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Abstract 

Last years were characterized by a great demand for high data throughput, good quality 

and spectral efficiency in wireless communication systems. Consequently, a revolution in cellular 

networks has been set in motion towards to 5G. Massive multiple-input multiple-output (MIMO) 

is one of the new concepts in 5G and the idea is to scale up the known MIMO systems in 

unprecedented proportions, by deploying hundreds of antennas at base stations. Although, perfect 

channel knowledge is crucial in these systems for user and data stream separation in order to 

cancel interference.  

The most common way to estimate the channel is based on pilots. However, problems 

such as interference and pilot contamination (PC) can arise due to the multiplicity of channels in 

the wireless link. Therefore, it is crucial to define techniques for channel estimation that together 

with pilot contamination mitigation allow best system performance and at same time low 

complexity.  

This work introduces a low-complexity channel estimation technique based on Zadoff-

Chu training sequences. In addition, different approaches were studied towards pilot 

contamination mitigation and low complexity schemes, with resort to iterative channel estimation 

methods, semi-blind subspace tracking techniques and matrix inversion substitutes. 

System performance simulations were performed for the several proposed techniques in 

order to identify the best tradeoff between complexity, spectral efficiency and system 

performance. 

Keywords: Massive MIMO, Channel Estimation, Zadoff-Chu sequences, Pilot 

Contamination 
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Resumo 

Os últimos anos foram marcados pela grande procura por um elevado aumento no tráfego 

de dados, na qualidade, e na eficiência espectral de transmissões em sistemas de comunicações 

móveis. Consequentemente, uma revolução nas redes celulares tem começado a emergir: 5G. O 

massive MIMO é um dos novos conceitos do 5G, com a ideia de ampliar os conhecidos sistemas 

MIMO em proporções sem precedentes, através da implementação de centenas de antenas nas 

estações base. No entanto, o conhecimento exato do canal é crucial neste tipo de sistemas para a 

divisão de utilizadores e fluxos de dados, de forma a cancelar a interferência. 

A forma mais comum de estimar o canal é baseada na transmissão de pilotos. Porém, 

problemas como interferências e contaminação de pilotos podem surgir devido à maior 

quantidade de canais na transmissão sem fios. Portanto, é fulcral determinar técnicas de estimação 

de canal de baixa complexidade, que juntamente com descontaminação de pilotos, consigam um 

melhor desempenho do sistema. 

Este trabalho inclui uma técnica de estimação de canal de baixa complexidade com base 

em sequências de treino Zadoff-Chu. Também serão estudadas diferentes abordagens à 

descontaminação de pilotos e redução de complexidade, baseadas em métodos iterativos de 

estimação de canal, técnicas semi-blind de rastreio de subespaços vetoriais e substitutos para 

inversão de matrizes. 

As simulações do desempenho do sistema vão ser realizadas para as diversas técnicas 

propostas de forma a identificar o melhor compromisso entre complexidade, eficiência espectral 

e desempenho do sistema 
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1. Introduction 

1.1 Motivation 

In recent decades, we have seen a great evolution in the wireless communications 

industry. This industry has become increasingly involved in people’s lives, both professionally 

and personally. The fact of being communicable with the rest of the world has become an all-time 

necessity and the result is an increasingly demand for wireless connectivity, especially in the last 

few years. Any Internet user demands fast wireless connections to support all needs, while at the 

work, at home or on-the-go. Additionally, Machine-to-Machine communications are 

exponentially growing, leading to an even greater demand of wireless throughput. 

To meet the demand, the fifth generation (5G) of wireless communications technology is 

emerging. 5G is the future of cellular networking and brings new technologies such as millimeter 

wave (mmWave) communications and massive MIMO systems. Massive MIMO will employ a 

very high number of antennas to achieve huge gains in both spectral and energy efficiencies. The 

base stations would serve multiple users at the same time-frequency resource, through spatial 

multiplexing. The concept is based on the law of large numbers that states that as the number of 

antennas grows large, the channel responses from different antennas to each user are close to be 

mutually-orthogonal [1], [2]. 

In mobile communication systems, the receiver gets a signal with different amplitude and 

phases than the one that was broadcasted. Therefore, the quality of the system highly depends on 

the accuracy of the estimated channel. Conventional channel estimation techniques are based on 

known training sequences (also called pilot signals). Theses sequences are unique for every user 

and, preferably mutually orthogonal, so the receiver can estimate the channel responses 

accurately. The time interval in which a channel is assumed to be constant is denominated as 

coherence interval and it is where the channel estimation process must occur. Hence, the training 

sequence is coupled to the information sequence and sent in each considered coherence interval. 

This means there is a tradeoff between the length of the training sequence (proportional to the 

estimation’s accuracy), and the data rate of payload data. Moreover, the number of mutually 

orthogonal training sequences is also limited by the channel coherence interval. Consequently, by 

largely increasing the number of antennas, and serving users, as massive MIMO proposes, the 

number of channels that have to be estimated and the number of orthogonal training sequence 

needed becomes equally large. Therefore, the training sequences must be reused in neighboring 

cells, leading to pilot contamination. Hence, channel estimation and pilot contamination are a 

major challenge in massive MIMO systems, and they are the two main subjects of this thesis. 
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1.2 Objectives and outline 

This work introduces a low-complexity channel estimation technique based on Zadoff-

Chu training sequences. In addition, different approaches were studied towards pilot 

contamination mitigation and lower complexities schemes, with resort to iterative channel 

estimation methods, semi-blind subspace tracking techniques and matrix inversion alternatives. 

The thesis is organized as follows: chapter 2 presents the state of the art, which includes 

the massive MIMO technology, pilot contamination concept and some channel estimation 

methods, with their descriptions and results. Chapter 3 describes a block diagonalization 

precoding scheme, successful in eliminating interference among different users; a channel 

estimation technique using a type of training sequences with optimal periodic auto-correlation 

properties, called Zadoff-Chu sequences, and compares it to a well-known low-complexity 

channel estimation called minimum mean-square error (MMSE) channel estimation, in a multi-

user downlink scenario. In chapter 4, pilot contamination mitigation is addressed by using three 

different channel estimation methods with different approaches. The first method relies on the 

iterative process of the iterative block decision feedback equalizer (IB-DFE) scheme. The iterative 

process eliminates residual intersymbol interference at each iteration. Thus, channel estimates 

could be calculated at each iteration, producing better results as the number of iterations increase. 

The second method is a semi-blind channel estimation technique that uses a subspace tracking 

algorithm to resolve the ambiguity problem, at a cost of lesser pilots than in traditional pilot-based 

channel estimation techniques. Using less pilots is an effective solution to mitigate pilot 

contamination. The last method is a Bayesian channel estimator which replaces the matrix 

inversion operation with a polynomial expansion and it is denominated as polynomial expansion 

channel (PEACH). The three techniques will be modeled in a multi-user uplink scenario. For 

comparison purposes, these techniques will be compared under the effect of pilot contamination, 

using bit error rate (BER) plots and mean square error (MSE) as performance results, for different 

numbers of users, transmit antennas and complexity of the schemes. 
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2. State of the Art 

This chapter begins by describing some basic, but fundamental, features of simple 

wireless communications systems, in section 2.1. In section 2.2, the motivation, requirements and 

forthcoming technologies are also presented, followed by a description of the massive MIMO 

concept and its main advantages and disadvantages. Section 2.2.3 concludes this chapter by 

presenting the channel estimation topic in massive MIMO systems, how the undesired effect, 

called pilot contamination, can arise and how to approach it. 

2.1 MIMO 

In the decade 1970-1980 numerous studies regarding multiple channel transmission 

systems were published. Among them, [3]–[5] analyze some critical aspects like diversity, 

sequence estimation, intersymbol and interchannel interference (ISI and ICI respectively) in wired 

communications, and their mathematical work were valuable for future studies. In 1987, a study 

was presented describing the fundamental limits on systems with multiple channels in the same 

bandwidth and the potential for large capacity in systems with limited bandwidth [6]. In 1999, an 

article was published [7] concerning the problems of communicating over a flat-fading Rayleigh 

channel using multiple-antenna arrays. In 2001, the first commercial MIMO system was 

introduced by Iospan Wireless Inc. 

It rather seems counter-intuitive but MIMO, also called single user MIMO (SU-MIMO) 

or point-to-point MIMO, relies on non-line-of-sight propagation, which means radio waves are 

transmitted across a path that is partially obstructed by obstacles (Figure 2.1). So, generally, it is 

not desirable to have a direct path between the base station and the user, because a good diversity 

in signal transmission is wanted. So anything that behaves like an obstacle to the signal, such as 

buildings, people, natural elements, etc. will improve the efficiency and total effectiveness of 

communication with MIMO technique. On the other hand, while multiple scatters improve the 

system’s performance, the signal is also affected, negatively, by fading. When the signal travels 

over a wireless communication channel it suffers oscillations in amplitude and phase, that if not 

compensated compromise the ability of the receiver to recover the information properly. 
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Figure 2.1 - Radio Propagation 

MIMO operates with multiple receive and transmit antennas for signal transmission, as 

shown in Figure 2.2. Generally, the number of antennas is directly proportional to data rate 

(multiplexing), quality (diversity) and capacity of the transmission [8], [9]. Besides MIMO, 

beamforming and space-time coding schemes are another two fundamental technologies that arise 

in a multiple antennas wireless communication system. 

 

 

Figure 2.2 - MIMO system model with m transmit antennas and n receive antennas 

2.1.1 Diversity and Multiplexing 

In the real world, in a single-input single-output (SISO) wireless transmission, the signal 

takes multiple divergent paths due to reflections and/or refractions on obstacles across the path, 

especially in urban and indoors environments. Hence, the receiver detects multiple time-delayed, 

and attenuated versions of the original signal, resulting in the deterioration of efficiency and data 
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rate of the communication. Adding more antennas at receiver, it is possible to combine every 

received version of the signal and collectively improve these defects. Diversity can also be applied 

at the transmitter (called transmit diversity) when multiple antennas send the same signal. The 

same principle applies, where the probability of the signal reaching the receiver in good conditions 

is higher than with lesser antennas. 

Instead of using multiple antennas to transmit the same signal, each antenna could be used 

to send different information, in parallel. This technique is called spatial multiplexing and 

increases the overall capacity of the system. 

2.1.2 Beamforming 

On transmission, MIMO can use the beamforming technique which consists on the 

transmitter focusing the transmitted energy towards the receiver instead of being omnidirectional, 

as is depicted on Figure 2.3. Receivers frequently detect interference signals blended with the 

desired signal that may affect the system’s performance. However, the desired and interfering 

signals are usually originated in different locations. Beamforming exploits this spatial separation 

to cancel the unwanted interference from the desired signal, acting as a spatial filter [10].  
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Figure 2.3 – (a) Systems with omnidirectional antennas transmission (b) System with beamforming 

technique 

2.1.3 Channel Estimation 

The wireless channel is highly complex and can be frequency- and time-selective due to 

fading. These phenomena include reflection, diffraction, scattering of the signal and Doppler Shift 

which represents the change of the frequency from the emitted to the observed wave when the 

distance between the receiver and the source changes. Therefore, in wireless channels, channel 

estimation is a vital technique mainly used in mobile wireless network systems. The receiver 

needs to know exactly the channel state information (CSI) to perform the equalization of the signal 

and to determine it can be a complex task.  

Most of channel estimation techniques use training sequences on transmission. Training 

sequences are a set of symbols, denominated pilot symbols, known by the receiver that are 

coupled to the data sequence to be transmitted in order to perform the channel estimation for the 

next data symbols in which the channel is assumed unchanged, also called coherence time 

interval. Figure 2.4 depicts a typical time slot structure in systems with channel estimation based 

on training sequences. 

 

Figure 2.4 - Slot structure in systems with pilot-based channel estimation 

In MIMO systems due to the multiple antennas in transmitters and receivers, multiple 

channels must be estimated, simultaneously, as well. Therefore, a larger set of pilot symbols must 

be integrated in the transmission frame, reducing the payload. However, some techniques do not 
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require training sequences, and for that reason they are denominated as blind-estimation 

techniques. 

2.1.4 Multi-user MIMO 

MIMO technology was a big step towards the development of new communication 

systems. One of them is the multi-user MIMO (MU-MIMO). In a MU-MIMO scheme, the base 

station communicates with multiple users simultaneously (Figure 2.5). 

 

Figure 2.5 - MU-MIMO system model with 2 users 

MU-MIMO schemes offer several advantages over SU-MIMO communications, which 

are: 

 A gain in channel capacity, proportional to the minimum value between the 

number of BS antennas and the number of antennas at mobile stations, through multi-user 

multiplexing schemes [11]; 

 System performance is improved due to the fact that multiple users can 

communicate over the same spectrum; 

 Spatial multiplexing gain at the BS even to single antenna receivers, allowing the 

arrangement of cheap and small terminals, keeping the more complicated logistics and higher 

performance costs in the infrastructures side; 

 Communications are less affected by channel rank loss, line-of-sight propagation 

or antenna correlation. Although the aforementioned aspect is increased for each user’s diversity, 

it can be avoided if multi-user diversity is extracted by the scheduler instead [12]. 

