

Dissertação para obtenção do Grau de Mestre em

Engenharia Eletrotécnica e de Computadores

Dissertação para obtenção do Grau de Mestre em

[Engenharia Informática]

Orientador: Ricardo Jardim Gonçalves, Professor Auxiliar com Agregação,

Faculdade de Ciências e Tecnologia da Universidade Nova de

Lisboa

Co-orientador: Sudeep Ghimire, Estudante de Doutoramento, Faculdade de

Ciências e Tecnologia da Universidade Nova de Lisboa

 Júri:

Presidente: Professor Doutor Anikó Katalin

Horváth da Costa

Arguente: Professor Doutor João

Francisco Alves Martins

Vogais: Doutor Sudeep Ghimire

Pedro Miguel Machado Monteiro Costa

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

IoT for Efficient Data Collection from Real World

Resources

[Título da Tese]

Licenciado em Ciências da Engenharia

Eletrotécnica e de Computadores

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

Setembro 2016

ii

iii

IoT for Efficient Data Collection from Real World Resources

Copyright © Pedro Miguel Machado Monteiro Costa, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo

e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares

impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido

ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a

sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde

que seja dado crédito ao autor e editor.

iv

v

For my parents, sister and girlfriend

vi

vii

Acknowledgements

At the end of a long and demanding course, I would like to thank all the people who in some

way, contributed to the success of this stage of my life.

First of all, I would give the biggest thanks to my family, specially my parents, sister and girlfriend

that supported me all these years, always with an enormous willingness to help. But also my

grandparents, uncles, aunts and cousins for their giant contribution in different ways.

To my advisor Dr. Ricardo Gonçalves, my teacher José Ferreira and the coordinator of C2NET

project Carlos Agostinho for giving me a great opportunity to work in a GRIS’s project and

believing in my capabilities to complete this thesis.

To all the people at GRIS, specially to my joint supervisor Sudeep Ghimire that helped and

believed in me all this time, pushing me to do a better work and to successfully complete this

dissertation. To Pedro Simões for transmitting his enormous knowledge and his great help

during the implementation part.

Finally, to my special friends who shared with me the good and the bad times, making this step

more fun, easy and absolutely memorable.

viii

ix

Abstract

The Internet of Things is providing new ways of experiencing and reacting to the physical world

through the ability of advanced electronic devices that collect data. At the same time, as new

application scenarios are envisioned, with the assistance of information generated by sensors,

new problems and obstacles will arise. This requires new development to meet business and

technical requirements, such as interoperability between heterogeneous devices and

confidence (such as validity, security and trust) over smart devices. With the increase of these

complex requirements it becomes crucial to develop an infrastructure aimed at tackling such

requirements mentioned. IoT middleware – a software layer that bridges the gap between

devices and information systems. Thus, this work aims to study the mechanisms and

methodology for data collection, devices interoperability and data filtering, closer to the data

sources, in order to optimize the collection and pre-analysis of data that can then be used by

various applications such as the ones in manufacturing industry.

Keywords: Data Acquisition, Data Filtering, Internet of Things, Middleware, Sensors,

Interoperability

x

xi

Resumo

A Internet das Coisas vem providenciar às pessoas uma nova forma de sentir e reagir aos aspetos

do mundo físico, através da capacidade que os avançados dispositivos eletrónicos têm

atualmente na recolha de informação. Paralelamente, novos cenários de aplicabilidade, nas

mais diversas áreas, que advém do uso da informação recolhida pelos sensores, começaram a

surgir e, diversos problemas e obstáculos prevalecem. Portanto, é necessário novos

desenvolvimentos que satisfaçam os requisitos técnicos e de negócios, tais como a

interoperabilidade entre dispositivos heterogéneos e a confiança (em aspetos como a validade,

segurança e fiabilidade) que os dispositivos inteligentes asseguram. Com o aumento da

complexidade deste conceito, surgiu uma infraestrutura que visa solucionar os importantes

requisitos mencionados. IoT Middleware – uma camada de software que faz a ponte entre os

dispositivos e a infraestrutura. Assim, esta dissertação pretende estudar os mecanismos e

metodologias de recolha de dados, interoperabilidade de dispositivos e pré-filtragem de dados,

perto da fonte de recolha, com o intuito de otimizar a sua recolha e pré-análise de dados que

podem ser usadas em várias aplicações, como por exemplo, na indústria da manufatura.

Palavras-Chave: Recolha de dados, Filtragem de dados, Internet das Coisas, Middleware,

Sensores, Interoperabilidade

xii

xiii

Index

1. Introduction .. 1

1.1. Motivation Scenario – IoT .. 3

1.2. Research question .. 5

1.3. Hypothesis .. 6

1.4. Work Methodology .. 6

1.5. Dissertation Outline ... 8

2. State-Of-Art ... 9

2.1. Overview .. 9

2.1.1. Internet of Things .. 9

2.1.2. Middleware for Data Acquisition .. 10

2.1.3. Data Collection from Sensors – Context Acquisition .. 12

2.1.4. IoT Protocols .. 17

2.1.5. Data Pre-processing .. 22

2.2. IoT Deployment Scenarios ... 25

2.2.1. Peer-to-Peer Devices ... 26

2.2.2. Devices to Service Providers ... 28

2.2.3. Devices to Middleware to Service Providers ... 30

2.3. Middleware Solutions for Internet of Things ... 33

2.3.1. Domain .. 33

2.3.2. Approach ... 34

2.3.3. Synthesis .. 38

3. Hub Architecture ... 39

3.1. Overview .. 39

3.2. Concept .. 42

3.3. Application Scenario ... 44

3.3.1. Smart-Shopfloor Scenario ... 46

4. Proof of Concept Implementation .. 49

4.1. Requirements and Functionalities ... 49

4.2. Technology Adopted .. 51

4.2.1. Software Technology ... 51

4.2.2. Hardware Technology ... 53

xiv

4.3. IoT Hub Detailed ... 58

4.3.1. Controller .. 58

4.3.2. Data Listeners .. 59

4.3.3. Models ... 60

4.3.4. Utilities .. 60

4.3.5. Synthesis .. 61

5. Testing and Hypothesis Validation .. 65

5.1. Testing Methodology ... 65

5.1.1. Testing and Test Control Notation .. 66

5.2 Testing Implementation .. 68

5.3.1. Functional Tests... 69

5.3.2. Non-Functional Tests... 73

5.3. Hypothesis Validation .. 74

5.4. Scientific and Industrial Validation ... 75

6. Conclusions and Future Work ... 78

6.1. Conclusions .. 78

6.2. Future Work ... 78

References ... 80

xv

Index of Figures

Figure 1 Technological and social aspects related to IoT (Minerva et al. 2015) 1

Figure 2 Middleware based Vs Direct approach of data collection through source devices 2

Figure 3 Value Creation through data collection from different IoT devices 4

Figure 4 Classical phases of scientific research (based on (Camarinha-matos & Terminology

2016)) .. 7

Figure 5 The eight components of an IoT Application Enablement Platform (Padraig Scully

2016) ... 12

Figure 6 Four essential steps in context management systems and middleware solutions

(Perera et al. 2014) .. 13

Figure 7 Conceptual Framework (features that need to be supported by ideal context-aware

acquisition IoT middleware solution) (based on (Perera et al. 2014)) .. 13

Figure 8 Difference between a good and a bad analysis of data collected 16

Figure 9 Three different approaches in an IoT Peer-to-Peer scenario (Hota 2013) 28

Figure 10 Data flow between devices and Cloud (Brown 2014) ... 29

Figure 11 Interaction between the end-user and Cloud software services (TheOpenGroup

2013) ... 29

Figure 12 Example of an IoT Architecture with middleware (Harbinger Systems 2015) 30

Figure 13 Fog between the edge and the cloud (Amaravadhi 2015) .. 31

Figure 14 IoT middleware for data collection - Single or Distributed ... 33

Figure 15 IoT Middleware Information Flow .. 40

Figure 16 Methodology for addressing the real time data collection from real world resources

 ... 44

Figure 17 Middleware Model's Deployment ... 45

Figure 18 Implementation of the physical system .. 57

Figure 19 Information flow in IoT Hub .. 64

Figure 20 Technologies used for testing ... 69

xvi

xvii

Index of Tables

Table 1 Five main functionalities handled by an IoT middleware ... 11

Table 2 IoT D2S Protocol Landscape (Duffy 2013) ... 21

Table 3 Challenges in middleware approaches for IoT ... 38

Table 4 Examples of context data collection... 45

Table 5 Analysis of selected sensors ... 48

Table 6 Information flow between the modules of the system ... 61

Table 7 Example of a TTCN test in table format (Tretmans 2001) .. 67

Table 8 Middleware Definition Test - Entire System ... 70

Table 9 Middleware Execution Tests - Entire System ... 73

Table 10 Non-functional test in normal conditions .. 74

Table 11 Non-functional test in abnormal conditions .. 74

Table 12 Sensors' behaviour in an abnormal situation in the hub ... 74

xviii

xix

Table of Acronyms

Acronyms Definition

AMQP Advanced Messaging Queuing Protocol

API Application Programming Interface

CO Cooperating Objects

CoAP Constrained Application Protocol

D2D Device-to-Device

D2S Device-to-Service

DCF Data Collection Framework

DDS Data Distribution Service

EPC Electronic Product Code

GRIS Group for Research on Interoperability of Systems

GSN Global Sensor Networks

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IT Information Technology

JAR Java Archive

M2M Machine to Machine

MQTT Message Queuing Telemetry Transport

NFC Near Field Communication

PLM Product Lifecycle Management

RDF Resource Description Framework

REST Representational State Transfer

xx

Acronyms Definition

RFID Radio-Frequency Identification

ROS Robotic Operating System

RW Real World

S2S Service-to-Service

SUT System Under Test

TEDS Transducer Electronic Data Sheet

TDT Tag Data Translation

TTCN Testing and Test Control Notation

XMPP Extensible Messaging and Presence Protocol

1

1. Introduction

In recent years, we have witnessed a huge expansion in the utilisation of devices conceived to

collect data for a variety of applications. With the ease of communication and transfer of

information that the internet has provided in the last decade, the concept of IoT has emerged.

