
Gonçalo Mendes Cabrita

Non-uniform replication for replicated objects

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

Orientador: Nuno Manuel Ribeiro Preguiça,
Professor Associado,
DI, FCT, Universidade NOVA de Lisboa

March, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157636853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Non-uniform replication for replicated objects

Copyright © Gonçalo Mendes Cabrita, Faculdade de Ciências e Tecnologia, Universidade

NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “unlthesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt




To my family, and friends.

v





Acknowledgments

I would like to thank my advisor, Prof. Dr. Nuno Preguiça, for the opportunity to work

with him on this project. His guidance, encouragement, and support made this work

possible.

I would also like to thank my colleagues in the department for their encouragement,

and support. At last, I would like to thank my family, and friends for their continued

support in my academic endeavors.

This work has been partially funded by CMU-Portugal research project GoLocal

Ref. CMUP-ERI/TIC/0046/2014, EU LightKone (grant agreement n.732505), and by

FCT/MCT project NOVA-LINCS Ref. UID/CEC/04516/2013.

vii





Abstract

A large number of web applications/services are supported by applications running in

cloud computing infrastructures. Many of these application store their data in geo-

replicated key-value stores, that maintain replicas of the data in several data centers

located across the globe. Data management in these settings is challenging, with solutions

needing to balance availability and consistency. Solutions that provide high-availability,

by allowing operations to execute locally in a single data center, have to cope with a

weaker consistency model. In such cases, replicas may be updated concurrently and a

mechanism to reconcile divergent replicas is needed. Using the semantics of data types

(and operations) helps in providing a solution that meets the requirements of applications,

as shown by conflict-free replicated data types.

As information grows it becomes difficult or even impossible to store all information

at every replica. A common approach to deal with this problem is to rely on partial

replication, where each replica maintains only part of the total system information. As

a consequence, each partial replica can only reply to a subset of the possible queries. In

this thesis, we introduce the concept of non-uniform replication where each replica stores

only part of the information, but where all replicas store enough information to answer

every query. We apply this concept to eventual consistency and conflict-free replicated

data types and propose a set of useful data type designs where replicas synchronize by

exchanging operations.

Furthermore, we implement support for non-uniform replication in AntidoteDB, a

geo-distributed key-value store, and evaluate the space efficiency, bandwidth overhead,

and scalability of the solution.

Keywords: Non-uniform Replication; Partial Replication; Replicated Data Types; Even-

tual Consistency; Key-Value Stores;

ix





Resumo

Um grande número de aplicações/serviços web são suportados por aplicações que

correm em infra-estruturas na nuvem. Muitas destas aplicações guardam os seus dados

em bases de dados chave-valor geo-replicadas, que mantêm réplicas dos dados em vários

centros de dados geograficamente distribuídos. A gestão de dados neste contexto é difícil,

sendo necessário que as soluções encontrem um equilíbrio entre disponibilidade e con-

sistência. Soluções que forneçam alta disponibilidade, executando operações localmente

num único centro de dados, têm de lidar com um modelo de consistência mais fraco.

Nestes casos, existe a possibilidade de réplicas serem actualizadas concorrentemente e é

necessário um mecanismo para reconciliar réplicas divergentes. A utilização das semânti-

cas de tipos de dados (e operações) ajuda no fornecimento de uma solução que cumpra

os requisitos das aplicações, como demonstrado por tipos de dados livres de conflitos

(CRDTs).

Com o crescimento da informação armazenada torna-se difícil ou até impossível guar-

dar toda a informação em todas as réplicas. Para lidar com este problema é comum a

utilização de técnicas de replicação parcial, onde cada réplica mantém apenas parte da

informação total do sistema. Por consequência, cada réplica parcial consegue apenas res-

ponder a um subconjunto de operações de leitura. Nesta tese introduzimos o conceito

de replicação não uniforme onde cada réplica quarda apenas parte da informação, mas

onde todas as réplicas guardam informação suficiente para responder a todas as opera-

ções de leitura. Aplicamos este conceito à consistência eventual e a tipos de dados livres

de conflitos e propomos um conjunto de tipos de dados onde réplicas sincronizam por

propagação de operações.

Adicionalmente, implementámos também suporte para a replicação não uniforme

no AntidoteDB, uma base de dados chave-valor geo-distribuída, e avaliamos o espaço

ocupado, a quantidade de dados transmitidos, e a escalabilidade da solução.

Palavras-chave: Replicação não uniforme; Replicação parcial; Tipos de dados replicados;

Consistência eventual; Sistemas de armazenamento chave-valor;

xi





Contents

List of Algorithms xvii

List of Figures xix

List of Tables xxi

Listings xxiii

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivating the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5

2.1 CRDTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Delta-based CRDTs . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Computational CRDTs . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Key-value stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Consistency Guarantees . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 System examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Computing Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Apache Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Spark Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Storm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.5 Percolator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.6 Titan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.7 Lasp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xiii



CONTENTS

3 Non-uniform replication model 27

3.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 System convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Non-uniform eventual consistency . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Eventual Consistency . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Non-uniform eventual consistency . . . . . . . . . . . . . . . . . 29

3.4 Protocol for non-uniform eventual consistency . . . . . . . . . . . . . . 30

3.4.1 Fault-tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Operation-based NuCRDTs 35

4.1 Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Top-K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Top-K with removals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Filtered Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Top Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Comparing NuCRDTs with CRDTs 47

5.1 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Top-K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Top-K with removals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Filtered Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Integration of NuCRDTs in AntidoteDB 53

6.1 AntidoteDB architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Implementing the data types . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Modifications in AntidoteDB to support NuCRDTs . . . . . . . . . . . . 55

6.3.1 Requirement 1: Operation typechecking . . . . . . . . . . . . . . 56

6.3.2 Requirement 2: Ignoring no-op effect-updates . . . . . . . . . . . 56

6.3.3 Requirement 3: Operation compaction . . . . . . . . . . . . . . . 56

6.3.4 Requirement 4: Durability of masked operations . . . . . . . . . 58

6.3.5 Requirement 5: Generating new operations from downstream op-

erations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Evaluation 61

7.1 Dissemination overhead and replica sizes . . . . . . . . . . . . . . . . . 61

7.1.1 Top-K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1.2 Top-K with removals . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiv



CONTENTS

7.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2.1 Top-K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2.2 Top-K with removals . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Conclusion 67

8.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 69

A Appendix 1: Example NuCRDT implementation 75

xv





List of Algorithms

1 State-based G-Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Operation-based G-Counter . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Delta-based G-Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Computational CRDT that computes the average of values added . . . . 9

5 Computational CRDT that computes the Top-K player scores . . . . . . 10

6 Computational CRDT that computes the Top-K player scores with support

for removals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7 Replication algorithm for non-uniform eventual consistency . . . . . . 30

8 Design: Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9 Design: Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10 Design: Top-K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11 Design: Top-K with removals . . . . . . . . . . . . . . . . . . . . . . . . 40

12 Design: F-Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

13 Design: Top Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

14 Algorithm for compacting collections of transactions . . . . . . . . . . . 57

xvii





List of Figures

2.1 Example of the relational data model . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Example of the key-value data model . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Example of the hybrid data model . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1 Histogram: total message size and mean replica size . . . . . . . . . . . . . 48

5.2 Top-K: total message size and mean replica size . . . . . . . . . . . . . . . . 48

5.3 Top-K with removals: total message size and mean replica size with a workload

of 95% adds and 5% removes . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Top-K with removals: total message size and mean replica size with a workload

of 99% adds and 1% removes . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Top-K with removals: total message size and mean replica size with a workload

of 99.95% adds and 0.05% removes . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 F-Set: total message size and mean replica size . . . . . . . . . . . . . . . . 51

6.1 AntidoteDB Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1 Top-K: total message size and mean replica size . . . . . . . . . . . . . . . . 62

7.2 Top-K with removals: total message size and mean replica size with a workload

of 95% adds and 5% removes . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3 Top-K experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.4 Top-K with removals experiments with a workload of 95% adds and 5% re-

moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xix





List of Tables

7.1 Mean round-trip time between Amazon Web Services EC2 instances . . . . 64

xxi





Listings

2.1 WordCount in Apache Hadoop (using Scala) . . . . . . . . . . . . . . . . 20

2.2 WordCount in Spark (using Scala) . . . . . . . . . . . . . . . . . . . . . . 22

2.3 WordCount in Storm (using Scala) . . . . . . . . . . . . . . . . . . . . . . 23

2.4 WordCount in Lasp (using Erlang) . . . . . . . . . . . . . . . . . . . . . 26

A.1 Average NuCRDT implementation in Erlang . . . . . . . . . . . . . . . . 75

xxiii





C
h
a
p
t
e
r

1
Introduction

1.1 Context

Over the past decade, the widespread availability of high-speed Internet access has led to

a large increase of user activity in Internet services. Several of these services have become

incredibly commonplace and have seen widespread adoption by millions of people across

the globe. Examples of such services include social networks, document hosting services,

and on-line stores.

To cope with this increasing demand, developers are forced to find ways to improve

the scalability of their services in order to keep up with the enormous rate of requests

while still maintaining a low response time. A lot of these services’ data is stored in

globally distributed and geo-replicated key-value stores [1, 2, 3, 4]. These data stores

maintain replicas of their data in several data centers located across the globe in an effort

to not only improve their availability, but also to reduce latency to users in different

continents.

Data management in these settings is extremely challenging, with solutions needing

to find a good balance between availability and data consistency. Data stores that provide

high-availability by allowing operations to execute locally in a single data center sacrifice

a linearizable consistency model, typically achieved by using consensus algorithms to

maintain a single global view and provide a lockstep transition of the system. Instead,

these systems receive updates locally and propagate the operations to other replicas in

an asynchronous manner. Although this allows these systems to reduce their latency,

they must now cope with a weaker consistency model where replicas can be updated in a

concurrent fashion and a mechanism to reconcile diverging replicas is required.

Recently, a substantial amount of recent research has resulted in the proposal of differ-

ent approaches to the problem of data convergence. One of the proposed solutions [5] has

1



CHAPTER 1. INTRODUCTION

explored conflict-free replicated data types (CRDTs) that allow replicas to be modified

concurrently. These data types have predefined policies to deal with the convergence of

data, and these policies help application programmers by providing strong operational

semantics and relieving them from the burden of deciding how to merge data from di-

verging replicas themselves.

1.2 Motivating the problem

With the increase of information maintained by data stores it is often impossible or unde-

sirable to keep all data in all replicas. Besides sharding data among multiple machines

in each data center, it is often interesting to keep only part of the data in each data center.

In systems that adopt a partial replication model [6, 7, 8], as each replica only maintains

part of the data, it can only process a subset of the database queries. Sometimes, it is even

necessary to obtain data from multiple replicas for replying to a query.

Navalho et al. [9] have proposed several design extensions to CRDTs where the state

of the object is the result of a computation – e.g. the average, the top-K elements; over the

executed updates. An interesting aspect of this work is that one of the proposed designs

departs from traditional CRDTs and replication models in that the state of the replicas

does not need to be equivalent to correctly process a read query. For example, the replicas

of a CRDT that implements the top-K set do not need to be equal, only the top K elements

need to be the same for the resulting read query to be equal at all replicas.

This opens the opportunity to a number of optimizations in the replication process,

in which there is no need to propagate every update to every replica, further reducing

the dissemination cost and replica sizes of CRDTs. However, it also poses a number of

challenges, as with this approach for two replicas to synchronize it might be necessary

to establish more than two one-way synchronization steps, which is not the case with

standard CRDTs used in one-way convergent data stores [10].

1.3 The solution

We begin by exploring an alternative replication model, which captures the essence of the

non-traditional CRDT design proposed by Navalho et al. where each replica maintains

only part of the data but can process all queries. The key insight is that for some data

objects, not all data is necessary for providing the result of read operations.

We apply this alternative partial replication model to CRDTs, formalizing the model

for an operation-based synchronization approach in which CRDTs synchronize by ex-

changing operations. In this context, when an operation is executed at some replica

it may not be necessary to propagate it to other replicas if it produces no effect (or no

immediate effect). We apply the proposed model to eventual consistency and establish

sufficient conditions for having a system that provides non-uniform eventual consistency.

We present an algorithm that satisfies the identified conditions.

2



1.4. CONTRIBUTIONS

For the new model to be useful, it is necessary to provide data types that can address

application requirements. To this end, we propose a set of non-uniform CRDT (NuCRDT)

designs including designs that maintain an aggregated average, a histogram, a filtered

set, and several designs for sets that maintain a top-K. We evaluate these designs by

simulation, showing that NuCRDTs entail much lower space overhead for storage and

bandwidth usage for synchronization when compared with state-of-the-art alternatives,

including delta-based CRDTs and computational CRDTs.

To evaluate the impact of non-uniform replication in the performance of an existing

system, we have integrated support for non-uniform replication in AntidoteDB, a geo-

replicated key-value store, where values are CRDTs.

To achieve this, we first modified the synchronization process to control when updates

are propagated to other replicas. On one hand, it is desirable that an update is not

propagated when it produces no effects – e.g. adding an element that does not fit in

the top-K. On the other hand, it may be necessary to propagate updates as the result of

receiving an update – e.g. when a remove operation makes it necessary to propagate an

element that now belongs to the top-K and has not previously been propagated.

The second modification raises the question of the durability of operations which are

not immediately propagated. While not propagating an operation is important for effi-

ciency (not only less information is exchanged, but also the size of each replica is smaller),

it poses problems to fault-tolerance as it is important to keep a minimum number of

replicas to guarantee that an operation is not lost when a node fails.

We then evaluate the performance of non-uniform replication in AntidoteDB by mea-

suring the scalability of some of our designs and comparing them to the operation-based

CRDTs already supported by AntidoteDB.

1.4 Contributions

The main contributions of this thesis are:

• The non-uniform replication model, the application of this model to eventually

consistent systems, the sufficient conditions for providing non-uniform eventual

consistency, and an algorithm that satisfies these conditions;

• Multiple designs of operation-based NuCRDTs, and their simulated comparison to

state-of-the-art uniform CRDTs in terms of dissemination cost and replica size;

• The integration of support for non-uniform replication in the AntidoteDB key-

value store. This includes the design and implementation of such support. We

additionally evaluated the performance of AntidoteDB NuCRDTs when compared

with traditional CRDTs.

3



CHAPTER 1. INTRODUCTION

1.5 Document Structure

The rest of this document is organized as follows:

• In chapter 2, we present the related work. Exploring CRDTs, key-value stores, and

distributed computing frameworks;

• In chapter 3, we describe the new replication model, formalizing its semantics for

an eventually consistent system;

• In chapter 4, we present our designs of operation-based NuCRDTs using the pro-

posed model;

• In chapter 5, we compare our designs to state-of-the-art CRDTs using simulation;

• In chapter 6, we discuss how our designs fit into AntidoteDB, and what changes are

required to support them;

• In chapter 7, we evaluate the implementations of our designs in AntidoteDB against

the operation-based CRDTs supported by AntidoteDB;

• In chapter 8, we present our conclusions.

4



C
h
a
p
t
e
r

2
Related Work

This chapter overviews the state of the art in the areas related with the work done in the

context of this thesis. This chapter is organized as follows:

• In section 2.1, we present an overall study on Conflict-free Replicated Data Types;

• In section 2.2, several key-value store systems are presented;

• In section 2.3, we explore several distributed computing frameworks and their

intrinsics.

2.1 CRDTs

Conflict-free Replicated Data Types [5] are data types designed to be replicated. Each

replica can be modified without requiring coordination with other replicas. CRDTs en-

code merge policies that are used to guarantee that all replicas converge to the same value

after all updates are propagated to all replicas. CRDTs allow operations to be executed

immediately on any replica, avoiding classic problems that arise due to network latency

or faults.

By satisfying three key mathematical properties - idempotency, commutativity, and

associativity; CRDTs are guaranteed (by design) to always converge to a single common

state.

With these guarantees, CRDTs provide eventual consistency with well defined seman-

tics, making it easier for programmers to reason about them. Two main flavors of CRDTs

have been defined, (i) state-based and (ii) operation-based.

Convergent Replicated Data Types State-based CRDTs (or CvRDTs) synchronize by

exchanging the state of the replica. To guarantee that replicas converge, the internal

5



CHAPTER 2. RELATED WORK

state must form a monotonic semilattice, every operation must change the state moving

it upward in the lattice, and the merge operation computes the least upper bound of

the state in each replica. This form of CRDT proves to be inefficient when handling

large objects since exchanging the entire state over the network when small changes are

introduced adds considerable overhead. This variant allows for fair-lossy channels to be

used, requiring only that the synchronization graph is connected.

Commutative Replicated Data Types Operation-based CRDTs (or CmRDTs) synchro-

nize by propagating all executed updates to all replicas. To guarantee that replicas con-

verge, concurrent operations must satisfy the commutativity property. This variant as-

sumes that a reliable causally-ordered broadcast communication protocol is used.

Instead of a merge operation like in CvRDTs, CmRDTs instead extend their update

operations by splitting them into two functions:

(1) prepare-update (also known as atSource);

(2) effect-update (also known as downstream).

The prepare-update function is responsible for generating an internal representation

of the update, while the effect-update function is responsible for locally executing the

update and asynchronously propagating it to other replicas.

A simple example of a CRDT is the G-Counter. The G-Counter is a grow-only counter

which only provides the increment operation. The state-based version of a G-Counter,

presented in algorithm 1, is inspired by vector clocks. As such, each G-Counter holds a

vector of integers where each replica is assigned an entry in the vector. This is represented

by a mapping between replica identifiers and their local counter. Accessing an inexistent

mapping returns the default value, 0. To increment the global counter a replica simply

increments its local counter. The global value of the counter is the sum of all the replica

counters. To merge two replicas, it is sufficient to take the maximum for each replica

entry.

Algorithm 1 State-based G-Counter
1: payload [I 7→ N] P . One entry per replica
2: initial []
3: update increment():
4: let g = myID() . g: source replica
5: P[g]← P[g] + 1
6: query value():
7:

∑
i∈I P[i]

8: function merge(x, y):
9: [i 7→ max(x.P[i], y.P[i]) | ∀i ∈ I]

6



2.1. CRDTS

The operation-based version of a G-Counter, presented in algorithm 2, is much sim-

pler, as it is sufficient to keep the value of the counter if we assume exactly once delivery

of updates. Since in this model updates are processed locally and later executed and

propagated to other replicas, the update function is split into two phases: (i) atSource,

and (ii) downstream. However, in this particular case atSource simply emits its input to

downstream.

