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Abstract 

 

 

 

 

_____________________________________________________________________________ 

The Internet of Things is providing new ways of experiencing and reacting to the physical world 

through the ability of advanced electronic devices that collect data. At the same time, as new 

application scenarios are envisioned, with the assistance of information generated by sensors, 

new problems and obstacles will arise. This requires new development to meet business and 

technical requirements, such as interoperability between heterogeneous devices and 

confidence (such as validity, security and trust) over smart devices. With the increase of these 

complex requirements it becomes crucial to develop an infrastructure aimed at tackling such 

requirements mentioned. IoT middleware – a software layer that bridges the gap between 

devices and information systems. Thus, this work aims to study the mechanisms and 

methodology for data collection, devices interoperability and data filtering, closer to the data 

sources, in order to optimize the collection and pre-analysis of data that can then be used by 

various applications such as the ones in manufacturing industry. 

Keywords: Data Acquisition, Data Filtering, Internet of Things, Middleware, Sensors, 

Interoperability 
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Resumo 

 

 

 

 

_____________________________________________________________________________ 

A Internet das Coisas vem providenciar às pessoas uma nova forma de sentir e reagir aos aspetos 

do mundo físico, através da capacidade que os avançados dispositivos eletrónicos têm 

atualmente na recolha de informação. Paralelamente, novos cenários de aplicabilidade, nas 

mais diversas áreas, que advém do uso da informação recolhida pelos sensores, começaram a 

surgir e, diversos problemas e obstáculos prevalecem. Portanto, é necessário novos 

desenvolvimentos que satisfaçam os requisitos técnicos e de negócios, tais como a 

interoperabilidade entre dispositivos heterogéneos e a confiança (em aspetos como a validade, 

segurança e fiabilidade) que os dispositivos inteligentes asseguram. Com o aumento da 

complexidade deste conceito, surgiu uma infraestrutura que visa solucionar os importantes 

requisitos mencionados. IoT Middleware – uma camada de software que faz a ponte entre os 

dispositivos e a infraestrutura. Assim, esta dissertação pretende estudar os mecanismos e 

metodologias de recolha de dados, interoperabilidade de dispositivos e pré-filtragem de dados, 

perto da fonte de recolha, com o intuito de otimizar a sua recolha e pré-análise de dados que 

podem ser usadas em várias aplicações, como por exemplo, na indústria da manufatura.      

Palavras-Chave: Recolha de dados, Filtragem de dados, Internet das Coisas, Middleware, 

Sensores, Interoperabilidade 
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1. Introduction 

In recent years, we have witnessed a huge expansion in the utilisation of devices conceived to 

collect data for a variety of applications. With the ease of communication and transfer of 

information that the internet has provided in the last decade, the concept of IoT has emerged. 

It is based on information collected from the real world (RW), through sensors, and make it 

accessible anywhere and as much diversity of use as the diversity of data collection devices 

currently on the market (Minerva et al. 2015). The IoT's cover a wide range of areas, as depicted 

in Figure 1, which shows not only the need for advancement of core technologies but all the 

development of new business models, management strategies as well as new ways to protect 

information and increase privacy. 

 

Figure 1 Technological and social aspects related to IoT (Minerva et al. 2015) 
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It is estimated that in 2020 there will be around 21 billion devices connected to each other, of 

which 7 billion do not relate to the consumer market but to the use of devices in industrial  sector 

(Gartner 2015). This technological advance derives mainly from the constant search for 

maximum efficiency that many companies are looking for with the purpose of increasing its self-

management in both data monitoring and in its management and control. In this perspective, 

companies are looking for solutions in three major areas (Sheng et al. 2015): 

 Network Management - focus on quality and reliability of the hardware, such as routers 

and servers; 

 System Management - focus on quality and reliability of software, such as data 

interpretation and operating systems programs; 

 Application Management -concern aesthetic and reliable aspects, both in safety and 

operability. 

In order to correlate these three areas and hence reduce the difficulties of integration and 

management, one of the solutions that can be adopted is the middleware technology – a 

software layer between two systems that make it easy for the two to communicate (Winter & 

Rosenblum 2001). Figure 2 shows two different approaches for data collection and/or 

integration of heterogonous devices. The middleware based approach provides an abstraction 

layer between the devices (data producers) and other higher level services and/or applications 

(data consumers), like data analytics, data broadcasting, event detection and other business 

applications. This abstraction layer provides added value for high application development by 

removing the need for understanding different types of standards and protocols followed by 

wide range of devices. Simultaneously, it can lower the burden on the backend services by 

implementing generic data filtering, security checking, data validation etc. at the point of data 

collection. This can enrich the reliability over the data collected from different sources. 

 

Figure 2 Middleware based Vs Direct approach of data collection through source devices 

IoT Middleware 

Pre-data Filtering and Multiple 
Protocols of Standards 

Devices  
(Data producer) 
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Essentially, this work aims to contribute to improve the methodology for data collection from 

different devices by considering improvement across data access uniformity, communication 

resources optimization and central management of connected devices. This project aims to 

provide a solution for the integration of IoT devices with the cloud based platforms with less 

effort for high end data processing and data analytics. The scope of this project also includes 

Within the scope of this work it is expected it to provide solution that can provide added value 

to improve production lines, increase interoperability and self-management in the 

manufacturing industry through affordable technology to small and medium enterprises. 

1.1. Motivation Scenario – IoT 

In an interconnected Industry 4.01, ideas are much more valuable if they are embedded in an 

equally innovative periphery of devices or related solutions. New impulses can come from a 

multitude of sources outside the own organization, and they have to be proactively integrated 

into an open innovation process. These ‘outside-in’ and ‘inside-out’ processes are enabled by 

digital technologies, such as community platforms or collaborative PLM tools, connecting 

knowledge resources. Collaborative engineering activities, for example with the customer, are 

also greatly facilitated by the use of appropriate digital platforms and the availability of 

sophisticated virtual product models (Bechtold et al. 2014). It can be clearly noted that 

collection, storage and analysis of data through digital a service infrastructure incorporating a 

wide range of data sources is an important feature. Figure 3 shows the high level view on value 

creation through smart services by resorting to the power of IoT devices. 

                                                           
1 Industry 4.0 is a term applied to a group of rapid transformations in the design, manufacture, 

operation and service of manufacturing systems and products (Davies 2015). 
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Figure 3 Value Creation through data collection from different IoT devices 

Recent developments in IoT technologies is enabling data generated by sensor networks to be 

used by business intelligence software to identify trends and patterns, and help companies to 

make better decisions and become more reactive to the surrounding environment (Santucci et 

al. 2012). Machine2Machine (M2M) technologies have the potential to be put to highly 

innovative and practical purposes (With 2013). Current research domain involves the process of 

connecting machines, equipment, software and “things” in our surroundings. “Things” will use 

a unique internet protocol address, which allows for the communication with each other 

without human intervention (Huang & Li 2010). At the same time, evolution of technology in the 

manufacturing sector has occurred faster than the ability of companies to keep up with it 

(Stöllinger et al. 2013). Thus, without having a real-time (or almost real-time) access to the shop-

floor, what was expected at the end of the production line could be different from what is 

actually being produced. Besides the automated data collection  and alignment to the 

manufacturing plans, the synchronization and maintenance of devices deployed at different 

stages of manufacturing line are often more complex (Microsoft 2009). This is partly because of 
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the diversity in the devices being used by different manufacturing plants that often have 

multiple propitiatory protocols and of course also a large amount of data.  

Summing up, the main motivation behind this research and development work is towards the 

realization of efficient IoT middleware (as clearly marked in Figure 3) for IoT devices integration 

for creation of value added enterprise services. The main target is to have a middleware solution 

that can deal with heterogeneous data sources and enable data filtering closer source. Another 

important requirement is also to develop a solution that is light-weight to be deployable in low-

resource computing units such as raspberry-pi. The importance of having a light-weight yet 

robust IoT middleware is not only to provide one point of integration and interoperability but 

also to take advantage of data pre-processing at the source by implementing functionalities for 

data filtering, communication channel optimization and provide a management bridge between 

cyber and physical world. 

1.2. Research question 

The general theme for this thesis is “Middleware based technology for data 

collection in IoT systems”, which is an important research domain in the wider scope 

of Internet of Things (IoT). The rational for the selected field of research has been explained in 

the previous section. In order to streamline the research work it is important to define a research 

question to be answered during the completion of thesis. Covering a wide number of sectors 

that can be improved with the gradual introduction of IoT, it is important to define the problem 

to be addressed and to which this works intends to contribute as a solution in industrial 

technological advancement. The main research question formulated for this Master’s thesis is: 

To ensure the research focus and targeted results, the major question can be detailed with 

following sub-questions: 

Q1.1: “What is the efficient mechanism for protocol adaptation to allow seamless integration of 

different types of devices?” 

Q1.2: “What are the suitable data filtering methodologies and algorithms that can be 

implemented in the IoT middleware to enhance data pre-processing at the source with least 

overhead over time?” 

RQ: “Is it possible to develop scalable and interoperable middleware for 

continuous data collection from real world resources?”  
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Q1.3: “What will be the impact of the middleware based methodology in the overall process of 

data collection from real world resources in real-time systems?” 

During the progress of this thesis, it was expected to find answers to the above mentioned 

questions through necessary system implementation, validation and assessment. 

1.3. Hypothesis  

Based on the discussions in the previous sections that provides the motivation and formulated 

research questions, one can estimate that: 

The above statement is therefore the adopted as the hypothesis that will be challenged, 

implemented, tested and validated during the period that will lead to the completion of the 

thesis.  

1.4. Work Methodology 

This section focuses mainly on research-based strategy in which the dissertation and scientific 

methodology that was built upon. In order to lead my thesis with the maximum rigor that it 

requires, it was decided to base my scientific method of investigation in the classical 

methodology (Camarinha-matos & Terminology 2016) whose phases are shown in Figure 4 and 

explained in its follow-up : 

 

“If we can develop IoT middleware, which can enable seamless integration of IoT 

devices with unified implementation to detect and filter faulty data collected from 

the source then efficiency of data collection from real world resources can be 

improved in the IoT paradigm.” 
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Figure 4 Classical phases of scientific research (based on (Camarinha-matos & Terminology 2016)) 

 

1. Research Question / Problem – As in any scientific papers, the first step is the most 

important since it serves as the foundation for a specific problem or a possible solution, 

thus initiating all the research. It is important to realize that the main question could be 

the result of some minor questions interconnected. 

2. Background / Motivation – This step requires a lot of investigation to allow the 

researcher to understand what type of similar work and projects have been done, as 

well as which solutions could be developed for a dissertation. 

3. Formulate hypothesis – Already having found the problem and knowing what work has 

been done, it is beneficial to predict an outcome to facilitate the course of the 

investigation 

4. Design Experiment – This is the most practical stage of the investigation as it begins with 

the trial phase of the work and some kind of implementation. 

5. Test hypothesis / Collect data – At first a test set must be defined according to the 

characteristics of the problem formulated in step 3 and the implementation done in step 

4. All the simulations results must be registered for the next step.  
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6. Interpret / Analyze results – At this point the results are analysed and the veracity of the 

hypothesis is proved. If there were not positive results it is advisable to return to step 1. 

On the other hand, when the results are achieved, it is possible to obtain some ideas for 

further research. 

7. Publish findings – The last phase of the suggested methodology is as important as the 

first one, for the results of the investigation will be useful in future research and 

contribute to the scientific community. Or, ultimately, it might become of use for the 

industry. 

1.5. Dissertation Outline 

After the initial study that led to the question to be answered, this paper then evolves into the 

following chapters: 

Chapter 2 – State-Of-Art:  This chapter presents the related work elements studied. The first 

section explores the main definition concepts and considerations to have in data acquisition 

context whilst the other two sections introduce the IoT scenarios deployed as well as the existing 

middleware systems. 

Chapter 3 – Hub Architecture: This chapter explains the hub on a high level overview and marks 

the beginning of design experiment. 

Chapter 4 – Proof of Concept Implementation: This chapter is also a stage of the design 

experiment. It includes a detailed report about the practical component and an explanation on 

what and why was considerate. 

Chapter 5 – Testing and Hypothesis Validation: This chapter discloses the tests used to validate 

the formulated hypothesis and the respective analysis to verify if the initial objectives were 

achieved. It refers to the fifth and sixth stage of the work methodology. The chapter ends with 

the development integration and validation with other research activities. 

Chapter 6 – Conclusion and Future Work: The final chapter has an analogy between what was 

studied and what was implemented, and what could be improved in future. 
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2. State-Of-Art 

This chapter presents all the research undertaken and the basis for the implementation of the 

formulated hypothesis. The following sections cover, in particular: 

 2.1. Overview - Definition of the most important concepts related to IoT paradigm. 

 2.2. IoT Deployment Scenarios – Different types of deployment approaches followed by 

the realization of IoT ecosystem. 

 2.3. Middleware Solutions for IoT – A survey of existing research work in designing 

middleware systems for the IoT. 

2.1. Overview 

The problem that this thesis proposes to investigate is part of a vast subject, covering several 

technical concepts. Therefore, it is important to provide an explicit definition and build the 

background on which the research will be based. In order to formulate the foundation for this 

thesis. The following sub-sections provide the state of the art on different aspects of IoT that 

were taken into account for development and research in the scope of this dissertation.   

2.1.1. Internet of Things 

According to (IERC 2010), IoT is “A dynamic global network infrastructure with self-configuring 

capabilities based on standard and interoperable communication protocols where physical and 

virtual “things” have identities, physical attributes, and virtual personalities and use intelligent 

interfaces, and are seamlessly integrated into the information network.”   

It is a concept and a paradigm that considers pervasive presence around us in the environment 

of a variety of things/objects/devices, which through wireless and wired connections and unique 

addressing schemes are able to interact with each other and cooperate with other 

things/objects/devices to create new applications/services and reach common goals (Atzori et 

al. 2010).  

According to (Bradley et al. 2013) the five main factors increasing the values associated to the 

IoT are:   
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 Increasing the return on research and innovation investments, reducing time to market, 

creating new business models and opportunities;  

 Increasing the lifetime of customer and adding more customers;  

 Improve utility services such as supply chain and logistics, to a new and more efficient 

level;  

 Improve business process with the expense on goods reduced;  

 Increasing the employee productivity and efficiency. 