Nonetheless, the spatial sharing of the channel by the users results in strong co-channel 

interference (CCI). Handle CCI and keeping a good performance/complexity tradeoff is one of 

the main pursuits in MU-MIMO schemes, and generally involves the precoding of the signal, at 

the base station, before transmitting it. This is particularly challenging because while the base 
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station can manage transmissions from all of its antennas, the receivers are incapable to do so, 

since users are normally incapable to coordinate their channel information among them. 

Therefore, the base station must know the CSI perfectly in comparison with regular MIMO 

schemes, as precoding benefits from a precise CSI estimation. CCI can be canceled by using 

space-division multiple access (SDMA) schemes. One initial strategy was dirty paper coding 

(DPC) technique [13], that proves that the sum capacity in a multi-user downlink, or broadcast, 

channel is equal to the maximum aggregation of all users’ data rates and full multiplexing gain 

can be achieved. However, DPC is impracticable in real world systems because the high 

computational complexity involved in coding and decoding schemes [14]. 

Under the assumption that the base station has an array of transmitting antennas but all 

users are single-antenna terminals, two low-complexity precoding schemes can be employed to 

eliminate CCI: Zero-Forcing (ZF) and MMSE. In this case, the receiver considers as interference 

all external signals and cancels them via precoding. For multiple receiving antennas, block 

diagonalization (BD) can be used to avoid the usage of DPC method. BD technique will be 

discussed in Chapter 3. 

Precoding schemes such as ZF, MMSE and BD are some alternatives to DPC [15]–[18]. 

The basis of the abovementioned schemes relies on the surplus of degrees of freedom provided 

by the excess antennas at the BS, relatively to the users’, to eliminate CCI.  

Coordinated beamforming can be also employed to cancel CCI [19], [20]. When there are 

more users than transmit antennas at the base station, SDMA schemes can achieve full 

multiplexing gains with transmit beamforming. In larger systems, when the number of users 

greatly exceeds the number of transmit antennas, low-complexity schemes such as zero-forcing 

beamforming (ZFBF) [21], [22] or zero-forcing dirty-paper coding (ZF-DPC) [23] were proposed 

to achieve the optimal growth rate of the sum-capacity function [24]. 

2.2 Going from MIMO to Massive MIMO 

With the upsurge of technology, cellphones, computers or tablets are not only the mainly 

devices that require wireless internet connection. Innumerous gadgets are being improved every 

day with wireless capabilities to adapt to the needs and habits of world’s population in general. 

Home equipment, wearables, machinery, remote metering and many other once internet-

incapable devices are resurging with more advanced technology, and mostly, require wireless 

transmissions of data. Plus, internet is becoming more dependable for communication, work or 

any other indispensable purpose. This leads to a new improved generation of cellular networks: 

the 5G. 
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2.2.1 Motivation/Requirements 

To keep up with this demand, new requirements for mobile traffic need to be achieved, 

such as [25]: 

 Traffic volume – Between the first quarter of 2015 and the first quarter of 2016, 

data traffic grew 60%. The high volume of traffic data is driven by the increased smartphones 

subscriptions and high demand for video contents. Total mobile data traffic is expected to rise at 

a compound annual growth rate (CAGR) of around 45%, resulting in a ten-fold increase in total 

traffic for all devices by 2021, reaching 52 ExaBytes per month [26] (Figure 2.6). 

 

Figure 2.6 - Global Mobile Traffic (monthly ExaBytes); source: [26] 

 Indoor or hotspot traffic – Currently, mobile traffic is mostly common indoor 

with 60% voice and 70% data traffic. It is anticipated in the future to approach around 90%. 

Picocells or femtocells are good candidates to achieve higher capacity depending on the 

environment, quality and type of communication service, although the deployment of femtocells 

is proved to be more efficient in indoor environments than picocells as it achieves the highest in-

building capacity [27]. 

 Number of connected devices –  Internet of Things (IoT) devices are expected to 

increase at a compounded annual growth rate (CAGR) of 23% from 2015 to 2021. In total, about 

28 billion connected devices are forecasted by 2021, of which around 8.6 billion will be mobile 

subscriptions (Figure 2.7). 
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Figure 2.7 - Mobile Subscriptions by Technology (billion); source: [26] 

 Energy consumption – An essential requirement is to deliver high network energy 

performance in order to follow up the required traffic volume forecasted, to reduce the total cost 

of ownership (TCO) and to ease the access of network connectivity in remote areas. In a classic 

long term evolution (LTE) network, more than 90% of energy consumption of total traffic usage 

is for the network to be detectable and accessible, regardless the traffic load volume, as shown in 

Figure 2.8. 

 

Figure 2.8 - Utilization and corresponding network energy consumption for different traffic loads; source: 

[28] 

Energy performance is equally important as high traffic capacity and data rates, even 

when no data is being transmitted or processed. Considering this, some technologies are being 

conceived involving ultra-lean designs, advanced beamforming techniques, separation of user-

data and system-control on radio interface, virtualized network functionality and cloud 

technologies [28].  
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2.2.2 Innovations 

In order to achieve the previous requirements, wireless network technologies have to be 

improved and for that purpose some revolutionary features are under development such as 

Millimeter Wave (mmWave) communications and Massive MIMO systems. The main objective 

of MmWave communications is to reach an unexplored range of higher frequencies of the 

spectrum and Massive MIMO is to expand the antenna arrays to a whole new level. 

2.2.2.1 Millimeter Waves Communications 

Radio frequencies (RF) are used on almost all commercial communications in a narrow 

band between 300 MHz and 3 GHz. Therefore, its spectrum is increasingly scarce and getting 

access to it becomes a harder task as time goes by. Current efforts are only based on reusing and 

sharing the spectrum and do not achieve the upcoming requirements [29]. The only way to achieve 

large amounts of new bandwidth is to use higher frequencies, somewhere between the 3 GHz and 

300GHz, where the millimeter wave (mmWave) spectrum is less crowded and much greater 

bandwidths are available. However, not all spectrum can be used since in some frequency ranges 

oxygen molecules and water vapor absorb electromagnetic energy (57 GHz – 64 GHz and 164 

GHz – 200 GHz, respectively), as shown in Figure 2.9. Excluding these frequencies, mmWave 

communications could achieve around 100GHz of new bandwidth, 200 times more than the 

currently allocated spectrum, below 3 GHz [30].  

In terms of free space loss, there is no difference by using different frequencies for the 

same antenna aperture. Furthermore, higher frequency means shorter wavelengths which lead to 

a higher density of antennas in mobile devices and infrastructures and it also improves non-line-

of-sight communications, contrarily to current MIMO systems. 

 

Figure 2.9 - Millimeter-wave spectrum; source: [30] 
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Figure 2.10 depicts a data rate comparison in terms of mean and 5% outage rates. Results are 

given in terms of gain with regards to the MIMO baseline. It is clear that millimeter wave systems 

could lead to unmatched data rates and revolutionary user experience as a potentially innovative 

technology for 5G. 

 

Figure 2.10 - Data rate comparison between microwave systems using 50 MHz of bandwidth (SISO and 

SU-MIMO) and a single user mmWave system with 500 MHz of bandwidth; source: [31] 

On the other hand, the wave’s frequency is inversely proportional to penetration 

capability. The analysis of [32] and [33] concludes that millimeter wave signals are highly 

attenuated by commonly solid materials such as concrete or brick walls, about 10 times more at 

40 GHz than radio wave frequencies below 3 GHz. A solution to this problem involves the 

placement of mmWave femtocells inside buildings for indoor coverage.  

Another two problems are the difficult propagation of mmWave transmissions through 

foliage and the signal scattering in raindrops. For the first case, an empirical relationship has been 

developed [34], that predicts the foliage loss in a range of frequencies between 200-95000 MHz 

in foliage depths lesser than 400 meters. As an example, at 40 GHz, a signal penetrating a large 

tree, around 10 meters, is about 19 dB. For the second case, raindrops have approximately the 

same size as the radio wavelengths, causing the scattering of the radio signal. For example, at 50 

GHz, with a rain rate of 25mm/h, there is a 10db/km attenuation of the signal, as shown [34].  

Low-cost, small dimension antenna designs are already being developed to be integrated 

with high frequencies front ends [35]. 
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2.2.2.2 Massive MIMO              

The primary idea behind massive MIMO systems is to massively scale up MU-MIMO 

systems, by deploying a huge number of antennas in transmitters/receivers, in the order of 

hundreds or more. In massive MIMO systems, the number of antennas in base stations excessively 

surpass the number of active users. Moreover, the base station serves all active users, 

simultaneously, in the same time-frequency resource.  

In communications systems with few antennas, signal strength can be momentarily very 

low due to fading. This happens when scattered signals reach the receiver and the combined waves 

interfere destructively with each other and the only solution is to wait until the channel has 

changed enough so the data can be properly received. This delay in reception is called latency. 

However, as the law of large numbers predicts, if the number of scattered signals is largely 

increased and the number of antennas is increased as well, it will be more likely that the received 

signal will be closer to the expected, so fading no longer limits latency. Another result of the large 

number of antennas is shown in [1] where using a number of base station antennas that greatly 

exceeds the number of active users linear processing is nearly optimal (with single-antenna users). 

Additionally, by using maximum-ratio combining (MRC) or maximum-ratio transmission (MRT) 

in uplink or downlink, respectively, the effects of uncorrelated noise and intracell interference 

tend to disappear because, as the law of large numbers implies, the channel matrix for a desired 

user tends to be more orthogonal to an interfering user channel matrix, rendering simple spatial 

multiplexing procedures with optimal results. Massive MIMO also provides a large excess of 

degrees of freedom, which can be exploited to provide extremely cheap and power efficient RF 

amplifiers [36], [37]. 

Massive MIMO offers a high level of energy efficiency, in comparison to former wireless 

systems, as it can be seen in Figure 2.11. In downlink, the base station applies beamforming, 

which is enhanced with the increased number of antennas, resulting in a more spatially accurate 

transmission while reducing the radiated power. Furthermore, doubling the number of antennas 

at base station, the transmit power can be reduced by 3 dB, keeping the same overall performance, 

in optimal conditions of propagation and processing. In uplink, coherent beamforming achieves 

a higher array again, allowing a reduced transmit power of each user, favoring all mobile devices 

[38].  
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Figure 2.11 - Spectral efficiency vs. Energy efficiency in SISO, MISO and Massive MIMO systems with 

different processing methods; source: [39] 

In practice, deploying very large arrays is a spatially dimensional problem. Since antennas 

have to be distributed half-wavelength apart, 100 antennas can occupy almost one meter of space. 

Though, mmWave technology eases this problem since the resort to higher frequencies allows 

much smaller dimension antennas designs [40]. Furthermore, architectural issues of using larger 

arrays were already proposed in [41]–[45]. 

Massive MIMO relies on favorable propagation environments. Favorable propagation 

occurs when the downlink channel responses to different users are uncorrelated. This can happen 

when channel vectors become pairwise orthogonal or there is a complex scattering environment. 

In [46] a series of channel measurements is performed and analyzed for various practical massive 

MIMO conditions in real propagation environments, concluding that the advantages of this 

system can also be obtained in real channels. Figure 2.12 shows the capacity achieved in a 

downlink system with 16 users, when the users are far apart and closely located. 
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Figure 2.12 - Downlink sum-rate capacity with DPC, for 16 users in different user inter-location 

scenarios; source: [46] 

2.2.3 Channel Estimation in Massive MIMO 

Massive MIMO relies on spatial multiplexing, and for that reason the base station needs 

a precise channel knowledge. In uplink, users send training sequences and the base station 

estimates the channel responses of each user. For downlink, acquiring accurately the respective 

channel responses for every terminal can be more complicated, because the base station needs to 

know the forward channel beforehand. In time division duplex (TDD) architectures, it is assumed 

to have channel reciprocity, i.e., the reverse and forward channel are assumed to be identical in a 

certain coherence interval and, therefore, the estimated reverse channel responses are used for the 

next forward transmission. Thus, the channel reciprocity is one main advantage in TDD systems, 

albeit with some calibration required [47]. On the other hand, frequency division duplex (FDD) 

architectures require a closed-loop setup. The reverse channel is estimated by the base station 

with training sequences sent by the users, to alleviate computational requirements and improve 

battery life capacity of mobile devices. To estimate the forward channel, the base station has to, 

initially, send training sequences and get a (limited) feedback of the downlink’s CSI by the users, 

since channel reciprocity is impossible in FDD systems. Therefore, the number of training 

sequences in TDD systems is equal to the number of users and for FDD systems is equal to the 

number of antennas deployed at base station. In Figure 2.13 is depicted a time slot structure with 

channel estimation for both FDD and TDD systems. 
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Figure 2.13 –Time slot with channel estimation for FDD and TDD systems 

 Despite the use of FDD in the current LTE standard, incorporating a FDD strategy is 

more difficult in massive MIMO systems due to orthogonality issues between antennas and large 

number of required channel estimations. Downlink pilots must be mutually orthogonal for optimal 

estimations. To accomplished that, time-frequency resources are spent proportionally to the 

number of antennas at the base station, which requires hundreds of times more resources in 

massive MIMO systems than in conventional MIMO. The number of orthogonal training 

sequences must be smaller than the number of pilots on the training sequences.  