It is based on information collected from the real world (RW), through sensors, and make it

accessible anywhere and as much diversity of use as the diversity of data collection devices

currently on the market (Minerva et al. 2015). The IoT's cover a wide range of areas, as depicted

in Figure 1, which shows not only the need for advancement of core technologies but all the

development of new business models, management strategies as well as new ways to protect

information and increase privacy.

Figure 1 Technological and social aspects related to IoT (Minerva et al. 2015)

2

It is estimated that in 2020 there will be around 21 billion devices connected to each other, of

which 7 billion do not relate to the consumer market but to the use of devices in industrial sector

(Gartner 2015). This technological advance derives mainly from the constant search for

maximum efficiency that many companies are looking for with the purpose of increasing its self-

management in both data monitoring and in its management and control. In this perspective,

companies are looking for solutions in three major areas (Sheng et al. 2015):

 Network Management - focus on quality and reliability of the hardware, such as routers

and servers;

 System Management - focus on quality and reliability of software, such as data

interpretation and operating systems programs;

 Application Management -concern aesthetic and reliable aspects, both in safety and

operability.

In order to correlate these three areas and hence reduce the difficulties of integration and

management, one of the solutions that can be adopted is the middleware technology – a

software layer between two systems that make it easy for the two to communicate (Winter &

Rosenblum 2001). Figure 2 shows two different approaches for data collection and/or

integration of heterogonous devices. The middleware based approach provides an abstraction

layer between the devices (data producers) and other higher level services and/or applications

(data consumers), like data analytics, data broadcasting, event detection and other business

applications. This abstraction layer provides added value for high application development by

removing the need for understanding different types of standards and protocols followed by

wide range of devices. Simultaneously, it can lower the burden on the backend services by

implementing generic data filtering, security checking, data validation etc. at the point of data

collection. This can enrich the reliability over the data collected from different sources.

Figure 2 Middleware based Vs Direct approach of data collection through source devices

IoT Middleware

Pre-data Filtering and Multiple
Protocols of Standards

Devices
(Data producer)

Data Consumer

Devices
(Data producer)

Data Consumer

3

Essentially, this work aims to contribute to improve the methodology for data collection from

different devices by considering improvement across data access uniformity, communication

resources optimization and central management of connected devices. This project aims to

provide a solution for the integration of IoT devices with the cloud based platforms with less

effort for high end data processing and data analytics. The scope of this project also includes

Within the scope of this work it is expected it to provide solution that can provide added value

to improve production lines, increase interoperability and self-management in the

manufacturing industry through affordable technology to small and medium enterprises.

1.1. Motivation Scenario – IoT

In an interconnected Industry 4.01, ideas are much more valuable if they are embedded in an

equally innovative periphery of devices or related solutions. New impulses can come from a

multitude of sources outside the own organization, and they have to be proactively integrated

into an open innovation process. These ‘outside-in’ and ‘inside-out’ processes are enabled by

digital technologies, such as community platforms or collaborative PLM tools, connecting

knowledge resources. Collaborative engineering activities, for example with the customer, are

also greatly facilitated by the use of appropriate digital platforms and the availability of

sophisticated virtual product models (Bechtold et al. 2014). It can be clearly noted that

collection, storage and analysis of data through digital a service infrastructure incorporating a

wide range of data sources is an important feature. Figure 3 shows the high level view on value

creation through smart services by resorting to the power of IoT devices.

1 Industry 4.0 is a term applied to a group of rapid transformations in the design, manufacture,

operation and service of manufacturing systems and products (Davies 2015).

4

Figure 3 Value Creation through data collection from different IoT devices

Recent developments in IoT technologies is enabling data generated by sensor networks to be

used by business intelligence software to identify trends and patterns, and help companies to

make better decisions and become more reactive to the surrounding environment (Santucci et

al. 2012). Machine2Machine (M2M) technologies have the potential to be put to highly

innovative and practical purposes (With 2013). Current research domain involves the process of

connecting machines, equipment, software and “things” in our surroundings. “Things” will use

a unique internet protocol address, which allows for the communication with each other

without human intervention (Huang & Li 2010). At the same time, evolution of technology in the

manufacturing sector has occurred faster than the ability of companies to keep up with it

(Stöllinger et al. 2013). Thus, without having a real-time (or almost real-time) access to the shop-

floor, what was expected at the end of the production line could be different from what is

actually being produced. Besides the automated data collection and alignment to the

manufacturing plans, the synchronization and maintenance of devices deployed at different

stages of manufacturing line are often more complex (Microsoft 2009). This is partly because of

5

the diversity in the devices being used by different manufacturing plants that often have

multiple propitiatory protocols and of course also a large amount of data.

Summing up, the main motivation behind this research and development work is towards the

realization of efficient IoT middleware (as clearly marked in Figure 3) for IoT devices integration

for creation of value added enterprise services. The main target is to have a middleware solution

that can deal with heterogeneous data sources and enable data filtering closer source. Another

important requirement is also to develop a solution that is light-weight to be deployable in low-

resource computing units such as raspberry-pi. The importance of having a light-weight yet

robust IoT middleware is not only to provide one point of integration and interoperability but

also to take advantage of data pre-processing at the source by implementing functionalities for

data filtering, communication channel optimization and provide a management bridge between

cyber and physical world.

1.2. Research question

The general theme for this thesis is “Middleware based technology for data

collection in IoT systems”, which is an important research domain in the wider scope

of Internet of Things (IoT). The rational for the selected field of research has been explained in

the previous section. In order to streamline the research work it is important to define a research

question to be answered during the completion of thesis. Covering a wide number of sectors

that can be improved with the gradual introduction of IoT, it is important to define the problem

to be addressed and to which this works intends to contribute as a solution in industrial

technological advancement. The main research question formulated for this Master’s thesis is:

To ensure the research focus and targeted results, the major question can be detailed with

following sub-questions:

Q1.1: “What is the efficient mechanism for protocol adaptation to allow seamless integration of

different types of devices?”

Q1.2: “What are the suitable data filtering methodologies and algorithms that can be

implemented in the IoT middleware to enhance data pre-processing at the source with least

overhead over time?”

RQ: “Is it possible to develop scalable and interoperable middleware for

continuous data collection from real world resources?”

6

Q1.3: “What will be the impact of the middleware based methodology in the overall process of

data collection from real world resources in real-time systems?”

During the progress of this thesis, it was expected to find answers to the above mentioned

questions through necessary system implementation, validation and assessment.

1.3. Hypothesis

Based on the discussions in the previous sections that provides the motivation and formulated

research questions, one can estimate that:

The above statement is therefore the adopted as the hypothesis that will be challenged,

implemented, tested and validated during the period that will lead to the completion of the

thesis.

1.4. Work Methodology

This section focuses mainly on research-based strategy in which the dissertation and scientific

methodology that was built upon. In order to lead my thesis with the maximum rigor that it

requires, it was decided to base my scientific method of investigation in the classical

methodology (Camarinha-matos & Terminology 2016) whose phases are shown in Figure 4 and

explained in its follow-up :

“If we can develop IoT middleware, which can enable seamless integration of IoT

devices with unified implementation to detect and filter faulty data collected from

the source then efficiency of data collection from real world resources can be

improved in the IoT paradigm.”

7

Figure 4 Classical phases of scientific research (based on (Camarinha-matos & Terminology 2016))

1. Research Question / Problem – As in any scientific papers, the first step is the most

important since it serves as the foundation for a specific problem or a possible solution,

thus initiating all the research. It is important to realize that the main question could be

the result of some minor questions interconnected.

2. Background / Motivation – This step requires a lot of investigation to allow the

researcher to understand what type of similar work and projects have been done, as

well as which solutions could be developed for a dissertation.

3. Formulate hypothesis – Already having found the problem and knowing what work has

been done, it is beneficial to predict an outcome to facilitate the course of the

investigation

4. Design Experiment – This is the most practical stage of the investigation as it begins with

the trial phase of the work and some kind of implementation.

5. Test hypothesis / Collect data – At first a test set must be defined according to the

characteristics of the problem formulated in step 3 and the implementation done in step

4. All the simulations results must be registered for the next step.

8

6. Interpret / Analyze results – At this point the results are analysed and the veracity of the

hypothesis is proved. If there were not positive results it is advisable to return to step 1.

On the other hand, when the results are achieved, it is possible to obtain some ideas for

further research.

7. Publish findings – The last phase of the suggested methodology is as important as the

first one, for the results of the investigation will be useful in future research and

contribute to the scientific community. Or, ultimately, it might become of use for the

industry.