The IoT awareness affects a large number of areas and interested parties. The associated values 

at manufacture industry, the main target of this thesis, benefits in areas like machine auto-

diagnosis and assets control through sensors installed in machines allowing a faster response to 

detected problems and remote monitoring of elements such as temperature, raw materials and 

humidity, adjusting them automatically. The IoT potential is analysed in (Joseph Bradley, Joel 

Barbier 2013) with examples of critical improvements such as reduction of materials, energy and 

costs of automated tools, which is less expensive to manufacture and implement. The potential 

of IoT extends also to the automated management, detection and self-healing of the machinery, 

available resources, product quality and other services. Lastly, increased sales from real-time 

market assessments and reactions, location-based selling and improve coordination with other 

products and services (two-sided markets). 

2.1.2. Middleware for Data Acquisition 

In order to develop a data collection system from RW resources, there are generic features that 

have been identified:  

 Provide an infrastructure to capture data from IoT sources. 

 Provide an infrastructure that is modular and independent of the devices geographic 

location and functionality. 

 Techniques of filtering data to control the flux of data coming into the platform. 

 Security of communication channels (where authenticated data should flow). 

 Support to different communication protocols should be available; 
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In IoT context, the objective of having a middleware platform is to present a unified model to 

interact with devices as it provides an abstract layer interposed between the IT infrastructure 

and the applications (Chaqfeh & Mohamed 2012). Therefore, the problems concerning with 

interaction of devices are described in Table 1, according with (Fersi 2015): 

Table 1 Five main functionalities handled by an IoT middleware 

Interoperation 

Share information through diverse domains 

of applications using diverse communication 

interfaces. Divided in: Network, Syntactic 

and Semantic. 

Context Detection 

Characterize the situation of an entity 

(person, place or object) relevant to the 

interaction between a user and an 

application, including the user and 

applications themselves. 

Device discovery and management 

Enables any device in the IoT network to 

detect all its neighbouring devices and make 

its presence known to each neighbour in the 

network. 

Security and privacy 

Data confidentiality - refers to protecting the 

data from any kind of unauthorised 

disclosure; Data integrity - refers to 

protecting data from being lost, destroyed, 

corrupted or modified; Data availability - 

refers to the ability to guarantee that the 

collected data can be used in dedicated time. 

Managing Data Volume 
Finding, fetching and transfer raw data in 

order to process and indexing it allowing a 

more efficient querying result. 

To summarize, an IoT middleware is a true end-to-end platform that enables connectivity 

between “things” or devices constituted by eight architectural building blocks, as shown in 

Figure 5. 
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Figure 5 The eight components of an IoT Application Enablement Platform (Padraig Scully 2016) 

2.1.3. Data Collection from Sensors – Context Acquisition 

To understand the key considerations and challenges that data collection can bring, it is 

necessary to clarify the meaning of data sources. Sensors are hardware components that 

measure environmental information such as temperature, humidity, location, state of the 

machine, processing time and more that will be transformed into a digital signal. This 

information is accessed by software programs to help with some task (Microsoft 2016). In this 

way, an important consideration in a data collection system is the context-aware computing in 

IoT paradigm. 

In the past, most of the proposed solutions collected data from a limited number of physical 

(hardware) and virtual (software) sensors. In these situations, collecting and analysing sensor 

data from all sources was made possible and feasible due to limited numbers. On the other 

hand, nowadays, with the progression in sensor hardware technology and cheap materials, 

sensors are expected to be attached to all the objects around us and connected to the internet, 

which means it is not feasible to process all the data collected by those sensors. Consequently, 

context-awareness will play a critical role in deciding what data needs to be processed, which 

implies that understanding sensor data is one of the main challenges that the IoT will face. 
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Context management has become an essential functionality in software systems. Data move 

from phase to phase, from the place where it is generated to where it is consumed, creating a 

data life cycle. Figure 6 consider the movement of context in context-aware systems.  

 

Figure 6 Four essential steps in context management systems and middleware solutions (Perera et al. 2014) 

The definition of Context-Awareness is not strict due to its abstract nature. Different authors 

propose different definitions, notwithstanding, this thesis accepts the meaning proposed by 

Dey, due to the fact it is defined when it is applied in a system. Therefore, according with (Abowd 

et al. 1999): “A system is context-aware if it uses context to provide relevant information and/or 

services to the user, where relevancy depends on the user’s task.” 

The focus that the concept context-aware will have in this thesis is related with context 

acquisition, since we are handling with pre-filtering data (Data Processing) and physical sensors 

(Data Source Support), as depicted in Figure 7. 

 

Figure 7 Conceptual Framework (features that need to be supported by ideal context-aware acquisition IoT 
middleware solution) (based on (Perera et al. 2014)) 

There are five techniques that need to be considered when we want to acquire context while 

developing context-aware middleware solutions: 

Responsibility 
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According with (Pietschmann et al. 2008), there are two different methods: 

 Pull - The software component which is responsible for acquiring sensor data from 

sensors make a request from the sensor hardware periodically or instantly to acquire 

data. 

 Push - The physical or virtual sensor pushes data to the software component which is 

responsible to acquiring sensor data periodically or instantly. 

Frequency  

Making a parallelism with real world, the frequency technique is based on two different event 

types: 

 Instant - The events do not span across certain amounts of time. Open a door, switch on 

a light are some types of instant events. In order to detect this type of event, sensor 

data needs to be acquired when the event occurs. 

 Interval - These events span a certain period of time. For example, raining and seasons 

of the year are some interval events. In order to detect this type of event, sensor data 

needs to be acquired periodically. 

Source 

According with (Chen et al. 2004), acquiring information must have taken into account the 

source that can be categorized into three different categories: 

 Directly from sensor hardware - Context is directly acquired from the sensor by 

communicating with the sensor hardware and related APIs. This method is typically used 

to retrieve data from sensors attached locally. Despite the growing use of devices that 

communicate wirelessly, in IoT paradigm, most devices and sensors today require some 

amount of driver support and can be connected via USB, COM, or serial ports. 

 Through a middleware infrastructure - Sensor data is acquired by middleware solutions. 

The applications can retrieve sensor data from the middleware and not from the sensor 

hardware directly.  
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 Context servers - Context is acquired from several other context storages via different 

mechanisms such as web service calls. This mechanism is useful when the hosting device 

of the context-aware application has limited computing resources. 

Sensor Types 

There are different types of sensors that can be employed to acquire context and can be 

divided into three categories (Indulska & Sutton 2003): 

 Software sensors – A web service is a perfect example of this type of sensor. The idea is 

to produce more meaningful information with the combination of physical sensors and 

virtual sensors.   

 Virtual sensors – This type of sensors do not have a physical presence. They aggregate 

data from many sources and publish it as sensor data (e.g. calendar, contact number 

directory and chat applications).  

 Physical sensors – Since IoT solutions needs to understand the physical world, this type 

of sensor is very important in data acquisition process due to the fact that is the only 

one that generate sensor data by themselves. For instance, measuring the temperature 

or humidity of a given space is made using temperature sensors or humidity, 

respectively. They are less meaningful, trivial, and vulnerable to small changes.  

Acquisition Process  

Finally, the acquisition process is a very important technique in the acquire context. In general, 

there are three different categories: 

 Sense - The data is sensed through sensors (e.g. retrieve temperature from a sensor, 

retrieve appointments details from a calendar). 

 Derive - The information is generated by performing computational operations on 

sensor data (e.g. calculate distance between two sensors using GPS coordinates).  

 Manually provided - Users provide context information manually via predefined settings 

options such as preferences. 

The main issue when we want to collect data is how to obtain it in a useful way. To do so, it is 

important to identify the key characteristics of data, knowing how to measure/collect them and 
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what to do with the data collected. The overall objective of data collection is helping 

stakeholders of different levels to make decisions based on true indicators of real-time situations 

as depicted in Figure 8.  

 

Figure 8 Difference between a good and a bad analysis of data collected 

From the moment that data is sensed by devices such as a wireless sensor node, up to the 

moment that reach the backend system, there are many aspects that must be taken into 

consideration. In the future, IoT is expected to be an interconnection of networked embedded 

devices (Karnouskos et al. 2011) that will require to build systems with Cooperating Objects (CO). 

According to (Marrón et al. 2009), CO are computing devices with the ability to communicate, 

cooperate and organize themselves autonomously into networks to achieve a common task. 

In conclusion, context is responsible for characterizing the situation of an entity, where an entity 

can be person, place, or object relevant to the interaction between a user and an application, 

including the user and applications themselves. IoT-middleware must be context aware for 

working into smart environments. Context awareness can be achieved by context detection and 

context processing. Context detection collects data and identifies the factors that have 

significant impacts on the response. Context processing extracts the context data, processes it 

and performs or takes decision based on that. A knowledge database is required for setting up 

a closed feedback path between these blocks to evaluate the effectiveness of context-aware 

systems and make some possible improvements.  

However, this thesis proposes a middleware without persistent data storage. The knowledge of 

database is inexistent, so in this context, the data will go through, a pre-processing phase at the 

hub, before the main processing is made in the Cloud. Since, context-detection is a resource 

demanding task, the core implementation of this functionality is to be performed at the cloud 

(outside the scope of this thesis). But, preliminary context-detection can be implemented in the 

IoT-middleware that can be used for the data source identification, data type assertion and 

preliminary validation of the collected data based o on the sensor properties. These preliminary 

functionality of context-acquisition has been implemented in the scope of the thesis that can 

form a base for the development of context-aware applications. 

Data indicate that are a problem This might have a problem
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2.1.4. IoT Protocols 

Communication protocols are formal descriptions of digital message formats and defined rules 

that includes: packet size, transmission speed, handshaking and synchronization techniques, 

error correction types, address mapping, acknowledgment processes, flow control, packet 

sequence controls, routing and address formatting (Techopedia 2016b). They are implemented 

in hardware (communication protocols) and software (message protocols) and used to exchange 

messages between computing systems.  

Messaging Protocols 

In Internet of Things, the communication is made by three different computing systems: 

 Device to Device – Example: DDS 

 Device to Server – Examples: MQTT, REST/HTTP, XMPP, CoAP 

 Server to Server – Example: AMQP 

Each system has different types of protocols (with different message formats and defined rules) 

to interact. The examples given above are not restricted to the computing system which they 

belong, however, the protocols were grouped according the frequency of their utilization in the 

computing system. Considering that the concept of the middleware implemented in this thesis 

is based on the interaction between the device (sensors aggregated in a single device) and the 

cloud, this sub-section explains with more detail the software protocols of Device to Server 

system, resorting to examples which are summarized in Table 2. An example of the 

communication between the others computing a system is also included. 

DDS - While interfacing with the IT infrastructure is supported, DDS’s main purpose is to connect 

devices to other devices. As explained in (Esposito et al. 2008), architecture of DDS defines two 

layers: Data-Centric Publish-Subscribe (DCPS) and Data-Local Reconstruction Layer (DLRL). DCPS 

layer is responsible for delivering information to the end destinations (subscribers). DLRL 

represents, on the other hand, optional layer which serves as the bridge/interface to the DCPS 

functionalities (which is constituted by five entities to manage data flow: Publisher, Data Writer, 

Data Reader, Subscriber and Topic).  

DDS can efficiently deliver millions of messages per second simultaneous to various receivers. 

Devices demand data very differently (faster) than the IT infrastructure demands data. “Real 

time” is often measured in microseconds. Devices need to communicate with many other 
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devices in complex ways, so TCP’s simple and reliable point-to-point streams are far too 

restrictive. Instead, DDS offers detailed quality-of-service (QoS) control, multicast, configurable 

reliability, and pervasive redundancy. DDS offers powerful ways to filter and select exactly which 

data goes where, and “where” can be thousands of simultaneous destinations. DDS implements 

direct device-to-device “bus” communication with a relational data model.  

MQTT – This protocol targets device data collection and communicating it to servers. As its name 

states, its main purpose is telemetry, or remote monitoring. Its goal is to collect data from many 

devices and transport that data to the IT infrastructure. It targets large networks of small devices 

that need to be monitored or controlled from the cloud. Since it has a clear, compelling single 

application, MQTT is simple, offering few control options. It also doesn’t need to be particularly 

fast. In this context, “real time” is typically measured in seconds. The protocol works on top of 

TCP, which provides a simple, reliable stream that don’t lose data.  

MQTT consists of three key components: subscriber, publisher, and broker. An interested device 

can register as a subscriber for the specific content in order to be informed by the central point 

(broker) every time when a publisher disseminates information of interest (Locke 2010). In this 

architecture, the publisher stands for the meter/sensor sending data to MQTT broker. Secure 

communication between all parts is achieved by verifying the authorization of publishers and 

subscribers on the side of broker (Stanford-Clark & Truong 2013). 

From the M2M communication point of view, the main disadvantage of MQTT is the fact that 

end devices may go to sleep state for a limited time period only (a lot of sensors/smart meters 

send the data once per few hours and therefore MQTT is not a suitable communication protocol 

for these power-constrained devices). 

CoAP - In contrast to REST, CoAP is utilizing lightweight UDP as transport protocol, making it 

more suitable for the IoT domain because it is possible to build sufficiently basic error checking 

and verification for UDP to make sure that messages arrived without the significant 

communication overhead in case of TCP. However, CoAP was designed together with REST 

functionality; therefore, conversion between these two protocols has to be implemented in 

communication chain.  

According with (Gligoric et al. 2012), CoAP can be divided into two sublayers:  

- Messaging Sublayer - It detects duplications and based on that provides reliable 

communication even over the UDP transport protocol using the exponential backoff 
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(multiplicative decrease of the rate of data transmission, in order to gradually establish 

an acceptable data rate); this is a necessary technique since UDP does not include error 

recovery mechanism;  

- Request/Response Sublayer - It handles REST communication between individual nodes. 

This protocol utilizes four message types: confirmable, non-confirmable, reset, and 

acknowledgment. Reliability of CoAP is achieved by using confirmable and non-

confirmable messages. Similarly, HTTP utilizes methods such as GET, PUT, POST, and 

DELETE to perform Create, Retrieve, Update, and Delete operations. A typical length of 

CoAP message can vary between 10 and 20 bytes (Colitti et al. 2011), this means that 

CoAP may be unsuitable for some domains of IoT. 

REST/HTTP – This protocol follows the principal that every physical object and/or logical entity 

is a resource that has a particular state that can be “manipulated”. A resource that is accessible 

via HTTP URI gives access to its data via GET and accepts inputs via PUT. REST aims on minimizing 

latency and network communication, while at the same time maximizing the independence and 

scalability of component implementations (Fielding & Taylor 2002). The effort needed to 

develop applications, especially in the IoT domain, can be greatly reduced since REST adopts a 

much lighter tool chain than other service oriented architectures, making this message protocol 

massively scalable, as explained in “M2M Communications: A Systems Approach” by D. 