Another problem lies in the number of estimations to be done by the terminals in the 

minimum amount of time. The number of channel responses that have to be estimated by each 

user is proportional to the number of base station antennas. Therefore, the terminals would have 

to spent hundreds of times more resources to feedback the base station with the channel responses 

estimates, which is a critical drawback for mobile devices, and the need to feedback adds latency 

to transmission. Moreover, the estimated CSI can also be deteriorated by quantization errors due 

to the limited channel feedback and outdated due to the delay between the moment the estimation 

was performed and its implementation at base station. In the work of [48] the case of non-ideal 

CSI is analyzed at base stations and specifically the trade-off between the advantage of large 

number of antennas and the cost of estimating large channel vectors, in FDD systems. 

 Once again, scaling up large antennas arrays brings two new problems that were not 

previously taken into account. Alternatives to solve these problems involve the system to operate 

in TDD mode and rely on channel reciprocity, which is the general approach adopted in massive 
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MIMO systems, since the required pilot resources are independent of the number of base station 

antennas, or FDD schemes that require a considerably reduced CSI accuracy [49]. 

2.2.3.1 Pilot Contamination 

Since massive MIMO is supposed to be a practical cellular network, it is distributed along 

multiple cells, as a multicell system. For channel estimation, every terminal has a correspondent 

training sequence to eliminate intra-cell interference. Additionally, channel estimation must be 

performed during each coherence interval, and for that reason, the number of mutually orthogonal 

training sequences must be smaller than the number of elements in each coherence interval. So, 

depending on the number of coherent time-frequency elements, the training sequences must be 

reused in other cells. Due to this limitation, pilot contamination may happen. A signal suffers 

from pilot contamination, when a receiver gets the same pilot sequence from different sources of 

different cells resulting in an incorrect channel estimate (Figure 2.14). Therefore, pilot 

contamination limits the performance of non-cooperative MU-MIMO systems [1]. 

 

Figure 2.14 - Pilot contamination example when both users transmit mutually non-orthogonal training 

sequences 

As the base station estimates inaccurately the desired channel responses, the precoding 

performed on the transmitted signal is also incorrect. The erroneous precoding decreases 

significantly the signal-to-interference-plus-noise ratio (SINR) of the whole transmission. Since 

the base station performs beamforming, in a MRT precoding scheme, the signal power is 

misplaced due to the estimated channel values, i.e., the desired user receives a less powered signal, 

and the power lost is redirected as interference to the undesired users with the same training 

sequence. 

As the number of transmit antennas and users increases, the coherence interval may not 

be long enough to allow the generation of the necessary amount of training sequences to serve all 
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active users. In practice, to allow data transmission with good spectral efficiency as well, the 

number of terminals has to be significantly smaller than the number of symbols in the coherence 

interval. Thus, pilot contamination becomes a major problem in a massive MIMO scenario. As 

concluded in [50], it causes the saturation of SINR as the number of base station antennas tends 

to infinity. Figure 2.15 shows that as the path-loss gain (ratio between the path-loss coefficients 

for the channels of desired user and interfering user) increases, the saturation value of SINR also 

increases. 

 

Figure 2.15 - Variation of SINR and its approximation for different path-loss gains (2 and 2,5) at 10dB 

interference-free SNR; source: [50] 

Numerous methods for pilot contamination mitigation have already been proposed. In 

[51] a completely-blind method of pilot decontamination for uplink transmission is proposed, 

although, by exploiting channel reciprocity in TDD schemes, the same strategy can be applied. 

[52] employs a pilot contamination precoding (PCP) scheme among multiple cells, addressed to 

terminals with the same pilot sequence.  

Eigenvalue decomposition (EVD) based approaches are also recurrent in channel 

estimation and mitigation of pilot contamination. Since they are semi-blind techniques, they need 

a much shorter training sequence, to solve ambiguity difficulties, in comparison to other pilot-

based channel estimation techniques. In [53], it is shown that the channel matrix of each user can 

be estimated from the covariance matrix of the received signals with higher accuracy compared 

with linear estimation techniques. It also improves the performance by combining an iterative 

least-square with projection (ILSP) algorithm. An improved EVD channel estimation algorithm 

is proposed in [54], that eliminates pilot contamination completely. The algorithm is based on the 

equality between the channel fast fading coefficient matrix and the eigenvector matrix of the 
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covariance of received training sequence. However, EVD and EEVD techniques are founded on 

a critical assumption: the number of antennas at base station tends to infinity, and, therefore, 

performance degradation is expected, by pilot contamination, as the number of antennas is finite. 

Moreover, eigenvalue decomposition is a nonlinear operation, so, for large matrices, 

approximation errors and high computational requirements are severe problems to be taken into 

account. Figure 2.16 presents the MSE between the two abovementioned channel estimation 

techniques in function of the number of transmit antennas. 

 

Figure 2.16 - MSE performance between EVD and EEVD channel estimation vs. the number of base 

station antennas, M; source: [54] 

The coordination between base stations of different cells is also a strategy applied to 

reduce pilot contamination. In [55], a time-shifted training sequences method is proposed to avoid 

simultaneous transmissions from bordering cells, and shows that rate gains can achieve 18 times 

more than the aligned approach. Allocation of training sequences in multiple cells can also 

mitigate inter-cell interference. In [56] it is analyzed a training sequence assignment strategy 

where specific groups of users are assigned with identical training sequences. This latter scheme 

performs closely to an interference-free channel estimation scenario with reasonable numbers of 

antennas and users. Figure 2.17 compares the MSE between least square (LS) channel estimation, 

covariance-aided Bayesian (CB) estimation and coordinated pilot assignment-based (CPA) 

Bayesian estimation with and without inter-cell interference. 
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Figure 2.17 - MSE comparison between different estimation techniques and interference free cases, vs. 

number of base station antennas; source: [56] 
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3. Channel Estimation Techniques 

Massive MIMO has shown to be a promising concept in 5G cellular networks. The 

increased number of antennas at the base station combined with MU-MIMO transmission 

techniques make massive MIMO more energy-efficient and capable to reach higher spectral 

efficiency. A major restrictive factor in massive MIMO is the availability of an accurate CSI, 

since spatial multiplexing can only be achieved if the channel responses are precisely known. For 

that reason, channel estimation is a main subject to be discussed in wireless communications 

systems, primarily when the future of the industry probably will involve a large scaling of antenna 

arrays. 

This chapter begins by describing the adopted MU-MIMO downlink system model, followed by 

an explanation of the BD method, used to cancel CCI, and two low-complexity channel estimators 

commonly used in nowadays communication systems: LS and MMSE channel estimator. 

Additionally, it is introduced a channel estimation technique using Zadoff-Chu sequences as pilot 

signals. These sequences possess ideal periodic autocorrelation properties, which makes them 

ideal to be considered training sequences. To conclude the chapter, are presented the simulation 

results that allow a comparison purposes between the different channel estimation techniques. 

Simulations results will demonstrate how accurate the introduced channel estimation is, in 

function of the number of users and the number of pilots applied in estimation. BER and MSE are 

used as performance measurement and comparison purposes. Results are based on Monte Carlo 

experiments with 15 000 simulations and QPSK modulation. Both BER and MSE results are 

expressed in function of 
𝐸𝑏

𝑁0
, where 𝐸𝑏 is the transmitted bit energy and where 𝑁0 is the noise 

power spectral density. 

3.1 System Model 

The system model adopted is a downlink orthogonal frequency-division multiple access 

(OFDMA) transmission over a multi-user precoding MIMO system with 𝑁𝑢 users, 𝑁𝑅 receiving 

antennas at each mobile station and 𝑁𝑇 = 𝑁𝑢𝑁𝑅 transmitting antennas at the base station, 

resulting in a 𝑁𝑇×𝑁𝑅 MIMO configuration to each user 𝑢, with 𝑁 subcarriers, through a channel 

𝑯𝑢
𝐷𝐿 (𝑯𝑢

𝐷𝐿𝜖ℂ𝑁𝑅×𝑁𝑇), depicted in Figure 3.18. 

It is also assumed that the transmitter knows exactly the CSI of all receivers and every 

user knows their corresponding precoding matrix. For the sake of simplicity, the time index is 

omitted. 
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Figure 3.18 - MU-MIMO system model with precoding 

The received signal for every user is given by 

 [

𝒚1

𝒚2

⋮
𝒚𝑁𝑢

] =

[
 
 
 
 
𝑯1

𝐷𝐿

𝑯2
𝐷𝐿

⋮
𝑯𝑁𝑢

𝐷𝐿
]
 
 
 
 

𝑿 + [

𝒛1

𝒛2

⋮
𝒛𝑁𝑢

]  , (1) 

or simply by 

 𝒀𝐵𝐶 = 𝑯𝐷𝐿𝑿 + 𝒁 , (2) 

where 𝒚𝑢 (𝒚𝑢𝜖ℂ𝑁𝑅) is the received signal at the 𝑢-th user (𝑢 = 1,2,… ,𝑁𝑢), 𝑿 (𝑿𝜖ℂ𝑁𝑇) is the 

transmitted signal by the BS, and 𝒛𝑢 (𝒛𝑢𝜖ℂ𝑁𝑅) is the array relative to additive white gaussian 

noise (AWGN) with zero mean and variance 𝜎𝑧
2 =

𝑁0

2
. 

The channel matrix 𝑯𝑢
𝐷𝐿 contains all SISO channel impulse responses from each BS 

transmitting antenna to each receiving antenna of a single user. The elements of 𝑯𝑢
𝐷𝐿 are samples 

of independent and identically distributed (i.i.d.) complex Gaussian process, given by 

 𝑯𝑢
𝐷𝐿 = [

ℎ1,1 … ℎ1,𝑁𝑇

⋮ ⋱ ⋮
ℎ𝑁𝑅,1 … ℎ𝑁𝑅 ,𝑁𝑇

] . (3) 

The signal received by a single user is given by 

 𝒚𝑢 = [

𝑦1

𝑦2

⋮
𝑦𝑁𝑅

] = [

ℎ1,1 … ℎ1,𝑁𝑇

⋮ ⋱ ⋮
ℎ𝑁𝑅 ,1 … ℎ𝑁𝑅,𝑁𝑇

] [

𝑥1

𝑥2

⋮
𝑥𝑁𝑇

] + 𝒛𝑢 , (4) 

and, therefore, each antenna receives the signal 

𝑦𝑘 = ℎ𝑘,1𝑥1 + ℎ𝑘,2𝑥2 + ⋯+ ℎ𝑘,𝑁𝑇
𝑥𝑁𝑇

+ 𝑧𝑘  ,            𝑘 = 1,2,… ,𝑁𝑢 , 

which means that each receiving antenna is subjected to CCI. 
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3.1.1 Channel Model 

The channel considered is a frequency-nonselective or frequency flat fading channel 

given by [57]: 

 ℎ𝑛𝑟,𝑛𝑡(𝑡) = 𝛼(𝑡)𝑒𝑗𝜃(𝑡) , ∀𝑛𝑟, 𝑛𝑡 , (5) 

where 𝛼(𝑡) denotes the envelope and 𝜃(𝑡) represents the phase of the equivalent channel 

response. This means the coherence bandwidth, 𝐵𝑐𝑜ℎ, is larger than the signal bandwidth, 𝐵𝑆 i.e., 

 𝐵𝑆 ≪ 𝐵𝑐𝑜ℎ  . (6) 

Hence, all frequencies of the transmitted signal experience equal gain and linear phases during 

the duration of a OFDM symbol. Then, the channel has a time-varying multiplicative effect on 

the transmitted signal.  

3.1.2 Pilot Structure 

There are three different types of pilots’ structures that can be adopted: block type, comb 

type, and lattice type [58]. In the model adopted here, the pilots are arranged in a comb type 

format, as shown in Figure 3.19. Comb type pilot arrangement are regularly used for fast-fading 

channel characteristics, but not for frequency-selective channels [59], [60]. 

