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Abstract

Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and rapidly degrades mRNAs carrying
premature translation-termination codons (PTCs). Mammalian NMD depends on both splicing and translation, and requires
recognition of the premature stop codon by the cytoplasmic ribosomes. Surprisingly, some published data have suggested
that nonsense codons may also affect the nuclear metabolism of the nonsense-mutated transcripts. To determine if
nonsense codons could influence nuclear events, we have directly assessed the steady-state levels of the unspliced
transcripts of wild-type and PTC-containing human b-globin genes stably transfected in mouse erythroleukemia (MEL) cells,
after erythroid differentiation induction, or in HeLa cells. Our analyses by ribonuclease protection assays and reverse
transcription-coupled quantitative PCR show that b-globin pre-mRNAs carrying NMD-competent PTCs, but not those
containing a NMD-resistant PTC, exhibit a significant decrease in their steady-state levels relatively to the wild-type or to
a missense-mutated b-globin pre-mRNA. On the contrary, in HeLa cells, human b-globin pre-mRNAs carrying NMD-
competent PTCs accumulate at normal levels. Functional analyses of these pre-mRNAs in MEL cells demonstrate that their
low steady-state levels do not reflect significantly lower pre-mRNA stabilities when compared to the normal control.
Furthermore, our results also provide evidence that the relative splicing efficiencies of intron 1 and 2 are unaffected. This set
of data highlights potential nuclear pathways that might be promoter- and/or cell line-specific, which recognize the NMD-
sensitive transcripts as abnormal. These specialized nuclear pathway(s) may be superimposed on the general NMD
mechanism.
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Introduction

Nonsense-mediated mRNA decay (NMD) is a cellular surveil-

lance mechanism that selectively identifies and rapidly degrades

mRNAs containing premature translation-termination codons

(PTCs). Therefore, by downregulating mRNAs bearing nonsense

codons, NMD prevents the synthesis of C-terminally truncated

proteins potentially toxic for the cell [1,2]. As about one third of all

known disease-causing mutations originate a nonsense codon,

NMD may function as a significant modulator of genetic disease

phenotypes in humans [1–3]. Moreover, many physiological

mRNAs have been recently described as NMD substrates,

suggesting an additional role for NMD as a posttranscriptional

regulator of gene expression [3–5].

NMD has been extensively studied for decades in yeast, worms,

fruit fly, plants and mammals, and several models have been

proposed depicting different aspects of the NMD machinery, such

as nonsense codon recognition or subcellular localization, amongst

others [6–9]. In mammalian cells, NMD depends on the

interaction of the termination complex with a multi-component

exon-junction complex (EJC) [6–9]. The EJC is deposited 20–24

nucleotides (nts) upstream of each exon-exon junction during

splicing [10]. According to the present model for mammalian

NMD, the EJC, or a critical subset of EJC components, remains

associated with the mRNA during its transport to the cytoplasm.

Translating ribosomes subsequently displace EJCs from the open

reading frame during the first (‘pioneer’) round of translation

[11,12]. However, if an mRNA contains a PTC located more than

50–54 nts upstream the last exon-exon junction, the ribosome will

fail to displace distal EJC(s). In this case, when the ribosome

reaches the PTC, the translation release factors eRF1 and eRF3 at

the PTC interact in cis with the retained EJC(s) via a multiprotein

bridge [13]. Of central importance in this process is the interaction

of UPF1 and SMG1 with the terminating complex and with the
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UPF2/UPF3 components of the retained EJC(s) [13]. This

bridging interaction triggers the mRNA for rapid decay (i.e.,

NMD) of the PTC-containing mRNA.

Despite the translational-dependence of NMD, most mRNAs

harbouring PTCs sh–ow reduced steady-state levels not only in the

cytoplasm, but also in the nuclear fraction of mammalian cells

[14–19]. These apparently conflicting data are explained by the

model postulating that mRNAs are read by ribosomes while they

are exported to the cytoplasm, which prompts the degradation of

nonsense-containing mRNAs still associated with the nucleus [12].

Whether mammalian cells can recognize the presence of

a nonsense codon before mRNA processing and export from the

nucleus has remained a topic of discussion [20]. For instance, some

evidences account for a link between premature translation-

termination events and nuclear events, or for translation within the

nucleus [21–23]. Regarding the nuclear metabolism of nonsense

transcripts, several authors observed that the presence of a non-

sense codon could alter the pre-mRNA splicing pattern. This effect

was attributed to the disruption of exonic splicing enhancers or

RNA secondary structure forced by the PTC [24–27]. Nonsense

codons have also been reported to inhibit pre-mRNA splicing in

an open reading frame-dependent manner [28–30]. Recently it

has been described that the immunoglobulin-m unspliced tran-

scripts containing nonsense codons are specifically retained at the

transcription site. This RNA retention is dependent on two

essential NMD factors, UPF1 and SMG6, and indicates that

a mechanism for regulation of PTC-bearing transcripts might

occur at the site of transcription [31].

In the present study, we tested whether the nuclear metabolism

of nonsense-mutated transcripts is altered in mammalian cells. We

therefore examined the steady-state levels of normal and nonsense-

mutated human b-globin pre-mRNAs stably expressed in mouse

erythroleukemia (MEL) and HeLa cells. Our data revealed that

the presence of a NMD-competent PTC specifically affects the

abundance of the corresponding b-globin pre-mRNAs in erythroid

cells, although not affecting their pre-mRNA half-lives. However,

in the non-erythroid cells, reduction of pre-mRNA levels is not

observed. Our results therefore underline a specific effect of the

NMD-competent PTC on the nuclear metabolism of the

corresponding transcripts.