Boswarthick, O.Elloumi and O. Hersent, Wiley, 2012. Data communication is generally initiated 

by the Device over HTTP GET/POST Request. Devices will be sleeping all the time unless during 

communication. 

It is a good option for IoT device (data source) to IoT middleware to communicate in the local 

network. In order for IoT devices and IoT middleware to communicate via HTTP, we need to 

resolve some issues. The solemn problem that one need to work around is that HTTP is a 

challenge-response protocol. This means the device will either have to keep polling the server 

for new updates, or use long polling, or use websocket. The cost of communication has dipped 

significantly so the overheads attached to HTTP don’t pose a significant constraint since 

Transport Layer Security [TLS] can be obtained through HTTPS.  In the scope of this thesis, 

HTTP/REST has been identified as a very useful protocol for communication between the IoT 

middleware and data consumers but not a very suitable protocol for communication between 

devices and middleware. 
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XMPP - A protocol suited to connect devices to people, a special case of the D2S pattern. It was 

developed for instant messaging to connect people via text messages. XMPP uses the XML text 

format as its native type, making person-to-person communications natural. It connects clients 

and servers using the XML called stanza which divide the code into three components: message, 

presence and info/query (Jones 2009). Messages in stanza identify the source and destination 

address, types, and IDs of XMPP entities that provide PUSH method for retrieving data. The 

presence stanza notifies end users of the status updates. Finally, the iq stanza does the pairing 

between message senders and receivers. The possible disadvantage of XMPP is text-based 

communication using XML. This leads to higher network load (overhead). Ergo there is a possible 

solution to this problem: XML streams using EXI (Waher & Doi 2014). 

In the IoT context, XMPP offers an easy way to address a device. This comes especially handy if 

that data is going between distant, mostly unrelated points, just like the person-to-person case. 

It’s not designed to be fast. In fact, most implementations use polling, or checking for updates 

only on demand. “Real time” to XMPP is on human scales, measured in seconds. Its strengths in 

addressing security, and scalability make it ideal for consumer-oriented IoT applications. 

AMQP - A queuing system designed to connect servers to each other. Communications from the 

publishers to exchanges and from queues to subscribers use TCP, which provides strictly reliable 

point-to-point connection. AMQP is realized by two key components (Fernandes et al. 2013): 

- Exchanges: They are used for routing messages to appropriate queues. Routing 

(between exchanges and queues) is based on predefined rules/requirements;  

- Message Queues: They are stored in message queues before sending to end destination 

(receiver).  

Following that, two types of messages are defined in AMQP, bare messages (at the sender's side, 

includes properties, application properties and application data) and annotated messages (at 

the receiver side, includes header, delivery and message annotations, footer and the bare 

message information). 

AMQP is mostly used in business messaging because it focuses in tracking all messages and 

ensuring each is delivered as intended, regardless of failures or reboots. It usually defines 

“devices” as mobile handsets communicating with back-office data centers. In the IoT context, 

AMQP is most appropriate for the control plane or server-based analysis functions.  
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To sum up, is presented in Table 2, a comparison between the four messaging protocols used in 

device-server communication.  

 Table 2  IoT D2S Protocol Landscape (Duffy 2013) 

PROTOCOL CoAP XMPP REST/HTTP MQTT 

TRANSPORT UDP TCP TCP TCP 

MESSAGING Request/ 
Response 

Publish/Subscri
be 

Request/Respo
nse 

Request/ 
Response 

Publish/Subscri
be 

Request/Respo
nse 

2G,3G,4G 

SUITABILITY 

(1000S NODES) 

Excellent Excellent Excellent Excellent 

LLN 

SUITABILITY 

(1000S NODES) 

Fair Fair Fair Fair 

COMPUTE 

RESOURCES 
10Ks RAM/Flash 10Ks RAM/Flash 10Ks RAM/Flash 10Ks RAM/Flash 

 

Communication Protocols 

Wireless communication protocols can be classified according to the following 6 standards: 

Satellite – This type of communications enables cell phone communication from a phone to the 

next antenna. In Internet of Things language, this form of communication is mostly referred to 

as “M2M” (Machine-to-Machine) because it allows devices such as a phone to send and receive 

data through the cell network. Satellite is useful for communication that utilize low data 

volumes, mainly industrial purposes. 

WiFi - Is a wireless local area network (WLAN) that utilizes the IEEE 802.11 standard through 

2.4GhZ UHF and 5GhZ ISM frequencies. Provides Internet access to devices that are within the 

range. In IoT systems is widely used for this advantages in security and integrity, flexibility, IP-

based communication and scalability massive deployments. 

Bluetooth - The technology is extremely useful when transferring information between two or 

more devices that are near each other in low-bandwidth situations. Bluetooth protocols simplify 

the discovery and setup of services between devices, they can advertise all of the services they 

provide, making their use easier, because it enables greater automations such as security, 

network address and permission configuration. 
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Radio Frequency communications are probably the easiest form of communications between 

devices. Protocols like ZigBee or ZWave use a low-power RF radio embedded or retrofitted into 

electronic devices and systems. In IoT systems this type of communication has significant 

advantages in low-power operation, high security and scalability. 

RFID is the wireless use of electromagnetic fields to identify objects. Usually is installed an active 

reader, or reading tags that contain a stored information mostly authentication replies. It is also 

called an Active Reader Passive Tag (ARPT) system. An Active Reader Active Tag (ARAT) system 

uses active tags awoken with an interrogator signal from the active reader. The main advantage 

is the hundreds of applications which can be used.  

NFC uses electromagnetic induction between two loop antennas located within each other near 

field, effectively forming an air-core transformer. There are two modes: Passive - The initiator 

device provides a carrier field and the target device answers by modulating the existing field. In 

this mode, the target device may draw its operating power from the initiator-provided 

electromagnetic field, thus making the target device a transponder; Active - Both initiator and 

target device communicate by alternately generating their own fields. A device deactivates its 

RF field while it is waiting for data. In this mode, both devices typically have power supplies. The 

main advantages are related with data security at multiple levels, the ability to connect the 

unconnected, easy network access and data sharing.   

2.1.5. Data Pre-processing 

Data pre-processing is often neglected but important step in the data collection process. If there 

is irrelevant and redundant information present or noisy and unreliable data then events and 

trends detection at application layer is made more difficult. This process also includes a 

technique that involves transforming raw data into an understandable format (the format can 

be defined by the hub or requesting data consumer). Real-world data is often incomplete, 

inconsistent, and/or lacking in certain behaviours or trends, and is likely to contain many errors 

(Techopedia 2016a).  

In a real world data analytics situation, it is common to find several data pre-processing steps 

before using them in the application layer, mainly due to varying nature of the available data. 

The methodology for data pre-processing has been widely adapted in the domain of data mining, 

which can provide important background for data filtering in IoT scenario. In chapter 3 of (J.Han, 

J.Pei, M.Kamber 2012), is a detailed description of the steps that could be done prior to the main 
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processing in order to have a better data quality which is defined in terms of accuracy, 

completeness, consistency, timeliness, believability and interpretability. The main steps and 

techniques are: 

Data Cleaning – This method works to “clean” the data by filling in missing values, smoothing 

noisy data, identifying or removing outliers and resolving inconsistencies. Each step has its own 

methods: 

Missing values – If it is noted that there are many tuples that have not recorded value for several 

attributes, then the missing values can be filled in for the attribute by various techniques: 

 Ignore the tuple – This is usually done when the class label is missing. However, it is poor 

technique when the percentage of missing value per attribute varies considerably. 

 Fill in the missing value manually – In general, this approach is time-consuming and may 

not be feasible given a large data set with many missing values. 

 Use a global constant to fill in the missing values – It is a simple technique that replace 

all the missing attribute values by the same constant.  

 Use the most probable value to fill in the missing value – This may be determined with 

inference-based tools using a Bayesian formalism or decision tree induction. 

Noisy Data – It is a random error or variance in a measured variable and it is resolved with some 

data smoothing techniques: 

 Binning methods – Smooth a sorted data value by consulting the values around it, 

performing a local smoothing. 

 Clustering – Similar values are organized into groups or clusters 

 Combined computer and human inspection – Outliers may be identified through a 

combination of computer and human inspection. Patterns whose surprise content is 

above a threshold are output to a list. A human can then sort through the patterns in 

the list to identify the actual garbage ones. This is faster than having to manually search 

through the entire database. 
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 Regression – Involves finding the best line to fit two variables, so that one variable can 

be used to predict the other. Using regression to find a mathematical equation to fit the 

data helps smooth out the noise. 

Inconsistent Data – In some transactions of data inconsistencies might occur that could be 

corrected manually using external references. For example, known functional dependencies 

between attributes can be used to find values contradicting the functional constraints. 

Data Integration – Involves combining data from multiple sources into a coherent data store as 

in data warehousing. This type of method requires an entity identification of each device, before 

the integration of data, in order to know the data source and henceforth determination of the 

nature of the data. Typically, databases have metadata (data about the data) that can be used 

to help avoid errors in this step. 

Data Transformation - This method involves consolidate appropriate data for mining. It can 

involve four techniques: 

 Normalization – The attribute data are scaled so as to fall within a small specified range. 

 Smoothing – Remove noise from data by clustering, binning or regression. 

 Aggregation – Aggregated operations are applied to the data in order to construct a data 

cube for analysis of the data at multiple granularities. 

 Concept hierarchy generation – Low level data (raw) is replaced by higher level concepts 

through the use of concept hierarchies. Examples: transforming an integer that refers 

to someone’s age into an attribute like young, middle-aged or senior; transforming the 

name of a street in a city or a country.  

Data Reduction – It is used to make the data analysis less complex and feasible in terms of time. 

This method has been helpful in analysing reduced representation of the dataset without 

compromising the integrity of the original data and yet producing the quality knowledge. The 

main strategies of this pre-processing method are: 

 Aggregation – Similar to the aggregation technique of data transformation 

 Dimension reduction – Removed the amount of data if there are irrelevant, weakly 

relevant or redundant attributes. 
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 Data Compression – Encoding mechanisms are used to reduce the data set size. 

 Numerosity reduction - Smaller data representations by histograms, sampling or other 

parametric models reducing the amount of data values.   

 Concept hierarchy generation - Similar to the aggregation technique of data 

transformation 

To sum-up, data pre-processing refers to the cleansing and transformation of the data in the 

early stage of data collection and before being pushed towards the data consumers and/or 

persistence storage. In an IoT scenario, it is a key functionality to guarantee the reliability of the 

data being collected. At the same time devices can generate huge amount of data to be 

processed, so applying techniques to process only key data, will allow the system to improve 

one’s efficiency and performance. Those techniques are introduced by the definition of a set of 

rules, generally done by a user with administrative role. 

2.2. IoT Deployment Scenarios 

The growing popularity of the Internet and the availability of powerful computers and high-

speed networks as low-cost commodity components are changing the way we do computing.  

This section describes the four possible deployment scenarios in IoT architecture for data 

collection and their different applications in different purposes and domains.  

In presenting the deployment scenarios, different considerations are made in the way data 

sources and data consumers are integrated to form an IoT ecosystem. Firstly, is presented the 

peer-to-peer model, which considers building the network among different data sources and 

consumers with their own communication infrastructure. While, the others deployment models 

make use of external communication (and/or processing) infrastructure such as cloud to form 

the overall IoT ecosystem. Among these the first one is an architecture that lacks middleware 

and each of the data sources utilize their own communication resources and other higher level 

intelligence such as storage, processing, interoperability, etc. are all in the cloud. Subsequently, 

it is shown two types of architectures that use software abstraction layer - middleware - 

between devices and the cloud in different ways. In the first approach, the data collection 

system has several middleware that share various types of processing capacity, so that in the 

final process, the system achieves a particular purpose. In the second approach, corresponding 
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to the architecture implemented in this thesis, each system has a middleware that has all the 

features that are required without being dependent on others.  

2.2.1. Peer-to-Peer Devices 

In general, in a P2P system every node acts as both a client and a server, providing part of the 

system resources, in a non-hierarchical scenario. This means that no master-slave relationship 

exists among the peers, and there is no central server responsible to store and administrate 

exists because there does not exist any peer machine with a global view of P2P system. However, 

with the advances in peer-to-peer technology began to appear slightly different architectures of 

traditional, as depicted in Figure 9. The complexity is not in the machine (simply client computers 

connected to the Internet) nor in the communication since all machines act autonomously to 

join or leave system freely (Kahanwal & Pal Singh 2012), so the main issue is in the architecture 

of the distributed control system, which can be structured or unstructured (Doulkeridis et al. 

2007): 

 Structured – A hash function is used in order to couple keys with objects. Then a 

distributed hash table (DHT) is used to route key-based queries efficiently to peers that 

hold the relevant objects. In this way object access is guaranteed within a bounded 

number of hops.  

 Unstructured - Each peer maintains a limited number of connections (also called links) 

to other neighbouring peers in the network. Searching in an unstructured P2P 

environment usually leads to either flooding queries in the network using a time-to-live 

(TTL) or query forwarding based on constructed routing indices that give a direction for 

the search. 

Hybrid Peer-to-Peer System 

The major shortcoming of purely peer-to-peer systems is scalability issues and the poor 

performance during query processing. Therefore, except of purely decentralized architectures, 

also hybrid systems were proposed which can be divided into (Doulkeridis et al. 2007): 

 Centralized indexing systems - there is a central server facilitating the interaction 

between peers and a centralized index is built at this specialized peer. The centralized 

index keeps information about the data stored at each peer, together with the peer 

identifier. Therefore, centralized indices are efficient during query processing; a single 
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message is required to determine which peer stores relevant information. Notice that 

the actual sharing of information between peers is established by communication 

between the peers, without interaction with the central server. Despite the efficiency 

during query processing, centralized indices have a major drawback, namely they 

constitute a” single point of failure”. Moreover, the centralized index may become a 

bottleneck for the system, especially in the case of a large P2P network.  