Algorithm 2 Operation-based G-Counter
1: payload I i
2: initial 0
3: query value():
4: i
5: update increment():
6: atSource(): . Empty due to no required processing
7: downstream(): . No precond: delivery order is empty
8: i← i + 1

2.1.1 Delta-based CRDTs

Delta-based CRDTs [11] are a CRDT variant introduced to combat the main weakness

of state-based CRDTs, their dissemination costs. Essentially, they are a midway between

state and operation-based solutions. Delta-based CRDTs ship a delta of the state instead

of its entirety, this reduces the cost of sending updates over the network. However, since

the mutator returns a delta-state and not an operation (like in operation-based CRDTs) it

does not require exactly-once delivery semantics.

In delta-based CRDTs, updates are replaced with delta-mutators. Unlike update

operations that modify and then return the full state, delta-mutators return a delta-state.

A delta-state is a value in the same join-semilattice which represents the update induced

by the mutator that generated it. Delta-mutations can be joined into delta-groups. A

delta-group is simply the delta-state resulting of the combination of the delta-group’s

mutators.

In algorithm 3 we present the delta-based G-Counter. The state is simply a mapping

between replica identifiers and their local counter. Accessing an inexistent mapping

returns the default value, 0. The increment delta-mutator returns a mapping from the

local replica to its incremented counter. The query operation returns the sum of all

replica counters. The merge operation joins two mutators my taking the maximum for

each replica entry.

In this case, the G-Counter only ships the counter fields that were mutated (the delta)

instead of all its fields.

7



CHAPTER 2. RELATED WORK

Algorithm 3 Delta-based G-Counter
1: payload [I 7→ N] P . One entry per replica
2: initial []
3: mutator increment

δ():
4: g← myID() . g: source replica
5: [g 7→ P[g] + 1]
6: query value():
7:

∑
i∈I m[i]

8: function merge(m, m’):
9: [i 7→ max(m[i], m’[i]) | ∀i ∈ I]

2.1.2 Computational CRDTs

Computational CRDTs [9] are an extension to state-based CRDTs where the state of the

object is the result of a computation - e.g. the average, the top-K elements; over the

executed updates.

Three different generic computational CRDT designs have been proposed, that can

be used for functions that satisfy the following mathematical properties: (i) incremental,

(ii) incremental and idempotent, and (iii) partially incremental.

Incremental The first design considers only incremental computations, where comput-

ing the function over two disjoint sets of events and combining the results is equal to

computing the function over the union of the two sets. Formally, a computation is incre-

mental if there is a function f , such that for any two disjoint sets of events E1 and E2, we

have:

Ff (E1 ∪E2,hbE1∪E2
) = f (Ff (E1,hbE1

),Ff (E2,hbE2
))

Where hbE represents a partial causality order on E.

In this design, each replica must:

(1) compute its contributions separately from other replicas;

(2) maintain a map of the contributions of each other replica;

(3) update its contributions when receiving an update operation (by combining previ-

ously computed contributions with the contribution of the new operation);

(4) keep the most recently computed result for the partial result of each merged replica1.

The value of a replica can be computed by applying an aggregation function to the

contributions of all replicas.

1If the resulting values are monotonic then this information can be automatically inferred, otherwise it
must be maintained explicitly. One solution is to use a monotonic version number for each computed result.

8



2.1. CRDTS

An example of this design is a CRDT that computes the average of values added,

presented in algorithm 4. In this example, the state of the CRDT is a tuple containing

the total sum of values added and the number of values added. Each replica explicitly

maintains a map of the contributions of each other replica. As such, we store each replica’s

state tuple in a vector. Updates occurring on a replica only update this replica’s entry in

the vector.

The CRDT provides an update operation that adds a value by updating the total sum

of values, and increments the number of added values by one. The query function adds

the values and number of added values of all entries, with the average being computed as

the sum of values over the sum of adds. To merge two replicas the CRDT uses the state

tuple with the highest number of values added, for each of the replicas.

Algorithm 4 Computational CRDT that computes the average of values added
1: payload [〈v, t〉] P . One entry per replica
2: initial [〈0,0〉, 〈0,0〉, . . . , 〈0,0〉]
3: update add(v):
4: g← myID() . g: source replica
5: P[g]← 〈P[g].v + v, P[g].t + 1〉
6: query value():
7:

∑
i P[i].v /

∑
i P[i].t

8: function merge(x, y):
9: [max(x1, y1) | x1 ∈ x ∧ y1 ∈ y]

10: function max(〈v1, t1〉, 〈v2, t2〉):
11: if t1 > t2 then 〈v1, t1〉
12: else 〈v2, t2〉

Incremental and Idempotent This design considers computations that are incremental

as well as idempotent. For a computation to be both incremental and idempotent the

function must respect the incremental property previously defined while allowing the

sets of events to potentially overlap.

This is similar to the incremental design, except that since the computation is idempo-

tent it is possible to maintain in each replica only the computed result. When an update

is received, or on a merge, the new value can be computed by executing the idempotent

function.

An example an implementation of such a computational CRDT is a data type that

computes the top-K player high scores for a leaderboard, presented in algorithm 5. In

this leaderboard, only the highest score of a player is displayed.

The state of this CRDT is a set containing tuples with a player identifier and a score.

The update function, add, runs the merge operation on the replica against a set containing

only the new tuple. The query function simply returns the current state. The merge

operation finds the highest score tuple for each player and filters the collection of those

tuples using a max function so that the resulting collection only contains the top-K

9



CHAPTER 2. RELATED WORK

scores. We define our total tuple ordering as follows, (V1 > V2)∨ (V1 = V2 ∧N1 > N2) =⇒
〈N1,V1〉 > 〈N2,V2〉.

Algorithm 5 Computational CRDT that computes the Top-K player scores
1: payload {〈n, v〉} S . set of 〈n,v〉 pairs; n ∈ N;v ∈ N
2: initial {}
3: update add(n, v):
4: S← merge(S, {〈n, v〉})
5: query value():
6: S
7: function merge(x, y):
8: maxK({〈n,v〉 ∈ (x∪ y) : @〈n,v1〉 ∈ (x∪ y) : v1 > v})

Partially incremental This design considers computations where only a subset of the

update operations respect the previously defined incremental property.

An example of a partially incremental computational CRDT is a top-K object where

elements can be removed. In this case, elements that do not belong in the top-K may

later become part of it, if a top-K element is removed. To address this case we must use

workarounds to reason about the elements that are still in the top-K so that we may exe-

cute our computations correctly. There exist two proposed workarounds (i) maintaining

a Set CRDT that contains the elements that have not been deleted, and (ii) having each

replica maintain all operations locally executed and only propagate to the other replicas

the operations that might affect the computed result.

In the first case, all replicas must maintain the complete set and all the updates need

to be propagated to all replicas. In the second case, each replica must maintain a set of

operations and the results of the computations (subsets of operations) performed at other

sites. Essentially, the second approach has a lower dissemination cost but its replicas will

be larger.

This is conceptually similar to the previous example, but in this top-K player high

score computational CRDT we are be able to remove elements. This requires maintaining

extra information as when removing an element in the top this requires some other

element to be moved to the top. Algorithm 6 presents a design that address this problem.

The state is a tuple containing the set of all operations executed locally, and a vector

containing a tuple with the subset of operations that results in the top-K computation and

a monotonic integer for all replicas. The monotonic integer is used to compare replicated

results to determine which one is the most recent.

An update operation simply updates the local set of operations in the state tuple

to include the add or remove operation executed. The diff operation aggregates the

operations that cause a change in the results, re-computes its local top-K, and returns a

tuple with that information. The query operation aggregates the operations that can affect

the state of the computation - e.g. if add(id, score) ≺del(id) (where ≺ denotes a causal

order between two operations) then add(id, score) will not affect the computation; and

10



2.2. KEY-VALUE STORES

filters that collection of operations using a max function such that the resulting collection

only contains the top-K score additions. We use the same total tuple ordering as in the

previous example.

The merge operation joins the given set of operations with the existing local one, and

updates the subset of operations that results in the computation for each replica – using

the monotonic integer previously mentioned to determine the most recent result.

Algorithm 6 Computational CRDT that computes the Top-K player scores with support
for removals

1: payload ({op(args)} operations, . S: set of add(n,v); n ∈ N;v ∈ N
2: [〈{add(n, v)} S, T〉] results . T: monotonic integer
3: initial ({}, [〈{},0〉,〈{},0〉, . . . ,〈{},0〉])
4: update add(n, v):
5: operations.Add(add(n, v))
6: update del(n):
7: operations.Add(del(n))
8: diff ():
9: g← myId() . g: source replica

10: ops← {o ∈ operations : changesResult(o)}
11: res← results[g 7→ 〈causalMaxK(operations ∪∀i results[i].S), results[g].T + 1〉]
12: 〈ops, res〉
13: query value():
14: causalMaxK(operations ∪∀i results[i].S)
15: function merge(x, y):
16: ops← x.operations ∪ y.operations
17: res← x.results[i 7→ mostRecent(x.results[i], y.results[i])] ∀i
18: (ops, res)
19: function changesResult(o):
20: causalMaxK(o ∪∀i results[i].S) , causalMaxK(∪∀i results[i].S)
21: function causalMaxK(ops):
22: maxK({o ∈ ops : o = add(n, v) ∧ (@o′ ∈ ops : o ≺ o′ ∧ o′ = del(n))})
23: function mostRecent(x, y):
24: if x.T > y.T then x
25: else y

2.2 Key-value stores

Key-value stores typically provide application developers with a distributed, highly avail-

able, and high performance database when compared to the classical relational databases.

To provide better availability these systems sacrifice linearizability and leverage weaker

forms of consistency such as causal and eventual consistency.

By relaxing their consistency constrains these systems bring their own set of trade-offs

dependent on the specific consistency model they follow. As such, it is the application

developer’s responsibility to pick a database that can correctly model their application

data while maintaining the specific invariants the application requires.

11



CHAPTER 2. RELATED WORK

In the following sections we briefly present the different data models, consistency

guarantees, and partitioning schemes that key-value stores provide. Following that, we

discuss several key-value stores and describe their properties and guarantees.

2.2.1 Data Models

Every database has a data model that it uses to internally represent its data in a structured

way. There are several models that a database may choose, each with its own set of trade-

offs that can affect querying speed, scalability, and restrict query semantics.

2.2.1.1 Relational Model

As the name indicates, the relational data model uses relations between entities to repre-

sent its data. An example of this model is shown in figure 2.1. Each collection of entities

is stored as a table, each row in this table represents an entity and each column represents

an attribute of the entity.

For each table, one or more attributes can constitute a unique key which can be used

to efficiently perform queries by indexing the table (and that unequivocally identify the

item in the table). This model also provides support for secondary indexes – indexes that

are built over column values; which are important to improve the performance of queries

over for example the name of a track.

This is a particularly simple and powerful data model. Since entities may be related

to other entities and because this relationship can be expressed internally, the model

allows for very complex queries to be performed over groups of entities. It also has the

advantage of being well known and understood by programmers.

The data model also provides support for transactions which allow users to make

updates to different tables atomically.

2.2.1.2 Key-value Model

This is the typical data model used in key-value stores, which simply maps keys to values.

An example of this model is presented in figure 2.2. In this model information storage

and retrieval is very efficient since it can be directly represented as a dictionary, which

allows the use of a hash function for fast indexing of elements.

A distributed hash table [12] is usually used to store data partitioned in a set of values.

This model does not support powerful and complex queries like the relational model and

typically does have support for any kind of transactions.

2.2.1.3 Key-value and Column hybrid Model (Column Family)

This model uses tables but not with the same semantics as the relational model. Instead,

tables are viewed as distributed multi dimensional maps indexed by a key. Every oper-

ation under a single row key is guaranteed to be atomic per replica regardless of how

12



2.2. KEY-VALUE STORES

Figure 2.1: Example of the relational data model

Figure 2.2: Example of the key-value data model

many columns are being read or written into. The model also allows for columns to be

grouped together into what are called Column Families. One of the most popular data

stores today, Cassandra [3], uses this data model. An example is shown in figure 2.3.

Similarly to the key-value model, the hybrid model has weaker support for complex

and powerful queries when compared to the relational model. However, the recent intro-

duction of CQL (Cassandra Query Language) in Cassandra shows that a SQL-like query

system can be used in models like this to great extent.

This model also provides support for indexes built over column values, which helps

improves the performance of queries where several columns may share the same values,

e.g., the name of an artist in a table containing all songs.

13



CHAPTER 2. RELATED WORK

Figure 2.3: Example of the hybrid data model

2.2.2 Consistency Guarantees

Data stores offer varying degrees of consistency, each with its own set of trade-offs be-

tween performance and consistency. Typically if we have stronger consistency guarantees

then we are sacrificing performance to achieve that level of consistency. However, some

applications benefit from this sacrifice due to requiring a stronger form of consistency.

In the following sub-subsections we discuss the consistency models that are later

referenced in this section.

2.2.2.1 Eventual Consistency

Eventual Consistency guarantees that (i) eventually all updates are delivered to all repli-

cas and (ii) replicas that received the same updates eventually reach the same state.

In this model, update operations may be executed on any replica without requiring

immediate synchronization. Therefore, the state of the replicas may diverge temporarily

but these replicas will eventually converge to an equivalent state.

2.2.2.2 Read Your Writes

The Read Your Writes consistency model guarantees that if a write is executed over some

record, then any attempt to read the value of such record will return said write (or later

values).

2.2.2.3 Strong Eventual Consistency

Strong Eventual Consistency guarantees us that (i) eventually all updates are delivered

to all replicas and (ii) replicas that received the same updates have the same state.

The key difference between this model and the Eventually Consistent model is that it

provides stronger semantics for resolving merge conflicts.

14



2.2. KEY-VALUE STORES

2.2.2.4 Causal Consistency

Causal Consistency guarantees that while values may diverge among replicas, the values

observed by a client respect a causal history of state-changing operations.

Essentially if a client updates the state of a replica with the following causal depen-

dencies: s1 ≺ s2 ≺ s3, then all other replicas will receive updates in an order that respects

this causality constraint. This guarantees that if we can observe s3 then the replica has

also received both s1 and s2.

2.2.2.5 Causal+ Consistency

Causal+ Consistency [13] has the same guarantees as Causal Consistency but it also

enforces a liveness property on the system in which eventually every replica converges to

the same state. This liveness property is the same of Eventual Consistency.

2.2.2.6 Transactional Causal Consistency

Transactional Causal Consistency [14] extends Causal+ Consistency by adding interactive

transactions. Transactions in this model read from a causally consistent snapshot and may

also update multiple objects at the same time - while respecting atomicity constraints.

If two transactions concurrently update the same object, the updates are merged using

some automatic reconciliation mechanism (e.g. CRDTs).

2.2.2.7 Snapshot Isolation

In transaction semantics Snapshot Isolation guarantees that all reads performed inside

a transaction execute in a database snapshot taken when the transaction starts. For the

transaction to succeed the updated values must have not changed since the transaction

began, or the transaction will be rolled back.

2.2.2.8 Strong Consistency

In strong consistency models, the system provides the illusion that a single data replica

exists. Two main models have been proposed. In serializability, a transaction executes

atomically at a given moment, and all other transactions either completely execute before

or after. In linearizability, the result of operations must be compatible with operations

executed at the same time.

Since there is only one way for the system to move forward, it is very simple for the

application developer to reason about the system’s state. However, to operate in this way

the system needs to resort to heavy forms of synchronization typically through the use

of consensus algorithms such as Paxos [15] or Raft [16]. This heavy use of synchroniza-

tion reduces the system’s performance and its ability to tolerate faults while remaining

available.

15



CHAPTER 2. RELATED WORK

2.2.3 Partitioning

Typically, databases partition their data among several nodes to achieve better scalability

and load-balancing. However, it is also crucial to replicate data across multiple nodes for

fault tolerance.

A good way of providing this is to make use of Consistent Hashing [17] techniques. In

Consistent Hashing a hash function is used to map a data object to a node in the system

which will store the object. Usually it will form a hash ring by overlapping the highest

and lowest hash value. Each node in the system is assigned a random value in this range

to be used as an identifier. The hash function should be well mixed so that data is equally

distributed among all nodes. Searching for an entry in the system is very efficient, since

simply applying the hash function will give us the object’s location. However, Consistent

Hashing incurs some maintenance costs because the system has to manage nodes joining

and leaving the hash ring, which requires updating the collection of active nodes.

If object replication is used, an object will typically be replicated in the nth consecutive

nodes where n is the degree of replication.

2.2.4 System examples

We now present several systems that fall under the key-value store umbrella.

2.2.4.1 Akka Distributed Data

Akka Distributed Data [18] is a data store used to share data between actor nodes in an

Akka Cluster [19]. Distributed Data uses state-based CRDTs as values, providing strong

eventual consistency in a distributed key-value store.

In Distributed Data reads and writes support several degrees of consistency (local

replica, n replicas, a majority of replicas, and all replicas), allowing the programmer to

choose how consistent the operations should be. Deleted keys cannot be reused. Any

actor may subscribe to updates over any CRDT in the store.

Certain types of CRDTs accumulate some kind of data that can stop being relevant.

For example, the G-Counter CRDT maintains a counter per each replica. In long run-

ning systems this can be an issue since there are always nodes leaving and joining the

system. Due to this, Distributed Data periodically garbage collects CRDTs to prune data

associated with nodes that have been previously removed from the cluster.

To disseminate data, Distributed Data runs a specific actor called Replicator on each

node in the Cluster which is responsible for communicating with all other Replicator
actors in the Cluster through the use of a variation of a push-pull gossip protocol.

2.2.4.2 Cassandra

Cassandra [3] is a distributed key-value store. It uses the hybrid data model as previously

presented. This hybrid data model allows the database to provide a richer data schema

16



2.2. KEY-VALUE STORES

than typical key-value stores since Cassandra’s table columns can hold columns as well.

It employs eventual consistency through the use of a Last Writer Wins strategy to

resolve conflicts that arise from conflicting writes. In this strategy the value that is kept

is the one with the latest cell timestamp.

Cassandra allows for nodes to be distributed among multiple data centers. For data

distribution across nodes Cassandra uses consistent hashing, and for data placement it

provides two distinct strategies (i) SimpleStrategy, and (ii) NetworkTopologyStrategy.

SimpleStrategy This strategy places the first replica on a node determined by the par-

titioner. Additional replicas are then placed on the successor nodes without considering

the topology (rack or data center).

NetworkTopologyStrategy This strategy allows the configuration of how many replicas

we want per data center, and attempts to place replicas within the same data center on

distinct racks since nodes in the same rack may fail at the same time.

2.2.4.3 AntidoteDB

AntidoteDB [20] is SyncFree’s reference platform and a distributed, geo-replicated and

highly-available key-value store. It implements the Cure [14] protocol, which was de-

veloped with the goal of providing the highest level of consistency while being highly

available.