Results

Human b-globin pre-mRNAs carrying a nonsense
mutation accumulate at low levels
With the aim to investigate if the presence of a nonsense codon

in a transcript could affect its nuclear metabolism, in this study, we

generated stably transfected MEL cell clones expressing the wild-

type human b-globin gene (bWT), or a b-globin gene variant

carrying a nonsense mutation at codon 39 (b39), which is a well-

characterized b-globin NMD substrate in erythroid as well as in

non-erythroid cells [32–35]. Each human b-globin gene was

cloned into the p158.2 vector, as previously described, where it is

expressed under the transcriptional control of the corresponding

promoter and the DNase I hypersensitive site 2 of the human locus

control region [32]. To select cell line clones for further studies, the

integration of the intact human b-globin gene in the murine

genome was evaluated by Southern blot analysis (Figure 1A). From

the different clones analysed, we have chosen, for further analyses,

six independent clones – #146, #154, #166 expressing the bWT

gene, and #241, #249 and #252 expressing the b39 gene. The

chosen cell clones show the same pattern of integration and

different copy number of integrated transgenes. In these selected

clones, accurate evaluation of the human b-globin transgene copy

number was performed by quantitative PCR using the endogenous

diploid thymus cell antigen (Thy1) gene as a copy number

reference. Results have shown that for the three bWT independent

selected clones, the corresponding transgene copy number is

1862, 2463 and 3465, whereas in the b39 cell lines, the

transgene copy number is 2266, 3061 and 1862 (Figure 1B).

This selection allowed us to perform further gene expression

analyses in pairs of bWT and b39 clones matched for transgene

copy number.

To assess the effect of the PTC on the nuclear metabolism of the

b-globin transcripts, we compared, by ribonuclease protection

assays (RPA), the steady-state expression levels of bWT and b39
transcripts in the selected MEL cell lines after induction of

erythroid differentiation by dimethyl sulfoxide (DMSO) (see

Materials and Methods). Using a 32P-labelled riboprobe spanning

b-globin intron 1 and exon 2 sequences (Figure 2A), the pre-

mRNA as well as the processed mRNA from total RNA were

simultaneously detected and quantified (Figure 2B). The hybrid-

ization signals of both b-globin spliced and unspliced transcripts

from all MEL cell clones were normalized to the murine a-globin
mRNA signal produced by the respective riboprobe, and

estimated as a percentage of the normalized value for the bWT

#146 clone (arbitrarily considered 100%). Our results show that

the b39 MEL cell clones exhibit reduced b-globin mRNA levels, in

agreement with rapid decay by NMD, as expected [32–35]

(Figure 2C). Remarkably, all b39 MEL cell clones display

a significant 3- to 14-fold reduction in the pre-mRNA steady-

state levels relatively to the reference bWT#146 pre-mRNA level,

and relatively to the pre-mRNA level from the corresponding

bWT clone with equivalent transgene copy number (Figure 2D).

These results suggest that the presence of a NMD-sensitive

nonsense codon can affect the metabolism of the unspliced b-
globin transcripts in MEL cells nuclei, independently of the

transgene copy number.

The low levels of the b39 pre-mRNAs are PTC-specifc
In order to discard a pleiotropic effect of the b39 nonsense

mutation that, for example, could disrupt an exonic splicing

regulatory element surrounding codon 39, we generated MEL cell

pools stably expressing a b-globin construct bearing a different

mutation at codon 39–a missense mutation (b39missense; see

Materials and Methods). After erythroid cell differentiation

induction, the mRNA levels were determined by RPA, as before,

using probes comprising part of the human b-globin intron 2 and

exon 3 or murine a-globin mRNA sequences. Results were

compared to those of MEL cell pools stably expressing the bWT or

b39 genes (Figure 3A–C). Our data show that the b39missense

mRNA level accumulates at about 72% of the bWT mRNA, while

b39 mRNAs accumulate at about 9% of the normal control

(Figure 3C). As expected, these results show that the missense

mutation at codon 39 does not significantly affect the correspond-

ing steady-state mRNA accumulation level (P=0.12).

In parallel, b39missense pre-mRNA levels were also quantified

by RPA using a probe specific for the second intron (bintron2
probe; Figure 3D), whose intensity was normalized with the

murine glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

mRNA signal generated by the respective riboprobe protection

and compared to the bWT and b39 controls (Figure 3E, F). These

analyses revealed that the b39missense pre-mRNA accumulates at

about 68% of the bWT pre-mRNA (P=0.12), while b39 unspliced
mRNA accumulates at about 40% of the normal (P,0.01),

showing that, contrary to what occurs with the b39 pre-mRNA,

the b39missense pre-mRNA is not significantly decreased. Taken

together, these results clearly show that the steady-state decreased

Nonsense Pre-mRNAs Accumulate at Low Levels
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levels of b39 pre-mRNA are not due to a pleiotropic effect of the

mutation at position 39, but, instead, they seem to be PTC-

specific.

The decreased b-globin pre-mRNA levels are specific for
transcripts carrying NMD-sensitive nonsense codons
Considering the formerly observed downregulation of unspliced

b-globin transcripts carrying a nonsense mutation at codon 39, we

next asked whether this effect occurs in other transcripts carrying

a different PTC. We thus established two different MEL cell pools

stably expressing the human b-globin gene carrying a NMD-

sensitive nonsense mutation at codon 26 (exon 1; b26) or at codon
62 (exon 2; b62) [36]. The b26 and b62 mRNAs were previously

found to accumulate at reduced steady-state levels when compared

to the wild-type b-globin mRNA in erythroid and non-erythroid

cells [32,36] These transcripts are NMD-sensitive because the

respective PTCs are located more than 50–54 nts upstream to the

39-most exon-exon junction and when the ribosome reaches the

PTC, the terminating complex can interact with the downstream

EJC via UPF1 [36,37]. Regarding b62 MEL cell pools, we were

able to isolate two independent MEL cell pools (b62#1 and

b62#2). After erythroid cell differentiation induction, the

transgene mRNA levels were determined by RPA as before, using

probes comprising part of the human b-globin intron 2 and exon 3

or murine a-globin mRNA sequences, and results were compared

to those of MEL cell pools stably expressing the bWT or b39 genes
(Figure 4A, B). According to our previously published data [36],

our results show that b26 and b62 mRNA levels of the

corresponding MEL cell pools are strongly downregulated

relatively to the bWT mRNA levels, presenting levels similar to

those observed in the b39 MEL cell pools, meaning that they are

induced to rapid decay, as expected (Figure 4B, C). These results

indicate that under our experimental conditions, the cellular NMD

machinery is functional.

At these experimental conditions, the pre-mRNA levels of the

b26 and b62 MEL cell pools were quantified using a probe specific

for the second intron (bintron2 probe; Figure 4D), whose intensity

was normalized with the murine GAPDH mRNA signal generated

by the respective riboprobe protection (Figure 4E, F), as before.