1.5. Dissertation Outline

After the initial study that led to the question to be answered, this paper then evolves into the

following chapters:

Chapter 2 – State-Of-Art: This chapter presents the related work elements studied. The first

section explores the main definition concepts and considerations to have in data acquisition

context whilst the other two sections introduce the IoT scenarios deployed as well as the existing

middleware systems.

Chapter 3 – Hub Architecture: This chapter explains the hub on a high level overview and marks

the beginning of design experiment.

Chapter 4 – Proof of Concept Implementation: This chapter is also a stage of the design

experiment. It includes a detailed report about the practical component and an explanation on

what and why was considerate.

Chapter 5 – Testing and Hypothesis Validation: This chapter discloses the tests used to validate

the formulated hypothesis and the respective analysis to verify if the initial objectives were

achieved. It refers to the fifth and sixth stage of the work methodology. The chapter ends with

the development integration and validation with other research activities.

Chapter 6 – Conclusion and Future Work: The final chapter has an analogy between what was

studied and what was implemented, and what could be improved in future.

9

2. State-Of-Art

This chapter presents all the research undertaken and the basis for the implementation of the

formulated hypothesis. The following sections cover, in particular:

 2.1. Overview - Definition of the most important concepts related to IoT paradigm.

 2.2. IoT Deployment Scenarios – Different types of deployment approaches followed by

the realization of IoT ecosystem.

 2.3. Middleware Solutions for IoT – A survey of existing research work in designing

middleware systems for the IoT.

2.1. Overview

The problem that this thesis proposes to investigate is part of a vast subject, covering several

technical concepts. Therefore, it is important to provide an explicit definition and build the

background on which the research will be based. In order to formulate the foundation for this

thesis. The following sub-sections provide the state of the art on different aspects of IoT that

were taken into account for development and research in the scope of this dissertation.

2.1.1. Internet of Things

According to (IERC 2010), IoT is “A dynamic global network infrastructure with self-configuring

capabilities based on standard and interoperable communication protocols where physical and

virtual “things” have identities, physical attributes, and virtual personalities and use intelligent

interfaces, and are seamlessly integrated into the information network.”

It is a concept and a paradigm that considers pervasive presence around us in the environment

of a variety of things/objects/devices, which through wireless and wired connections and unique

addressing schemes are able to interact with each other and cooperate with other

things/objects/devices to create new applications/services and reach common goals (Atzori et

al. 2010).

According to (Bradley et al. 2013) the five main factors increasing the values associated to the

IoT are:

10

 Increasing the return on research and innovation investments, reducing time to market,

creating new business models and opportunities;

 Increasing the lifetime of customer and adding more customers;

 Improve utility services such as supply chain and logistics, to a new and more efficient

level;

 Improve business process with the expense on goods reduced;

 Increasing the employee productivity and efficiency.

The IoT awareness affects a large number of areas and interested parties. The associated values

at manufacture industry, the main target of this thesis, benefits in areas like machine auto-

diagnosis and assets control through sensors installed in machines allowing a faster response to

detected problems and remote monitoring of elements such as temperature, raw materials and

humidity, adjusting them automatically. The IoT potential is analysed in (Joseph Bradley, Joel

Barbier 2013) with examples of critical improvements such as reduction of materials, energy and

costs of automated tools, which is less expensive to manufacture and implement. The potential

of IoT extends also to the automated management, detection and self-healing of the machinery,

available resources, product quality and other services. Lastly, increased sales from real-time

market assessments and reactions, location-based selling and improve coordination with other

products and services (two-sided markets).

2.1.2. Middleware for Data Acquisition

In order to develop a data collection system from RW resources, there are generic features that

have been identified:

 Provide an infrastructure to capture data from IoT sources.

 Provide an infrastructure that is modular and independent of the devices geographic

location and functionality.

 Techniques of filtering data to control the flux of data coming into the platform.

 Security of communication channels (where authenticated data should flow).

 Support to different communication protocols should be available;

11

In IoT context, the objective of having a middleware platform is to present a unified model to

interact with devices as it provides an abstract layer interposed between the IT infrastructure

and the applications (Chaqfeh & Mohamed 2012). Therefore, the problems concerning with

interaction of devices are described in Table 1, according with (Fersi 2015):

Table 1 Five main functionalities handled by an IoT middleware

Interoperation

Share information through diverse domains

of applications using diverse communication

interfaces. Divided in: Network, Syntactic

and Semantic.

Context Detection

Characterize the situation of an entity

(person, place or object) relevant to the

interaction between a user and an

application, including the user and

applications themselves.

Device discovery and management

Enables any device in the IoT network to

detect all its neighbouring devices and make

its presence known to each neighbour in the

network.

Security and privacy

Data confidentiality - refers to protecting the

data from any kind of unauthorised

disclosure; Data integrity - refers to

protecting data from being lost, destroyed,

corrupted or modified; Data availability -

refers to the ability to guarantee that the

collected data can be used in dedicated time.

Managing Data Volume
Finding, fetching and transfer raw data in

order to process and indexing it allowing a

more efficient querying result.

To summarize, an IoT middleware is a true end-to-end platform that enables connectivity

between “things” or devices constituted by eight architectural building blocks, as shown in

Figure 5.

12

Figure 5 The eight components of an IoT Application Enablement Platform (Padraig Scully 2016)

2.1.3. Data Collection from Sensors – Context Acquisition

To understand the key considerations and challenges that data collection can bring, it is

necessary to clarify the meaning of data sources. Sensors are hardware components that

measure environmental information such as temperature, humidity, location, state of the

machine, processing time and more that will be transformed into a digital signal. This

information is accessed by software programs to help with some task (Microsoft 2016). In this

way, an important consideration in a data collection system is the context-aware computing in

IoT paradigm.

In the past, most of the proposed solutions collected data from a limited number of physical

(hardware) and virtual (software) sensors. In these situations, collecting and analysing sensor

data from all sources was made possible and feasible due to limited numbers. On the other

hand, nowadays, with the progression in sensor hardware technology and cheap materials,

sensors are expected to be attached to all the objects around us and connected to the internet,

which means it is not feasible to process all the data collected by those sensors. Consequently,

context-awareness will play a critical role in deciding what data needs to be processed, which

implies that understanding sensor data is one of the main challenges that the IoT will face.

13

Context management has become an essential functionality in software systems. Data move

from phase to phase, from the place where it is generated to where it is consumed, creating a

data life cycle. Figure 6 consider the movement of context in context-aware systems.

Figure 6 Four essential steps in context management systems and middleware solutions (Perera et al. 2014)

The definition of Context-Awareness is not strict due to its abstract nature. Different authors

propose different definitions, notwithstanding, this thesis accepts the meaning proposed by

Dey, due to the fact it is defined when it is applied in a system. Therefore, according with (Abowd

et al. 1999): “A system is context-aware if it uses context to provide relevant information and/or

services to the user, where relevancy depends on the user’s task.”

The focus that the concept context-aware will have in this thesis is related with context

acquisition, since we are handling with pre-filtering data (Data Processing) and physical sensors

(Data Source Support), as depicted in Figure 7.

Figure 7 Conceptual Framework (features that need to be supported by ideal context-aware acquisition IoT
middleware solution) (based on (Perera et al. 2014))

There are five techniques that need to be considered when we want to acquire context while

developing context-aware middleware solutions:

Responsibility

14

According with (Pietschmann et al. 2008), there are two different methods:

 Pull - The software component which is responsible for acquiring sensor data from

sensors make a request from the sensor hardware periodically or instantly to acquire

data.

 Push - The physical or virtual sensor pushes data to the software component which is

responsible to acquiring sensor data periodically or instantly.

Frequency

Making a parallelism with real world, the frequency technique is based on two different event

types:

 Instant - The events do not span across certain amounts of time. Open a door, switch on

a light are some types of instant events. In order to detect this type of event, sensor

data needs to be acquired when the event occurs.

 Interval - These events span a certain period of time. For example, raining and seasons

of the year are some interval events. In order to detect this type of event, sensor data

needs to be acquired periodically.

Source

According with (Chen et al. 2004), acquiring information must have taken into account the

source that can be categorized into three different categories:

 Directly from sensor hardware - Context is directly acquired from the sensor by

communicating with the sensor hardware and related APIs. This method is typically used

to retrieve data from sensors attached locally. Despite the growing use of devices that

communicate wirelessly, in IoT paradigm, most devices and sensors today require some

amount of driver support and can be connected via USB, COM, or serial ports.

 Through a middleware infrastructure - Sensor data is acquired by middleware solutions.

The applications can retrieve sensor data from the middleware and not from the sensor

hardware directly.

15

 Context servers - Context is acquired from several other context storages via different

mechanisms such as web service calls. This mechanism is useful when the hosting device

of the context-aware application has limited computing resources.

Sensor Types

There are different types of sensors that can be employed to acquire context and can be

divided into three categories (Indulska & Sutton 2003):

 Software sensors – A web service is a perfect example of this type of sensor. The idea is

to produce more meaningful information with the combination of physical sensors and

virtual sensors.

 Virtual sensors – This type of sensors do not have a physical presence. They aggregate

data from many sources and publish it as sensor data (e.g. calendar, contact number

directory and chat applications).

 Physical sensors – Since IoT solutions needs to understand the physical world, this type

of sensor is very important in data acquisition process due to the fact that is the only

one that generate sensor data by themselves. For instance, measuring the temperature

or humidity of a given space is made using temperature sensors or humidity,

respectively. They are less meaningful, trivial, and vulnerable to small changes.