The Cure protocol allows AntidoteDB to provide highly available transactions (HAT)

with the Transactional Causal Consistency (TCC) model. This model allows for transac-

tions to read from a snapshot while also guaranteeing the atomicity of updates.

To encode causal dependencies the system relies on the timestamps of events, and

allows each node to use their own timestamps to avoid centralized components. The

protocol implemented by Cure assumes that each DC is equipped with a physical clock

and that clocks are loosely synchronized by a protocol such as Network Time Protocol.

The snapshot accessed by a transaction is identified by a vector of realtime timestamps,

with one entry per Data center.

The database provides common operation-based CRDTs such as counters, sets, maps,

and sequences.

2.2.4.4 Dynamo

Dynamo [4] is an eventually consistent key-value store developed by Amazon. Dynamo

has a simplistic key-value data model, where each value is a blob meaning that there is

no data schema that the database knows of.

In order to detect conflicting writes to the same key, Dynamo uses Vector Clocks [21].

On reads, if the system has detected conflicting objects it can send all the conflicts to

17



CHAPTER 2. RELATED WORK

the client and since the client is typically aware of the data semantics it can make an

informed decision on how to merge the different object versions.

To distribute data across nodes, Dynamo applies consistent hashing techniques. Dy-

namo can be configured to replicate objects as needed, and the object will be replicated

to N neighboring nodes.

Dynamo also allows for tunable consistency by configuring the number of nodes that

should participate in a read (R) and in a write (W ) operation. For example, setting R and

W so that R+W >N leaves us with a quorum-like system and Read Your Writes (RYW)

consistency.

2.2.4.5 DynamoDB

DynamoDB [1] is Amazon’s commercial NoSQL database as a service. DynamoDB is built

on the same principles of Dynamo, and it has a similar data model.

Being a fully managed service, DynamoDB allows the user to offload administrative

concerns of operation and scaling to Amazon. The system works as a key-value store and

allows the user to scale up or down each tables’ throughput capacity without suffering

downtime.

While being an eventually consistent database, DynamoDB provides different types

of consistency per read operation, allowing the users to specify if they want an eventually

consistent or strongly consistent read.

DynamoDB also provides atomic updates but only in a few selected cases. Namely, the

system provides the user with the capability of incrementing or decrementing a numeric

attribute in a row atomically, and atomically adding or removing to sets, lists, or maps.

To help the user coordinate concurrent updates to the same data, DynamoDB provides

a conditional write operation which allows the user to specify invariants. If the invariant

is false, the write fails.

2.2.4.6 Redis

Redis [22] is an in-memory key-value store with disk persistence. It provides high avail-

ability with Redis Sentinel and automatic partitioning with Redis Cluster.

Redis supports several values such as strings, lists, sets, sorted sets, among others.

Operations over these values run atomically.

To provide persistence, Redis can dump the dataset to disk periodically or append

each command to a log.

A form of transactions is also provided, although rollbacks are not supported. In fact,

Redis commands may fail during a transaction if called with the wrong syntax or against

keys holding the wrong data types. In this case Redis will keep executing the rest of the

transaction instead of aborting.

18



2.3. COMPUTING FRAMEWORKS

2.2.4.7 Riak

Riak [2] is a distributed, geo-replicated, and highly available key-value store that provides

eventual consistency. A form of strong consistency is also available but it is considered

experimental at this point and not suited for production environments.

For achieving convergence, Riak supports state-based CRDTs and provides several

data types such as flags, registers, counters, sets, and maps.

Borrowing heavily from Dynamo’s design it implements consistent hashing and vir-

tual nodes for data distribution across replicas. Like Dynamo it also uses vector clocks

to trace dependencies between object versions, however it extends this functionality by

allowing the developer to use dotted version vectors [23] instead.

2.2.4.8 Summary of Data Stores

This section approached several different key-value stores, exploring their similarities

and differences. Namely, aspects such as consistency guarantees, partitioning schemes,

replication, and conflict resolution were discussed.

All key-value stores presented are highly available and provide some form of eventual

consistency but only Akka Distributed Data, AntidoteDB, and Riak have support for

CRDTs. Of all the data stores, Redis is the only one that does not provide a partitioning

strategy out of the box. However, one can use Redis together with Redis Cluster which

does provide a partitioning solution similar to consistent hashing where each key is part

of a hash slot.

When it comes to data representation, all of the data stores except Cassandra follow a

key-value data model. Cassandra opts instead to use a hybrid model.

2.3 Computing Frameworks

Computing Frameworks provide programmers with a way of processing data in a dis-

tributed, fault-tolerant, and parallel manner. These frameworks automatically manage

dispatching, scheduling, and IO functionalities, exposing only a simple (and usually func-

tional) API which allows the programmer to only focus on describing the computation.

Methods of processing these computations can be divided in (i) batch and (ii) stream.

Batch In a batch system, the computation is executed at once, processing all input that

is known when the processing starts and producing the result. Frameworks for batch

processing typically import data from data stores (such as SQL or NoSQL databases) or

file systems (such as HDFS [24]) and perform a sequence of computations over it. The

biggest downside is that only historical data can be processed.

Stream In a stream-based system, data is processed as it arrives to the system. In this

case, frameworks can still import from data stores and file systems, but they may also

19



CHAPTER 2. RELATED WORK

make good use of message broker systems such as Kafka [25] to receive and process values

in realtime.

Unlike highly available key-value stores, these systems do not typically allow the addi-

tion of extra computation nodes after having started their computations.

We now present a few of the most well known computing frameworks, and for frame-

works that are open to public use we also present a WordCount example for comparison.

2.3.1 Apache Hadoop

Apache Hadoop [26] is a fault-tolerant distributed computing framework designed with

batch processing in mind. It is composed of several modules, most notably the Hadoop

Distributed File System [24] and Hadoop MapReduce which are inspired by Google’s File

System [27] and MapReduce [28] respectively.

Hadoop allows for the processing of large data sets in large clusters using the MapRe-

duce programming model. It greatly leverages data locality whenever possible to reduce

network traffic.

Because it makes use of the MapReduce programming model it has the benefit of

breaking down computations into smaller chunks, which allows for programs to be auto-

matically parallelized and executed on large clusters.

HDFS HDFS provides a distributed file system that partitions datasets across several

servers called DataNodes and stores metadata on a separate server called the NameNode.

The system allows for a replication factor to be set on a file-by-file basis. All servers

are fully connected, forming a clique network. HDFS also provides an API that exposes

the location of specific file blocks. Hadoop can use this information to schedule tasks to

nodes where the relevant computing data is located, which improves read performance.

Hadoop MapReduce Hadoop MapReduce is based on the programming model of the

same name. In this programming model the application programmer uses the functional

constructs map and reduce to break computations into small pieces. These computations

are then automatically parallelized and executed on large clusters by the framework. A

third (and optional) construct, combine, allows for the partial merging of data in mappers

which speeds up programs where the mappers produce too many duplicate or similar

mergeable records.

Listing 2.1, shows a WordCount example using Apache Hadoop in the Scala program-

ming language. The mapper splits sentences into words and emits tuples containing the

word and the number one. The reducer aggregates all the tuples matching each unique

word and emits a tuple containing the word and the sum of each word’s tuple values.

Listing 2.1: WordCount in Apache Hadoop (using Scala)

20



2.3. COMPUTING FRAMEWORKS

1 class TokenizerMapper extends Mapper[Object,Text,Text,IntWritable] {

2 val one = new IntWritable(1)

3 val word = new Text

4

5 override def map(key:Object, value:Text,

6 context:Mapper[Object,Text,Text,IntWritable]#Context) = {

7 for (t <- value.toString().split("\\s")) {

8 word.set(t)

9 context.write(word, one)

10 }

11 }

12 }

13

14 class IntSumReducer extends Reducer[Text,IntWritable,Text,IntWritable] {

15 override

16 def reduce(key:Text, values:java.lang.Iterable[IntWritable],

17 context:Reducer[Text,IntWritable,Text,IntWritable]#Context) = {

18 val sum = values.foldLeft(0) { (t,i) => t + i.get }

19 context.write(key, new IntWritable(sum))

20 }

21 }

22

23 object WordCount {

24 def main(args:Array[String]):Int = {

25 val conf = new Configuration()

26 val otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs

27 if (otherArgs.length != 2) {

28 println("Usage:�wordcount�<in>�<out>")
29 return 2

30 }

31 val job = new Job(conf, "word�count")
32 job.setJarByClass(classOf[TokenizerMapper])

33 job.setMapperClass(classOf[TokenizerMapper])

34 job.setCombinerClass(classOf[IntSumReducer])

35 job.setReducerClass(classOf[IntSumReducer])

36 job.setOutputKeyClass(classOf[Text])

37 job.setOutputValueClass(classOf[IntWritable])

38 FileInputFormat.addInputPath(job, new Path(args(0)))

39 FileOutputFormat.setOutputPath(job, new Path((args(1))))

40 if (job.waitForCompletion(true)) 0 else 1

41 }

2.3.2 Spark

Spark [29] is a system which allows for the batch processing of data in-memory on large

clusters in a fault-tolerant manner. The system allows reusing the intermediate results

built across multiple computations without having to write them to external storage as

opposed to other similar processing systems. This allows for the re-transformation and

21



CHAPTER 2. RELATED WORK

re-computation of data without the bottlenecks incurred by writing to storage which

allow for measurable speedups.

Spark’s programming model uses Resilient Distributed Datasets (RDDs), which are

read-only, partitioned collections of records. RDDs may only be created through deter-

ministic operations (transformations) over data in stable storage or other RDDs. RDDs

store just enough information on how they were derived from other datasets so they can

be reconstructed after a failure. Users can also control persistence and partitioning of

RDDs, and indicate which RDDs will be reused and choose storage strategies for them.

Spark also builds up a log of the transformations used to build the datasets rather

than the data itself. This allows for the quick recovery of the datasets by rerunning the

computations in the case of a node crash.

Listing 2.2, shows a WordCount example using Spark in the Scala programming

language. We start by opening a text file from HDFS. Mapping each of the lines in the file,

splitting the line and flattening the result. Mapping each of the words and outputting a

tuple containing the word and the number one. And finally, reducing over the collection

by using the words as keys and summing the value for each key. The resulting collection

contains a tuple for each existing word in the text file and the number of times it appeared.

The collection is then saved in HDFS as a text file.

Listing 2.2: WordCount in Spark (using Scala)

1 val textFile = sc.textFile("hdfs://...")

2 val counts = textFile.flatMap(line => line.split("�"))
3 .map(word => (word, 1))

4 .reduceByKey(_ + _)

5 counts.saveAsTextFile("hdfs://...")

2.3.3 Spark Streaming

Spark Streaming is an implementation of Discrete Streams [30], and is built on top of

Spark as an extension. This extension provides the system with streaming computation

capabilities, but still manages to deal with faults and slow nodes (stragglers). An interest-

ing property of Spark Streaming is that it can combine streaming datasets with regular

Spark RDDs, allowing the user to join recent data with historical data.

Instead of using a continuous operator model like in most other realtime computing

frameworks, Discrete Streams opt to structure their computations as a set of short, state-

less, deterministic tasks. The state is then propagated across tasks in Spark RDDs which

allow for easy and deterministic recomputations in the case of faults.

The WordCount example for Spark Streaming is the same as Spark’s, which is pre-

sented in listing 2.2.

22



2.3. COMPUTING FRAMEWORKS

2.3.4 Storm

Storm [31] is a realtime fault-tolerant and distributed stream data processing system.

Typically a Storm system will pull data from a queue such as provided by systems like

Kafka [25] and run queries over it.

Storm’s data processing architecture consists of streams of tuples that flow through

topologies. Topologies are composed of Spouts and Bolts. A Spout is a source of tuples

for a given topology. A Bolt is essentially a consumer, doing some processing over the

tuples received and passing them to the next set of bolts.

Storm topologies can have cycles, so they can be pictured as a directed graph. Each

vertex in this graph represents a Spout or Bolt and an edge represents the data flow

between Spouts and Bolts or Bolts and Bolts.

Listing 2.3, shows a WordCount example using Storm in the Scala programming lan-

guage. It defines a Bolt (SplitSentence) that splits sentences into lists of words, another

Bolt (WordCount) that counts the number of times a word is received, and a third bolt

(Print) that prints received values to standard output. A default spout (RandomSentence-

Spout) is used that spouts sentences that are randomly generated.

Our Storm topology is defined as follows:

1. RandomSentenceSpout is our initial spout;

2. SplitSentence is a bolt that aggregates values from RandomSentenceSpout;

3. WordCount is a bolt that aggregates values from SplitSentence;

4. Print is a bolt that groups values from WordCount.

Listing 2.3: WordCount in Storm (using Scala)

1 class SplitSentence extends StormBolt(outputFields = List("word")) {

2 def execute(t: Tuple) = t matchSeq {

3 case Seq(sentence: String) => sentence split "�" foreach

4 { word => using anchor t emit (word) }

5 t ack

6 }

7 }

8

9 class WordCount extends StormBolt(List("word", "count")) {

10 var counts: Map[String, Int] = _

11 setup {

12 counts = new HashMap[String, Int]().withDefaultValue(0)

13 }

14 def execute(t: Tuple) = t matchSeq {

15 case Seq(word: String) =>

16 counts(word) += 1

17 using anchor t emit (word, counts(word))

18 t ack

23



CHAPTER 2. RELATED WORK

19 }

20 }

21

22 class Print extends StormBolt(List()){

23 override def execute(input: Tuple): Unit = println(input)

24 }

25

26

27 object WordCountTopology {

28 def main(args: Array[String]) = {

29 val builder = new TopologyBuilder

30

31 builder.setSpout("randsentence", new RandomSentenceSpout , 5)

32 builder.setBolt("split", new SplitSentence, 8)

33 .shuffleGrouping("randsentence")

34 builder.setBolt("count", new WordCount, 12)

35 .fieldsGrouping("split", new Fields("word"))

36 builder.setBolt("print", new Print).shuffleGrouping("count")

37

38 val conf = new Config

39 conf.setDebug(true)

40 conf.setMaxTaskParallelism(3)

41

42 val cluster = new LocalCluster

43 cluster.submitTopology("word-count", conf, builder.createTopology)

44 Thread sleep 10000

45 cluster.shutdown

46 }

47 }

2.3.5 Percolator

Percolator [32] is a system built for large-scale incremental processing of updates over

large datasets. It was developed to replace Google’s previous batch-based indexing system

for their web search index. The system allows Google to process the same number of

documents per day (compared to their old approach) while still reducing the average age

of documents in search results by 50%.

To structure computations Percolator uses Observers. Observers act like event han-

dlers and are invoked when a user-specified column changes.

Percolator provides multi-row ACID compliant transactions by implementing snap-

shot isolation semantics.

However, despite providing high performance incremental computations, if a compu-

tation’s result cannot be broken down into small updates then it is better handled by a

MapReduce-like [28] system.

24



2.3. COMPUTING FRAMEWORKS

2.3.6 Titan

Titan [33] is a system that leverages computational CRDTs to enable the incremental

stream processing of data. It uses computational CRDTs to perform elementary compu-

tations while maintaining computation specific invariants. As with other CRDTs, com-

putational CRDTs can be freely replicated without conflicts and modified concurrently

without coordination.

More deeply, Titan can be treated as a decentralized storage system with an envi-

ronment that supports the execution of computational CRDTs. In this system, complex

computations are defined as a graph created by chaining computational CRDTs.

The system runs on a set of nodes in a single cluster, organizing the nodes in a single-

hop DHT which allows for any two nodes to communicate directly. Each individual node

manages, stores, and provides the execution of a collection of computational CRDTs or

computational CRDT partitions. Each computational CRDT is versioned and a sequence

of versions is maintained. The computational CRDTs are partitioned as specified by the

programmer.

2.3.7 Lasp

Lasp [34] presents a new programming model by bringing together ideas from determin-

istic dataflow programming and CRDTs. It provides CRDTs as built-in data types in

the language, and allows application developers to deterministically compose different

kinds of CRDTs. Furthermore, Lasp programs can also apply functional programming

primitives such as map, filter, and fold over the composed CRDTs to transform them.

Previous research [35] formalized lattice variables as a primitive for parallel compu-

tations, but this programming model differs from the distributed setting where different

types of failures may arise.

Despite appearing to be able to operate over non-monotonic values, Lasp operates

over a CRDT’s metadata, which is monotonic. Also, because a Lasp program is equivalent

to a functional program, this means that application programmers can reason about

the program in a deterministic way (since a functional program provides referential

transparency).

Because Lasp makes such heavy use of CRDTs, it can be leveraged for building scalable,

high-performance applications even when facing intermittent connectivity - including

but not limited to IoT and mobile applications.

Listing 2.4, shows a WordCount example in Lasp using the Erlang programming

language. We begin by reading a file into memory, splitting the file into several lines, and

splitting each line into words. We then declare a grow only map CRDT (G-Map) using

Lasp and load each of the words in our collection into the G-Map using a tuple with the

word and the atom increment. The atom increment denotes that if the key already exists

in the G-Map, its value will be incremented by one. Finally, we use Lasp’s query function

25



CHAPTER 2. RELATED WORK

to retrieve the value of our G-Map which has words as keys and the number of times they

appeared as values.

Listing 2.4: WordCount in Lasp (using Erlang)

1 {ok, Binary} = file:read_file(’...’),

2 {ok, {Map, _, _, _}} = lasp:declare(gmap),

3

4 lists:foreach(fun (Word) ->

5 lasp:update(Map, {Word, increment}, a)

6 end, binary:split(Binary, [<<"\n">>, <<"�">>], [global])),

7

8 {ok, Result} = lasp:query(Map),

9 io:fwrite("~p~n", [Result]).

2.4 Summary

In this chapter we have covered the work that lays the foundation of the development of

this thesis.

The chapter primarily examined CRDTs, delta-CRDTs, and computational CRDTs.

These data types provide strong semantics for building eventually consistent replicated

systems, easing their development.

We also approached several different key-value stores, exploring their similarities and

differences. Namely, aspects such as consistency guarantees, partitioning, replication

and conflict resolution were discussed. The most relevant being Akka Distributed Data,

AntidoteDB, and Riak – all of which can be extended by the work presented in future

chapters.

Finally, we dived on distributed computing frameworks touching on their specific

features and programming models. Of the discussed frameworks, Lasp and Titan stand

out by allowing the composition of different replicated data types to produce complex

computations.

In the next chapter we present the non-uniform replication model which captures the

insight of partially incremental state-based computational CRDTs, where replicas only

propagate elements which may change the results of other replicas, and formalizes it.