 

Figure 3.19 - Comb-type pilot structure 

The training sequences are inserted in the first 𝑁𝑃 subcarriers of every symbol and are 

used to estimate the channel responses along the frequency axis. Since the transmission is 
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frequency-flat over each symbol, the estimates are used in equalization for the next 𝑁𝑑𝑎𝑡𝑎 

subcarriers (𝑁𝑑𝑎𝑡𝑎 = 𝑁 − 𝑁𝑃). 

3.2 Block Diagonalization 

In MU-MIMO systems with single-antenna users, precoding methods based on channel 

inversion are used to eliminate interference between antennas. However, in MU-MIMO systems, 

precoding eliminates the interference across different users but not between different antennas. 

So the sum capacity of the system can be increased with diversity. In these scenarios, BD is a 

common technique used in linear precoding schemes. This method is a generalization of channel 

inversion and resorts to a non-linear process called singular value decomposition (SVD). After 

performing BD, any signal detection method can be applied to eliminate inter-antenna 

interference.  

In BD, each user is associated to a precoding matrix. The precoding matrix is generated 

in a way that the base station transmits the signal to the user through the null space of all other 

interfering users. Overall, the aggregated MU-MIMO channel matrix of all users is decomposed 

into multiple, parallel, independent SU-MIMO sub-channels corresponding to each user. 

However, the non-linearity process forces channel estimation to be more accurate than in a 

standard MIMO system. 

The precoded signal for the 𝑢-th user can be written as: 

 𝒙𝑢 = 𝑾𝑢�̃�𝑢 , 𝑢 = 1, 2, … ,𝑁𝑢 , (7) 

where 𝒙𝑢 (𝒙𝑢𝜖ℂ𝑁𝑇) is the coded array of transmitting symbols, 𝑾𝑢 (𝑾𝑢𝜖ℂ𝑁𝑇×𝑁𝑅) the precoding 

matrix and �̃�𝑢 (�̃�𝑢𝜖ℂ𝑁𝑅) is the vector with 𝑁𝑅 parallel data symbols concerning the user 𝑢. The 

signal that each user 𝑢 receives can be expressed as: 

 𝒚𝑢 = 𝑯𝑢
𝐷𝐿 ∑ 𝑾𝑘�̃�𝑘

𝑁𝑢

𝑘=1

+ 𝒛𝑢 , 𝑢 = 1, 2,… ,𝑁𝑢 . (8) 

The same equation can be rearranged as 

 𝒚𝑢 = 𝑯𝑢
𝐷𝐿𝑾𝑢�̃�𝑢 + ∑ 𝑯𝑢

𝐷𝐿𝑾𝑘�̃�𝑘

𝑁𝑢

𝑘=1,𝑘≠𝑢

+ 𝒛𝑢 , 𝑢 = 1, 2, … ,𝑁𝑢 , (9) 

where 𝑯𝑢
𝐷𝐿𝑾𝑘 is an effective channel matrix for the 𝑢-th user receiver and the 𝑘-th user transmit 

signal (𝑢, 𝑘 = 1,2,… ,𝑁𝑢). In matrix format, the received signals are represented as: 

 [

𝒚1

𝒚2

⋮
𝒚𝑁𝑢

] =

[
 
 
 
 
𝑯1

𝐷𝐿𝑾1 𝑯1
𝐷𝐿𝑾2 … 𝑯1

𝐷𝐿𝑾𝑁𝑢

𝑯2
𝐷𝐿𝑾1 𝑯2

𝐷𝐿𝑾2 … 𝑯2
𝐷𝐿𝑾𝑁𝑢

⋮ ⋮ ⋱  
𝑯𝑁𝑢

𝐷𝐿𝑾1 𝑯𝑁𝑢

𝐷𝐿𝑾2  𝑯𝑁𝑢

𝐷𝐿𝑾𝑁𝑢]
 
 
 
 

[

�̃�1

�̃�2

⋮
�̃�𝑁𝑢

] + [

𝒛1

𝒛2

⋮
𝒛𝑁𝑢

] , (10) 
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when 𝑯𝑢
𝐷𝐿𝑾𝑘 ≠ 0𝑁𝑅×𝑁𝑅

, ∀ 𝑢 ≠ 𝑘 there is CCI, where 0𝑁𝑅×𝑁𝑅
 is a zero matrix. From (10) it can 

be seen that CCI-free transmission is guaranteed as long as the effective channel matrix is block-

diagonalized, to ensure that 

 𝑯𝑢
𝐷𝐿𝑾𝑘 = 0𝑁𝑅×𝑁𝑅

, ∀ 𝑢 ≠ 𝑘 . (11) 

Let denote �̃�𝑢
𝐷𝐿

 (�̃�𝑢
𝐷𝐿

ℂ𝑁𝑅(𝑁𝑢−1)×𝑁𝑇) as the congregate interfering channel matrix that 

contains the channel responses of all users except the 𝑢-th user 

 �̃�𝑢
𝐷𝐿

= [(𝐻1
𝐷𝐿)

𝐻
 … (𝐻𝑢−1

𝐷𝐿)
𝐻
 (𝐻𝑢+1

𝐷𝐿)
𝐻
 … (𝐻𝑘

𝐷𝐿)
𝐻
]
𝐻
 , (12) 

where (•)𝐻 denotes the complex-conjugate transpose operation, or Hermitian transpose. Thus, 

since 𝑁𝑇 = 𝑁𝑅𝑁𝑢, (11) is equivalent to 

 �̃�𝑢
𝐷𝐿

𝑾𝑢 = 0(𝑁𝑇−𝑁𝑅)×𝑁𝑅
 , 𝑢 = 1, 2, … ,𝑁𝑢 . (13) 

Therefore, results a CCI-free transmission: 

 𝒚𝑢 = 𝑯𝑢
𝐷𝐿𝑾𝑢�̃�𝑢 + 𝒛𝑢. (14) 

which corresponds in matrix format to 

 [

𝒚1

𝒚2

⋮
𝒚𝑁𝑢

] =

[
 
 
 
 
𝑯1

𝐷𝐿𝑾1 0 … 0

0 𝑯2
𝐷𝐿𝑾2 … 0

⋮ ⋮ ⋱  
0 0  𝑯𝑁𝑢

𝐷𝐿𝑾𝑁𝑢]
 
 
 
 

[

�̃�1

�̃�2

⋮
�̃�𝑁𝑢

] + [

𝒛1

𝒛2

⋮
𝒛𝑁𝑢

] . (15) 

The interference can be cancelled using the diagonalization process called SVD [61], [62]. To 

obtain the precoding matrix 𝑾𝑢 which satisfies the condition of (13). It is possible to separate 

�̃�𝑢
𝐷𝐿

 into a product of three matrices. 

 �̃�𝑢
𝐷𝐿

= �̃�𝑢�̃�𝑢�̃�𝑢
𝐻
 , (16) 

where �̃�𝑢 (�̃�𝑢 𝜖ℂ𝑁𝑅(𝑁𝑢−1)×𝑁𝑅(𝑁𝑢−1)) and �̃�𝑢 (�̃�𝑢 𝜖ℂ𝑁𝑇×𝑁𝑇) are orthogonal matrices and 

�̃�𝑢 (�̃�𝑢𝜖ℂ𝑁𝑅(𝑁𝑢−1)×𝑁𝑇) is a diagonal matrix containing the square roots of eigenvalues from �̃�𝑢 

or �̃�𝑢. Since �̃�𝑢 will not be a square matrix, there will be empty columns. In that case, �̃�𝑢 can be 

represented as 

 �̃�𝑢
𝐻

= [�̃�𝑢 𝑁𝑍 �̃�𝑢 𝑍 ]
𝐻
 , (17) 

where �̃�𝑢 𝑍 are the last orthonormal eigenvectors, or singular vectors, corresponding to the zero 

singular values of �̃�𝑢 and �̃�𝑢 𝑁𝑍 to the non-zero singular values. Thus, �̃�𝑢 𝑍 is an orthogonal basis 

for the null space of �̃�𝑢
𝐷𝐿

, since we may write 
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�̃�𝑢
𝐷𝐿

�̃�𝑢 𝑍 = �̃�𝑢[�̃�𝑢
𝑁𝑍

0] [
(�̃�𝑢 𝑁𝑍)

𝐻

(�̃�𝑢 𝑍)
𝐻 ] �̃�𝑢 𝑍 

= �̃�𝑢�̃�𝑢
𝑁𝑍

(�̃�𝑢 𝑁𝑍)
𝐻
�̃�𝑢 𝑍 

= �̃�𝑢�̃�𝑢
𝑁𝑍

0 

= 0 , 

 

(18) 

which means that when the signal is transmitted in the direction of �̃�𝑢 𝑍, every interfering user 

will not receive any signal. Therefore, �̃�𝑢 𝑍  will be the precoding matrix for user 𝑢, given by 

 𝑾𝑢 = �̃�𝑢 𝑍 . (19) 

Figure 3.20 shows the effectiveness of BD method in eliminating CCI. When compared to a CCI-

absent transmission scheme in the same conditions. 

 

Figure 3.20 - BER plot for different numbers of users and receive antennas 

With perfect CSI knowledge at the mobile stations, the BD method can satisfactorily 

eliminate CCI in a multiple-antenna users’ scenario. Due to the lower complexity when compared 

with the DPC, the BD will be the adopted precoding scheme in the following simulations of this 

chapter. 𝑁𝑑𝑎𝑡𝑎 value will be kept equal to 200 as well. 
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3.3 One Dimension Channel Estimators 

LS channel estimator and MMSE channel estimator are two basic, pilot-based channel 

estimation techniques. These estimators are categorized as one dimension (1D) estimators, this 

means that the channel estimation is done by resorting to training sequences, of length 𝑁𝑃, in one 

dimension, either in frequency or time domain. Due to their simplicity they are widely used for 

pilot-based channel estimation [54], [58-60]. 

3.3.1 Least-Squares Channel Estimation 

The LS channel estimator minimizes the squared error quantity between the received 

signal and the estimated one and may be described as 

 �̂�𝐿𝑆 = arg

 
 

�̃�𝐿𝑆
min‖𝒚 − �̃�𝐿𝑆𝑺‖

2
 , (20) 

where 𝑺 (𝑺𝜖ℂ𝑁𝑇×𝑁𝑃) is the matrix containing the transmitted training sequences 𝒔𝑛𝑡 (𝑛𝑡 =

1,2,… ,𝑁𝑇) of all transmit antennas such as: 

 𝑺 = [

𝒔1

𝒔2

⋮
𝒔𝑁𝑇

] . (21) 

The channel estimates of the channel impulse responses between all transmit antennas 

and the 𝑛-th receiving antenna are given by 

 �̂�𝑛
𝐿𝑆 = 𝒚𝑛𝑺𝐻[𝑺𝑺𝐻]−1 , (22) 

or, generically, for non-white Gaussian noise by 

 �̂�𝑛
𝐿𝑆 = 𝒚𝑛𝑹𝑧𝑧

−1𝑺𝐻[𝑺𝑹𝑧𝑧
−1𝑺𝐻]−1 , (23) 

where (•)−1 denotes the inverse operation and 𝑹𝑧𝑧 is the auto-correlation matrix of the noise 

given by: 

 𝑹𝑧𝑧 = 𝜎𝑧
2𝑰𝑁𝑅×𝑁𝑅

 , (24) 

where 𝑰𝑁𝑅×𝑁𝑅
 is the identity matrix. 

The MSE of the LS channel estimate is equal to: 

 𝑀𝑆𝐸𝐿𝑆 =
𝜎𝑧

2

𝜎𝑥
2
 . (25) 

From (25), it becomes obvious that the MSE is inversely proportional to the SNR (𝑆𝑁𝑅 =

𝜎𝑥
2 𝜎𝑧

2⁄ ), which means that the LS estimator is susceptible to noise enhancement, particularly 
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when the channel is in deep fading. However, since this technique does not consider channel 

statistical parameters, it is extensively used for channel estimation. 

3.3.2 Minimum Mean-Square Error Channel Estimation 

MMSE channel estimation is a more accurate version of the LS channel estimation. Let 

us consider the block diagram shown in Figure 3.21, where 𝑴 is the weight matrix and �̂�𝑀𝑀𝑆𝐸 

corresponds to the MMSE estimate. 