RPA analysis revealed that the b26 and b62 pre-mRNA steady-

state levels are at about 40% and 30% of the normal control,

respectively. These levels are significantly lower relatively to the

bWT pre-mRNA (P,0.05 and P,0.01, respectively for b26 and

b62), being comparable to that of b39 pre-mRNA (Figure 4E, F).

Figure 1. Human b-globin transgene integrity and copy number analysis in stably transfected MEL cell clones. (A) Representative
Southern blot analysis of DNA from MEL cell clones stably transfected with wild-type (bWT) or nonsense-mutated (b39; CAGRUAG) human b-globin
gene constructs. Genomic DNA was extracted from MEL cells transfected with a b-globin construct as specified above each lane, where each number
indicates an independent cell clone. Untransfected MEL (t- MEL) and human genomic DNA were used as negative and positive controls, respectively.
DNA was digested with EcoNI plus KpnI enzymes and blots were hybridized with a [a-32P]dCTP-labeled probe of the human b-globin gene that
recognizes a 5.0 kb fragment integrated in the murine genome or a 6.1 kb fragment in the human genomic DNA. MEL cell clones selected for further
analysis are indicated in bold. (B) Transgene copy number for each selected MEL cell clone was determined by quantitative PCR using primers specific
for human b-globin gene and the endogenous murine Thy1 gene. Quantification was performed by the relative standard curve method. Chart shows
the mean 6 standard deviation qPCR data from three independent experiments.
doi:10.1371/journal.pone.0038505.g001

Nonsense Pre-mRNAs Accumulate at Low Levels

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e38505



These results clearly demonstrate that the reduced nonsense pre-

mRNA levels phenotype in MEL cells is independent of the

position of the PTC.

Knowing that the reduced nonsense pre-mRNA levels pheno-

type is PTC-specific, and independent of the PTC position, we

next asked if it depends on NMD. Thus, we also established a pool

of MEL cells stably expressing the human b-globin gene carrying

a nonsense mutation at codon 127 located at the 39-most exon

(b127) that does not induce NMD, as it is located downstream of

the 39-most exon-exon junction [32–34,38]. The mRNA and pre-

mRNA levels were quantified as before. Results show that b127
mRNA steady-state levels are at about 73% of the normal control

(Figure 4B, C), showing that this transcript is not efficiently

degraded by the NMD pathway, as expected [11]. In parallel,

b127 pre-mRNA levels were also quantified and compared to

those of the normal control. Our data show that b127 pre-mRNA

accumulates at about 78% of the bWT pre-mRNA (Figure 4E, F),

being this difference not significant (P=0.19). Together, this full

set of data shows that the decreased b-globin pre-mRNA levels

phenotype is specific for transcripts carrying a NMD-sensitive

nonsense codon.

Figure 2. Human b-globin pre-mRNAs carrying a nonsense mutation accumulate at low levels in MEL cells. (A) Schematic
representation of the test human b-globin constructs stably expressed in MEL cell lines. The closed and open rectangles and lines depict exons,
untranslated sequences and introns, respectively. The vertical small arrow represents the position of the nonsense mutation (CAGRUAG) at codon 39
(b39). Position of initiation (AUG) and termination (UAA) codons, as well as cap structure (m7G) and poly(A) tail [(A)n] are also represented.
Localization and length in nucleotides (nt) of the probe comprising intron 1-exon 2 sequences (bintron1exon2 probe) for detection and
quantification of the human b-globin RNA by ribonuclease protection assays (RPA) is shown below the diagram. (B) MEL cells were stably transfected
with a test human b-globin construct as specified in each lane, where each number indicates an independent MEL cell line. After erythroid
differentiation induction, steady-state total RNA from either transfected or untransfected (t-) MEL cells was isolated and analysed by RPA using
specific probes for human b- and mouse a-globin transcripts (see Materials and Methods). The protected bands corresponding to the human b-
globin pre-mRNA and mRNA and mouse a-globin mRNA are shown on the right, and the corresponding intensities were quantified by
phosphorimaging. The level of mRNA and pre-mRNA from each b-globin allele was normalized to the level of endogenous mouse a-globin in order
to control for RNA recovery and erythroid differentiation induction. Normalized values were then calculated as the percentage of wild-type b-globin
(bWT) mRNA from cell line #146 (arbitrary defined as 100%). The values exposed on the graphs (C) and (D) are representative of three independent
experiments, and are plotted for each construct showing the mean value and standard deviations. Statistical analysis was performed using the
Student’s t test (unpaired, two-tailed).
doi:10.1371/journal.pone.0038505.g002

Nonsense Pre-mRNAs Accumulate at Low Levels

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e38505



The presence of an NMD-sensitive nonsense codon does
not affect the relative rates of removal of introns 1 and 2
in the human b-globin pre-mRNAs
In order to test to what extent the presence of the nonsense

codon affects the relative amount of intron 1 versus intron 2

containing b-globin pre-mRNAs, we analysed the b39 and b62
transcripts stably expressed in differentiated MEL cell pools and

