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ABSTRACT 

As defined by the Intergovernmental Panel on Climate Change (IPCC), climate change refers to 

a change in the state of the climate that can be identified by changes in the statistical 

characteristics of its properties and that persists for an extended period, typically decades or 

longer. In order to assess climate change and to develop impact studies, it is imperative that 

climate signals are clean from any external factors. However, non-natural irregularities are an 

inevitable part of long-time climate records. They are introduced during the process of measuring 

and collecting data from weather stations. Accordingly, it is essential to detect and correct those 

irregularities a priori, through a process called homogenisation. This process became a hot topic 

in the last decades and many researchers have focused on developing efficient methods. Still, 

some climatic variables are lacking homogenisation procedures due to their high variability and 

temporal resolution (e.g., monthly precipitation). 

We propose the gsimcli (Geostatistical SIMulation for the homogenisation of CLImate data) 

homogenisation method, which is based on a geostatistical simulation method, namely the direct 

sequential simulation. The proposed approach considers simulated values of the candidate 

station’s neighbouring area, defined by the local radius parameter, aiming to account for local 

characteristics of its climatic zone. gsimcli has other modelling parameters, such as the candidates 

order in the homogenisation process, the detection parameter, and the correction parameter (also 

used to fill in missing data). A semi-automatic version of gsimcli is also proposed, where the 

homogenisation adjustments can be estimated from a comparison series. The efficiency of the 

gsimcli method is evaluated in the homogenisation of precipitation data. Several homogenisation 

exercises are presented in a sensitivity analysis of the parameters for two different data sets: real 

and artificial precipitation data. The assessment of the detection part of gsimcli is based on the 

comparison with other detection techniques using real data, and extends a previous study for the 

south of Portugal. Artificial monthly and annual data from a benchmark data set of the HOME 

project (ACTION COST-ES0601) is used to assess the performance of gsimcli. These results 

allow the comparison between gsimcli and state-of-the-art methods through the calculation of 

performance metrics. 

This research allowed identifying gsimcli parameters that have a high influence in the 

homogenisation results: correction parameter, grid cell size and local radius parameter. The set of 

parameters providing the best values of performance metrics are recommended as the most 

suitable set of homogenisation parameters for monthly precipitation data. Results show gsimcli 

as a favourable homogenisation method for monthly precipitation data that outperformed a few 

well established procedures. The filling in of missing data is an advantage when compared to 

other methods. Taking advantage of its capability of filtering irregularities and providing 
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comparison series, gsimcli can also be used as a pre-homogenisation tool followed by the use of 

a traditional homogenisation method (semi-automatic approach). 

As future work, it is recommended the performance assessment of the gsimcli method with denser 

monitoring networks, and the inclusion of a multivariate geostatistical simulation algorithm in the 

homogenisation procedure. 
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RESUMO 

As alterações climáticas, tal como definidas pelo Painel Intergovernamental para as Alterações 

Climáticas das Nações Unidas, referem-se a uma modificação no estado do clima que pode ser 

identificada através de alterações nas suas propriedades estatísticas e que perdura por um largo 

período de tempo, tipicamente décadas ou períodos mais longos. Para a avaliação das alterações 

climáticas, e para o desenvolvimento de estudos de impacte, é imperativo que os sinais climáticos 

estejam isentos de quaisquer fatores externos. Inevitavelmente, as séries temporais de dados 

climáticos contêm irregularidades não-naturais. Tais irregularidades são introduzidas durante o 

processo de medição e recolha de dados nas estações meteorológicas. Assim, é essencial a prévia 

deteção e correção dessas irregularidades, através de um processo chamado homogeneização. Nas 

últimas décadas, este processo tornou-se um tópico relevante e muitos investigadores procuraram 

desenvolver métodos de homogeneização eficientes. Contudo, existe um número reduzido de 

métodos para algumas variáveis climáticas devido à sua elevada variabilidade e resolução 

temporal (e.g., precipitação mensal). 

Neste trabalho propomos o método de homogeneização gsimcli (Geostatistical SIMulation for the 

homogenisation of CLImate data), o qual se baseia num método de simulação geoestatística, a 

simulação sequencial direta. A abordagem proposta tem em consideração valores simulados na 

vizinhança da estação candidata, definida pelo parâmetro raio local, com o objetivo de incorporar 

características locais da sua zona climática. O gsimcli tem outros parâmetros de modelação, tais 

como a ordem das estações candidatas no processo de homogeneização, o parâmetro de deteção 

e o parâmetro de correção (também usado na substituição de observações omissas). Propõe-se 

também uma abordagem semi-automática do gsimcli onde os ajustamentos para a correção de 

irregularidades podem ser estimados a partir de uma série de comparação. A eficiência do método 

gsimcli é avaliada na homogeneização de dados de precipitação. São apresentados vários 

exercícios de homogeneização numa análise de sensibilidade dos parâmetros para dois conjuntos 

de dados: dados reais e artificiais de precipitação. A avaliação da componente de deteção do 

gsimcli baseia-se na comparação com outras técnicas de deteção de irregularidades utilizando 

dados reais, e constitui uma extensão de um estudo anterior para o sul de Portugal. O desempenho 

do método gsimcli é avaliado a partir de dados artificiais (mensais e anuais) de um conjunto de 

dados de referência (benchmark) do projeto HOME (ACTION COST-ES0601). Estes resultados 

permitem a comparação do gsimcli com métodos que se constituem como o estado-da-arte neste 

domínio, a partir do cálculo de métricas de desempenho. 

Este estudo permitiu identificar os parâmetros do gsimcli que mais influenciam os resultados da 

homogeneização: parâmetro de correção, o tamanho da célula e o raio local. O conjunto de 

parâmetros com os melhores resultados das métricas de desempenho é recomendado como sendo 
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o mais adequado à homogeneização da precipitação mensal. Os resultados mostram que o gsimcli 

tem um contributo positivo na homogeneização da precipitação mensal, tendo superado o 

desempenho de alguns métodos de homogeneização bem estabelecidos. A sua capacidade para 

substituir valores omissos é uma vantagem em relação a outros métodos. Tirando partido da sua 

capacidade para filtrar irregularidades e para disponibilizar séries de comparação, o gsimcli 

também pode ser usado como uma ferramenta de pré-homogeneização, seguindo-se a aplicação 

de um método tradicional de homogeneização (abordagem semi-automática). 

Como trabalhos futuros, recomenda-se a avaliação de desempenho do método gsimcli com redes 

meteorológicas mais densas, e a inclusão de um algoritmo de simulação geoestatística 

multivariada no procedimento de homogeneização. 
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1 Introduction 

1.1 Problem Statement 

Few long-term climate data series are free from irregularities (Auer et al., 2005). Those 

irregularities comprise two categories: natural and non-natural. Natural irregularities are caused 

by natural phenomena, such as ashes and gases of an erupting volcano that would prevent solar 

radiation from reaching the earth’s surface, introducing a decrease in temperature, or the effect of 

the North Atlantic Oscillation in extreme events across Europe (Maugeri et al., 2004). Non-natural 

irregularities are caused by non-natural factors, like changes in instrumentation, observing 

practices, relocation of the weather stations. Some changes cause sharp discontinuities (Puglisi et 

al., 2010) while other changes, particularly changes in the environment around the station, can 

cause gradual biases in the data (Peterson et al., 1998). A high number of non-natural irregularities 

are introduced during the process of collecting, calculating, digitizing, processing, transferring, 

storing and transmitting climate data series (Brunet and Jones, 2011). Also, the magnitude of 

inhomogeneities may differ with varying weather situations (Nemec et al., 2013). 

Most long-term climatological time series have been affected by a number of non-natural factors 

that make these data unrepresentative of the actual climate variation occurring over time (Aguilar 

et al., 2003). Those non-natural irregularities, also named inhomogeneities, must be removed 

prior to the use of the climate data series in studies like climate change monitoring, weather 

forecasting or other hydrological and environmental projects (Domonkos, 2013a). Reliable results 

cannot be expected from those projects if the climate data series used as input contain 

inhomogeneities. In that sense, it is extremely important to homogenise those series, which means 

detecting and correcting the non-natural irregularities.  

Moreover, due to the increase of storage capacity, the recent gathering of massive amounts of 

weather data implies also a toilsome effort to guarantee its quality. Effective and agile 

homogenisation procedures should be undertaken to ensure that big data, regarding weather 

variables, can also be used as a valuable source. 

1.2 Scientific Background 

A homogeneous climate time series is defined as one where variations are caused only by 

variations in climate (Aguilar et al., 2003). Several homogenisation methods have been proposed 

in the last decades (Domonkos et al., 2012; Peterson et al., 1998; Ribeiro et al., 2016a). They were 

developed using classical statistical tests, such as the SNHT - Standard Normality Homogeneity 

Test (Alexandersson, 1986; Alexandersson and Moberg, 1997), the Buishand test (1982), the 

Pettitt test (1979), or using regression models (e.g., Easterling and Peterson, 1995; Reeves et al., 
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2007) and Bayesian approaches (e.g., Perreault et al., 2000). Most modern procedures concentrate 

on methods specifically designed to detect and correct multiple inhomogeneities, such as MASH 

– Multiple Analysis of Series for Homogenization (Szentimrey, 1999, 2006b, 2011), ACMANT 

- Applied Caussinus-Mestre Algorithm for Homogenizing Networks of Temperature series 

(Domonkos, 2011c, 2015), PRODIGE (Caussinus and Mestre, 2004) and HOMER (Mestre et al., 

2013). Those homogenisation techniques typically depend on the type of climate variable 

(temperature, precipitation, wind speed and direction), the temporal resolution of the observations 

(annual, seasonal, monthly or sub-monthly), the availability of metadata (station history 

information) and also the weather station network density or spatial resolution (Costa and Soares, 

2009a). 

Homogenisation methods can be distinguished in two groups: absolute and relative methods. 

Absolute methods imply the application of the tests to each station data individually. In case of 

relative methods, the procedures use records from the neighbouring stations (also named reference 

stations) to assess the homogeneity of the studied station (named candidate station), presuming 

neighbouring stations as homogeneous.  

Only a limited set of studies (e.g., Ducré-Robitaille et al., 2003; Beaulieu et al., 2008; Domonkos, 

2011c; Guijarro, 2013; Yozgatligiland Yazici, 2016) provided comparison exercises between 

methods to identify the most successful homogenisation procedure. In 2008, the European 

initiative COST Action ES0601: Advances in Homogenization Methods of Climate Series: an 

Integrated Approach (HOME), was released “in order to produce standard methods designed to 

facilitate such comparisons and promote the most efficient methods of homogenisation” (HOME, 

2006). This project included a benchmark dataset, comprising monthly datasets of temperature 

and precipitation values with inserted, and known, inhomogeneities. These inhomogeneities 

include outliers, breaks, local and global trends and missing data periods. In order to assess the 

best techniques, the methods were compared and evaluated using performance metrics (Venema 

et al., 2012). 

Following some of the recommendations of the HOME project (HOME, 2011), homogenisation 

software packages were developed, such as Climatol (Guijarro, 2011) and HOMER (Mestre et 

al., 2013). Some of the previously developed homogenisation methods were also improved and 

converted to automatic software packages, becoming updated versions. Along with HOMER, 

ACMANT, MASH and PRODIGE were considered the best performing homogenisation 

methods, due to their capabilities of detecting and correcting multiple breakpoints and working 

with inhomogeneous references. 

The HOME project recommended that further research should give priority to the homogenisation 

of precipitation, given the low number of contributions for precipitation data and their results 
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within the project (HOME, 2011). This recommendation also meets the consideration provided 

by Auer et al. (2005), referring that precipitation data require much greater effort, as their 

variability is more spatially complex. In other words, the spatial and temporal correlation between 

neighbouring stations should be considered when performing homogenisation of precipitation 

data series. 

A geostatistical stochastic approach showed promising results in homogenising precipitation data 

(Costa et al., 2008a). This work used the direct sequential simulation (DSS) algorithm (Soares, 

2001) to calculate the local probability density function (pdf) at a candidate’s station location. 

The algorithm generates realisations of the climate variable through the resampling of the global 

pdf using the local mean and variance of the candidate station, which are estimated through a 

spatiotemporal model. The local pdf from each instant in time is used to verify the existence of 

irregularities: a breakpoint is identified whenever the interval of a specified probability p centred 

in the local pdf, does not contain the observed (real) value of the candidate station. When an 

irregularity is identified, Costa and Soares (2009a) proposed to adjust the candidate time series 

by replacing the inhomogeneous records by the mean (or median) of the pdfs calculated at the 

candidate’s station location for the inhomogeneous periods. 

The use of geostatistical models based on stochastic simulation is a reliable option for addressing 

problems in environmental and earth sciences, if the purpose is to assess the spatial distribution 

of a certain attribute as well as spatial uncertainty. With respect to the homogenisation of climate 

data, Costa and Soares (2009a) enumerate the potential advantages of geostatistical simulation 

over traditional approaches as follows: 

 Considers the temporal and spatial correlation between different weather stations; 

 Avoids the iterative construction of composite reference series, increasing the 

contribution of records from closer stations, both in spatial and correlation terms, by 

accounting for the spatial and temporal dependence between observations; 

 Deals with the problem of missing values and varying the availability of stations through 

time, by using different sets of neighbouring stations at different periods and by including 

shorter and non-complete records; 

 Seems to be able to simultaneously detect multiple breaks; 

 Is able to identify breakpoints near the start and end of the time series while traditional 

approaches have less power in detecting them. 

This geostatistical stochastic approach was only applied to 4 candidate stations and compared 

with popular detection techniques by Costa et al. (2008a). The climate variable considered in 

these studies was the annual number of wet days (threshold of 1 mm). Hence, the method’s 

capability to homogenise climate data (detect and remove inhomogeneities) requires further 
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research. Moreover, the method assumes that the global pdf is representative of the reference and 

candidate stations. However, this assumption may not be realistic in many situations, such as 

when the study area is extensive and includes different climatic zones, or when the local pdf of 

the candidate station is different from the global pdf due to local circumstances. In order to 

mitigate this fact, a new version of the geostatistical homogenisation method, which considers the 

local characteristics of the candidate, should be investigated. 

1.3 Relevance 

As discussed above, due to the spatial and temporal variability of precipitation, well-established 

methods for homogeneity testing monthly and sub-monthly precipitation data are lacking (e.g., 

Auer et al., 2005; Venema et al., 2012). The geostatistical stochastic approach proposed by Costa 

et al. (2008a), even though promising, as never been comprehensively evaluated. In particular, 

the detection part of the procedure requires further research, and its homogenisation efficiency 

has never been assessed. Furthermore, a new homogenisation method based on the geostatistical 

stochastic approach could be a valuable contribution for the homogenisation of monthly 

precipitation series, since it could consider the local characteristics of the variable at the temporal 

and spatial resolution scale. 

Regarding one of the recommendations provided by Venema et al. (2012), it is also important to 

prepare the homogenisation method in order to deal with large data sets, in an easy and seamless 

manner. Such study would involve the creation of a computer application, and the performance 

of sensitivity analyses that contribute to the improvement of the homogenisation efficiency. 

Furthermore, the geostatistical stochastic approach is a ground breaking interpolation method. 

Like other interpolation methods, it could be used for the construction of a data series within the 

range of a discrete and georreferenced set of known data points, for all types of attributes. It could 

also be used as a homogenisation method for other climate variables, at different temporal 

resolutions. 

1.4 Research questions 

According to the previous discussion, fundamental research questions are: 

 Is the geostatistical simulation approach more efficient than some of the existent methods 

in the homogenisation of precipitation data? 

 Can the geostatistical simulation approach be improved to account for specific 

characteristics of the local climatic zone of the candidate station? 
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1.5 Objectives 

Taking into consideration the research questions previously stated, this research has two main 

objectives: 

1. To evaluate the efficiency of the geostatistical simulation approach in the homogenisation 

of precipitation data; 

2. To investigate an extension of the geostatistical stochastic approach for the 

homogenisation of climate data. In this new method, the local pdf of the candidate station 

should better estimate the climatic signal of the surrounding area of the candidate station's 

location. 

The specific objectives of the research are: 

1. To perform a thorough literature review; 

2. To assist in the development of a homogenisation software that comprises the 

geostatistical approach and the proposed method; 

3. To extend the study of Costa et al. (2008a); 

4. To investigate the mathematical formulation of the new homogenisation method; 

5. To gather and analyse the precipitation data of the HOME benchmark data set; 

6. To assess the performance of the geostatistical simulation approach and of the proposed 

method, considering different parameterization strategies. 

1.6 Expected contribution 

Expected results of the research encompass an innovative homogenisation algorithm. The local 

pdf could be characterised at the candidate station’s location in the space-time reference system. 

This approach could also help dealing with the problem of sparse monitoring networks. If the new 

method shows to be effective, it will open new perspectives for research on the homogenisation 

of high temporal resolution data. 

1.7 Thesis outline 

The following outline describes the content of each of the five sections that are part of the present 

research. 

The current Section 1 stands as the introductory section, including the problem statement, 

scientific background, relevance, research questions, objectives, and the expected contribution of 

this research, as well as the outline of the document. 

Section 2 depicts the literature review, introducing the main characteristics and a comparison 

between the existing homogenisation methods. It also includes a list of studies where those 
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homogenisation methods were used, including the study area, the characteristics of the studied 

variables, and its main conclusions. The text from this section has been published by Ribeiro et 

al. (2016a). 

Section 3 presents the geostatistical approach proposed as the homogenisation method, and 

provides the results of the homogenisation exercise that was carried out with real data of an annual 

precipitation index (wet day count) measured in the south of Portugal. This research is an 

extension of a previous study by Costa et al. (2008a). The text from this section corresponds to 

the article published by Ribeiro et al. (2016b). 

Section 4 describes the homogenisation exercises undertaken with the benchmark data set 

(prepared by the HOME project), which comprises annual and monthly precipitation time series 

and the corresponding performance assessment. It also presents the mathematical formulation of 

the proposed homogenisation method, named gsimcli. The two research questions, previously 

stated in Section 1.4, are addressed in Section 4. The text from this section has been published by 

Ribeiro et al. (2016d). 

Finally, Section 5 portrays the main conclusions and recommendations for future research. 

1.7.1 Publications 

As stated before, sections 2, 3, and 4 correspond to three research articles that have been published 

by international scientific journals. They are presented as published by the journals with the 

exception of some layout changes (e.g., the bibliographic references have been harmonised in the 

References section). Table 1 lists the full references of the articles and the corresponding sections 

where they are presented. 
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Table 1 – Thesis sections and corresponding publications in international scientific journals. 

Section Reference 

2 

Ribeiro S, Caineta J, Costa AC. 2016. Review and discussion of 

homogenisation methods for climate data. Journal of Physics and Chemistry of 

the Earth 94: 167–179. doi: 10.1016/j.pce.2015.08.007. 

3 

Ribeiro S, Caineta J, Costa AC, Henriques R. 2016. Detection of 

inhomogeneities in precipitation time series in Portugal using direct sequential 

simulation, Atmospheric Research 171: 147–158. doi: 

10.1016/j.atmosres.2015.11.014. 

4 

Ribeiro S, Caineta J, Costa AC, Henriques H. 2016. gsimcli: a geostatistical 

procedure for the homogenisation of climatic time series, International Journal 

of Climatology, in press. doi: 10.1002/joc.4929. 

 

In the scientific paper corresponding to Section 2, the author prepared the manuscript of the 

literature review, whereas the English corrections and suggestions for improvement were 

provided by the remaining authors and two anonymous reviewers. 

In the scientific paper presented in Section 3, the author prepared the original manuscript text and 

data analyses, under the supervision of Ana Cristina Costa. Júlio Caineta developed the software, 

supervised by Roberto Henriques, and collaborated in the data analysis. Three anonymous 

reviewers provided valuable recommendations that lead to an improved manuscript. 

In the scientific paper corresponding to Section 4, the author prepared the data sets and gsimcli 

analyses, as well as the original manuscript text. Júlio Caineta extended the gsimcli software for 

the implementation of the proposed approach, supervised by Roberto Henriques. Ana Cristina 

Costa prepared the calculations of the semi-automatic procedure. All authors contributed to the 

final version of the manuscript text, which was also improved with the recommendations of two 

anonymous reviewers. 
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2 Review and discussion of homogenisation methods for climate data1 

Abstract 

The quality of climate data is of extreme relevance, since these data are used in many different 

contexts. However, few climate time series are free from non-natural irregularities. These 

inhomogeneities are related to the process of collecting, digitising, processing, transferring, 

storing and transmitting climate data series. For instance, they can be caused by changes of 

measuring instrumentation, observing practices or relocation of weather stations. In order to avoid 

errors and bias in the results of analysis that use those data, it is particularly important to detect 

and remove those non-natural irregularities prior to their use. Moreover, due to the increase of 

storage capacity, the recent gathering of massive amounts of weather data implies also a toilsome 

effort to guarantee its quality. The process of detection and correction of irregularities is named 

homogenisation. A comprehensive summary and description of the available homogenisation 

methods is critical to climatologists and other experts, who are looking for a homogenisation 

method wholly considered as the best. The effectiveness of homogenisation methods depends on 

the type, temporal resolution and spatial variability of the climatic variable. Several comparison 

studies have been published so far. However, due to the absence of time series where irregularities 

are known, only a few of those comparisons indicate the level of success of the homogenisation 

methods. This article reviews the characteristics of the most important procedures used in the 

homogenisation of climatic variables based on a thorough literature research. It also summarises 

many methods applications in order to illustrate their applicability, which may help climatologists 

and other experts to identify adequate method(s) for their particular needs. This review study also 

describes comparison studies, which evaluated the efficiency of homogenisation methods, and 

provides a summary of conclusions and lessons learned regarding good practices for the use of 

homogenisation methods. 

2.1 Introduction 

Success in atmospheric modelling, weather forecasting or climate change monitoring depends on 

the quality of climate data used as input. Long time series without artificial discontinuities in their 

statistical characteristics are rare (Alexandersson and Moberg, 1997). Those irregularities can be 

due to climatic factors, or can be related to facts that happened during the process of collecting or 

recording climate data. Examples of climatic factors are the eruption of a volcano and the 

emission of its gases and ashes to the atmosphere contributing to the decrease of solar radiation, 

                                                      
1 Ribeiro S, Caineta J, Costa AC. 2016. Review and discussion of homogenisation methods for climate 

data. Journal of Physics and Chemistry of the Earth 94: 167–179.doi: 10.1016/j.pce.2015.08.007. 



 

 

 

10 

 

or the effect of the North Atlantic Oscillation in extreme temperature and precipitation records 

across Europe (Gaffen et al., 2000).  

Non-climatic factors may introduce abrupt or gradual changes in the time series (Alexandersson 

and Moberg, 1997). Examples of the former are changes in the method of measuring and 

calculating climate values, such as the use of different daily times in the calculation of daily mean 

temperature (Peterson et al., 1998), change of measurement units (K, º C and º F for temperature) 

without any notice (Aguilar et al., 2003), changes in the formula for calculation of the variable’s 

average (Puglisi et al., 2010), relocation of a station (Venema et al., 2013), or its repositioning to 

a different height (Auer et al., 2005). Gradual and soft changes can be exemplified by the presence 

of a tree or bush growing nearby the weather station, or the development of an urban area on its 

surroundings – the increasing of nocturnal temperature called the “Urban Heat Island Effect” 

(Brunet et al., 2006; Li et al., 2004; Sahin and Cigizoglu, 2010). A high number of non-natural 

irregularities are also introduced during the process of collecting, digitising, processing, 

transferring, storing and transmitting climate data series (Brunet and Jones, 2011). 

These non-climatic factors may introduce artificial discontinuities, or inhomogeneities, in the 

time series. Such discontinuities can lead to misinterpretations of the studied climate. In order to 

avoid errors and obtain homogeneous climate time series, non-natural irregularities in climate 

data series must be detected and removed prior to its use.  

Three main types of inhomogeneities can be distinguished: point errors (coming from the 

observation to transmission and mechanisation processes); breakpoints corresponding to change-

points or shifts in the mean (changes of location, instrumentation, observing practices or land use 

of the surroundings); and trends (sensor decalibration or urban growth) (Guijarro, 2006). 

Breakpoints are the most frequent form of inhomogeneities, since most technical changes happen 

abruptly (Domonkos, 2011a). Trend inhomogeneities are generally more difficult to detect, 

because they may be superimposed on a true climate trend (Easterling and Peterson, 1995). 

Homogenisation is known as the process of detecting and correcting inhomogeneities (Aguilar et 

al., 2003). Another definition is provided by Štěpánek et al. (2006), where homogenisation 

includes the following steps: detection, verification and possible correction of outliers, creation 

of reference series, homogeneity testing (various homogeneity tests), determination of 

inhomogeneities in the light of test results and metadata, adjustment of inhomogeneities and 

filling in missing values. Mathematics, software and metadata are referred by Szentimrey (2011) 

as indispensable for homogenisation of climate data.  

Recently, the importance of studying extremes of weather and climate required the development 

of homogenisation methods for climate data series with higher temporal resolution (e.g., daily 

data) (Brunetti et al., 2012). In case of precipitation, this task became a challenge due to its great 
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variability (Rustemeier et al., 2011). This variability also results in great uncertainty in 

homogenisation. True climatic fluctuations in daily precipitation may be interpreted as change-

points and removed from time series as inhomogeneities. Moreover, the magnitude of 

inhomogeneities may differ with varying weather situations (Nemec et al., 2013). Another 

problem is associated with errors linked to the measuring process, particularly during extreme 

weather events. For example, larger adjustments are likely to be required for precipitation as its 

recording is strongly affected by wind strength (Auer et al., 2005). Systematic underestimation of 

snowfall is also a serious problem in areas where a substantial part of precipitation is collected by 

rain gauges as snow (Auer et al., 2005; Eccel et al., 2012). To overcome these issues, daily 

homogenisation methods require complex techniques or the improvement of homogenisation 

methods previously used for monthly and annual climate series. Those homogenisation methods 

are of paramount importance as those series are the basis for political decisions with socio-

economic consequences (Venema et al., 2013). 

The present section provides a description and discussion of homogenisation methods for climate 

data series, and summarises the conclusions of some comparison studies undertaken to assess 

their efficiency. Section 2.2 addresses the classification of homogenisation methods, Section 2.3 

comprises a review of the available homogenisation methods, and Section 2.4 presents several 

homogenisation software packages. Comparison studies are briefly described in Section 2.5, 

where it is also given focus to the HOME project (COST Action ES0601). Finally, some 

conclusions are drawn in Section 2.6. 

2.2 Approaches for detecting and correcting inhomogeneities 

Homogenisation methods may have different characteristics, depending on the use of metadata, 

the subjectivity involved, the use of additional climate time series, the capability of detecting 

multiple breakpoints, etc. Those characteristics are discussed in the following subsections. 

2.2.1 Direct and indirect homogenisation methods 

Some authors define direct methods as those that are only based on metadata and subjective 

judgements (e.g., Li-Juan and Zhong-Wei, 2012). Direct methods have also been defined as 

mathematical algorithms that are able to detect multiple breakpoints in a direct way (e.g., 

Domonkos, 2011a), or that are able to deal with inhomogeneous reference time series (e.g., 

Venema et al., 2012). In the following, we will consider the definitions of direct and indirect 

methods provided by Aguilar et al. (2003) and Peterson et al. (1998). For these authors, direct 

methods include the use of metadata, the analysis of parallel measurements, and statistical studies 

of instrument changes.  The indirect methodologies consider the use of single station data 
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(absolute approaches), the development of reference time series (relative approaches), and include 

both subjective and objective methods. 