Acquisition Process

Finally, the acquisition process is a very important technique in the acquire context. In general,

there are three different categories:

 Sense - The data is sensed through sensors (e.g. retrieve temperature from a sensor,

retrieve appointments details from a calendar).

 Derive - The information is generated by performing computational operations on

sensor data (e.g. calculate distance between two sensors using GPS coordinates).

 Manually provided - Users provide context information manually via predefined settings

options such as preferences.

The main issue when we want to collect data is how to obtain it in a useful way. To do so, it is

important to identify the key characteristics of data, knowing how to measure/collect them and

16

what to do with the data collected. The overall objective of data collection is helping

stakeholders of different levels to make decisions based on true indicators of real-time situations

as depicted in Figure 8.

Figure 8 Difference between a good and a bad analysis of data collected

From the moment that data is sensed by devices such as a wireless sensor node, up to the

moment that reach the backend system, there are many aspects that must be taken into

consideration. In the future, IoT is expected to be an interconnection of networked embedded

devices (Karnouskos et al. 2011) that will require to build systems with Cooperating Objects (CO).

According to (Marrón et al. 2009), CO are computing devices with the ability to communicate,

cooperate and organize themselves autonomously into networks to achieve a common task.

In conclusion, context is responsible for characterizing the situation of an entity, where an entity

can be person, place, or object relevant to the interaction between a user and an application,

including the user and applications themselves. IoT-middleware must be context aware for

working into smart environments. Context awareness can be achieved by context detection and

context processing. Context detection collects data and identifies the factors that have

significant impacts on the response. Context processing extracts the context data, processes it

and performs or takes decision based on that. A knowledge database is required for setting up

a closed feedback path between these blocks to evaluate the effectiveness of context-aware

systems and make some possible improvements.

However, this thesis proposes a middleware without persistent data storage. The knowledge of

database is inexistent, so in this context, the data will go through, a pre-processing phase at the

hub, before the main processing is made in the Cloud. Since, context-detection is a resource

demanding task, the core implementation of this functionality is to be performed at the cloud

(outside the scope of this thesis). But, preliminary context-detection can be implemented in the

IoT-middleware that can be used for the data source identification, data type assertion and

preliminary validation of the collected data based o on the sensor properties. These preliminary

functionality of context-acquisition has been implemented in the scope of the thesis that can

form a base for the development of context-aware applications.

Data indicate that are a problem This might have a problem

17

2.1.4. IoT Protocols

Communication protocols are formal descriptions of digital message formats and defined rules

that includes: packet size, transmission speed, handshaking and synchronization techniques,

error correction types, address mapping, acknowledgment processes, flow control, packet

sequence controls, routing and address formatting (Techopedia 2016b). They are implemented

in hardware (communication protocols) and software (message protocols) and used to exchange

messages between computing systems.

Messaging Protocols

In Internet of Things, the communication is made by three different computing systems:

 Device to Device – Example: DDS

 Device to Server – Examples: MQTT, REST/HTTP, XMPP, CoAP

 Server to Server – Example: AMQP

Each system has different types of protocols (with different message formats and defined rules)

to interact. The examples given above are not restricted to the computing system which they

belong, however, the protocols were grouped according the frequency of their utilization in the

computing system. Considering that the concept of the middleware implemented in this thesis

is based on the interaction between the device (sensors aggregated in a single device) and the

cloud, this sub-section explains with more detail the software protocols of Device to Server

system, resorting to examples which are summarized in Table 2. An example of the

communication between the others computing a system is also included.

DDS - While interfacing with the IT infrastructure is supported, DDS’s main purpose is to connect

devices to other devices. As explained in (Esposito et al. 2008), architecture of DDS defines two

layers: Data-Centric Publish-Subscribe (DCPS) and Data-Local Reconstruction Layer (DLRL). DCPS

layer is responsible for delivering information to the end destinations (subscribers). DLRL

represents, on the other hand, optional layer which serves as the bridge/interface to the DCPS

functionalities (which is constituted by five entities to manage data flow: Publisher, Data Writer,

Data Reader, Subscriber and Topic).

DDS can efficiently deliver millions of messages per second simultaneous to various receivers.

Devices demand data very differently (faster) than the IT infrastructure demands data. “Real

time” is often measured in microseconds. Devices need to communicate with many other

18

devices in complex ways, so TCP’s simple and reliable point-to-point streams are far too

restrictive. Instead, DDS offers detailed quality-of-service (QoS) control, multicast, configurable

reliability, and pervasive redundancy. DDS offers powerful ways to filter and select exactly which

data goes where, and “where” can be thousands of simultaneous destinations. DDS implements

direct device-to-device “bus” communication with a relational data model.

MQTT – This protocol targets device data collection and communicating it to servers. As its name

states, its main purpose is telemetry, or remote monitoring. Its goal is to collect data from many

devices and transport that data to the IT infrastructure. It targets large networks of small devices

that need to be monitored or controlled from the cloud. Since it has a clear, compelling single

application, MQTT is simple, offering few control options. It also doesn’t need to be particularly

fast. In this context, “real time” is typically measured in seconds. The protocol works on top of

TCP, which provides a simple, reliable stream that don’t lose data.

MQTT consists of three key components: subscriber, publisher, and broker. An interested device

can register as a subscriber for the specific content in order to be informed by the central point

(broker) every time when a publisher disseminates information of interest (Locke 2010). In this

architecture, the publisher stands for the meter/sensor sending data to MQTT broker. Secure

communication between all parts is achieved by verifying the authorization of publishers and

subscribers on the side of broker (Stanford-Clark & Truong 2013).

From the M2M communication point of view, the main disadvantage of MQTT is the fact that

end devices may go to sleep state for a limited time period only (a lot of sensors/smart meters

send the data once per few hours and therefore MQTT is not a suitable communication protocol

for these power-constrained devices).

CoAP - In contrast to REST, CoAP is utilizing lightweight UDP as transport protocol, making it

more suitable for the IoT domain because it is possible to build sufficiently basic error checking

and verification for UDP to make sure that messages arrived without the significant

communication overhead in case of TCP. However, CoAP was designed together with REST

functionality; therefore, conversion between these two protocols has to be implemented in

communication chain.

According with (Gligoric et al. 2012), CoAP can be divided into two sublayers:

- Messaging Sublayer - It detects duplications and based on that provides reliable

communication even over the UDP transport protocol using the exponential backoff

19

(multiplicative decrease of the rate of data transmission, in order to gradually establish

an acceptable data rate); this is a necessary technique since UDP does not include error

recovery mechanism;

- Request/Response Sublayer - It handles REST communication between individual nodes.

This protocol utilizes four message types: confirmable, non-confirmable, reset, and

acknowledgment. Reliability of CoAP is achieved by using confirmable and non-

confirmable messages. Similarly, HTTP utilizes methods such as GET, PUT, POST, and

DELETE to perform Create, Retrieve, Update, and Delete operations. A typical length of

CoAP message can vary between 10 and 20 bytes (Colitti et al. 2011), this means that

CoAP may be unsuitable for some domains of IoT.

REST/HTTP – This protocol follows the principal that every physical object and/or logical entity

is a resource that has a particular state that can be “manipulated”. A resource that is accessible

via HTTP URI gives access to its data via GET and accepts inputs via PUT. REST aims on minimizing

latency and network communication, while at the same time maximizing the independence and

scalability of component implementations (Fielding & Taylor 2002). The effort needed to

develop applications, especially in the IoT domain, can be greatly reduced since REST adopts a

much lighter tool chain than other service oriented architectures, making this message protocol

massively scalable, as explained in “M2M Communications: A Systems Approach” by D.

Boswarthick, O.Elloumi and O. Hersent, Wiley, 2012. Data communication is generally initiated

by the Device over HTTP GET/POST Request. Devices will be sleeping all the time unless during

communication.

It is a good option for IoT device (data source) to IoT middleware to communicate in the local

network. In order for IoT devices and IoT middleware to communicate via HTTP, we need to

resolve some issues. The solemn problem that one need to work around is that HTTP is a

challenge-response protocol. This means the device will either have to keep polling the server

for new updates, or use long polling, or use websocket. The cost of communication has dipped

significantly so the overheads attached to HTTP don’t pose a significant constraint since

Transport Layer Security [TLS] can be obtained through HTTPS. In the scope of this thesis,

HTTP/REST has been identified as a very useful protocol for communication between the IoT

middleware and data consumers but not a very suitable protocol for communication between

devices and middleware.

20

XMPP - A protocol suited to connect devices to people, a special case of the D2S pattern. It was

developed for instant messaging to connect people via text messages. XMPP uses the XML text

format as its native type, making person-to-person communications natural. It connects clients

and servers using the XML called stanza which divide the code into three components: message,

presence and info/query (Jones 2009). Messages in stanza identify the source and destination

address, types, and IDs of XMPP entities that provide PUSH method for retrieving data. The

presence stanza notifies end users of the status updates. Finally, the iq stanza does the pairing

between message senders and receivers. The possible disadvantage of XMPP is text-based

communication using XML. This leads to higher network load (overhead). Ergo there is a possible

solution to this problem: XML streams using EXI (Waher & Doi 2014).

In the IoT context, XMPP offers an easy way to address a device. This comes especially handy if

that data is going between distant, mostly unrelated points, just like the person-to-person case.