results were compared to those of the bWT, b127 and b39mis-

sense control transcripts. This analysis was carried out by reverse

transcription-coupled quantitative PCR (RT-qPCR) assays to

Figure 3. The low levels of the b39 pre-mRNA are not due to the disruption of a regulatory element encompassing codon 39. (A)
Schematic representation of the test human b-globin mRNA stably expressed in MEL cell pools. The closed and open rectangles depict exons and
untranslated regions, respectively. The vertical small arrow represents the position of the nonsense (CAGRUAG) or missense (CAGRGAG) mutation
at codon 39 (b39 and b39missense respectively). Position of initiation (AUG) and termination (UAA) codons, as well as cap structure (m7G) and poly(A)
tail [(A)n] are also represented. Localization and length in nucleotides (nt) of the probe comprising intron 2-exon 3 sequences (bintron2exon3 probe)
for detection and quantification of the human b-globin RNA by ribonuclease protection assays (RPA) is shown below the diagram. (B) MEL cells were
stably transfected with a test human b-globin construct as specified above each lane. A 2-fold RNA sample (bWT62) from MEL cells transfected with
the bWT gene was also assayed to demonstrate that the experimental RPA was carried out in probe excess. After erythroid differentiation induction,
steady-state total RNA from either transfected or untransfected (t-) MEL cells was isolated and analysed by RPA using specific probes for human b-
and mouse a-globin mRNAs (see Materials and Methods). The protected bands corresponding to the human b-globin and mouse a-globin mRNAs are
shown on the right, and the corresponding intensities were quantified by phosphorimaging. The level of mRNA from each b-globin allele was
normalized to the level of endogenous mouse a-globin in order to control for RNA recovery and erythroid differentiation induction. Normalized
values were then calculated as the percentage of wild-type b-globin mRNA. (C) The percentage mRNA values were plotted for each construct, and
standard deviations from three independent experiments are shown. Statistical analysis was performed using Student’s t test (unpaired, two-tailed).
(D) Schematic representation of the test human b-globin pre-mRNA stably expressed in MEL cell pools as in (A). Localization and length in nucleotides
(nt) of the probe comprising part of intron 2 (bintron2 probe) for detection and quantification of the human b-globin pre-mRNA by RPA is shown
below the diagram. (E) After erythroid differentiation induction, steady-state total RNA from either transfected or untransfected (t-) MEL cells was
isolated and analysed by RPA using specific probes for human b-globin pre-mRNA and mouse glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
mRNA (see Materials and Methods). The corresponding protected bands are shown on the right, and their intensities were quantified by
phosphorimaging as in (B). (F) The percentage pre-mRNA values were plotted for each construct, and standard deviations from three independent
experiments are shown, as in (C).
doi:10.1371/journal.pone.0038505.g003
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specifically quantify the amount of either intron 1 or intron 2

containing human b-globin pre-mRNAs (Figure 5). Thus, pre-

mRNA quantification was carried out with two sets of primers

specific for the human b-globin intron 1 and intron 2 pre-mRNA

sequence, respectively, using a set of primers specific for the

murine GAPDH mRNA as an internal control (Figure 5A, B). As

a control, RT-qPCR was also performed with a set of specific

primers to quantify processed mRNA, to show that, under these

experimental conditions, the PTCs at position 39 or 62 are able to

induce a strong downregulation of the steady-state levels as

expected for mRNAs typically committed to NMD, while levels of

mRNA bearing a PTC at the 39-most exon (b127) are not

significantly different from the normal control (Figure 5C, D). The

quantitative PCR efficiency for all amplicons was found to be

Figure 4. The decreased b-globin pre-mRNA levels are specific for transcripts carrying NMD-competent nonsense mutations. (A)
Schematic representation of the test human b-globin mRNA stably expressed in MEL cell pools. The closed and open rectangles depict exons and
untranslated regions, respectively. The vertical small arrows represent the position of the nonsense mutations at codon 26 (GAGRUAG; b26), 39
(CAGRUAG; b39), 62 (GCTRUAG; b62) or 127 (CAGRUAG; b127). Position of initiation (AUG) and termination (UAA) codons, as well as cap structure
(m7G) and poly(A) tail [(A)n] are also represented. Localization and length in nucleotides (nt) of the probe comprising intron 2-exon 3 sequences
(bintron2exon3 probe) for detection and quantification of the human b-globin RNA by ribonuclease protection assays (RPA) is shown below the
diagram. (B) MEL cells were stably transfected with a test human b-globin construct as specified above each lane. A 2-fold RNA sample (bWT62) from
MEL cells transfected with the bWT gene was also assayed to demonstrate that the experimental RPA was carried out in probe excess. After erythroid
differentiation induction, steady-state total RNA from either transfected or untransfected (t-) MEL cells was isolated and analysed by RPA using
specific probes for human b- and mouse a-globin mRNAs (see Materials and Methods). The protected bands corresponding to the human b-globin
and mouse a-globin mRNAs are shown on the right, and the corresponding intensities were quantified by phosphorimaging. The level of mRNA from
each b-globin allele was normalized to the level of endogenous mouse a-globin in order to control for RNA recovery and erythroid differentiation
induction. Normalized values were then calculated as the percentage of wild-type b-globin mRNA. (C) The percentage mRNA values were plotted for
each construct, and standard deviations from three independent experiments are shown. Statistical analysis was performed using Student’s t test
(unpaired, two-tailed). (D) Schematic representation of the test human b-globin pre-mRNA stably expressed in MEL cell pools as in (A). Localization
and length in nucleotides (nt) of the probe comprising part of intron 2 (bintron2 probe) for detection and quantification of the human b-globin pre-
mRNA by RPA is shown below the diagram. (E) After erythroid differentiation induction, steady-state total RNA from either transfected or
untransfected (t-) MEL cells was isolated and analysed by RPA using specific probes for human b-globin pre-mRNA and mouse glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) mRNA (see Materials and Methods). The corresponding protected bands are shown on the right, and their
intensities were quantified by phosphorimaging as in (B). (F) The percentage pre-mRNA values were plotted for each construct, and standard
deviations from three independent experiments are shown, as in (C). Statistical analysis was performed using Student’s t test (unpaired, two-tailed).
doi:10.1371/journal.pone.0038505.g004
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similar and near to 100%. Control reactions using total RNA

samples from untransfected MEL cells, confirmed that unspecific

amplification of the murine b-globin transcripts was negligible. In

agreement with the previously obtained RPA data, RT-qPCR

analysis of the intron 2-containing pre-mRNA steady-state levels

shows a significant 2.3 to 3.8-fold reduction of the b39 and b62
unspliced RNAs relatively to the bWT pre-mRNA (P,0.01)

(Figure 5B). On the other hand, b127 and b39missense unspliced

transcripts exhibit similar levels, which are not significantly

different from the normal control (P=0.12 and P=0.08, re-

spectively). Additionally, in each case, both b-globin intron 1 and

intron 2 containing pre-mRNAs yielded very similar expression

levels (P.0.05). Therefore, the presence of the NMD-sensitive

nonsense codons does not differentially affect the rates of removal

of intron 1 and 2, and, thus, splicing efficiency in transcripts

bearing NMD-competent nonsense codons seems to be normal.