 Decentralized indexing systems – Also known by Superpeers, this architecture tackle the 

scaling and the “single-point-of-failure” problems of centralized approaches, while 

exploiting the advantages of the completely distributed approach, where each peer 

builds and maintains an index over its own files. These systems are similar to purely 

decentralized systems (if only the Superpeers are considered), but some of the peers 

have a more important role, and are responsible to maintain the information available 

at their associated peers and facilitate the interaction between peers. Super-peer 

networks take advantage of the heterogeneity of peer capabilities (e.g., bandwidth, 

processing power) and peer application in a P2P network, once can have different roles 

by nature, similar to the case of file-sharing, where some machines are registered as 

dedicated servers to the system, while others are plain personal computers that mostly 

request information. Furthermore, in order to respect peers’ autonomy, any approach 

should not rely on arbitrary data movement; hence each peer joining the network 

should autonomously store its own data. Therefore, super-peer architecture appears 

particularly suitable for applications that require efficient performance for advanced 

query operators; hence we model our distributed system as a super-peer network. The 

overall objective is for a set of cooperative computers to collectively provide enhanced 

processing facilities, aiming at overcoming the limitations of centralized settings, for 

example extremely high computational and storage load. 
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Figure 9 Three different approaches in an IoT Peer-to-Peer scenario (Hota 2013) 

2.2.2. Devices to Service Providers  

In this type of scenario, there is a direct interaction between the sensor nodes and application 

layer. Without using intermediary devices that regulate, transform or interpret the data before 

integration into the business processes. The main objective of this class of data collection system 

is, in general, focus data intelligence in a single infrastructure using “dumb” sensors, constituted 

only by a layer hardware responsible between the communication of devices and the provided 

services. 

Making an analogy to the distributed computing systems, this scenario is similar to the idea of 

cloud computing in IoT systems which is explained carefully and detailed in (Buyya et al. 2011). 

The aim of this scenario is to concentrate computation and storage in large-scale data centres 

by transforming everything as a service, such as hardware virtualization (decouples applications 

from the underlying hardware) which mediate access between the physical resources and the 

software layer as highlighted in Figure 10. The biggest advantage is the independence that 

virtual resources have from each other and from the physical hardware (for instance, in case of 

failure or capacity constraints), creating an abstract architecture easy to access for the 

consumer. 
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Figure 10 Data flow between devices and Cloud (Brown 2014) 

This data centre infrastructure can be shared by several customers without compromising the 

privacy and security of each one, providing a pool of computing resources to serve multiple 

consumers using a multi-tenant model as illustrated in Figure 11. The idea is to provide to the 

customers the capability of request, customize, pay and use services (which are available over 

the network and accessed through standard mechanisms by different platforms such as laptops 

and mobile phones), automatically, without requiring interaction with providers or any 

intervention of human operators (Mell et al. 2009). Although, the access of shared services is 

cost-effective, it causes performance degradation and performance unpredictability. To close 

this gap, it is possible to make this architecture auto scaling. In case of peak demand more virtual 

machines can be quickly provisioned (on two or more physical machines) or rapidly released 

when the work load decreases. 

 

Figure 11 Interaction between the end-user and Cloud software services (TheOpenGroup 2013) 

This system brings many advantages to IT companies, is based on the concept of utility 

computing where consumers pay-per-use computing services (Gong et al. 2010), allowing to 
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deploy specialized virtual appliances in order to consider the great disparity between user needs 

in a multi-tenant environment, similar to what is being done for utilities such as Electricity, Gas, 

Water and Telecommunication. Furthermore, Cloud Computing brought cost savings for 

consumers (eliminating the total cost of the entire infrastructure by sharing the cost of 

electricity, hardware engineers, facilities management, system administration, fire protection, 

insurance, etc) (Buyya et al. 2011). 

2.2.3. Devices to Middleware to Service Providers 

In computer systems distributed in IoT, this scenario has emerged in parallel with the concept 

of Fog Computing. The aim of this architecture is to face the massive quantities of information 

at any time, in any place and with any device that is extremely dispersed and produced by and 

about people, things, and their interactions (Hajibaba & Gorgin 2014). In fact, big data, real time 

analytics and localization was the main reasons to businesses requiring a new approach to 

distribute all data and place it closer to the end-user, eliminate service latency, improve QoS and 

remove other possible obstacles connected with data transfer (Aazam & Huh 2015). Figure 12 

shows an example of an IoT architecture divided by layers whose middleware corresponds to 

the gateway layer. 

 

Figure 12 Example of an IoT Architecture with middleware (Harbinger Systems 2015) 

The purpose of a middleware in a data collection system is not to remove some features of 

service providers, but to add more functionality to reduce the complexity of some of those 

services in order to reduce the amount of time, processing or storage in the Cloud. Middleware 

is software that provides services to software applications beyond those available from the 



  

 
31 

Cloud providing common programming abstraction and infrastructure for distributed 

applications. In generally, The Fog is located bellow the Cloud and his purpose is targets the 

services, compute, storage, workloads, applications and big data with widely and truly 

distributed systems (Aazam & Huh 2014).  

 

Figure 13 Fog between the edge and the cloud (Amaravadhi 2015) 

As depicted in Figure 13, it is an additional layer which develops the concept of Cloud services 

bringing network resources near underlying networks (Hajibaba & Gorgin 2014; Aazam & Huh 

2014). Services are hosted at the network edge or even end devices such as set-top-boxes or 

access points in order to enabling creation of refined, better and optimize applications or 

services. The creation of various edge points is turning data centre into a distributed Cloud 

platform for different types of users, bringing the computing from the core to the edge (Hajibaba 

& Gorgin 2014).  

With the rise of interconnected devices and business scenarios around networked machines, 

the infrastructure to maintain all things connected is being more complex. The aim of this 

scenario is to have hierarchical organization from the core to the edges to support low latency 

and scalability. This “extra layer” has more proximity of the data to the consumer extending the 

Cloud services closer to mobile users (Bonomi et al. 2012). Another important characteristic is 

the dense geographical distribution which is the reason of existing a large number of nodes, that 

allows better support for location-based services as well as faster analysis of data in real-time 

(Buest 2013). Associated to the large number of nodes with a wide variety of environments 

appears the interoperability problem once the heterogeneity of devices at different levels 

require certain services and applications provided by this scenario. Besides that, middleware is 

used to be reliable and available, reducing application development and maintenance efforts 

and also to provide a distributed computing. 
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Centralized or Distributed Middleware 

In contrast of Cloud’s centralization, a middleware (layer located in the fog or local 

infrastructure) provides localization, once the server belongs to the same network as the end-

users and have knowledge of each one becoming that information an advantage to customize 

the optimization (Zhu et al. 2013). This scenario supports better real-time interactions, 

actionable analytics, processing and filtering data by services implemented in the middleware, 

and then pushes to the Cloud. In this way, user data is isolated from the Cloud and from there 

administrators are able to tie-in analytics, security or other services directly into their cloud 

model (Kleyman 2013).  

The main difference between a centralized and a distributed middleware is the services provided 

by them. In a decentralized system, the idea of having multiple middleware with different kinds 

of capabilities (data filtering, complex event processing, secure data validation and trust 

mechanism) is much more appreciate in terms of complexity and scalability. Moreover, the 

functionalities and heterogeneity of the devices connected in the system could be enormous, 

therefore, with this scenario it is possible to minimize the processing of a middleware once it 

will be used only for the devices that require that particular service. However, in a centralized 

IoT system that intends to have a specific purpose, a single middleware could be a better 

solution once their variety of applications could be work together without losing functionality. 

Depending on the purpose that an IoT system has, different solutions could be better than 

others. Both of the sub-scenarios (single and distributed middleware) are being discussed in this 

sub-chapter have the same goal: 

 Hide the heterogeneity of the shop floor resources; 

 Provide an independence location of the resources; 

 Help integrate legacy facilities; 

 Aggregate common functionalities needed by many applications. 

Although they have the same objective, their use depends mainly to: 

 The use that devices give of the applications presents in the hub; 

 The processing capacity where the hub is implemented; 
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 The complexity and scalability that we want to implement in the system, having in 

consideration further modifications. 

In Figure 14 is illustrated both scenarios where in middleware 1 has data filtering capability, 

while middleware 2 has capability for complex event processing and middleware 3 has secure 

data validation and trust mechanism, and the functionalities are distributed among middleware 

to achieve an overall full functional system. On the other hand, a single middleware is 

independent from each other and every necessary functionality needs to be implemented in 

each of them.  

 

Figure 14 IoT middleware for data collection - Single or Distributed 

2.3. Middleware Solutions for Internet of Things 

As the IoT encompass a wide area of applications, middleware layers also have different domains 

which might be covered and will be explained in the first sub-section. Subsequently, the current 

solutions in the context of IoT will be presented. Finally, an analysis on the major challenges in 

implementing middleware systems assessing their strengths and weaknesses is explained. 

2.3.1. Domain 

The middleware solutions can be categorized according to the involved domains into three 

major categories (Chaqfeh & Mohamed 2012): 

Hub with Several Middleware 

Middleware 1 

Filtering  

Middleware 2 

Complex Event 
Processing  

Middleware 3 

Secure Data Validation 
and Trust Mechanism  

Hub with Single Middleware 
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Filtering 

Complex Event 
Processing  

Secure Data Validation 
and Trust Mechanism 

Devices 

         Cloud 
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Semantic Web and Web Services 

The main goal of semantic web is to make information understandable by machines, or things, 

so that machines can perform intelligent tasks based on the meaning of information. This also 

enables interoperability across semantic layer between devices and information. Furthermore, 

semantic web solutions can provide context awareness applications where the search space for 

the automatic discovery and service composition is reduced (Gomez-Goiri & Lopez-de-Ipina 

2010). In addition, the semantic information supports better understanding to users, improving 

their privacy decisions since they can compose numerous services. 

RFID and Sensor Networks 

A significant part of the IoT will be the sensor networks, since these devices can measure and 

detect different types of environmental information by monitoring the physical world. 

Intelligent context-aware networking is rapidly approaching the position of seamless networking 

systems, where development of tiny sensors and actuators can easily perform in social support 

services, including earthquake warnings, sensitive support to the emergency context and patient 

monitoring and in large factory environments, smart houses and offices and automotive 

networks. (Luckenbach et al. 2005).   

Robotics 

In general, the recent middleware systems does not lead to an evolution of a standardized 

middleware for pervasive computing or intelligent environments (Roalter et al. 2010). In fact, it 

is more challenging to provide such an interaction in the robotics domain, because moderate to 

high mobility devices are not often considered. In addition, a fixed infrastructure is usually 

assumed to construct an intelligent environment such as smart homes and cognitive offices. 

2.3.2. Approach 

A middleware platform for the IoT can have a multitude of functions, so a single solution that 

can adapt all environments will probably not exist. In this perspective, different solutions have 

emerged, such as: 

Triple space-based 

A triple space-based distributed middleware for the IoT is a semantic data, expressed by the 

three items (the subject, predicate and object) defined in the Resource Description Framework 
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(RDF). Who registers the serviced in the assumed space is the service provider, while the 

creation of an invocation and its advertisement is done by the consumer. Lastly, the service 

provider will recognize a new event and retrieve the input data from the consumer and perform 

the desired service (Gomez-Goiri & Lopez-de-Ipina 2010). 

This particular approach aims to improve existing middleware triple space that already exists so 

as to make it suitable for the IoT in order to enable the embedded and mobile devices to perform 

this middleware. However, there are certain devices that cannot be part of the semantic 

network took Peer-to- Peer, since it does not have the ability to implement the proposals 

primitive, which could allow management services and complex queries. Importantly, in this 

latter context, both the utility of the proposed middleware and the resulting applications are 

limited. Even so, the triple space approach seems to perfectly fit the IoT environment, where 

several objects are connected to each other so as to share semantic knowledge and interact. 

Test Computing Framework 

The solution previously presented, is an extension of Test Computing Framework, which focuses 

on the interoperability of the semantic layer by following three steps. Firstly, semantic services 

are generated according to the various devices discovered by the middleware. Then, users are 

enabled to build tasks as service compositions using a semantic user interface. Lastly, the task 

(which is a workflow of services) is completed by executing the devices. This approach has the 

advantages of semantic web approaches such as meaningful information to users, context 

awareness to applications and interoperability.  

UBIWARE 

UBIWARE is conjectured to provide support services in collaboration with heterogeneous 

resources and semantic communication services. In (Katasonov et al. 2008), this solution will 

enabling different components to configure complex functionalities based on the agent 

technology and to automatically discover each other. The advantages of this solution undergo:  

 Service discovery in a decentralized manner; 

 Negotiation-based integration of services; 

 Possibility to allow the mobility of services between different platforms; 

  Utilization of suitable communication protocols. 

Furthermore, interoperability is also possible using metadata and ontologies. The agent is 

responsible for making decisions, discovering the requests, requesting external help when 
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needed and monitoring the state of the resource. An adapter or interface is used to connect the 

application with its software agent and may include semantic and adapter components, sensors 

and actuators, and data structures, as required.  

The main issues that must be solved in UBIWARE are (Katasonov et al. 2008): 

 The representation of mechanisms for the distributed resource histories; 

 Design of the agent platform; 

 Configurability and security; 

 Techniques for information sharing among agents; 

 Automatic discovery of other resources in a peer-to-peer fashion. 

SOA approach 

Service Oriented Architecture (SOA) as the approaches proposed in (Spiess et al. 2009), are the 

basis of promising middleware solution, in which each device provides its functionality as 

standard services, while the discovery and invocation of new features can run simultaneously. 

The advantages of vertical SOA-based integration undergo reduced the effort and cost required 

for the recognition of new business scenarios since no device drivers or third-party solutions are 

required. The proposed architecture supports open and standardized communication through 

different services for service management, device management, application interface, security, 

devices layer and platform abstraction.  

SOA may offer a promising approach, since it is expected that millions of devices interconnect 

and cooperate in order to provide and consume services. This solution states that each device 

provides a co default set of services and which is capable of services from other devices in 

consumer demand. 

Global Sensor Networks 

Global Sensor Networks (GSN) is another solution. The architecture of GSN follows a container-

based model, in which each container hosts and manages a number of virtual sensors 

simultaneously, that is able to communicate with each other in a peer-to-peer fashion. The 

identification and the discovery of virtual sensors are made through metadata (Aberer et al. 

2006). On one hand the design of the GSN (Aberer et al. 2006) provides four main advantages: 

scalability,  adaptively,  light-weight implementation and simplicity. On the other hand, it also 

presents three major disadvantages: 
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 Transducer Electronic Data Sheet (TEDS) provides only the information necessary for the 

interaction with the sensor, not dealing with storage, resource management and 

security; 

 The requirement of human intervention; 

 It is assumed an IEEE 1451 compliant sensor, which provides a Transducer Electronic 

Data Sheet TEDS that is stored inside the sensor to provide a simple semantic description 

of its properties and measurements. 