 

Figure 3.21 - Block Diagram of MMSE Channel Estimation 

The MMSE channel estimator minimizes the MSE between the true channel, 𝑯, and the 

MMSE estimated channel, �̂�𝑀𝑀𝑆𝐸, by finding a good linear estimate in terms of 𝑴 and the value 

of LS estimate, �̂�𝐿𝑆: 

 �̂�𝑀𝑀𝑆𝐸 = arg

 
 

�̃�𝑀𝑀𝑆𝐸
min‖𝑯 − �̃�𝑀𝑀𝑆𝐸‖

2
 , (26) 

with 

 �̂�𝑀𝑀𝑆𝐸 = �̂�𝐿𝑆𝑴 . (27) 

According to the principle of orthogonality, the estimation error vector 𝜀 = 𝑯 − �̂�𝑀𝑀𝑆𝐸 

is orthogonal to �̂�𝐿𝑆, resulting in 

 𝑹𝑯�̂�𝐿𝑆 − 𝑴𝑹�̂�𝐿𝑆�̂�𝐿𝑆 = 0 , (28) 

where 𝑹𝑯�̂�𝐿𝑆 represents the cross-correlation matrix between 𝑯 and �̂�𝐿𝑆, and 𝑹�̂�𝐿𝑆�̂�𝐿𝑆 the auto-

correlation matrix of �̂�𝐿𝑆 given by 

 𝑹�̂�𝐿𝑆�̂�𝐿𝑆 = 𝑹𝑯𝑯 +
𝜎𝑧

2

𝜎𝑥
2
𝑰 . (29) 

Solving (28) in function of 𝑴 results: 

 𝑴 = 𝑹𝑯�̂�𝐿𝑆𝑹�̂�𝐿𝑆�̂�𝐿𝑆
−1 . (30) 

By combining equations (30) and (29), equation (27) can be rewritten as: 
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 �̂�𝑀𝑀𝑆𝐸 = �̂�𝐿𝑆𝑹𝑯�̂�𝐿𝑆 (𝑹𝑯𝑯 +
𝜎𝑧

2

𝜎𝑥
2
𝑰)

−1

 . (31) 

Assuming that every channel response energy is normalized, such as: 

 𝐸 {|ℎ𝑛𝑟,𝑛𝑡|
2
} = 𝜎ℎ

2 , ∀𝑛𝑟, 𝑛𝑡 , (32) 

the estimate solution of the Equation (31) for the 𝑛-th receiving antenna can be simplified to: 

 �̂�𝑛
𝑀𝑀𝑆𝐸 = 𝒙𝑛𝑺𝐻 (𝑺𝑺𝐻 +

𝜎𝑧
2

𝜎ℎ
2
𝑰)

−1

. (33) 

Generally, for non-white Gaussian noise we have 

 �̂�𝑛
𝑀𝑀𝑆𝐸 = 𝒙𝑛𝑹𝑧𝑧

−1𝑺𝐻 (𝑺𝑹𝑧𝑧
−1𝑺𝐻 +

𝜎𝑧
2

𝜎ℎ
2
𝑰)

−1

 . (34) 

Since MMSE estimation relies on minimizing the MSE, it has a better performance than 

LS channel estimation. The downside lies on the fact that it depends on the channel statistics. 

Hence, this method has a higher complexity than the LS estimator. To reduce the complexity of 

MMSE channel estimator, a technique called modified MMSE is suggested in [63]. 

In this work, the MSE of the estimated channel is defined as 

 𝑀𝑆𝐸 =
‖𝑯𝑢

𝐷𝐿 − �̂�𝒖
𝑀𝑀𝑆𝐸‖

𝐹

𝑁𝑇𝑁𝑅
 (35) 

where ‖•‖𝐹 denotes the Frobenius norm of a matrix. 

Figure 3.22 and Figure 3.23 show the BER and MSE results, to compare the accuracy of 

the MMSE estimator for a different numbers of pilots in a scheme with 2 users and 2 receive 

antennas per each one. 

 

Figure 3.22 - BER plot of transmission to 2 users with MMSE estimator, for different numbers of pilots 
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Figure 3.23 - MSE of transmission to 2 users with MMSE estimator, for different numbers of pilots 

It is clear that for 𝑁𝑃 = 7, estimation performance is degraded, but for the other values 

of 𝑁𝑃 the estimation is accurate. Obviously, as the number of pilots increase, the channel 

estimation is more precise. The following plots, Figure 3.24 and Figure 3.25, consider an 8 users 

scheme for the same comparison purposes as before. 

 

Figure 3.24 - BER plot of transmission to 8 users with MMSE estimator, for different numbers of pilots 
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Figure 3.25 - MSE of transmission to 8 users with MMSE estimator, for different numbers of pilots 

When the number of pilots is close to the number of base station antennas (𝑁𝑇 = 4,𝑁𝑃 =

7 for the first case, and 𝑁𝑇 = 16,𝑁𝑃 = 17 for the second one), it is visible a degradation in the 

performance of the estimators. Apart from that, for the rest of the set of training sequence lengths 

the BER plot shows an approximated performance to the exact CSI. 

To put massive MIMO into context, Figure 3.26 and Figure 3.27 show the performance 

of the MMSE estimator when the base station deploys a large array of antennas (𝑁𝑇 = 64), 

serving 8 users simultaneously, each one with 8 receive antennas. It can be seen that, as the 

number of antennas increases, the estimator becomes less accurate. Moreover, the channel 

estimation process becomes more complex, since a larger matrix has to be inverted. 
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Figure 3.26 - BER plot of massive MIMO scheme with 64 base station antennas using MMSE estimator, 

for 𝑁𝑃 = 71 and 𝑁𝑃 = 101 

 

Figure 3.27 - MSE plot of massive MIMO scheme with 64 base station antennas using MMSE estimator, 

for 𝑁𝑃 = 71 and 𝑁𝑃 = 101 

In order to improve efficiency and lower complexity of channel estimation, the next 

section introduces the Zadoff-Chu sequences. 
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3.4 Channel Estimation with Zadoff-Chu training sequences 

Zadoff-Chu (ZC) sequences are complex-valued mathematical sequences in which 

cyclically shifted versions of the same sequence are orthogonal to each other, that is, they have 

zero correlation. A non-shifted sequence is known as “root sequence” and is defined as: 

 𝑥𝑈(𝑛) = 𝑒−𝑗
𝜋𝑈𝑛(𝑛 + 1)

𝑁𝑍𝐶
 , 0 ≤ 𝑛 ≤ 𝑁𝑍𝐶  , (36) 

where 𝑈 is the root index that determines a specific sequence, 𝑛 is the time index and 𝑁𝑍𝐶  is the 

length of the sequence. If 𝑁𝑍𝐶  is a prime number, each root index (𝑈 = 1,2, … ,𝑁𝑍𝐶 − 1) 

generates different Zadoff-Chu sequences. 

Zadoff-Chu sequences belong to the class of perfect polyphase sequences [66], also called 

Constant Amplitude Zero Autocorrelation (CAZAC) sequences. A CAZAC sequence is a periodic 

signal with modulus one and discrete cyclic autocorrelation equal to zero, i.e., each circularly 

shifted version of the same sequence is mutually orthogonal. Hence, the discrete Fourier transform 

(DFT) of any Zadoff-Chu sequence has constant amplitude. Furthermore, the cross-correlation 

between two prime-length Zadoff-Chu sequences of different root indices coprimes to 𝑁𝑍𝐶  is 

constant and equal to √𝑁𝑍𝐶 . 

Zadoff-Chu sequences are used in several channels of LTE standard, more specifically in 

primary synchronization signal (PSS), reference signal (RF) both uplink and downlink, physical 

uplink control channel (PUCCH), physical uplink traffic channel (PUSCH) and physical random 

access channel (PRACH).  

Since all cyclically shifted versions of a Zadoff-Chu sequence are orthogonal to each 

other, they can be used as training sequences for channel estimation in transmissions with multiple 

antennas, simultaneously.  

Let us assume 𝑺 as the matrix containing the transmitted training sequences, in (21). Each 

training sequence 𝒔𝑛𝑡 (𝑛𝑡 = 1,2, … ,𝑁𝑇) is a circularly shifted version of a Zadoff-Chu sequence 

with the same root index, of length 𝑁𝑍𝐶 , so, 

 ⟨𝒔𝑎 , 𝒔𝑏⟩ = 0 , 𝑎 ≠ 𝑏 , (37) 

where ⟨•, •⟩ refers to the Hermitian inner product operation. 

Subsequently, the constraint 𝑁𝑍𝐶 > 𝑁𝑇 is imposed so every sequence is pairwise 

orthogonal and, therefore, each channel response is distinguished. This is a major drawback in 

massive MIMO systems, where 𝑁𝑇 is intended to be large. 

In reception, the 𝑛𝑟-th receive antenna (𝑛𝑟 = 1,2, … ,𝑁𝑅) obtains the following signal: 

 
𝒚𝑛𝑟 = 𝒔1ℎ𝑛𝑟,1 + 𝒔2ℎ𝑛𝑟,2 + ⋯+ 𝒔𝑛𝑟ℎ𝑛𝑟,𝑛𝑡 + ⋯+ 𝒔𝑁𝑇

ℎ𝑛𝑟,𝑁𝑇
 ,

(𝑛𝑡 = 1,2, … , 𝑛𝑟, … ,𝑁𝑇) . 
(38) 
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So, ℎ𝑛𝑟,𝑛𝑡 (𝑛𝑡 = 𝑛𝑟) is the desired channel while ℎ𝑛𝑟,𝑛𝑡 (𝑛𝑡 ≠ 𝑛𝑟) are the interfering channels. 

Therefore, using the Hermitian inner product operation in 𝒚𝑛𝑟 with the appropriate training 

sequence 𝒔𝑛𝑟 the unwanted interference parcels will be canceled, resulting 

 ⟨𝒚𝑛𝑟, 𝒔𝑛𝑟⟩ = |𝒔𝑛𝑟|
2ℎ̅𝑛𝑟,𝑛𝑟 , (39) 

where |•| refers to the norm function and •̅ denotes the complex conjugate.  

Since the square of a vector’s norm is equal to the length of the vector, the expression can 

be simplified as: 

 ⟨𝒚𝑛𝑟, 𝒔𝑛𝑟⟩ = 𝑁𝑍𝐶ℎ̅𝑛𝑟,𝑛𝑟 . (40) 

Thus, to estimate the value of the corresponding channel response, ℎ̂𝑛𝑟,𝑛𝑟, it is just needed to 

divide by 𝑁𝑍𝐶  and proceed with complex conjugate operation. 

 ℎ̂𝑛𝑟,𝑛𝑟 =
⟨𝒚𝑛𝑟, 𝒔𝑛𝑟⟩̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑁𝑍𝐶
 . (41) 

This estimator does not perform matrix inversions and, therefore, it has much lower complexity 

than a MMSE estimator, specially in a massive MIMO scenario, where the channel matrix is very 

large. 

As before, Figure 3.28 and Figure 3.29 show the accuracy of the channel estimation 

technique described in this section, for a system with 2 users and 2 receive antennas per each. It 

is perceptible the reduced accuracy when 𝑁𝑃 = 7. However, although MMSE estimator has 

higher complexity due to channel inversions, it performs worse than channel estimation based on 

Zadoff-Chu training sequences. The following simulations compare the latter technique with the 

MMSE channel estimation. 
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Figure 3.28 - BER plot of transmission to 2 users with channel estimation using Zadoff-Chu training 

sequences, for different numbers of pilots 

 

Figure 3.29 - MSE of transmission to 2 users with channel estimation using Zadoff-Chu training 

sequences, for different numbers of pilots 

For 𝑁𝑃 = 7, there is a great improvement in ZC-based channel estimation, specially for 

an increasing number of antennas. As shown in Figure 3.32, for 8 active users with 2 receiving 

antennas each, there is a BER improvement around 3dB when using the smallest training sequence 

length (𝑁𝑃 = 17). Moreover, Zadoff-Chu channel estimation technique’s MSE do not depend on 
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the number of base station antennas, but in the length of the training sequences. Plus, the number 

of receive antennas equipped at each user enhances the MSE results, as depicted in Figure 3.34. 

 

 

Figure 3.30 - BER comparison between MMSE estimator and ZC method, for 𝑁𝑃 = 7 and 𝑁𝑃 = 31 

 

Figure 3.31 - MSE comparison between MMSE estimator and ZC method, for 𝑁𝑃 = 7 and 𝑁𝑃 = 31 
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Figure 3.32 - BER comparison between MMSE estimator and ZC method, for 𝑁𝑃 = 17 and 𝑁𝑃 = 31 

 

Figure 3.33 - MSE comparison between MMSE estimator and ZC method, for 𝑁𝑃 = 17 and 𝑁𝑃 = 31 
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Figure 3.34 - MSE of transmission with channel estimation using Zadoff-Chu training sequences, for 

ranging values of 𝑁𝑢 and 𝑁𝑅 

Zadoff-Chu sequences admit perfect autocorrelation and good cross-correlations 

properties. These properties make them suitable training sequences in channel estimation. When 

compared with MMSE estimator, the ZC-based channel estimation technique achieves lower 

complexity and better performances at the minimum limit number of pilots. Massive MIMO 

schemes tends to prejudice this technique because the number of pilots are lower bounded by the 

number of base station antennas. However, for large channel matrices, complexity intensification 

is not as critical as in channel inversion-based estimators, such as LS and MMSE. Hereupon, in 

the introduced ZC-based channel estimation there must have a compromise between the number 

of active transmit antennas and data payload. 
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4. Pilot Contamination 

Channel estimation has an important role in massive MIMO transmission, in order to 

reduce CCI. However, the reuse of training sequences in neighboring cells imposes a limitation 

on the achievable rate in a massive MIMO system. This limitation arises from the phenomenon 

called pilot contamination. The number of distinct training sequences should be higher than the 

number of users that are being served in the system. Moreover, the number of mutually orthogonal 

training sequences that can be generated is upper bounded by the length of those sequences. Thus, 

there is a tradeoff between the length of the training sequences and the data transmission payload. 