The reduced steady-state pre-mRNA level of NMD-
sensitive transcripts does not reflect differential decay
rates
As the steady-state level of any unspliced transcript depends on

the balance between the rate of its transcription and splicing and/

or degradation, we next asked if the low steady-state pre-mRNA

levels of the NMD-sensitive transcripts indeed reflect increased

decay rates rather than changes at the transcriptional level. Thus,

we determined the decay kinetics of the b39 pre-mRNA relatively

to that of the wild-type control pre-mRNA stably expressed in

MEL cells. For this purpose, we treated the erythroid differenti-

Figure 5. The presence of the nonsense codon equally decreases the abundance of intron 1 versus intron 2 containing human b-
globin pre-mRNAs. (A) Schematic representation of the human b-globin pre-mRNA, as in Figures 3D and 4D. The two pairs of arrows represent the
coordinates of both amplicons obtained in the qPCR reactions: intron1-exon2 and exon2-intron2 amplicons. (B) MEL cells were stably transfected
with a test human b-globin construct as specified below the histogram. After erythroid differentiation induction, steady-state total RNA from either
transfected or untransfected (t-) MEL cells was isolated and analysed by reverse transcription-coupled quantitative PCR (RT-qPCR), with specific
primers for the human b-globin pre-mRNA, as shown in (A). For each case, intron 1 and intron 2 containing human b-globin pre-RNAs levels were
determined by normalization to the level of murine glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA, using the comparative Ct method,
and compared to the wild-type control. The percentage pre-mRNA values were plotted for each construct and the histogram shows the mean and
standard deviations from three independent experiments. Statistical analysis was performed using Student’s t test (unpaired, two-tailed). (C)
Schematic representation of the studied human b-globin mRNAs as in Figures 3A and 4A. The pair of arrows represents the coordinates of the
amplicon obtained in the qPCR reactions: exon2–3 amplicon. (D) Human b-globin mRNA quantification was performed by RT-qPCR as in (B), but using
specific primers for the human b-globin processed mRNA. Levels of each human b-globin mRNA variant were determined by normalization to the
level of murine GAPDH mRNA, using the comparative Ct method, and compared to the wild-type control. The histogram shows the mean and
standard deviations from three independent experiments. Statistical analysis was performed as in (B).
doi:10.1371/journal.pone.0038505.g005
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ated bWT and b39 MEL cell pools with actinomycin D to inhibit

RNA synthesis. Total RNA was isolated at three time points after

actinomycin D treatment. As before, the amount of unspliced

human b-globin transcripts was determined by RT-qPCR

(Figure 6). Results show that the bWT pre-mRNA has an average

half-life of 32 min. The presence of the PTC at position 39 does

not significantly accelerate the decay of the reporter pre-mRNA as

it results in a half-life of 28 min (P=0.50) (Figure 6). Although

bWT and b39 pre-mRNAs are not similarly abundant, the b39
turns at similar rates of those of bWT pre-mRNA. These similar

values of half-lives are in agreement with a previous study by Lim

et al. [39]. Our results suggest that low steady-state pre-mRNA

levels of NMD-sensitive transcripts might be due to changes at the

transcriptional level.

The NMD-competent PTC effect on b-globin pre-mRNA
abundance exhibits promoter and/or cell line specificity
To assess whether the reduced nonsense pre-mRNA levels

phenotype is cell line-specific, we next analyzed the abundance of

bWT and b39 pre-mRNAs in non-erythroid cells. Thus, HeLa

cells were stably transfected with the bWT or b39 genes, which

were previously cloned into the pTRE2 vector, behind the human

cytomegalovirus promoter. The corresponding stably expressed

spliced and unspliced human b-globin transcript levels were

quantified by RT-qPCR analyses as before (Figure 7). Although

the PTC-bearing b-globin mRNA steady-state level is down-

regulated (Figure 7A), as expected for a transcript typically

committed to NMD [32–35], the corresponding b39 unspliced

RNA steady-state level is neither lower nor significantly different

relatively to the bWT control (P.0.05) (Figure 7B).

Taking in consideration that nonsense mutations could in-

troduce processing defects in the reporter nonsense transcripts that

in MEL and HeLa cells would require different splicing enhancers,

which would explain the different results in the two cell lines, we

carried out 39 rapid amplification of cDNA ends (39-RACE)

experiments using primers that amplify the full-length transcript

(Figure 8A), thus to analyze the integrity of the transcripts. This

study was conducted for all constructs expressed in MEL or HeLa

cells. As expected, all cDNAs generated a product of 681 bp

(Figure 8B). Furthermore, sequencing analyses of these fragments

did not reveal any abnormal splicing event (data not shown). Thus,

these results demonstrate normal splicing patterns for all the

analyzed transcripts. Therefore, from this full set of data, we can

conclude that the decreased b-globin unspliced RNA levels

observed in MEL cells due to the presence of a NMD-sensitive

nonsense codon is a cell line-specific effect. In addition, as reporter

genes are expressed in MEL and HeLa cells under the control of

different promoters, a promoter-specific effect cannot be excluded.

Discussion

In this study, we have shown that the human b-globin pre-

mRNAs carrying a NMD-competent PTC accumulate at low

steady-state levels. Our results have shown that this effect depends

on the presence of a NMD-sensitive PTC, although independently

of its position. Functional analyses of these pre-mRNAs in MEL

cells demonstrate that their low steady-state levels do not reflect

significantly lower pre-mRNA stabilities when compared to the

normal control. Furthermore, our results also provide evidence

that, in these transcripts, the relative splicing rates of intron 1 and

2 are similar. Our results indicate that in the human b-globin
transcripts, the NMD-competent nonsense codons can be recog-

nized as abnormal during the nuclear mRNA metabolism through

a promoter- and/or cell line-specific pathway. Thus, this work

provides evidence that NMD-competent nonsense codons can

specifically impact on nuclear regulation of the corresponding

transcripts. Several nuclear RNA metabolism events could account

for the decreased levels of PTC-bearing b-globin pre-mRNA,

namely an abnormal rate of transcription, splicing or degradation

of the nascent precursors. For instance, mammalian nuclear RNA

surveillance pathways that rapidly degrade aberrant pre-mRNAs

have been reported [40]. However, pre-mRNAs containing

nonsense codons were never described as substrates for rapid

nuclear degradation. Indeed, Lim et al [39] compared the half-life

of a b-globin pre-mRNA carrying a frameshift mutation that

introduces an inframe PTC between codons 60 and 61, relatively

to wild-type b-globin pre-mRNA, expressed in transgenic mice

erythroid cells [39]. These authors described a similar half-life for

both transcripts. Our results are consistent with this observation, as

we found no significant differences between the half-lives of b-
globin pre-mRNA bearing a PTC at codon 39 and the normal b-
globin pre-mRNA, expressed in stably transfected MEL cells. On