2.2.1.1 Direct methods 

Direct methods aim to keep the climate time series homogeneous by anticipating changes in and 

around a meteorological station and limit their impact on data homogeneity (Aguilar et al., 2003, 

pp. 30-31). Direct methods rely on registering in the station history a metadata entry describing 

any change, and on collecting parallel measurements for a long enough period of time or by 

reproducing the old conditions (Aguilar et al., 2003, pp. 30-31; Peterson et al., 1998). Metadata 

information can provide precise knowledge  of  when  the  discontinuity  occurred  and  what  

caused  it, but correction factors can only be objectively derived from the records of the “new” 

and “old” conditions or from a plausible correction model. 

2.2.1.2 Indirect methods 

Indirect methods use a variety of statistical and graphical techniques to test the homogeneity and 

adjust the data series (Peterson et al., 1998; Szentimrey, 2006a). Many of these procedures use 

metadata for identifying or validating the discontinuities found in a time series, as recommended 

by Aguilar et al. (2003, pp. 33). Among the indirect methods, Peterson et al. (1998) also 

distinguish between subjective and objective approaches. Subjective methods rely mostly on 

experts’ judgments. Subjective judgement can be useful in the exploratory analysis stage to 

identify discontinuities, for example by plotting the stations’ data, by using the Double-mass 

analysis (Kohler, 1949), or by assessing the reliability of metadata. 

Domonkos and Štěpánek (2009) define objective detection methods as those that can be applied 

in automatic way, without any subjective step. Objective homogenisation methods (OHOMs) 

have become increasingly more complex (e.g., Domonkos, 2006, 2011b). Domonkos (2006) 

discusses the conditions, advantages, and limitations related to the practical application of many 

of these methods. 

OHOMs search and correct significant inhomogeneities of time series. Their procedures are 

applied in a fully computerised way, so no subjective decision is needed during the application. 

These methods are appropriated for the homogenisation of large data sets, and their efficiency 

can be quantitatively determined. The statistical methods applied in recent OHOMs are as follows 

(Domonkos, 2011b): calculation of extremes of accumulated anomalies; non-parametric methods 

relying on rank-order of sample elements; comparison of averages for adjacent sub-periods; 

regression functions and the calculation of residual sum of squares; maximum likelihood 

methods; and tendency of separation of sample elements into different clusters around change-

points. 



 

REVIEW AND DISCUSSION OF HOMOGENISATION METHODS FOR CLIMATE DATA 

 

13 

 

Aguilar et al. (2003, pp. 32-40) and Peterson et al. (1998) include in the set of objective methods 

the group of absolute and relative approaches, which will be detailed in the following sections. 

2.2.2 Absolute and relative homogenisation methods 

Considering the use of additional climate data series, homogenisation methods can be 

distinguished in two classes: absolute and relative methods. Absolute methods consider only the 

time series of a single station to identify and adjust inhomogeneities (candidate station). Relative 

methods use data from the surrounding stations (reference stations) to homogenise the candidate 

station. Some relative approaches are based on a pairwise comparison of the candidate time series 

with the reference stations data, while other methods are based on composite reference series of 

differences (for temperature or pressure) or ratios (for precipitation) between candidate and 

reference stations. According to Domonkos (2013a), there are three main approaches for time 

series comparisons: building one reference series from composite series for each candidate series; 

using multiple reference comparisons for each candidate series; and using multiple comparisons 

without defining which are the candidate and the reference series. 

When detecting a discontinuity, an absolute method cannot distinguish if it is natural or artificial 

without the support of the station’s history records. Begert et al. (2005) referred a clear limitation 

in the absolute methods’ capacity to separate discontinuities from true climate signals. Same 

opinion is shared by Guijarro (2011), advising that absolute homogenisation methods are to be 

avoided in favour of relative methodologies. 

Surrounding stations are exposed to almost the same climate signal. Relative homogenisation is 

favoured when the spatial density and coherence of the climate data series allows it, because the 

climatic variation that is common for the study region does not appear in the differences between 

the candidate and nearby stations (Domonkos, 2013a). The difference time series can be used to 

detect inhomogeneities, but if a break is detected it may be not clear to which of the stations it 

belongs to. Furthermore, time series typically have more than just one break. These are two of the 

problems that homogenisation techniques try to solve. Moreover, the difference time series is 

useless when the whole network has been simultaneously affected by changes. However, such 

collective changes are usually well documented, otherwise changes can be detected by comparing 

multiple networks, and thus this situation is not so problematic. 

Most of the relative methods can only be effective if the surrounding weather stations are 

homogeneous, i.e. if they include natural discontinuities only. This fact raises another question: 

how to select surrounding stations that are free from artificial discontinuities? According to 

Reeves et al. (2007), a good reference series should be homogeneous and highly correlated with 

the candidate series. The use of a reference series that is not homogeneous and/or has different 

climate signals (trends and periodicities) complicates the problem of change-point 
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detection/adjustment. Peterson et al. (1998) mention the use of metadata to determine which 

nearby stations would not be expected to have inhomogeneities during specific time periods. 

Another possible solution is to combine data from different reference stations into a composite 

reference series assumed as homogenised. Szentimrey (2006a) refers that the spatial covariance 

structure of data series is very important to develop efficient methods addressing reference series 

creation, difference series constitution or multiple comparisons of series. 

Menne and Williams Jr. (2009) discuss the limitations and challenges of many relative 

homogeneity testing methods, and propose an algorithm that is able to deal with inhomogeneous 

neighbouring series. Other methods currently address the presence of change points within the 

reference series (e.g., Caussinus and Mestre, 2004; Domonkos, 2011c, 2015; Mestre et al., 2013; 

Szentimrey, 1999, 2006b, 2011). 

2.2.3 Multiple breakpoint techniques 

One of the fundamental problems of homogenisation is that usually more than one breakpoint is 

present in the candidate time series (Lindau and Venema, 2013). The majority of the statistical 

homogenisation methods deals with this problem by applying single-breakpoint techniques 

multiple times. Typically, when a breakpoint is detected, the time series is divided in two subsets 

of observations at the identified break and the single-breakpoint algorithm is applied separately 

to each subset of data. This process is repeated until no more breaks are found or the number of 

observations becomes too small. The disadvantage of this segmentation process is that the same 

test applied several times on the same observations can increase the risk of false detection 

(Beaulieu et al., 2009). The most efficient single-breakpoint technique is known as cutting 

algorithm (Domonkos et al., 2012), which is a hierarchic method for identifying multiple 

breakpoints proposed by Easterling and Peterson (1995). 

Multiple breakpoint methods are those that detect and correct multiple change-points jointly, and 

not step-by-step. Recent studies indicate that these are the most effective detection procedures 

(e.g., Domonkos, 2011b; Venema et al., 2012). Multiple breakpoint algorithms use as detection 

criterion the maximum external variance between the means of constant time segments in between 

multiple breakpoints (Lindau and Venema, 2016). These methods apply a relatively simple model 

(step-function) and select the most probable parameters of this model by the examination of all 

possible combinations of breakpoint positions (Domonkos, 2013a). 

2.3 Statistical homogenisation methods and homogenisation procedures 

There are many homogenisation methods described in the literature. A chronological review of 

the development of homogenisation methods for temperature series is provided by Domonkos et 

al. (2012). This section highlights the most used approaches, as well as the state-of-the-art 
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homogenisation algorithms that are able to handle inhomogeneous reference series and multiple 

structures of inhomogeneities. The homogenisation techniques are classified by type of approach 

(Table A.1 of the Appendix A). Statistical techniques were classified based on their 

characteristics: non-parametric tests, classical tests (traditional techniques), regression models 

and Bayesian approaches. Techniques that were directly proposed as methods for the 

homogenisation of climate data series are named “homogenisation procedures”. These procedures 

may include more than one statistical technique. Moreover, considering the discussion in Section 

2.2, the procedures listed in Table A.1 (Appendix A) are classified as objective bearing in mind 

the definition provided by Domonkos and Štěpánek (2009). Several techniques are used in the 

detection stage only (qualifying tests), thus they are useful for homogeneity diagnosis. A sample 

of studies where the referred methods were applied is provided in Table A.2 (Appendix A), to 

illustrate their applicability regarding the study region, climate variable and temporal resolution. 

2.3.1 Non-parametric tests 

The most common non-parametric tests used for homogeneity testing are: Von Neumann ratio 

test (Von Neumann, 1941), Wald-Wolfowitz runs test (Wald and Wolfowitz, 1943), Mann-

Kendall test (Mann, 1945; Kendall, 1975), Wilcoxon-Mann-Whitney (Wilcoxon, 1945; Mann and 

Whitney, 1947), Kruskall-Wallis test (Kruskal, 1952; Kruskal and Wallis, 1952) and Pettitt’s test 

(Pettitt, 1979). 

The Von Neumann ratio test (Von Neumann, 1941) calculates a ratio of the mean square between 

successive (year-to-year) differences to the variance, which is closely related to the first-order 

serial correlation coefficient (Talaee et al., 2014). The calculated value of this ratio is an indicator 

of the presence of irregularities in the series. This test does not provide the information regarding 

the date of the discontinuity (Costa and Soares, 2009a) and usually it is used together with other 

homogeneity tests.  

The Wald-Wolfowitz runs test (Wald and Wolfowitz, 1943) is a well-known non-parametric test 

for randomness. It calculates a statistic based on the sum of the number of changes, by comparing 

every datum from the time series with the median, over time. This test is sensitive to shifts and 

trends, but gives little information about the probable dates for breaks. This method is not 

powerful enough to be used individually in the relative homogeneity analysis and must be 

supported by graphical analysis so to increase the power of overall analysis, and to obtain the 

probable date and magnitude of the inhomogeneity, as stated by Tayanç et al. (1998).  

The Mann-Kendall test (Mann, 1945; Kendall, 1975) has been popularly used for assessing the 

significance of trend in hydrological time series, such as stream flow and precipitation. This test 

has proved to be a valuable tool on trend detection, since it provides useful information on the 

possibility of change tendency of the variables in the future (Yue and Wang, 2004). It has the 
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advantage of not assuming any special form for the data distribution function, while having a 

power nearly as high as their parametric competitors. For this reason, it is highly recommended 

by the World Meteorological Organization (WMO) (Mourato et al., 2010). 

The Wilcoxon-Mann-Whitney test (Mann and Whitney, 1947; Wilcoxon, 1945) is based in the 

use of rank order change-point detection (Aguilar et al., 2003). This approach is advisable when 

the normality of data is in doubt, such as precipitation data. For this variable, normality is easier 

to achieve in yearly averaged or in accumulated quantities than in monthly data. 

The Kruskal-Wallis test (Kruskal, 1952; Kruskal and Wallis, 1952) is used to compare two or 

more independent groups of data. The Kruskal-Wallis test allows determining if the difference in 

the average ranks of three or more independent samples is significant. This test verifies if the 

hypothesis that all the samples came from the same parent population can be safely rejected. 

Pettitt’s test (Pettitt, 1979) is a non-parametric rank test that detects single break points. The 

calculated statistic, derived from the Mann-Whitney, achieves the maximum value for the year 

with the most likely break point. The test is capable of locating the period where a break may 

occur, but is more sensitive to breaks in the middle of the time series (Wijngaard et al., 2003). 

2.3.2 Classical tests 

Double mass analysis (Kohler, 1949), Craddock’s test (Craddock, 1979), Bivariate test (Potter, 

1981), and Buishand Range test (Buishand, 1982) are classified as (statistical) classical tests as 

they correspond to traditional homogenisation techniques. 

The Double-mass analysis (Kohler, 1949) was one of the first techniques specifically proposed 

for homogeneity testing. The double-mass curve method is performed by plotting the cumulative 

amounts of the station under consideration against the cumulative amounts of a set of 

neighbouring stations. The plotted points tend to fall along a straight line under conditions of 

homogeneity. Cumulative deviations from some average value can alternatively be plotted to 

verify the time series homogeneity. It is only used during the exploratory analysis of the time 

series (Costa and Soares, 2009a). For precipitation time series, cumulative deviations are 

preferred, since changes in the mean amount are easier to be recognised (Buishand, 1982). 

The Craddock’s test (Craddock, 1979) is a simple statistical method developed to compare annual 

precipitation records. This test requires a homogeneous reference series or, in some cases, long 

enough homogeneous sub-periods. It accumulates the normalised differences between the test 

series and the homogeneous reference series to determine the inhomogeneities (Aguilar et al., 

2003). Craddock’s test is recommended by Venema et al. (2012). This test was included in two 

homogenisation packages: HOCLIS (software package for homogenisation of climatological time 

series) and THOMAS (tool for homogenisation of monthly data series) from ZAMG (Central 
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Institute for Meteorology and Geodynamics, Austria) and MeteoSwiss (Federal Office of 

Meteorology and Climatology, Switzerland), respectively (Auer et al., 2005; Begert et al., 2005). 

Potter (1981) applied the bivariate test, developed by Maronna and Yohai in 1978, to precipitation 

annual series. This is a test for detecting a single systematic change in the mean of an independent 

time series, based on a second correlated series which is assumed as unchanged (Aguilar et al., 

2003). Potter’s method generates a test statistic for each data value and an estimate of the 

maximum probable offset, or adjustment, for that year (Plummer et al., 1995). It closely resembles 

the double mass curve analysis (Aguilar et al., 2003). 

Buishand (1982) used the cumulative deviations to perform some statistical tests, which were 

compared with the Von Neumann ratio test. This author concluded that both methods give nearly 

the same results. The Buishand Range test is more sensitive to breaks in the middle of the time 

series (Wijngaard et al., 2003). 

2.3.3 Regression methods 

Three methods using regression models are described: Two-phase regression (Easterling and 

Peterson, 1995), Multiple linear regression (Vincent, 1998), and the Method of cumulative 

residuals (Allen et al., 1998). 

Easterling and Peterson (1995) developed the Two-phase regression (TPR) model, following the 

work of Solow (1987) who has constrained two regression functions to meet at the point of the 

inhomogeneity. These authors modified the previous technique so that the two regression lines 

do not need to meet at the discontinuity. For a given year (or time unit), one regression line is 

fitted to the reference series for the previous time interval of that year, and the second regression 

line is fitted to the second part of the time series. This process is repeated for all the years of the 

time series. The lowest residual sum of squares between the two regression functions will 

determine the point of discontinuity.  

Vincent (1998) proposed the Multiple linear regression (MLR) homogenisation procedure. This 

technique consists of four linear regression models, applied in a sequence. The first model 

determines if the candidate series is homogeneous for the tested time interval. If it is 

homogeneous, the test will end and the remaining models are not used. If inhomogeneities are 

found, a second model is estimated to ascertain the existence of an overall trend in the candidate 

series. If the inhomogeneity found in the first model is not an overall trend, the third model is 

applied to identify the single step change. The fourth model will define the existence of trends 

before and after that step. If the four models are applied, it indicates that the candidate series have 

multiple inhomogeneities. In this case, the candidate time series will be divided at the position of 

the identified step and each segment will be tested separately, starting from the first model. Ducré-
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Robitaille et al. (2003) classified MLR as one of the most robust homogenisation methods. More 

recently, efficiency tests have shown that its detection skills are often lower than other objective 

methods (Domonkos, 2011b). 

The Method of cumulative residuals (Allen et al., 1998) provides a way to relate data sets from 

two weather reference stations. For a given weather station with a homogeneous time series 

(independent variable), the records of a second station (dependent variable) can be considered to 

be homogeneous if the cumulative residuals from their simple linear regression model are not 

biased. This is tested by verifying if the residuals are contained within an ellipsis, which depends 

on the size of the data set, the standard deviation of the tested sample and the probability used to 

test the hypothesis (80% is commonly used). Costa and Soares (2006) proposed an extension of 

the cumulative residuals method that takes into consideration the concurrent relationship between 

several candidate series from the same climatic region. This technique uses the residuals from a 

Seemingly Unrelated Regression equations (SUR) model instead of the residuals from a simple 

linear regression model. 

2.3.4 Bayesian approaches 

Bayesian methods have a different approach from classical techniques. Through a prior 

distribution, the Bayesian approach acquires some knowledge about the climate variable being 

studied. That information and the observations are combined in a posterior information, which is 

used to make inference about the parameters. Their advantage is the formal use of non-

experimental sources of information to complement the posterior probability distribution function 

for the studied variable, comprising the position of the shifts, which can be multimodal or skewed. 

After specifying a loss function, an estimate of the shift’s position can be obtained. Several 

Bayesian techniques were already used for the homogenisation of climate data series, which are 

described in this section: Bayesian multiple change-point detection in multiple linear regression 

(Seidou and Ouarda, 2007), Bayesian change-point in multiple linear regression (Seidou et al., 

2007), Bayesian change-point algorithm (Ruggieri, 2013), Bayesian multiple change-points and 

segmentation algorithm (Hannart and Naveau, 2009), Change-point detection algorithm 

(Gallagher et al., 2012), and Bayesian Normal Homogeneity Test (Beaulieu et al., 2010). 

The Bayesian multiple change-point detection in multiple linear regression (BAMS) (Seidou and 

Ouarda, 2007) follows a Bayesian linear regression model designed to detect multiple change-

points. Its main characteristic is the identification of an unknown number of shifts. This procedure 

requires two training data sets and a prior distribution on the distance between adjacent change-

points, which reveals the assumption of the number of existing change-points (Ruggieri, 2013). 

Beaulieu et al. (2009) considered this approach effective as it often detects the exact number of 

shifts in an artificial data set. 
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The Bayesian change-point in multiple linear regression (BARE) model (Seidou et al., 2007) was 

designed to infer the position of a single change-point in the parameters of a multiple linear 

regression equation. Seidou et al. (2007) considered non informative prior distributions for the 

regression parameters and the variance. The prior for the change-point position is a uniform 

distribution. The method can also be applied for multiple change-points using a segmentation 

approach. Beaulieu et al. (2009) compared BAMS and BARE using synthetic series of total 

annual precipitation data series from Canada. Both techniques had similar detection skills, but 

BAMS performed better for the series with multiple shifts. 

Ruggieri (2013) introduced a Bayesian Change-point Algorithm, which provides uncertainty 

estimates both in the number and location of change-points through a probabilistic solution to the 

multiple change-point problem. Two main differences should be referred, when comparing this 

method to BAMS: the nature of recursion and the prior distributions on the model parameters. 

This algorithm follows three steps: calculation of the probability density of the data; forward 

recursion (dynamic programming) and stochastic back-trace via Bayes rule (by sampling the 

number of change-points, the locations of change-points and the regression parameters for the 

interval between adjacent change-points). Ruggieri (2013) studied the performance of this method 

by analysing the irregularities in annual global surface temperature. 

Hannart and Naveau (2009) used Bayesian Decision Theory to minimise a cost function for the 

detection of multiple change-points, the Bayesian multiple change-point and segmentation 

algorithm. The method identifies subsequences of the time series that isolate a unique change-

point. These authors studied the performance of this method, by comparison with other methods 

using simulated series, and they also applied the method to annual temperature data from 16 

weather stations located in France (1882-2007). 

Gallagher et al. (2012) proposed a Bayesian homogenisation method, the Change-point detection 

algorithm, for daily precipitation series. The model can be described as a two-state Markov chain 

with periodic dynamics. The chain serves to induce dependence in the daily (precipitation) 

amounts, having two different states (dry or wet). If the state considered for a specific day is wet, 

the amount of the precipitation is modelled as a positive random variable with a seasonally 

dependent mean (amounts are distribution-equivalent, but the distribution is not necessarily the 

same). This method was used to homogenise daily precipitation data from Alaska and 

Massachusetts. 

The Bayesian normal homogeneity test (BNHT) enables the detection of a change in the mean of 

a single normally distributed time series (Beaulieu et al., 2010). It is applied to a reference series, 

similarly to SNHT. This test also allows the integration of prior information on the date of the 
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change-point (metadata or expert knowledge). Beaulieu et al. (2010) applied this test to synthetic 

series of total annual precipitation in Canada. 

2.3.5 Homogenisation procedures 

Techniques that were directly proposed as methods for the homogenisation of climate data series 

are summarised in this section: SNHT – Standard Normality Homogeneity Test (Alexandersson, 

1986), SNHT with trend (Alexandersson and Moberg, 1997), MASH – Multiple Analysis of 

Series for Homogenisation (Szentimrey, 1999), PRODIGE (Caussinus and Mestre, 1996, 2004), 

Geostatistical simulation approach (Costa et al., 2008a), ACMANT – Adapted Caussinus-Mestre 

Algorithm for homogenising Networks of Temperature series (Domonkos, 2011c), and 

ACMANT2 for homogenising daily and monthly precipitation series (Domonkos, 2015).  

The Standard Normal Homogeneity test (SNHT) (Alexandersson, 1986) is one of the most 

popular and robust homogenisation methods for climatic variables (Ducré-Robitaille et al., 2003). 

The application of SNHT begins with the creation of a composite (ratio or difference) series 

between the station values and some regional reference values assumed homogeneous. This 

composite series is then standardised. At a given moment, averages are calculated for the previous 

and the following period of that composite series. If the difference between those averages meets 

a critical value, a shift is inferred to exist at that moment, and the series is said to be 

inhomogeneous (Ducré-Robitaille et al., 2003).  

Later, Alexandersson and Moberg (1997) improved the SNHT method to extend its detection to 

trends as well. In this innovative SNHT with trend, the alternative hypothesis is that the change 

of the mean level is gradual, starting and ending at arbitrary points of time, a and b. A test value 

is computed for all combinations of a and b. The pair that maximises this value has the highest 

likelihood for being the starting and ending of the trend section. When an inhomogeneity occurs 

as a sudden shift, such inhomogeneity will be determined by the trend test to be an abrupt change. 

SNHT with trend is suitable for gradual trends in climate time series, like the increasing of the 

urban heat island effect (Moberg and Alexandersson, 1997). 

The Multiple Analysis of Series for Homogenisation (MASH) (Szentimrey, 1999, 2006b, 2011) 

was one of the first multiple breakpoint techniques. Currently, it is based on mutual comparisons 

of series within the same climatic area, and does not assume a homogenised reference series. 

Breakpoints commonly identified in the difference series (or ratio series for multiplicative 

variables) are attributed to the candidate series, since it is the only series presented in all. It is a 

step by step procedure: the role of the series (candidate or reference) changes gradually in the 

course of the procedure. MASH can be applied to yearly, seasonal and monthly time series. In the 

new multiple breakpoint procedure, significance and efficiency are formulated according to the 

conventional statistics related to types I and II errors, respectively. Additionally to the breakpoints 
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and shifts, confidence intervals are also determined. MASH has turned into a software, where 

metadata can be used automatically to detect inhomogeneities. This method is included in the 

HOCLIS-system (Auer et al., 2005). Since MASH v3.01, it is possible to homogenise daily 

datasets (Szentimrey, 2006b). 

Caussinus and Mestre (1996, 2004) proposed a new multiple breakpoint technique named 

PRODIGE, which is based on penalised likelihood methods. The methodology uses a pairwise 

comparison for preselecting a set of accidents, which are considered within the framework of a 

multidimensional approach. This method is based on the principle that the series is reliable 

between two change-points. Those sections will be used as reference series. Instead of comparing 

a given series with a reference series whose definition is problematic, the comparisons are 

performed with all other series, by a series of differences. The series of differences is tested 

against discontinuities through the Caussinus and Lyazrhi (1997) technique. If a change-point (or 

an outlier) is constantly detected in all the difference series, it can be attributed to the candidate 

station. The second step of this method is an overall detection and correction. Those two steps are 

performed by using moving neighbourhoods. The size and the shape of these neighbourhoods are 

a compromise between the knowledge of the climatologist about the regional climate and the 

necessity to have enough data, in order to ensure good estimation. Another technique was later 

developed on basis of PRODIGE, named ACMANT. 

The Geostatistical simulation approach proposed by Costa et al. (2008a) can be summarised as 

follows (Costa and Soares, 2009a). The Direct Sequential Simulation (DSS) algorithm (Soares, 

2001) generates realisations of the climate variable through the resampling of the global 

probability density function (pdf), using the local mean and variance of the candidate station, 

which are estimated through a spatiotemporal model. The local pdf for each time instant is used 

to verify the existence of irregularities: a breakpoint is identified whenever the interval of a 

specified probability p centred in the local pdf, does not contain the observed (real) value of the 

candidate station. When an irregularity is identified, the time series can be adjusted by replacing 

the inhomogeneous record by the mean (or the median) of the pdfs calculated at the candidate 

station location for the inhomogeneous periods. 

Domonkos (2011c) proposed an Adapted Caussinus-Mestre Algorithm for homogenising 

Networks of Temperature series (ACMANT), which is a relative homogenisation technique 

applicable to monthly temperature series (Domonkos, 2011d). ACMANT is a fully automatic 

homogenisation method, and its most relevant characteristics are: (i) harmonisation of 

examinations in different time-scales (annual or monthly); (ii) use of optimal segmentation and 

the criterion proposed by Caussinus and Lyazrhi (1997) in the detection of inhomogeneities; and 

(iii) use of ANOVA for the final corrections of inhomogeneities. ACMANT comprises four main 

steps: preparation; pre-homogenisation; homogenisation and final adjustments (Domonkos, 
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2011d). Recently, Domonkos (2015) proposed a new unit for the homogenisation of monthly or 

daily precipitation series, ACMANT2. This new version takes into consideration the climatic 

regions of snowy winters, by making a distinction between rainy season and snowy season and 

by searching the seasonal inhomogeneities with bivariate detection. Another main difference from 

the previous version of ACMANT is that outlier filtering and detection of short-term 

inhomogeneities are not included in the homogenisation of precipitation series because, in this 

case, due to the lack of spatial consistency at short-time scale, a possible identified break is very 

likely to be a true local extreme and not an erroneous precipitation record. Currently, ACMANT 

and its unit ACMANT2 are a homogenisation software package. 

2.4 Homogenisation software packages 

Lately, some of the homogenisation methods already described in the previous sections were 

developed into software, in order to diminish the time consumed during the homogenisation 

process and to minimise the interaction of users. The examples described are: Climatol (Guijarro, 

2006), RHTest (Wang, 2008), AnClim and ProClimDB (Štěpánek, 2008a, 2008b), USHCN 

(Menne and Williams Jr., 2009), and HOMER (Mestre et al., 2013). 

Climatol (Guijarro, 2006) is a set of routines for climatological applications than run under the 

cross-platform statistical programming language R. Although it may be applied to daily data, it is 

generally used in the homogenisation of monthly series. This computational application compares 

each candidate series with a reference series. Once the reference series has been computed, it can 

be used to determine which variations in the candidate series are due to the climate variability and 

which are real inhomogeneities that should be corrected. Climatol avoids the use of regression 

techniques and enables the use of data from surrounding stations when there is no common period 

of observation. The comparison between the candidate series and their estimated references 

allows the detection of point errors, shifts and trends through standard statistical tests. The 

graphical representations of the results can also be shown. Missing values from the candidate 

series can be directly replaced by the computed reference values. The application of the method 

to a dense monthly database indicates the importance of using an iterative strategy, thereby 

detecting and correcting only the coarser errors in the first place, and leaving the less prominent 

ones to the following iterations. Literature refers this method as robust and simple. However, the 

final decision on which inhomogeneities to correct must be complemented with visual inspection 

of the graphical representations. 

The RHTest software package (Wang, 2008) is designed to detect multiple step change-points 

that might exist in a time series. Its recent version, RHTestV3, includes a fully automatic package. 