26



C
h
a
p
t
e
r

3
Non-uniform replication model

In this chapter we introduce the non-uniform replication model and formalize its seman-

tics for an eventually consistent system that synchronizes by exchanging operations. The

model we introduce captures the semantics of partially incremental state-based compu-

tational CRDT synchronization where replicas only exchange elements when they may

change the results of remote replicas. This behavior allows replicas to maintain only a

portion of the total state while still correctly replying to read operations.

Furthermore, the model is generic enough to be applied to all kinds of replicated

objects.

3.1 System model

We consider an asynchronous distributed system composed by n nodes, in which nodes

may exhibit fail-stop faults but not byzantine faults. We assume nodes are connected

via reliable links and the communication system supports at least one communication

primitive, mcast(m), that can be used by a process to send a message to all other processes

in the system. A message which is sent by a correct process is eventually received by

either all correct processes or none.

Without loss of generality, we assume that the system replicates a single object. An

object is defined as a tuple (S, s0,Q,Up,Ue), where S is the set of valid states of the object,

s0 ∈ S is the initial state of the object, Q is the set of read-only operations, Up is the set of

prepare-update operations, and Ue is the set of effect-update operations.

A read-only operation executes only at the replica where the operation is invoked,

its source, and has no side-effects, i.e., the state of an object does not change after the

operation executes. To update the state of the object, a prepare-update operation, up ∈ Up,

is issued. A up operation executes only at the source, has no side-effects, and generates

27



CHAPTER 3. NON-UNIFORM REPLICATION MODEL

an effect-update operation, ue ∈ Ue. At the source replica, ue executes immediately after

being generated from up.

We denote the state that results from executing operation o in state s as s • o. For

a prepare-update or read-only operation, o ∈ Q∪ Up, s • o = s. The result of applying

operation o ∈ Q∪ Up ∪ Ue in state s ∈ S is denoted as o(s).

We number the execution of effect-update operations at some replica sequentially

from 1. The kth operation execution at replica i will be noted oki , where o ∈ Ue. The state

of a replica i after executing n operations is sni = s0 • o1
i • . . . • o

n
i . We denote the multi-set

of operations executed to reach state sni as O(sni ) = {o1
i , . . . , o

n
i }.

Given that only effect-update operations produce side-effects, we restrict our analysis

to these operations to simplify reasoning about the evolution of replicas in the system.

To be precise, the execution of a up operation generates an instance of an effect-update

operation. For simplicity of presentation we refer to instances of operations simply as op-

erations. WithOi the set of operations generated at node i, the set of operations generated

in an execution, or simply the set of operations in an execution, is O =O1 ∪ . . .∪On.

Henceforth we refer to the set of effect-update operations, Ue, as U for simplicity of

presentation and reasoning.

3.2 System convergence

We denote the state of the replicated system as a tuple (s1, s2, . . . , sn), with si the state of

the replica i. We consider that the state of the replicas is synchronized via a replication

protocol that exchanges messages among the nodes of the system. When messages are

delivered they are executed in order to update the state of the replica.

We say a system is in a quiescent state if, for a given set of operations, the replication

protocol has propagated all messages necessary to synchronize all replicas, i.e., additional

messages sent by the replication protocol will not modify the state of the replicas. In

general, replication protocols attempt to achieve a convergence property, where the state

of any two replicas is equivalent in a quiescent state.

Definition (Equivalent state). Two states, si and sj , are equivalent, si ≡ sj , iff the result of

executing some operation on ∈ Q∪ U after executing a sequence of operations o1, . . . , on−1

with o1, . . . , on ∈ Q∪U in both states is equal, i.e., on(si •o1• . . .•on−1) = on(sj •o1• . . .•on−1)

This property is enforced by most replication protocols, which either provide a strong

or weaker form of consistency [15, 36, 37]. We note that this property does not require

the internal state of the replicas to be the same, but only that replicas always return the

same result for any executed sequence of operations.

For our replication model, we propose relaxing this property and instead require only

that the execution of read-only operations return the same value. We name this property

observable equivalence and define it formally as follows.

28



3.3. NON-UNIFORM EVENTUAL CONSISTENCY

Definition (Observable equivalent state). Two states, si and sj , are observable equivalent,
si

o≡ sj , iff the result of executing some operation on ∈ Q after executing a sequence of

operations o1, . . . , on−1 with o1, . . . , on ∈ Q in both states is equal, i.e., on(si • o1 • . . . • on−1) =

on(sj • o1 • . . . • on−1)

We now define a non-uniform replication system as one that guarantees only that

replicas converge to an observable equivalent state.

Definition (Non-uniform replicated system). We say that a replicated system is non-

uniform if once the replication protocol reaches a quiescent state it can guarantee that

the state of any two replicas in the system is observable equivalent.

3.3 Non-uniform eventual consistency

3.3.1 Eventual Consistency

For any given execution, with O the operations of the execution, we say a replicated

system provides eventual consistency iff in a quiescent state: (i) every replica executed all

operations belonging to O; and (ii) the state of any pair of replicas is equivalent.

To achieve the first property a sufficient condition is to propagate all generated op-

erations using reliable broadcast, and to execute any received operations. A simple way

of achieving the second property is to only allow the existence of commutative opera-

tions. In this manner, if all operations commute with each other then the execution of

any serialization of O in the initial state of the object will always lead to an equivalent

state.

Henceforth, unless stated otherwise, we assume that all operations are commutative.

In this case, as all serializations of O are equivalent, we denote the execution of a serial-

ization of O in state s simply as s •O.

3.3.2 Non-uniform eventual consistency

For any given execution, with O the operations of the execution, we say a replicated

system provides non-uniform eventual consistency iff in a quiescent state: (i) the state of

any replica is observable equivalent to the state obtained by executing some serialization

of O; and (ii) the state of any pair of replicas is observable equivalent.

For a given set of operations in an execution O, we say that Ocore ⊆ O is a set of core

operations of O iff s0 •O o≡ s0 •Ocore. We define a set of operations that are irrelevant to

the final state of the replicas as follows: Omasked ⊆O is a set of masked operations of O iff
s0 •O o≡ s0 • (O \Omasked).

Theorem 1 (Sufficient conditions for NuEC). A replication system provides non-uniform
eventual consistency (NuEC) if, for the set of operations O, in their execution the follow-

ing conditions hold: (i) every replica executes a set of core operations of O; and (ii) all

operations commute.

29



CHAPTER 3. NON-UNIFORM REPLICATION MODEL

Proof. From the definition of core operations of O, and by the fact that all operations

commute, it follows immediately that if a replica executes the set of core operations, then

the final state of the replica is observable equivalent to the state obtained by executing a

serialization of O. Additionally, any two replicas always reach an observable equivalent

state.

3.4 Protocol for non-uniform eventual consistency

We now build on the sufficient conditions for providing non-uniform eventual consistency
to design a replication protocol that attempts to minimize the number of operations

propagated to other replicas. The key idea is to avoid propagating operations that are

part of the masked set of operations. The challenge is to achieve this using only local

information, which includes only a subset of the executed operations.

Algorithm 7 Replication algorithm for non-uniform eventual consistency

1: S : state: initial s0 . Object state
2: logrecv : set of operations: initial {}
3: loglocal : set of operations: initial {} . Local operations not propagated
4: logcoreLocal : set of operations: initial {} . Local core operations not propagated
5:

6: execOp(op): void . New operation generated locally
7: if hasImpact(op, S) then
8: logcoreLocal = logcoreLocal ∪ {op}
9: loglocal = loglocal ∪ {op}

10: S = S • op
11:

12: opsToPropagate(): set of operations . Operations that must be propagated
13: ops =maskedForever(loglocal ∪ logcoreLocal ,S, logrecv)
14: loglocal = loglocal \ ops
15: logcoreLocal = logcoreLocal \ ops
16: opsImpact = logcoreLocal ∪ hasObservableImpact(loglocal ,S, logrecv)
17: opsP otImpact =mayHaveObservableImpact(loglocal ,S, logrecv)
18: return opsImpact ∪ opsP otImpact
19:

20: sync(): void . Propagates local operations to remote replicas
21: ops = opsT oP ropagate()
22: compactedOps = compact(ops) . Compacts the set of operations
23: mcast(compactedOps)
24: logcoreLocal = {}
25: loglocal = loglocal \ ops
26: logrecv = logrecv ∪ ops
27:

28: on receive(ops): void . Process remote operations
29: S = S • ops
30: logrecv = logrecv ∪ ops

30



3.4. PROTOCOL FOR NON-UNIFORM EVENTUAL CONSISTENCY

Algorithm 7 presents the pseudo-code of an algorithm for achieving non-uniform
eventual consistency. The algorithm does not address the durability concerns regarding

masked operations, as this is discussed in a later section.

Apart from the state of the object, the algorithm also maintains three sets of opera-

tions: (i) logcoreLocal , the set of core effect-update operations generated at the local replica

which have not yet been propagated to other replicas; (ii) loglocal , the set of effect-update

operations generated at the local replica which have not yet been propagated to other

replicas; and (iii) logrecv , the set of effect-update operations that have been propagated to

all replicas, including operations which were locally generated.

When an effect-update operation is generated, the execOp function must be called.

This function adds the new operation to the log of local operations and updates the state

of the local object. If the new operation has an impact on the observable state of the object,

then it is also added to the log of local core operations.

Function sync is used to propagate local operations to remote replicas. It begins

by calculating which new operations must be propagated, compacts the resulting set

of operations, multicasts the compacted set of operations, and finally updates the local

set of operations accordingly. A call to function compact (line 22) is used to reduce the

total number of operations to be propagated while guaranteeing that the execution is

equivalent. When a replica receives a set of operations (line 28), it updates the local state

and the set of operations accordingly.

Function opsToPropagate addresses the key challenge of deciding which operations

need to be propagated to other replicas. To this end, we divide the operations in four

groups.

First, the forever masked operations, which are operations that will remain in the set of

masked operations independently of operations that may execute in the future. Given a

top-K example, an operation that adds a new player score will forever mask all operations

that added a lower score for the same player. These operations are removed from the sets

of local operations.

Second, the core operations, as computed locally. These operations must always be

propagated, as they will (typically) impact the observable state at every replica.

Third, the operations that might impact the observable state when considering concur-

rent operations that execute at other replicas but are not propagated, as they are masked.

Given that there is no way to know which operations executed in remote replicas have

not yet been propagated, it is necessary to propagate these operations as well. Given a

modified top-K example where instead of using the highest score we use the total sum of

all scores a player has, an add operation that would not move a player to the top would

fall into this category.

Fourth, the remaining operations that might impact the observable state in the future,

depending on the evolution of the observable state. These operations remain in loglocal .

In a top-K example, an operation that adds a score that will not be in the top, as computed

31



CHAPTER 3. NON-UNIFORM REPLICATION MODEL

locally, is in this category as it might become part the top scores after a larger score is

removed.

For proving that the algorithm can be used to provide non-uniform eventual consis-

tency, we need to prove the following property.

Theorem 2. Algorithm 7 guarantees that in a quiescent state, considering all operations

O in an execution, all replicas have received all operations in a core set Ocore.

Proof. To prove this property, we need to prove that there exists no operation that has not

been propagated by some replica and that is required for any Ocore set. Operations in the

first category have been identified as masked operations regardless of any other operations

that might have or will be executed. Thus, by definition of masked operations, a Ocore
set will not need to include these operations. The fourth category includes operations

that do not influence the observable state when considering all executed operations – if

they might have impact, they would be in the third category. Thus, these operations do

not need to be in a Ocore set. All other operations are propagated to all replicas. Thus,

in a quiescent state, every replica has received all operations that impact the observable

state.

3.4.1 Fault-tolerance

Non-uniform replication aims at reducing the cost of communication and the size of

replicas, by avoiding propagating operations that do not influence the observable state of

the object. This raises the question of the durability of operations that are not immediately

propagated to all replicas.

One way to solve this problem is to consider a setting with multiple data centers where

objects are replicated both within a data center (among local replicas) and outside a data

center (to other remote data centers). In this case, the durability of masked operations is

guaranteed by replicating objects among replicas within a data center. However, if the

entire data center fail-stops the masked operations will be lost.

Another way is to simply consider all replicas as independent and immediately prop-

agate every operation to f + 1 replicas to tolerate f faults. This ensures that an operation

survives even in the case of f faults. We note however that it would be necessary to adapt

the proposed algorithm, so that in the case where a replica receives an operation for

durability reasons, it would propagate the operation to other replicas if the source replica

fails. This can be achieved by considering it as any local operation (and introducing a

mechanism to filter duplicate reception of operations).

3.5 Summary

In this chapter we have presented the non-uniform replication model, a model for repli-

cated objects in a distributed system where replicas only synchronize updates which

32



3.5. SUMMARY

impact their observable state. We have also formalized the semantics of the model for

an eventually consistent system that synchronizes by exchanging operations. The model

allows us to reduce the dissemination cost of sending updates between replicas, as well

as the size of replica objects.

In the next chapter we introduce a set of operation-based CRDT designs that adopt

this model.

33





C
h
a
p
t
e
r

4
Operation-based NuCRDTs

In this chapter we show how to apply the concept of non-uniform replication to design

useful operation-based CRDTs. These designs are inspired by the state-based computa-

tional CRDTs proposed by Navalho et al. [9], which also allow replicas to diverge in their

quiescent state.

We note that not all designs we present allow replicas to diverge. More precisely, repli-

cas of the histogram, average, and top-K (without removals) designs do not diverge when

their state is quiescent as their operations are always considered core. This demonstrates

the generic nature of the model.

4.1 Average

The first design we introduce is an object that computes the average of the values added

to the object. The data type maintains a sum of values added and the number of values

added, which allows it to compute the average, and can be used to compute the average

of ratings in a web page. The semantics of the operations defined in the Average CRDT is

the following: add(n) adds n to the sum of values and increments the number of values

by 1; add(sum,num) adds sum to the sum of values and num to the number of values; get()
returns the current average of the object.

Algorithm 8 presents a design that implements this semantics. The prepare-update op-

eration add(n) is provided for user convenience, as it generates an effect-update add(n,1).
The prepare-update operation add(sum,num) generates an effect-update add(sum,num).

Each object replica maintains only a tuple, accum, with the sum of values added and

the number of values added. The execution of an add(sum,num) consists in adding sum
to the first tuple field and num to the second tuple field.

Function hasImpact always returns true because the average is influenced by every

35



CHAPTER 4. OPERATION-BASED NUCRDTS

Algorithm 8 Design: Average
1: accum : 〈sum,num〉 : initial 〈0,0〉
2:

3: get(): double
4: return sum/num
5:

6: prepare add(n) . Shim prepare-update
7: generate add(n, 1)
8:

9: prepare add(sum,num)
10: generate add(sum, num)
11:

12: effect add(sum,num)
13: accum.sum = accum.sum + sum
14: accum.num = accum.num + num
15:

16: hasImpact(op,S) : boolean
17: return true . In this data type operations always have impact
18:

19: maskedForever(loglocal,S, logrecv) : set of operations
20: return {} . In this data type operations are always core
21:

22: mayHaveObservableImpact(loglocal,S, logrecv) : set of operations
23: return {} . In this data type operations are always core
24:

25: hasObservableImpact(loglocal,S, logrecv) : set of operations
26: return {} . In this data type operations are always core
27:

28: compact(ops): set of operations
29: accums = {〈sum,num〉 : add(sum, num) ∈ ops}
30: acc = tuplePointwiseSum(accums)
31: return {add(acc.sum, acc.num)}

value. Functions maskedForever, mayHaveObservableImpact, and hasObserv-

ableImpact always return the empty set since operations in this data type are always

core. Function compact takes a set of instances of add(sum,num) operations and joins

them together into a single add(sum,num) – this behavior is similar to joining delta-groups

in delta-based CRDTs [11].

4.2 Histogram

We now introduce the Histogram CRDT that maintains a histogram of values added to

the object. To this end, the data type maintains a mapping of bins to integers and can be

used to maintain a voting system on a website. The semantics of the operations defined

in the histogram is the following: add(n) increments the bin n by 1; merge(histogramdelta)
adds the information of a histogram into the local histogram; get() returns the current

36



4.2. HISTOGRAM

histogram.

Algorithm 9 Design: Histogram
1: histogram : map bin 7→ n : initial []
2:

3: get(): map
4: return histogram
5:

6: prepare add(bin) . Shim prepare-update
7: generate merge([bin 7→ 1])
8:

9: prepare merge(histogram)
10: generate merge(histogram)
11:

12: effect merge(histogramdelta)
13: histogram = pointwiseSum(histogram,histogramdelta)
14:

15: hasImpact(op,S) : boolean
16: return true . In this data type operations always have impact
17:

18: maskedForever(loglocal,S, logrecv) : set of operations
19: return {} . In this data type operations are always core
20:

21: mayHaveObservableImpact(loglocal,S, logrecv) : set of operations
22: return {} . In this data type operations are always core
23:

24: hasObservableImpact(loglocal,S, logrecv) : set of operations
25: return {} . In this data type operations are always core
26:

27: compact(ops): set of operations
28: deltas = {hist : merge(histdelta) ∈ ops}
29: hist = pointwiseSum(deltas)
30: return {merge(hist)}

This data type is implemented in the design presented in Algorithm 9. The prepare-

update add(n) generates an effect-update merge([n 7→ 1]). The prepare-update operation

merge(histogram) generates an effect-update merge(histogram).

Each object replica maintains only a map, histogram, which maps bins to integers.

The execution of a merge(histogramdelta) consists of doing a pointwise sum of the local

histogram with histogramdelta.

As in the previous design, function hasImpact always returns true because adding

a value always changes the state of the histogram. Functions maskedForever, may-

HaveObservableImpact, and hasObservableImpact always return the empty set

since operations in this data type are always core. Function compact takes a set of

instances of merge operations and joins the histograms together returning a set containing

only one merge operation.

37



CHAPTER 4. OPERATION-BASED NUCRDTS

4.3 Top-K

In this section we introduce the top-K CRDT. This data type allows access to the top-K

elements added to the object and can be used, for example, for maintaining a leaderboard

in an online game. The top-K defines only one update operation, add(id,score), which

adds element id with score score. The get() operation simply returns the K elements with

largest scores.

Algorithm 10 Design: Top-K
1: elems : set of 〈id,score〉 : initial {}
2:

3: get(): set
4: return elems
5:

6: prepare add(id,score)
7: generate add(id,score)
8:

9: effect add(id,score)
10: elems = topK(elems∪ {〈id,score〉})
11:

12: hasImpact(op,S): boolean
13: R = S • op
14: return S , R
15:

16: maskedForever(loglocal,S, logrecv): set of operations
17: adds = {add(id1,score1) ∈ loglocal :
18: (∃add(id2,score2) ∈ logrecv : id1 = id2 ∧ score2 > score1)
19: return adds
20:

21: mayHaveObservableImpact(loglocal,S, logrecv): set of operations
22: return {} . In this data type operations are always either core or forever masked
23:

24: hasObservableImpact(loglocal,S, logrecv): set of operations
25: return {} . In this data type operations are always either core or forever masked
26:

27: compact(ops): set of operations
28: return ops . This data type does not use compaction

Algorithm 10 presents the design of the top-K CRDT. The prepare-update add(id,score)
generates an effect-update add(id,score).