the other hand, transcripts with processing defects are the most

common substrates for nuclear RNA quality control [41],

inefficient splicing being a major cause for decay [41–45]. This

evidence directs us to the second possible explanation for the

observed decreased steady-state levels of the b-globin pre-mRNAs

carrying a NMD-sensitive PTC: the presence of the nonsense

codon has an effect on pre-mRNA splicing. Some studies have

suggested that PTCs can affect the splicing process directly, either

by inhibiting splicing or by regulating splice site selection

[17,19,46]. However, in many cases, these effects may result from

the disruption of an exonic splicing enhancer (ESE) by the

mutation that also generates the nonsense codon [47–49]. For

instance, in opposition to our results, Mühlemann et al (2001)

observed that PTCs in the T cell receptor-b and immunoglobulin-

Figure 6. The half-life of a pre-mRNA carrying an NMD-
sensitive PTC is not significantly different from that of the
wild-type control pre-mRNA. To determine the pre-mRNA decay
kinetics, erythroid differentiated MEL cell pools stably expressing the
bWT or the b39 transgenes were incubated with 5 mg/mL of
actinomycin D. Total RNA was extracted at the indicated times (0, 15
and 30 min) after actinomycin treatment. Relative pre-mRNA levels
were measured by RT-qPCR, as described before. For that, the amount
of human b-globin pre-mRNA was normalized against the amount of
murine GAPDH mRNA and then re-normalized to the initial time point
value (time 0= 100%). Each point represents the mean and standard
error mean from three independent experiments. Linear regression
analysis was performed by standard techniques and the difference
between slopes was assessed by Student’s t test (two-tailed). The half-
lives (t1/2) of the pre-mRNAs are indicated.
doi:10.1371/journal.pone.0038505.g006
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m genes cause not lower but higher levels of unspliced precursor

mRNAs [29]. This described nonsense-mediated upregulation of

pre-mRNA was later attributed to other factors not involving

recognition of a PTC, namely the disruption of ESEs [49].

Moreover, several studies conducted in b-globin, triosephosphate
isomerase, adenine phosphoribosyltransferase or immunoglobulin-

m genes did not find differences in the splicing or polyadenylation

events in transcripts bearing nonsense codons comparatively to the

wild-type [15,16,18,39,50,51]. Moreover, neither Maquat et al

(1981), Lim et al (1992), nor Inácio et al (2004) observed any

abnormal splicing rate or pattern for the b-globin transcripts

bearing PTCs in erythroid cells [36,39,50]. The results presented

here are in accordance with the previous ones, as removal

efficiency of intron 1 versus intron 2 does not seem to be affected

and the structure of the processed mRNAs is normal. Thus, the

nonsense mutation does not affect mRNA processing. Therefore,

another possible interpretation of our data is that the reduced pre-

mRNA steady-state levels of the NMD-sensitive transcripts results

from impaired transcription. A number of studies examining the

abundance of PTC-containing pre-mRNAs relatively to the wild-

type counterparts in different genes, including b-globin, have not

detected reduced steady-state levels or transcriptional alterations

[14–16,18,39,50]. In what concerns the b-globin pre-mRNA

steady-state levels in erythroid cells, the sensitivity of the assays

based on S1 nuclease mapping and RNA blotting could explain

the discrepancy with our results.

Another aspect of this work is the promoter- and/or cell line-

specificity of the reduced steady-state levels of the b-globin pre-

mRNA effect, which is specific for those transcripts bearing an

NMD-competent PTC. Since b-globin genes assemble into

transcriptionally silent heterochromatin in HeLa cells [52], we

have analysed HeLa cells stably expressing cytomegalovirus

promoter-driven bWT and b39 constructs and observed no

decrease of the steady-state level of pre-mRNAs bearing a NMD-

sensitive PTC relatively to the bWT pre-mRNA. This finding

Figure 7. The nonsense codon effect on the b-globin pre-mRNA abundance exhibits cell line specificity. (A) HeLa cells were stably
transfected with the bWT or b39 constructs as indicated below the histogram. Total RNA was isolated and bWT and b39 steady-state mRNA levels
were quantified by RT-qPCR using specific primers for the human b-globin processed mRNA, as in Figure 5C, D. The histogram shows the mean and
standard deviations from three independent experiments. Statistical analysis was performed using Student’s t test (unpaired, two-tailed). (B) Total
RNA was also analysed by reverse transcription-coupled quantitative PCR (RT-qPCR), with specific primers for the human b-globin pre-mRNA, as in
Figure 5A, B. For each case, intron 1 and intron 2 containing human b-globin pre-RNA levels were determined by normalization to the level of the
puromycin resistance mRNA, using the comparative Ct method, and compared to the wild-type control. The percentage pre-mRNA values were
plotted for each construct and the histogram shows the mean and standard deviations from three independent experiments. Statistical analysis was
performed as in (A).
doi:10.1371/journal.pone.0038505.g007