This package comprises two penalised maximal tests, PMF (Penalised Maximal F-test) and PMT 

(Penalised Maximal T-test). The PMF test allows the tested time series to have a linear trend 
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throughout the whole period of the data record, with the annual cycle, linear trend, and 

autocorrelation of the base series, being estimated one after the other through iterative procedures, 

while accounting for all the identified mean shifts (Wang, 2008). No reference series is used in 

any of these functions. The PMT test assumes the tested time series with zero-trend and Gaussian 

errors. In this case, a reference series is needed. The base-minus-reference series is tested to 

identify the position(s) and significance of change-point(s), but a multi-phase regression (MPR) 

model with a common trend is also fitted to the anomalies of the base series in the end to obtain 

the final estimates of the magnitude of shifts (Wang, 2008). In the MPR fit, the annual cycle, 

linear trend, and autocorrelation are estimated sequentially through iterative procedures, while 

accounting for all the identified mean-shifts. 

AnClim (Štěpánek, 2008a) and ProClimDB (Štěpánek, 2008b) were developed as a combination 

of several features from methods mentioned above. ProClimDB is used for processing whole 

datasets (finding outliers, combining series, creating reference series, preparing data for 

homogeneity testing, etc.). AnClim works with one station at a time for homogeneity testing, but 

automated processing of many stations is enabled as well. Results from homogeneity testing 

produced by AnClim are imported back to ProClimDB and further processed. Two main steps are 

carried out (Štěpánek et al., 2009): data quality control and homogenisation. The first step is 

performed by several methods: (i) analysing difference series between candidate and 

neighbouring stations through pairwise comparisons; (ii) applying limits derived from 

interquartile ranges; and (iii) comparing the series values tested with “technical” series created by 

means of statistical methods for spatial data. In the homogenisation step, SNHT, Bivariate and 

Two-Phase Regression tests are applied to the series. The criterion for identifying a year of 

inhomogeneity is the probability of detection of a given year, calculated by the ratio between the 

number of detections for a given year from all tests results for a given station and the total of all 

theoretically possible detections. The correction of the inhomogeneity is given by the value of the 

instant before the detected break plus a calculated correction factor, which is determined by the 

reference series. Štěpánek et al. (2009) applied AnClim and ProClimDB to daily temperature and 

precipitation data sets. 

Menne and Williams Jr. (2009) developed an automated homogenisation algorithm for monthly 

data that builds on efficient change-point detection techniques, named USHCN (United States 

Historical Climatology Network). The pairwise algorithm proposed by those authors is able to 

detect undocumented breakpoints and to deal with inhomogeneous neighbouring series. The 

algorithm conducts a pairwise comparison in order to first identify all evidences of change-points, 

combining those evidences with information about documented changes. The algorithm relies 

upon a pairwise comparison of series in order to reliably distinguish artificial changes from true 

climate variability, even when the changes are undocumented. In addition, the algorithm employs 
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a recursive testing strategy to resolve multiple undocumented change-points within a single time 

series. Lastly, the procedure explicitly looks for abrupt “jumps” as well as local and 

unrepresentative trends in the series. 

HOMER, HOMogenization softwarE in R, is an interactive semi-automatic procedure that 

explores the best characteristics of other state-of-the-art homogenisation methods (PRODIGE and 

ACMANT), as well as from Climatol and the cghseg joint-segmentation method (Mestre et al., 

2013). Basic quality control and network analysis are adapted from Climatol. Detection can be 

performed using a partly subjective pairwise comparison technique (adapted from PRODIGE) or, 

alternatively, by applying the full automatic cghseg detection. HOMER includes the ACMANT 

capability to coordinate the operations on different time scales (from multiannual to monthly). 

HOMER also includes the UBRIS (Urban Bias Remaining in Series) procedure, which allows 

characterising artificial climatic trends, in most cases related to urbanisation. 

2.5 Comparison of homogenisation methods 

A homogenisation method is considered efficient when is able to overcome two problems: the 

fact that nearby stations are also inhomogeneous, and the existence of more than one irregularity 

within the time series (Lindau and Venema, 2013). Depending on the used techniques, some 

homogenisation methods can be more appropriate for a specific climate variable (e.g., first version 

of ACMANT for temperature), while others can only be used at a given time scale resolution, 

providing less efficiency for high temporal resolution data series (e.g., daily observations). In 

order to assess their efficiency, numerous comparison exercises are described in the literature. 

This section summarises comparison studies undertaken for homogenisation methods, 

emphasising the HOME project (COST Action ES0601) in the second sub-section. 

2.5.1 Comparison tests 

In the past two decades several comparison studies have been published in order to determine the 

most efficient homogenisation method. A synopsis of those comparison tests is disclosed as Table 

A.3 (Appendix A), and describes the location, variable and periodicity of the climate time series, 

the compared tests, and some of the achieved conclusions. Those comparison tests are described 

by chronological order. 

Comparison studies also proved the difficulty of indicating which method is the most efficient. 

Some of the studies were performed using a set of common homogenisation methods, achieving 

different conclusions. Climate variables also have influence on the efficiency of the method, due 

to their variability and temporal resolution. Venema et al. (2012) provide a valuable discussion 

on many of these comparison tests. Problems related to the choice of efficiency measures and the 

creation of appropriate test-datasets are discussed by Domonkos (2011b, 2013a). 
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2.5.2 HOME project (Advances in Homogenisation Methods of Climate Series: An 

Integrated Approach) 

In 2008, a European Cooperation in the field of Scientific and Technical Research, HOME – 

Advances in Homogenisation Methods of Climate Series: An Integrated Approach (COST Action 

ES0601), was released to compare, evaluate and develop homogenisation methods (HOME, 

2011). New (or extensions of earlier) methods were proposed as homogenisation techniques to 

test a benchmark data set comprising temperature and precipitation data. HOME’s main objective 

was to achieve a general method for homogenising climate and environmental data sets. 

The benchmark data set contains real inhomogeneous data as well as simulated data with inserted 

inhomogeneities, which comprise outliers, break points and local trends. Missing data was also 

simulated (on those generated data sets) and a global trend was added. This benchmark was 

composed of three distinct data sets: inhomogeneous (real) climate networks, surrogated and 

synthetic data sets. The real data set allows comparisons between the different homogenisation 

methods, since it is comprised of the most realistic type of data and inhomogeneities. Surrogate 

data was prepared to reproduce the structure of real data in an accurate way so that it could be 

used as its substitute. Synthetic data is based on surrogate networks. However, the differences 

between the stations have been modelled as uncorrelated Gaussian white noise. Later, it was 

concluded that synthetic data is easier to homogenise than the more realistic surrogate data 

(Venema et al., 2012). 

Twenty-five contributions based on 13 algorithms (including MASH, PRODIGE, USHCN, 

AnClim, Craddock, RH Test V2, SNHT, ACMANT and Climatol) were submitted before the 

release of the list of known/inserted inhomogeneities in data sets (blind contributions). Different 

performance metrics and detection skill scores were calculated for monthly, yearly and decadal 

scales. The blind contributions ((1) for Temperature, (2) for Precipitation) that had the best 

metrics considered by HOME are as follows: 

 MASH:  station and network Centered Root Mean Squared Error (CRMSE) (1), trends 

(1); 

 PRODIGE: station and network CRMSE (1); CRMSE anomalies (2) and trends (2); 

 USHCN: station and network CRMSE (1), probability of false detection (1), Heidke skill 

score (1); 

 Craddock test: CMRSE anomalies (1), network CRMSE (1), probability of detection (1), 

Heidke skill score (1); 

 Climatol: Heidke special skill score (2). 

From the climatologists’ point of view, the most important factor to account for in homogenisation 

is the methods capability to improve the temporal consistency of the climate time series. In this 
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sense, the CRMSE and the trend error metric are more relevant than detection scores such as the 

Heidke skill score. On the other hand, results also depend on the averaging scale at which the 

CRMSE is computed and the period under consideration. Domonkos (2013a) provides a 

comprehensive discussion on the problems related to the choice of efficiency measures, and 

summarises the results of the blind test experiment of the HOME project. For a more thorough 

discussion on the assessment of the contributions performance see Venema et al. (2012). There 

was only one contribution (PMFred abs) that performed absolute homogenisation, and it produced 

much more inhomogeneous data. 

After the truth was revealed to the participants, some of the blind contributions were improved in 

order to address problems revealed by the results. The all-over best blind contributions were 

MASH and PRODIGE. Although more limited regarding some tasks, Craddock also had an 

excellent performance. The USHCN contribution had the lowest probability of false detection and 

its general performance was only slightly lower than the other best methods. Hence, besides 

MASH and PRODIGE, Craddock and USHCN were also recommended for practical use 

(Domonkos, 2013a; Venema et al., 2012). However, the updated ACMANT late contribution 

suggested that ACMANT was the most accurate method for temperature (Venema et al., 2012). 

Improved homogenisation methods were included in software packages and are available at 

http://www.climatol.eu/DARE (accessed April, 2014). 

Some of the conclusions agreed by the participants at the end of the project can be described as 

follows (HOME, 2011; Venema et al., 2012): 

 There is not one ideal metric for homogenisation, but the use of detection scores as sole 

performance criterion should be discouraged; 

 More homogenisation algorithms should implement the automatic use of metadata; 

 Within the same climatic area, series share a common climate signal; 

 Additive structure of the models seems fairly reasonable: temporal and spatial behaviours 

are separable; 

 At monthly to annual time scales, models focus on correction of the means only; 

 Covariance is time independent; residuals are not serially correlated; 

 Spatial covariance can play a role. Techniques for estimation of spatial covariance are 

still to be compared. Based on 1st order differentiation of the series (MASH approach), 

this simple technique relies on a “smooth climate” assumption. Many parameters have to 

be estimated, or based on the variography analysis of residuals (PRODIGE approach). 

This technique relies on the variogram of the residuals. It requires the estimation of few 

parameters at the cost of modelling the spatial structure, which may be more complex. 
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2.6 Concluding remarks 

The importance of having accurate and precise climate records is the main reason for the 

development of homogenisation methods. Many techniques proposed in the literature aim to 

detect artificial discontinuities. However, the correction of time series is a very delicate task, and 

the availability of stations’ history information is extremely important to assist the 

homogenisation process. Furthermore, the number of procedures to correct the artificial 

discontinuities is limited. In fact, some researchers choose to exclude from further analysis the 

inhomogeneous series and those with no metadata available, or only consider the longest 

homogeneous period in the analysis (e.g., Buishand et al., 2013; Costa and Soares, 2009b; de 

Lima et al., 2013; Santos and Fragoso, 2013). 

 An up-to-date list of the most important homogenisation methods for climate data series has been 

discussed in the previous sections, as well as several homogenisation software packages. A 

classification of the methods has also been proposed. An extensive review of applications is 

disclosed in the Appendix A (Table A.1, Table A.2, Table A.1), which may also provide guidance 

to climatologists and other experts to choose the most appropriate method(s) for a particular 

climatic region, climate variable and temporal resolution. 

Based on the analysis from the comparison studies and on a thorough literature review, it is 

possible to enunciate the following conclusions: 

 Techniques that detect and correct multiple breakpoints and work with inhomogeneous 

references generally perform better than other methods, namely ACMANT, MASH, 

PRODIGE and HOMER; 

 Relative homogenisation algorithms improve the homogeneity of data; 

 Absolute homogenisation methods have the potential of making the data even more 

inhomogeneous; 

 Training of the operator when performing homogenisation is very important; 

 Homogenisation algorithms developers should invest more effort into making their 

software easy to use and to include relevant warnings; 

 Currently, automatic and semi-automatic algorithms can perform as well as manual ones; 

 The use of metadata and the climatological knowledge of the operator are advantages of 

manual methods; 

 Strengths of automatic methods are their objectivity, reproducibility, and easiness to be 

applied in large data sets; 

 Efficiency tests need the use of simulated test datasets with similar properties to real 

observational datasets; 
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 Annual climate data sets achieve better homogenisation results than monthly data sets, 

which may be due to the increase of variability of data series, when the temporal 

resolution also increases; 

 Given the low number of homogenisation studies for precipitation data and their results, 

the homogenisation of precipitation should be a priority. 

The latter conclusion also meets the consideration provided by Auer et al. (2005), referring that 

precipitation data requires much greater effort, as their variability is more spatially complex. In 

other words, the spatial and temporal correlation between neighbouring stations should be 

included when performing homogenisation (Costa and Soares, 2009a; Eccel et al., 2012), 

particularly for precipitation. 
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3 Detection of inhomogeneities in precipitation time series in Portugal 

using direct sequential simulation2 

Abstract 

Climate data homogenisation is of major importance in climate change monitoring, validation of 

weather forecasting, general circulation and regional atmospheric models, modelling of erosion, 

drought monitoring, among other studies of hydrological and environmental impacts. The reason 

is that non-climate factors can cause time series discontinuities which may hide the true climatic 

signal and patterns, thus potentially bias the conclusions of those studies. In the last two decades, 

many methods have been developed to identify and remove these inhomogeneities. One of those 

is based on a geostatistical simulation technique (DSS – direct sequential simulation), where local 

probability density functions (pdf) are calculated at candidate monitoring stations using spatial 

and temporal neighbouring observations, which then are used for the detection of 

inhomogeneities. Such approach has been previously applied to detect inhomogeneities in four 

precipitation series (wet day count) from a network with 66 monitoring stations located in the 

southern region of Portugal (1980–2001). That study revealed promising results and the potential 

advantages of geostatistical techniques for inhomogeneities detection in climate time series. This 

work extends the case study presented before and investigates the application of the geostatistical 

stochastic approach to ten precipitation series that were previously classified as inhomogeneous 

by one of six absolute homogeneity tests (Mann–Kendall, Wald–Wolfowitz runs, Von Neumann 

ratio, Pettit, Buishand range test, and Standard normal homogeneity test (SNHT) for a single 

break). Moreover, a sensitivity analysis is performed to investigate the number of simulated 

realisations which should be used to infer the local pdfs with more accuracy. Accordingly, the 

number of simulations per iteration was increased from 50 to 500, which resulted in a more 

representative local pdf. As in the previous study, the results are compared with those from the 

SNHT, Pettitt and Buishand range tests, which were applied to composite (ratio) reference series. 

The geostatistical procedure also allowed to fill in missing values in the climate data series. 

Finally, based on several experiments aimed at providing a sensitivity analysis of the procedure, 

a set of default and recommended settings is provided, which will help other users to apply this 

method. 

                                                      
2 Ribeiro S, Caineta J, Costa AC, Henriques R. 2016. Detection of inhomogeneities in precipitation time 

series in Portugal using direct sequential simulation, Atmospheric Research 171: 147–158. doi: 

10.1016/j.atmosres.2015.11.014. 
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3.1 Introduction 

Several environmental and atmospheric studies depend on climate data, in which precipitation 

data assume a vital role. However, its measurement and recording is prone to systematic and 

random errors (Sevruk et al., 2009; Teegavarapu and Chandramouli, 2005). Systematic errors 

may occur due to the growth of trees or urbanisation around the location of the weather station or 

to precipitation gauge malfunctions, such as water loss during measurement, adhesion loss on the 

surface of the gauge and raindrop splash from the collector. Random errors include sporadic faults 

which happen during the process of collecting, recording and transmitting precipitation data 

records (Brunet and Jones, 2011). These non-natural errors are critical as they affect the continuity 

of precipitation data and ultimately influence the results of models that use precipitation as input. 

Indices calculated from daily precipitation data, such as the number of wet days per year (wet day 

count), are also influenced by the errors in the measurement. Spurious shifts often have the same 

magnitude as the climate signal, such as long-term variations, trends or cycles, and might lead to 

wrong considerations about the results of the studies (Caussinus and Mestre, 2004). 

In order to obtain trustful results, climate data should be free from non-climatic irregularities. 

Hence, the detection and the correction of these errors are absolutely necessary before any reliable 

climate study is based on instrumental series (Auer et al., 2005; Brunetti et al., 2012; Domonkos, 

2013a; Tuomenvirta, 2001). Moreover, the World Meteorological Organization (WMO) 

emphasises the importance of homogenisation in one of the ten climate monitoring principles: 

“The quality and homogeneity of data should be regularly assessed as a part of routine 

operations.” (World Meteorological Organization, 2010). Homogenisation includes the following 

steps (Štěpánek et al., 2006): detection, verification and possible correction of outliers, creation 

of reference series, homogeneity testing (through various homogeneity tests), determination of 

inhomogeneities in the light of test results and metadata, adjustment of inhomogeneities and 

filling in missing values. Various methods have been used in the homogenisation of climate data 

(Aguilar et al., 2003; Beaulieu et al., 2008; Domonkos et al., 2012; Peterson et al., 1998), and 

their efficiency is dependent on the climate variable, analysed time period, availability of data or 

other stations located in the same climatic region which may be used as reference series (Costa 

and Soares, 2009a). Homogenisation methods can be classified into different groups, depending 

on their characteristics (Aguilar et al., 2003): objective/subjective, direct/indirect and 

absolute/relative. Relative methods make use of data from neighbouring stations (called reference 

stations) for comparison with data series from the candidate station (the station to be 

homogenised). Absolute methods only consider the data from the candidate station in the 

detection of inhomogeneities. 
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Recently, the European initiative (COST Action ES0601) ‘HOME’ (Advances in homogenisation 

methods of climate series: an integrated approach), evaluated the performance of a set of statistical 

homogenisation methods, using a benchmark data set of temperature and precipitation. Due to 

their excellent performance, the algorithms ACMANT, Craddock, MASH, PRODIGE and 

USHCN are strongly recommended by Venema et al. (2012). These authors also refer the need to 

give priority to the homogenisation of precipitation, due to the less good results presented by the 

contributions for precipitation. Moreover, Domonkos et al. (2012) mention the need of further 

tests to better understand the performance of homogenisation methods. Due to the diversity of the 

characteristics of climatic time series, it is essential to perform more tests with different data set 

properties. These authors provide a thorough literature review on the methodological evolution 

of the homogenisation methods for temperature. Ribeiro et al. (2016a) compare homogenisation 

methods based on literature reviews and discuss their advantages and disadvantages. 

Craddock test (Craddock, 1979) accumulates the normalised differences between the test series 

and the homogeneous reference series in order to find inhomogeneities. This author applied the 

method to precipitation time series and concluded that best results were obtained by the use of 

station pairs with the minimum coefficient of variation of the ratio of the two series. This test is 

part of the homogenisation package THOMAS, from the Federal Office of Meteorology and 

Climatology in Switzerland (Begert et al., 2005; Michael Begert, 2015, personal communication). 

MASH, Multiple Analysis of Series for Homogenisation (Szentimrey, 1999; 2006b, 2007) is a 

homogenisation method originally developed for monthly series. This relative method does not 

assume reference series as homogeneous. It is a multiple breakpoint detection algorithm that 

increases its performance taking the problem of significance and efficiency in account. Metadata 

is used automatically, in particular the possible dates of breakpoints. The algorithm also includes 

a procedure for the evaluation of the homogenisation results. In the version of the MASH 

algorithm for daily data, the estimation of daily inhomogeneities is based on the monthly 

inhomogeneities calculated (Lakatos et al., 2008). 

Caussinus and Mestre (2004) introduced a new methodology for the detection of inhomogeneities, 

which included pairwise comparison, step function fitting, the Caussinus and Lyazhri (1997) 

algorithm, and variance optimisation. This method, later named PRODIGE, is based on the idea 

that a series is homogeneous between two change points. Pairwise comparisons are then obtained 

between the candidate series and the other reference series, creating a series of differences. These 

series are tested against the Caussinus and Lyazrhi technique. If a common breakpoint is detected 

in all the difference series, it is attributed to the candidate station. The overall detection and 

correction are performed by moving neighbourhoods. The correction estimation is based on 

ANOVA. 
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ACMANT, Adapted Caussinus-Mestre Algorithm for Networks of Temperature Series 

(Domonkos, 2011c; Domonkos et al., 2011a), is a fully automated and relative homogenisation 

method, which uses the core of the detection and adjustment methods of the PRODIGE (step 

function fitting and ANOVA correction segments). It applies a bivariate-test for detecting change 

points that uses the annual mean and the summer-winter difference. 

The USHCN homogenisation method is another automatic homogenisation method applied to the 

United States Historical Climatology Network (Menne and Williams Jr., 2009). The detection 

part of this method is composed by an early version of SNHT, the cutting algorithm, a Bayesian-

based decision about the form of the inhomogeneities (trend-like inhomogeneities can be 

detected), and a special purpose significance test. Pairwise comparisons are made in an automated 

way, and metadata can also be used automatically. 

The present study provides a follow-up of a previous study (Costa and Soares, 2009a), where a 

new detection methodology based on direct sequential simulation (DSS) was tested with very 

auspicious results. However, due to technology and time limitations, a small number of 

simulations were performed at that time and the number of candidate series was limited to four. 

In this study, the number of simulations is increased, some sensitivity experiments are performed, 

and some conclusions are drawn regarding those analyses. For comparison purposes, the same 

data set was used, which is composed of 66 stations located in the south of Portugal. The analysed 

climate variable is the annual number of wet days (threshold of 1 mm), calculated from the 

measured daily value of precipitation, at each weather station, per year. Two sets of candidate 

stations are used in different stages of the study: the first set, composed of 4 stations, is used for 

the sensitivity analysis of the DSS parameters; the second set, comprising 10 stations, is used for 

the sensitivity analysis of the number of neighbour nodes used in the simulation of each node. 

The results of the analysis of both sets of candidate stations are compared with the results achieved 

by Costa and Soares (2009a) through the Standard normality homogenisation test (SNHT, 

Alexandersson, 1986), the Buishand range test (Buishand, 1982) and the Pettitt test (Pettitt, 1979). 

These techniques are commonly used and generally accepted for the detection of inhomogeneities 

(e.g., Sahin and Cigizoglu (2010); Santos and Fragoso, 2013; Wijngaard et al., 2003). Pandžić 

and Likso (2010) indicate SNHT as one of the most popular methods. Wijngaard et al. (2003) 

make a brief description of the advantages and disadvantages of those three tests. 

Section 3.2 details the network used in this study. Section 0 briefly describes the methodological 

framework, particularly the DSS process and the sensitivity analysis methodology. Results are 

presented in Section 3.4. Finally, some conclusions and future work are stated in Section 3.5. 
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3.2 Data and study background 

The inhomogeneities detection methods were applied to precipitation data from 66 monitoring 

stations located in the south of Portugal (Figure 1). The annual number of wet days between 1980 

and 2001 was used as the studied variable, which was calculated from the daily values of 

precipitation measured at each station, with a threshold of 1 mm defining a wet day. The annual 

wet day count was used because it is expected to be representative of important characteristics of 

variation at the daily scale (Wijngaard et al., 2003). This is one of the extreme climate indices 

defined by the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and 

Indices (ETCCDI), which may contribute to gain a uniform perspective on observed changes in 

climate extremes (e.g., Klein Tank et al., 2009). The analysis of changes in climate extremes 

usually requires daily resolution data, but well-established statistical methods for homogeneity 

testing daily precipitation data are lacking. According to Wijngaard et al. (2003), this variable 

generally has a lower variability than the annual amounts, particularly in areas with a large 

contribution from convective precipitation. These authors also referred the easiness of 

inhomogeneities detection in this climate index, when compared with annual amounts.  

The daily precipitation series were compiled from the European Climate Assessment (ECA) data 

set and the National System of Water Resources Information (Sistema Nacional de Informação 

de Recursos Hídricos (SNIRH), currently managed by the Portuguese Environment Agency) 

database. Data are available through free downloads from the ECA&D project website 

(http://eca.knmi.nl) and the SNIRH website (http://snirh.apambiente.pt, previously 

http://snirh.inag.pt), respectively (for more information please refer to Costa and Soares, 2009a).  

A complete data set of 96 series was initially subjected to an absolute approach of six statistical 

tests (Costa and Soares, 2009a, 2009b): Mann-Kendall (Mann, 1945; Kendall, 1975), Wald-

Wolfowitz runs test (Wald and Wolfowitz, 1943), Von Neumann ratio test (Von Neumann, 1941), 

SNHT (Alexandersson, 1986), Pettitt test (Pettitt, 1979), and Buishand range test (Buishand, 

1982). Thirty stations whose data series were rejected by at least two of the referred absolute tests 

were discarded from the network. The remaining 66 stations, which are used in this study, are 

located in the river basins of Arade, Guadiana, Mira, Ribeiras do Algarve and Sado. A list of 

codes, names and role (candidate or reference) for the 66 monitoring stations used in the study is 

presented in the Table B.1 (Appendix B). 

The analysis of precipitation time series is of particular importance in areas such as the south of 

Portugal due to its susceptibility to the desertification phenomenon (Costa and Soares, 2012; 

Pereira et al., 2006). Being located at the Mediterranean climate region, the south of Portugal is 

exposed to long periods of drought, causing land degradation through soil erosion, reduction of 
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vegetation cover and water resources, increase of vulnerability to salinisation and exhaustion, and 

degradation of agricultural lands. Analysing the quality of precipitation time series contributes to 

the improvement of the input data that can be used in climate studies such as those related to 

desertification processes (Costa and Soares, 2009b). 

 
Figure 1 - Location of the 66 monitoring stations in the south of Portugal. 

 

Two sets of candidate stations were defined, containing 4 and 10 stations each (Figure 1). The 

first set, comprising the stations of Santiago do Escoural (SNIRH 22H.02), Aljezur (SNIRH 

30E.01), Alferce (SNIRH 30G.01) and Beja (ECA 666), was used to undertake a sensitivity 

analysis regarding the number of simulations and other parameters of the DSS method. Those 

four candidate stations were chosen by Costa et al. (2008a) to illustrate the proposed methodology. 

The four candidate stations have a long term time series with a common period of 20 years, from 

1980 to 1999, with the exception of the Santiago do Escoural station in which the value for the 

year of 1998 is missing. Those four candidate stations are well spatially distributed in the study 
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area, and they also are representative of the differences from elevation in the study area: 48 m 

(Aljezur), 243 m (Santiago do Escoural), 246 m (Beja) and 328 m (Alferce). 

Table 2 - Length of annual time series for wet day count, per candidate station (dark grey - presence of value, 

light grey - missing value). 
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30K.02) 

                     

Beja (ECA 

666) 
                     

 

The second set was used for the sensitivity analysis of the number of neighbour nodes, and 

included the following stations: Azaruja (SNIRH 21K.01), Redondo (SNIRH 22L.01), Comporta 

(SNIRH 23E.01), Viana do Alentejo (SNIRH 24I.01), Odemira (SNIRH 28F.01), Aldeia de 

Palheiros (SNIRH 28H.01), Sabóia (SNIRH 29G.01), Aljezur (30E.01), Picota (SNIRH 30K.02) 

and Beja (ECA 666). These ten candidate stations were selected since their data sets were rejected 

by one of the six above-mentioned absolute tests for homogeneity. Their time series have different 
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lengths (Table 2). The time series from Azaruja and Redondo weather stations comprise three 

values only of the wet day count index (between 1980 and 1982). For these two stations, the major 

effect of the geostatistical analysis is expected to be the completion of the time series rather than 

the detection of inhomogeneities. It is also noteworthy that only two weather stations present wet 

day count values for the year of 2000: Comporta and Viana do Alentejo stations. Data completion, 

during this procedure, did not include assigning values for that year. 

3.3 Methodological framework 

3.3.1 Homogeneity tests 

The two sets of candidate stations were analysed using the SNHT, the Buishand range test, and 

the Pettitt test. The null hypothesis for the three tests is that data are independent, identically 

distributed random quantities, and the alternative is that a step-wise shift in the mean (a break) is 

present. If such step cannot be determined in the time series data, the null hypothesis of 

homogeneity is not rejected. 