Each object replica maintains only a set of K tuples, elems, with each tuple being

composed of an id and a score. The execution of add(id,score) inserts the element into the

set, elems, and computes the top-K of elems using the function topK. The order used for

the topK computation is as follows: 〈id1,score1〉 > 〈id2,score2〉 iff score1 > score2 ∨ (score1 =

score2∧ id1 > id2). We note that the topK function returns only one tuple for each element

id.

38



4.4. TOP-K WITH REMOVALS

Function hasImpact checks if the top-K elements change after executing the given

operation. Function maskedForever computes the adds that become masked by other

add operations for the same id that are larger according to the defined ordering. Due

to the way the top is computed, the lower values for some given id will never be part

of the top. Functions mayHaveObservableImpact and hasObservableImpact

always return the empty set since operations in this data type are always core or forever

masked. Function compact simply returns the given ops since the design does not

require compaction.

4.4 Top-K with removals

This section introduces the design for the top-K with removals CRDT. This data type

extends the previous one with a remove operation. The data type could be used to

maintain a leaderboard in an online game, where the remove operation is used to remove

scores of a player that has been cheating.

For defining the semantics of our data type, we start by defining the happens before

relation among operations. To this end, we start by considering the happens-before

relation established among the events executed [21]. The events that are considered

relevant are: the generation of an operation at the source replica, its local execution,

propagation, and execution at other replicas. We say that operation opi happens before

operation opj iff the generation of opi happened before the generation of opj in the partial

order of events.

The semantics of the operations defined in the top-K with removals is the following:

add(id,score) adds a new pair to the object; rmv(id) removes any pair with id that was

added by an operation that happened-before the rmv (note that this will include also

operations that have not been propagated to the source replica of the remove). This leads

to an add-wins policy [38], where a remove has no impact on concurrent adds. The get()
operation returns the K pairs with the largest score.

Algorithm 11 presents a design that implements this semantics. The prepare-update

operation add generates an effect-update add that has an additional parameter consisting

in a timestamp 〈replica identifier,val〉, with val a monotonically increasing integer. The

prepare-update operation rmv generates an effect-update rmv that includes an additional

parameter consisting in a vector clock that summarizes the add operations that happened

before the remove operation. The object maintains a vector clock, vc, that is updated

when a new add is generated or executed locally. Additionally, this vector clock is updated

whenever a replica receives a message from a remote replica (to summarize also the adds

known by the sender that have not been propagated to this replica).

Besides this vector clock, each replica maintains: (i) a set elems with the elements

added by add operations known locally (and that have not been removed yet); and (ii) a

map removes that for each element id has a vector clock with a summary of the add

operations that happened before all removes of id (for simplifying the presentation of

39



CHAPTER 4. OPERATION-BASED NUCRDTS

Algorithm 11 Design: Top-K with removals
1: elems : set of 〈id,score, ts〉 : initial {}
2: removes : map id 7→ vectorClock: initial []
3: vc : vectorClock: initial []
4:

5: get() : set
6: els = topK(elems)
7: return {〈id,score〉 : 〈id,score, ts〉 ∈ els}
8:

9: prepare add(id,score)
10: generate add(id,score,〈getReplicaId(),+ + vc[getReplicaId()]〉)
11:

12: effect add(id,score, ts)
13: if removes[id][ts.siteId] < ts.val then
14: elems = elems∪ {〈id,score, ts〉}
15: vc[ts.siteId] = max(vc[ts.siteId], ts.val)
16:

17: prepare rmv(id)
18: generate rmv(id,vc)
19:

20: effect rmv(id,vcrmv)
21: removes[id] = pointwiseMax(removes[id],vcrmv)
22: toRemove = {〈id0,score, ts〉 ∈ elem : id = id0 ∧ ts.val < vcrmv[ts.siteId]}
23: elems = elems \ toRemove
24:

25: hasImpact(op,S): boolean
26: R = S • op
27: return topK(S) , topK(R)
28:

29: maskedForever(loglocal,S, logrecv): set of operations
30: adds = {add(id1,score1, ts1) ∈ loglocal :
31: (∃add(id2,score2, ts2) ∈ loglocal : id1 = id2 ∧ score1 < score2 ∧ ts1.val < ts2.val)∨
32: (∃rmv(id3,vcrmv) ∈ (logrecv ∪ loglocal) : id1 = id3 ∧ ts1.val < vcrmv[ts1.siteId]}
33: rmvs = {rmv(id1,vc1) ∈ loglocal :
34: ∃rmv(id2,vc2) ∈ (loglocal ∪ logrecv) : id1 = id2 ∧ vc1 < vc2}
35: return adds∪ rmvs
36:

37: mayHaveObservableImpact(loglocal,S, logrecv): set of operations
38: return {} . This case never happens for this data type
39:

40: hasObservableImpact(loglocal,S, logrecv): set of operations
41: adds = {add(id1,score1, ts1) ∈ loglocal : 〈id1,score1, ts1〉 ∈ topK(S.elems)}
42: rmvs = {rmv(id1,vc1) ∈ loglocal :
43: ∃〈id2,score2, ts2〉 ∈ topK(S.elems) : id1 = id2 ∧ ts2.val < vc1[ts2.siteId]}
44: return adds∪ rmvs
45:

46: compact(ops): set of operations
47: return ops . This data type does not use compaction

40



4.5. FILTERED SET

the algorithm, we assume that a key absent from the map has associated a default vector

clock consisting of zeros for every replica).

The execution of an add consists in adding the element to the set of elems if the add

has not happened-before a previously received remove for the same element – this can

happen as operations are not necessarily propagated in causal order. The execution of

a rmv consists in updating removes and deleting from elems the information for adds

of the element that happened-before the remove. To verify if an add has happened-

before a remove, we check if the timestamp associated with the add is reflected in the

remove vector clock (lines 13 and 22). This ensures the intended semantics of the remove

operation.

The order used for the topK computation (in get and hasImpact) is as follows:

〈id1,score1, ts1〉 > 〈id2,score2, ts2〉 iff score1 > score2 ∨ (score1 = score2 ∧ id1 > id2)∨ (score1 =

score2 ∧ id1 = id2 ∧ ts1 > ts2). We note that the topK function returns only one tuple for

each element id.

We now analyze the code of the functions used in the replication protocol. Function

hasImpact simply checks if the top-K elements change after executing the new opera-

tion. Function maskedForever computes: the local adds that become masked by other

adds (those for the same element with a lower score) and removes (those for the same

element that happened-before the remove); the removes that become masked by other

removes (those for the same element that have a smaller vector clock). In the latter case, it

is immediate that a remove with a smaller vector clock becomes irrelevant after executing

one with a larger vector clock. In the former case, a local add for an element is masked

by a more recent local add for the same element with a larger score as it is not possible to

remove only the effects of the later add without removing the effect of the older one. A

local add also becomes permanently masked by a remove that happened-after the add.

Function mayHaveObservableImpact returns the empty set, as for having impact

on any observable state an operation must also have impact on the local observable state

after the object is in a quiescent state.

Function hasObservableImpact computes: the local adds that have not been

propagated to other replicas and are part of the top-K at the local replica; and the local

removes that will remove an element in the top-K. Besides operations executed after the

last synchronization, this function returns the operations that became relevant for the

top-K due to the execution of some other operation (an add can be made relevant by the

fact that an element in the top has been removed, and a remove can be made relevant by

the fact that an older add had become relevant). Function compact simply returns the

given ops since the design does not require compaction.

4.5 Filtered Set

We now introduce the design for the Filtered Set CRDT (F-Set). The data type allows ac-

cess to elements that satisfy a specific filter and can be used, for example, for maintaining

41



CHAPTER 4. OPERATION-BASED NUCRDTS

a collection of employees that can be filtered by age, gender, or some other constraint.

The semantics of the operations defined is the following: add(e) adds a new element

to the object; changeFilter(f) changes the filter of the object; get() returns the elements in

the object that satisfy the current filter function.

Algorithm 12 presents a design that implements this CRDT. The prepare-update for

operation add generates an effect-update add. The prepare-update operation changeFilter
generates an effect-update changeFilter with an additional parameter, a timestamp. The

additional parameter is composed of a replica identifier, siteId, and a value, val, and is

used to order concurrent changeFilter updates at different replicas.

Each F-Set object replica maintains: (i) a set elems with the elements added by add op-

erations; (ii) an anonymous function filter with the active filter (if a changeFilter operation

has not occured yet, the default filter which satisfies all possible elements is used); and

(iii) a timestamp ts with the timestamp of the last changeFilter operation.

The execution of an add simply adds the element to the set of elems. The execution of

a changeFilter operation updates the current filter and ts if the new timestamp is greater

than the current one.

Function hasImpact checks if the execution of the new operation adds a new ele-

ment that satisfies the active filter or if it changes the filter. Function maskedForever

computes the local adds that are masked by other adds and the changeFilters that become

masked by other changeFilters. In the latter case, it is immediate that a changeFilter with

a smaller timestamp becomes irrelevant after executing the one with a larger timestamp.

In the former case, a local add for an element is masked by some other add for the same

element that is already core.

Function mayHaveObservableImpact returns the empty set, as for having impact

on any observable state an operation must also have impact on the local observable state.

Function hasObservableImpact computes the set of adds that have not yet been

propagated that add elements which satisfy the active filter where the element being

added has not previously been propagated or received. Besides operations executed after

the last synchronization, this function returns the operations that became relevant for

computing the current filtered set due to the execution of some other operation (an add

can be made relevant by the fact that the filter has changed). Function compact simply

returns the given ops since the design does not require compaction.

42



4.5. FILTERED SET

Algorithm 12 Design: F-Set
1: elems : set of elements : initial {}
2: filter : λ : initial e 7→ true
3: ts : tuple of 〈siteId,val〉 : initial 〈0,0〉
4:

5: get() : set
6: return {e ∈ elems : filter(e) = true}
7:

8: prepare add(e)
9: generate add(e)

10:

11: effect add(e)
12: elems = elems∪ {e}
13:

14: prepare changeFilter(f )
15: generate changeFilter(f ,〈getReplicaId(),getTimestamp()〉)
16:

17: effect changeFilter(f , timestamp)
18: if timestamp.val > ts.val∨ (timestamp.val = ts.val∧ timestamp.siteId > ts.siteId) then
19: filter = f
20: ts = timestamp
21:

22: hasImpact(op,S): boolean
23: R = S • op
24: filteredR = {e ∈ R.elems : R.filter(e) = true}
25: filteredS = {e ∈ S.elems : S.filter(e) = true}
26: return filteredR , filteredS∨R.ts , S.ts
27:

28: maskedForever(loglocal,S, logrecv): set of operations
29: adds = {add(e1) ∈ loglocal : ∃add(e2) ∈ logrecv : e1 = e2}
30: filters = {changeFilter(f1, ts1) ∈ loglocal :
31: ∃changeFilter(f2, ts2) ∈ loglocal ∪ logrecv : ts2.val > ts1.val
32: ∨(ts2.val > ts1.val∧ ts2.siteId > ts1.siteId}
33: return adds∪filters
34:

35: mayHaveObservableImpact(loglocal,S, logrecv): set of operations
36: return {} . This case never happens for this data type
37:

38: hasObservableImpact(loglocal,S, logrecv): set of operations
39: adds = {add(e) ∈ loglocal : filter(e) = true∧ @add(e) ∈ logrecv}
40: return adds
41:

42: compact(ops): set of operations
43: return ops . This data type does not use compaction

43



CHAPTER 4. OPERATION-BASED NUCRDTS

4.6 Top Sum

We now present the design for the Top Sum CRDT. This design appears similar to pre-

vious top-K designs but the semantics is quite different. In this data type instead of

associating scores with some identifier, the identifier is associated with the sum of all its

scores. The data type can be used for maintaining a leaderboard in an online game where

every time a player completes some challenge it is awarded some number of points, with

the current score of the player being the sum of all points awarded.

This design is interesting because it is hard to know which operation may have impact

in the observable state. For example, consider a scenario with two replicas, where the

score of last element in the top is 100. If the known score of an element is 90, an add of

5 received in one replica may have impact in the observable state if the other replica has

also received an add of 5 or more. One approach would be to propagate these operations,

but this would lead to propagating all operations. To try to minimize the number of

operations propagated we use the following heuristic inspired by escrow transactions [39]:

for each id, each replica maintains the sum of operations that have been propagated to all

replicas. A replica propagates local operations to other replicas if the sum of local adds

exceeds the difference between the minimum element in the top and the sum of adds

propagated to all replicas divided by the number of replicas.

The design defines only one update operation, add(id, n), which simply increments

the score of id by n. The get() operation returns a mapping of the top-K identifiers and

corresponding scores, as defined by the function topK used in the algorithm. The order

used for the topK function is as follows: 〈id1,v1〉 > 〈id2,v2〉 iff v1 > v2∨ (v1 = v2∧ id1 > id2).

Algorithm 13 presents a design that implements this semantics. The only prepare-

update operation, add, generates an effect-update add with the same parameters. Each

replica of this data type maintains only one field, state, which represents the current state

of the object as a mapping between identifiers and their current score sum. The execution

of an add(id, n) simply increments the score sum of id by n.

Function hasImpact checks if the top-K elements change after executing the new

operation. Function maskedForever returns the empty set, as operations in this design

can never be forever masked. Function mayHaveObservableImpact computes the

set of add operations that can potentially have an impact on the observable state using

the previously defined heuristic.

Function hasObservableImpact computes the set of add operations that have not

yet been propagated that have their corresponding id present in the top-K.

Function compact takes a set of instances of add operations and compacts the add
operations that affect the same identifier.

44



4.7. SUMMARY

Algorithm 13 Design: Top Sum
1: state : map id 7→ sum: initial []
2:

3: get() : map
4: return topK(state)
5:

6: prepare add(id,n)
7: generate add(id, n)
8:

9: effect add(id,n)
10: state[id] = state[id] + n
11:

12: hasImpact(op,S): boolean
13: R = S • op
14: return topK(S.state) , topK(R.state)
15:

16: maskedForever(loglocal,S, logrecv): set of operations
17: return {} . This case never happens for this data type
18:

19: mayHaveObservableImpact(loglocal,S, logrecv): set of operations
20: top = topK(S.state)
21: adds = {add(id, _) ∈ loglocal : s = sumval({add(i, n) ∈ loglocal : i = id})
22: ∧ s > ((min(top)− (S.state[id]− s)) / getNumReplicas())}
23: return adds
24:

25: hasObservableImpact(loglocal,S, logrecv): set of operations
26: top = topK(S.state)
27: adds = {add(id, _) ∈ loglocal : id ∈ top}
28: return adds
29:

30: compact(ops): set of operations
31: adds = {add(id, n) :
32: id ∈ {i : add(i, _) ∈ ops}
33: ∧ n = sum({k : add(id1, k) ∈ ops : id1 = id})}
34: return adds

4.7 Summary

In this chapter we have presented a collection of useful designs for operation-based

CRDTs that follow the non-uniform replication model formalized in the previous chapter.

The presented designs demonstrate the generic nature of the model, allowing it to be

applied to different data types. This can be seen in the designs of the Average, Histogram,

and Top-K (without removals) where the data types do not exhibit state divergence when

they are in a quiescent state.

In the next chapter we evaluate some of these designs against comparable implemen-

tations using state-of-the-art CRDTs that adopt a uniform replication model.

45





C
h
a
p
t
e
r

5
Comparing NuCRDTs with CRDTs

In this chapter we evaluate our data type designs. To this end, we compare our de-

signs (Op NuCRDT), against: delta-based CRDTs [11] that propagate all operations to all

replicas in an efficient manner (Delta CRDT); and the state-based computational CRDT

designs proposed by Navalho et al. [9] (State C-CRDT).

Our evaluation was performed by simulation using a discrete event simulator. To show

the benefit in terms of bandwidth and storage, we measured the total size of messages

sent between replicas for synchronization and the mean size of replicas.

We extended our designs, Op NuCRDT, and the computational CRDT designs to

support up to 2 replica faults by propagating all operations to, at least, 2 other replicas

besides the source replica. This extension was only applied to the top-K with removals

and the F-Set.

We simulated a system with 5 replicas for each data type. In each simulation run

500,000 update operations were generated. The values used in each operation (regardless

of the data type) were randomly selected using a uniform distribution. Furthermore, in

all simulation runs a replica synchronizes after executing 100 updates.

5.1 Histogram

For the Histogram data type simulation we assume a total of 1,000 bins. The implementa-

tion of the histogram for the both Delta CRDT and the State C-CRDT used a collection of

counter CRDTs where each counter represents one bin. Additionally each local counter

for the State C-CRDT must maintain n extra counters, one for each replica the CRDT

has previously received updates from. The Op NuCRDT was the same as presented in

algorithm 9. Figure 5.1 shows the results for this data type.

In both metrics, our histogram data type achieved parity with the Delta CRDT. This

47



CHAPTER 5. COMPARING NUCRDTS WITH CRDTS

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e 

S
iz

e 
(M

B
)

Number of Events

Op NuCRDT
State C-CRDT

Delta CRDT

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

100k 200k 300k 400k 500k

M
ea

n
 R

ep
lic

a 
S
iz

e(
B
yt

es
)

Number of Events

Op NuCRDT
State C-CRDT

Delta CRDT

Figure 5.1: Histogram: total message size and mean replica size

is to be expected since they have the same space complexity and propagate only the

bins that have changed (the delta) when synchronizing. The State C-CRDT performs up

to 3.75 times worse in total message size and 2.5x worse in mean replica size than the

other designs as when synchronizing updates it must send the entire state of its local

histogram and must also maintain a histogram for every replica site it has previously

received updates from.

5.2 Top-K

The experiment for the top-K used the following configuration: K was configured to 100,

player identifiers were selected with a uniform distribution from a domain of 10,000, and

scores were generated randomly with a uniform distribution from 0 to 250,000. The State

C-CRDT followed the implementation proposed by Navalho et al. [9] where the data type

keeps only the top-K elements, and always propagates its full state. The Delta CRDT was

implemented as a G-Set, where each new element is always added to the set. The Op

NuCRDT implemented algorithm 10. The results are shown in figure 5.2.