It’s not designed to be fast. In fact, most implementations use polling, or checking for updates

only on demand. “Real time” to XMPP is on human scales, measured in seconds. Its strengths in

addressing security, and scalability make it ideal for consumer-oriented IoT applications.

AMQP - A queuing system designed to connect servers to each other. Communications from the

publishers to exchanges and from queues to subscribers use TCP, which provides strictly reliable

point-to-point connection. AMQP is realized by two key components (Fernandes et al. 2013):

- Exchanges: They are used for routing messages to appropriate queues. Routing

(between exchanges and queues) is based on predefined rules/requirements;

- Message Queues: They are stored in message queues before sending to end destination

(receiver).

Following that, two types of messages are defined in AMQP, bare messages (at the sender's side,

includes properties, application properties and application data) and annotated messages (at

the receiver side, includes header, delivery and message annotations, footer and the bare

message information).

AMQP is mostly used in business messaging because it focuses in tracking all messages and

ensuring each is delivered as intended, regardless of failures or reboots. It usually defines

“devices” as mobile handsets communicating with back-office data centers. In the IoT context,

AMQP is most appropriate for the control plane or server-based analysis functions.

21

To sum up, is presented in Table 2, a comparison between the four messaging protocols used in

device-server communication.

 Table 2 IoT D2S Protocol Landscape (Duffy 2013)

PROTOCOL CoAP XMPP REST/HTTP MQTT

TRANSPORT UDP TCP TCP TCP

MESSAGING Request/
Response

Publish/Subscri
be

Request/Respo
nse

Request/
Response

Publish/Subscri
be

Request/Respo
nse

2G,3G,4G

SUITABILITY

(1000S NODES)

Excellent Excellent Excellent Excellent

LLN

SUITABILITY

(1000S NODES)

Fair Fair Fair Fair

COMPUTE

RESOURCES
10Ks RAM/Flash 10Ks RAM/Flash 10Ks RAM/Flash 10Ks RAM/Flash

Communication Protocols

Wireless communication protocols can be classified according to the following 6 standards:

Satellite – This type of communications enables cell phone communication from a phone to the

next antenna. In Internet of Things language, this form of communication is mostly referred to

as “M2M” (Machine-to-Machine) because it allows devices such as a phone to send and receive

data through the cell network. Satellite is useful for communication that utilize low data

volumes, mainly industrial purposes.

WiFi - Is a wireless local area network (WLAN) that utilizes the IEEE 802.11 standard through

2.4GhZ UHF and 5GhZ ISM frequencies. Provides Internet access to devices that are within the

range. In IoT systems is widely used for this advantages in security and integrity, flexibility, IP-

based communication and scalability massive deployments.

Bluetooth - The technology is extremely useful when transferring information between two or

more devices that are near each other in low-bandwidth situations. Bluetooth protocols simplify

the discovery and setup of services between devices, they can advertise all of the services they

provide, making their use easier, because it enables greater automations such as security,

network address and permission configuration.

22

Radio Frequency communications are probably the easiest form of communications between

devices. Protocols like ZigBee or ZWave use a low-power RF radio embedded or retrofitted into

electronic devices and systems. In IoT systems this type of communication has significant

advantages in low-power operation, high security and scalability.

RFID is the wireless use of electromagnetic fields to identify objects. Usually is installed an active

reader, or reading tags that contain a stored information mostly authentication replies. It is also

called an Active Reader Passive Tag (ARPT) system. An Active Reader Active Tag (ARAT) system

uses active tags awoken with an interrogator signal from the active reader. The main advantage

is the hundreds of applications which can be used.

NFC uses electromagnetic induction between two loop antennas located within each other near

field, effectively forming an air-core transformer. There are two modes: Passive - The initiator

device provides a carrier field and the target device answers by modulating the existing field. In

this mode, the target device may draw its operating power from the initiator-provided

electromagnetic field, thus making the target device a transponder; Active - Both initiator and

target device communicate by alternately generating their own fields. A device deactivates its

RF field while it is waiting for data. In this mode, both devices typically have power supplies. The

main advantages are related with data security at multiple levels, the ability to connect the

unconnected, easy network access and data sharing.

2.1.5. Data Pre-processing

Data pre-processing is often neglected but important step in the data collection process. If there

is irrelevant and redundant information present or noisy and unreliable data then events and

trends detection at application layer is made more difficult. This process also includes a

technique that involves transforming raw data into an understandable format (the format can

be defined by the hub or requesting data consumer). Real-world data is often incomplete,

inconsistent, and/or lacking in certain behaviours or trends, and is likely to contain many errors

(Techopedia 2016a).

In a real world data analytics situation, it is common to find several data pre-processing steps

before using them in the application layer, mainly due to varying nature of the available data.

The methodology for data pre-processing has been widely adapted in the domain of data mining,

which can provide important background for data filtering in IoT scenario. In chapter 3 of (J.Han,

J.Pei, M.Kamber 2012), is a detailed description of the steps that could be done prior to the main

23

processing in order to have a better data quality which is defined in terms of accuracy,

completeness, consistency, timeliness, believability and interpretability. The main steps and

techniques are:

Data Cleaning – This method works to “clean” the data by filling in missing values, smoothing

noisy data, identifying or removing outliers and resolving inconsistencies. Each step has its own

methods:

Missing values – If it is noted that there are many tuples that have not recorded value for several

attributes, then the missing values can be filled in for the attribute by various techniques:

 Ignore the tuple – This is usually done when the class label is missing. However, it is poor

technique when the percentage of missing value per attribute varies considerably.

 Fill in the missing value manually – In general, this approach is time-consuming and may

not be feasible given a large data set with many missing values.

 Use a global constant to fill in the missing values – It is a simple technique that replace

all the missing attribute values by the same constant.

 Use the most probable value to fill in the missing value – This may be determined with

inference-based tools using a Bayesian formalism or decision tree induction.

Noisy Data – It is a random error or variance in a measured variable and it is resolved with some

data smoothing techniques:

 Binning methods – Smooth a sorted data value by consulting the values around it,

performing a local smoothing.

 Clustering – Similar values are organized into groups or clusters

 Combined computer and human inspection – Outliers may be identified through a

combination of computer and human inspection. Patterns whose surprise content is

above a threshold are output to a list. A human can then sort through the patterns in

the list to identify the actual garbage ones. This is faster than having to manually search

through the entire database.

24

 Regression – Involves finding the best line to fit two variables, so that one variable can

be used to predict the other. Using regression to find a mathematical equation to fit the

data helps smooth out the noise.

Inconsistent Data – In some transactions of data inconsistencies might occur that could be

corrected manually using external references. For example, known functional dependencies

between attributes can be used to find values contradicting the functional constraints.

Data Integration – Involves combining data from multiple sources into a coherent data store as

in data warehousing. This type of method requires an entity identification of each device, before

the integration of data, in order to know the data source and henceforth determination of the

nature of the data. Typically, databases have metadata (data about the data) that can be used

to help avoid errors in this step.

Data Transformation - This method involves consolidate appropriate data for mining. It can

involve four techniques:

 Normalization – The attribute data are scaled so as to fall within a small specified range.

 Smoothing – Remove noise from data by clustering, binning or regression.

 Aggregation – Aggregated operations are applied to the data in order to construct a data

cube for analysis of the data at multiple granularities.

 Concept hierarchy generation – Low level data (raw) is replaced by higher level concepts

through the use of concept hierarchies. Examples: transforming an integer that refers

to someone’s age into an attribute like young, middle-aged or senior; transforming the

name of a street in a city or a country.

Data Reduction – It is used to make the data analysis less complex and feasible in terms of time.

This method has been helpful in analysing reduced representation of the dataset without

compromising the integrity of the original data and yet producing the quality knowledge. The

main strategies of this pre-processing method are:

 Aggregation – Similar to the aggregation technique of data transformation

 Dimension reduction – Removed the amount of data if there are irrelevant, weakly

relevant or redundant attributes.

25

 Data Compression – Encoding mechanisms are used to reduce the data set size.

 Numerosity reduction - Smaller data representations by histograms, sampling or other

parametric models reducing the amount of data values.

 Concept hierarchy generation - Similar to the aggregation technique of data

transformation

To sum-up, data pre-processing refers to the cleansing and transformation of the data in the

early stage of data collection and before being pushed towards the data consumers and/or

persistence storage. In an IoT scenario, it is a key functionality to guarantee the reliability of the

data being collected. At the same time devices can generate huge amount of data to be

processed, so applying techniques to process only key data, will allow the system to improve

one’s efficiency and performance. Those techniques are introduced by the definition of a set of

rules, generally done by a user with administrative role.

2.2. IoT Deployment Scenarios

The growing popularity of the Internet and the availability of powerful computers and high-

speed networks as low-cost commodity components are changing the way we do computing.

This section describes the four possible deployment scenarios in IoT architecture for data

collection and their different applications in different purposes and domains.

In presenting the deployment scenarios, different considerations are made in the way data

sources and data consumers are integrated to form an IoT ecosystem. Firstly, is presented the

peer-to-peer model, which considers building the network among different data sources and

consumers with their own communication infrastructure. While, the others deployment models

make use of external communication (and/or processing) infrastructure such as cloud to form

the overall IoT ecosystem. Among these the first one is an architecture that lacks middleware

and each of the data sources utilize their own communication resources and other higher level

intelligence such as storage, processing, interoperability, etc. are all in the cloud. Subsequently,

it is shown two types of architectures that use software abstraction layer - middleware -

between devices and the cloud in different ways. In the first approach, the data collection

system has several middleware that share various types of processing capacity, so that in the

final process, the system achieves a particular purpose. In the second approach, corresponding

26

to the architecture implemented in this thesis, each system has a middleware that has all the

features that are required without being dependent on others.