The tradeoff worsens as the channel coherence interval becomes smaller. In order to mitigate pilot 

contamination and reduce the bandwidth usage by training sequences, semi-blind and blind 

channel estimation techniques have been developed. In comparison to traditional pilot-based 

channel estimation techniques, they require fewer, or even none, pilots to estimate the CSI, 

relieving the effect of pilot contamination and increasing spectral efficiency. Blind and semi-blind 

channel estimation techniques rely on channel’s statistics to determine the channel estimate. 

In this chapter, three different channel estimation methods will be described and 

compared. The first one consists in an adaptation of the IB-DFE. By taking advantage of the 

iterative process, CSI can also be, iteratively, estimated. The second method is a complexity-

reduced adaptive semi-blind channel estimator that uses a subspace tracking algorithm to resolve 

the ambiguity problem. The algorithm is named fast single compensation approximated power 

iteration (FSCAPI). FSCAPI is simplified to achieve higher estimation speeds, albeit good 

tracking performance. The last technique is a low-complexity channel estimator called PEACH. 

PEACH estimator approximates the MMSE estimator, replacing the matrix inversion with a 

polynomial expansion.  

The same system model of chapter 3 is adopted, however, with an uplink scenario with 

single-antenna users and the base station having 𝑁𝑅 ≥ 𝑁𝑢 antennas. The same notation is applied. 

Simulation results will distinguish the best technique to be used in an uplink MU-MIMO 

system with pilot contamination, over BER and MSE measurements. 

4.1 System Model 

The system model considered is an uplink MU-MIMO scenario, shown in Figure 4.35. 

The base station is equipped with 𝑁𝑅 antennas and serves simultaneously 𝑁𝑢 (𝑁𝑢 ≤ 𝑁𝑅) single-

antenna users. At time 𝑛, the received signal vector 𝒚(𝑛) (𝒚(𝑛)𝜖ℂ𝑁𝑅) at the base station is given 

byww 
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 𝒚(𝑛) = 𝑯𝒙(𝑛) + 𝒛(𝑛) , 𝑛 = 1, 2, … , 𝑁 , (42) 

where 𝑯 (𝑯𝜖ℂ𝑁𝑅×𝑁𝑢) is the channel matrix composed by i.i.d. samples of complex Gaussian 

process of zero mean and unit variance, 𝒙(𝑛) (𝒙(𝑛)𝜖ℂ𝑁𝑢) is the transmitted vector of aggregated 

symbols by the 𝑁𝑢 users and 𝒛(𝑛) (𝒛(𝑛)𝜖ℂ𝑁𝑅) is a vector of AWGN with zero mean and variance 

𝜎𝑧
2 =

𝑁0

2
 ,assumed to be known at the base station. 

 

Figure 4.35 - Uplink MU-MIMO system model with single-antenna users 

The channel model is identical to the one of chapter 3, which means that the channel is constant 

during each coherence time interval of length 𝑁. The pilot structure model is also identical, where 

the pilots are transmitted in comb type process over 𝑁𝑃 symbols. The received training sequences, 

𝒀𝑃 (𝒀𝑃𝜖ℂ𝑁𝑅×𝑁𝑃), are given by 

 𝒀𝑃 = 𝑯𝑺 + 𝒁𝑃 , (43) 

where the pilot matrix, 𝑺 (𝑺𝜖ℂ𝑁𝑢×𝑁𝑃), corresponds to the collectively transmitted training 

sequence by 𝑁𝑢 users and 𝒁𝑃 (𝒁𝑃𝜖ℂ𝑁𝑅×𝑁𝑃) is the AWGN noise matrix, which lines have the 

same characteristic as 𝒛 in (42). 

At time 𝑛 (𝑛 = 1,2,… ,𝑁𝑃), the pilot signal received by the 𝑛𝑟-th (𝑛𝑟 = 1,2,… ,𝑁𝑅) base 

station antenna is given by 

 𝑦𝑛𝑟
𝑃 (𝑛) = ℎ𝑛𝑟,1𝑠1(𝑛) + ℎ𝑛𝑟,2𝑠2(𝑛) + ⋯+ ℎ𝑛𝑟,𝑁𝑢

𝑠𝑁𝑢
(𝑛) + 𝑧𝑛𝑟

𝑃 (𝑛) . (44) 

4.1.1 Pilot Contamination Model 

Pilot contamination effect caused by the reuse of training sequences from other users in 

neighboring cells is modeled as in Figure 4.36. 
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Figure 4.36 - Uplink MU-MIMO system model with pilot contamination  

The received pilots affected by pilot contamination are given by 

 𝒀𝑃𝐶 = 𝒀𝑃 + 𝑐(𝑯𝑃𝐶𝑺 + 𝒁𝑃𝐶) (45) 

where 𝑐 (0 < 𝑐 < 1) is the attenuation constant that adjusts the power of the interference training 

sequences sent by 𝐾 interfering users. For 𝑐 = 0 pilot contamination is inexistent, and for 𝑐 = 1 

the interfering channel has the same power has the desired channel. 𝑯𝑃𝐶 (𝑯𝑃𝐶𝜖ℂ𝑁𝑅×𝐾) denotes 

the interfering channel, 𝑺𝑃𝐶 (𝑺𝑃𝐶𝜖ℂ𝐾×𝑁𝑃) is the interfering pilot matrix with 𝐾 interfering training 

sequences (equal to the number of interfering as users) and 𝒁𝑃𝐶 (𝒁𝑃𝐶𝜖ℂ𝑁𝑅×𝑁𝑃) is the 

correspondent interfering AWGN noise matrix which lines have the same characteristics as 𝒛 in 

(42). 

The 𝑛𝑟-th base station antenna receives the following signal 

 𝑦𝑛𝑟
𝑃𝐶 = 𝑦𝑛𝑟

𝑃 + 𝑐(ℎ𝑛𝑟,1
𝑃𝐶 𝑠1 + ℎ𝑛𝑟,2

𝑃𝐶 𝑠2 + ⋯+ ℎ𝑛𝑟,𝐾
𝑃𝐶 𝑠𝐾 + 𝑧𝑛𝑟

𝑃𝐶)  (46) 

where the time index 𝑛 is omitted for notation simplicity. The received signal is now affected 

with inter-cell interference from 𝐾 interfering users. 

From (44), the previous equation can be rewritten as 

 
𝑦𝑛𝑟

𝑃𝐶 = 𝑠1(𝑐ℎ𝑛𝑟,1
𝑃𝐶 + ℎ𝑛𝑟,1) + ⋯+ 𝑠𝐾(𝑐ℎ𝑛𝑟,𝐾

𝑃𝐶 + ℎ𝑛𝑟,𝐾) + ⋯+ 𝑠𝑁𝑢
ℎ𝑛𝑟,𝑁𝑢

+ 𝑧𝑛𝑟
𝑃 + 𝑧𝑛𝑟

𝑃𝐶  , 
(47) 
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meaning the estimator is incorrectly aimed to estimate the sum of the desired channel and the 

correspondent interfering channel for 𝐾 user channels. 

4.2 IB-DFE with iterative channel estimations 

In order to avoid excess battery usage and to lower the cost of mobile devices, LTE 

adopted for the uplink the single-carrier frequency domain equalization (SC-FDE). Although very 

similar to OFDM, the SC-FDE allocates the high computational necessities to the receiver: The 

Inverse Fast Fourier Transform (IFFT) is done by the receiver, instead of the transmitter, as in 

OFDM. Besides that, SC-FDE has also a lower Peak-to-Average Power Ratio (PAPR). 

Analogously to OFDM, the multiuser version of SC-FDE, implemented nowadays in wireless 

communications, is the signal-carrier frequency division multiple access (SC-FDMA) [67], [68]. 

Usually, for SC-FDE schemes the receiver is a linear equalizer. However, non-linear (also 

called decision-directed) equalizers have better performances than the linear ones [69]. Nonlinear 

equalizers take into account previous symbol decisions made by the receiver to cancel the ISI, 

and for that reason they are also called as Decision-Feedback Equalizer (DFE). The structure of 

DFE is shown is Figure 4.37. Since ISI is caused by multipath when separated paths are received 

at different times, the interference can be cancelled by knowing the previous symbols and 

removing their corresponding ISI contribution of future received symbols, through a feedback 

filter structure. The drawback of this approach lies on error propagation, when there are wrong 

decisions of the prior symbols, especially at low SNR. Furthermore, the improved performance, 

in comparison to linear equalizers, is traded by increased complexity [69]. Nonetheless, time-

domain DFE have a good performance/complexity tradeoff. This tradeoff worsens in severely 

time-dispersive channels, making time-domain DFEs too complex. 

 

Figure 4.37 - DFE structure 

To reduce DFE’s complexity, a hybrid time-frequency approach was proposed in [70] 

where the feedforward filter works in the frequency domain and the feedback filter remains in 

time-domain. Although with better performance than a linear DFE, the error propagation is still 
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possible. The IB-DFE can be employed as an alternative to improve the performance of SC-FDE. 

In IB-DFE, both feedback and feedforward filters are implemented in the frequency domain. The 

IB-DFE receiver structure is depicted in Figure 4.38. 

 

Figure 4.38 - IB-DFE receiver structure 

The output samples of the equalizer, for the 𝑖-th iteration, are given by 

 �̃�𝑘
𝑖 = 𝐹𝑘

𝑖𝑌𝑘 − 𝐵𝑘
𝑖 �̂�𝑘

𝑖−1 , (48) 

where 𝐵𝑘
𝑖  and 𝐹𝑘

𝑖  are the feedback and feedforward filter coefficients, respectively, and �̂�𝑘
𝑖−1 

denotes the Discrete Fourier Transform (DFT) of the decision block, 𝑥𝑛
𝑖−1, of the previous 

iteration, related to the transmitted time-domain block, where and 𝑘 represents the frequency 

index. 

The feedforward and feedback coefficients, 𝐹𝑘
𝑖  and 𝐵𝑘

𝑖  respectively, are given by 

 𝐹𝑘
𝑖 =

𝜅𝑖𝐻𝑘
⋆

1
𝑆𝑁𝑅⁄ + (1 − 𝜌(𝑖−1)2) |𝐻𝑘|

2
 , (49) 

 𝐵𝑘
𝑖 = 𝜌(𝑖−1)(𝐹𝑘

𝑖𝐻𝑘 − 𝛾𝑖) , (50) 

where (•)⋆ denotes the complex conjugate operation. 

The factor 𝜅𝑖 of the feedforward equalizer coefficient, 𝐹𝑘
𝑖 , is chosen to assure that 𝛾𝑖 is 

normalized, i.e., 

 𝛾𝑖 =
1

𝑁
∑ 𝐹𝑘

𝑖𝐻𝑘

𝑁−1

𝑘=0

= 1 , (51) 

and 𝜌𝑖 is the correlation factor, that measures the blockwise reliability of the decisions used in the 

feedback loop, given by 

 𝜌𝑖 =
𝐸[𝑥𝑛

⋆�̂�𝑛
𝑖]

𝐸[|𝑥𝑛|2]
=

𝐸 [𝑋𝑘
⋆�̂�𝑘

𝑖
]

𝐸[|𝑋𝑘|2]
 . (52) 

The feedforward and feedback coefficients of (49) and (50) are optimum to maximize the 

Signal-to-Interference plus Noise Ratio (SINR). Plus, since IB-DFE takes into account the 
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reliability of estimates employed in the feedback loop, error propagation problems are also 

reduced. 

For the first iteration, there is no previous information about 𝑋𝑘, so IB-DFE is equivalent 

to the linear FDE, as 𝐵𝑘
0 = �̂�𝑘

0 = 0 ⇒ 𝜌 = 0 and 

 𝐹𝑘
𝑖 =

𝜅𝑖𝐻𝑘
⋆

1
𝑆𝑁𝑅⁄ + |𝐻𝑘|2

 , (53) 

which corresponds to the optimum FDE coefficient under the MMSE criterion. 