Our data type achieved a significantly lower bandwidth cost when compared to the

State C-CRDT (up to 50 times lower), and a decent improvement over the Delta CRDT (4

times lower). The Delta CRDT proved to be particularly efficient when compared to the

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e 

S
iz

e 
(M

B
)

Number of Events

Op NuCRDT
State C-CRDT

Delta CRDT

 0

 5000

 10000

 15000

 20000

 25000

 30000

100k 200k 300k 400k 500k

M
ea

n
 R

ep
lic

a 
S
iz

e 
(B

yt
es

)

Number of Events

Op NuCRDT
State C-CRDT

Delta CRDT

Figure 5.2: Top-K: total message size and mean replica size

48



5.3. TOP-K WITH REMOVALS

State C-CRDT (up to 12 times lower) since each replica only propagates new elements,

while the State C-CRDT must always propagate its full state which causes its total message

size to increase accordingly.

The results for the replica size show the space efficiency of both our data type and the

State C-CRDT. The large Delta CRDT replica sizes are expected since the G-Set maintains

all the added elements.

5.3 Top-K with removals

In the experiments with the top-K with removals, K was configured to be 100, player

identifiers were selected with a uniform distribution from a domain of 10,000, and scores

were generated randomly with a uniform distribution from 0 to 250,000.

The Delta CRDT was implemented as a 2P-Set, a data type that composes two G-Sets

together – one for additions and one for removals; when an addition happens the element

is inserted into the first G-Set, when a remove occurs the affected elements in the first

G-Set are moved to the second G-Set. The State C-CRDT followed the implementation

proposed by Navalho et al. [9]. The Op NuCRDT implemented algorithm 11.

Given the expected usage of a top-K for supporting a leaderboard, we expect the

remove to be an infrequent operation (to be used only when a user is removed from the

game). Thus, our workloads were designed with this in consideration. Figure 5.3 shows

the results for a workload of 95% of adds and 5% of removes. Figure 5.4 shows the results

for a workload of 99% of adds and 1% of removes. And finally, figure 5.5 shows the

results for a workload of 99.95% of adds and 0.05% of removes.

In all workloads our design achieved a significantly lower bandwidth cost when com-

pared to either the Delta CRDT (up to 25 times lower) and State C-CRDT (up to 6 times

lower). The reason for this is that our design only propagates operations that will be part

of the top-K. In the Delta CRDT, each replica propagates all new operations and not

only those that are a part of the top. In the State C-CRDT design, every time the top is

modified, the new top has to be propagated. Additionally, the proposed design for the

 0

 50

 100

 150

 200

 250

 300

 350

 400

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e 

S
iz

e 
(M

B
)

Number of Events

Op NuCRDT
State C-CRDT

Delta CRDT

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

M
ea

n
 R

ep
lic

a 
S
iz

e 
(M

B
)

Number of Events

Op NuCRDT
State C-CRDT

Delta CRDT

Figure 5.3: Top-K with removals: total message size and mean replica size with a work-
load of 95% adds and 5% removes

49



CHAPTER 5. COMPARING NUCRDTS WITH CRDTS

 0

 50

 100

 150

 200

 250

 300

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e 

S
iz

e 
(M

B
)

Number of Events

Op NuCRDT
State C-CRDT

Delta CRDT

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

M
ea

n
 R

ep
lic

a 
S
iz

e 
(M

B
)

Number of Events

Op NuCRDT
State C-CRDT

Delta CRDT

Figure 5.4: Top-K with removals: total message size and mean replica size with a work-
load of 99% adds and 1% removes

 0

 50

 100

 150

 200

 250

 300

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e 

S
iz

e 
(M

B
)

Number of Events

Op NuCRDT
State C-CRDT

Delta CRDT

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

M
ea

n
 R

ep
lic

a 
S
iz

e 
(M

B
)

Number of Events

Op NuCRDT
State C-CRDT

Delta CRDT

Figure 5.5: Top-K with removals: total message size and mean replica size with a work-
load of 99.95% adds and 0.05% removes

State C-CRDT always propagates removes.

The results for the replica size show that our design also manages to be more space

efficient than other designs, up to 2.5 times smaller than the Delta CRDT and up to 1.6

times smaller than the State C-CRDT. This is a consequence of the fact that each replica,

besides maintaining information about local operations, only keeps information from

remote replicas received for guaranteeing fault-tolerance and those that have influenced

the top-K at some moment in the execution. The State C-CRDT design additionally

keeps information about all removes. The Delta CRDT keeps information about all

elements that have not been removed or overwritten by a larger value. We note that as the

percentage approaches zero, the replica sizes of our design and that of the State C-CRDT

design start to converge to the same value. The reason for this is that the information

maintained in both designs is similar and our more efficient handling of removes starts

becoming irrelevant. The opposite is also true: as the number of removes increases, our

design becomes even more space efficient when compared to the State C-CRDT.

50



5.4. FILTERED SET

5.4 Filtered Set

The F-Set data type simulation used the following configuration: integers added to the

set were randomly selected with a uniform distribution from a domain of 100,000,000,

and the filter function used validated whether an element is a multiple of 2 or not. We

note that the filter function was not changed during the simulation. The Delta CRDT

implementation used a G-Set, the State C-CRDT also used a G-Set but followed the

idempotent design proposed by Navalho et al. [9]. We used the idempotent design here

due to the fact that the partially incremental design incurs very significant dissemination

overhead since when a replica synchronizes it must also propagate all results it knows

about other replicas. This is impractical for big sets as the gains of not sending elements

which do not validate the filter are much smaller than the overhead incurred by sending

all results. The Op NuCRDT implemented algorithm 12. The results are shown in

figure 5.6.

 1

 10

 100

 1000

 10000

100k 200k 300k 400k 500kT
ot

al
 M

es
sa

g
e 

S
iz

e 
(M

B
),

 l
og

1
0

Number of Events

Op NuCRDT
State C-CRDT

Delta CRDT

 0

 1

 2

 3

 4

 5

 6

100k 200k 300k 400k 500k

M
ea

n
 R

ep
lic

a 
S
iz

e 
(M

B
)

Number of Events

Op NuCRDT
State C-CRDT

Delta CRDT

Figure 5.6: F-Set: total message size and mean replica size

Our data type achieved a significantly lower bandwidth cost when compared to the

State C-CRDT (up to 384 times lower), and a modest improvement over the Delta CRDT

(up to 1.3 times lower). The Delta CRDT sends a bit more information than our data

type, due to the need to send all new elements to all replicas. The State C-CRDT due to

following the idempotent design must send all elements that belong to the filtered set in

every synchronization.

The results for the replica size show the space efficiency of the Op NuCRDT and the

State C-CRDT designs, which achieve parity. The Delta CRDT was not as compact, since

it must send all new elements to all replicas, resulting in larger replica sizes (up to 1.3

times larger).

5.5 Summary

In this chapter we have presented an evaluation of the proposed NuCRDT designs when

compared with existing state-of-the-art alternatives, namely computational CRDTs and

delta-based CRDTs. We have shown that our designs reduce the dissemination overhead

51



CHAPTER 5. COMPARING NUCRDTS WITH CRDTS

and replica size when compared to the state-of-the-art uniform designs. When specifi-

cally comparing with computational CRDTs our designs are able to improve on one, and

sometimes both, metrics.

In the next chapter we present design and implementation of operation-based Nu-

CRDTs in the AntidoteDB key-value store, together with the changes that were required

in AntidoteDB to support our designs.

52



C
h
a
p
t
e
r

6
Integration of NuCRDTs in AntidoteDB

This chapter describes AntidoteDB’s architecture and details how we implemented sup-

port for non-uniformly operation-based CRDTs in AntidoteDB.

6.1 AntidoteDB architecture

AntidoteDB is a distributed database written in the Erlang programming language and

leverages Riak Core [40], a framework for building distributed systems.

The system is globally distributed, running on several data centers at the same time.

To provide scalability, AntidoteDB shards data among replicas, called partitions, within

a data center using consistent hashing techniques. Read and write requests are served

by the nodes that hold the data. AntidoteDB has support for highly available transac-

tions [41] which can manipulate multiple objects in different replica nodes. A transac-

tion’s read and write operations execute in a single data center, by contacting only the

replicas that hold the accessed data.

Figure 6.1 the AntidoteDB architecture where clients execute transactions on a data

center. The system is responsible for correctly propagating the operations to the different

replica nodes, as well as propagating operations asynchronously to remote data centers.

Each AntidoteDB node has four main components:

• Transaction Manager: This component implements the transaction protocol and is

responsible for receiving client requests, executing them, coordinating transactions,

and replying to client requests. Transaction operations are stored in the Log com-

ponent – which also sends the operations to the InterDC Replication component. A

read operation contacts the materializer component that materializes snapshots of

objects stored in the nodes.

53



CHAPTER 6. INTEGRATION OF NUCRDTS IN ANTIDOTEDB

Figure 6.1: AntidoteDB Architecture

• Materializer: This component materializes and caches object versions (also called

snapshots) requested by clients, by reading the log entries if necessary.

• Log: This component implements a log-based persistent layer. Updates are stored

in this component when received and the log is persisted to disk to maintain data

durability. This component also sends the updates to the InterDC Replication

component to provide replication between data centers.

• InterDC Replication: This component is responsible for propagating updates among

data centers. It has two parts. First, it uses ZeroMQ PubSub [42] to send updates

from each log to each remote data center – in the form of transactions. Second, it

implements a mechanism to advance the vector clock so that the received remote

transactions can be made visible [14].

6.2 Implementing the data types

We began by implementing a few of the data types presented in earlier chapters, more

specifically we implemented the following designs:

• Average, following algorithm 8;

54



6.3. MODIFICATIONS IN ANTIDOTEDB TO SUPPORT NUCRDTS

• Top-K, following algorithm 10;

• Top-K with removals, following algorithm 11.

These implementations are self-contained in a module called antidote_ccrdt [43]

which follows the module API already used by AntidoteDB’s CRDTs [44], while adding

the following data type APIs to help support our synchronization optimizations:

• can_compact(op1, op2), verifies if the given effect-update operations can be com-

pacted;

• compact_ops(op1, op2), returns the compacted operations;

• is_replicate_tagged(op), identifies if the given operation is tagged for replica-

tion (to maintain the durability of masked operations).

As AntidoteDB attempts to immediately propagate transactions after they commit,

we had to modify this behavior to this end, we apply a buffering technique inside Antidot-

eDB to delay the propagation of the transactions – discussed in detail in a later section.

Essentially this allows us to store effect-update operations in a temporary log which we

later compact before synchronization. This technique makes use of can_compact and

compact_ops to remove forever masked operations. These functions are also used to

avoid propagating operations that when locally executed were core but became masked.

These operations are propagated only to a subset of replicas for durability.

To support designs where executing certain operations can cause previously existing

operations to become core and requires these operations to be propagated, we changed

the API for executing downstream effect-updates to allow returning a collection of effect-

updates together with the new state of the object. Furthermore, the module also provides

a function to identify which data types have this requirement, generates_extra_operations.

6.3 Modifications in AntidoteDB to support NuCRDTs

To integrate our NuCRDT module into AntidoteDB we had to make sure we fulfilled the

following set of requirements:

1. AntidoteDB must type check our data types and operations, as it currently does

with CRDTs;

2. Prepare-update operations that will never impact the state of NuCRDTs should be

discarded – these generate no-op effect-update operations in our data types, since

AntidoteDB expects prepare-update operations to always return an effect-update;

3. For effect-update operations that have yet to be propagated to other data centers, we

would like to compact these operations before propagation to reduce the number

55



CHAPTER 6. INTEGRATION OF NUCRDTS IN ANTIDOTEDB

of effect-updates to be transmitted and to optimize computations (as reducing the

number of effect-updates also reduces the number of remote executions needed);

4. Effect-update operations that have no immediate impact in remote data center repli-

cas should only be propagated to a subset of replicas for durability – these opera-

tions are tagged for replication in our data types;

5. When executing some effect-update operations locally, extra effect-update opera-

tions may be generated and will need to be propagated – these are operations that

were previously executed locally but were considered as masked.

We now explain how we addressed these requirements.

6.3.1 Requirement 1: Operation typechecking

For supporting the typechecking of our data types, we extended AntidoteDB’s type

checker to also check for the data types and operations present in our antidote_ccrdt

module. The modification was trivial, requiring only that we add our module’s is_type(type)

function to AntidoteDB’s typechecker function.

6.3.2 Requirement 2: Ignoring no-op effect-updates

No-op effect-updates are generated when, for example, adding a player score to a top-

K where the score being added does not fit into the top K. To entirely ignore no-op

effect-updates inside AntidoteDB, we modified the Log component and the Materializer

component to ignore effect-update operations where the operation payload is a no-op.

6.3.3 Requirement 3: Operation compaction

The goal of operation compaction was to use the log of effect-update operations that

have yet to be propagated and compact the operations within it using the API functions

provided by our data types. To give an example, consider a top-K where only the highest

player score for each player is stored. If our log had two effect-updates: add(1,50) and

add(1, 70), the compaction of these two operations would result in add(1, 70).
In AntidoteDB, as soon as a transaction commits it is immediately shipped to remote

data centers and the operations of each log are propagated concurrently to maximize

throughput and minimize coordination. This made our compaction technique harder. In

our implementation we achieved a middle ground by buffering committed transactions

for a brief, configurable, period before sending them to remote data centers. This allows

us to compact the NuCRDT operations between different transactions within the delay.

To achieve this we modified the InterDC Replication component to buffer transac-

tions that have been committed in the data center for the duration of a timer. Once the

timer runs out it takes the transactions it has collected and compacts them into a single

equivalent transaction that results in the same state for the affected objects.

56



6.3. MODIFICATIONS IN ANTIDOTEDB TO SUPPORT NUCRDTS

The compaction mechanism is shown in algorithm 14 and works as follows. First,

it takes the list of transactions and separates the effect-update operations that affect

NuCRDTs and those that do not. The effect-update operations affecting NuCRDTs are

stored in a map, where the key is a tuple containing the object key and the bucket where it

is located, the value is a list of effect-update operations. Each entry in this map forms a log

of unpropagated effect-update operations for each NuCRDT. This is where the compact

functions in our API are applied. For each of the objects in the map, the log of operations

is compacted incrementally by taking each element and attempting a compaction with

each of the previous elements.

Algorithm 14 Algorithm for compacting collections of transactions
1: compactCollection(transactions)
2: map = takeNonUniformObjectOperations(transactions)
3: otherOperations = takeUniformObjectOperations(transactions)
4: for object, ops ∈ map do
5: map[object] = compact(ops)
6: allOperations = concatenate(getAllObjectOperations(map), otherOperations)
7: lastTransaction = last(transactions)
8: return replaceOperations(lastTransaction, allOperations)
9:

10: compact(ops):
11: for op1 ∈ ops do
12: op2 = op1
13: while hasPrevious(op2) do
14: op2 = previous(op2)
15: if canCompact(op2,op1) then
16: 〈new2,new1〉 = compactOps(op2,op1)
17: if new2 = no-op then remove(ops, op2)
18: else if new2 , op2 then replace(ops, op2, new2)
19: if new1 = no-op then
20: remove(ops, op1)
21: break
22: else if new1 , op1 then replace(ops, op1, new1)
23: return ops

Once the compaction finishes, the remaining operations are propagated to the remote

data centers. A compacted operation will use the same commit time of the last transaction

in the original list of transactions.

This modification has a few implications on the AntidoteDB causal transactional

model as transactions that might have been compacted cannot be accessed individually in

the remote data centers. The reason for this is that operations from earlier transactions are

not being propagated and thus accessing the remaining effects of the transaction would

violate the atomicity property. For example, if a client executes two transactions on DC1

within the buffer duration, then some other client executing transaction on DC2 cannot

read a value that includes only the first transaction. Instead, it is necessary to guarantee

57



CHAPTER 6. INTEGRATION OF NUCRDTS IN ANTIDOTEDB

that all transactions in a buffer are contained in the snapshot.

To make sure AntidoteDB’s stable snapshots evolve safely when compacting opera-

tions, we have modified the stabilization of vector clock snapshots such that they evolve

in synchrony with the transaction buffer time. This ensures updates only become visi-

ble in a data center when all partitions in that data center observe that all transactions

belonging to a buffer period have been delivered.

Due to the incurred overhead of the transaction buffering mechanism, it remains as

a configurable option in AntidoteDB so the system user can make the trade-off between

quicker overall replication or less network overhead for NuCRDTs.

6.3.4 Requirement 4: Durability of masked operations

The compaction mechanism creates one version of the log that contains both the core

operations and the masked operations being propagated for durability, and a second

version that only has the core operations. These two versions are then propagated to

different subsets of data centers, where the first one is propagated to f data centers in

order to maintain the durability of masked operations with up to f faults. The second

version is propagated to the remaining data centers.

However, to broadcast different versions of a transaction to different data centers we

had to modify the filter AntidoteDB uses for its ZeroMQ PubSub connection between

data centers. As the initial filter contained only the partition number, the publisher

could not distinguish between different data centers which made it impossible to send

different versions to different data centers. To support this we simply added the data

center identifier to the filter.

6.3.5 Requirement 5: Generating new operations from downstream
operations

To support this requirement we modified the Materializer component to support gener-

ating a new operation when the execution of a downstream operation also returns new

operations that must be propagated. However this new operation must not be generated

immediately, instead since AntidoteDB uses object snapshots and a cache of operations

these operations should only be generated when the operation that generated them is

removed from the cache to avoid generating the same operation more than once.

An object’s operations are removed from the cache once the number of cached opera-

tions for that object hits the configured threshold (50 by default) or when a read operation

on the object is executed.

For example, given a top-5 where 45 additions have executed if we execute a remove

operation that would cause a masked operation to become core this core operation would

only be generated and propagated after 4 other operations executed or after a single read

operation was executed.

58



6.4. SUMMARY

6.4 Summary

In this chapter we discussed AntidoteDB’s overall architecture and described our experi-

ence with implementing operation-based NuCRDTs in AntidoteDB. The implementation

of the data types themselves was relatively simple, and the module that contains them is

open-sourced on GitHub [43].

However, the modifications required to support the data types in AntidoteDB were

not trivial. First, we had to add support to generate no-ops when an operation had no

side effects. Second, as AntidoteDB’s unit of propagation is a transaction and not an

operation – and it is immediately propagated to remote data centers; we were forced to

find a middle ground for log compaction by buffering transactions for a brief period and

then compacting the collection of operations in those transactions. Third, AntidoteDB’s

ZeroMQ PubSub filter had no initial support for distinguishing between what data centers

transactions were being sent to which was absolutely required to reduce the dissemination

overhead of designs that must maintain the durability of masked operations.

In the next chapter we evaluate two of our operation-based NuCRDTs against operation-

based CRDTs that model equivalent behavior in the AntidoteDB key-value store.