2.2.1. Peer-to-Peer Devices

In general, in a P2P system every node acts as both a client and a server, providing part of the

system resources, in a non-hierarchical scenario. This means that no master-slave relationship

exists among the peers, and there is no central server responsible to store and administrate

exists because there does not exist any peer machine with a global view of P2P system. However,

with the advances in peer-to-peer technology began to appear slightly different architectures of

traditional, as depicted in Figure 9. The complexity is not in the machine (simply client computers

connected to the Internet) nor in the communication since all machines act autonomously to

join or leave system freely (Kahanwal & Pal Singh 2012), so the main issue is in the architecture

of the distributed control system, which can be structured or unstructured (Doulkeridis et al.

2007):

 Structured – A hash function is used in order to couple keys with objects. Then a

distributed hash table (DHT) is used to route key-based queries efficiently to peers that

hold the relevant objects. In this way object access is guaranteed within a bounded

number of hops.

 Unstructured - Each peer maintains a limited number of connections (also called links)

to other neighbouring peers in the network. Searching in an unstructured P2P

environment usually leads to either flooding queries in the network using a time-to-live

(TTL) or query forwarding based on constructed routing indices that give a direction for

the search.

Hybrid Peer-to-Peer System

The major shortcoming of purely peer-to-peer systems is scalability issues and the poor

performance during query processing. Therefore, except of purely decentralized architectures,

also hybrid systems were proposed which can be divided into (Doulkeridis et al. 2007):

 Centralized indexing systems - there is a central server facilitating the interaction

between peers and a centralized index is built at this specialized peer. The centralized

index keeps information about the data stored at each peer, together with the peer

identifier. Therefore, centralized indices are efficient during query processing; a single

27

message is required to determine which peer stores relevant information. Notice that

the actual sharing of information between peers is established by communication

between the peers, without interaction with the central server. Despite the efficiency

during query processing, centralized indices have a major drawback, namely they

constitute a” single point of failure”. Moreover, the centralized index may become a

bottleneck for the system, especially in the case of a large P2P network.

 Decentralized indexing systems – Also known by Superpeers, this architecture tackle the

scaling and the “single-point-of-failure” problems of centralized approaches, while

exploiting the advantages of the completely distributed approach, where each peer

builds and maintains an index over its own files. These systems are similar to purely

decentralized systems (if only the Superpeers are considered), but some of the peers

have a more important role, and are responsible to maintain the information available

at their associated peers and facilitate the interaction between peers. Super-peer

networks take advantage of the heterogeneity of peer capabilities (e.g., bandwidth,

processing power) and peer application in a P2P network, once can have different roles

by nature, similar to the case of file-sharing, where some machines are registered as

dedicated servers to the system, while others are plain personal computers that mostly

request information. Furthermore, in order to respect peers’ autonomy, any approach

should not rely on arbitrary data movement; hence each peer joining the network

should autonomously store its own data. Therefore, super-peer architecture appears

particularly suitable for applications that require efficient performance for advanced

query operators; hence we model our distributed system as a super-peer network. The

overall objective is for a set of cooperative computers to collectively provide enhanced

processing facilities, aiming at overcoming the limitations of centralized settings, for

example extremely high computational and storage load.

28

Figure 9 Three different approaches in an IoT Peer-to-Peer scenario (Hota 2013)

2.2.2. Devices to Service Providers

In this type of scenario, there is a direct interaction between the sensor nodes and application

layer. Without using intermediary devices that regulate, transform or interpret the data before

integration into the business processes. The main objective of this class of data collection system

is, in general, focus data intelligence in a single infrastructure using “dumb” sensors, constituted

only by a layer hardware responsible between the communication of devices and the provided

services.

Making an analogy to the distributed computing systems, this scenario is similar to the idea of

cloud computing in IoT systems which is explained carefully and detailed in (Buyya et al. 2011).

The aim of this scenario is to concentrate computation and storage in large-scale data centres

by transforming everything as a service, such as hardware virtualization (decouples applications

from the underlying hardware) which mediate access between the physical resources and the

software layer as highlighted in Figure 10. The biggest advantage is the independence that

virtual resources have from each other and from the physical hardware (for instance, in case of

failure or capacity constraints), creating an abstract architecture easy to access for the

consumer.

29

Figure 10 Data flow between devices and Cloud (Brown 2014)

This data centre infrastructure can be shared by several customers without compromising the

privacy and security of each one, providing a pool of computing resources to serve multiple

consumers using a multi-tenant model as illustrated in Figure 11. The idea is to provide to the

customers the capability of request, customize, pay and use services (which are available over

the network and accessed through standard mechanisms by different platforms such as laptops

and mobile phones), automatically, without requiring interaction with providers or any

intervention of human operators (Mell et al. 2009). Although, the access of shared services is

cost-effective, it causes performance degradation and performance unpredictability. To close

this gap, it is possible to make this architecture auto scaling. In case of peak demand more virtual

machines can be quickly provisioned (on two or more physical machines) or rapidly released

when the work load decreases.

Figure 11 Interaction between the end-user and Cloud software services (TheOpenGroup 2013)

This system brings many advantages to IT companies, is based on the concept of utility

computing where consumers pay-per-use computing services (Gong et al. 2010), allowing to

30

deploy specialized virtual appliances in order to consider the great disparity between user needs

in a multi-tenant environment, similar to what is being done for utilities such as Electricity, Gas,

Water and Telecommunication. Furthermore, Cloud Computing brought cost savings for

consumers (eliminating the total cost of the entire infrastructure by sharing the cost of

electricity, hardware engineers, facilities management, system administration, fire protection,

insurance, etc) (Buyya et al. 2011).

2.2.3. Devices to Middleware to Service Providers

In computer systems distributed in IoT, this scenario has emerged in parallel with the concept

of Fog Computing. The aim of this architecture is to face the massive quantities of information

at any time, in any place and with any device that is extremely dispersed and produced by and

about people, things, and their interactions (Hajibaba & Gorgin 2014). In fact, big data, real time

analytics and localization was the main reasons to businesses requiring a new approach to

distribute all data and place it closer to the end-user, eliminate service latency, improve QoS and

remove other possible obstacles connected with data transfer (Aazam & Huh 2015). Figure 12

shows an example of an IoT architecture divided by layers whose middleware corresponds to

the gateway layer.

Figure 12 Example of an IoT Architecture with middleware (Harbinger Systems 2015)

The purpose of a middleware in a data collection system is not to remove some features of

service providers, but to add more functionality to reduce the complexity of some of those

services in order to reduce the amount of time, processing or storage in the Cloud. Middleware

is software that provides services to software applications beyond those available from the

31

Cloud providing common programming abstraction and infrastructure for distributed

applications. In generally, The Fog is located bellow the Cloud and his purpose is targets the

services, compute, storage, workloads, applications and big data with widely and truly

distributed systems (Aazam & Huh 2014).

Figure 13 Fog between the edge and the cloud (Amaravadhi 2015)

As depicted in Figure 13, it is an additional layer which develops the concept of Cloud services

bringing network resources near underlying networks (Hajibaba & Gorgin 2014; Aazam & Huh

2014). Services are hosted at the network edge or even end devices such as set-top-boxes or

access points in order to enabling creation of refined, better and optimize applications or

services. The creation of various edge points is turning data centre into a distributed Cloud

platform for different types of users, bringing the computing from the core to the edge (Hajibaba

& Gorgin 2014).

With the rise of interconnected devices and business scenarios around networked machines,

the infrastructure to maintain all things connected is being more complex. The aim of this

scenario is to have hierarchical organization from the core to the edges to support low latency

and scalability. This “extra layer” has more proximity of the data to the consumer extending the

Cloud services closer to mobile users (Bonomi et al. 2012). Another important characteristic is

the dense geographical distribution which is the reason of existing a large number of nodes, that

allows better support for location-based services as well as faster analysis of data in real-time

(Buest 2013). Associated to the large number of nodes with a wide variety of environments

appears the interoperability problem once the heterogeneity of devices at different levels

require certain services and applications provided by this scenario. Besides that, middleware is

used to be reliable and available, reducing application development and maintenance efforts

and also to provide a distributed computing.

32

Centralized or Distributed Middleware

In contrast of Cloud’s centralization, a middleware (layer located in the fog or local

infrastructure) provides localization, once the server belongs to the same network as the end-

users and have knowledge of each one becoming that information an advantage to customize

the optimization (Zhu et al. 2013). This scenario supports better real-time interactions,

actionable analytics, processing and filtering data by services implemented in the middleware,

and then pushes to the Cloud. In this way, user data is isolated from the Cloud and from there

administrators are able to tie-in analytics, security or other services directly into their cloud

model (Kleyman 2013).

The main difference between a centralized and a distributed middleware is the services provided

by them. In a decentralized system, the idea of having multiple middleware with different kinds

of capabilities (data filtering, complex event processing, secure data validation and trust

mechanism) is much more appreciate in terms of complexity and scalability. Moreover, the

functionalities and heterogeneity of the devices connected in the system could be enormous,

therefore, with this scenario it is possible to minimize the processing of a middleware once it

will be used only for the devices that require that particular service. However, in a centralized

IoT system that intends to have a specific purpose, a single middleware could be a better

solution once their variety of applications could be work together without losing functionality.