As the number of iterations increase, the correlation factor 𝜌 approximates to 1, which means 

residual ISI will be almost entirely canceled. 

Insofar as 𝜌 is the blockwise reliability of the estimates �̂�𝑘
𝑖−1, (48) can be rewritten as 

 �̃�𝑘
𝑖 = 𝐹𝑘

𝑖𝑌𝑘 − 𝐵𝑘
𝑖 �̅�𝑘

𝑖−1 , (54) 

where 𝑆�̅�
𝑖−1 is the overall block average of 𝑋𝑘

𝑖−1 at the FDE output and given by 

 𝑆�̅�
𝑖−1 = 𝜌(𝑖−1)�̂�𝑘

𝑖−1 . (55) 

It should be noted that, to improve performance, symbol averages could be used, instead 

of using blockwise averages. Decision with “blockwise averages” are called hard decisions (HD-

IBDFE) and soft decisions (SD-IBDFE) using the “symbol averages”. HD-IBDFE and SD-

IBDFE are studied in detail in [71]. 

The performance of IB-DFE for three different system setups is depicted in Figure 4.39. 

It is assumed a perfect CSI knowledge. 

 

Figure 4.39 - IB-DFE performance with perfect CSI knowledge 



46 

 

The first iteration provides worst results for an increase number of antennas. However, 

additional iterations improve the system’s performance for higher values of SNR. These are 

encouraging results for the implementation of an iterative channel estimation technique. 

4.2.1 Iterative channel estimations 

IB-DFE schemes cancel ISI, iteratively. To take advantage of the iteration process, CSI 

may be iteratively estimated as well, using the previously discussed channel estimation 

techniques. For the first iteration, equivalent to SC-FDE, the CSI is estimated with the Zadoff-

Chu sequences and no iterative channel estimation occurs. For 𝑖 > 1, the frequency-domain 

estimated symbols of the previous iteration, �̂�𝑘
𝑖−1, can be used, instead of the pilots, to estimate 

the CSI more accurately. Using MMSE channel estimation technique, the channel estimate for 

the 𝑖th iteration is given by 

 𝐻𝑘
𝑖 = [(�̂�𝑘

𝑖−1)
𝐻
�̂�𝑘

𝑖−1 +
𝜎𝑧

2

𝜎ℎ
2
𝑰]

−1

(�̂�𝑘
𝑖−1)

𝐻
𝑌𝑘  , (56) 

In the following figures the performance of the iterative channel estimation scheme for 

two different system setups in function of the number of pilots used is shown. 

 

Figure 4.40 - BER performance of iterative channel estimation, for 𝑁𝑢 = 𝑁𝑅 = 4, in function of number 

of iterations and pilots used 
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Figure 4.41 - MSE performance of iterative channel estimation, for 𝑁𝑢 = 𝑁𝑅 = 4, in function of number 

of iterations and pilots used 

As expected, the higher number of pilots along with the increment of iterations leads to a better 

BER performance. However, in Figure 4.41 it is visible on the iterative estimates (3rd and 5th 

iteration), a convergence of the MSE slope as the SNR increases. 

 

Figure 4.42 - BER performance of iterative channel estimation, for 𝑁𝑢 = 𝑁𝑅 = 16, in function of number 

of iterations and pilots used 
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Figure 4.43 - MSE performance of iterative channel estimation, for 𝑁𝑢 = 𝑁𝑅 = 16, in function of number 

of iterations and pilots used 

For a higher number of users and same number of pilots, BER results show a larger 

disparity of the estimated channel system when compared with the system assuming perfect CSI 

knowledge – from 1dB to 4dB in the best scenario presented. It is also noticeable the MSE slope 

convergence starting at a higher level of SNR. 

Thus, we may conclude that the channel estimation technique aforementioned shows that 

the iteration process of IB-DFE can decrease the MSE, actively, after a certain SNR level. 

4.3 FSCAPI-based channel estimation 

Pilot contamination arises by the repeated use of same training sequences by several 

users. Thus, becomes crucial for massive MIMO systems to develop estimators capable of 

accurately estimate CSI with fewer pilots than traditional pilot-based channel estimation 

techniques. Hence, semi-blind channel estimators are effective in mitigating the effect of pilot 

contamination, as shown in [53] and [54]. These latter estimators are based in EVD algorithms 

and few pilots are used to resolve the problem of the ambiguity matrix. Another method to resolve 

the ambiguity problem is to exploit the asymptotic orthogonality of the users’ channel, supported 

by the law of large numbers. However, this last method is commonly implemented with SVD. 

Although it achieves better estimation results than EVD-based estimators [72], both SVD and 

EVD-based channel estimation techniques are exhaustive processes with computational 

complexity 𝑂(𝑁𝑅
3), proportional to the dimension of the received signal. Therefore, in massive 
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MIMO scenarios, where the number of the base station antennas is large, these schemes are not 

reliable. 

To avoid high-complexity and very time consuming algorithms, in [73] and [74] some 

subspace tracking algorithms were proposed. The FSCAPI-based estimator is an adaptation of the 

fast approximated power iteration (FAPI) in [74]. The FSCAPI subspace tracking algorithm 

simplifies the iterative process of the correlation matrix, in order to resolve the ambiguity issue. 

This way, it achieves lower computational complexity, albeit better tracking results. The 

complexity of FSCAPI tracking algorithm has complexity 𝑂(𝑁𝑅𝑁𝑢) [75]. 

4.3.1 Ambiguity matrix problem and solution 

The covariance matrix of the received signal can be given by 

 

𝑹𝑦 = 𝐸{𝒚𝒚𝐻} 

= 𝐸{𝑯𝒙𝒙𝐻𝑯𝐻 + 𝒛𝒛𝐻} 

= 𝑯𝑯𝐻 + 𝑰𝑁𝑅
. 

(57) 

To acknowledge the signal subspace, the covariance matrix 𝑹𝑦 can be decomposed using SVD 

such as 

 𝑹𝑦 = [𝑼𝑠   𝑼𝑛]𝚲[𝑼𝑠   𝒀𝑛] , (58) 

where 𝑼𝑛 (𝑼𝑛𝜖ℂ𝑁𝑅×𝑁𝑢) is the noise subspace and 𝑼𝑠 (𝑼𝑠𝜖ℂ
𝑁𝑅×(𝑁𝑅−𝑁𝑢)) is the signal subspace. 

In [72] it was proven that 𝑼𝑠 determines the channel matrix 𝑯, depending on a scalar 

multiplicative ambiguity matrix 𝑨 (𝑨𝜖ℂ𝑁𝑢×𝑁𝑢). Therefore, the channel estimates can be given by 

 �̂� = 𝑼𝑠𝑨 . (59) 

To calculate the ambiguity matrix, a short training sequence is used. The received training 

sequence is given in (43). According to [72], the ambiguity matrix can be calculated as 

 𝑨 = (𝑼𝑠)
𝐻�̂�𝑃 , (60) 

where �̂�𝑃 is the pilot-based channel estimate resulting of the LS channel estimation in (22). 

Therefore, the channel estimate �̂� is given by 

 �̂� = 𝑼𝑠(𝑼𝑠)
𝐻�̂�𝑃 . (61) 

4.3.2 FSCAPI subspace tracking algorithm 

The following FSCAPI subspace tracking algorithm, proposed in [75], was adopted due 

to its fast convergence and good tracking performance and it is presented in Table 1. 
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Table 1 - FSCAPI subspace tracking algorithm; source:[75] 

Initialization: 

𝑾(0) = [
𝑰𝑁𝑢

0(𝑁𝑅−𝑁𝑢)×𝑁𝑢

],    𝒁(0) = 𝑰𝑁𝑢
 

For 𝑛 = 1, 2,… , (𝑁𝑑𝑎𝑡𝑎) 

Input vector: 𝒚(𝑛) 

𝒓(𝑛) = 𝑾(𝑛 − 1)𝐻𝒚(𝑛) 

𝒅(𝑛) = 𝒁(𝑛 − 1)𝒓(𝑛) 

𝒈(𝑛) =
𝒅(𝑛)

𝛽 + 𝒓(𝑛)𝐻𝒅(𝑛)
 

𝑒2(𝑛) = ‖𝒚(𝑛)‖2 − ‖𝒓(𝑛)‖2 

𝑠(𝑛) = 1 + 𝑒2(𝑛)‖𝒈(𝑛)‖2 

𝜏(𝑛) =
𝑒2(𝑛)

𝑠(𝑛) + √𝑠(𝑛)
 

𝜙(𝑛) = 1 − 𝜏(𝑛)‖𝒈(𝑛)‖2 

𝒓′(𝑛) = 𝜙(𝑛)𝒓(𝑛) + 𝜏(𝑛)𝒈(𝑛) 

𝒅′(𝑛) = 𝒁(𝑛 − 1)𝐻𝒓′(𝑛) 

𝒁(𝑛) = 𝛽−1(𝒁(𝑛 − 1) − 𝒈(𝑛)𝒅′(𝑛)𝐻) 

𝒆′(𝑛) =  𝜙(𝑛)𝒚(𝑛) − 𝑾(𝑛 − 1)𝒓′(𝑛) 

𝑾(𝑛) = 𝑾(𝑛 − 1) + 𝒆′(𝑛)𝒈(𝑛) 

End for 

In the algorithm of Table 1, 𝑾(𝑛) (𝑾(𝑛)𝜖ℂ𝑁𝑅×𝑁𝑢) is the tracked signal subspace for the 𝑛-th 

sample, 𝛽 (0 < 𝛽 < 1) is the forgetting factor and 𝑁𝑑𝑎𝑡𝑎 (𝑁𝑑𝑎𝑡𝑎 = 𝑁 − 𝑁𝑃) denotes the length 

of the received signal without the pilots. The forgetting factor controls the influence of old data. 

Then, the tracked signal subspace 𝑾(𝑁𝑑𝑎𝑡𝑎) is the estimation of 𝑼𝑠, so 

 𝑼𝑠 = 𝑾(𝑁𝑑𝑎𝑡𝑎) . (62) 

Therefore, the estimation of the channel matrix is given by 

 �̂�𝐹𝑆𝐶𝐴𝑃𝐼 = 𝑾(𝑁𝑑𝑎𝑡𝑎)(𝑾(𝑁𝑑𝑎𝑡𝑎))
𝐻
�̂�𝑃 (63) 

For all simulations based on this method, the selected forgetting factor is 𝛽 = 0,996. 

In Figure 4.44 and Figure 4.45 is shown the discussed channel estimation technique performance 

with the same setups as the previous section. 
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Figure 4.44 - BER performance of FSCAPI-based channel estimation, for 𝑁𝑢 = 𝑁𝑅 = 4 and 

𝑁𝑢 = 𝑁𝑅 = 16 based on the number of pilots used 

 

Figure 4.45 - MSE performance of FSCAPI-based channel estimation, for 𝑁𝑢 = 𝑁𝑅 = 4 and 

𝑁𝑢 = 𝑁𝑅 = 16 based on the number of pilots used 

The FSCAPI-based channel estimation shows better MSE performance for higher number 

of base station antennas, as it can be seen in Figure 4.45. There is, approximately, a 6dB 

enhancement on quadrupling the base stations antennas. This can be justified by an improvement 

on the orthogonality of the channel matrix as number of base stations antennas increases. 
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4.4 PEACH estimators 

The MMSE estimator was already described in chapter 3. This estimator solves a linear 

system of equations with the use of an inverse operation. Mathematically, this operation has cubic 

computational complexity. Although the complexity can be reduced under ideal propagation 

conditions, pilot contamination in massive MIMO systems creates a spatially correlated 

interference, that reduces the estimation performance and spectral efficiency [2], [51], [56]. 

In multi-user detection schemes, MMSE detector performs matrix inversions as well, 

increasing the complexity of the system. The computational complexity of MMSE estimator 

scales with 𝑂(𝑁𝑅
3𝑁𝑇

3). In massive MIMO systems, where a large scale of antenna arrays is 

deployed, MMSE estimators are not feasible. For that reason, low-complexity approaches were 

developed based on polynomial expansion [75–77]. In this studies, the inverse operation is 

approximated by an 𝐿-order matrix polynomial. However, 𝐿 does not need to be proportional to 

the system size to achieve satisfying results [78], and so, it is selected to return a good tradeoff 

between complexity and detection performance.  

Based on the polynomial expansion method to reduce complexity, in [79] low-complexity 

channel estimators, named unweighted PEACH and weighted PEACH (W-PEACH) estimators 

are proposed. In order to replace the MMSE channel estimation technique, PEACH approximates 

the MMSE estimator by changing the matrix inversion into a polynomial expansion. Similar to 

MMSE estimator, PEACH estimators aim to minimize MSE between the estimated channel and 

the true channel. 