The application of the SNHT begins with the creation of a ratio (or difference for temperature 

data) series between the candidate station values and some regional reference values. This 

composite series is then standardised. At a given moment ν, averages are calculated for the 

previous and the following period of that composite series. If the difference between those 

averages meets a critical value, a step is inferred to exist at ν, and the series is said to be 

inhomogeneous. Two of the most mentioned characteristics of this method are its capability to 

detect the time period where the breakpoint is likely (month or year) and the skill to easily identify 

an irregularity at the beginning or at the end of the time series (Ducré-Robitaille et al., 2003). 

The application of the Buishand range test starts with the calculation of the sum from the 

differences between each value of the time series and the mean, at a given time period k. The time 

series will be considered homogeneous if the sum calculated for each k fluctuates around zero, 

since no systematic deviations will appear. If the time series is inhomogeneous around k, the sum 

of the differences will reach a maximum (for a negative shift) or a minimum (positive shift). 

Buishand (1982) provides critical values to evaluate the significance of the test. 

Pettitt (1979) proposed a non-parametric test based on the ranks of the observations, which 

follows the calculation of test statistics proposed by Mann-Whitney. The test statistic will indicate 

the presence of a change point when its value is maximal or minimal at a given time period. Pettitt 

(1979) also provides the significance tables for this test. 

The Pettitt test is distribution-free, thus it is applicable to variables with a measurement scale that 

it is, at least, ordinal. Therefore, applying it to testing variable series of the annual number of wet 
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days is not problematic. However, the SNHT and the Buishand range test assume that data are 

independent, identically normally distributed random quantities. The wet day count is a discrete 

variable but, providing that the sample size is large enough, its probability distribution can be 

approximated by the normal distribution. Costa and Soares (2009b) applied four normality tests 

(Shapiro-Wilk, Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling) to the testing 

variable series at 107 monitoring stations. This set of stations comprises the initial set of 96 

stations considered in this study. Those authors concluded that the normal distribution fits well 

the testing variable data, thus the SNHT and the Buishand range test can be applied to the wet day 

count series. Furthermore, Wijngaard et al. (2003) also detected inhomogeneities in European 

daily precipitation series by testing series of the number of wet days (threshold 1 mm) using the 

SNHT for a single break, the Buishand range test, the Pettitt test, and the Von Neumann ratio test 

(Von Neumann, 1941). 

3.3.2 Direct sequential simulation algorithm 

In geostatistics, it is common to refer to simulation as a stochastic process, opposed to estimation 

which is regarded as a deterministic process. Besides correlating the values of different samples 

of a given variable, geostatistical interpolation adds their spatial structure to the equation. 

Interpolation usually leads to a smoothing effect of the distribution inferred by the observations 

and thus to a loss of variance. For example, it is well known that kriging is locally accurate in the 

minimum error variance sense, but does not provide representations of spatial variability given 

the smoothing effect of kriging (Yamamoto, 2005). To overcome this limitation, geostatistical 

stochastic simulation has become a widely accepted procedure to reproduce the spatial variability 

and uncertainty of highly variable phenomena in geosciences (e.g., Bourennane et al., 2007; 

Franco et al., 2006; Robertson et al., 2006). 

While using the same sequential procedure, some versions of the sequential simulation require 

different transformations of variables and different approaches to estimate local distribution 

functions. Examples of those methods are the sequential Gaussian simulation and the sequential 

indicator simulation (Deutsch and Journel, 1998; Emery, 2004). Following the work of Journel 

(1994) and Caers (2000), Soares (2001) proposed the direct sequential simulation (DSS) method 

to reproduce the covariance and the histogram of the variable, a drawback initially found for 

sequential simulation algorithms without any variable transformation. DSS is also one of the 

geostatistical simulation methods that has been widely used in different contexts, such as air and 

water pollutants (e.g., Ribeiro et al., 2014), health (e.g., Oliveira et al., 2013), and climate (e.g., 

Costa and Soares, 2012; Durão et al., 2010). 
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Kriging methods used in the simulation process require a stationarity assumption, expressed in 

two parts. First, the mean of the process is assumed constant and invariant with spatial location 

(first order stationarity). Second, the variance of the difference between two values is assumed to 

depend only on the distance between the two points, and not on their location (second order 

stationarity). Stationarity assumptions on kriging are traditionally accounted for by using local 

search neighbourhoods so that the dependence on stationarity becomes local (Goovaerts, 1997). 

3.3.3 Homogenisation with a geostatistical approach 

As previously stated, this work extends the study by Costa and Soares (2009a), where a new 

method for the homogenisation of climate data was proposed, and the detection phase was 

illustrated with the data used in the current study. This method integrates the DSS in its algorithm, 

which serves the purpose of computing the local probability density functions (pdfs) at every 

candidate station’s location, using the spatial and temporal observations of the surrounding 

reference stations, and excluding the observations of the candidate station itself. Those pdfs can 

later be used to identify the presence of irregularities at the candidate time series. An observation 

will be indicated as an inhomogeneity whenever the interval of a specified probability p (e.g. 

0.95), centred in the estimated local pdf, does not contain the corresponding real value of the 

candidate station (Figure 2). Local pdfs are computed by the aggregation of the simulated maps.  

The method allow the correction of each irregularity (inhomogeneity or outlier) with the 

replacement of that value by one of the following options: mean, median, or other statistic 

calculated from the estimated pdf calculated at the candidate station’s location for the 

inhomogeneous period(s). Similarly to Costa and Soares (2009a), irregular and missing values 

were replaced by the mean of the estimated pdf. Once a candidate station is tested, the corrected 

time series is included in the detection process of the next candidate station as a reference time 

series for the calculation of the local pdf. Hence, inhomogeneities detection in the second 

candidate station benefits from the corrections applied to the first candidate station, the third one 

will benefit from the previous two, and so on and so forth. These corrections are expected to be 

especially important for trend-type inhomogeneities.  

The DSS algorithm guarantees that the spatial covariance and the global sample mean and 

variance of the original variable are reproduced, as well as the histogram (Soares, 2001). Hence, 

the statistical characteristics of the time series are accounted for, even though only individual 

annual values are examined for inhomogeneities detection purposes. The variance and the spatial 

correlation of the time series are considered in the semivariogram model used in the ordinary 

kriging applied during the simulation process. For long-term time series, it is advisable to split 

the series in smaller sections, in order to guarantee that the statistical properties are consistent 

within these sections, as recommended by Durão et al. (2010). 
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Figure 2 - DSS procedure schema and local pdf for a candidate station. 

 

Some of the potential advantages of this method were mentioned in Costa and Soares (2009a): (i) 

avoids the iterative construction of composite reference series, increasing the contribution of 

records from closer stations, both in spatial and correlation terms, by accounting for the joint 

spatial and temporal dependence between observations; (ii) deals with the problem of missing 

values and varying availability of stations through time, by using different sets of neighbouring 

stations at different periods, and by including shorter and non-complete records; (iii) seems to be 

able to detect multiple breaks; and (iv) is able to identify breakpoints near the start and end of the 

time series, while traditional approaches have less power in detecting them. 

Two stochastic sequential simulation runs were undertaken for each of the candidate stations sets. 

Both stochastic simulations used the same semivariogram model from the previous study (Costa 

et al., 2008a): a spherical semivariogram modelled from the complete set of 66 monitoring 

stations. The spatial dimension was modelled using an isotropic semivariogram model with a 

range of 72 km, and the temporal dimension was modelled with a range of 1.8 years. Simulations 

ran in three dimensions (x, y, z), considering time (years) as the z dimension. 

For a given candidate station, within the first or second candidate data set, time series from the 

remaining 65 stations were used. Candidate stations are also used as reference stations in the 

simulations where they are not being tested, since they are also included in the calculation of the 

pdfs for the other candidate stations. It is also possible to choose the sequence in which the 

candidate stations are tested. In the case of the present study, the sequence of candidate stations 
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to be tested was set to the descending order of variance. Assuming that large variance of a time 

series is an indicator of the presence of inhomogeneities, correcting and completing the data of 

candidate stations with high variance in the first place is expected to enhance the detection of 

irregularities in the following candidate stations. 

3.3.4 Search parameters and sensitivity analysis 

The DSS algorithm generates a set of equally probable realisations for each candidate station, 

using a set of reference time series, for every unit of time (e.g., every year). Each equally probable 

realisation is a regular grid of nodes with calculated values. It is possible to manage the set of 

parameters in the calculation of those realisations, in order to adjust the sequential simulation. 

Some of those parameters are related to the search of existing values (samples from reference 

stations and nodes previously calculated in the simulation maps). Search parameters that can be 

set are described as follows (Deutsch and Journel, 1998): 

 Minimum number of data – the minimum number of data (samples or simulated nodes) 

used in the simulation of each node (minimum value of 1); 

 Maximum number of samples – the maximum number of samples used in the simulation 

of each node (maximum of 64 samples); 

 Number of nodes – the maximum number of nodes previously calculated to be 

considered for the simulation of each node; 

 Search radius – maximum distance from the node to be estimated to the samples that 

may be considered for the calculation of each node; the search radius should cover the 

entire sampled area in the three directions (x, y, z); 

 Search method – two different methods to select the data to be considered for the 

estimation of the grid nodes: “two part search” searches for samples and estimated grid 

nodes separately; “data nodes” searches for estimated grid nodes and samples 

concurrently. 

To study the influence of the number of simulations in the detection of the irregularities, different 

experiments are executed based on the number of undertaken simulations (per candidate station): 

50 and 500 simulations. Additionally, two search parameters are tested: search radius and search 

method. Hence, two sets of tests, comprising four tests each, are established. The first set aims to 

test the importance of the search radius and the number of simulations, with the “data nodes” 

search method. The second set tests the number of simulations and the importance of the search 

radius using the “two part search” method. The provided ranges for the search radius are named 

as follows: “wide” tests include the entire study area as search radius (220000, 200000, 20 for 

each of the main directions); and in the “narrow” tests the search radius consists in the variogram 

ranges (72000, 72000, 1). The minimum and maximum numbers of samples are kept constant in 
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all the tests (1 and 16, respectively), as well as the maximum number of nodes (16).  The 

maximum number of values included in the simulation of a new grid node is 16 for the first set of 

tests (search method as “data nodes”). In the second set of tests, with the “two part search” 

method, that maximum number increases to 32 (16 samples plus 16 nodes). In total, eight 

sensitivity experiments are undertaken (Table 3). All eight experiments are named with the 

following syntax: “DN”/”2PS” are the acronyms to identify the applied search method (DN – data 

nodes; 2PS – two part search), the values 50/500 describe the number of simulations computed, 

and the “narrow”/ ”wide” expressions identify the search radius used in the test (Table 3). It is 

important to note that if the minimum number of nodes is not found within the search radius, the 

radius will be ignored and the search will continue until the minimum number of nodes is reached. 

The second set of ten candidate stations are later tested for the number of nodes included in the 

simulation of new grid nodes. The same search parameters as the “DN 500 wide” test are used, 

except for the number of nodes: 8, 16 and 32 nodes are tested (Table 3). 

Table 3 - Search parameters used in the different sensitivity experiments. 

Search 

Parameter

s 

DN 50 

wide 

DN 50 

narrow 

DN 500 

wide 

DN 500 

narrow 

2PS 50 

wide 

2PS 50 

narrow 

2PS 500 

wide 

2PS 500 

narrow 

Number of 

simulation

s 

50 50 500 500 50 50 500 500 

Minimum 

number of 

samples 

1 1 1 1 1 1 1 1 

Maximum 

number of 

samples 

16 16 16 16 16 16 16 16 

Number of 

nodes 
16 16 16 16 16 16 16 16 

Search 

radius  

(x, y, z) 

220000, 

200000, 

20 

72000, 

72000, 1 

220000, 

200000, 

20 

72000, 

72000, 1 

220000, 

200000, 

20 

72000, 

72000, 1 

220000, 

200000, 

20 

72000, 

72000, 1 

Search 

method 

Data 

nodes  

Data 

nodes 

Data 

nodes  

Data 

nodes 

Two part 

search 

Two part 

search 
Two part 

search 
Two part 

search 
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3.4 Results and discussion 

3.4.1 Homogenisation of the first set: four candidate stations 

The first set of four candidate stations is used to analyse the search parameters. Experiments 

named DN 50 wide, DN 50 narrow, DN 500 wide, DN 500 narrow, 2PS 50 wide, 2PS 50 narrow, 

2PS 500 wide, and 2PS 500 narrow (Table 3) are performed aiming the detection of 

inhomogeneities for the candidate stations of Aljezur, Alferce, Santiago do Escoural and Beja. 

The results of these experiments are compared with SNHT, Pettitt and Buishand range tests, 

which were applied to a composite (ratio) reference series by Costa and Soares (2009a), named 

hereafter OTHER tests. The results are also compared with the geostatistical approach conducted 

by Costa and Soares (2009a). 

The four candidate stations are considered inhomogeneous by all of the sensitivity tests (Table 4 

and Table 5). Comparing the number of performed simulations, the results show that a low 

number of simulations generally present a high number of detected inhomogeneities. This fact 

may be explained by the irregularity of the local pdf due to the low number of simulated values 

used in the pdf calculation (Figure 3). 

 
Figure 3 - Local pdfs of four candidate stations computed with 50 and 500 simulations (DN 50 wide and DN 

500 wide sensitivity experiments). 

Analysing the results between the “wide” and “narrow” experiments, the former presents a low 

number of detections when compared to the latter (Table 4 and Table 5). In the case of the “wide” 
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tests, the simulated local pdf of the candidate station is characterised by a higher variance due to 

the use of values that are more distant from the candidate stations, and therefore tend to be more 

different (Figure 4).  

Therefore, the percentile for inhomogeneities detection is also more distant from the mean of the 

distribution, i.e. the rejection interval is smaller and a lower number of detections is identified. 

The fact that the “narrow” version is detecting a sequence of years as inhomogeneous might be 

due to the capability to detect trends. However, a high number of identified irregularities may also 

correspond to the detection of false positives (i.e., correct values identified as inhomogeneous), 

which could not be verified because historical metadata was not available 

 
Figure 4 - Local pdfs of four candidate stations computed with “narrow” and “wide” search methods (DN 500 

wide and DN 500 narrow sensitivity experiments). 

 

Comparing the “data nodes” and “two part search” experiments, it is only possible to identify a 

slight increase of detections when the tests are performed with 500 simulations, for the latter 

(Table 4 and Table 5). However, the tests performed with “two part search” are quite longstanding 

when compared with the “data nodes” search method. For that reason, and since there are no 

significant advantages in the use of the “two part search” method it can be concluded that the 

“data nodes” search method should be the preferred search method. 



 

 

 

44 

 

Table 4 - Inhomogeneities detected for each of the sensitivity experiments (four candidate stations) using the 

“data nodes” search method. 

Stations 
DN 50  

wide 

DN 50 

narrow 

DN 500 

wide 

DN 500 

narrow 

OTHER tests 

(Costa and 

Soares, 2009a) 

Geostatistical 

approach (Costa 

and Soares, 

2009a) 

Santiago do 

Escoural 

SNIRH 22H.02 

1984 

1987 

1989 

1984 

1987 

1988 

1989 

1996 

1989 

1987 

1989 

1996 

1988 

1989 

1987 

1988 

1996 

Aljezur 

SNIRH 30E.01 

1988 

1998 
1988 

1988  

1998 
1988 Homogeneous Homogeneous 

Alferce 

SNIRH 30G.01 
1983 

1983 

1999 
1983 1983 1984 1983 

Beja 

ECA 666 

1988 

1992 

1996 

1997 

1987 

1996 

1997 

1996 1996 Homogeneous 1991 

 

Comparing the results per candidate station between the sensitivity experiments and the OTHER 

tests, some considerations must be stated. In the Santiago do Escoural station, the wet day count 

value for the year of 1989 is considered inhomogeneous by almost all of the sensitivity 

experiments and by the OTHER tests. The OTHER tests also detect the year of 1988 as irregular; 

however, the majority of the sensitivity experiments considered the year of 1987.  Regarding 

Alferce, the year classified as a breakpoint by the sensitivity tests is 1983, while the OTHER tests 

detected the year of 1984. Those detections corresponding to one-year difference may be 

considered as the same breakpoint detection (Hannart and Naveau, 2009). For the Aljezur station, 

the year of 1988 is considered inhomogeneous by the eight sensitivity experiments, while the 

OTHER tests consider Aljezur as homogeneous. The year of 1996 is commonly detected by the 

sensitivity experiments in the Beja station, while the OTHER tests consider the station as 

homogeneous. 

The organisation responsible for the monitoring network, SNIRH, has been contacted to provide 

some historical information (metadata) regarding the detected inhomogeneities. SNIRH 

communicated the absence of information regarding those irregular years. 
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Table 5 - Inhomogeneities detected for each of the sensitivity experiments (four candidate stations) using the 

“two-part search” method. 

Stations 2PS 50  

wide 

2PS 50  

narrow 

2PS 500 

wide 

2PS 500 

narrow 

OTHER tests 

(Costa and 

Soares, 2009a) 

Geostatistical 

approach (Costa 

and Soares, 

2009a) 

Santiago do 

Escoural 

SNIRH 22H.02 

1984 

1987 

1988 

1984 

1987 

1988 

1989 

1996 

1997 

1987 

1989 

1996 

1984 

1987 

1988 

1989 

1996 

1988 

1989 

1987 

1988 

1996 

Aljezur 

SNIRH 30E.01 

1988 

1990 

1996 

1998 

1988 

1988 

1998 
1988 Homogeneous Homogeneous 

Alferce 

SNIRH 30G.01 
1983 

1983 

1999 
1983 1983 1984 1983 

Beja 

ECA 666 

1991 

1996 

1987 

1996 

1991 

1996 

1987 

1996 

Homogeneous 1991 

 

3.4.2 Homogenisation of the second set: ten candidate stations 

For the second set with ten candidate stations, three experiments with 500 simulations are carried 

out with different maximum numbers of nodes (8, 16 and 32). The remaining search parameters 

are: minimum number of data (1), search radius (220000, 200000, 1 for each search direction), 

and “data nodes” search method. These settings are assumed to be optimal, based on the results 

achieved in the previous set of tests: a higher number of simulations leads to a more representative 

pdf; a low minimum number of data contributes to the absence of non-simulated nodes; a wider 

search radius broadens the possible range of simulated values, while the spatial correlation is 

guaranteed by the variogram, which may be preferable when the relation between the pdfs of the 

candidate station and its neighbours is unknown; and, lastly, the “data nodes” search method is 

much faster than the “two-part search” method, albeit it provides similar results. 

The detected inhomogeneous years for that second set are presented in Table 6. Azaruja, Redondo, 

Viana do Alentejo, Odemira and Aldeia de Palheiros stations are considered homogeneous by all 

the DN 500 wide and the OTHER tests. Comporta station is classified as inhomogeneous by the 

OTHER tests in 1986, but it is considered as a homogeneous time series by the sensitivity 
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experiments. Alzejur and Beja stations are classified as homogeneous by the OTHER tests, 

whereas all the DN 500 wide tests consider them as inhomogeneous in the years of 1988 and 

1996. Sabóia and Picota are considered inhomogeneous by all the tests. In the case of the Sabóia 

weather station, the inhomogeneous period comprises the years between 1981 and 1986: the DN 

500 wide tests consider it irregular in the years of 1981, 1982, 1983 and 1986, while the OTHER 

tests classify it as inhomogeneous in 1984 and 1985. This fact may indicate the presence of a 

trend in the beginning of this time series. It may also be due to non-natural changes at that weather 

station (e.g., change of instrumentation, relocation of the time station, or change in the data 

collection procedure). In this case, metadata would be an essential auxiliary for the understanding 

of this inhomogeneous period detected (Trewin, 2013). Regarding the Picota weather station, the 

year of 1988 is commonly identified as inhomogeneous by all the tests. The DN 500 wide 

experiments also identified the years of 1993, 1995 and 1998. 

Table 6 - Inhomogeneities detected for the second set of ten candidate stations. 

Candidate 

Stations  
8 nodes 16 nodes 32 nodes OTHER tests 

Azaruja 

SNIRH 21K.01 
Homogeneous Homogeneous Homogeneous Homogeneous 

Redondo  

SNIRH 22L.01 
Homogeneous Homogeneous Homogeneous Homogeneous 

Comporta 

SNIRH 23E.01 
Homogeneous Homogeneous Homogeneous 1986 

Viana do Alentejo  

SNIRH 24I.01 
Homogeneous Homogeneous Homogeneous Homogeneous 

Odemira 

SNIRH 28F.01 
Homogeneous Homogeneous Homogeneous Homogeneous 

Aldeia de Palheiros  

SNIRH 28H.01 
Homogeneous Homogeneous Homogeneous Homogeneous 

Sabóia 

SNIRH 29G.01 

1981 

1983 
1986 

1981 

1982 

1983 

1986 

1981 

1982 

1983 

1986 

1984 

1985 

Aljezur 

SNIRH 30E.01 
1988 1988 1988 Homogeneous 

Picota 

SNIRH 30K.02 

1988 

1993 

1995 

1998 

1988 

1993 

1995 

1998 

1988 

1993 

1995 

1998 
1988 

Beja  

ECA 666 
1996 1996 1996 Homogeneous 

 

Concerning the two stations included in both the first and second test sets, Aljezur and Beja, and 

in particular Aljezur, it is important to note that the detected inhomogeneities are different. For 
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this station, two years are detected in the DN 500 wide experiment, when tested as part of the set 

containing four candidate stations (the years of 1988 and 1998). In the second set, the Aljezur 

station only has a breakpoint in 1988. This may be explained by the fact that the second test set 

uses references with different data, as some of them were tested and corrected when they 

previously assumed the role of candidates. These three tests, for the sensitivity of the maximum 

number of nodes included in the simulation, prove that increasing the number of nodes does not 

provide a substantial additional proficiency in the detection of inhomogeneities, as the detected 

irregularities are almost the same. Moreover, increasing the maximum number of nodes 

significantly extends the required processing time. 

Figure 5 presents the wet day count values per year of corrected and original series for the second 

set of candidate series. The values of the wet day count for the year 2000 are not calculated. 

Although the original time series present high variability, the corrected series capture their 

temporal pattern appropriately in most cases. 

 
Figure 5 - Corrected versus original time series per candidate station. 

 

3.5 Concluding remarks 

Several sensitivity experiments were conducted in order to evaluate the performance of a method 

based on DSS for the detection of inhomogeneities in climate data series, continuing a previous 

study undertaken by Costa et al. (2008a). In this sense, the geostatistical approach was used as a 



 

 

 

48 

 

qualifying method for quality control, being compared with other detection methods. The 

inhomogeneities detected cannot be considered outliers, but breakpoints, because Costa and 

Soares (2009b) exhaustively scrutinised the same data set in order to remove the outliers present 

in the data. 

A data set comprised of 66 monitoring weather stations located in the south of Portugal was 

compiled and the wet day count precipitation index was used as the climate variable. From the 

initial data set, two smaller sets, comprising four and ten candidate stations each, were selected 

in order to test some parameters used by the DSS algorithm. The evaluated parameters included 

the number of simulations and the search neighbourhood specification, thus determining the 

number of nodes to be included in each simulation of a grid node. It was concluded that this 

method succeeds in the detection of inhomogeneities for climate data series, since it provides 

similar results to other popular detection techniques (Costa and Soares, 2009a). Hence, the 

geostatistical approach has only been evaluated as an inhomogeneities detection technique, so it 

has not been sufficiently assessed to be considered a homogenisation procedure. Accordingly, the 

geostatistical approach should be further investigated. 

It was also possible to conclude that a higher number of simulations lead to better detection 

results, since allows estimating the local distribution with higher precision. However, increasing 

the number of nodes included in the simulations did not bring enough benefits to justify the 

increasing computing time. Another advantage of the geostatistical approach is the filling in of 

missing values in the climate data series. The estimation of missing data is one of the most 

important tasks required in many hydrological modelling studies (Teegavarapu and 

Chandramouli, 2005). Moreover, the inclusion of new values to replace missing data may 

similarly contribute to the improvement of the testing of the following candidate stations, since 

these new data values will also be considered in the process. 

It should also be emphasised the importance of metadata to confirm inhomogeneities detection, 

regarding artificial discontinuities inserted to data series due to changes in the measurement 

procedure, as also referred in the third monitoring climate principle provided by the WMO: “The 

details and history of local conditions, instruments, operating procedures, data processing 

algorithms, and other factors pertinent to interpreting data (metadata) should be documented and 

treated with the same care as the data themselves.” (World Meteorological Organization, 2010). 

Costa and Soares (2009a) considered the geostatistical approach as slow and laborious, since it 

required a considerable amount of user interaction in the creation of data files and parameters 

settings prior to its initialisation. For that reason, it was not practical to assess a large number of 

candidate stations. Nonetheless, that study revealed promising results and proved the potential 

advantages of geostatistical techniques for inhomogeneities detection in climate time series. The 



 
DETECTION OF INHOMOGENEITIES IN PRECIPITATION IN PORTUGAL USING DIRECT 

SEQUENTIAL SIMULATION 

 

49 

 

present study brought new developments to the geostatistical approach. The process was 

enhanced in terms of computational efficiency and ease of application, enabling the increase of 

the number of candidate stations and the number of simulations. 

The performed analyses are very important for the construction of a new software package that 

uses the DSS in the homogenisation algorithm that should be further investigated. All the steps 

carried out in the procedure were completed with the assistance of computer scripts which will 

lead to the development of a new software package. This new package, called gsimcli, is a work 

in progress project aiming to make the inhomogeneities detection and homogenisation of climate 

data series easier and more straightforward, with less user interaction, by also including the 

management and automatic creation of input data files. The set of parameters that provided the 

best results in the sensitivity analysis (DN 500 wide test with 16 nodes) will be included in gsimcli 

as the default values. 
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4 gsimcli: a geostatistical procedure for the homogenisation of climatic 

time series3 

Abstract 

Climate data homogenisation is of major importance in monitoring climate change and in 

validating weather forecasts, general circulation and regional atmospheric models, modelling of 

erosion and drought monitoring, among other impact studies. Discontinuities in the time series, 

also named inhomogeneities, may lead to biased conclusions in such studies, so they should be 

detected and corrected. Previous studies have suggested a geostatistical stochastic approach, 

which uses Direct Sequential Simulation (DSS), as a promising methodology for the 

homogenisation of precipitation data series. Based on the spatial and temporal correlation between 

the neighbouring stations, DSS calculates local probability density functions at a candidate station 

to detect inhomogeneities. Here, we present a new method named gsimcli (Geostatistical 

SIMulation for the homogenisation of CLImate data), which is an improved and extended version 

of that approach. This technique is novel in its incorporation of spatial correlation metrics for the 

homogenisation of climate time series. The method's performance is assessed with annual and 

monthly precipitation, and monthly temperature data from two regions of the COST-HOME 

benchmark data set, and the results are compared using performance metrics. We also evaluate a 

semi-automatic version of the gsimcli method, which performs additional adjustments for sudden 

shifts. Both gsimcli versions provided similar results in the homogenisation of annual series. The 

gsimcli method was more efficient in the homogenisation of the benchmark’s precipitation series 

than the original geostatistical approach. The gsimcli approach performed more closely to state-

of-the-art procedures in the homogenisation of monthly data than in the homogenisation of annual 

data. We expect that the proposed procedure will open new perspectives for the development of 

techniques that detect and correct inhomogeneities in climate data with monthly and sub-monthly 

resolution. 