Figure 8. The structures of the reporter mRNAs indicate that
the corresponding transcripts are normally spliced. (A) Sche-
matic representation of the human b-globin mRNA as in Figure 2. The
small arrows represent primers localization for reverse transcription and
PCR reactions. Reverse primer contains a 30 nts poly(T) tail as well as
a degenerated sequence. Below, the full-length of the processed mRNA
is also indicated. (B) Representative ethidium bromide-stained agarose
gel with the structural analysis of the human b-globin mRNAs stably
expressed in MEL or HeLa cells, as indicated below the gel. The identity
of each construct is indicated above the respective lane. RNA from
untransfected (t-) cells, human genomic DNA (gDNA) and water (H2O)
were used as negative controls. The molecular weight marker (M) is the
100 bp DNA ladder (Life Technologies).
doi:10.1371/journal.pone.0038505.g008
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raised the possibility that a promoter-specific effect is responsible

for the b39 pre-mRNA downregulation in MEL cells, as these cells

were transfected with b-globin constructs driven by their native

promoters. In fact, Enssle et al (1993) demonstrated that the

nature of the promoter can dictate the fate of the b-globin
transcripts [53]. Nonetheless, Bühler et al (2005) analysed HeLa

cells stably transfected with the bWT and b39 genes driven by the

b-globin promoter, and found no evidence for transcriptional gene

silencing induced by the PTC [54]. A novel mechanism has been

described, which involves an unexpected transcriptional silencing

of genes bearing nonsense codons. This nonsense-mediated

transcriptional gene silencing (NMTGS) seems to be peculiar to

immunoglobulin (Ig)-m and Ig-c nonsense-containing minigenes in

stably transfected HeLa cells, and was shown to result from

chromatin remodelling [54]. NMTGS is specifically triggered by

recognition of the nonsense codon, as it is reversed by translation

inhibition and the downregulation of the essential NMD factor

UPF1 [55]. However, the NMTGS physiologic role still remains

elusive as no difference in the levels of nonsense codon-containing

and productive immunoglobulin pre-mRNAs were detected in a B

cell line, at least for the analysed differentiation stage [56].

More recently, it has been shown that the regulatory effect of

NMD on gene expression of many normal mRNAs is exerted in

a cell type-specific and developmentally-regulated manner, which

supports the idea that the NMD surveillance mechanism may have

tissue-specific characteristics [57]. Specialized nuclear pathways

for regulation of the NMD-competent transcripts may be super-

imposed on the general NMD pathway to help making it more

efficient in cell types where specific transcripts are expressed at

very high levels. This reality may have driven the erythroid cells to

evolve very efficient and/or superimposing mechanism(s) for

recognizing and degrading nonsense globin RNAs. Different sets

of data are indeed in conformity with the occurrence of tissue-

specific distinctive NMD features/branches. For instance, it has

been reported that nonsense codons decrease the abundance of

mRNAs by reducing the human b-globin mRNAs cytoplasmic

half-life in erythroid cells [58], whereas the presence of a nonsense

codon also reduces the nuclear b-globin mRNA half-life in non-

erythroid cells [15,52,59,60]. Furthermore, along with a strong

downregulation of b-globin nonsense mRNAs, erythroid cells

generate detectable b-globin decay intermediates [39,58,61,62],

possibly resulting from tissue-specific endo- and exonucleolytic

activities that may act concomitantly with the typical degradation

pathways of NMD. Moreover, a cell-type specific mRNA

surveillance pathway was already described in MEL cells, named

ribosome extension-mediated decay (REMD), which is dependent

on translation and results in the repression of the protein synthesis

from an abnormal human a-globin gene containing an anti-

termination mutation [63]. As tissue-specific idiosyncrasies might

not provide major contributions to the overall elucidation of the

NMD mechanism, they could be crucial to understand the

pathophysiology of some diseases induced by nonsense mutations.

In more specialized and differentiated cells, while NMD is still

holding the major role, supporting mechanisms may come into the

spotlight in the RNA quality control screen for transcripts bearing

nonsense codons.

In summary, we show that only those NMD-sensitive human b-
globin transcripts are specifically recognized as abnormal during

their nuclear metabolism, being downregulated in a promoter

and/or cell line-specific manner. This set of data highlights

potential specialized nuclear pathways for regulation of the NMD-

competent transcripts that may collaborate with, or be super-

imposed to the general NMD mechanism probably to achieve

optimal NMD activity. Future efforts addressing these pathways

will contribute to our understanding of nuclear mRNA quality

control.

Materials and Methods

Gene constructs
Plasmids containing the human b-globin gene were derived

from p158.2 [32], which comprises a 4.1 kb genomic fragment

encoding the entire gene along with 0.8 kb of the 39 flanking

region and 1.7 kb of the 59 flanking sequence comprising the

promoter, adjacent to a 1.9 kb DNA fragment of the human b-
globin locus control region DNase I hypersensitive site 2. Variant

b-globin genes carrying the b26 (codon 26 GAGRTAG), b39
(codon 39 CAGRTAG), b62 (codon 62 GCTRTAG) or b127
(codon 127 CAGRTAG) mutations were obtained as previously

described [32,36]. The b39missense gene variant was originated

from the bWT human b-globin construct by the introduction of

a CAGRGAG missense mutation at codon 39 via site-directed

mutagenesis, using the QuikChange Site-Directed Mutagenesis

Kit (Agilent Technologies) with the specific primers 59-GGT CTA

CCC TTG GAC CGA GAG GTT CTT TGA GTC-39 and 59-

GAC TCA AAG AAC CTC TCG GTC CAA GGG TAG ACC-

39. The pTRE2pur vectors (Clontech) encoding the wild-type or

the b39 genes under the control of a cytomegalovirus promoter

and a puromycin resistance gene were cloned as described by Silva

et al (2006) [64].

Cell culture, stable transfection and drug treatments
Mouse erythroleukemia (MEL) C88 cells [65] were cultured in

RPMI medium with glutamax (Life Technologies), supplemented

with 10% (v/v) fetal bovine serum at 37uC and 5% CO2. Stable

transfection of MEL cells was carried out by us as previously

described [36], using 50 mg of linearized p158.2-bWT or its

derivatives, mixed with 2 mg of linearized pGKpuro, to obtain

bWT, b26, b39, b39missense, b62 or b127 cell lines. Each cell

pool was expanded in selective medium by adding 2.5 mg/mL

puromycin (Sigma-Aldrich) and single-cell clones were established

by the limiting dilution method. Erythroid differentiation was

induced in equal amounts of transfected MEL cells by adding 2%

(v/v) dimethyl sulfoxide (DMSO) to the media during 4 days. For

pre-mRNA half-life determination experiments, the transcription

of reporter genes was inhibited by addition of actinomycin D

(Sigma-Aldrich) to a final concentration of 5 mg/mL, after

induction of erythroid differentiation during four days. RNA was

isolated 0, 15 and 30 min after transcription arrest.

HeLa cells (ATCC CCL-2) were grown in DMEM medium

(Life Technologies) supplemented with 10% (v/v) fetal bovine

serum. Stable transfection with the pTRE2pur-bWT or pTRE2-

pur-b39 plasmids and subsequent cell selection with puromycin

were performed as previously described [66].