4.4.1 Theoretical development 

The main idea of replacing the inverse operation with a polynomial expansion is 

explained in [79], which says that the inverse of the eigenvalues, 𝜆𝑏, of a Hermitian matrix 𝑮 

(𝑮𝜖ℂ𝐵×𝐵) can be approximated by an 𝐿-order Taylor polynomial, such as: 

 𝑮−1 = 𝛼(𝑰 − (𝑰 − 𝛼𝑮))
−1

≈ 𝛼 ∑(𝑰 − 𝛼𝑮)𝑙

𝐿

𝑙=0

 , (64) 

where the approximation holds with equality is valid when 𝐿 → ∞ and 𝛼 is a scaling factor that 

must satisfy 

 0 < 𝛼 <
2

𝑚𝑎𝑥𝑏𝜆𝑏(𝑮)
 . (65) 

For this reason, 𝐿 does not need to scale with the matrix dimensions to reach the desired accuracy. 

Thus, 𝐿 is selected depending on the desired tradeoff between approximation error and 

complexity. In regard to simulations, the selected polynomial order is 𝐿 = 8. The polynomial 
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order is based on the MSE comparison presented in [79], which, for this order level, PEACH 

estimator proves to be approximately equivalent to the MMSE estimator. 

4.4.2 Unweighted PEACH estimator 

Combining the approximation of (64) with the MMSE channel estimation solution in (33) 

the unweighted PEACH estimate is given by 

 �̂�𝑃𝐸𝐴𝐶𝐻 = 𝒀𝑃𝑺𝐻 ∑𝛼 (𝑰 − 𝛼 (𝑺𝑺𝐻 +
𝜎𝑧

2

𝜎ℎ
2
𝑰))

𝑙𝐿

𝑙=0

 , (66) 

where 𝛼, for complexity reasons, is chosen to be 

 
𝛼 =

2

𝑡𝑟(𝑺𝑺𝐻 +
𝜎𝑧

2

𝜎ℎ
2 𝑰)

 . 
(67) 

where 𝑡𝑟(•) is denoted as the trace operation of a matrix, defined to be the sum of the elements 

on the main diagonal. 

Since (66) no longer has channel inversions, its computational complexity is 𝑂(𝐿𝑁𝑇
2𝑁𝑅

2). It is 

noteworthy to mention that for massive MIMO schemes, where 𝐿 ≪ 𝑁𝑇𝑁𝑅 PEACH estimator is 

a great improvement on a complexity point of view, comparing to MMSE estimator. 

4.4.3 Weighted PEACH estimator 

In order to improve the unweighted PEACH channel estimation technique, different 

weights can be assign to 𝛼 to optimize the overall estimation for a specific order 𝐿. W-PEACH is 

obtained by expanding (𝑰 − 𝛼 (𝑺𝑺𝐻 +
𝜎𝑧

2

𝜎ℎ
2 𝑰))

𝑙

 as a binomial series, and replacing constants with 

weights [79]. 

The channel estimation result of W-PEACH is 

 �̂�𝑊𝑃𝐸𝐴𝐶𝐻 = 𝒀𝑃𝑺𝐻 ∑𝓌𝑙𝛼
𝑙+1 (𝑺𝑺𝐻 +

𝜎𝑧
2

𝜎ℎ
2
𝑰)

𝑙𝐿

𝑙=0

 , (68) 

where 𝔀 = [𝓌0, … ,𝓌𝐿]
𝑇 are the scalar weights, denoting [. ]𝑇 as the transpose operation. 

The vector of weights coefficients, 𝓌, is calculated to minimize the MSE and is given by 

 𝔀 = 𝑨−1𝒃 (69) 

where the 𝑖-th and 𝑗-th element of 𝑨 (𝑨𝜖ℂ(𝐿+1)×(𝐿+1)) and the 𝑖-th element of 𝒃 (𝒃𝜖ℂ𝐿+1) are 

given by 
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 [𝑨]𝑖𝑗 = 𝛼𝑖+𝑗𝑡𝑟 (𝑺𝐻 (𝑺𝑺𝐻 +
𝜎𝑧

2

𝜎ℎ
2
𝑰)

𝒊+𝒋−𝟏

𝑺𝐻) , (70) 

 [𝒃]𝑖 = 𝛼𝑖𝑡𝑟 (𝑺𝐻 (𝑺𝑺𝐻 +
𝜎𝑧

2

𝜎ℎ
2
𝑰)

𝒊−𝟏

𝑺𝐻) . (71) 

To further decrease the computational complexity of the weights calculation, [79] proposes an 

algorithm based on a continuous update of the weights over a sliding time window. 

The following figures show the BER and MSE performance of the WPEACH estimator described 

in this section. 

 

Figure 4.46 - BER performance of WPEACH estimator (𝐿 = 8), for 𝑁𝑢 = 𝑁𝑅 = 4 and 

𝑁𝑢 = 𝑁𝑅 = 16 based on the number of pilots used 
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Figure 4.47 - MSE performance of WPEACH estimator (𝐿 = 8), for 𝑁𝑢 = 𝑁𝑅 = 4 and 

𝑁𝑢 = 𝑁𝑅 = 16 based on the number of pilots used 

From the results it can be seen that WPEACH estimator achieves very similar results as 

the FSCAPI-based channel estimator in the previous section. The two techniques only differ at 

low SNR levels, where is shown a small discrepancy in the MSE value, benefiting the WPEACH 

estimator.  Figure 4.48 and Figure 4.49 display the three estimator’s MSE performances for a 

clear comparison between them. The exhibited simulation of the iterative channel estimation 

technique corresponds to the 5th iteration. 

 

Figure 4.48 - MSE comparison between channel estimation techniques, for 𝑁𝑢 = 𝑁𝑅 = 4 
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Figure 4.49 - MSE comparison between channel estimation techniques, for 𝑁𝑢 = 𝑁𝑅 = 16 

It is clear that, as the number of antennas increases, the iterative channel estimation 

technique is not as effective as the other two estimators at low SNRs. But, after a certain SNR 

value, also proportional to the number of antennas, the MSE’s slope of the iterative estimator 

rapidly converges and excels the others. 

To put massive MIMO system into context, the following simulations present the case where the 

base station deploys a larger number of antennas than active users (𝑁𝑅 = 100 and  𝑁𝑢 = 10), 

highly benefiting from receive diversity and channel matrix orthogonality. 

 

Figure 4.50 - BER comparison between channel estimation techniques, for 𝑁𝑢 = 10 and 𝑁𝑅 = 100 
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Figure 4.51 - MSE comparison between channel estimation techniques, for 𝑁𝑢 = 10 and 𝑁𝑅 = 100 

Due to the reasons mentioned above, FSCAPI-based estimator outperforms achieving the 

lowest MSE between the three. The need of fewer pilots makes this estimator the most interesting 

technique to adopt in uplink massive MIMO schemes, so far. However, the robustness to inter-

cell interference is the main challenge to surpass, and will be analyzed in the next section. 

4.5 Comparison results in a massive MIMO scheme 

In this section, it will be demonstrated the differences between the three channel 

estimation techniques, discussed along this chapter, in a massive MIMO scheme with pilot 

contamination, modeled in section 4.1.1. The system is composed by 𝑁𝑅 = 100 base station 

antennas, 𝑁𝑢 = 10 active users and 𝐾 = 5 interfering users. The interfering users correspond 

equivalently to the number of training sequences that are going to be contaminated by an 

interfering channel weakened by the factor of 𝑐. The chosen attenuation factors are 𝑐1 = −6dB 

and 𝑐2 = −10dB. 
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Figure 4.52 - BER comparison between channel estimation techniques in massive MIMO scheme with 

pilot contamination (𝑐 = −6dB and 𝑐 = −10dB) and 𝑁𝑢 = 10, 𝑁𝑅 = 100, 𝑁𝑃 = 17 

In the BER results of Figure 4.52 the effect of the inter-cell interference is visible. 

Although it is clear that pilot contamination undesirably affects the performance of the system, 

MSE simulations will clarify which of the estimators is the best choice do adopt in pilot 

contamination scenarios. Figure 4.53 and Figure 4.54 show the MSE values for the presented 

massive MIMO scheme for 𝑁𝑃 = 17 and 𝑁𝑃 = 47, respectively. 
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Figure 4.53 - MSE comparison between channel estimation techniques in massive MIMO scheme with 

pilot contamination (𝑐 = −6dB and 𝑐 = −10dB) and 𝑁𝑢 = 10, 𝑁𝑅 = 100, 𝑁𝑃 = 17 

 

Figure 4.54 - MSE comparison between channel estimation techniques in massive MIMO scheme with 

pilot contamination (𝑐 = −6dB and 𝑐 = −10dB) and 𝑁𝑢 = 10, 𝑁𝑅 = 100, 𝑁𝑃 = 47 

As expected, the MSE saturates to a non-zero value under pilot contamination. Hereupon, 

the most effective channel estimation technique is concluded to be the FSCAPI-based estimator, 

for many aspects: 
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 For an increasing SNR, FSCAPI-based estimator is the latest to show the effect 

of pilot contamination, at 6dB, while the WPEACH estimator starts at 2dB and the iterative one 

is practically always affected. 

 It presents the lowest saturation level of all estimators, followed by the iterative 

channel estimator. 

 The linear computational complexity makes FSCAPI-based estimator an optimal 

technique in massive MIMO scenarios. 

 It greatly benefits from large base station antennas arrays, since the subspace 

tracking algorithm relies on the orthogonality of channel matrix. Since FSCAPI-based estimator 

has very low computational complexity, large channel matrices do not affect as much the 

efficiency of the process. 

 By being a semi-blind technique it relieves the pilot contamination effect [1] and 

increases data payload.  

For all the aforementioned reasons, the FSCAPI-based channel estimation technique 

proposed in section 4.3 is a perfect candidate for the future of massive MIMO uplink 

transmissions. 
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5. Conclusions 

5G is recognized to be the groundbreaking future of cellular networking. From 5G, 

massive MIMO is an innovative concept to revolutionize wireless communication systems, and 

it is intended to be implemented in the near future. This new concept, is capable of hundredfold 

growths in spectral efficiency and overall system’s performance by deploying a large-scale 

antenna arrays at the base stations. In this work, some problems are analyzed that arise with 

massive MIMO, more specifically, the increased complexity of channel estimation of large 

channel matrices and inter-cell interference caused by the reuse of training sequences in adjacent 

cells. As far as complexity concerns, matrix inversions and factorizations are the main problem 

of channel estimations techniques. A channel estimation technique with Zadoff-Chu sequences 

was introduced in order to replace channel estimation based on matrix inversions, such as the 

MMSE estimator. Moreover, pilot contamination was studied and three channel estimation 

techniques were proposed to achieve the best compromise between complexity, spectral 

efficiency and system performance. 

5.1 Synthesis and final remarks 

In chapter 2 the state-of-the-art was presented, with a description of the fundamentals of 

5G, i.e., the motivation, requirements and main ideas behind it. To end it, the importance of 

channel estimation in wireless systems, the problems of channel estimation in massive MIMO 

systems and current efforts to solve them were also clarified. 

Chapter 3 focus was on the BD precoding scheme that showed to be very effective in 

cancelling CCI, especially in multiple antenna mobile stations. It was also compared the well-

known MMSE estimator with the introduced channel estimation technique based on Zadoff-Chu 

training sequences. The latter exhibits better performance results for few pilots and since it does 

not resort to channel inversion of matrices, it has much lower complexity than MMSE estimator. 

The problem in adapting this technique in a system with large number of antennas, is that the 

number of pilots per sequence has to be greater than the desired number of different sequences 

(proportional to the active transmit antennas), in order to generate pairwise orthogonal pilot 

signals. Hence, a tradeoff between number of active transmit antennas and data payload as to be 

studied, hereafter. 

In chapter 4, it was described the pilot contamination model, and three channel estimation 

techniques were proposed to mitigate the inter-cell interference, denominated as pilot 

contamination. Simulations results were presented for different antenna setups, including the 

massive MIMO concept, with a great diversity order. The pilot contamination scenario was 
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simulated for different attenuation constants, and from the results it was possible to concluded 

that the FSCAPI-based estimator was, definitely, the most efficient and accurate estimator for a 

massive MIMO scenario, with or without inter-cell interference scenario modeled among the 

others. Nonetheless, the other two estimators are more influenced by pilot contamination than the 

FSCAPI-based one. 

5.2 Future Works 

The results presented in this work can be used for future efforts in order to haste the 5G 

revolution. The main subject of the thesis is crucial for the development of massive MIMO and 

imposes a critical limitation on the anticipated system’s performance. 

When no pilots are required, pilot contamination ceases to exist. Hence the most 

optimistic approach would be the development towards low-complexity, blind channel estimation 

techniques. However, based on the work results, subspace tracking algorithms have many 

advantages taken from the concept of massive MIMO, and should be extensively studied. 
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