4.1 Introduction 

Climatic time series may be affected by non-natural irregularities caused by sudden or gradual 

changes on the surrounding environment of the weather station, or changes in the process of 

measurement and recording of the climate variable (e.g., Aguilar et al., 2003; Brunet and Jones, 

                                                      
3 Ribeiro S, Caineta J, Costa AC, Henriques H. 2016, gsimcli: a geostatistical procedure for the 

homogenisation of climatic time series, International Journal of Climatology, in press. doi: 

10.1002/joc.4929 
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2011; Trewin, 2010). Station relocations, repositioning at different heights and changes in the 

instrumentation are examples of the former. Gradual changes may be exemplified by slowly urban 

development around a weather station, contributing to the phenomenon known as urban heat 

island effect (Sahin and Cigizoglu, 2010). The presence of inhomogeneities can distort or even 

hide the true climatic signal, and thus bias the results of studies (e.g., Domonkos, 2013a; 

Yozgatligil and Yazici, 2016). Several homogenisation methods have been developed in the last 

decades to detect inhomogeneities and to adjust the climatic time series in order to improve their 

temporal consistency (Domonkos et al., 2012; Ribeiro et al., 2016a). Homogenisation methods 

depend on the climate variable (temperature, precipitation, pressure, evaporation), on the 

temporal resolution of the observations (annual, seasonal, monthly or daily), on the availability 

of information on the history of the weather station, and on the spatial density of monitoring 

stations within the study area (Costa and Soares, 2009a). Ribeiro et al. (2016a) classified the 

homogenisation methods according to their characteristics: non-parametric tests, classical tests, 

regression methods, Bayesian approaches, and procedures specifically proposed for the 

homogenisation of climate data series. Those authors also describe comparison studies that 

evaluated the efficiency of homogenisation methods, and summarise many methods applications. 

Domonkos et al. (2012) present a chronological review of the theoretical properties of the most 

relevant statistical tools that have been developed for the homogenisation of temperature series. 

Aguilar et al. (2003) and the World Meteorological Organization (2010) emphasise the 

importance of metadata in the homogenisation of climate time series. By using all the available 

metadata and stations’ history, it is possible to anticipate and preview the type of problems that 

climate data may have and when they should appear. Since this is often unattainable, it is 

advisable to compare the stations’ history with the data analysis, in a double check process. 

Homogenisation approaches can be classified as absolute and relative. Absolute methods only 

consider the climatic time series of the station to be homogenised (candidate station), while 

relative homogenisation uses time series from neighbouring stations. Absolute homogenisation 

may be problematic, because it is difficult to determine if changes, or lack of changes, result from 

non-climatic or climatic influences without the support of the station’s history information 

(Peterson et al., 1998). Absolute approaches are not recommended as they can even introduce 

more errors into the climate series (Begert et al., 2005; Guijarro, 2011; Venema et al., 2012). 

Relative homogenisation is preferred when the spatial density and coherence of the observed data 

allows it (Costa and Soares, 2009a; Domonkos, 2013a; Ribeiro et al., 2016a). Relative 

homogenisation relies on comparing the candidate time series to multiple reference series from 

surrounding stations in a pairwise fashion, or to a single composite reference series computed 

from multiple neighbouring stations (Venema et al., 2012). More specifically, time series 

comparisons can rely either on building one composite reference series for each candidate series, 
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on using multiple reference comparisons for each candidate series, or on using multiple 

comparisons without defining which are the candidate and the reference series (Domonkos, 

2013a). Composite reference series are usually built as a weighted average of data from 

surrounding stations by using some measure of statistical similarity between them (Aguilar et al., 

2003). The comparison series are computed as the difference (in case of temperature, pressure, 

etc.) or ratio (precipitation, wind, etc.) between the candidate and the reference. The comparison 

series are statistically tested, or a penalised likelihood criteria is used, to assess the significance 

of changes. Homogenisation corrections may be estimated directly from the comparison series as 

follows (Aguilar et al., 2003). If a series must be adjusted for a sudden shift, a common approach 

is to calculate separate averages on the comparison series for the two sections defined by the 

breakpoint. Then, the obtained means are compared by calculating their ratio or their difference, 

depending on the variable, and the resulting factor is then applied to the inhomogeneous part. 

When gradual inhomogeneities are detected, the usual approach is to de-trend the inhomogeneous 

section using the slope calculated on the ratio time series. When multiple references or pairwise 

estimates are available, a combination of those estimates is used (e.g., a mean or median). A 

different approach based on multiple reference series is used by MASH ¬– Multiple Analysis of 

Series for Homogenisation (Szentimrey, 1999), which considers the adjustment-factors as the 

lower limits of confidence intervals to keep a low false alarm detection rate (Domonkos, 2013a). 

Once a first correction has been performed, most methods perform a review (Venema et al., 2012). 

Aguilar et al. (2003) recommend the adoption of a reverse chronological approach to adjust annual 

(monthly) series experiencing more than one discontinuity, in which the most recent 

homogeneous period is used as a standard and earlier periods are adjusted to reflect these current 

conditions. By doing so, incoming data in the future will still be homogeneous unless further 

changes occur in the monitoring station. Moreover, even if additional changes take place, another 

advantage of this strategy is that it allows for easier updating (Auer et al., 2005). Allen and 

DeGaetano (2000) argue that it is also reasonable to base adjustments on the longest stationary 

homogeneous period within a station’s record, and then proceed chronologically, but with the 

decision to adjust earlier or more recent periods again based on the series length. One advantage 

of this approach is that the quantity of data that is subject to adjustment is minimised. 

The selection of the homogenisation procedure is an effortful task. Domonkos (2015) refers three 

reasons for the complexity of the selection of the homogenisation procedure: first, the 

applicability of the method highly depends on the properties and the spatial and temporal structure 

of the climatic records to be homogenised; second, the efficiency of the homogenisation can be 

measured empirically only with synthetic test data sets, even though the observed efficiency might 

differ from the true efficiency due to the deviations in the test data set from the real data; and, 
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third, metadata sometimes provide more reliable information than statistical tests. In 2008, the 

HOME project (COST Action ES0601) gathered a group of climate experts in order to compare, 

evaluate and develop homogenisation methods using a benchmark dataset of temperature and 

precipitation series (Venema et al., 2012). To create the COST-HOME benchmark datasets, 

known inhomogeneities and other data disturbances were inserted. Under this project, 25 

contributions based on 13 statistical homogenisation algorithms were submitted before the release 

of the list of known/inserted inhomogeneities (the “truth”) in the data sets (blind contributions), 

and their results were evaluated with performance metrics. Later, some of the blind contributions 

were improved to address problems revealed by the results. One of the main conclusions of the 

HOME project is that the most efficient methods are those that deal with inhomogeneous 

neighbouring series, as well as with the interactions of multiple breakpoints and their effects on 

the calculation of correction terms, namely ACMANT (Domonkos et al., 2011a), MASH 

(Szentimrey, 1999, 2006b, 2007,), PRODIGE (Caussinus and Mestre, 1996, 2004) and USHCN 

(Menne and Williams Jr., 2009; Menne et al., 2009). According to Domonkos et al. (2012), these 

procedures provide the reconstruction and preservation of true climatic variability in 

observational time series with the highest reliability. Although more limited regarding some tasks, 

the Craddock method (Brunetti et al., 2006; Craddock, 1979) also had an excellent performance 

and it is recommended for practical use (Domonkos, 2013a; Venema et al., 2012). 

Several methods proposed in the literature have been developed as software packages, which 

intend to reduce the time consumed during the homogenisation process and to minimise the users’ 

interaction. Ribeiro et al. (2016a) describe their main characteristics, namely of ACMANT and 

its units ACMANT2 (Domonkos, 2015), Climatol (Guijarro, 2006), RHTest (Wang, 2008), 

AnClim and ProClimDB (Štěpánek, 2008a, 2008b), and HOMER (Mestre et al., 2013). More 

recently, the ACMANT3 unit has been released (Domonkos and Coll, 2016). Some of the methods 

recommended by the HOME project are available in HOMER for monthly data, and 

HOM/SPLIDHOM for daily data (Mestre et al., 2011). 

This article presents the gsimcli method, which is an extension of the geostatistical approach 

proposed by Costa and Soares (2009a) and Costa et al. (2008a). Costa et al. (2008a) proposed to 

use the DSS – Direct Sequential Simulation algorithm (Soares, 2001) to calculate the local 

probability density function (pdf) at a candidate station's location. The DSS algorithm generates 

realisations of the climate variable through the resampling of the global pdf using the local mean 

and variance of the candidate station, which are estimated through a spatiotemporal model using 

Ordinary Kriging. The local pdf from each instant in time is then used to verify the existence of 

irregularities in the candidate station’s series. Costa and Soares (2009a) proposed to adjust the 

candidate series by replacing the inhomogeneous records with the mean (or median) of the pdfs 

calculated at the candidate station's location for the inhomogeneous periods. The capability of the 
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geostatistical approach to detect inhomogeneities in real precipitation data was tested with very 

auspicious results by Costa and Soares (2009a) and Ribeiro et al. (2016b). However, the original 

geostatistical approach was considered slow, laborious and very computationally intensive. 

The gsimcli method aims to provide more local information to the calculation of the local pdf of 

the candidate station, in order to better estimate the climatic signal of its surrounding area. 

Furthermore, we propose a different approach to adjust for sudden shifts in the inhomogeneous 

series, which is based on composite reference series derived from the estimated local pdf. Along 

with the implementation of the new methodology, a software package was developed, also named 

gsimcli, with the purpose of making its application easier and more direct. The gsimcli software 

and its source code are freely available on the internet (http://iled.github.io/gsimcli). 

The gsimcli method’s efficiency was assessed through the homogenisation of annual and monthly 

precipitation data from surrogate networks of the COST-HOME benchmark. This was also the 

main type of artificial data considered by researchers under the HOME project, because the 

surrogate data provide an estimate of the accuracy of the homogenisation algorithms. Unlike most 

of those researchers, we evaluated the gsimcli method’s performance using precipitation data, 

which is more difficult to homogenise than temperature. 

This article is organised as follows. Section 4.2 describes the methodology, including the gsimcli 

method formulation and the considered performance metrics. The study area and the surrogate 

precipitation data are addressed in Section 4.3. Several homogenisation exercises have been 

performed using the (original) geostatistical approach and different implementation strategies of 

the gsimcli method, as detailed in Section 4.3. The results of the different homogenisation 

exercises are presented and discussed in Section 4.4. Finally, the conclusion and future work are 

presented in Section 4.5. 

4.2 Methodology 

4.2.1 gsimcli method 

Climate observations correspond to realisations (outcome values) of a spatiotemporal random 

variable 𝑍(𝑢, 𝑡) that can take a series of values at any location in space u and instant in time t 

according to a probability distribution. The set of climate data measured at n locations u and in 

ti time instants is 

{z(uα, ti): α = 0, 1, … , n − 1; i = 1, … , T},   (1) 

where {𝑧(𝑢0, 𝑡𝑖): 𝑖 = 1, … , 𝑇} denotes the set of values of the candidate station, and 

{𝑧(𝑢𝛼 , 𝑡𝑖): 𝛼 = 1, … , 𝑛 − 1;  𝑖 = 1, … , 𝑇} denotes the set of values of the reference stations. For 
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each instant in time ti, the DSS algorithm is applied in order to obtain a set of m equally probable 

realisations of 𝑍(𝑢, 𝑡𝑖) using the whole set of climate data except the 𝑧(𝑢0, 𝑡𝑖) value. In practice, 

m equally probable surfaces are simulated on a grid without taking into account the candidate’s 

data for the period being tested. 

The DSS algorithm simulates directly in the original data space and does not rely on multi-

Gaussian assumptions. The simulated surfaces have the same statistical characteristics (auto-

covariance, global sample mean and variance, and histogram) of the original variable (Soares, 

2001). Because kriging interpolation requires a positive definite model of spatial variability, a 

variogram model must be specified. For long-term time series, it is advisable to split the series in 

smaller sections, in order to guarantee that the statistical properties are consistent within these 

sections, as recommended by Costa et al. (2008b) and Durão et al. (2010). Accordingly, the DSS 

algorithm should be applied independently on those smaller sections (e.g., by decade). 

In the gsimcli method, the local pdf of the candidate station, for each instant in time (ti), is defined 

by the set of spatiotemporal random variables that belong to a circular local neighbourhood 

centred at the candidate station's location: 

{𝑍𝑘(𝑢𝛼 , 𝑡𝑖): 𝑟 = 0, … , 𝑅;  𝛼 = 0, … , 𝑊𝑟;  𝑖 = 1, … , 𝑇;  𝑘 = 1, … , 𝑚},  (2) 

where Wr denotes the number of locations within a circle of radius r (local radius parameter) 

centred at the candidate station location (u0). Accordingly, the estimated local pdf of the candidate 

station for a given instant in time t0 is the set of simulated values: 

{𝑧𝑘(𝑢𝛼, 𝑡0): 𝑟 = 0, … , 𝑅;  𝛼 = 0, … , 𝑊𝑟;  𝑘 = 1, … , 𝑚}      (3) 

When r = 0, it is implied that the local pdf of the candidate station will only depend on the 

simulated values at its exact location. This parameter allows estimating the local pdfe of the 

candidate station with data that contribute to better describe the climatic signal of the area on 

which the candidate is located. The corresponding empirical cumulative distribution function 

gives the estimated probability that the variable Z at location u0 in space and instant t0 in time is 

no greater than any given threshold z: 𝐹∗(𝑢0, 𝑡0; 𝑧) = 𝑃𝑟𝑜𝑏∗{𝑍(𝑢0, 𝑡0) ≤ 𝑧}. 

For the detection of irregularities (breakpoints, trend-type inhomogeneities and outliers), the 

method proceeds as proposed by Costa and Soares (2009a). An irregular record z(u0, t0) is 

identified if the interval of a specified probability p (detection parameter, e.g., 0.95), centred in 

the estimated local pdf of the candidate station for the instant t0, does not contain the observed 

z(u0, t0) value: 

𝑃𝑟𝑜𝑏∗{𝑍(𝑢0, 𝑡0) ≤ 𝑧(𝑢0, 𝑡0)} <
1−𝑝

2
     or     𝑃𝑟𝑜𝑏∗{𝑍(𝑢0, 𝑡0) ≤ 𝑧(𝑢0, 𝑡0)} < 1 −

1−𝑝

2
 (4) 
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The detection and correction of irregularities, as well as missing values filling, are automatic 

procedures in the original geostatistical approach (Costa and Soares, 2009a). Missing values are 

replaced by the mean of the local histogram of the candidate station for the corresponding time 

instant. Irregular values can be replaced by the mean, median, or other statistic (correction 

parameter) of the estimated local pdf for the inhomogeneous period(s). If the correction parameter 

is set to a percentile value equal to p (e.g., 0.95), irregularities are replaced with the percentile (1–

p)/2 or 1–(1–p)/2, depending on the irregularities being located in the lower or upper tail of the 

pdf, respectively. In such case, the values of the percentiles (p) used for detection and correction 

do not have to be the same. The geostatistical approach deals with trend-type inhomogeneities by 

correcting multiple irregularities within inhomogeneous periods. No further corrections and 

adjustments have been proposed by Costa and Soares (2009a) and Costa et al. (2008a). 

Once a candidate station is tested, the corrected time series is included in the detection process of 

the next candidate station as a reference time series for the calculation of the local pdf. Therefore, 

the detection of inhomogeneities in the second candidate station benefits from the corrections 

applied to the first candidate station, the third one will benefit from the previous two, and so on 

and so forth. Accordingly, it would be desirable to homogenise the most inhomogeneous series 

first, but those are unknown when homogenising real data. To overcome this limitation, the 

homogenisation sequence may be determined by an indicator of the level of the series 

inhomogeneity, such as the descending order of variance or the decreasing value of the difference 

between the station average and the network average (network deviation). The gsimcli software 

includes several alternative options to determine the order in which stations are tested: ID order, 

network deviation, random, variance (greater or lower), and the sequence specified by the user 

(e.g., to start with the series with more missing values in order to fill them in). 

The automatic gsimcli method, previously described, can be extended to adjust for sudden shifts 

using a semi-automatic approach. Adjustments should be done cautiously and station history 

information should be used to support decisions, since corrections may introduce higher errors 

than the irregularities they try to remove. Moreover, Domonkos et al. (2011b) state that “not 

correcting some detected breaks may well sometimes lead to more accurate data”. 

The homogenisation adjustments are estimated from a comparison series, which is computed as 

the ratio (in case of precipitation) between the automatically corrected candidate series and the 

corresponding composite reference series. This reference series is defined by the time series of 

the means 𝑧̅(𝑢𝛼 , 𝑡𝑖) calculated from the local pdfs of the candidate station for each instant in time 

ti: 

𝑧̅(𝑢𝛼 , 𝑡𝑖) =
1

𝑚+𝑊𝑟
∑ ∑ 𝑧𝑘(𝑢𝛼, 𝑡𝑖)𝑊𝑟

𝛼=1
𝑚
𝑘=1 ,   𝑖 = 1, … , 𝑇              (5) 
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The reason for considering the time series of the means, instead of another statistic, was that the 

mean and the median have very similar time series if the number of simulations is high enough 

(Ribeiro et al., 2016b). Besides, the detection percentile should not be used because its time series 

has high variability, since in some instances in time it takes values corresponding to the lower tail 

of the local pdf, and for other instances it corresponds to the upper tail value. 

The dates of the detected irregularities, together with the inspection of both the comparison series 

and the candidate series, serve to judge each detected inhomogeneity as a potential sudden shift, 

an outlier or a trend-type inhomogeneity. When decisions cannot be supported by stations’ 

metadata, the comparison series can be statistically tested to assess the significance of such 

changes. In this study, we used the Buishand range test (Buishand, 1982) with a 5% significance 

level for this purpose. 

Outlier and trend-type inhomogeneities are adjusted using the correction parameter, as suggested 

by Costa and Soares (2009a), before applying any adjustments for sudden-shifts. The dates of 

sudden shifts are used to divide the comparison series into segments, and separate averages are 

calculated on each segment. Then, the obtained means are compared by calculating their ratio (in 

case of precipitation) with the mean of the most recent period. The resulting factors are then 

applied to the corresponding segments of the automatically corrected candidate series. 

4.2.2 Performance metrics 

From the climatologists’ point of view, efficiency metrics are more appropriate to evaluate the 

homogenisation methods capability to improve the temporal consistency of the climatic time 

series than detection scores (Domonkos et al., 2011b). Domonkos (2013a) discusses the problems 

that arise from the application of the hit rate and detection skill, which are the most traditional 

efficiency measures used by developers of homogenisation methods. In this study, we used the 

efficiency metrics proposed by Venema et al. (2012) to assess the homogenisation methods’ 

performance. 

A well-known statistical metric for measuring model performance is the root mean square error 

(RMSE): 

RMSE(X) = √
1

𝑛
∑ (𝑥𝑖 − 𝑡𝑖)2𝑛

𝑖=1  ,    (6) 

where the xi are the homogenised values, the ti are the true (fully homogeneous) values, and n is 

the sample size. The RMSE can be calculated for various time units of the observed series (e.g., 

month, year, and decade time units). 

Venema et al. (2012) introduced a modified version of RMSE, the Centred RMSE (CRMSE), 

which is used as a basic accuracy metric of the data at the highest available resolution. The 
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motivation of using CRMSE instead of RMSE in the HOME project was to eliminate the effect 

of unknown mean station effects (Domonkos, 2013a). The Station CRMSE is defined as the 

RMSE of the anomalies relative to the mean bias, and it is computed on single station data 

directly: 

CRMSE(X) = √
1

𝑛
∑ (𝑥𝑖 − 𝑡𝑖 − X − T̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑖=1  ,    (7) 

where the upper stroke means arithmetical average, and X and T stand for homogenised and true 

(fully homogeneous) time series, respectively. This metric is similar to the standard deviation of 

the time series of the difference between the homogenised data and the truth. 

The Station CRMSE quantifies the homogenisation efficiency for each station individually. The 

Network CRMSE measures the efficiency of the homogenisation of the network, as a whole. It is 

calculated using the mean CRMSE, by network. The Station [Network] Improvement evaluates 

the enhancement over the inhomogeneous data, and it is computed as the ratio of the Station 

[Network] CRMSE of the homogenised networks with the Station [Network] CRMSE of the same 

inhomogeneous networks. As in Venema et al. (2012), data corresponding to missing data or 

outliers were not taken into account in the above computations. 

The performance metrics were also computed for the blind submissions to the HOME project 

using the homogenised series available at the HOME project’s website 

(http://www.homogenisation.org; accessed May 2016). 

4.3 Climate data and homogenisation framework 

The HOME project (COST Action ES0601) included the creation of a benchmark data set 

containing real inhomogeneous data, as well as simulated data with inserted inhomogeneities. 

Venema et al. (2011) discuss the generation of this benchmark data set, the climate variables 

considered, which types of data are considered, how they have been produced, the ways to 

introduce artificial inhomogeneities, and additional specifications such as length, missing data 

and trends. The benchmark has different types of monthly datasets (temperature and precipitation) 

organised in three sections: real, surrogate, and synthetic data. Real inhomogeneous data is 

composed of temperature and precipitation monthly data series from a set of weather stations 

located in Europe, because of their importance for climate studies, and because they represent two 

important types of statistics (additive and multiplicative, respectively). These real data sets allow 

the comparison between different homogenisation methods with the most realistic type of data 

and inhomogeneities (Venema et al., 2011). The objective of the surrogate data set is to reproduce 

the structure of measured data accurately enough that it can be used as substitute for 

measurements. Surrogate climate networks reproduce the temporal cross-correlation structure of 
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existing homogenised networks, as well as the temporal auto-correlation functions of the stations 

(Venema et al., 2012). Inhomogeneities were random and independently inserted in the surrogate 

data sets, with a normal distribution of the breakpoint sizes, and they were simultaneously 

introduced in multiple station series within a simulated network (Venema et al., 2012). These 

inhomogeneous surrogate data sets also include outliers, missing data periods and local station 

trends. Additionally, a stochastic nonlinear network-wide trend was added. The synthetic data 

sets are based on the surrogate networks, though the differences between the stations have been 

modelled as uncorrelated Gaussian white noise. The statistical properties of the synthetic data are 

those assumed by most statistical tests used for homogenisation. This data is easier to homogenise 

than the more realistic surrogate data (Venema et al., 2012). 

4.3.1 Study area and data 

Only surrogate series from the COST-HOME benchmark were subject to homogenisation. The 

following describes the precipitation data from networks 5 and 9 that have been homogenised. 

These networks have nine and five weather stations, respectively, and are both located in France 

(Figure 6). Network 9 includes five of the nine weather stations from network 5, but the time 

series are different in the two networks. The benchmark data set comprises precipitation monthly 

data for a period of 100 years (1900 – 1999). It also contains temporal intervals with missing data, 

which occur in the first decades (1900 – 1930) and in the beginning of the fifth decade (1940 – 

1945). The lack of data intends to mimic the absence of weather stations in the beginning of the 

century, and the absence of measurements during the Second World War, respectively. Networks 

5 and 9 cover a rectangular area of approximately 4000 km2 (50 km x 80 km). These two networks 

were selected because they correspond to the precipitation networks homogenised by the MASH 

Marinova submission to the HOME project (MASH method operated by a first-time user named 

Marinova) described by Venema et al. (2012). 

In this study, the monthly and annual precipitation data from those networks were subject to 

exploratory data analysis and homogenisation. The annual precipitation series were derived from 

the monthly series. As expected, the annual and monthly series from all stations have high 

variability and several potential outliers. Regarding network 5, station 21142001 has the highest 

precipitation values in the first decades. Considering the data from all nine stations, there are 102 

years with missing precipitation data. The correlation coefficients of the stations’ annual series 

vary between 0.496 and 0.847. The lowest correlation corresponds to two stations located at the 

centre of the network (21142001 and 21425001). The highest correlation corresponds to the 

stations 21142001 and 21386001. Considering the annual series from network 9, all stations have 

similar distributions, except station 21584001 that has higher values. The correlation coefficients 
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of the stations’ annual series vary between 0.498 (stations 21454001 and 21425001) and 0.883 

(stations 21454001 and 21109001). 

 

 

Figure 6 - Location of stations from networks 5 and 9 in France (Digital Elevation Model source: Jarvis et al., 

2008). 

 

The main spatial patterns of the precipitation data were also investigated, particularly the presence 

of anisotropy. An attribute has an anisotropic behaviour when it exhibits a different spatial auto-

correlation structure for different directions. The possible existence of anisotropy was analysed 

by producing an interpolated surface of the precipitation data for a sample of years using the 

Inverse Distance Weighting (IDW) interpolator. Although time consuming, these analyses were 

important, because if an attribute shows different auto-correlation structures in different 

directions, then an anisotropic variogram model should be developed to reflect these differences. 

The most commonly employed model for anisotropy is the geometric anisotropy, with the 

variogram reaching the same sill in all directions, but at different ranges. The interpolated surfaces 

obtained using IDW neither revealed an overall trend, nor an overall anisotropic pattern in any of 

the networks. 

Considering that the variogram modelling is a very important stage of geostatistical methods, a 

thorough variography analysis was undertaken. Due to the variability of precipitation data, the 

lack of data in several decades, and, mainly, the reduced size of the monitoring networks, that 

analysis revealed to be a challenging task. Many experimental variograms exhibit a variability 

pattern such that the correlation between stations’ data seems to be lost at short distances. 

Accordingly, the spatial features of precipitation occur at scales smaller than the distance between 
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monitoring stations. For this reason, modelling the experimental variograms, and the nugget effect 

in particular, was not a straightforward task. Moreover, with very widely spaced data, a realistic 

estimate of the range parameter was also sometimes difficult to obtain. A way to overcome these 

drawbacks is the use of additional data provided by other weather stations located in the 

surrounding study area. However, such task could not be performed, since only the provided data 

sets by the HOME project could be used in the process. 

In previous exploratory homogenisation activities with the original geostatistical approach, 

different variogram models for the spatial continuity structure of the data were assessed (Costa et 

al., 2015). The variogram models that lead to the best performance metrics are considered in this 

study. As recommended by Costa et al. (2008b) and Durão et al. (2010), variograms were first 

estimated by decade in order to account for possible long-term trends, or fluctuations, in the 

precipitation auto-correlation structure. This approach was followed in the case of annual data 

from network 5 (Table 7). Due to the small number of stations in network 9, a single variogram 

model for the whole 1900–1999 period was estimated for the annual data (Table 7). Previous 

exploratory homogenisation activities indicated that using all yearly data to infer a single 

variogram model for network 9 provided similar results to using the same decadal variogram 

models inferred for network 5 (Costa et al., 2015). Hence, estimating a single variogram model 

for the whole period is the recommended solution in case of small networks. 

Table 7 - Variogram models of the annual precipitation series from networks 5 and 9. 

 

 

Due to the lack of data in the monthly series, a unique variogram model was estimated for the 

first, second and third decades (1900–1929) from network 5, for each month (Table C.1 of the 

Appendix C). For the same reason, the fourth and fifth decades’ data were also combined in order 

to obtain another single variogram model. Seven variogram models were prepared for each 

Decade Model Nugget Range Partial Sill 

Network 5 

1900 - 1909 Exponential 11000 26000 55000 

1910 - 1919 Exponential 2500 24000 34000 

1920 - 1929 Exponential 2000 19000 52000 

1930 - 1939 Exponential 6500 20000 47500 

1940 - 1949 Exponential 0 22000 43000 

1950 - 1959 Exponential 4500 23000 26000 

1960 - 1969 Exponential 10000 20000 42500 

1970 - 1979 Exponential 6500 18000 26000 

1980 - 1989 Exponential 8000 20000 32000 

1990 - 1999 Exponential 3000 20500 24000 

Network 9 

1900 - 1999 Exponential 0 27500 8700 
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monthly series, in a total of 84. The estimated variogram models for network 5 were also used in 

network 9 (Table C.1 of the Appendix C), since the reduced number of stations in this network 

did not allow to obtain a reliable estimate of the variogram model. 