59





C
h
a
p
t
e
r

7
Evaluation

In this chapter we evaluate the performance of Non-uniform CRDTs in AntidoteDB. To

this end, we compare the Top-K and Top-K with removals Non-uniform CRDTs with

the current available solution that uses an add-wins set CRDT. The add-wins set is

implemented by generating a new unique token for every insert operation. A remove

operation will remove all tokens associated with an element known in the replica where

the operation was executed.

The experiments we present in this chapter try to assess whether the introduction

of non-uniform replication in a geo-replicated database system allows to: (i) reduce

the size of database replicas; (ii) reduce the bandwidth used for synchronizing replicas.

Furthermore, we study the scalability of a system that uses non-uniform replication in

comparison with a system using full replication.

7.1 Dissemination overhead and replica sizes

We started by measuring the size of the replicas and the bandwidth consumed for syn-

chronizing replicas. To this end, we modified AntidoteDB to store in each data center

the total size of messages transmitted for a given object. To measure the size of data type

replicas we have introduced support for accessing the full object representation.

The experiment executes a sequence of randomly generated updates to different ob-

jects, where all different objects receive the same updates. The values used in each oper-

ation (regardless of the data type) were randomly selected using a uniform distribution.

In the experiment we compare the Non-uniform CRDTs proposed in this work with the

operation-based CRDTs currently available in AntidoteDB. Data points were recorded

every 5,000 operations, by obtaining the total message size each data center had transmit-

ted so far for each object and the size of the objects, which we later used to compute the

61



CHAPTER 7. EVALUATION

mean size of each object. All results represent the mean result of three independent runs.

The experiments were ran on Amazon Web Services EC2, using m3.xlarge machine

instances for both the AntidoteDB nodes and the node issuing the benchmark operations.

Each of the machines were launched in the eu-west-1c region. A total of 5 AntidoteDB

nodes were used, each one forming its own data center (containing only one node). Each

AntidoteDB node was configured to buffer transactions for a period of 200 milliseconds.

7.1.1 Top-K

We first evaluated the performance of the Top-K design. In this case we compared our

design against an add-wins set that models the same semantics on the client side, by

explicitly removing elements from the set which become masked. This experiment used

the following configuration: K was configured to 100, player identifiers were selected

with a uniform distribution from a domain of 10,000, and scores were generated randomly

with a uniform distribution from 0 to 250,000. The results are shown in Figure 7.1.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

T
ot

al
 M

es
sa

g
e 

S
iz

e 
(M

B
s)

Number of update operations

NuCRDT CRDT

 0

 1000

 2000

 3000

 4000

 5000

 6000

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

M
ea

n
 R

ep
lic

a 
S
iz

e 
(B

yt
es

)

Number of update operations

NuCRDT CRDT

Figure 7.1: Top-K: total message size and mean replica size

For the total message size our data type achieved up to a 3 times lower dissemination

cost. This is expected since to model the semantics of the top-K in the add-wins set,

elements have to be explicitly removed once they are no longer part of the top.

The results for the replica size show the efficiency of the state representation of our

data type (up to a 4.8 times reduction). Even though both objects mostly have the same

number of elements (roughly 100 for the add-wins set and always 100 for the Top-K) our

design implementation manages to have a better state representation since it does not

require unique tokens like the add-wins set.

7.1.2 Top-K with removals

We now compare the design of the Top-K with removals against an add-wins set which

models the same semantics on the client side, by explicitly managing the removal of each

affected element as would occur in the Non-uniform CRDT.

In this experiment, K was configured to be 100, player identifiers were selected with

a uniform distribution from a domain of 10,000, and scores were generated randomly

62



7.2. SCALABILITY

with a uniform distribution from 0 to 250,000. Furthermore, the system was configured

to support from zero to two faults (f = 0, f = 1, f = 2) by propagating masked operations

to f replicas.

As the simulations in section 5, given the expected usage of a top-K for supporting a

leaderboard, we expect the remove to be an infrequent operation (to be used only when a

user is removed from the game). Thus, the workload was chosen with this in consideration.

Figure 7.2 shows the results for a workload of 95% of adds and 5% of removes.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

T
ot

al
 M

es
sa

g
e 

S
iz

e 
(M

B
s)

Number of update operations

NuCRDT, f=0
NuCRDT, f=1

NuCRDT, f=2
CRDT

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

M
ea

n
 R

ep
lic

a 
S
iz

e 
(M

B
s)

Number of update operations

NuCRDT, f=0
NuCRDT, f=1

NuCRDT, f=2
CRDT

Figure 7.2: Top-K with removals: total message size and mean replica size with a work-
load of 95% adds and 5% removes

Our design achieved both a significant lower bandwidth cost (up to a 96% reduction

for f = 0) and a lower replica size (up to a 67.7% reduction for f = 0) when compared to

the add-wins set. This happens primarily because the add-wins set needs to propagate

all elements to all replicas (even the ones that do not fit in the top) while our design only

propagates the required elements to all replicas and the remaining elements are only

propagated to a subset for durability.

When specifically comparing between the various instances of the Top-K with re-

movals with varying degrees of replication, the total message size and mean replica size

increases as expected. We note that when the data type tolerates up to 2 faults its mean

replica size reaches 78% of the mean size of the add-wins set, while each element that is

not in the top is replicated only in 60% of the replicas. This happens due to a few rea-

sons: 1) The Top-K with removals must explicitly maintain more information regarding

each element including the replica id and the replica timestamp, and 2) the Top-K with

removals must maintain an explicit registry of removals.

7.2 Scalability

To evaluate the scalability of non-uniform replication we have used the Basho Bench [45]

benchmarking tool developed by Basho Technologies. To use Basho Bench we developed

a driver that specifies what operations can be executed for our use cases. For using

AntidoteDB’s original CRDT, the driver specification was extended to model the same

semantics as NuCRDTs. To give an example, when modeling a top-K using an add-wins

63



CHAPTER 7. EVALUATION

eu-west eu-central us-east us-west ap-northeast
eu-west 0.421 22.42 71.537 145.875 210.989
eu-central 22.42 0.417 89.241 156.304 254.216
us-east 71.537 89.241 0.459 61.699 143.058
us-west 145.875 156.304 61.699 0.453 117.695
ap-northeast 210.989 254.216 143.058 117.695 0.493

Table 7.1: Mean round-trip time between Amazon Web Services EC2 instances

set the elements which are no longer part of the top must be removed one by one – this is

done explicitly by the client driver.

We now describe the benchmarking setup. These experiments were ran on Amazon

Web Services EC2, using m3.xlarge machine instances for both the AntidoteDB nodes

and the Basho Bench nodes. All benchmarks were ran against 5 AntidoteDB nodes, each

one forming its own data center (containing only one node), resulting in a total of 5 data

centers. The benchmark runs using 5 Basho Bench instances, each one in its own machine.

Each Basho Bench instance spawned a configurable number of clients and connected to

the data center node running in the same EC2 region.

Machines that ran AntidoteDB nodes were launched on the following region/availabil-

ity zones: eu-west-1c, eu-central-1a, us-east-1d, us-west-1c, and ap-northeast-1c. Machines

that ran Basho Bench nodes were launched in the same region and availability zone as

the AntidoteDB node they were connecting to. The mean round-trip time over 100 Ping

requests between each machine is shown in table 7.1.

Each AntidoteDB node was configured to buffer transactions for a period of 200 mil-

liseconds. All benchmarks ran for 3 minutes. Each data point for each experiment rep-

resents the mean result of three independent runs. Prior to each run the AntidoteDB

nodes were shutdown and their data was deleted, the software was then recompiled, the

nodes were relaunched, and the data center nodes were reconnected. This ensured a fair

benchmarking environment.

7.2.1 Top-K

We now present the evaluation results for the top-K and the add-wins implementation

of a top-K. This experiment used the following configuration: K was configured to 100,

player identifiers were selected with a uniform distribution from a domain of 10,000,

and scores were generated randomly with a uniform distribution from 0 to 250,000. The

results are presented in figure 7.3.

The results show that our non-uniform replication design scales much better that the

add-wins set-based implementation of top-K. The reason for this lies in the fact that in

the add-wins-based implementation it is necessary to remove an element whenever a new

element is added to the top, resulting in a larger number of operations being executed.

Additionally, in our design, as the top is populated with elements with large scores, the

64



7.2. SCALABILITY

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25  30  35

M
e
a
n

 L
a
te

n
cy

 (
m

s)

Number of clients per data center

 NuCRDT CRDT

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  5  10  15  20  25  30  35

M
e
a
n

 T
h

ro
u

g
h

p
u

t 
(o

p
s/

se
c)

Number of clients per data center

 NuCRDT CRDT

 5

 10

 15

 20

 25

 30

 35

 0  2000  4000  6000  8000  10000  12000  14000

M
e
a
n

 L
a
te

n
cy

 (
m

s)

Mean Throughput (ops/sec)

 NuCRDT CRDT

Figure 7.3: Top-K experiments

number of operation that are not immediately masked tends to zero.

7.2.2 Top-K with removals

We now present the evaluation results for the top-K with removals. In this case, we

need to maintain the all inserted scores as a remove may delete only some of the scores.

The configuration used in the experiments is the following: K was set to 100, player

identifiers were selected with a uniform distribution from a domain of 10,000, and scores

were generated randomly with a uniform distribution from 0 to 250,000. Furthermore,

the system was configured to support from zero to two faults (f = 0, f = 1, f = 2) by

propagating masked operations to f replicas. Similarly to the measurements of total

message size and mean replica size, Figure 7.4 presents the results of a workload of 95%

of adds and 5% of removes.

The results show that both design behave similarly under low load (up to 16 clients).

For a larger number of clients per data center the mean latency of the add-wins set more

than doubled while the mean latency of the NuCRDT design remained linear. For 128

clients per data center the add-wins set could not keep up with the increasing load and

as result suffered a throughput drop. The NuCRDT design did not exhibit this behavior.

When comparing between the varying degrees of replication both latency and through-

put were initially similar. However, after the number of clients per data center increased

to more than 32 the latency also slightly increased for both f = 1 and f = 2. Correspond-

ingly, the throughput also had a slower growth and could not reach the same value as

f = 0.

65



CHAPTER 7. EVALUATION

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100  120  140

M
e
a
n

 L
a
te

n
cy

 (
m

s)

Number of clients per data center

NuCRDT, f=0
NuCRDT, f=1

NuCRDT, f=2
CRDT

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0  20  40  60  80  100  120  140

M
e
a
n

 T
h

ro
u

g
h

p
u

t 
(o

p
s/

se
c)

Number of clients per data center

NuCRDT, f=0
NuCRDT, f=1

NuCRDT, f=2
CRDT

 0

 50

 100

 150

 200

 250

 300

 500  1000 1500 2000 2500 3000 3500 4000 4500 5000

M
e
a
n

 L
a
te

n
cy

 (
m

s)

Mean Throughput (ops/sec)

NuCRDT, f=0
NuCRDT, f=1

NuCRDT, f=2
CRDT

Figure 7.4: Top-K with removals experiments with a workload of 95% adds and 5%
removes

We suspect that the marginal increase in scalability for this design is due to the top-

K computation being executed inside the database, which could perhaps be optimized

further.

7.3 Summary

The results presented in this chapter show that NuCRDT design perform better than their

operation-based CRDTs counterparts. We first showed that the size of replicas and the

bandwidth consumed by NuCRDT design is lower by up to 79% and 96% respectively.

We also showed that the scalability of a system that used NuCRDT is better than when

using operation-based CRDTs.

66



C
h
a
p
t
e
r

8
Conclusion

In this thesis we have introduced a new replication model, the non-uniform replica-

tion model, and have formalized its semantics for an eventually consistent system that

synchronizes by exchanging operations. Additionally we have shown how to apply the

generic model to different kinds of operation-based CRDT designs.

Our simulated evaluations showed that our proposed operation-based NuCRDTs are

equivalent to delta-based CRDTs and better than state-based computational CRDTs for

the designs where the propagated operation is a representation of the state (such as in

the Average and Histogram CRDTs). For other designs our NuCRDTs perform better

than delta-based CRDTs and state-based computational CRDTs, significantly reducing

the message dissemination overhead and lowering the replica sizes.

We have discussed how operation-based NuCRDTs can be implemented in a dis-

tributed key-value store that already supports CRDTs by describing our implementa-

tion in AntidoteDB. We have presented the changes we made to AntidoteDB that were

required to support our designs, and the trade-offs they incur.

Finally, we have evaluated our NuCRDTs in AntidoteDB against operation-based

CRDTs that model the same semantics on the client side. The results of our experiments

showed that our NuCRDTs are more space efficient and incur a lesser dissemination over-

head than the ones currently used in AntidoteDB. Furthermore, the NuCRDT design

leads to a better scalability of the system, with a larger maximum throughput and a lower

and more stable latency for operations.

8.1 Publications

Part of the results in this dissertation were submitted for publication:

67



CHAPTER 8. CONCLUSION

Non-uniform replication for replicated objects G. Cabrita, N. Preguiça. Submit-

ted to ACM Symposium on Principles of Distributed Computing, 2017.

8.2 Future Work

This thesis introduced the concept of non-uniform replication and formalized its seman-

tics for an operation-based synchronization approach in the context of an eventually

consistent system. Future work can study and formalize this replication model for other

consistency models such as linearizability.

Additionally, more interesting data type designs which implement the non-uniform

replication model can be explored, implemented, and evaluated using our modified ver-

sion of AntidoteDB. This can potentially open up more use cases for CRDTs. Something

we intend to explore in the future is the usefulness of NuCRDTs in the context of Big

Data and Machine Learning environments.

Finally, the current implementation does not reflect a perfect fault-tolerant environ-

ment for masked operations which are only propagated for durability. As the receiving

data centers for these operations are currently chosen arbitrarily it is impossible to know

what subset of masked operations need to be re-replicated when a data center fails.

68



Bibliography

[1] Amazon.com, Inc. Amazon DynamoDB. Accessed: 2016-05-03. url: http://aws.

amazon.com/dynamodb.

[2] Basho Technologies, Inc. Riak KV. Accessed: 2016-05-10. url: http://docs.

basho.com/riak/kv.

[3] A. Lakshman and P. Malik. “Cassandra: A Decentralized Structured Storage Sys-

tem”. In: SIGOPS Oper. Syst. Rev. 44.2 (Apr. 2010), pp. 35–40. issn: 0163-5980.

doi: 10.1145/1773912.1773922. url: http://doi.acm.org/10.1145/1773912.

1773922.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: Amazon’s Highly Avail-

able Key-value Store”. In: Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles. SOSP ’07. Stevenson, Washington, USA: ACM, 2007,

pp. 205–220. isbn: 978-1-59593-591-5. doi: 10.1145/1294261.1294281. url:

http://doi.acm.org/10.1145/1294261.1294281.

[5] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. “Conflict-free Replicated

Data Types”. In: Proceedings of the 13th International Conference on Stabilization,
Safety, and Security of Distributed Systems. SSS’11. Grenoble, France: Springer-

Verlag, 2011, pp. 386–400. isbn: 978-3-642-24549-7. url: http://dl.acm.org/

citation.cfm?id=2050613.2050642.

[6] N. Schiper, P. Sutra, and F. Pedone. “P-Store: Genuine Partial Replication in Wide

Area Networks”. In: Proceedings of the 2010 29th IEEE Symposium on Reliable
Distributed Systems. SRDS ’10. Washington, DC, USA: IEEE Computer Society,

2010, pp. 214–224. isbn: 978-0-7695-4250-8. doi: 10.1109/SRDS.2010.32. url:

http://dx.doi.org/10.1109/SRDS.2010.32.

[7] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and H.

Abu-Libdeh. “Consistency-based Service Level Agreements for Cloud Storage”. In:

Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles.
SOSP ’13. Farminton, Pennsylvania: ACM, 2013, pp. 309–324. isbn: 978-1-4503-

2388-8. doi: 10.1145/2517349.2522731. url: http://doi.acm.org/10.1145/

2517349.2522731.

69

http://aws.amazon.com/dynamodb
http://aws.amazon.com/dynamodb
http://docs.basho.com/riak/kv
http://docs.basho.com/riak/kv
https://doi.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922
https://doi.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dl.acm.org/citation.cfm?id=2050613.2050642
https://doi.org/10.1109/SRDS.2010.32
http://dx.doi.org/10.1109/SRDS.2010.32
https://doi.org/10.1145/2517349.2522731
http://doi.acm.org/10.1145/2517349.2522731
http://doi.acm.org/10.1145/2517349.2522731


BIBLIOGRAPHY

[8] T. Crain and M. Shapiro. “Designing a Causally Consistent Protocol for Geo-

distributed Partial Replication”. In: Proceedings of the First Workshop on Principles
and Practice of Consistency for Distributed Data. PaPoC ’15. Bordeaux, France: ACM,

2015, 6:1–6:4. isbn: 978-1-4503-3537-9. doi: 10.1145/2745947.2745953. url:

http://doi.acm.org/10.1145/2745947.2745953.

[9] D. Navalho, S. Duarte, and N. Preguiça. “A Study of CRDTs That Do Computa-

tions”. In: Proceedings of the First Workshop on Principles and Practice of Consistency
for Distributed Data. PaPoC ’15. Bordeaux, France: ACM, 2015, 1:1–1:4. isbn: 978-

1-4503-3537-9. doi: 10.1145/2745947.2745948. url: http://doi.acm.org/10.

1145/2745947.2745948.

[10] H. Attiya, F. Ellen, and A. Morrison. “Limitations of Highly-Available Eventually-

Consistent Data Stores”. In: Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing. PODC ’15. Donostia-San Sebasti&#225;n, Spain: ACM,

2015, pp. 385–394. isbn: 978-1-4503-3617-8. doi: 10.1145/2767386.2767419.

url: http://doi.acm.org/10.1145/2767386.2767419.

[11] P. Almeida, A. Shoker, and C. Baquero. “Efficient State-Based CRDTs by Delta-

Mutation”. In: Networked Systems. Ed. by A. Bouajjani and H. Fauconnier. Vol. 9466.

Lecture Notes in Computer Science. Springer International Publishing, 2015, pp.

62–76. doi: 10.1007/978-3-319-26850-7\_5. url: http://dx.doi.org/10.

1007/978-3-319-26850-7\_5.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord: A

Scalable Peer-to-peer Lookup Service for Internet Applications”. In: Proceedings
of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications. SIGCOMM ’01. San Diego, California, USA: ACM,

2001, pp. 149–160. isbn: 1-58113-411-8. doi: 10.1145/383059.383071. url:

http://doi.acm.org/10.1145/383059.383071.

