark 4.6, this creates an $\overline{M_{2}}$ assignment to $(T-Q){ }_{w} S_{4}$,

If $v \notin V_{2}$, using the maximality of $\left|\mathcal{A}_{2}\right|-\left|V_{2}\right|$, then the central vertex of each small pincer of Q is in V_{2}. We are going to construct an $\overline{M_{2}}$ assignment to $(T-Q){ }_{w} S_{4}, \mathcal{A}^{\prime}=\left(\left(\mathcal{A}_{1}^{\prime}, V_{1}^{\prime}\right),\left(\mathcal{A}_{2}^{\prime}, V_{2}^{\prime}\right)\right)$. By Remarks 4.4, 1 and 4.5, 1 and 3, each of the $f+g+h$ peripheral super paths of Q might be in \mathcal{A}_{1} and the peripheral arms of each small pincer of Q might be in \mathcal{A}_{2}. Let R be the component of $T-V_{2}$ containing v. Let R^{\prime} be the component of $\left((T-Q)+{ }_{w} S_{4}\right)-V_{2}$ containing $x\left(x\right.$ is the central vertex of $\left.S_{4}\right)$.

Let $\mathcal{A}_{1}^{\prime}=\left(\mathcal{A}_{1} \backslash\{\right.$ the peripheral super paths of $\left.Q\}\right) \cup\left\{\right.$ the peripheral arms of $\left.S_{4}\right\}, V_{1}^{\prime}=\left(V_{1} \backslash\{v\}\right) \cup\{x\}$, $\mathcal{A}_{2}^{\prime}=\left(\mathcal{A}_{2} \backslash\left\{R\right.\right.$, the peripheral arms of each small pincer of $Q \cup\left\{R^{\prime}\right\}$ and $V_{2}^{\prime}=V_{2} \backslash\{$ the central vertex of each small pincer of $Q\}$.

Since $M_{1}\left((T-Q){ }_{w} S_{4}\right)=M_{1}(T)-f-g-h+3$, by Remark 4.6, this creates an $\overline{M_{2}}$ assignment to $(T-Q){ }_{+} S_{4}$,

Consequently, we have $\overline{M_{2}}\left((T-Q)+{ }_{w} S_{4}\right)=\overline{M_{2}}(T)-f-g-2 h+3$.

Example 4.11. Let T be the tree of Example 3.17. Let Q be the subtree of T generated by vertices 1, 2, 3, 4, 5, 6 . Since Q is a small superstar (T is not a small superstar) with 1 arm of length 1,1 small pincer, and 7 is a vertex
of T with degree 2, by Theorem 4.10,

$$
\overline{M_{2}}(T)=\overline{M_{2}}\left((T-Q)+{ }_{w} K_{1}\right)+2,
$$

where w is the vertex 7 . So, $(T-Q)+{ }_{w} K_{1}$ (that is a small superstar with central vertex 8) is the tree

By Proposition 3.14,

$$
\overline{M_{2}}\left(\left((T-Q)+_{w} K_{1}\right)-J\right)=2+4-2=2 .
$$

Therefore,

$$
\overline{M_{2}}(T)=6
$$

Acknowledgement: This work was partially supported by Fundação para a Ciência e Tecnologia and was done within the activities of the Centro de Estruturas Lineares e Combinatórias.

References

[1] R. Fernandes. On the inverse eigenvalue problems: the case of superstars. Electronic Journal of Linear Algebra 18 (2009), 442-461.
[2] R. Horn and C.R. Johnson., Matrix Analysis, Cambridge University Press New York (1985).
[3] C.R. Johnson and A.Leal Duarte., The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, Linear and 10 Multilinear Algebra 46 (1999), 139-144.
[4] C.R. Johnson and A.Leal Duarte., On the possible multiplicities of the eigenvalues of a Hermitian matrix whose graph is a tree, Linear Algebra and Applications 248 (2002), 7-21.
[5] C.R. Johnson, A.Leal Duarte and C.M. Saiago., The Parter-Wiener theorem: refinement and generalization, SIAM Journal on Matrix Analysis and Applications 25 (2) (2003), 352-361.
[6] C.R. Johnson, A.Leal Duarte and C.M. Saiago., Inverse eigenvalue problems and lists of multiplicities of eigenvalues
for matrices whose graph is a tree: The case of generalized stars and double generalized stars, Linear Algebra and its
[6] C.R. Johnson, A.Leal Duarte and C.M. Saiago., Inverse eigenvalue problems and lists of multiplicities of eigenvalues
for matrices whose graph is a tree: The case of generalized stars and double generalized stars, Linear Algebra and its Applications 373 (2003), 311-330.
[7] C.R. Johnson, C. Jordan-Squire and D.A. Sher., Eigenvalue assignments and the two largest multiplicities in a Hermitian matrix whose graph is a tree, Discrete Applied Mathematics 158 (2010), 681-691.
[8] S. Parter., On the eigenvalues and eigenvectors of a class of matrices, Journal of the Society for Industrial and Applied Mathematics 8 (1960), 376-388.
[9] G. Wiener., Spectral multiplicity and splitting results for a class of qualitative matrices, Linear Algebra and its Applications 61 (1984), 15-18.

[^0]: *Corresponding Author: Rosário Fernandes: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, E-mail: mrff@fct.unl.pt