4.3.2 Specifications of the homogenisation exercises 

Several homogenisation exercises were undertaken for the precipitation networks 5 and 9 from 

the COST-HOME benchmark using different sets of parameters (Table 8). We investigated the 

impact of two strategies on the definition of the simulation grids. The homogenisation exercises 

used a regular grid comprising 9882 cells (81 x 122 cells) for a grid cell size of 1 km, except one 

exercise with annual data that used a regular grid with 425 cells (17 x 25 cells) having a cell size 

of 5 km. Different values of the local radius parameter (r) were also considered, ranging from 1 

to 5 cells (Table 8). All homogenisation exercises with the gsimcli method used the following 

common set of parameters: 

 Candidates order = descending order of the stations’ data variance; 

 Number of simulations (m) = 500; 

 Detection parameter (p) = 0.95; 

 Correction parameter =percentile value of 0.975. 

Table 8 - Parameters of the homogenisation exercises with the gsimcli method. 

Test # Grid cell size 
Local radius 

parameter (r) 

Annual time series 

1 1000 m 1 

2 1000 m 2 

3 1000 m 3 

4 1000 m 4 

5 1000 m 5 

6 5000 m 1 

Monthly time series 

7 1000 m 0 

8 1000 m 1 

9 1000 m 2 

 

The annual series were homogenised using both the automatic and semi-automatic versions of 

gsimcli. Considering that the later did not significantly improve the method’s efficiency, the 

monthly series were only homogenised using the automatic gsimcli. In the adjustments stage of 

the annual series, whenever the candidate series had missing values in the beginning of the time 
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series, it was considered the existence of a breakpoint at the first date with data in the 

automatically corrected candidate series. Therefore, the missing values that were automatically 

estimated were also adjusted, despite the fact that these data are not used in the computation of 

the performance metrics. 

The original geostatistical approach (Costa and Soares, 2009a) was also used to homogenise the 

annual time series from networks 5 and 9. This was accomplished by setting the local radius 

parameter (r) to zero, and the correction parameter to the mean of the local pdf of the candidate 

station. No further adjustments were applied in these homogenisation exercises. The simulation 

grid was defined with cells of 1 km2. 

4.4 Results and discussion 

The automatic gsimcli method homogenises candidate time series using the correction parameter 

derived from the estimated local pdf for the inhomogeneous periods. In the semi-automatic 

version, the automatically corrected candidate series are further adjusted using correction factors 

derived from comparison series. These are based on composite reference series corresponding to 

the series of means computed from the estimated local pdfs. The different parameters used in the 

homogenisation of the precipitation series are described in Section 4.3.2. The following sections 

detail the results of the precipitation data homogenisation. 

4.4.1 Annual precipitation series 

For illustration purposes, Figure 7 shows the candidate time series of station 21142001 from 

network 5, and the homogenised series that were obtained using the gsimcli method with the 

parameters specified for Test #6 (Table 8), as well as the corresponding composite reference series 

and comparison series. The Buishand range test identified a significant sudden shift in 1952 in 

this candidate time series. No other significant breakpoints were identified in the segments before 

and after this year. 

The irregular years identified in the automatic stage of gsimcli, as well as the years corresponding 

to significant sudden-shifts identified by the Buishand’s test are listed in Table C.2 (Appendix C). 

This table also presents the years defined by HOME project as breakpoints and outliers. It is 

important to note that these irregularities were introduced in the monthly time series of the 

benchmark data set. Certain inhomogeneities might only be evident at certain timescales of 

variability (Yan and Jones, 2008). In this study, those monthly irregularities were considered as 

annual breakpoints for comparison purposes, thus the detection results should be analysed with 

caution. Those inhomogeneities might not be detected as breakpoints in the homogenisation 

exercises, since the annual amounts of precipitation may smooth those monthly irregularities. 
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Figure 7 - Graphic (a) shows the candidate time series of station 21142001 from network 5, and the 

corresponding homogenised series using the automatic and semi-automatic versions of gsimcli with the 

parameters specified for Test # 6. Other graphics show the comcomposite reference series (b) and the 

comparison series (c) used in the homogenisation of this candidate series with the semi-automatic gsimcli. 
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The number of years with detected irregularities by the automatic gsimcli does not seem to be 

dependent of the local radius parameter (r), since it is similar in the different homogenisation 

exercises. It is higher than the number of breakpoints defined by the HOME project. In some 

cases, a sequence of more than two consecutive years with irregularities is detected, which can be 

assumed as the detection of a trend-type inhomogeneity in the candidate series by the automatic 

gsimcli (e.g., in the station 21454001 from network 5 there are breakpoints detected consecutively 

from 1911 to 1914, from 1940 to 1946, and from 1987 to 1993). 

The breakpoint years detected by the Buishand’s test are similar for all homogenisation exercises, 

varying from zero to three, thus the performance metrics obtained with the automatic and semi-

automatic gsimcli are also similar (Table 9).The automatically corrected candidate series from 

stations 21454001, 21501003 and 21584001 from network 5, and station 21109001 from network 

9, were considered as homogeneous by the Buishand’s test in all homogenisation exercises. One 

additional breakpoint year (1984) was identified in the automatically corrected candidate series 

from station 21310001 from network 5, and two additional years (1906 and 1918) in station 

21584001 from network 9, using the homogenisation Test #6. Only one breakpoint year (1926) 

was identified in station 21425001 from network 9 using the homogenisation Test #1, whereas all 

other homogenisation exercises identified two breakpoint years (1917 and 1926) in this station. 

The breakpoint year of 1937 was not identified in station 21711001 from network 9 using the 

homogenisation Test #2. 

The performance metrics were computed for the homogenisation exercises considering the 

application of the automatic gsimcli method (without adjustments for sudden shifts), and the semi-

automatic version (with the additional adjustments stage) (Table 9 and Table 10). The 

performance metrics were also computed for the homogenisation activities undertaken with the 

original geostatistical approach, and for the blind submissions to the HOME project that 

homogenised networks 5 and 9. All the homogenisation exercises undertaken with the annual 

precipitation data from network 9 (Table 10) made the data more inhomogeneous, i.e. had a 

Station improvement quotient over the inhomogeneous data above one. However, the original 

geostatistical approach was the only homogenisation activity undertaken that made the data from 

network 5 (Table 9) more inhomogeneous. The higher number of stations in network 5 might 

explain the better results obtained for this network than for network 9. All the values of the Station 

CRMSE of the gsimcli method are at least 24% smaller than those of the original geostatistical 

approach. Considering the Network CRMSE, the efficiency increase of the gsimcli method is 

greater for the automatic version (at least 44%) than for the semi-automatic one (at least 24%). 

Accordingly, the gsimcli method is more efficient than the original geostatistical approach. 

Nonetheless, the gsimcli method underperformed all the blind submissions to the HOME project, 

except the absolute method (h008 - PMFred abs) for network 5. 
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Table 9 - Performance metrics of the annual precipitation series from network 5 for the homogenisation 

exercises undertaken and for the blind contributions to the HOME project. 

Test # Adjustment method 
Station 

CRMSE 

Station 

Improvement 

Network 

CRMSE 

Network 

Improvement 

1 Automatic gsimcli 7.13 0.99 2.88 1.07 

2 Automatic gsimcli 7.13 0.99 2.9 1.08 

3 Automatic gsimcli 7.12 0.98 2.88 1.07 

4 Automatic gsimcli 7.14 0.99 2.88 1.07 

5 Automatic gsimcli 7.13 0.98 2.9 1.08 

6 Automatic gsimcli 7.09 0.98 2.86 1.07 

1 Semi-automatic gsimcli  7.03 0.97 3.9 1.45 

2 Semi-automatic gsimcli 7.03 0.97 3.93 1.46 

3 Semi-automatic gsimcli 7.02 0.97 3.9 1.45 

4 Semi-automatic gsimcli 7.03 0.97 3.9 1.45 

5 Semi-automatic gsimcli 7.03 0.97 3.93 1.46 

6 Semi-automatic gsimcli 6.93 0.96 3.78 1.41 

Original geostatistical approach 9.38 1.3 5.19 1.93 

Inhomogeneous data 7.232 1.0 2.685 1.0 

h002 - PRODIGE main 3.948 0.546 2.525 0.940 

h006 - C3SNHT 5.556 0.768 2.588 0.964 

h007 - PMTred rel 6.130 0.848 2.934 1.092 

h008 - PMFred abs 8.655 1.197 2.260 0.842 

h009 - MASH Marinova 3.851 0.532 2.062 0.768 

h010 - Climatol 5.930 0.820 2.962 1.103 

h011 - MASH main 3.288 0.455 1.699 0.632 

h013 - PRODIGE trendy 3.948 0.546 2.525 0.940 

h018 - AnClim main 5.744 0.794 2.552 0.950 

h021 - PRODIGE monthly 3.277 0.453 2.040 0.760 

 

Considering the performance of the automatic and semi-automatic versions of gsimcli, both 

provide similar results. For the Station’s CRMSE and Improvement, the semi-automatic gsimcli 

was more efficient (in average, 2%) for network 5, and less harmful (in average, 11%) for network 

9. Regarding the Network’s CRMSE and Improvement, the automatic gsimcli provided better 

results than the semi-automatic gsimcli (in average, 35% in network 5 and 16% in network 9). 

These results seem to indicate that the automatic gsimcli increases the temporal consistency of 

the regional climate signal more than the semi-automatic version. 
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Table 10 - Performance metrics of the annual precipitation series from network 9 for the homogenisation 

exercises undertaken and for the blind contributions to the HOME project. 

Test # Adjustment method 
Station 

CRMSE 

Station 

Improvement 

Network 

CRMSE 

Network 

Improvement 

1 Automatic gsimcli 6.48 1.19 2.89 1.54 

2 Automatic gsimcli 6.48 1.19 2.89 1.54 

3 Automatic gsimcli 6.4 1.18 2.88 1.53 

4 Automatic gsimcli 6.4 1.18 2.88 1.54 

5 Automatic gsimcli 6.38 1.17 2.87 1.53 

6 Automatic gsimcli 6.45 1.19 2.88 1.53 

1 Semi-automatic gsimcli 5.92 1.09 3.42 1.82 

2 Semi-automatic gsimcli 5.83 1.07 3.08 1.64 

3 Semi-automatic gsimcli 5.62 1.03 3.44 1.83 

4 Semi-automatic gsimcli 5.61 1.03 3.45 1.84 

5 Semi-automatic gsimcli 5.59 1.03 3.44 1.83 

6 Semi-automatic gsimcli 5.88 1.08 3.28 1.74 

Original geostatistical approach 10.58 1.95 6.85 3.64 

Inhomogeneous data 5.433 1.0 1.880 1.0 

h002 - PRODIGE main 3.308 0.609 1.284 0.683 

h006 - C3SNHT 3.794 0.698 1.146 0.609 

h007 - PMTred rel 4.126 0.759 1.606 0.854 

h008 - PMFred abs 5.380 0.990 1.653 0.879 

h009 - MASH Marinova 3.484 0.641 1.188 0.632 

h010 - Climatol 5.039 0.927 2.936 1.275 

h011 - MASH main 3.083 0.567 0.920 0.490 

h012 - SNHT DWD 4.009 0.738 1.654 0.880 

h013 - PRODIGE trendy 3.308 0.609 1.284 0.683 

h018 - AnClim main 4.217 0.776 2.107 1.121 

h021 - PRODIGE monthly 2.981 0.549 1.185 0.630 

 

In network 5 (Table 9), the smallest Network metrics were obtained for the homogenisation Test 

#6 with both the automatic (Network CRMSE = 2.86; Network Improvement = 1.07), and the 

semi-automatic (Network CRMSE = 3.78; Network Improvement = 1.41) versions of gsimcli. 

The efficiency of the semi-automatic gsimcli Test #6 was lower than the Climatol (h010) and 

AnClim main (h018) procedures by 17% and 21%, respectively, in terms of Station CRMSE. 

However, all automatic versions of gsimcli were more efficient (at least 2%) than the Climatol 

(h010) in terms of Network CRMSE. The efficiency of the automatic gsimcli Test #6 was lower 

than the C3SNHT (h006), AnClim main (h018) and PRODIGE main (h002) procedures by 11%, 

12% and 13%, respectively, in terms of Network CRMSE. Considering the results of network 9 

(Table 10), the automatic gsimcli homogenisation Test #5 was the less harmful (Network CRMSE 
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= 2.87; Network Improvement = 1.53), whereas using the semi-automatic version the “best” 

homogenisation Test was #2 (Network CRMSE = 3.08; Network Improvement = 1.64). These 

results indicate that using the local radius parameter (r) with values greater than 1 does not 

conclusively increase the gsimcli’s efficiency. However, using larger grid cells generally 

improves the gsimcli method efficiency and decreases the processing time, since the size of the 

simulation grid cells has a significant impact in the computational effort. These results are 

consistent with a preliminary sensitivity analysis of the gsimcli’s parameters that was undertaken 

using monthly precipitation data from the benchmark’s network 16 (Ribeiro et al., 2015a), which 

is located in Austria and comprises 15 stations. 

4.4.2 Monthly precipitation series 

The monthly series were homogenised with the automatic gsimcli method as described in Section 

4.3.2. Even though the performance metrics of the homogenisation exercises provided similar 

values, the best results were obtained in Tests #8 and #9 (Table 11), which used a local radius 

parameter greater than zero. In the previous homogenisation exercises, using a local radius 

parameter (r) equal to zero provided similar results to the Tests #8 and #9. These results might be 

explained by the fact that the correction parameter was the percentile of 0.975, whereas the 

original geostatistical approach used the mean as the correction parameter in the homogenisation 

of the annual series. This suggests the high importance of the correction parameter in the overall 

homogenisation efficiency. 

The efficiency of the automatic gsimcli was higher than the C3SNHT (h006), AnClim main 

(h018) and Climatol (h010) procedures by 24%, 19% and 8%, respectively, in terms of Station 

CRMSE. However, it underperformed the PRODIGE monthly (h021) and the MASH Marinova 

(h009) procedures by 9% and 22%, respectively. It is noticeable that, in comparison with other 

procedures, the efficiency of gsimcli in the homogenisation of monthly series is higher when 

compared to the annual series. 
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Table 11 - Performance metrics of the monthly precipitation series from networks 5 and 9 for the 

homogenisation exercises undertaken and for the blind contributions to the HOME project. 

Method 
Station 

CRMSE 

Station 

Improvement 

Network 

CRMSE 

Network 

Improvement 

gsimcli Test #7 10.38 1.02 4.20 1.13 

gsimcli Test #8 10.34 1.02 4.17 1.12 

gsimcli Test #9 10.34 1.02 4.18 1.12 

Inhomogeneous data 10.142 1.0 3.713 1.0 

h002 - PRODIGE main 7.665 0.762 3.454 0.932 

h006 - C3SNHT 13.634 1.344 6.095 1.637 

h007 - PMTred rel 9.449 0.930 3.754 1.009 

h008 - PMFred abs 10.930 1.072 3.503 0.944 

h009 - MASH Marinova 8.499 0.842 3.822 1.026 

h010 - Climatol 11.224 1.120 4.804 1.299 

h011 - MASH main 8.059 0.796 3.244 0.872 

h013 - PRODIGE trendy 7.665 0.762 3.454 0.932 

h018 - AnClim main 12.750 1.266 4.071 1.100 

h021 - PRODIGE 

monthly 
9.522 0.941 3.709 0.994 

 

4.5 Concluding remarks 

In the original geostatistical approach (Costa and Soares, 2009a; Costa et al., 2008a), the detection 

and correction stages of the homogenisation process were automatic procedures based on 

individual pieces of data. The proposed gsimcli algorithm includes a new parameter (local radius) 

that aims to provide more local information to the calculation of the local pdf in order to reproduce 

the climatic signal of that location more realistically. Moreover, the gsimcli method may include 

another stage that aims at further adjusting the candidate time series by examining the 

characteristics of segments of data (semi-automatic version). Both automatic and semi-automatic 

versions of the gsimcli method proved to be more efficient in the homogenisation of the 

benchmark’s precipitation series than the geostatistical approach proposed by Costa and Soares 

(2009a) and Costa et al. (2008a). 

The semi-automatic version of gsimcli uses comparison series that can be statistically tested in 

order to proceed with further inhomogeneities detection and adjustments. In this study, both 

gsimcli versions provided similar results in the homogenisation of annual precipitation series. We 

used the Buishand’s test in the semi-automatic gsimcli, but the application of other techniques 

should be investigated. 

Even though the geostatistical homogenisation made the data slightly more inhomogeneous in 

many experiments, the gsimcli approach outperformed a few procedures in the homogenisation 
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of monthly precipitation data (Table 11), and Climatol in the homogenisation of monthly 

temperature series (as shown in Table S.3 of Appendix D). It is also important to point out that 

the benchmark’s networks are relatively small, and that the gsimcli method is more appropriate 

for larger networks. Ribeiro et al. (2016b) tested the gsimcli method with a real data set of 66 

monitoring stations from Portugal (0.0015 stations/km2 in a simulation grid with 1 km2 cells), 

whereas networks 5 and 9 have nine and five stations, respectively (0.0009 and 0.0005 

stations/km2 in the simulation grids with 1 km2 cells, respectively). 

Geostatistical techniques are suitable for variables that exhibit spatial correlation, which is 

modelled by the variogram. A higher number of observations that are spatially well distributed 

allows for a more accurate estimation of the variogram, thus improving the quality of the kriging 

predictions. A major limitation of this study was the reduced number of points available to 

estimate the variogram models. The modelling was particularly difficult for the shorter lag 

distances, which tend to have very few pairs of points. This is an important weakness of gsimcli, 

since the variogram’s behaviour near the origin is the most important to characterise. Accordingly, 

further research with larger networks should be pursued. 

Another direction for future research is the application of Direct Sequential Cosimulation (coDSS; 

Soares, 2001), which is an extension of the DSS algorithm that allows incorporating covariates 

such as elevation. Such extension of the gsimcli procedure could be suited for homogenising 

climatological networks from mountainous regions. However, the variography analysis would be 

even more challenging, because the coDSS algorithm requires a linear model of coregionalisation 

(i.e., modelling the spatial correlation structure through the simple and cross variograms). Another 

potential drawback is that the computational effort would highly increase. 

The proposed approach is a valuable contribution to this research field, particularly the new 

methods’ capability for filling missing values, and irregularities filtering. However, data 

corresponding to missing data or outliers were not taken into account in the computation of the 

performance metrics. 
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5 Conclusion 

This research aimed at evaluating the efficiency of the geostatistical simulation approach (Costa 

et al. 2008a), and also envisioned the investigation of an extension of this procedure, named 

gsimcli, which should better estimate the climatic signal of the surrounding area of the candidate 

station's location. The efficiency of both the original geostatistical simulation approach and of 

gsimcli was evaluated using annual and monthly precipitation series of the benchmark data set 

from COST Action ES0601 “HOME” (Ribeiro et al., 2015a, 2015b, 2016c, 2016d). 

The formulation of the gsimcli method follows closely the original geostatistical approach 

proposed by Costa et al. (2008a) to detect inhomogeneities in climate time series. One of the 

changes introduced on the original procedure aims to provide more local information to the 

calculation of the probability distribution function at the candidate station’s location (local pdf) 

in order to better estimate the climatic signal of its surrounding area. Furthermore, a different 

approach to adjust for sudden shifts in the inhomogeneous series has been proposed for the gsimcli 

method. 

The geostatistical simulation approach uses the direct sequential simulation (DSS) algorithm to 

generate a set of equally probable and independent realisations and to estimate the local pdf. When 

an irregularity is detected, the corresponding value is replaced by a statistical value (correction 

parameter) derived from the estimated local pdf. The local radius parameter of the gsimcli 

procedure allows enhancing the local pdf estimation by including values simulated within a 

neighbourhood of the candidate station’s location. The detection and correction stages of the 

homogenisation process are automatic procedures based on individual observations of the 

climatic time series. The semi-automatic version of gsimcli includes another stage that takes 

advantage of a comparison series to examine the characteristics of segments of data using 

traditional homogenisation techniques. 

Both automatic and semi-automatic versions of the gsimcli method proved to be more efficient in 

the homogenisation of the benchmark’s precipitation series than the original geostatistical 

simulation approach (Ribeiro et al., 2015a, 2016c, 2016d). Results also show that gsimcli 

outperformed a few well-established procedures in the homogenisation of monthly precipitation 

series (Section 4; Ribeiro et al., 2016d). 

According to the specific objectives listed in Section 1.5, detailed conclusions are as follows. 

The literature review (Section 2; Ribeiro et al., 2016a) emphasised the importance of the 

development of homogenisation methods to ensure the accuracy of climate records. It was also 

highlighted the reduced number of homogenisation methods dedicated to variables with high 
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variability, such as precipitation, and dealing with high temporal resolution data sets 

(monthly/sub-monthly). Relevant contributions of the literature review are the comprehensive 

summary and description of the available homogenisation methods and a summary of their 

applications, which may help climatologists and other researchers to select adequate method(s) 

for their particular needs. Another important contribution is the discussion of the advantages and 

disadvantages of the homogenisation methods, which depicts lessons learned regarding good 

homogenisation practices. 

Previous works (Costa et al., 2008a; Costa and Soares, 2009a) required a lot of time and 

interaction from its users. The gsimcli software (http://iled.github.io/gsimcli) allowed 

homogenising the climate data series in an intuitive and straightforward way. The computational 

performance has been an important factor in the design and implementation of the algorithms, 

both in processing time and required system memory (Caineta et al., 2015a, 2015b). 

The extension of the study presented by Costa et al. (2008a) (Section 3; Ribeiro et al., 2016b) 

comprised the detection of irregularities in a real precipitation data set (66 monitoring stations) 

located in the south of Portugal. The analysed climate variable was the annual number of wet 

days. By comparing the detection skills of the geostatistical simulation approach with other 

homogenisation methods, it was possible to conclude that all methods indicate the presence of 

inhomogeneities around the same time periods. The geostatistical approach detected the existence 

of irregularities in a larger sequential interval, which can be an indicator that it is able to detect 

trends. Some of the analysed parameters were the number of simulations and the number of nodes 

included in the simulations. A higher number of simulations lead to better detection results, 

because the empirical local distribution function tends to be less irregular. The increase of the 

number of nodes included in the simulations did not bring enough benefits to justify the increasing 

computing time. 

The original geostatistical approach and the gsimcli method were tested against artificial annual 

and monthly precipitation data provided by the HOME project (Section 4; Ribeiro et al., 2016d). 

The sensitivity analysis of the modelling parameters showed a high influence of the correction 

method in the efficiency of the homogenisation. The original geostatistical approach used the 

mean as the correction parameter in the homogenisation of the annual series. However, the best 

results of the performance metrics were obtained with a correction parameter equal to the 0.975 

percentile (Ribeiro et al., 2015a, 2015b, 2016d). It can also be concluded that increasing the size 

of the grid cell accelerates the simulation process, without decreasing the quality of 

homogenisation significantly (Ribeiro et al., 2015a, 2016d). The local radius parameter of the 

gsimcli algorithm brings the local characteristics of the climate variable into the calculation of the 

local pdf. The advantages of such innovation are expressed in the improvement of the 

performance metrics, as demonstrated by Ribeiro et al. (2015a, 2016c, 2016d). 

http://iled.github.io/gsimcli
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The automatic and semi-automatic (with Buishand-test) versions of gsimcli provided similar 

results in the homogenisation of annual precipitation data. Even though the geostatistical 

homogenisation made the data slightly more inhomogeneous in many experiments, the gsimcli 

approach outperformed a few procedures in the homogenisation of monthly precipitation data. 

The capability of gsimcli to fill in missing values and to filter irregularities is an advantage when 

compared to other methods. 

5.1 Limitations 

Similarly to any other geostatistical approach, the homogenisation of climate data with gsimcli 

assumes that the study variable is spatially autocorrelated, which is assessed by the study of its 

variogram. The higher the number of observations, the more accurate the variogram estimation, 

and so the kriging predictions computed based on it. The reduced number of stations available in 

the benchmark networks proved to be the major limitation of the study. 

5.2 Future research 

Based on the above-mentioned conclusions, some recommendations for future work are made. 

The performance of gsimcli in the homogenisation of large network data sets should be further 

assessed, since a high number of observations will improve the estimation of the variogram 

model. 

Testing the efficiency of gsimcli with other benchmark data sets (e.g., the International Surface 

Temperature Initiative’s benchmark), and for other climatic regions of the World, should also be 

pursued. The International Surface Temperature Initiative’s project will be the first global 

benchmarking study and it will enable the assessment of homogenisation methods’ performance 

in quite diverse climatic areas (Willett et al., 2014). 

Domonkos (2013b) argues that the optimal homogenisation method should be a combination of 

the best segments of homogenisation methods, such as the best detection part, the best correction 

part, etc. Further research is also needed to find the optimal way of spatial comparison 

(Domonkos, 2011a). In this context, the evaluation of the semi-automatic gsimcli procedure using 

other techniques (alternative to the Buishand-test) is encouraged. 

The cost-benefit analysis of the inclusion of covariates in the homogenisation is also suggested, 

in regions where statistically significant correlation is observed. 

In summary, the following research questions should be investigated in future works: 

 Is gsimcli more efficient than other state-of-the-art methods in the homogenisation of 

dense monitoring networks? 
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 Can the gsimcli algorithm be further improved by directly incorporating data from 

neighbouring stations in the estimation of the local pdf? 

 How does gsimcli perform for other climate variables? 

 How does gsimcli perform in other regions of the World? 

 Can the gsimcli method be extended, or incorporated in other homogenisation 

procedures, to take advantage of the comparison series that are derived from the local 

pdfs of the candidate station? 