Depending on the purpose that an IoT system has, different solutions could be better than

others. Both of the sub-scenarios (single and distributed middleware) are being discussed in this

sub-chapter have the same goal:

 Hide the heterogeneity of the shop floor resources;

 Provide an independence location of the resources;

 Help integrate legacy facilities;

 Aggregate common functionalities needed by many applications.

Although they have the same objective, their use depends mainly to:

 The use that devices give of the applications presents in the hub;

 The processing capacity where the hub is implemented;

33

 The complexity and scalability that we want to implement in the system, having in

consideration further modifications.

In Figure 14 is illustrated both scenarios where in middleware 1 has data filtering capability,

while middleware 2 has capability for complex event processing and middleware 3 has secure

data validation and trust mechanism, and the functionalities are distributed among middleware

to achieve an overall full functional system. On the other hand, a single middleware is

independent from each other and every necessary functionality needs to be implemented in

each of them.

Figure 14 IoT middleware for data collection - Single or Distributed

2.3. Middleware Solutions for Internet of Things

As the IoT encompass a wide area of applications, middleware layers also have different domains

which might be covered and will be explained in the first sub-section. Subsequently, the current

solutions in the context of IoT will be presented. Finally, an analysis on the major challenges in

implementing middleware systems assessing their strengths and weaknesses is explained.

2.3.1. Domain

The middleware solutions can be categorized according to the involved domains into three

major categories (Chaqfeh & Mohamed 2012):

Hub with Several Middleware

Middleware 1

Filtering

Middleware 2

Complex Event
Processing

Middleware 3

Secure Data Validation
and Trust Mechanism

Hub with Single Middleware

Middleware

Filtering

Complex Event
Processing

Secure Data Validation
and Trust Mechanism

Devices

 Cloud

34

Semantic Web and Web Services

The main goal of semantic web is to make information understandable by machines, or things,

so that machines can perform intelligent tasks based on the meaning of information. This also

enables interoperability across semantic layer between devices and information. Furthermore,

semantic web solutions can provide context awareness applications where the search space for

the automatic discovery and service composition is reduced (Gomez-Goiri & Lopez-de-Ipina

2010). In addition, the semantic information supports better understanding to users, improving

their privacy decisions since they can compose numerous services.

RFID and Sensor Networks

A significant part of the IoT will be the sensor networks, since these devices can measure and

detect different types of environmental information by monitoring the physical world.

Intelligent context-aware networking is rapidly approaching the position of seamless networking

systems, where development of tiny sensors and actuators can easily perform in social support

services, including earthquake warnings, sensitive support to the emergency context and patient

monitoring and in large factory environments, smart houses and offices and automotive

networks. (Luckenbach et al. 2005).

Robotics

In general, the recent middleware systems does not lead to an evolution of a standardized

middleware for pervasive computing or intelligent environments (Roalter et al. 2010). In fact, it

is more challenging to provide such an interaction in the robotics domain, because moderate to

high mobility devices are not often considered. In addition, a fixed infrastructure is usually

assumed to construct an intelligent environment such as smart homes and cognitive offices.

2.3.2. Approach

A middleware platform for the IoT can have a multitude of functions, so a single solution that

can adapt all environments will probably not exist. In this perspective, different solutions have

emerged, such as:

Triple space-based

A triple space-based distributed middleware for the IoT is a semantic data, expressed by the

three items (the subject, predicate and object) defined in the Resource Description Framework

35

(RDF). Who registers the serviced in the assumed space is the service provider, while the

creation of an invocation and its advertisement is done by the consumer. Lastly, the service

provider will recognize a new event and retrieve the input data from the consumer and perform

the desired service (Gomez-Goiri & Lopez-de-Ipina 2010).

This particular approach aims to improve existing middleware triple space that already exists so

as to make it suitable for the IoT in order to enable the embedded and mobile devices to perform

this middleware. However, there are certain devices that cannot be part of the semantic

network took Peer-to- Peer, since it does not have the ability to implement the proposals

primitive, which could allow management services and complex queries. Importantly, in this

latter context, both the utility of the proposed middleware and the resulting applications are

limited. Even so, the triple space approach seems to perfectly fit the IoT environment, where

several objects are connected to each other so as to share semantic knowledge and interact.

Test Computing Framework

The solution previously presented, is an extension of Test Computing Framework, which focuses

on the interoperability of the semantic layer by following three steps. Firstly, semantic services

are generated according to the various devices discovered by the middleware. Then, users are

enabled to build tasks as service compositions using a semantic user interface. Lastly, the task

(which is a workflow of services) is completed by executing the devices. This approach has the

advantages of semantic web approaches such as meaningful information to users, context

awareness to applications and interoperability.

UBIWARE

UBIWARE is conjectured to provide support services in collaboration with heterogeneous

resources and semantic communication services. In (Katasonov et al. 2008), this solution will

enabling different components to configure complex functionalities based on the agent

technology and to automatically discover each other. The advantages of this solution undergo:

 Service discovery in a decentralized manner;

 Negotiation-based integration of services;

 Possibility to allow the mobility of services between different platforms;

 Utilization of suitable communication protocols.

Furthermore, interoperability is also possible using metadata and ontologies. The agent is

responsible for making decisions, discovering the requests, requesting external help when

36

needed and monitoring the state of the resource. An adapter or interface is used to connect the

application with its software agent and may include semantic and adapter components, sensors

and actuators, and data structures, as required.

The main issues that must be solved in UBIWARE are (Katasonov et al. 2008):

 The representation of mechanisms for the distributed resource histories;

 Design of the agent platform;

 Configurability and security;

 Techniques for information sharing among agents;

 Automatic discovery of other resources in a peer-to-peer fashion.

SOA approach

Service Oriented Architecture (SOA) as the approaches proposed in (Spiess et al. 2009), are the

basis of promising middleware solution, in which each device provides its functionality as

standard services, while the discovery and invocation of new features can run simultaneously.

The advantages of vertical SOA-based integration undergo reduced the effort and cost required

for the recognition of new business scenarios since no device drivers or third-party solutions are

required. The proposed architecture supports open and standardized communication through

different services for service management, device management, application interface, security,

devices layer and platform abstraction.

SOA may offer a promising approach, since it is expected that millions of devices interconnect

and cooperate in order to provide and consume services. This solution states that each device

provides a co default set of services and which is capable of services from other devices in

consumer demand.

Global Sensor Networks

Global Sensor Networks (GSN) is another solution. The architecture of GSN follows a container-

based model, in which each container hosts and manages a number of virtual sensors

simultaneously, that is able to communicate with each other in a peer-to-peer fashion. The

identification and the discovery of virtual sensors are made through metadata (Aberer et al.

2006). On one hand the design of the GSN (Aberer et al. 2006) provides four main advantages:

scalability, adaptively, light-weight implementation and simplicity. On the other hand, it also

presents three major disadvantages:

37

 Transducer Electronic Data Sheet (TEDS) provides only the information necessary for the

interaction with the sensor, not dealing with storage, resource management and

security;

 The requirement of human intervention;

 It is assumed an IEEE 1451 compliant sensor, which provides a Transducer Electronic

Data Sheet TEDS that is stored inside the sensor to provide a simple semantic description

of its properties and measurements.

Fosstrak

This middleware solution is a project based on open source RFID platform (Fosstrak 2009), that

is focused on the management of RFID related applications. In (Schmidt et al. 2009), the authors

propose a general Tag Data Translation (TDT) system that extends the standard of EPCGlobal

which only targets Electronic Product Code (EPC).

The objective of this system is to provide advanced data translation techniques by integrating a

set of existing technologies for identifying items. The significant advantage of such a system is

that it can offer a way to design a unified architecture of RFID middleware for the IoT

encompassing existing useful standards. Nevertheless, integrating more standards is still

required to conform to the system objective.

TinyREST

TinyREST focus on how sensor networks can be integrated with the Internet through a

framework (Luckenbach et al. 2005). It is a sensor-enhanced middleware for Internet-based

access to different types of sensors and actuators that may support different application

domains. This approach has the advantage of conforming to the most widespread internet HTTP

standard, in addition to enhancing human-device interaction.

This solution moves a step forward to the full integration into the smart environments test bed,

by proving its concepts in home automation and facility management. However, further steps

are required for the development of application scenarios to make use of the proposed Internet-

integrated sensor network environment.

Robotic-based

The potential of a robotic-based middleware for distributed, heterogeneous, sensor-actuator-

based, communicating intelligent environments and the IoT is enormous (Roalter et al. 2010). A

38

successful application based on two existing middleware architectures from the robotic domain

are: Play/Stage (Collett et al. 2005) and Robotic Operating System (ROS) (Quigley et al. 2009).

2.3.3. Synthesis

The technical challenges of designing middleware systems for the IoT include interoperability,

scalability, abstraction, spontaneous interaction, unfixed infrastructure, multiplicity, security

and privacy. Table 3 (Chaqfeh & Mohamed 2012) show the highlighting list of challenges

considered.