Fosstrak 

This middleware solution is a project based on open source RFID platform (Fosstrak 2009), that 

is focused on the management of RFID related applications. In (Schmidt et al. 2009), the authors 

propose a general Tag Data Translation (TDT) system that extends the standard of EPCGlobal 

which only targets Electronic Product Code (EPC).  

The objective of this system is to provide advanced data translation techniques by integrating a 

set of existing technologies for identifying items. The significant advantage of such a system is 

that it can offer a way to design a unified architecture of RFID middleware for the IoT 

encompassing existing useful standards. Nevertheless, integrating more standards is still 

required to conform to the system objective.   

TinyREST 

TinyREST focus on how sensor networks can be integrated with the Internet through a 

framework (Luckenbach et al. 2005). It is a sensor-enhanced middleware for Internet-based 

access to different types of sensors and actuators that may support different application 

domains. This approach has the advantage of conforming to the most widespread internet HTTP 

standard, in addition to enhancing human-device interaction.  

This solution moves a step forward to the full integration into the smart environments test bed, 

by proving its concepts in home automation and facility management. However, further steps 

are required for the development of application scenarios to make use of the proposed Internet-

integrated sensor network environment. 

Robotic-based 

The potential of a robotic-based middleware for distributed, heterogeneous, sensor-actuator-

based, communicating intelligent environments and the IoT is enormous (Roalter et al. 2010). A 
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successful application based on two existing middleware architectures from the robotic domain 

are: Play/Stage (Collett et al. 2005) and Robotic Operating System (ROS) (Quigley et al. 2009). 

2.3.3. Synthesis 

The technical challenges of designing middleware systems for the IoT include interoperability, 

scalability, abstraction, spontaneous interaction, unfixed infrastructure, multiplicity, security 

and privacy. Table 3 (Chaqfeh & Mohamed 2012) show the highlighting list of challenges 

considered. 

Table 3 Challenges in middleware approaches for IoT 

Domain Semantic web and web services Sensor 
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Interoperability ● ● ● ● ●  ● ● 

Scalability   ● ● ● ● ●  
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I/O hardware 

devices 

 ● ● ●   ● ● 

H/S Interfaces   ● ●    ● 

Data Streams and 

Physicality 
● ● ● ● ● ● ● ● 

Development 

Process 

  ● ● ● ●   

Spontaneous 

Interaction 
 ● ● ● ● ● ●  

Unfixed Infrastructure ● ● ● ● ● ● ●  

Multiplicity ● ● ● ● ● ● ●  

Security and Privacy  ●  ● ●   ● 
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3. Hub Architecture 

This chapter presents the concept of the middleware that has been developed in this 

dissertation. In the first section is presented an overview of the architecture. In the following 

sections is presented the details of the concepts that have played vital role in the 

implementation phase. Finally, application scenario is presented, which presents a vision for the 

application of the middleware solution utilizing different types of sensors that have been 

considered during the experimentation of the implemented solution. 

3.1. Overview 

In an industrial IoT scenario, there are many sensors and actuators that interact with the 

machinery. Each sensor and actuator is attached to a microcontroller that is responsible for 

acquiring the data or controlling a switch through a pre-defined instruction set. The 

microcontroller — along with the sensors, power unit and a radio antenna — is called a sensor 

node. It is a self-contained, deployable unit that captures the data generated by sensors.  

In general, the sensor node does not have enough processing power, memory, and storage to 

deal with the data locally as the case of the microcontroller used in this thesis. So, it’s necessary 

to communicate with devices capable to deal with that. In this dissertation the device chosen to 

implement the hub was a Raspberry Pi that acts as an aggregator of multiple raw datasets 

generated by the sensor nodes. 

This IoT framework has the capability to deal with two major problems: 

 To transform and normalize the data. The datasets generated by the sensor nodes will 

be in disparate formats. The gateway acquires heterogeneous datasets from multiple 

sensor nodes and converts them to a standard format that is understood by the next 

stage of the data processing pipeline. 

 Protocol transformation. It supports multiple communication protocols for accepting 

the inbound data sent by the sensor nodes. It uses a REST service for the outbound 

communication, sending the data to a process running in the cloud. 
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The framework for IoT-based continuous data collection from supply network resources 

includes a methodology and set of tools capable of collecting and pre-processing data from 

different sources and push them towards the cloud service i.e. Data Collection Framework 

(DCF). All the data consumers then can uniformly access the data through the APIs provided 

by DCF, without having to understand the details of the data sources. The architecture 

developed took account the scalability, interoperability, adaptation and plug-and-play 

functionality between the sources and the hub. The Figure 15 illustrates the IoT framework 

architecture.  

  

Figure 15 IoT Middleware Information Flow 

In general, the three main components of IoT hub shown in Figure 15, have different purposes 

that could be briefly distinguished: 
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Protocol Adaptation - This component is responsible for providing seamless communication 

between IoT devices located at shop floor and other components of IoT hub. The main 

functionality to be provided by this component is to allow connectivity for various devices with 

different communication standards and request/response paradigm for devices integration into 

the IoT hub. Major functionalities provided by the communication component are: 

 Provide an interface for communication with the IoT devices; 

 Creation and management of necessary communication channels (together with device 

management component) and provide message routing when necessary; 

 Provide implementation for communication protocol conversion between the external 

protocols and the internal communication protocol. 

Device Management – This component contains core management functionality of the IoT hub 

and handles creation of necessary communication channels between devices and IoT hub and 

IoT hub and DCF. This component includes the functional sub-components to handle the 

registration/connection of devices and their identification. The respective details of the device 

like native communication protocol, device type, data type etc. are collected from the meta-

data of the device from the details stored in the DCF.  At the same time, other important 

objective of this component is to deal with the connectivity status of the devices. On the whole 

this component keeps all the information about the different IoT devices registered and 

connected to this IoT hub, providing information about the identifier of the device, 

properties/capabilities of the device, registration and connectivity status of the device, working 

status of the device and, authentication and authorization policies for device. 

Data Handler - The IoT hub is the entry point of data from IoT resources. That means that this 

module will then consume a huge amount of data coming from external sources. It is mandatory 

to provide a module where data could be filtered, aggregated or merged allowing applications 

to consume only specific/value-added data or pre-processed ones. Data handling module will be 

responsible for providing such functionality. Data Handler Factory addresses the need for 

filtering real time data being collected from the heterogeneous sources, thus providing pre-

processed data to DCF. Data handler pre-processes the data based on understanding the context 

of the device and data processing constraints defined by the end users. Note that this 

component will be designed in such a way that new implementations necessary for data 

handling can be easily integrated into the Data Handler Factory. However, it is important to 
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emphasize that IoT hub intends to be a lightweight infrastructure with low processing capacity, 

so the chosen technique to pre-processed data should be effective.  

To summarize, IoT Hub collects data from the shop floor IoT resources, pre-processed and 

provide it with the expected format to DCF. Outputs of IoT hub are data streams, which are 

defined as “a sequence of digitally encoded signals used to represent information in 

transmission.” - Federal Standard 1037C1. In the scope of IoT hub a data stream is a set of 

timestamped relations, i.e. each element of the data stream consists of a set of tuples. The order 

of the data stream derives from the ordering of the timestamps and the IoT hub provides 

support to manage and manipulate these timestamps.  

This way it is always possible to trace the temporal history of data stream elements collected 

through IoT hub. It allows IoT hub to be the central observation tool for the physical world, in 

which network and processing delays are inherent properties of the observation process, which 

cannot be made transparent by abstraction. The data collected by IoT hub should be pre-

processed in order to filter out unnecessary and faulty data and this process can be achieved by 

several techniques. Finally, this pre-processed data will be provided to the Data Collection 

Framework through the DCF API for further processing. 

3.2. Concept 

In order to understand the general operation of the IoT hub, this section defines the high level 

flow of configurations, data and commands during the device addition, as well as the registration 

and run-time phases for collection of data from devices. Figure 16 presents the view of the 

methodology to address the real time data collection from real world resources via IoT Hub, with 

distinction between device registration and run time phases and control, data and 

configurations flow. Data flow is represented by the flow of data from producers to consumers; 

commands flow presents the actions that each of the components pass between each other at 

different phases to invoke specific functional implementations while configurations flow is the 

flow of configuration details for all the devices to be connected to the IoT hub. 

The overall flow of Figure 16 is explained by the following steps. In order to add and register a 

device in the IoT Hub, a conjunction of manual and automated interactions occur (1. and 2.) 

1. The IT company personnel firstly create a new instance of the resource (IoT device) that 

he wants to connect to platform. This step is performed at the DCF, where he provides 
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the details, including protocols, port, behaviour, data type etc. The instantiation of the 

device also includes providing contextual details like the location of the device and data 

handling constraints; 

2. Following that registration activity, the DCF main component automatically provides the 

IoT Hub the necessary information for device identification, behavioural properties and 

data handling; 

3. After registration, IoT Hub is ready for collecting data from the resource. Communication 

component provides necessary implementation for communication between device and 

IoT Hub. During run-time, devices are provided with communication channels based on 

their communication protocols; 

3.1. During the process of communication, the communication component works 

together with the device management to identify the communication protocol of the 

device, and creation of respective communication channels. At the same time this 

step is also used for the runtime authentication and authorization of the device; 

4. With successful creation of the communication channel and security check, the data is 

forwarded towards a data handler for pre-processing of data (to filter faulty data); 

4.1. Data handler component interacts with the device management to retrieve the 

necessary rules and device properties to perform data filtering; 

5. Pre-processed data is published to DCF message queue for further processing and 

persistent storage; 

6. Data consumers can then query DCF to request data collected from the real world 

resources. 
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Figure 16 Methodology for addressing the real time data collection from real world resources 

3.3. Application Scenario 

The deployment of this middleware in an overall perspective is presented in Figure 17. It should 

be clear that IoT Hubs are going to be deployed in the private infrastructure of the industries, 

having direct connection to their IoT networks. This, means for the business scenario involving 

number of industries, the industries will have independent IoT Hubs deployed on their private 

premises. The integration between data collected by these independent hubs are performed by 

the cloud services.   
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                          …                               

 

Figure 17 Middleware Model's Deployment 

The fact that IoT Hub is configurable and extensible according to each company requirements, 

allows to easily add and configure new devices from each pilots’ networks. These properties 

provide the IoT Hub with the desired scalability to handle the constant growing and diversity of 

company’s IoT devices.   

For the implementation of the IoT Hub it is necessary to understand the IoT devices and the data 

that needs to be collected from each Pilot. The next table summarizes the different contexts 

that data collection can reach, as well as purpose in an industrial environment consideration in 

Table 4. 
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Table 4 Examples of context data collection 

Data Objectives 

Quantities Drugstore inventory planning and monitoring 

 
Position/Location Product path within the facilities 

Packaging Route 

Delivery Order, Time and Date Measure stops duration in distribution 

Component Batch Waste and spare parts inventory management 

State of the Machine Measure stops duration in production 

Speed Production status 

Worker Performance Non conformities management 

Workstation Downtime Production planning 

Energy Consumption Monitoring the energy consumption of Test Area  

Temperature and Humidity Production line monitoring and control 

Production Station Product/material traceability 

Processing Time Delays 

Origin of raw material Product quality management 

Product Details Storage location and space optimization 

 

3.3.1. Smart-Shopfloor Scenario 

The functionalities of a smart system that is able to perform the management of the devices in 

an industry is countless, and each software specifications will depend on the specifications of 

the implementation site. This dissertation objective is to demonstrate the applicability of 

implementing an optimization process to the work quality of employees in a factory 

environment, and thus justify the choice of sensors used on the system that has been developed. 

Nowadays the environment of a shop floor is quite different from the one 20 years ago. The 

progress of the machinery, especially on the efficiency and functionality, enabled the 

exponential increase of the production capacity, which in turn meant the clients demanding 

shorter deliver timelines. This increase of responsibility made a lot of companies to move the 

technical work nearer to the employee direct contact, instead of being restricted to an office 

space. The shop floor was no longer the machinery space but also become the office space. 

Another huge contributor to this change was the unfolding of the product complexity, and 

consequently the production lines that started to include different phases, as design, software, 

and hardware, among others. This new business/production model required the constant 

interaction between each group/element responsible for its share of the end product and 
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gathering all parties within a single space translated in an increase of the productivity through 

enhanced communication among team members which in turn affected the output. As a result, 

the control in the shop floor environment increased considerably through the detailed 

management of activities and the flow of materials inside the plant, including employees, 

materials, machines, and production time.  

On another hand, to keep up with the technology efficiency it is necessary to ensure a 

proportional efficiency in the workforce, offering them better work conditions. As the physical 

boundaries are being bridged, a complex and competitive world focuses on innovation and 

creativity is being developed. A smart shop floor now is one that ensures the optimal and 

effective utilization of physical infrastructure and IT resources.  

To build a smart shop floor is necessary to have an intelligent space that optimizes efficiency, 

safety, comfort, system control and by collecting and analysing sensor data. In order to 

interconnect different devices with different achievements, a smart shop floor will require 

software with the ability to connect with everything – a middleware. It helps shop floor 

managers to visualize information and make fast and precise decisions, through a management 

system, increasing the employee’s productivity and decreasing the energy consumption and 

operating costs. 

For an illustrative example, let us consider three aspects that are directly related with the work 

conditions in a shop floor, which are room temperature, luminosity and safety. For that purpose, 

the sensors that can be chosen are: 

 Temperature: this sensor is useful to guarantee the general comfort, in maintaining the 

temperature and air circulation, in case it is connected to electrical windows or A/C; 

 Photoresistor: this sensor will prevent the loss of visual capabilities caused by poor 

illumination, it is also useful to turn on and off the lights, depending on the luminosity 

levels; 

 Ultrasonic: considering that in a plant we have people and machines working side by 

side, it is of utmost importance to guarantee the safety of all elements. Thus, this sensor 

is responsible to measure the distances with the purpose of alerting the workers in case 

they enter a restricted area for machinery only. 
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Now based on these sensors, we can build different conditions that be used for detecting and 

providing immediate actions in the shop floor. Table  shows the function that each sensor may 

represent to ameliorate the three aspects mentioned. 