 Is it worthwhile to increase the algorithm complexity by using multivariate geostatistical 

simulation? 
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Appendix A 

Table A.1 - Characteristics of the homogenisation methods 

Method Type 
Temporal 

resolution 

Breakpoints 

detection 
Characteristics 

Von Neumann ratio test 

(Von Neumann, 1941) 

Non-parametric Annual Single-breakpoint  

No date identified 

Used as absolute detection method or applied to composite 

reference series 

Qualifying test on homogeneity diagnosis  

Wald-Wolfowitz runs test  

(Wald and Wolfowitz, 1943) 

Non-parametric Annual Single-breakpoint  

No date identified 

Used as absolute detection method or applied to composite 

reference series 

Requires supporting tests 

Qualifying test on homogeneity diagnosis 

Pettitt’s test (Pettitt, 1979) Non-parametric Annual Single-breakpoint 

Date of break identified  

Used as absolute detection method or applied to composite 

reference series 

More sensitive to breaks in the middle of the time series 

Qualifying test on homogeneity diagnosis 

Mann-Kendall test (Mann, 

1945; Kendall, 1975) 

Non-parametric Annual/ 

Monthly 

 
Tests the significance of trends 

Wilcoxon-Mann-Whitney test 

(Mann and Whitney, 1947; 

Wilcoxon, 1945) 

Non-parametric Annual Single-breakpoint  

No date identified 

Relative detection method 

Based on rank order breakpoint detection 

Qualifying test on homogeneity diagnosis 

Kruskal-Wallis (Kruskal, 1952; 

Kruskal and Wallis, 1952) 

Non-parametric Any Single-breakpoint  

No date identified 

Relative detection method 

Qualifying test on homogeneity diagnosis 
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Method Type 
Temporal 

resolution 

Breakpoints 

detection 
Characteristics 

Craddock’s test (Craddock, 

1979)  

Classical Any/ 

Annual 

Single-breakpoint  

Date of break identified 

Relative detection method with pairwise comparison 

Subjective method 

Requires a homogeneous reference series (or long enough 

homogeneous sub-periods) 

Included in HOCLIS (Austria) and THOMAS (Switzerland) 

homogenisation tools 

Correction estimation based on mean of multiple 

comparisons 

Buishand range test (Buishand, 

1982) 

Classical Annual Single-breakpoint 

Date of break identified 

Used as absolute detection method or applied to composite 

reference series 

More sensitive to breaks in the middle of the time series 

Qualifying test on homogeneity diagnosis 

Double mass analysis (Kohler, 

1949) 

Classical  Annual Single-breakpoint  Relative detection method 

Used for exploratory analysis 

Subjective method 

Bivariate test (Potter, 1981) Classical Annual Single-breakpoint  Relative detection method 

Based on maximum likelihood estimations 

Closely resembles the double mass analysis 

Two-phase regression 

(Easterling and Peterson, 1995) 

Regression method Any Single-breakpoint  

Date of break identified 

Relative detection method 

Hierarchic method for identifying multiple breakpoints 

(cutting algorithm) 
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Method Type 
Temporal 

resolution 

Breakpoints 

detection 
Characteristics 

Stable high performance in detection skill 

Multiple linear regression 

analysis (Vincent, 1998) 

Regression method Any Single-breakpoint  Relative detection method 

Detection of gradual linear changes 

Objective detection method 

Method of cumulative residuals 

(Allen et al., 1998) 

Regression method Any Single- breakpoint  Relative detection method 

Used for exploratory analysis 

Qualifying test on homogeneity diagnosis 

SNHT (Alexandersson, 1986) Homogenisation procedure Annual/ 

Monthly 

Single-breakpoint  One of the most widely-used relative detection methods 

Usually applied to composite reference series 

SNHT with trend 

(Alexandersson and Moberg, 

1997) 

Homogenisation procedure Any Single-breakpoint  Detection of gradual linear changes 

Comparison based on reference series 

Correction is estimated directly from comparison series 

MASH (Szentimrey, 1999) Homogenisation procedure Monthly/ 

Daily  

Multiple-breakpoint  Objective homogenisation method 

Executable program with automatic (and interactive) primary 

operation 

Deals with multiple inhomogeneous references 

Corrected series receive further corrections, until no break is 

found 
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Method Type 
Temporal 

resolution 

Breakpoints 

detection 
Characteristics 

PRODIGE (Caussinus and 

Mestre, 2004) 

Homogenisation procedure Annual/ 

monthly 

Multiple-breakpoint  Relative detection method with pairwise comparison 

Penalized likelihood as detection criterion 

Detection search based on Dynamic Programming 

Correction estimation based on ANOVA 

Geostatistical simulation (Costa 

et al., 2008) 

Homogenisation procedure Annual/ 

Monthly 

Multiple-breakpoint  Based on Direct Sequential Simulation using reference series 

Corrections can be applied by a statistic value of the local 

probability density function simulated at the candidate’s 

location 

ACMANT (Domonkos, 2011a) Homogenisation procedure Monthly Multiple-breakpoint Fully objective and fully automatic homogenisation method 

Executable program with automatic primary operation 

Relative detection method based on reference series 

Penalized likelihood as detection criterion 

Temperature only 

ACMANT2 (Domonkos, 2015)  Homogenisation procedure Monthly/ 

daily 

Multiple-breakpoint Extension of ACMANT (Domonkos, 2011a) for precipitation  

Climatol (Guijarro, 2006) Homogenisation software 

package 

Monthly Single-breakpoint  Objective homogenisation method 

R package with automatic primary operation 

Relative detection method based on reference and pairwise 

comparison 
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Method Type 
Temporal 

resolution 

Breakpoints 

detection 
Characteristics 

RHTest (Wang, 2008) Homogenisation software 

package 

Monthly/ 

Daily 

Single-breakpoint Objective homogenisation method 

R source program with interactive primary operation 

Relative detection method with reference series 

AnClim and Proclim DB 

(Štěpánek, 2008a; 2008b) 

Homogenisation software 

package 

Any Single-breakpoint Objective homogenisation method 

Executable program with interactive (and automatic) primary 

operation 

Relative detection method based on reference and pairwise 

comparison 

USHCN (Menne and Williams 

Jr., 2009) 

Homogenisation software 

package 

Monthly Single-breakpoint  Objective homogenisation method 

Fortran source program with automatic primary operation 

Trend-like inhomogeneities can be detected 

Relative detection method with pairwise comparison 

HOMER (Mestre et al., 2013) Homogenisation software 

package 

Monthly Multiple-breakpoint Allows user to add subjective decisions based on metadata or 

research experiences 

R source program with interactive primary operation 

Relative detection method with pairwise comparison 

Correction estimation based on ANOVA  

BAMS (Seidou and Ouarda, 

2007) 

Bayesian approaches Any/ 

Monthly 

Single-breakpoint  Relative detection method 
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Method Type 
Temporal 

resolution 

Breakpoints 

detection 
Characteristics 

BARE (Seidou et al., 2007) Bayesian approaches Any/ 

Monthly 

Single-breakpoint Relative detection method 

Bayesian change-point 

algorithm (Ruggieri, 2013) 

Bayesian approaches Any/ 

Monthly 

Single-breakpoint Absolute detection method 

Provides a measure of uncertainty  

 

Bayesian multiple change-

points and segmentation 

algorithm (Hannart and 

Naveau, 2009) 

Bayesian approaches Any/ 

Monthly 

Single-breakpoint  Absolute detection method 

Change-point detection 

algorithm (Gallagher et al., 

2012) 

Bayesian approaches Daily Single-breakpoint  Absolute detection method 

BNHT (Beaulieu et al., 2010) Bayesian approaches Any/ 

Monthly 

Single-breakpoint  Used as absolute detection method or applied to composite 

reference series 

Allows the integration of prior knowledge on the date of 

change from other sources (e.g. metadata or expert belief) 
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Table A.2 - List of studies where the homogenisation methods were applied 

Homogenisation method Reference Climate variable Temporal resolution Study area 
Analysed 

time period 

Von Neumann ratio test Barring et al. (1999) Sea level pressure Monthly Southern Sweden 1780-1997 

Von Neumann ratio test Rodriguez et al. (1999)  Precipitation  Monthly Barcelona, Spain 1850-1991 

Von Neumann ratio test Rodriguez et al. (2001) Surface pressure Daily and monthly Barcelona, Spain 1780-1989 

Von Neumann ratio test Sahin and Cigizoglu (2010) Temperature, precipitation, relative 

humidity and local pressure 

Monthly Turkey 1974-2002 

Von Neumann ratio test Santos and Fragoso (2013) Precipitation Daily Northern Portugal 1950-2000 

Von Neumann ratio test Talaee et al. (2014) Precipitation Annual and monthly  Iran 1966-2005 

Von Neumann ratio test Wijngaard et al. (2003) Temperature and precipitation Daily  Europe 1901-1999 

Wald-Wolfowitz Runs test Costa et al. (2008) Precipitation  Annual Southern Portugal 1980-2001 

Wald-Wolfowitz Runs test Tayanç et al. (1998) Temperature Annual Turkey 1951-1990 

Mann-Kendall test Baule and Shulski (2014) Wind speed Monthly Beaufort/Chukchi Sea 

(Arctic) 

1979-2009 

Mann-Kendall test Begert et al. (2005) Temperature and precipitation Monthly Switzerland 1864-2000 

Mann-Kendall test Bohm et al. (2001) Temperature Monthly Alps 1760-1998 

Mann-Kendall test Freiwan and Kadioglu (2008) Precipitation Annual and monthly Jordan 1923-2000 

Mann-Kendall test Maugeri et al. (2004) Sea level pressure Daily Po Plain 1765-2000 

Mann-Kendall test Piccarreta et al. (2013) Precipitation  Daily Southern Italy 1951-2010 

Mann-Kendall test Santos and Fragoso (2013) Precipitation Daily Northern Portugal 1950-2000 

Mann-Kendall test Serra et al. (2001) Temperature Daily Spain 1917-1998 

Mann-Kendall test Toreti and Desiato (2008) Temperature Daily Italy 1961-2004 

Mann-Kendall test Turkes et al. (2009) Precipitation Secular trends Turkey 1930-2002 

Wilcoxon-Mann-Whitney 

test 

Costa et al. (2012) Precipitation Annual Portugal 1961-2000 

Kruskal-Wallis test Tayanç et al. (1998) Mean temperatures Annual Turkey 1951-1990 

Kruskal-Wallis test Turkes et al. (2009) Precipitation Secular trends Turkey 1930-2002 
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Homogenisation method Reference Climate variable Temporal resolution Study area 
Analysed 

time period 

Pettitt’s test Ashagrie et al. (2006) Precipitation Daily  Western Europe 1911-2000 

Pettitt’s test Costa et al. (2008) Precipitation  Annual Southern Portugal 1980-2001 

Pettitt’s test Costa and Soares (2009) Precipitation Daily Southern Portugal 1941-2001 

Pettitt’s test Firat et al. (2010) Precipitation Annual and monthly  Turkey 1968-1998 

Pettitt’s test Firat et al. (2012) Mean temperature Annual Turkey 1968-1998 

Pettitt’s test Konnen et al. (2003) Pressure and temperature Recovering instrumental 

records 

Japan 1819-1872 

Pettitt’s test Rahimzadeh and Zavareh 

(2014) 

Temperature Annual Iran 1960-2010 

Pettitt’s test Sahin and Cigizoglu (2010) Temperature, precipitation, relative 

humidity and local pressure 

Monthly Turkey 1974-2002 

Pettitt’s test Salinger and Griffiths (2001) Temperature and precipitation  Daily New Zealand 1930-1998 

Pettitt’s test Santos and Fragoso (2013) Precipitation Daily Northern Portugal 1950-2000 

Pettitt’s test Servat et al. (1997) Total precipitation and number of 

rainy days 

Annual  Ivory Coast 1950-1980 

Pettitt’s test 

 

Talaee et al. (2014) Precipitation Annual and monthly  Iran 1966-2005 

Pettitt’s test Tomozeiu et al. (2005) Precipitation Seasonal Romania 1961-1996 

Pettitt’s test Wijngaard et al. (2003) Temperature and precipitation Daily  Europe 1901-1999 

Craddock’s test Brugnara et al. (2012) Total precipitation and wet days daily Central Alps 1922-2009 

Craddock’s test Maugeri et al. (2004) Sea level pressure Daily Po Plain 1765-2000 

Craddock’s test Puglisi et al. (2010) Temperature  Tuscany, Italy 1955-2005 

Buishand range test Feidas et al. (2007) Precipitation Annual and seasonal Greece 1955-2001 

Buishand range test Sahin and Cigizoglu (2010) Temperature, precipitation, relative 
humidity and local pressure 

Monthly Turkey 1974-2002 

Buishand range test Santos and Fragoso (2013) Precipitation Daily Northern Portugal 1950-2000 

Buishand range test Talaee et al. (2014) Precipitation Annual and monthly  Iran 1966-2005 
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Homogenisation method Reference Climate variable Temporal resolution Study area 
Analysed 

time period 

Double mass analysis Burt and Howden (2011) Precipitation Daily Oxford, UK 1827 

Double mass analysis Tsakalias and Koutsoyiannis 

(1999) 

Precipitation Annual Greece 1961-1983 

Double mass analysis Wilson et al. (2005) Precipitation (dendroclimatic 

reconstruction) 

Seasonal Bavarian Forest region, 

Germany 

1510-2005 

Bivariate test Bližňák et al. (2015) Temperature, precipitation and 

pressure 

Annual and monthly Portugal, Cape Verde, 

Angola, Mozambique, 

Goa (India), and Macau 
(China) 

1863-2006 

Bivariate test Bradzil et al. (2000)  Temperature Annual, seasonal and 
monthly 

Czech Republic 1961-1999 

Bivariate test Sahin and Cigizoglu (2010) Temperature, precipitation, relative 
humidity and local pressure 

Monthly Turkey 1974-2002 

Bivariate test Štěpánek and Zahradníček 

(2008)  

Temperature, precipitation, water 

vapour pressure and wind speed 

Daily Czech Republic 1961-2007 

Bivariate test Zahradníček et al. (2014) Precipitation Monthly Croatia 1940-2010 

Two-phase regression El Kenawy et al. (2013) Temperature Daily Northeastern Spain 1900-2006 

Two-phase regression Sherwood et al. (2008) Radiosonde data Twice-daily World 1959-2005 

Multiple linear regression  El Kenawy et al. (2013) Temperature Daily Northeastern Spain 1900-2006 

Multiple linear regression  Li and Dong (2009) Temperature Annual Southeastern China 1960-2001 

Method of cumulative 

residuals 

Costa and Soares (2006) Precipitation Annual Southern Portugal 1931-2000 

SNHT Buishand et al. (2013) Precipitation Daily Netherlands 1910-2009 

SNHT Firat et al. (2012) Temperature Annual Turkey 1968-1998 

SNHT Jovanovic (2000)  Precipitation Annual Former Yugoslavia 1951-1998 

SNHT Klingbjer and Moberg (2003) Temperature Monthly Northern Sweden 1802-2002 

SNHT Saboohi et al. (2012) Temperature Annual and monthly Iran 1950-2007 

SNHT Sahin and Cigizoglu (2010) Temperature, precipitation, relative 

humidity and local pressure 

Monthly Turkey 1974-2002 
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Homogenisation method Reference Climate variable Temporal resolution Study area 
Analysed 

time period 

SNHT Santos and Fragoso (2013) Precipitation Daily Northern Portugal 1950-2000 

SNHT Tomozeiu et al. (2005) Precipitation Seasonal Romania 1961-1996 

SNHT Vicente-Serrano et al. (2010) Precipitation  Daily Northeastern Spain 1901-2002 

SNHT Wang et al. (2014) Temperature and precipitation Monthly China (Jiangxi province) 1951-1999 

SNHT Zahradníček et al. (2014) Precipitation Monthly Croatia 1940-2010 

SNHT with trend Piccarreta et al. (2013) Precipitation  Daily Southern Italy 1951-2010 

MASH Freitas et al. (2013) Temperature Monthly Northern Portugal 1941-2010 

MASH Lakatos et al. (2013) Temperature, precipitation, wind 

speed and direction, sunshine, cloud 

cover, global radiation, relative 
humidity and pressure 

Daily Carpathian Region (Czech 

Republic, Slovakia, 

Poland, Hungary, 

Ukraine, Romania and 
Serbia) 

1961-2010 

MASH Li and Yan (2010) Temperature Daily Beijing (China) 1960-2006 

MASH Mamara et al. (2013) Temperature Monthly Greece 1960-2004 

MASH Seleshi and Camberlin (2006) Precipitation Seasonal Ethiopia 1965-2002 

PRODIGE Alexandrov et al. (2004) Temperature and precipitation Monthly Bulgaria 1893-2001 

PRODIGE Nemec et al. (2013) Temperature Daily Austria 1948-2009 

Geostatistical simulation Costa and Soares (2009) Precipitation Annual Southern Portugal 1980-2001 

ACMANT Freitas et al. (2011)  Temperature Monthly Portugal 1864-2010 

ACMANT Mamara et al. (2014) Temperature Monthly Greece 1960-2004 

Climatol Mamara et al. (2013) Temperature Monthly Greece 1960-2004 

RHTest Bližňák et al. (2015) Temperature, precipitation and 

pressure 

Annual and monthly Portugal, Cape Verde, 

Angola, Mozambique, 

Goa (India) and Macau 
(China) 

1863-2006 

RHTest Tsidu (2012) Precipitation Monthly Ethiopia 1978-2007 

RHTest Wan et al. (2010) Wind speed Monthly Canada 1953-2006 

AnClim and Proclim  DB Azorin-Molina et al. (2014) Wind speed Monthly Iberian Peninsula 1961-2011 
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Homogenisation method Reference Climate variable Temporal resolution Study area 
Analysed 

time period 

AnClim and Proclim  DB Bližňák et al. (2015) Temperature, precipitation and 

pressure 

Annual and monthly Portugal, Cape Verde, 

Angola, Mozambique, 

Goa (India) and Macau 

(China) 

1863-2006 

USHCN Menne and Williams Jr. (2009) Temperature Annual and monthly USA 1900-2006 

HOMER Bližňák et al. (2015) Temperature, precipitation and 

pressure 

Annual and monthly Portugal, Cape Verde, 

Angola, Mozambique, 

Goa (India) and Macau 
(China) 

1863-2006 

HOMER Freitas et al. (2013) Temperature Monthly Northern Portugal 1941-2010 

HOMER Mamara et al. (2014) Temperature Monthly Greece 1960-2004 
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Table A.3 - Summary of comparison studies for homogenisation methods 

Climatic variable, 

periodicity and 

location 

Methods Main conclusions References 

Temperature data set: 

annual mean 

difference series 

(Turkey) 

Different methods to detect inhomogeneities using 

relative homogeneity techniques: graphical analysis, 

the non-parametric Kruskal-Wallis homogeneity test 

and the Wald-Wolfowitz Runs test. Monte Carlo 

Simulation was carried out to determine the 

efficiency of the detection. 

 Kruskal–Wallis homogeneity test is sensitive to (a) jump, (b) trend and 

(c) different U values.  

 Sensitivities of Wald–Wolfowitz Runs test are (a) jump and (b) trend.  

 Both tests are not powerful enough to be used individually in the 

relative homogeneity analysis. 

Tayanç et al. (1998) 

Annual temperature 

data. Three sets of 

data were generated: 

homogeneous series 

(no steps), series with 

one step, and series 

with a random 

number of steps. 

Eight methods tested: SNHT without trend; SNHT 

with trend; MLR; TPR; Wilcoxon rank sum test; 

sequential testing for equality of means; Bayesian 

approach without reference series; and Bayesian 

approach with reference series. 

 

 Two methods seem to work slightly better than the others: SNHT 

without trend, and the MLR technique. 

 SNHT without trend, MLR and Bayesian with reference series are the 

most reliable techniques for the identification of homogeneous series. 

 SNHT without trend, MLR and TPR are the best approaches for the 

detection of a random number of steps, since they do not under-adjust 

the series as much as the other methods. 

 SNHT without trend has the best performance for detecting the correct 

number of steps. 

Ducré-Robitaille et 

al. (2003) 
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Climatic variable, 

periodicity and 

location 

Methods Main conclusions References 

Simulated data series 

derived from: 

Temperature (215 

data series, annual 

means) and 

precipitation (112 

data series – annual 

totals), 98 – 100 

years long, Hungary 

T-test (Ducré-Robitaille et al., 2003); T-test (Kyselý 

and Domonkos, 2006); Buishand-test (maximum of 

the absolute values of accumulated anomalies); 

Buishand-test (difference between maximum and 

minimum values of accumulated anomalies); SNHT 

for shifts only; Wilcoxon Rank Sum test; MLR; 

Bayesian test with serial correlation analysis, 

Bayesian test with penalized maximum likelihood 

method for calculating number of change-points; 

Pettitt test; M-K test; method of Mestre; method of 

Mestre with parameterized minimum unit-length; 

SNHT for shifts and trends, TPR; MASH and 

MASH with parameterized minimum unit-length. 

 The efficiency much more depends on the characteristics of the 

candidate series and quality of the reference series, than on the applied 

homogenisation method. 

 Overall, Mestre method and MASH are the most efficient 

homogenisation methods. 

Domonkos (2006) 

Annual temperature 

series. 

Those series were 

generated with 

different variance and 

correlation attributes. 

Seven methods analysed: SNHT, Potter’s method 

(BIVT), MLR, TPR, Bayes approach (BAYE), 

Parametric metadata-based test (PMETA), Non-

parametric Metadata-based test (NMETA). 

 

 Aside from PMETA and NMETA, SNHT and BIVT identified the 

greatest number of imposed single discontinuities within 20-or-more-

year series. 

 TPR is able to detect multiple breaks, particularly when sequential 

breaks are close in time or have opposite signs. 

 MLR was found to be resilient to non-stationary difference series. 

 BAYE’s performance is comparable to BIVT and SNHT for the large 

(<1σ anomalies) single step changes. 

 PMETA and NMETA detected the highest percentage of imposed 

single breaks. 

DeGaetano (2006) 
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Climatic variable, 

periodicity and 

location 

Methods Main conclusions References 

Annual mean 

temperature series 

Change point detection tested with 

SNHT, Wilcoxon’s non-parametric test and TPR. 

 There is no unique best procedure by any criteria. Reeves et al. (2007) 

60 and 100-year-long 

precipitation data 

series 

(Southern and central 

regions of the 

province of Quebec, 

Canada. Several 

thousand of 

homogeneous and 

inhomogeneous 

synthetic series) 

Intercomparison of eight statistical tests to detect 

inhomogeneities in climatic data: SNHT, Multiple 

Regression (MLR), TPR, Bivariate test (BIVT), 

Sequential Wilcoxon test, Sequential Student t-test 

(STUS), Jaruskova’s method (JARU), and Bayesian 

approach (BAYE1). 

 None of these methods was efficient for all types of inhomogeneities, 

but some of them performed substantially better than others: BIVT, 

JARU, and SNHT.  

 Techniques such as the STUS and TPR led to the worst performances. 

 Techniques which gave a good performance on temperature series like 

the MLR were not necessarily appropriate for precipitation data. 

 Three methods had similar performances with all sets of synthetic 

series (BIVT, JARU and SNHT). 

 Some techniques cannot be applied efficiently to all types of series: 

MLR performed well for the identification of a homogeneous series 

and was good to identify a single shift. However, in the presence of 

multiple shifts, the performance of this method was poor.  

 BAYE1 performed well for the identification of one or multiple shifts, 

but detected too many non-existent shifts. 

Beaulieu et al. (2008, 

2009) 
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Climatic variable, 

periodicity and 

location 

Methods Main conclusions References 

Simulated data Efficiencies for the detection parts of 15 

homogenisation methods:  Bayesian test with 

penalized maximum likelihood method for 

calculating the number of change-points; Bayesian 

test with serial correlation analysis (BAYE2); 

Buishand-test; Buishand-test extension (difference 

between maximum and minimum values of 

accumulated anomalies); PRODIGE; TPR; M-K 

test; MASH; MLR; Pettitt-test; SNHT for shifts only 

(SNHT); SNHT for shifts and trends (SNT); T-test; 

T-test (Kyselý and Domonkos, 2006); Wilcoxon 

Rank Sum test. 

 TPR method has the most stable high performance in detection skill. 

 MASH, PRODIGE, BAYE2, SNHT and MLR have also favourably 

high detection skill. 

 Non-parametric methods, as well as t-tests and SNT have poorer 

results.  

 Surprisingly, M-K showed low detection skill in each experiment. 

Domonkos (2008) 

Maximum air 

temperature, 

minimum air 

temperature, mean air 

temperature, total 

precipitation, relative 

humidity and local 

pressure of 232 

stations for the period 

1974–2002 (Turkey) 

Estimation of missing values using two different 

methods: Linear Regression (LR) and Expectation 

Maximization (EM) Algorithm. 

Homogeneity tested (for annual series) by one 

relative test, Bivariate test, and four absolute tests: 

SNHT for a single break, Buishand Range test, Pettit 

test and the Von Neumann ratio test 

 EM Algorithm results were preferred. 

 Absolute tests failed to detect the inhomogeneities in the precipitation 

series at the significance level 1%. 

Sahin and Cigizoglu 

(2010) 
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Climatic variable, 

periodicity and 

location 

Methods Main conclusions References 

OHOMs 

10000 test-dataset 

records, in 100 year-

long artificially 

simulated time series.  

Comparison between eight methods: Multiple Linear 

Regression, PMT, SNHT for shifts only (SNH1 - 

including the common cutting algorithm and SNH2- 

supplied with the semi-hierarchic algorithm); SNHT 

for Shifts and Trends; T-test, PRODIGE and 

MASH. 

 PRODIGE method and MASH showed the highest efficiency for 

power of detection, false alarm rate, detection skill and skill of linear 

estimation. 

  

Domonkos (2011b) 

and Domonkos et al. 

(2011) 

Temperature Comparison between different methods: PRODIGE, 

MASH, ACMANT, USHCN, the Craddock-test and 

the HOME-software. 

 Six homogenisation methods can be recommended: PRODIGE, 

MASH, ACMANT, USHCN, the Craddock-test and the HOME-

software. 

 ACMANT is a highly efficient tool for homogenising temperature 

datasets of mid-latitudes, but is not tailored to other variables. 

 For homogenising huge datasets, USHCN or ACMANT are 

recommendable, because these methods are fully automatic. 

 HOME-software, PRODIGE and MASH are usable in a wide range of 

tasks, but certain expertise is needed for their use. 

 Craddock-test is subjective and is inappropriate for homogenising 

large datasets. 

Domonkos et al. 

(2012) and 

Domonkos (2013a) 

Simulated time series 

(10 test data sets with 

different 

characteristics) 

Bayes method (Ducré-Robitaille et al., 2003), 

PRODIGE, TPR, MASH, MLR, SNHT, SNT, T-

test, Wilcoxon Rank Sum test  

 In cases of high quality relative time series, PRODIGE is the most 

effective method;  

 Appreciably good results can be also achieved by MASH, Bayes 

method, MLR and SNHT. 

Domonkos (2013b) 
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Climatic variable, 

periodicity and 

location 

Methods Main conclusions References 

Generated 

climatological series 

Comparison of shift detection by six algorithms: T-

test, SNHT, TPR, WMW, Durbin-Watson test (DW) 

and SRMD (Squared Relative Mean Difference). 

Monte Carlo Simulations were applied to find the 

efficiency of the tests. 

 Best performances belong to T-test, SNHT and SRDM, giving almost 

identical results and showing that they belong to the same family of 

tests. 

 WMW follows, with good results, while DW and TPR both yield 

similar discouraging scores. 

Guijarro (2013) 

Monthly mean air 

temperature 

(Portugal) 

MASH and HOMER to homogenize the air 

temperature database. 

 MASH identifies the location of the break with the year of the shift, 

while HOMER is able to estimate the month of the change. 

 The number of breaks detected with HOMER is higher than with 

MASH. 

 The amplitude of the breaks detected with HOMER is, in general, 

higher than the amplitude of the breaks detected with MASH. 

Freitas et al. (2013) 

Generated yearly and 

monthly data 

K-W, Friedman test (Friedman, 1937), Buishand 

range test, Pettitt test, Von Neumann ratio test, 

KPSS (Kwiatkowski et al., 1992), ADF test (Said 

and Dickey, 1984), GAHMDI (Toreti et al., 2012), 

Bayesian technique of change-point analysis (Barry 

and Hartigan, 1992, 1993), Bayesian technique of 

change-point analysis with references, F-test, F-test 

with references,  SNHT, RHTest, PRODIGE, TPR 

 Best performances are provided by SNHT, RHTest, F-test with 

references, GAHMDI and F-test. 

 ADF and Von Neumann ratio tests are not reliable. 

 RHTest was considered the best test for trends’ detection. 

 Poorer performances are assigned to Friedman, K-W and Pettitt tests. 