[13] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. “Don’t Settle for

Eventual: Scalable Causal Consistency for Wide-area Storage with COPS”. In:

Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles.
SOSP ’11. Cascais, Portugal: ACM, 2011, pp. 401–416. isbn: 978-1-4503-0977-6.

doi: 10.1145/2043556.2043593. url: http://doi.acm.org/10.1145/2043556.

2043593.

[14] D. D. Akkoorath, A. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça,

and M. Shapiro. “Cure: Strong semantics meets high availability and low latency”.

In: IEEE 36th International Conference on Distributed Computing Systems. ICDCS’16.

Nara, Japan: IEEE Computer Society, June 2016.

[15] L. Lamport. “The Part-time Parliament”. In: ACM Trans. Comput. Syst. 16.2

(May 1998), pp. 133–169. issn: 0734-2071. doi: 10.1145/279227.279229. url:

http://doi.acm.org/10.1145/279227.279229.

70

https://doi.org/10.1145/2745947.2745953
http://doi.acm.org/10.1145/2745947.2745953
https://doi.org/10.1145/2745947.2745948
http://doi.acm.org/10.1145/2745947.2745948
http://doi.acm.org/10.1145/2745947.2745948
https://doi.org/10.1145/2767386.2767419
http://doi.acm.org/10.1145/2767386.2767419
https://doi.org/10.1007/978-3-319-26850-7\_5
http://dx.doi.org/10.1007/978-3-319-26850-7\_5
http://dx.doi.org/10.1007/978-3-319-26850-7\_5
https://doi.org/10.1145/383059.383071
http://doi.acm.org/10.1145/383059.383071
https://doi.org/10.1145/2043556.2043593
http://doi.acm.org/10.1145/2043556.2043593
http://doi.acm.org/10.1145/2043556.2043593
https://doi.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229


BIBLIOGRAPHY

[16] D. Ongaro and J. Ousterhout. “In Search of an Understandable Consensus Algo-

rithm”. In: Proceedings of the 2014 USENIX Conference on USENIX Annual Tech-
nical Conference. USENIX ATC’14. Philadelphia, PA: USENIX Association, 2014,

pp. 305–320. isbn: 978-1-931971-10-2. url: http://dl.acm.org/citation.

cfm?id=2643634.2643666.

[17] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin. “Con-

sistent Hashing and Random Trees: Distributed Caching Protocols for Relieving

Hot Spots on the World Wide Web”. In: Proceedings of the Twenty-ninth Annual
ACM Symposium on Theory of Computing. STOC ’97. El Paso, Texas, USA: ACM,

1997, pp. 654–663. isbn: 0-89791-888-6. doi: 10.1145/258533.258660. url:

http://doi.acm.org/10.1145/258533.258660.

[18] Lightbend, Inc. Akka Distributed Data. Accessed: 2016-06-08. url: http://doc.

akka.io/docs/akka/2.4.7/scala/distributed-data.html.

[19] Lightbend, Inc. Akka Cluster. Accessed: 2016-06-08. url: http://doc.akka.io/

docs/akka/2.4.7/common/cluster.html.

[20] SyncFree. AntidoteDB. Accessed: 2016-12-08. url: http://http://antidote-

db.com/.

[21] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”.

In: Commun. ACM 21.7 (July 1978), pp. 558–565. issn: 0001-0782. doi: 10.1145/

359545.359563. url: http://doi.acm.org/10.1145/359545.359563.

[22] Redis. Accessed: 2016-05-03. url: http://redis.io.

[23] P. S. Almeida, C. Baquero, R. Gonçalves, N. Preguiça, and V. Fonte. “Scalable and

Accurate Causality Tracking for Eventually Consistent Stores”. In: Proceedings of
the Distributed Applications and Interoperable Systems, held as part of the Ninth Inter-
national Federated Conference on Distributed Computing Techniques. Berlin, Germany,

2014, pp. 67–81.

[24] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The Hadoop Distributed File

System”. In: Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST). MSST ’10. Washington, DC, USA: IEEE Computer Society,

2010, pp. 1–10. isbn: 978-1-4244-7152-2. doi: 10.1109/MSST.2010.5496972.

url: http://dx.doi.org/10.1109/MSST.2010.5496972.

[25] J. Kreps, N. Narkhede, J. Rao, et al. “Kafka: A distributed messaging system for log

processing”. In: NetDB. 2011.

[26] Apache Software Foundation. Apache Hadoop. Accessed: 2016-05-18. url: http:

//hadoop.apache.org/.

71

http://dl.acm.org/citation.cfm?id=2643634.2643666
http://dl.acm.org/citation.cfm?id=2643634.2643666
https://doi.org/10.1145/258533.258660
http://doi.acm.org/10.1145/258533.258660
http://doc.akka.io/docs/akka/2.4.7/scala/distributed-data.html
http://doc.akka.io/docs/akka/2.4.7/scala/distributed-data.html
http://doc.akka.io/docs/akka/2.4.7/common/cluster.html
http://doc.akka.io/docs/akka/2.4.7/common/cluster.html
http://http://antidote-db.com/
http://http://antidote-db.com/
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://redis.io
https://doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://hadoop.apache.org/
http://hadoop.apache.org/


BIBLIOGRAPHY

[27] S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google File System”. In: Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles. SOSP

’03. Bolton Landing, NY, USA: ACM, 2003, pp. 29–43. isbn: 1-58113-757-5. doi:

10.1145/945445.945450. url: http://doi.acm.org/10.1145/945445.945450.

[28] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large

Clusters”. In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113. issn: 0001-0782.

doi: 10.1145/1327452.1327492. url: http://doi.acm.org/10.1145/1327452.

1327492.

[29] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S.

Shenker, and I. Stoica. “Resilient Distributed Datasets: A Fault-tolerant Abstraction

for In-memory Cluster Computing”. In: Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation. NSDI’12. San Jose, CA: USENIX

Association, 2012, pp. 2–2. url: http://dl.acm.org/citation.cfm?id=2228298.

2228301.

[30] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. “Discretized Streams:

Fault-tolerant Streaming Computation at Scale”. In: Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. SOSP ’13. Farminton,

Pennsylvania: ACM, 2013, pp. 423–438. isbn: 978-1-4503-2388-8. doi: 10.1145/

2517349.2522737. url: http://doi.acm.org/10.1145/2517349.2522737.

[31] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,

K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy. “Storm@Twitter”.

In: Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’14. Snowbird, Utah, USA: ACM, 2014, pp. 147–156. isbn: 978-

1-4503-2376-5. doi: 10.1145/2588555.2595641. url: http://doi.acm.org/10.

1145/2588555.2595641.

[32] D. Peng and F. Dabek. “Large-scale Incremental Processing Using Distributed

Transactions and Notifications”. In: Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation. OSDI’10. Vancouver, BC, Canada:

USENIX Association, 2010, pp. 251–264. url: http://dl.acm.org/citation.

cfm?id=1924943.1924961.

[33] D. Navalho, S. Duarte, N. Preguiça, and M. Shapiro. “Incremental Stream Process-

ing Using Computational Conflict-free Replicated Data Types”. In: Proceedings of
the 3rd International Workshop on Cloud Data and Platforms. CloudDP ’13. Prague,

Czech Republic: ACM, 2013, pp. 31–36. isbn: 978-1-4503-2075-7. doi: 10.1145/

2460756.2460762. url: http://doi.acm.org/10.1145/2460756.2460762.

[34] C. Meiklejohn and P. Van Roy. “Lasp: A Language for Distributed, Coordination-

free Programming”. In: Proceedings of the 17th International Symposium on Princi-
ples and Practice of Declarative Programming. PPDP ’15. Siena, Italy: ACM, 2015,

72

https://doi.org/10.1145/945445.945450
http://doi.acm.org/10.1145/945445.945450
https://doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1145/2517349.2522737
http://doi.acm.org/10.1145/2517349.2522737
https://doi.org/10.1145/2588555.2595641
http://doi.acm.org/10.1145/2588555.2595641
http://doi.acm.org/10.1145/2588555.2595641
http://dl.acm.org/citation.cfm?id=1924943.1924961
http://dl.acm.org/citation.cfm?id=1924943.1924961
https://doi.org/10.1145/2460756.2460762
https://doi.org/10.1145/2460756.2460762
http://doi.acm.org/10.1145/2460756.2460762


BIBLIOGRAPHY

pp. 184–195. isbn: 978-1-4503-3516-4. doi: 10.1145/2790449.2790525. url:

http://doi.acm.org/10.1145/2790449.2790525.

[35] L. Kuper and R. R. Newton. “LVars: Lattice-based Data Structures for Deterministic

Parallelism”. In: Proceedings of the 2Nd ACM SIGPLAN Workshop on Functional
High-performance Computing. FHPC ’13. Boston, Massachusetts, USA: ACM, 2013,

pp. 71–84. isbn: 978-1-4503-2381-9. doi: 10.1145/2502323.2502326. url:

http://doi.acm.org/10.1145/2502323.2502326.

[36] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. “Don’T Settle for

Eventual: Scalable Causal Consistency for Wide-area Storage with COPS”. In:

Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles.
SOSP ’11. Cascais, Portugal: ACM, 2011, pp. 401–416. isbn: 978-1-4503-0977-6.

doi: 10.1145/2043556.2043593. url: http://doi.acm.org/10.1145/2043556.

2043593.

[37] W. Vogels. “Eventually Consistent”. In: Commun. ACM 52.1 (Jan. 2009), pp. 40–44.

issn: 0001-0782. doi: 10.1145/1435417.1435432. url: http://doi.acm.org/

10.1145/1435417.1435432.

[38] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of
Convergent and Commutative Replicated Data Types. Research Report RR-7506. Inria

– Centre Paris-Rocquencourt ; INRIA, Jan. 2011, p. 50. url: https://hal.inria.

fr/inria-00555588.

[39] P. E. O’Neil. “The Escrow Transactional Method”. In: ACM Trans. Database Syst.
11.4 (Dec. 1986), pp. 405–430. issn: 0362-5915. doi: 10.1145/7239.7265. url:

http://doi.acm.org/10.1145/7239.7265.

[40] Basho Technologies, Inc. Riak Core. Accessed: 2017-01-25. url: https://github.

com/basho/riak_core.

[41] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. “Highly

Available Transactions: Virtues and Limitations”. In: Proc. VLDB Endow. 7.3 (Nov.

2013), pp. 181–192. issn: 2150-8097. doi: 10.14778/2732232.2732237. url:

http://dx.doi.org/10.14778/2732232.2732237.

[42] iMatix, Inc. ZeroMQ. Accessed: 2017-01-25. url: http://zeromq.org/.

[43] Gonçalo Cabrita. AntidoteDB C-CRDT Module. Accessed: 2017-01-25. url: https:

//github.com/gmcabrita/antidote_ccrdt.

[44] SyncFree Consortium. AntidoteDB CRDT Module. Accessed: 2017-01-25. url:

https://github.com/syncFree/antidote_crdt.

[45] Basho Technologies, Inc. Basho Bench. Accessed: 2017-01-28. url: https://

github.com/basho/basho_bench.

73

https://doi.org/10.1145/2790449.2790525
http://doi.acm.org/10.1145/2790449.2790525
https://doi.org/10.1145/2502323.2502326
http://doi.acm.org/10.1145/2502323.2502326
https://doi.org/10.1145/2043556.2043593
http://doi.acm.org/10.1145/2043556.2043593
http://doi.acm.org/10.1145/2043556.2043593
https://doi.org/10.1145/1435417.1435432
http://doi.acm.org/10.1145/1435417.1435432
http://doi.acm.org/10.1145/1435417.1435432
https://hal.inria.fr/inria-00555588
https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/7239.7265
http://doi.acm.org/10.1145/7239.7265
https://github.com/basho/riak_core
https://github.com/basho/riak_core
https://doi.org/10.14778/2732232.2732237
http://dx.doi.org/10.14778/2732232.2732237
http://zeromq.org/
https://github.com/gmcabrita/antidote_ccrdt
https://github.com/gmcabrita/antidote_ccrdt
https://github.com/syncFree/antidote_crdt
https://github.com/basho/basho_bench
https://github.com/basho/basho_bench




A
p
p
e
n
d
i
x

A
Appendix 1: Example NuCRDT

implementation

Listing A.1: Average NuCRDT implementation in Erlang

1 % A NuCRDT that computes the aggregated average.

2

3 -module(antidote_ccrdt_average).

4 -behaviour(antidote_ccrdt).

5 -include("antidote_ccrdt.hrl").

6

7 -export([

8 new/0,

9 new/2,

10 value/1,

11 downstream/2,

12 update/2,

13 equal/2,

14 to_binary/1,

15 from_binary/1,

16 is_operation/1,

17 is_replicate_tagged/1,

18 can_compact/2,

19 compact_ops/2,

20 require_state_downstream/1

21 ]).

22

23 -type sum() :: non_neg_integer().

24 -type num() :: non_neg_integer().

25

26 -type average() :: {sum(), num()}.

27 -type prepare_update() :: {add, sum()} | {add, average()}.

75



APPENDIX A. APPENDIX 1: EXAMPLE NUCRDT IMPLEMENTATION

28 -type effect_update() :: {add, average()}.

29

30 %% Creates a new ‘average()‘.

31 -spec new() -> average().

32 new() ->

33 {0, 0}.

34

35 %% Creates a new ‘average()‘ with the given ‘Sum‘ and ‘Num‘.

36 -spec new(sum(), num()) -> average().

37 new(Sum, Num) when is_integer(Sum), is_integer(Num) ->

38 {Sum, Num};

39 new(_, _) ->

40 new().

41

42 %% Returns the value of ‘average()‘.

43 -spec value(average()) -> float().

44 value({Sum, Num}) when is_integer(Sum), is_integer(Num) ->

45 Sum / Num.

46

47 %% Generates an ‘effect_update()‘ operation from a ‘prepare_update()‘.

48 %%

49 %% The supported ‘prepare_update()‘ operations for this data type are:

50 %% - ‘{add, sum()}‘

51 %% - ‘{add, average()}‘

52 -spec downstream(prepare_update(), average()) -> {ok, effect_update()}.

53 downstream({add, {Value, N}}, _) ->

54 {ok, {add, {Value, N}}};

55 downstream({add, Value}, _) ->

56 {ok, {add, {Value, 1}}}.

57

58 %% Executes an ‘effect_update()‘ operation and returns the resulting state.

59 %%

60 %% The executable ‘effect_update()‘ operations for this data type are:

61 %% - ‘{add, sum()}‘

62 %% - ‘{add, average()}‘

63 -spec update(effect_update(), average()) -> {ok, average()}.

64 update({add, {_, 0}}, Average) ->

65 {ok, Average};

66 update({add, {Value, N}}, Average) when is_integer(Value),

67 is_integer(N), N > 0 ->

68 {ok, add(Value, N, Average)};

69 update({add, Value}, Average) when is_integer(Value) ->

70 {ok, add(Value, 1, Average)}.

71

72 %% Compares the two given ‘average()‘ states.

73 -spec equal(average(), average()) -> boolean().

74 equal({Value1, N1}, {Value2, N2}) ->

75 Value1 =:= Value2 andalso N1 =:= N2.

76

77 %% Converts the given ‘average()‘ state into an Erlang ‘binary()‘.

76



78 -spec to_binary(average()) -> binary().

79 to_binary(Average) ->

80 term_to_binary(Average).

81

82 %% Converts a given Erlang ‘binary()‘ into an ‘average()‘.

83 -spec from_binary(binary()) -> {ok, average()}.

84 from_binary(Bin) ->

85 {ok, binary_to_term(Bin)}.

86

87 %% Checks if the given ‘prepare_update()‘ is supported by the ‘average()‘.

88 -spec is_operation(any()) -> boolean().

89 is_operation({add, {Value, N}}) when is_integer(Value), is_integer(N) -> true;

90 is_operation({add, Value}) when is_integer(Value) -> true;

91 is_operation(_) -> false.

92

93 %% Checks if the given ‘effect_update()‘ is tagged for replication.

94 -spec is_replicate_tagged(effect_update()) -> boolean().

95 is_replicate_tagged(_) -> false.

96

97 %% Checks if the given ‘effect_update()‘ operations can be compacted.

98 -spec can_compact(effect_update(), effect_update()) -> boolean().

99 can_compact({add, {_, _}}, {add, {_, _}}) -> true.

100

101 %% Compacts the given ‘effect_update()‘ operations.

102 -spec compact_ops(effect_update(), effect_update()) -> {{noop},

103 effect_update()}.

104 compact_ops({add, {V1, N1}}, {add, {V2, N2}}) ->

105 {{noop}, {add, {V1 + V2, N1 + N2}}}.

106

107 %% Checks if the data type needs to know its current state to generate

108 %% ‘update_effect()‘ operations.

109 -spec require_state_downstream(any()) -> boolean().

110 require_state_downstream(_) -> false.

111

112 %%%% Private

113

114 %% Adds ‘sum()‘ and ‘num()‘ to the current ‘average()‘.

115 -spec add(sum(), num(), average()) -> average().

116 add(Value, N, {CurrentValue, CurrentN}) ->

117 {CurrentValue + Value, CurrentN + N}.

77


	List of Algorithms
	List of Figures
	List of Tables
	Listings
	Introduction
	Context
	Motivating the problem
	The solution
	Contributions
	Document Structure

	Related Work
	CRDTs
	Delta-based CRDTs
	Computational CRDTs

	Key-value stores
	Data Models
	Consistency Guarantees
	Partitioning
	System examples

	Computing Frameworks
	Apache Hadoop
	Spark
	Spark Streaming
	Storm
	Percolator
	Titan
	Lasp

	Summary

	Non-uniform replication model
	System model
	System convergence
	Non-uniform eventual consistency
	Eventual Consistency
	Non-uniform eventual consistency

	Protocol for non-uniform eventual consistency
	Fault-tolerance

	Summary

	Operation-based NuCRDTs
	Average
	Histogram
	Top-K
	Top-K with removals
	Filtered Set
	Top Sum
	Summary

	Comparing NuCRDTs with CRDTs
	Histogram
	Top-K
	Top-K with removals
	Filtered Set
	Summary

	Integration of NuCRDTs in AntidoteDB
	AntidoteDB architecture
	Implementing the data types
	Modifications in AntidoteDB to support NuCRDTs
	Requirement 1: Operation typechecking
	Requirement 2: Ignoring no-op effect-updates
	Requirement 3: Operation compaction
	Requirement 4: Durability of masked operations
	Requirement 5: Generating new operations from downstream operations

	Summary

	Evaluation
	Dissemination overhead and replica sizes
	Top-K
	Top-K with removals

	Scalability
	Top-K
	Top-K with removals

	Summary

	Conclusion
	Publications
	Future Work

	Bibliography
	Appendix 1: Example NuCRDT implementation