Table 5 Analysis of selected sensors 

Sensors Controlling action 

Temperature Temperature LOW or HIGH Threshold   then    AC ON or OFF  

Photoresistor Light Intensity LOW or HIGH Threshold   then    Bulb Auto 

ON/OFF Ultrasonic Distance LOW Threshold    then    Alarm/Buzzer ON 

Temperature and 

Photoresistor 

Temperature LOW or HIGH Threshold AND Light Intensity LOW 

or HIGH Threshold then Fire Alarm ON/OFF 

Temperature and 

Photoresistor and 

Ultrasonic 

Temperature LOW or HIGH Threshold AND Light Intensity LOW 

or HIGH Threshold AND Distance LOW Threshold signal that 

the room is overcrowded and not safe for working 

 

It is important that the table above presents only the simple test cases that can be detected by 

utilizing few sets of sensors mentioned before. The simple use-case has been considered not 

only for understandability but also to be aligned with the experimentation set-up for testing in 

the lab environment (reported in details in section 5). The main purpose of these simple 

scenarios is to demonstrate that he system implemented and the sensors used can be utilized 

(alone and integrated) in a shop floor environment to detect some interesting situations. But, it 

is important to note that the IoT middleware solution that has been developed in the scope of 

this dissertation can support other types of sensors, thus providing the possibility for realization 

of more complex scenarios. 
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4. Proof of Concept Implementation 

In this chapter is presented the practical implementation of the middleware. The development 

is based on the architecture explained in chapter 3. Before going into the details of the 

implementation, the first section presents the requirements and functionalities of the system. 

The following section presents the technology that has been used for the implementation the 

proof of concept, explaining their purpose and choice. Subsequently, the characteristics of the 

hub are explained in different modules. 

4.1. Requirements and Functionalities 

In this section, firstly we present the generic requirements that the IoT system should fulfil, 

which have guided the overall architecture development and implementation of the middleware 

solution discussed in this dissertation.  It also presents the functionalities that have been 

implemented along with some assumptions that have been made to realize the solution.  This is 

an important section for understanding the overall IoT system requirements and corresponding 

functionalities that have been addressed in the proof-of-concept implementation. 

Requirements 

 The architecture of the system should be interoperable: The main idea of having a 

middleware is, mainly, to facilitate the data acquisition from a huge diversity of devices 

which can have a large heterogeneity in communication domain.  

 The architecture of the system should be scalable: The system should be able to easily 

expand as more devices are added and also facilitate the addition of other processing 

techniques and security development levels. Another important advantage to increase 

the scalability is its capacity to work in different platform systems.   

 The middleware should be able to react to a failure: In a real world there will be always 

situations more difficult or impossible to control once we not leave in a perfect 

environment. So the main idea of this requirement is “obligate” the middleware to be 

more robust to external flaws.   
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 The middleware should be able to pre-process data before sending it to DCF: One of 

the main requirements of this lightweight middleware is doing a pre data filtering 

according with specifications of each device. 

 The middleware should be able to identify the data belonging to each device: Despite 

of having lots of sensors coupled at the same smart device, the idea is to maintain the 

independence of each one.  

 The middleware should be capable to identify which devices are reliable: The data 

collection is not made to acquire data of all kind of sensors. The architecture must be 

done to choose which devices we want to insert in the hub. 

 The system should be capable to store data until DCF’s request: The fundamental idea 

of collecting data is using it for a determinate purpose. Since the final user are the 

clients, these hold the decision of when the data information provided by the sensors is 

important. So, the middleware must be capable to acquire sensor data all the time, but 

only send it when is requested by the Cloud application.   

 The system should guarantee data security: This is one of the main issues in our digital 

world and not only in IoT systems. The idea is to provide data confidentiality, integrity 

and availability. Since the main idea of this dissertation is to study and develop 

mechanisms of pre-processed data in different communication protocols, the security 

was not the main focus. However, this is a complex and very important requirement in 

every IoT system. 

Functionalities 

 Data collection is done only by known devices: The middleware receives a message 

that contains the device’s characteristics that is going to be registered and only after 

that is created the channel communication that allows the acquisition of data.  

 The middleware is capable to collect data from devices with different communication 

protocols: The middleware was developed with the ability of collecting data by sensors 

connected with three different communication protocols.  

 The middleware is prepared to easily add more communication protocols and more 

pre-processed techniques: Each communication protocol is a Java Class, so if we want 
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to add more protocols (e.g. Bluetooth or RFID) we have to add the respective 

dependencies and create another Java Class. The pre-processed techniques follow the 

same strategy, however, this part will be dependent of the DCF’s message once the 

characteristics of filtering of each device are sending by the Cloud.   

 The middleware has a bidirectional communication with the Cloud and unidirectional 

communication with devices2: The bidirectional communication is for middleware 

receive device’s information from the Cloud and then send the data collected. The 

unidirectional communication is in the direction of data flow, devices to middleware.  

 The middleware stores each device’s data independently from each other: Each device 

has its own stack where data is stored, in memory, before it is sent to the DCF.  

 The middleware store device’s information after switched off: After received by DCF, 

this information is saved in a file.  

 The middleware guarantees a Plug&Play functionality: Since the moment that is 

plugged in, the device launch automatically the software.  

4.2. Technology Adopted 

In this section it will be described and explained the technology used in this dissertation. Since 

the development of this system is separate into a middleware and a sensor node, this section 

divides the technology in two different parts: software and hardware. So, this section sets out 

the technology used in the implementation of the hub and sensor nodes.   

4.2.1. Software Technology 

Middleware Software 

The programme language used to develop this platform was Java. The main reasons for this 

choice were its ease of writing, compiling, debugging and learning. It presents very useful 

features such as the fact that is object-oriented, this allows the creation of modular programs 

                                                           
2 Since the proof of concept uses only sensors as devices, the communication with the middleware is 

unidirectional. However, if the system is formed by sensors and actuators (that need to receive input 

commands) it is perfectly feasible to have a bidirectional communication.  



  

 
52 

and reusable code. Also the capability of multithreading is an important advantage, allowing the 

program to perform several tasks simultaneously within a program.   

Moreover, the ability to run the same program on many different systems is crucial to World 

Wide Web software, and Java succeeds at this by being platform-independent at both the source 

and binary levels. This important aspect allowed to run the code on the computer (in NetBeans 

IDE installed in Windows environment), allowing correct the errors in a more effective way and 

testing it before inserting the program in the device (in Linux environment). In fact, this induces 

further advantage of this programming language, its reliability, once Java puts a lot of emphasis 

on early checking for possible errors, as Java compilers are able to detect many problems that 

would first show up during execution time in other languages. Another important aspect for this 

choice of language was security. Although it is not considered a main focus in this dissertation, 

Java considers security as part of its design. The Java language, compiler, interpreter, and 

runtime environment were each developed with security in mind.  

In the code transfer was used FileZilla3 program, which greatly facilitates the communication 

and files transfer between computer and the device in which was built the hub. Widely used in 

the access of the device from the command line was Putty software. 

Dependencies Usability 

The implementation of the project required the use of some Jars, library Jars and other specific 

Artifacts4. The local repository used was Maven (could be three types: local, central or remote 

repository) that keeps all the dependencies used. When a Maven build command is executed, it 

starts looking for dependency libraries in the following sequence: 

 Step 1 - The first place to search is in local repository; 

 Step 2 - If not found locally, the search will be extended to the central repository. If not 

found there are two options: a remote repository has been mentioned – Step 4 or not - 

Step 3; 

                                                           
3 FileZilla Client is a cross-platform FTP, FTPS and SFTP client with lots of features and an intuitive 

graphical user interface. 

4 An artifact is something produced by the software development process, whether it be software 

related documentation or an executable file – Jar. 



  

 
53 

 Step 3 – If a remote repository has not been mentioned, Maven simply stops the 

processing and throws error; 

 Step 4 – Search dependency in remote repository, when it is found it is downloaded to 

local repository for future reference. 

Sensor Nodes Software 

The sensors used were coupled, each of them, to a microcontroller responsible for reading the 

input (sensor) and turn on output for subsequent delivery. To this end, it was used the Arduino 

Programming Language, based on wiring, and the open-source Arduino Software (IDE), based 

on processing. The programming language used was C++.  

The implementation of sensor nodes’ communication in Arduino IDE required the addition of 

appropriate libraries for each protocol: 

 The Serial communication, as having no hardware layer connected to Arduino, not 

required extra libraries.  

 In Wi-Fi communication, it was integrated a CC3000 shield to Arduino, whose use 

required the addition of the respective files.  

 However, in ZigBee implementation, in addition to the required libraries, it was 

necessary to connect the ZigBee Arduino’s shield – router – with the ZigBee module 

connected to the Raspberry Pi - coordinator. For this, it was used the XCTU program, 

from Digi International. 

4.2.2. Hardware Technology 

Arduino 

Arduino is an open-source prototyping platform based on easy-to-use hardware and 

software. Arduino boards are able to read inputs - light on a sensor or a finger on a button - and 

turn it into an output - activating a motor or turning on an LED. All Arduino boards are completely 

open-source, empowering users to build them independently and eventually adapt them to 

their particular needs. The chosen board for this thesis was the most common: Arduino Uno R3.   

There are many other microcontrollers available for physical computing. Parallax Basic Stamp, 

Net media’s BX-24, Phidgets, MIT's Handy board, and many others offer similar functionality. All 

https://www.arduino.cc/en/Main/Products
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of these tools take the messy details of microcontroller programming and wrap it up in an easy-

to-use package. Arduino also simplifies the process of working with microcontrollers, but it 

offers some advantage over other systems, such as: 

 Inexpensive - Arduino boards are relatively inexpensive compared to other 

microcontroller platforms.  

 Cross-platform - The Arduino Software (IDE) runs on Windows, Macintosh OSX, and 

Linux operating systems. Most microcontroller systems are limited to Windows. 

 Simple - The Arduino Software (IDE) is easy-to-use for beginners, yet flexible enough for 

advanced users to take advantage of as well.  

 Open source and extensible software - The Arduino software is published as open 

source tools and the language can be expanded through C++ libraries.  

 Extensible hardware - The plans of the Arduino boards are published under a Creative 

Commons license, so experienced circuit designers can make their own version of the 

module, extending it and improving it.  

Raspberry Pi 

A Raspberry Pi is a small device with an affordable price and works quite similar to a computer. 

It is open hardware (with the exception of the primary chip), which runs many of the main 

components of the board – CPU, graphics, memory, the USB controller, etc.  These devices were 

developed with the goal to create a low-cost device that would improve programming skills and 

hardware understanding. It is slower than a modern laptop or desktop but it can provide all the 

expected abilities that implies, at a low-power consumption level. Additionally, Raspberry Pi has 

the advantage to have a large number of people who might be able to help if you have any 

question regarding a project that you are working on because of the large reach of the 

community. This is the big difference between choosing this device to any other available on the 

market such as Allwinner A10 or CuBox. The available board to work in this thesis was the 

Raspberry Pi 2 Model B. 

Sensors 

The sensors used in the implemented system were: 
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 Temperature – The sensor used was TMP36 and it has three output pins: +Vs, Vout and 

GND. This sensor is low voltage (+2,7V to +5,5V) precision centigrade temperature. 

Provides a voltage output that is linearly proportional to the Celsius temperature and 

does not require any external calibration to provide typical accuracies of +-1ºC at +25ºC 

and +-2ºC over the -40ºC to +125ºC temperature range. TMP36 provides a 750mV 

output at 25ºC and has an output scale factor of 10 mV/ºC. 

 Ultrasonic - Ultrasonic ranging module HC - SR04 has 4 output pins: Vcc, Trig, Echo, GND. 

This module provides 2cm - 400cm non-contact measurement function, the ranging 

accuracy can reach to 3mm. The modules include ultrasonic transmitters, receiver and 

control circuit. The basic principle of work:  

o 1) Using IO trigger for at least 10us high level signal,  

o 2) The Module automatically sends out an 8 cycle burst of ultrasound at 40 kHz 

and detect whether there is a pulse signal back.  

o 3) If the signal back, through high level, time of high output IO duration is the 

time from sending ultrasonic to returning. 

It is possible to calculate the range through the time interval between sending trigger 

signal and receiving echo signal. Formula: the range = high level time * velocity (340M/S) 

/ 2. For this kind of sensor, it is suggested to use over 60ms measurement cycle, in order 

to prevent trigger signal to the echo signal. 

 Photoresistor – The sensor used is a light dependent resistor (LDR) photoconductive cell 

VT900 Series. The resistance decreases with increasing incident light intensity. A 

photoresistor is made of a high resistance semiconductor. In the dark, it can have a 

resistance as high as several mega ohms, while in the light, it can have a resistance as 

low as a few hundred ohms. 

In Figure 18 is depicted the developed hardware system, in order to clarify the integration of the 

elements earlier described. Since the circuits implemented were simple, the breadboard 

presented in the figure was used for photoresistor and temperature circuit at the same time. 

However, they are completely independent from each other. The ultrasonic sensor did not 

necessitate an auxiliary breadboard because the outputs pins of the sensor (two digital ports, 

VCC and GND) were directly attached to the Arduino’s Wi-Fi shield. The Wi-Fi dongle and the 

https://en.wikipedia.org/wiki/Electrical_resistance
https://en.wikipedia.org/wiki/Semiconductor
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Zigbee coordinator were the physical devices attached to the Raspberry Pi (where middleware 

runs) responsible to connect with the ZigBee and Wi-Fi shields. In order to facilitate the system 

understanding, the serial cable responsible to connect the temperature sensor node to the 

Raspberry Pi was not introduced in this figure. 
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Figure 18 Implementation of the physical system 

Legend: 

              Data flow between sensor node and middleware 

             Hardware system entities 

             Hardware dongles communication – Wi-Fi and Zigbee Coordinator 

Arduino with Wi-Fi shield and ultrasonic sensor 
Arduino with temperature sensor 
Arduino with ZigBee Shield (Rooter) and photoresistor ultrasonic sensor 
Raspberry Pi 2 - Middleware 
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4.3. IoT Hub Detailed 

In this section we will present the details on IoT hub, which acts as the intermediate solution 

between the shopfloor devices and cloud service. It is to be noted that even though the overall 

solution is implemented as one java project, the idea is to describe each module separately 

facilitates both the understanding and scalability for further enhancements. Lastly, it is 

presented the synthesis of the global system’s modules along with the interactions between 

modules in the hub as well as a sequence diagram of the system that represents a detailed view 

of the interactions between the internal components (clearly marked in Figure 19).   