Copy number analysis
The structure of the transgene in each MEL cell clone was

determined by Southern blotting of genomic DNA from

transfected MEL cell lines, isolated by the standard phenol:chloro-

form method and digested with EcoNI and KpnI. Digested DNAs

were agarose gel-fractioned and transferred by Southern blotting

onto Hybond N+ membranes (GE Healthcare). Blots were

hybridized with a human b-globin gene probe labeled by the

Multiprime DNA Labeling Kit (Amersham) using [a-32P]dCTP.
This probe consists of a 768 bp EcoRI-PstI human b-globin gene

fragment. Hybridization reactions, washing and exposure were

carried out following the manufacturer’s instructions (GE

Healthcare).
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To determine the transgene copy number of MEL cell clones,

the human b-globin transgene copy number was compared with

that of an endogenous diploid reference, the murine thymus cell

antigen 1 gene (Thy1; MGI: 98747), by real-time PCR, performed

in an ABI Prism 7000 Sequence Detection System, using SYBR

Green Master Mix (Life Technologies). Quantification was

performed by the relative standard curve method, using serial

dilutions of a plasmid carrying one copy of b-globin and Thy1

gene sequences. The forward and reverse primers for the b-globin
gene were 59-GATCTGTCCACTCCTGATGC-39 and 59-

AGCTTGTCACAGTGCAGCTC-39; for the Thy1 gene, pri-

mers were 59-GGTCAAGTGTGGCGGCATA-39 and 59-

GAAATGAAGTCCAGGGCTTGG-39.

RNA isolation
Total RNA from MEL and HeLa cells was extracted using the

RNeasy Total Kit (Qiagen) following the manufacturer’s instruc-

tions. RNA samples were treated with RNase-free DNase I (Life

Technologies) and purified by phenol:chloroform extraction.

Ribonuclease protection assays (RPAs)
The used RPA probes were generated by in vitro transcription of

plasmids containing DNA fragments from human b-globin intron

1 and exon 2 [67], b-globin intron 2, b-globin intron 2 and exon 3

[67], murine a-globin intron 1 and exon 2 (Hba-a1, MGI: 96015)

[68] or murine GAPDH (MGI: 95640; pTRI-GAPDH, Life

Technologies). The bintron2 probe is a 352 bp PCR-generated

fragment comprising nucleotides 464 to 815 of the b-globin intron

2, which was inserted into the cloning site of pCR2.1-TOPO (Life

Technologies). Each transcription vector was linearized and

transcribed in the presence of [a–32P]CTP (Perkin Elmer) using

a Maxiscript T7/SP6 Kit (Life Technologies) under standard

conditions. Ribonuclease protection assays were performed using 5

to 12 mg of total RNA as previously described [36]. Radioactivity

in bands of interest was quantified by phosphorimaging, using

a TyphoonH Imager 8600 (GE Healthcare). The human b-globin
pre-mRNA and mRNA hybridization signals from the MEL cell

clones and pools were normalized to the respective endogenous

control mRNA signal and compared with the reference bWT

counterparts. In MEL clones, b-globin expression levels were also

normalized to the transgene copy number.

Reverse transcription-coupled quantitative PCR (RT-
qPCR)
First-strand cDNA was synthesized from 1 mg of total RNA

using the SuperScript II Reverse Transcriptase (Life Technologies)

according to the manufacturer’s instructions. From all cDNA

samples of MEL and HeLa cell pools, a single full-length product

was amplified using specific primers for the human b-globin 59 and

39 untranslated regions and then sequenced. Real-Time PCR was

performed with the ABI Prism 7000 Sequence Detection System

(Life Technologies) using SYBR Green Master Mix (Life

Technologies). The relative expression levels of the b-globin
mRNA and pre-mRNA were normalized to the endogenous

GAPDH mRNA in MEL cells, or to the internal control

puromycin resistance mRNA in HeLa cells, and calculated using

the comparative Ct method (22DDCt) [69]. The Ct values of variant

b-globin mRNA and pre-mRNA amplicons were compared to the

respective bWT counterpart and normalized with the reference

amplicon Ct value. The amplification efficiencies of the b-globin
target and the GAPDH or puromycin reference amplicons were

determined for each assay by dilution series. The forward and

reverse primers for the human b-globin mRNA were 59-

GTGGATCCTGAGAACTTCAGGCT-39 and 59-CAGCACA-

CAGACCAGCACGT; for b-globin intron 1 pre-mRNA were 59-

GCACTGACTCTCTCTGCCTATTGGT-39 and 59-

GGGTTGCCCATAACAGCATCAGGA-39; and for b-globin
intron 2 pre-mRNA were 59-CTGGCTCACCTGGACAACCT-

CAAGG-39 and 59-AGCGTCCCATAGACTCACCCT-39. The

primers for the murine GAPDH mRNA were 59-ATCAC-

CATCTTCCAGGAGCGA-39 and 59-AGCCTTCTC-

CATGGTGGTGAA-39, and for the puromycin resistance mRNA

were 59-CGCAACCTCCCCTTCTACG-39 and 59-

GGTGACGGTGAAGCCGAG-39. To check for DNA contam-

ination, quantitative PCR without reverse transcription was also

performed for all samples.

39-Rapid amplification of cDNA ends (39-RACE)
First-strand cDNA synthesis was performed on 3 mg of total

RNA from each MEL and HeLa cell pool using the SMART

RACE DNA Amplification kit (Clontech), according to the

manufacturers instructions. The 39-RACE PCR covering the

entire b-globin mRNA was performed with the synthesized

cDNAs using primers 59-ACATTTGCTTCTGACACAACTG-

39 and Nested Universal Primer A Mix (Clontech). After initial

denaturation for 5 min at 95uC, cDNA amplification was carried

out for 28 cycles using AmpliTaq polymerase (Roche) and 1 min

95uC, 1 min 58uC, 1 min 72uC as cycling conditions. The

products were subjected to electrophoresis in a 1% agarose gel.

Statistical analysis
Results are expressed as mean 6 standard deviation from at

least three independent experiments. Student’s two-tailed t test was

used for estimation of statistical significance. Significance for

statistical analysis was defined as a P,0.05.
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