Yozgatligil and 

Yazici (2016) 
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Acronyms 

ACMANT – Adapted Caussinus-Mestre Algorithm for Homogenizing Networks of Temperature 

series (Domonkos, 2011a) 

BAYE – Bayesian test (Perreault et al., 1999, 2000) 

BAYE1 – Bayesian approach (Rasmussen, 2001) 

BAYE2 – Bayesian test with serial correlation analysis (Ducré-Robitaille et al., 2003; Sneyers, 

1999) 

BIVT – Bivariate Test (Potter, 1981) 

DW – Durbin-Watson (method) 

HOMER – Homogenisation Software in R (Mestre et al., 2013) 

JARU – Jaruskova’s (method) (Jaruskova, 1996) 

K-W – Kruskal-Wallis (test) 

MASH – Multiple Analysis of Series for Homogeneity (Szentimrey, 1999) 

M-K – Mann-Kendall (test) 

MLR – Multiple Linear Regression (Vincent, 1998) 

NMETA – Non-parametric Metadata-based (test) (Allen and DeGaetano, 2000)  

PMETA – Parametric Metadata-based (test) (Karl and Williams, 1987) 

PMT – Penalised Maximal t-test (Wang et al., 2007) 

SNH1 – SNHT including the common cutting algorithm  

SNH2 – SNHT supplied with the semi-hierarchic algorithm 

SNHT – Standard Normal Homogeneity Test (Alexandersson, 1986) 

SNT – Standard Normal Homogeneity Test with trend (Alexandersson and Moberg, 1997) 

SRMD – Squared Relative Mean Difference 

STUS – Sequential Student t-test 

TPR – Two-Phase Regression (Easterling and Peterson, 1995) 

USHCN – United State Historical Climatology Network (Menne and Williams Jr., 2009) 

WMW – Wilcoxon-Mann-Whitney 
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Appendix B 

Table B.1 - List of the 66 monitoring stations used in the study depicting the role of the station series 

(candidate in the set of 4 stations, candidate in set of 10 stations, or reference station). 

ID Name/Location Role 

SNIRH 21K.01 Azaruja Candidate (set of 10) 

SNIRH 22E.01 Águas de Moura Reference station 

SNIRH 22H.02 Santiago do Escoural Candidate (set of 4) 

SNIRH 22L.01 Redondo Candidate (set of 10) 

SNIRH 22M.01 Santiago Maior Reference station 

SNIRH 23E.01 Comporta Candidate (set of 10) 

SNIRH 23F.01 Montevil Reference station 

SNIRH 23G.01 Barragem de Pego do Altar Reference station 

SNIRH 23I.01 Alcáçovas Reference station 

SNIRH 23K.01 São Manços Reference station 

SNIRH 23L.01 Reguengos Reference station 

SNIRH 24I.01 Viana do Alentejo Candidate (set of 10) 

SNIRH 24J.02 Alvito Reference station 

SNIRH 24J.03 Cuba Reference station 

SNIRH 24K.01 Portel Reference station 

SNIRH 24K.02 Vidigueira Reference station 

SNIRH 24N.01 Amareleja (D.G.R.N.) Reference station 

SNIRH 25G.01 Azinheira Barros Reference station 

SNIRH 25P.01 Barrancos Reference station 

SNIRH 26I.01 Santa Vitória Reference station 

SNIRH 26I.02 Barragem do Roxo Reference station 

SNIRH 26J.04 Albernoa Reference station 

SNIRH 26K.01 Salvada Reference station 

SNIRH 26L.01 Serpa Reference station 

SNIRH 26L.02 Santa Iria Reference station 

SNIRH 26M.01 Herdade de Valada Reference station 

SNIRH 27G.01 Relíquias Reference station 

SNIRH 27H.01 Panóias Reference station 

SNIRH 27H.02 Barragem do Monte da Rocha Reference station 

SNIRH 27J.01 São Marcos da Ataboeira Reference station 

SNIRH 27J.02 Corte Pequena Reference station 

SNIRH 27J.03 Vale de Camelos Reference station 

SNIRH 27K.01 Algodôr Reference station 

SNIRH 27K.02 Corte da Velha Reference station 
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ID Name/Location Role 

SNIRH 28F.01 Odemira Candidate (set of 10) 

SNIRH 28H.01 Aldeia de Palheiros Candidate (set of 10) 

SNIRH 28I.01 Almodôvar Reference station 

SNIRH 28J.01 Alcaria Longa Reference station 

SNIRH 28J.03 Santa Barbara de Padrões Reference station 

SNIRH 28K.01 São João dos Caldeireiros Reference station 

SNIRH 28K.02 Álamo Reference station 

SNIRH 28L.01 Mértola Reference station 

SNIRH 29G.01 Sabóia Candidate (set of 10) 

SNIRH 29I.02 Santa Clara-a-Nova Reference station 

SNIRH 29J.05 Guedelhas Reference station 

SNIRH 29K.01 Martim Longo Reference station 

SNIRH 29K.03 Malfrades Reference station 

SNIRH 29L.03 Monte dos Fortes Reference station 

SNIRH 30E.01 Aljezur Candidate (sets of 4 & 10) 

SNIRH 30E.02 Marmelete Reference station 

SNIRH 30E.03 Barragem da Bravura Reference station 

SNIRH 30G.01 Alferce Candidate (set of 4) 

SNIRH 30H.03 São Bartolomeu de Messines Reference station 

SNIRH 30H.04 Santa Margarida Reference station 

SNIRH 30J.01 Barranco do Velho Reference station 

SNIRH 30K.01 Mercador Reference station 

SNIRH 30K.02 Picota Candidate (set of 10) 

SNIRH 30L.04 Alcaria (Castro Marim) Reference station 

SNIRH 31G.02 Porches Reference station 

SNIRH 31H.02 Algoz Reference station 

SNIRH 31J.01 São Brás de Alportel Reference station 

SNIRH 31J.04 Estoi Reference station 

SNIRH 31K.01 Santa Catarina (Tavira) Reference station 

SNIRH 31K.02 Quelfes Reference station 

ECA 666 Beja Candidate (sets of 4 & 10) 

ECA 675 Lisboa Geofísica Reference station 
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Appendix C 

Table C.1 - Variogram models of the monthly precipitation series from networks 5 and 9. 

 
Decade 1900-1929 1930-1949 1950-1959 1960-1969 1970-1979 1980-1989 1990-1999 

J
a

n
u

a
ry

 

Model Exponential Exponential Exponential Exponential Exponential Exponential Exponential 

Nugget 0 0 0 0 0 0 0 

Range 18000 20000 21000 25000 27500 27500 22500 

Partial 

Sill 
2100 2100 950 2800 1650 970 1110 

F
eb

ru
a

ry
 

Model Exponential Exponential Exponential Exponential Exponential Exponential Exponential 

Nugget 0 0 0 0 0 0 0 

Range 22500 27500 25000 30000 21000 22000 20000 

Partial 

Sill 
2300 2350 1970 1700 1430 650 1180 

M
a

rc
h

 

Model Exponential Exponential Exponential Exponential Exponential Exponential Exponential 

Nugget 0 0 0 0 0 0 0 

Range 22500 25000 20000 25000 20000 17500 17500 

Partial 

Sill 
3600 3000 2150 1400 1900 1700 1300 

A
p

ri
l 

Model Exponential Exponential Exponential Exponential Exponential Exponential Exponential 

Nugget 0 0 0 0 0 0 0 

Range 27500 25000 18500 30000 31000 22500 23000 

Partial 

Sill 
1600 2800 3450 4100 4500 1500 1500 

M
a

y
 

Model Exponential Exponential Exponential Spherical Exponential Exponential Exponential 

Nugget 0 0 0 0 0 0 0 

Range 23000 25000 22000 28000 20500 30000 20000 

Partial 

Sill 
2350 2560 2350 3400 1500 1810 1100 

J
u

n
e 

Model Exponential Exponential Exponential Exponential Exponential Exponential Exponential 

Nugget 0 0 0 0 0 0 0 

Range 17000 20000 25000 21500 21500 21000 22500 

Partial 

Sill 
2100 1570 2700 1800 3400 2100 910 

J
u

ly
 

Model Exponential Exponential Exponential Exponential Exponential Exponential Spherical 

Nugget 0 0 0 0 0 0 0 

Range 18500 18500 28000 25000 20000 26000 27000 

Partial 

Sill 
1700 1400 2800 1600 1750 3130 1350 

A
u

g

u
st

 

Model Exponential Exponential Exponential Spherical Exponential Exponential Exponential 
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Decade 1900-1929 1930-1949 1950-1959 1960-1969 1970-1979 1980-1989 1990-1999 

Nugget 0 0 0 0 0 0 0 

Range 18500 25000 30000 30000 15000 24000 18000 

Partial 

Sill 
2900 1700 1000 900 1600 400 1500 

S
ep

te
m

b
er

 

Model Exponential Exponential Exponential Exponential Exponential Exponential Exponential 

Nugget 0 0 0 0 0 0 0 

Range 27000 16500 23500 23000 24000 30000 15000 

Partial 

Sill 
2100 1200 1900 1300 1110 2290 2100 

O
ct

o
b

er
 

Model Exponential Exponential Exponential Exponential Exponential Exponential Exponential 

Nugget 0 0 0 0 0 0 0 

Range 15000 24000 19500 18000 22500 15000 15500 

Partial 

Sill 
1500 1030 2340 950 1900 2700 1030 

N
o

v
em

b
er

 

Model Exponential Exponential Exponential Exponential Exponential Exponential Exponential 

Nugget 0 0 0 0 0 0 0 

Range 19000 14000 25000 28000 27000 19000 26000 

Partial 

Sill 
1700 2400 2500 3100 1400 1240 830 

D
ec

em
b

er
 

Model Exponential Exponential Exponential Exponential Exponential Exponential Exponential 

Nugget 0 0 0 0 0 0 0 

Range 24000 30000 23500 30000 18500 28000 30000 

Partial 

Sill 
2100 1350 2700 1300 2000 1450 715 
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Table C.2 - List of the years with breakpoints and outliers defined by the HOME project (the “truth”), and of the irregular years that were detected in the homogenisation exercises. 

Years marked in bold are correctly detected breakpoints (with a tolerance of 2 years), and years marked in bold and underlined are correctly detected outliers.  

  BENCHMARK ("truth") TEST 1 TEST 2 TEST 3 TEST 4 TEST 5 TEST 6 

  
Station 

Code 

Years with 

outliers 

Breakpoint 

years 

Automatic 

gsimcli 

Semi-

automatic 

gsimcli 

Automatic 

gsimcli 

Semi-

automatic 

gsimcli 

Automatic 

gsimcli 

Semi-

automatic 

gsimcli 

Automatic 

gsimcli 

Semi-

automatic 

gsimcli 

Automatic 

gsimcli 

Semi-

automatic 

gsimcli 

Automatic 

gsimcli 

Semi-

automatic 

gsimcli 

N
e
tw

o
r
k

 5
 

21109001 ---- 

1908, 1918, 

1931, 1941, 

1955, 1971, 

1978, 1982, 

1994 

1956, 1957, 

1963, 1966, 

1970, 1974-

1977 

1918, 1952, 

1970 

1956, 1957, 

1963, 1966, 

1970, 1974-

1977 

1918, 1952, 

1970 

1956, 1957, 

1963, 1966, 

1970, 1974-

1977  

1918, 1952, 

1970 

1956, 1957, 

1963, 1966, 

1970, 1974-

1977 

1918, 1952, 

1970 

1956, 1957, 

1963, 1966, 

1970, 1974-

1977 

1918, 1952, 

1970 

1956, 1963, 

1966, 1970, 

1974-1977 

1918, 1952, 

1970 

21142001 ---- 
1934, 1969, 

1973 

1900, 1904, 

1905, 1908-

1910, 1914, 

1917, 1918, 

1926, 1931, 

1934, 1935, 

1938, 1947-

1950, 1967, 

1989 

1952 

1900, 1904, 

1905, 1908-

1910, 1914, 

1917, 1918, 

1926, 1931, 

1934, 1935, 

1938, 1947-

1950, 1967, 

1989 

1952 

1900, 1904, 

1905, 1908-

1910, 1914, 

1917, 1918, 

1926, 1931, 

1934, 1935, 

1938, 1947-

1951, 1967, 

1989, 1991  

1952 

1900, 1904, 

1905, 1908-

1910, 1914, 

1917, 1918, 

1926, 1931, 

1934, 1935, 

1938, 1947-

1951, 1967, 

1989, 1991 

1952 

1900, 1904, 

1905, 1908-

1910, 1914, 

1917, 1918, 

1926, 1931, 

1934, 1935, 

1938, 1947-

1951, 1967, 

1989, 1991 

1952 

1900, 1904, 

1905, 1908-

1910, 1914, 

1917, 1918, 

1926, 1931, 

1934, 1935, 

1938, 1945-

1951, 1967, 

1989, 1991 

1952 

21310001 1925, 1985 

1927, 1942, 

1952, 1958, 

1989 

1923, 1924 1972 1923, 1924 1972 1923, 1924 1972 1923, 1924 1972 1923, 1924 1972 1923, 1924 1972, 1984 

21386001 ---- 
1925, 1940, 

1944, 1955 

Homogeneo

us 
1947 

Homogeneo

us 
1947 

Homogeneo

us 
1947 Homogeneous 1947 Homogeneous 1947 Homogeneous 1947 

21425001 1933, 1962 

1908, 1924, 

1931, 1934, 

1968, 1988 

1930, 1947, 

1967 
1924, 1933 

1930, 1947, 

1967, 1998 
1924, 1933 

1930, 1947, 

1967, 1998 
1924, 1933 

1930, 1947, 

1967, 1998 
1924, 1933 

1930, 1947, 

1967, 1998 
1924, 1933 

1925-1927, 

1930, 1947, 

1967, 1998 

1924, 1933 

21454001 1906 

1917, 1939, 

1947, 1951, 

1960, 1972, 

1976, 1987, 

1989, 1994 

1901, 1902, 

1907, 1911-

1914, 1919, 

1923, 1940-

1946, 1953, 

1956, 1976, 

1979-1981, 

1984, 1987-

1993 

Homogeneo

us 

1901, 1902, 

1907, 1911-

1914, 1919, 

1923, 1940-

1946, 1953, 

1956, 1976, 

1979-1981, 

1984, 1987-

1993   

Homogeneo

us 

1901, 1902, 

1907, 1911-

1914, 1919, 

1923, 1940, 

1941, 1944, 

1946, 1953, 

1956, 1976, 

1979-1981, 

Homogeneo

us 

1901, 1902, 

1907, 1911-

1914, 1919, 

1923, 1940-

1946, 1953, 

1956, 1976, 

1979-1981, 

1984, 1987-

1993 

Homogeneo

us 

1901, 1902, 

1907, 1911-

1914, 1919, 

1923, 1940-

1946, 1953, 

1956, 1976, 

1979-1981, 

1984, 1987-

1993 

Homogeneous 

1901, 1902, 

1907, 1911-

1914, 1919, 

1923, 1940-

1946, 1953, 

1956, 1976, 

1979-1981, 

1984, 1987-

1993 

Homogeneo

us 
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1984, 1987-

1993 

21501003 ---- 1981, 1985 
Homogeneo

us 

Homogeneo

us 

Homogeneo

us 

Homogeneo

us 

Homogeneo

us 

Homogeneo

us 
Homogeneous 

Homogeneo

us 
Homogeneous Homogeneous Homogeneous 

Homogeneo

us 

21584001 ---- 

1955, 1957, 

1963, 1970, 

1975, 1978 

1926, 1955, 

1967, 1989, 

1994 

Homogeneo

us 

1926, 1955, 

1967, 1989, 

1994 

Homogeneo

us 

1926, 1955, 

1967, 1989, 

1994 

Homogeneo

us 

1926, 1955, 

1967, 1989, 

1994 

Homogeneo

us 

1955, 1967, 

1989, 1994 
Homogeneous 

1955, 1967, 

1989, 1994 

Homogeneo

us 

21711001 
1948, 1956, 

1979 
1974 1950 1967 1950 1967 1950 1967 1950 1967 1950 1967 1950 1967 

N
e
tw

o
r
k

 9
 

21109001 ---- 

1921, 1944, 

1967, 1970, 

1983 

Homogeneo

us 

Homogeneo

us 

Homogeneo

us 

Homogeneo

us 

Homogeneo

us 

Homogeneo

us 
Homogeneous 

Homogeneo

us 
Homogeneous Homogeneous Homogeneous 

Homogeneo

us 

21425001 ---- 
1918, 1950, 

1953 

1900-1910, 

1913-1917, 

1921, 1939, 

1946, 1960, 

1974, 1993 

1926 

1900-1910, 

1913-1917, 

1921, 1939, 

1946, 1960, 

1974, 1993 

1917, 1926 

1900-1910, 

1913, 1916, 

1917, 1921, 

1939, 1946, 

1960, 1974, 

1993 

1917, 1926 

1900-1910, 

1913, 1916, 

1917, 1921, 

1939, 1946, 

1960, 1974, 

1993  

1917, 1926 

1900-1910, 

1913, 1916, 

1917, 1921, 

1939, 1946, 

1960, 1974, 

1993 

1917, 1926 

1900-1910, 

1913, 1916, 

1917, 1921, 

1960, 1974 

1917, 1926 

21454001 1977, 1990 

1900, 1910, 

1911, 1913, 

1916, 1946, 

1974 

1912, 1931, 

1951, 1986 
1950 

1912, 1931, 

1951, 1986  
1950 

1912, 1931, 

1951, 1986 
1950 

1912, 1931, 

1951, 1986 
1950 

1912, 1931, 

1951, 1986 
1950 1912, 1986 1950 

21584001 1902, 1917 1999 

1908, 1912, 

1922, 1923, 

1927-1934, 

1937-1941, 

1948-1950, 

1953-1958, 

1962-1973, 

1978, 1979, 

1983-1992, 

1997    

1941 

1908, 1912, 

1922, 1923, 

1927-1934, 

1937-1941, 

1948-1950, 

1953-1958, 

1962-1973, 

1978, 1979, 

1983-1992, 

1997    

1941 

1908, 1912, 

1922, 1923, 

1927-1934, 

1937-1941,  

1948-1950, 

1953-1958, 

1962-1973, 

1978-1980, 

1983-1992, 

1997 

1941 

1908, 1912, 

1922, 1923, 

1927-1934, 

1937-1941, 

1948-1950, 

1953-1958, 

1962-1973, 

1978- 1980, 

1983-1992, 

1997 

1941 

1908, 1912, 

1922, 1923, 

1927-1934, 

1937-1941, 

1948-1950, 

1953-1958, 

1962-1973, 

1978-1980, 

1983-1992, 

1997 

1941 

1907, 1908, 

1912, 1923, 

1927-1934, 

1937-1941, 

1948-1950, 

1953-1958, 

1964-1973, 

1978, 1979, 

1983-1988, 

1991, 1992, 

1997 

1906, 1918, 

1941 

21711001 ---- 
1935, 1937, 

1951, 1987 

Homogeneo

us 

1937, 1952, 

1979 

Homogeneo

us 
1952, 1979 

Homogeneo

us 

1937, 1952, 

1979 
Homogeneous 

1937, 1952, 

1979 
Homogeneous 

1937, 1952, 

1979 
Homogeneous 

1937, 1952, 

1979 
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Appendix D 

Homogenisation of a temperature benchmark data set 

The automatic version of the gsimcli method (without adjustments for sudden shifts) was used to 

homogenise monthly temperature data of the COST-HOME benchmark (HOME project; COST 

Action ES0601), considering different sets of parameters. The following sections describe the 

study area and the surrogate temperature data, as well as the different implementation strategies 

of the gsimcli method. Finally, the results are detailed and discussed based on performance 

metrics. 

Monthly temperature data series 

The HOME benchmark has networks with 5, 9 and 15 stations. We selected the temperature 

surrogate network 4, which comprises 15 stations located in the Northwest of France (Error! 

Reference source not found.), covering a rectangular area of approximately 100000 km2 (250 

km x 400 km) with a relatively uniform orography. Network 4 is expected to be easier to 

homogenise when compared with the other 15-stations temperature network available in the 

benchmark, which is located in the Pyrenees area (Spain, Andorra and France). Two stations are 

located in the islands of Groix (station 56069001) and Ile-Yeu (station 85113001). Network 4 

comprises temperature monthly data series for a period of 100 years (1900 – 1999). Missing data 

periods occur in the first three decades (1900 – 1930), and in the beginning of the fifth decade 

(1940 – 1945), completing a total of 180 years of missing monthly data (2160 monthly records 

are missing). Two stations (44184001 St. Nazaire, and 49281001 St. George des Gardes) have a 

complete set of 100 years of monthly temperature data. The most incomplete time series, with 

only 75 years of monthly data, is the station 61377001 St. Cornier des Landes. 
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Figure S.1 - Location of stations from network 4 in the North of the Bay of Biscay (Digital Elevation Model 

source: Jarvis A, Reuter HI, Nelson A, Guevara E. 2008. Hole-filled seamless SRTM data V4, 

http://srtm.csi.cgiar.org; accessed November 2015). 

 

In network 4, the monthly temperature values vary from –0.5 ºC (observed in February 1946 in 

station 61377001) to 31.5 ºC (observed in July 1992, in station 41097001). Station 49281001 

shows the highest range of monthly values (29.7 ºC). The stations’ averages fluctuate between 

12.3 ºC (station 61377001) and 16.6 ºC (station 41097001), corresponding to the stations where 

the minimum and the maximum values of temperature also occur.  The correlation coefficients 

between the network stations are very high, varying from 0.893 (between stations 86027001 and 

56069001) to 0.997 (between stations 53097001 and 28070001). The main spatial patterns were 

investigated for the annual temperature records of network 4. Three interpolation maps were 

elaborated for the years of 1935, 1966 and 1989 using the Inverse Distance Weighting (IDW) 

method. Neither an overall trend nor an anisotropic behaviour were observed in the interpolation 

maps, thus an overall isotropic pattern was assumed. Considering the isotropic behaviour of the 

variable, the high correlation coefficients between stations, and the size of the network, a single 

variogram model was estimated per month (Error! Reference source not found.). Although the 

correlation coefficients are high, the values of the range parameter in the monthly variogram 

models are surprisingly low, ranging between 77000 m (in October) and 102000 m (in December). 

The latter corresponds to approximately half of the minor length of the study area. 
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Table S.1 - Variogram models of the monthly temperature series from network 4. 

Month Model Nugget Partial Sill Range 

January Exponential 0 4 90000 

February Exponential 0 4.7 95000 

March Exponential 0 4.89 83000 

April Exponential 0 5.5 88000 

May Exponential 0 4.97 88000 

June Exponential 0 6 82000 

July Exponential 0 6.8 84000 

August Exponential 0 5.7 95000 

September Exponential 0 5.413 79000 

October Exponential 0 5.25 77000 

November Exponential 0 4.5 77500 

December Exponential 0 3.7 102000 

Specifications of the homogenisation exercises 

Nine homogenisation exercises were undertaken for the monthly temperature series from network 

4 using the automatic version of gsimcli with different sets of parameters (Table S.2). All 

homogenisation exercises follow a common set of parameters: 

 Number of simulations (m) = 500; 

 Detection parameter (p) = 0.95; 

 Correction parameter = percentile value of 0.975. 

Besides the size of the grid cells and the local radius parameters, which were assessed in the 

homogenisation exercises of precipitation, the order in which stations can be tested was also 

investigated. Three different strategies were evaluated: the descending order of variance (as in the 

homogenisation exercises of precipitation), the ascending order of variance, and the network 

deviation (the decreasing value of the difference between the station average and the network 

average). Three different grids were used: one grid with 5000 m cells (86 x 56 cells covering an 

area of 120400 km2), and two grids with 10000 m cells (43 x 28 cells covering an area of 120400 

km2, and 50 x 40 cells covering an area of  200000 km2). The values of the local radius parameter 

(r) vary between 0 and 2. An extended 10000 m grid was used in Test #6, where r is equal to 2 

cells, because it is necessary to ensure that the minimum number of cells surrounding all the 

stations is at least 2. 
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Table S.2 - Parameters of the homogenisation exercises of monthly temperature data from network 4. 

Test # Grid cell size Candidates order Local radius parameter (r) 

1 5000 m Descending variance 0 

2 5000 m Descending variance 1 

3 5000 m Descending variance 2 

4 10000 m Descending variance 0 

5 10000 m Descending variance 1 

6 10000 m (extended grid) Descending variance 2 

7 5000 m Network deviation 1 

8 5000 m Ascending variance 1 

9 5000 m Network deviation 0 

Results and discussion 

All the homogenisation exercises undertaken with the monthly temperature data from network 4 

provide identical performance metrics (Table S.3), thus it is not possible to determine which was 

the best modelling strategy. Changing the order of the candidate stations produced some 

differences regarding the adjusted values, but those differences did not significantly affect the 

performance metrics. 

The results also show that the gsimcli homogenisation made the data slightly more 

inhomogeneous. Nonetheless, considering the Station CRMSE, the gsimcli method outperformed 

the absolute method (h008 - PMFred abs) and the Climatol (h010) by 17% and 11%, respectively. 

In terms of the Network CRMSE, the gsimcli homogenisation exercises show an efficiency 

improvement of 61% in comparison with the Climatol (h010). 
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Table S.3 - Performance metrics of the monthly temperature series from network 4 for the homogenisation 

exercises undertaken and for the blind contributions to the HOME project. 

Method 
Station 

CRMSE 

Station 

Improvement 

Network 

CRMSE 

Network 

Improvement 

gsimcli Test #1 0.721 1.069 0.224 1.090 

gsimcli Test #2 0.720 1.068 0.225 1.093 

gsimcli Test #3 0.720 1.068 0.224 1.092 

gsimcli Test #4 0.720 1.068 0.226 1.096 

gsimcli Test #5 0.719 1.066 0.224 1.090 

gsimcli Test #6 0.719 1.067 0.224 1.087 

gsimcli Test #7 0.720 1.068 0.225 1.093 

gsimcli Test #8 0.722 1.070 0.224 1.090 

gsimcli Test #9 0.720 1.068 0.224 1.092 

Inhomogeneous data 0.674 1.0 0.206 1.0 

h002 - PRODIGE main 0.274 0.406 0.110 0.537 

h003 - USHCN 52x 0.324 0.481 0.120 0.582 

h004 - USHCN main 0.323 0.479 0.130 0.634 

h005 - USHCN cx8 0.325 0.482 0.134 0.650 

h006 - C3SNHT 0.569 0.844 0.196 0.951 

h007 - PMTred rel 0.476 0.706 0.143 0.697 

h008 - PMFred abs 0.868 1.288 0.180 0.878 

h010 - Climatol 0.810 1.201 0.575 2.795 

h011 - MASH main 0.285 0.423 0.109 0.531 

h012 - SNHT DWD 0.498 0.739 0.191 0.928 

h013 - PRODIGE trendy 0.268 0.398 0.110 0.534 

h015 - ACMANT 0.300 0.444 0.127 0.618 

h016 - iCraddock 

Vertacnik 
0.284 0.422 0.108 0.526 

h018 - AnClim main 0.472 0.701 0.195 0.949 

h020 - PRODIGE 

Acquaotta 
0.353 0.524 0.161 0.783 

h021 - PRODIGE monthly 0.253 0.375 0.111 0.539 

h022 - MASH Basic 0.302 0.448 0.128 0.622 

h023 - MASH Light 0.300 0.445 0.130 0.633 

h024 - MASH Strict 0.311 0.461 0.134 0.652 

h025 - MASH No meta 0.317 0.471 0.138 0.673 

 

 