4.3.1. Controller 

This package is constituted by three Java classes responsible to manage devices’ data and post 

it in the cloud: 

DataPoster – Responsible for sending the information of th5e conglomerate of devices to the 

cloud. Only one DataPoster object is created. This object is then shared by all the listeners. When 

a measure is received by one device, the DataPoster is informed, that measure is added to data 

structure with key/value (Device ID/Measure) and check if it is time to send that information. If 

it is not, remains idle. Otherwise, retrieves all the information from that data structure, with the 

help of Json’s message builds the message in a correct way, calls object Monitoring to monitor 

the hub at that point in time and when it has all this information, then posts to a server it via 

http post. 

DeviceManagement – Core Implementation for managing the devices. The steps are:  

1) Initialize the registered listeners (available data listener are added in the 

Resources/configs.xml). This is done using DataListenerFactory, a class that follows the 

factory pattern5; 

2) Initialize the registered devices (received by DCF). Available devices are in 

Resources/devices.txt. This is the trick to deal when the machine is off. The devices are 

written in a file, since the implementation of a lightweight Hub does not allow (although 

it is possible) storing any information in a local database;  

3) Add each device to its own listener;  

                                                           
5 It can be explained in (Object Oriented Design 2016).  



  

 
59 

4) Monitor the overall life cycle of a device added on the hub. 

FileChangedWatcher – Implementation of ChangeListener that will allow us to monitor the 

Resources/devices.txt. The file devices.txt is used to store all the details of the devices that have 

been added to the hub via DCF. When the file undergoes any modification, this class notifies 

DeviceManagement to the initialization of new devices. The changes occur in this file whenever 

the system admin adds/deletes/updates the device details via the interface provided in the DCF. 

RESTservice – This class launch the REST service to receive the information from DCF - hub’s 

configuration. Upon receiving a Json’s message from some link (for instance, localhost: 

3000/DCFconf), it proceeds with an analysis of its content and verification that is indeed a 

message that comes from DCF. If passes the validation builds a string with the extracted 

information to be written in the configs/devices.txt with the FilerReader object. 

4.3.2. Data Listeners 

This package is constituted for the communication protocols supported by the hub. To authorize 

the devices registration in the hub, each protocol checks the received ID in DCF’s message. This 

ID is used to query data structure of the channel, using the contains method. If data structure 

has the ID, the system proceeds as explained below. If not, the values received are eliminated. 

Serial – This class initialize data listener serial port where the Arduino is attached. As in Linux is 

impossible to listen the Arduino ports directly, it takes a symlink to another port of my choice 

(e.g. /dev/tty63) and then is synchronized. It is made the connection with serial port and set the 

serial port parameters (such as data rate, data bits, stop bits and parity none). Finally, the system 

starts to listen if there are data transmission in that port. If not, it remains in loop until some 

data appear in that port.  

ZigBee - Instantiates a new object physically connected to the given port name (e.g. /dev/ttyS88) 

and configured at the provided baud rate. From the device is necessary to know the serial port 

name where XBee device (the coordinator) is attached to and the baud rate to communicate 

with the sensor node. Other connection parameters will be set as default (8 data bits, 1 stop bit, 

no parity, and no flow control). This class has an XBee message containing the remote XBee 

device the message belongs to, the content (data) of the message and a flag indicating if the 

message is a broadcast message (was received or is being sent via broadcast).  



  

 
60 

Wi-Fi - This class implements server sockets (by TCP protocol). A socket is an endpoint for 

communication between two machines. A server socket waits for requests to come in over the 

network (sensor node made a request to send data acquired). Then it is performed the 

operations of filtering based on that request. 

4.3.3. Models 

This package is used for creating the model of the devices that are connected to the hub. This 

class models of the overall IoT system by providing different types of properties (properties can 

be complex ones such as device, monitoring etc. which themselves have properties defined 

within themselves) such as: 

DataField – This class implements concept hierarchy generation filter based on the information 

in Resources/devices.txt; 

DataRangeTypeLoHi – This class implements the data range filter based on the information in 

Resources/devices.txt; 

Device – This class keeps information about device such as id, name, protocol, datatype, range 

and stack of measures. It is this class that prepares the string with the information required to 

send to the DCF. The string messages from this object was overwritten in order to be structured 

in a way that is ready to send to the DCF. 

Measure – This class keeps value and timestamp of data collected. It belongs to Device’s class; 

Monitoring – This class keeps track of hub status such as free disk, disk size, total ram, free ram 

and CPU temperature. Linux keeps all your information on file and it was intended to make a 

call to the operating system about the desired commands. More information can be acquired, if 

necessary, in another application. This information is sent to a server for further analysis of hub’s 

health.  

4.3.4. Utilities 

All Java classes responsible for reading files and preparing messages for sending or reading 

information were implemented in this package, such as: 

FilerReader – This class is responsible to read the information of Json’s message and store 

devices’ information in a file Resources/devices.txt. It is called in DeviceManagement to initiate 

the devices;   



  

 
61 

HttpUtils – This class is called in DataPoster. Its function is establish the connection with URL 

server where Json’s message will be sent. The object belongs to dataposter and its simple 

function is to curl the Json content to web server. 

JsonMessage – Build the Json message to be sent to the server (with measure and monitoring). 

This class is called in DataPoster to transform the information store in the string to a Json object 

in order to be sent through the service REST; 

xmlReader – Responsible to read the file Resources/configs.xml. This class is called in the 

DeviceManagement to initiate the listeners. 

4.3.5. Synthesis 

In order to clarify the objective of the modules implemented inside the hub and its interaction 

with outside components, in Table 6 is shown the major information flow in this system:  

Table 6 Information flow between the modules of the system 

Interaction Information Flow 

Device / IoT Hub 

Arduino starts to acquire analog inputs and transforming in digital 

values; 

Devices get connected to the IoT Hub; 

Devices communicate to provide data via. Protocol Adapter depending 

on the communication protocol of the device. 

Inside IoT Hub 

Communication component interacts with the Device Management 

component to check authenticity of the device before starting collecting 

data from it; 

Device Management initiate the communication and devices listeners to 

start the communication with sensor nodes. Device component updates 

itself with a stack of data already pre-processed and defined by the DCF. 
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IoT Hub / DCF 

DCF Resource Management communicates with the IoT hub to provide 

the details of the resource instance being created; 

IoT Hub communicates with the DCF Request/Response Message Queue 

(API) to push data being collected into the DCF and to monitoring hub’s 

health; 

DCF communicates with IoT hub to update the devices registered in the 

hub. 

 

Specifically described and explained the internal operations of the hub implementation in the 

earlier sub-sections, is shown in Figure 19, the sequence diagram representing the functionality 

of the whole system encompassed around the developed middleware. This solution has 

emerged based on the concept outlined in section 3.2 and also through the objectives that this 

thesis intended to achieve. So, the mainly steps done by the system are: 

1. Launch the DeviceManagement class; 

2. Initialize the listeners. The xmlReader is called to read the settings in 

Resources/configs.xml; 

3. The listeners are launched using DataListenerFactory way. Every time that xmlReader 

“send” a listener, DeviceManagement launch the DataListenerFactory to obtain the 

channel communication. After that, the channel is initialized according with your 

protocol adapter; 

4. Initialize the devices. The FilerReader is called to read the settings in 

Resources/devices.txt; 

5. Each device is added to your own listener (according with communication protocol); 

6.  Launch RESTservice; 

7. Execute the function MonitorForNewDevices that contains a FileChangedWatcher 

object that is constantly monitoring the changes in devices.txt file, in order to initialize 

new devices added (by DCF through RESTservice) in this file; 

8. After the communication process is being done, the system starts to collecting data 

coming from data sources; 

9. The concept hierarchy generation and range filter are executed (by DataField and 

DataRangeTypeLoHi, respectively); 

10. After data filtering, is created an object Measure (with device’s ID and the value 

collected) that will be added to the stack of this Device’s class; 
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11. The string containing device’s information is sent to DataPoster; 

12. In DataPoster, if the time defined by DCF to send the message is reached, the string that 

contains device’s information is conglomerate with the string responsible to Monitoring 

(this class is executed at this point) the hub’s health.   

13. The JsonMessage class is called in DataPoster; 

14. Posteriorly, is sent the Json’s message (measure and monitoring) through a class called 

in DataPoster – HttpUtils. 



  

 
64 

 

Figure 19 Information flow in IoT Hub
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5. Testing and Hypothesis Validation 

In this section the testing of implementation will be addressed by validating the requirements 

and functionalities of the system. The testing aims to evaluate the level of confidence of using 

the system in normal circumstances. However, since testing of realistic systems can never be 

exhaustive because it is limited to a restricted period of time, it is not possible to ensure 

complete accuracy of a system implementation. Testing can only show the presence of errors, 

not their absence (Tretmans 2001).  

To sum up, in this chapter will be presented: 

 The methodology applied to the proof-of-concept implementation;  

 The main tests performed based on the chosen methodology; 

 The validation of hypothesis and the implemented concept.  

5.1. Testing Methodology 

The importance of testing is explicit explained in Volume 2 of (Marciniak 2002). In this book is 

concluded that, as maintenance and upgrades of existing systems increase in number and depth, 

a significant amount of testing will also be needed to verify the systems after the changes are 

made.  

In this perspective, there are number of methods that can be applied to guarantee the quality 

of a deployed system. Testing is involved in every stage of software life cycle, but the testing 

done at each level of software development is different in nature and has different objectives. 

Mainly there are four key steps (Luo 2001):   

 Unit Testing: is done at the lowest level. It tests the basic unit of software, which is the 

smallest testable piece of software;   

 Integration Testing: is performed when two or more tested units are combined into a 

larger structure;   
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 System Testing: tends to affirm the end-to-end quality of the entire system, evaluating 

its functionality;   

 Acceptance Testing: is done when the completed system is handed over from the 

developers to the customers or users.  The purpose of acceptance testing is rather to 

give confidence that the system is working than to find errors. 

Based on the information flow, a testing technique specifies the strategy that is used to select 

input test cases and analyse its results, as different techniques reveal different quality aspects 

of a software system. There are two major categories of testing techniques, functional and 

structural: 

 Functional Testing: the software program or system under test is viewed as a “black 

box”. Is evaluated by observing the box externally with no reference of its internal 

details or implementation. The selection of test cases for functional testing is based on 

the requirement or design specification of the software entity under test. Functional 

testing emphasizes on the external behaviour of the software entity; 

 Structural Testing: the software entity is viewed as a “white box”. The selection of test 

cases is based on the implementation of the software entity. The goal of selecting such 

test cases is to analyse each code line executed, at least one time, covering all possible 

paths of execution, specific statements and branches. Structural testing emphasizes on 

the internal structure of a computer program. 

5.1.1. Testing and Test Control Notation 

Testing research techniques leads to obtaining practical testing methods and tools. Progress 

towards this achievement requires fundamental research, and the creation, refinement, 

extension, and popularization of better methods. For this reason, the chosen methodology was 

Testing and Test Control Notation (TTCN). 

The Testing and Test Control Notation, previously called Tree and Tabular Combined Notation, 

which is defined in (ETSI 2013), is a notation standardised by the ISO/IEC 9646-1 for the 

specification of tests for communicating systems and has been developed within the framework 

of standardised conformance testing.   
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Based on the “black box” testing model, the tests are defined through tables containing general 

description, constraints, behaviour and verdict. In TTCN, the behaviour test is defined by a 

sequence of events which represent the test per se. The sequence of events can be represented 

by a tree with branches of actions based on the evaluation of the system output after one (or a 

series of) executed event(s). Each event has its own respective level of indentation and can be 

of one of two types, action or question: 

 Actions are preceded by an exclamation point before its brief description, and represent 

actions performed on the SUT; 

 Questions are preceded by an interrogation point, and represent evaluations of the 

output of the SUT after one or more actions are completed. Since the answer can be 

positive or negative, multiple questions can exist at the same indentation level, covering 

all possible outputs of the system.  

After a completion of a TTCN test table a verdict must be deliberate: “Success”, “Failure” or 

“Inconclusive”. This verdict is based on the sequence of events which travel through the tree, 

and was conditioned by the outputs of the system and evaluated by the question events. Table 

7 is a simplified example of a TTCN table test. 

Table 7 Example of a TTCN test in table format (Tretmans 2001) 

Test Case Dynamic Behaviour 

Test Case:                       Conn_Estab 

Purpose:                         Transport / Connection 

Purpose:                         Check connection establishment with remote initiative 

Behaviour Constraints Verdict 

+preamble   

        LT ! T-PDU-connect-request   

                 UT ? T-SP-connection-indication   

                        UT ! T-SP-connection-response   

                            LT ? T-PDU-connect-confirm  Success 

                           OTHERWISE  Failure 

                 LT ? T-PDU-disconnect-request  Inconclusive 

                OTHERWISE   Failure 
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5.2 Testing Implementation 

As explained in 5.1, there are two main techniques for testing: functional and structural. 

Although both techniques were used, the structural test was performed during the code 

development (using the tools provided by the IDE NetBeans). Thus, this section lists the 

functional tests (intended to demonstrate the capabilities of middleware) resulting from a 

subsequent acceptance of structural tests. In testing process of the architecture implemented 

in this work, it was taken into consideration more specific criteria such as: 

 Interoperability – between devices and the hub, as it is a key element in its 

development; 

 Recovery capacity – what is the hub’s behaviour when the communication wires are 

physically disconnected, power is turned off or the devices and communication channels 

are turned down; 

 Performance - to determine how fast a feature of a system performs under a particular 

workload, in order to validate that the system meets the expected response time. 

To address the functional and non-functional testing of the implementation, all the models that 

were explained in the section 4.3, will be demonstrated and followed by showing how the 

middleware works. Figure 20 presents the main perspective of the tested system divided by five 

layers (respectively from down to up: acquisition, transport, collection, transport and delivery) 

where the data has to pass from the edge – sensor nodes, to the core – cloud platform. 
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Figure 20 Technologies used for testing 

5.3.1. Functional Tests 

In the test definition, it is intended to describe the general purpose of the test implemented. 

Later, in test execution, it is intended to demonstrate the different tests that have occurred and 

that demonstrate the system reliability. 

Test Definition 

Since the goal is to test whether the data collection is carried out in a correct way, the only test 

that serves associated with the ultimate goal is the functionality of the entire system, defined in 

Table 8. The system fails if it is not established communication or data filtering is not being done 

or not send data in the time set by DCF. 
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Table 8 Middleware Definition Test - Entire System 

Collection of Pre-Processed Data from Devices to the Cloud 

Test Name: System of Data Collected 

Purpose: 
Evaluate the sensor’s communication with the middleware and it capacity to 
filter faulty data before sending to DCF 

Line Number Behaviour Verdict 

1 ! Reading detailed device information  

2         ? Stablish communication with Sensor Node  

3                 ! Reading detailed device information  

4                            ? Filter sensor data and store data in the stack  

5                            ? Store unfiltered data in the stack FAIL 

6                                       ! Reading detailed device information  

7                                                ? Sending Data to the DCF SUCCESS 

8                                                ? OTHERWISE FAIL 

9         ? No data is received        FAIL 

 

Test Execution 

As explained in the previous subsection, only a test that demonstrates the functionality of the 

entire system serves to validate the whole architecture. However, the implementation was done 

gradually, for several steps. Therefore, tests were performed to each unit/module developed.  

The presented tests intended to demonstrate the system development order, with a gradual 

increased complexity. First, it was tested the communication of each sensor and afterwards the 

integration of all sensors and the respective data pre-processing. Is important to note that in 

addition to the communication and processing, were taken into account three key aspects that 

were tested and that increase the system reliability, which are:   

 Beginning of data collection after registration of the device in the hub; 

 Sending Data to the DCF in appropriate time. 

The tests were executed several times with different inputs to verify the consistency of the 

results. In Table 9 is shown the succinct conclusions of Test 5, since it is the test that includes all 

features. It should be noted that  
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 Test 1: The simplest case to be tested occurred with the Serial. Since the communication 

is done via cable, the data transmission is safer than other types of wireless 

communication. So, it is easier to test if the problem is the implementation of the hub 

and not the configuration between communication modules once they do not exist. To 

test if data collected was real, the temperature sensor was heated by hand for a few 

seconds to check that the values increased and then turned to decline to relatively 

constant value that remained before being heated.   

 Test 2: The second protocol to be tested was ZigBee. To avoid connection problems 

between the communication modules relating to its operating range, the router was 

tested at a maximum distance of 5 meters from the coordinator. Considering that the 

router (the shield that communicate with Raspberry Pi coordinator) did not use the only 

Arduino serial port, it was possible to verify the sensor data by the output window of 

the Arduino IDE. Afterward, these values were compared with the values read by the 

middleware. As in the first test, it was also verified the reliability of the sensor. During 

data collection, the sensor was covered and uncovered, to see if the values were 

changing in case of the sensor has more or less light shining on it.  

 Test 3: The last protocol to be tested was Wi-Fi. In the test laboratory, the only network 

available was the Eduroam (European network for the academic community) that 

contains security services that made it impossible to connect the devices. The 

alternative was to connect both devices to a network created by a smartphone – a 

portable hotspot. As in the second test, to avoid range problems, the Wi-Fi Arduino’s 

shield and the dongle connected in Raspberry Pi were placed to a maximum of 5 meters 

from the hotspot to ensure that there were no range problems. The data collected by 

the sensor was compared in the same manner as the second test. Finally, the reliability 

of the ultrasonic sensor was also tested, towards and away of objects so that the sensor 

could read different distances.    

 Test 4: After testing the communication of all units separately, it was executed the 

integrity test. The main objective of this test was to verify if there was no problem with 

the three threads running simultaneously. Since the goal was to have sensors 

completely independent and different from the others, the data collection was 

performed with different sending times.  
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 Test 5: The last test to be executed was the system test. After the communication only 

the data pre-processing strategies needed to be tested. In order to test data filtering, 

was introduce in the system three devices with different purposes. It should be notice 

that both filtering techniques was tested in all sensors. The test presented in Table  

marks the first experimentation of the system test. The input 1 is protocol adaptation, 

the method is connect both parts (input 2), the event is acquisition of data (input 3) and 

lastly, the input 4 is the acquired data in the sensor node. The output 1 represents the 

value received in the channel communication before the acquisition of data (always 

none, obviously) and output 2 the data pre-processed, stored in memory, before being 

sent to DCF. The devices’ characteristics were: 

Serial 

{"action":"add","id":225712,"name":"test10","dataType":"units","dataRange":{"lowerRang

e":0,"higherRange":100},"datafilterrule":{"dataFilterRule":"N/A"},"CommunicationListener

Type":"DataListenerSerialPort"} 

ZigBee 

{"action":"add","id":214713,"name":"test11","dataType":"units","dataRange":{"lowerRang

e"250:,"higherRange":600},"datafilterrule":{"dataFilterRule":"N/A"},"CommunicationListen

erType":"DataListenerXbee"} 

Wi-Fi 

{"action":"add","id":215785,"name":"test12","dataType":"units","dataRange":{"lowerRang

e":0,"higherRange":500},"datafilterrule":{"dataFilterRule":"N/A"},"CommunicationListener

Type":"DataListenerWifi"} 

The dataType filter was tested in serial communication. In this case, the node is constituted 

by the temperature sensor that provides values with decimals. Here we also tested the 

concept of hierarchy generation. For instance, if sensor node reads 25,7 Celsius degrees, IoT 

hub stores in memory 26 Celsius degrees. 

In ZigBee communication was tested dataRange. The sensor measure values between 100 

and 200 when a hand is put over the sensor instead of values near to 500. So, the lower 

range of this device was 250. Which was tested to see if this values is eliminated for being 

too low. The same procedure was performed for higher values. 
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In Wi-Fi communication the filtering process was not tested. This happens to be test case to 

ensure that, both lower and higher range were set to be too low and high, respectively, in 

order to include all values. 

Table 9 Middleware Execution Tests - Entire System 

Input Output 
Result 

(Test Definition 
Line Number) 

I1: 
Protocol 

I2: 
Method 

I3: Event 
I4:                

Sensor Node 
 

O1:   
E.R.b.e 

O2: 
E.R.a.e 

Expected Actual 

Serial Connect Acquisition 25,7 Celsius No Data 26 (7) (7) 

Zigbee Connect Acquisition 138 units No Data No Data (7) (7) 

Wifi Connect Acquisition 53 cm No Data 53 cm (7) (7) 

5.3.2. Non-Functional Tests 

In an IoT data collection system, an important non-functional requirement is the response time. 

That criteria can be used to judge the entire architecture implemented and to change results 

thought to be correct at the outset. Therefore, in Table 50 is presented the time response of the 

communication stablished between the sensor node and the middleware when the system 

works without problems, while in Table 61 is presented the time response when the devices are 

switched off (for unexpected reason). In both of the tables, device’s communication are tested 

in separate and in integrity with the other devices, in order to test the performance and the 

efficiency of the architecture implemented. In Table 72 is presented the behaviour of each 

sensor when the hub is restarted.  

The “Real Time” that was taken account is seconds and the measurement was made with a 

chronometer since the moment that the system starts until the moment that the first value of 

each device appears in the window’s output of raspberry pi. In order to ensure more reliability 

on the results, the tests were performed three times. 
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Table 50 Non-functional test in normal conditions 

 Communication 
Conditions 

Test 1 

(seconds) 

Test 2 

(seconds) 

Test 3 

(seconds) 

Stablish Serial 

communication  

Single  3 2 2 

Integrated 2 2 2 

5S4tablish ZigBee 

Communication 

Single 4 5 4 

Integrated 5 6 5 

Stablish Wi-Fi 

Communication 

Single 51 48 50 

Integrated 46 51 48 

 

Table 61 Non-functional test in abnormal conditions 

 Communication 

Conditions 

Test 1 

(seconds) 

Test 2 

(seconds) 

Test 3 

(seconds) 

Serial device restarting Single  2 2 2 

Integrated 3 4 2 

ZigBee device restarting  Single 3 3 4 

Integrated 4 4 4 

Wi-Fi device restarting Single 49 47 48 

Integrated 48 49 48 

 

Table 72 Sensors' behaviour in an abnormal situation in the hub 

 Protocol  Test 1 (seconds) Test 2 (seconds) Test 3  (seconds) 

Hub restarting 
Serial 3 3 3 

ZigBee  5 5 3 

Wi-Fi 47 52 47 

 

5.3. Hypothesis Validation 

From the executed tests, the main conclusion that can be drawn is that the implemented proof 

of concept successfully passed all the tests. The main improvement that is necessary to be made 

from the observed tests is that the delay that occurred in the Wi-Fi communication to start 

collecting data needs to be solved. This delay comes mainly due to the handshaking (about 20 

seconds to connect in the network) and the request message sent to the hub (about 25 seconds 

to find the IP address of the hub). However, after connection, this protocol works perfectly equal 

to the other protocols. In final analysis, it provides a system capable to transmit the data from 

the sensors to the cloud. The tests done to the system were designed taking into consideration 
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the problem characteristics presented in section 4.1. However, some features and 

functionalities can be added and improved as it is explained in future works (c.f. section 6.2). 

In summary, it can be concluded that the hypothesis formulated in section 1.3 is a valid 

hypothesis, and that the created architecture is capable of handling with the objectives defined. 

Furthermore, since the industrial target of this implementation was the SME’s, the proposed 

middleware solution was achieved successfully once it fulfilled the main objectives and it was 

able to collect data from sources and send it to the cloud, detecting and filtering the unnecessary 

data. The main achievements are the realization of IoT middleware solution that allows 

extendibility across different protocols and increase the dependability of the data collected by 

eliminating faulty data at the source. At the same time the solution presented decreases 

communication and processing overload between the data producers and consumers. 

Another important aspect of the developed solution is affordability both from the perspective 

of installation cost and resource consumption.  In fact, the technology used is quite affordable. 

The sensors and microcontrollers used are easily to acquire as well as the device to develop the 

hub. This last one, despite of being affordable, has a considerable processing capacity, being 

capable of supporting communication with multiple sensors and respective acquisition and pre-

filtering data for onward delivery to the DCF. 

5.4. Scientific and Industrial Validation 

The research results of this dissertation mainly the implementation has been performed in close 

collaboration with GRIS, UNINOVA. The Group of Research in Interoperability of Systems (GRIS) 

is inserted in the centre of technology and systems Uninova research institute, which belongs to 

the Faculty of Science and Technology of Universidade Nova de Lisboa (UNL), and is part of this 

project. Its main contribution is the scientific development and technological solutions in the 

field of interoperability of systems and applications, to be subsequently used in industry 

(Uninova 2014). Besides the industrial use-cases from the FP8-FoF project C2NET, the 

implementation is based the following publication of the fellow researchers at GRIS, UNINOVA: 

 Sudeep Ghimire; Raquel Melo; José Ferreira; Carlos Agostinho and Ricardo Gonçalves: 

“Continuous Data Collection Framework for Manufacturing Industries”. OTM Workshops 

2015: 29-40 (Ghimire et al. 2012) 
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 AGOSTINHO, C. et al., 2016. A Distributed Middleware Solution for Continuous Data Collection in 

Manufacturing Environments, IESA-2016 Workshop on  Cloud Collaborative Manufacturing 

Networks (AGOSTINHO et al. 2016) 

On the industrial validation front, this research work has been performed in the scope of C2NET 

- Cloud Collaborative Manufacturing Networks – which aims to increase productivity, reduce 

complexity for the decentralization of production systems, as well as to increase the reaction of 

businesses to changing tools and optimization that the market demands. This project is mainly 

directed to SMEs, due to the fact that it has scarce access to self-management as it requires 

more advanced efficiency tools and help increase competitiveness systems (C2NetProject 2015).  

The research results from this thesis are being applied in the industrial use-cases being 

developed in the C2NET scope which can be understood in details from (C2NET Consortium 

2015). C2NET is an ongoing project thus, actual industrial validation results are not available 

currently. 
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6. Conclusions and Future Work 

6.1. Conclusions 

In an IoT paradigm, distributed scenario prevails where the data sources are physically separated 

and are often consumer by autonomous data consumers, which are often the higher level 

applications with functionality for high-end data analytics and event detection. But, these type 

of distributed scenario can create lots of problems for scalability and maintenance if the data 

sources and data consumers are tightly coupled. It, means the changes in the standards of data 

sources or consumers for communication and data exchange changes, the overall systems needs 

to undergo respective changes to deal with the new requirements. So, it is  an utmost industrial 

and technological solution need to have a system for seamless integration of data sources with 

high level of abstraction between the data sources and consumers. . Middleware aims to reduce 

the complexity of such systems by hiding unnecessary details. As with most types of software, 

there are many different types of middleware, each having different aims and their own set of 

advantages and disadvantages. There are no good or bad types of middleware; the best choice 

depends on both the task at hand and the skills of the team who will be using it. 

This research work presents a technological solution along with necessary reference 

architecture for scalable for IoT Middleware.  The approach that has been presented will 

enhance the use of IoT in the industrial world and seamless integration of existing legacy devices. 

Besides the technological solution this research work also provides detailed study on the 

challenges and issues in IoT paradigm that can pave path for further research and 

implementations.  The results from this dissertation also play an important part for realization 

of complete C2NET data collection framework. In comparison to some existing solutions in IoT 

paradigm, the main advantage of this solution is affordability because the test results by utilizing 

low-powered computing resources such as raspberry-pi has produced results as expected. Thus, 

the technical results from this research work can be an affordable solution for SMEs who want 

to deploy IoT based solutions. 

6.2. Future Work 

One of the possible enhancements that could be applied to the architecture developed is the 

integration of security constraints such as data authentication, access control and client privacy. 
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The issues that can be associated in an unsecure system are enormous and to deploy this 

software in an industrial vision is crucial to put data security on a par with the quality of a 

product. Since there are several aspects to consider and data security must be made at a later 

stage to the implementation of the product, this aspect was taken into account in some 

parameters but was has not been developed in the current implementation. Building security 

and trust over IoT ecosystem can be an interesting and challenging future work. 

The next future work that needs to be undertaken is extending the solution and testing with 

other different types of devices and their respective standards. Even, though the solution 

supports easy integration of protocol adapters, it requires the implementation of protocol 

adapter module to handle more protocols such as Bluetooth, RFID or NFC. At the same time 

some further enhancements are necessary in the data filtering component to enable 

specification of more complex data filtering for instance by utilizing the rules that can be applied 

over a long stream of data rather than a single data stream. Other direction that be taken for 

the data filtering process is making use of statistical analysis to re-construct missing data in the 

collected stream. Note that statistical analysis consumes quite a lot of resources, so doesn’t fit 

in the requirement of light-weight IoT middleware, but can be a very interesting solution for 

cases with higher computing resources. 

Another future work is towards the compatibility of the solution across various platforms. 

Currently the solution is compliant with Debian OS and all the tests were performed in the scope 

of Debian OS. It will also be an interesting challenge to further reduce the resource consumption 

by the solution and test them on other low-resources computing devices.  
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