Table 3 Challenges in middleware approaches for IoT

Domain Semantic web and web services Sensor

Networks and

RFID

Robotics

Approach

Ta
sk

C
o

m
p

u
ti

n
g

Fr
am

ew
o

rk

Tr
ip

le
 s

p
ac

e-

b
as

ed

U
B

IW
A

R
E

SO
A

A
p

p
ro

ac
h

G
SN

Fo
ss

tr
ak

Ti
n

yR
ES

T

R
o

b
o

ti
c-

b
as

ed

Interoperability ● ● ● ● ● ● ●

Scalability ● ● ● ● ●

A
b

st
ra

ct
io

n

I/O hardware

devices

 ● ● ● ● ●

H/S Interfaces ● ● ●

Data Streams and

Physicality
● ● ● ● ● ● ● ●

Development

Process

 ● ● ● ●

Spontaneous

Interaction
 ● ● ● ● ● ●

Unfixed Infrastructure ● ● ● ● ● ● ●

Multiplicity ● ● ● ● ● ● ●

Security and Privacy ● ● ● ●

39

3. Hub Architecture

This chapter presents the concept of the middleware that has been developed in this

dissertation. In the first section is presented an overview of the architecture. In the following

sections is presented the details of the concepts that have played vital role in the

implementation phase. Finally, application scenario is presented, which presents a vision for the

application of the middleware solution utilizing different types of sensors that have been

considered during the experimentation of the implemented solution.

3.1. Overview

In an industrial IoT scenario, there are many sensors and actuators that interact with the

machinery. Each sensor and actuator is attached to a microcontroller that is responsible for

acquiring the data or controlling a switch through a pre-defined instruction set. The

microcontroller — along with the sensors, power unit and a radio antenna — is called a sensor

node. It is a self-contained, deployable unit that captures the data generated by sensors.

In general, the sensor node does not have enough processing power, memory, and storage to

deal with the data locally as the case of the microcontroller used in this thesis. So, it’s necessary

to communicate with devices capable to deal with that. In this dissertation the device chosen to

implement the hub was a Raspberry Pi that acts as an aggregator of multiple raw datasets

generated by the sensor nodes.

This IoT framework has the capability to deal with two major problems:

 To transform and normalize the data. The datasets generated by the sensor nodes will

be in disparate formats. The gateway acquires heterogeneous datasets from multiple

sensor nodes and converts them to a standard format that is understood by the next

stage of the data processing pipeline.

 Protocol transformation. It supports multiple communication protocols for accepting

the inbound data sent by the sensor nodes. It uses a REST service for the outbound

communication, sending the data to a process running in the cloud.

40

The framework for IoT-based continuous data collection from supply network resources

includes a methodology and set of tools capable of collecting and pre-processing data from

different sources and push them towards the cloud service i.e. Data Collection Framework

(DCF). All the data consumers then can uniformly access the data through the APIs provided

by DCF, without having to understand the details of the data sources. The architecture

developed took account the scalability, interoperability, adaptation and plug-and-play

functionality between the sources and the hub. The Figure 15 illustrates the IoT framework

architecture.

Figure 15 IoT Middleware Information Flow

In general, the three main components of IoT hub shown in Figure 15, have different purposes

that could be briefly distinguished:

41

Protocol Adaptation - This component is responsible for providing seamless communication

between IoT devices located at shop floor and other components of IoT hub. The main

functionality to be provided by this component is to allow connectivity for various devices with

different communication standards and request/response paradigm for devices integration into

the IoT hub. Major functionalities provided by the communication component are:

 Provide an interface for communication with the IoT devices;

 Creation and management of necessary communication channels (together with device

management component) and provide message routing when necessary;

 Provide implementation for communication protocol conversion between the external

protocols and the internal communication protocol.

Device Management – This component contains core management functionality of the IoT hub

and handles creation of necessary communication channels between devices and IoT hub and

IoT hub and DCF. This component includes the functional sub-components to handle the

registration/connection of devices and their identification. The respective details of the device

like native communication protocol, device type, data type etc. are collected from the meta-

data of the device from the details stored in the DCF. At the same time, other important

objective of this component is to deal with the connectivity status of the devices. On the whole

this component keeps all the information about the different IoT devices registered and

connected to this IoT hub, providing information about the identifier of the device,

properties/capabilities of the device, registration and connectivity status of the device, working

status of the device and, authentication and authorization policies for device.

Data Handler - The IoT hub is the entry point of data from IoT resources. That means that this

module will then consume a huge amount of data coming from external sources. It is mandatory

to provide a module where data could be filtered, aggregated or merged allowing applications

to consume only specific/value-added data or pre-processed ones. Data handling module will be

responsible for providing such functionality. Data Handler Factory addresses the need for

filtering real time data being collected from the heterogeneous sources, thus providing pre-

processed data to DCF. Data handler pre-processes the data based on understanding the context

of the device and data processing constraints defined by the end users. Note that this

component will be designed in such a way that new implementations necessary for data

handling can be easily integrated into the Data Handler Factory. However, it is important to

42

emphasize that IoT hub intends to be a lightweight infrastructure with low processing capacity,

so the chosen technique to pre-processed data should be effective.

To summarize, IoT Hub collects data from the shop floor IoT resources, pre-processed and

provide it with the expected format to DCF. Outputs of IoT hub are data streams, which are

defined as “a sequence of digitally encoded signals used to represent information in

transmission.” - Federal Standard 1037C1. In the scope of IoT hub a data stream is a set of

timestamped relations, i.e. each element of the data stream consists of a set of tuples. The order

of the data stream derives from the ordering of the timestamps and the IoT hub provides

support to manage and manipulate these timestamps.

This way it is always possible to trace the temporal history of data stream elements collected

through IoT hub. It allows IoT hub to be the central observation tool for the physical world, in

which network and processing delays are inherent properties of the observation process, which

cannot be made transparent by abstraction. The data collected by IoT hub should be pre-

processed in order to filter out unnecessary and faulty data and this process can be achieved by

several techniques. Finally, this pre-processed data will be provided to the Data Collection

Framework through the DCF API for further processing.

3.2. Concept

In order to understand the general operation of the IoT hub, this section defines the high level

flow of configurations, data and commands during the device addition, as well as the registration

and run-time phases for collection of data from devices. Figure 16 presents the view of the

methodology to address the real time data collection from real world resources via IoT Hub, with

distinction between device registration and run time phases and control, data and

configurations flow. Data flow is represented by the flow of data from producers to consumers;

commands flow presents the actions that each of the components pass between each other at

different phases to invoke specific functional implementations while configurations flow is the

flow of configuration details for all the devices to be connected to the IoT hub.

The overall flow of Figure 16 is explained by the following steps. In order to add and register a

device in the IoT Hub, a conjunction of manual and automated interactions occur (1. and 2.)

1. The IT company personnel firstly create a new instance of the resource (IoT device) that

he wants to connect to platform. This step is performed at the DCF, where he provides

43

the details, including protocols, port, behaviour, data type etc. The instantiation of the

device also includes providing contextual details like the location of the device and data

handling constraints;

2. Following that registration activity, the DCF main component automatically provides the

IoT Hub the necessary information for device identification, behavioural properties and

data handling;

3. After registration, IoT Hub is ready for collecting data from the resource. Communication

component provides necessary implementation for communication between device and

IoT Hub. During run-time, devices are provided with communication channels based on

their communication protocols;

3.1. During the process of communication, the communication component works

together with the device management to identify the communication protocol of the

device, and creation of respective communication channels. At the same time this

step is also used for the runtime authentication and authorization of the device;

4. With successful creation of the communication channel and security check, the data is

forwarded towards a data handler for pre-processing of data (to filter faulty data);

4.1. Data handler component interacts with the device management to retrieve the

necessary rules and device properties to perform data filtering;

5. Pre-processed data is published to DCF message queue for further processing and

persistent storage;

6. Data consumers can then query DCF to request data collected from the real world

resources.

44

Figure 16 Methodology for addressing the real time data collection from real world resources

3.3. Application Scenario

The deployment of this middleware in an overall perspective is presented in Figure 17. It should

be clear that IoT Hubs are going to be deployed in the private infrastructure of the industries,

having direct connection to their IoT networks. This, means for the business scenario involving

number of industries, the industries will have independent IoT Hubs deployed on their private

premises. The integration between data collected by these independent hubs are performed by

the cloud services.

IoT Hub

Device
Management

Data Handling

Communication

Data Source

Data Consumer IT Company
Personel

 Data Collection Framework

1

2
5

4.1

3.1

6

4

3

45

 …

Figure 17 Middleware Model's Deployment

The fact that IoT Hub is configurable and extensible according to each company requirements,

allows to easily add and configure new devices from each pilots’ networks. These properties

provide the IoT Hub with the desired scalability to handle the constant growing and diversity of

company’s IoT devices.

For the implementation of the IoT Hub it is necessary to understand the IoT devices and the data

that needs to be collected from each Pilot. The next table summarizes the different contexts

that data collection can reach, as well as purpose in an industrial environment consideration in

Table 4.

IoT Hub IoT Hub IoT Hub IoT Hub

 Cloud Services

 (Data Collection Framework)

46

Table 4 Examples of context data collection

Data Objectives

Quantities Drugstore inventory planning and monitoring

Position/Location Product path within the facilities

Packaging Route

Delivery Order, Time and Date Measure stops duration in distribution

Component Batch Waste and spare parts inventory management

State of the Machine Measure stops duration in production

Speed Production status

Worker Performance Non conformities management

Workstation Downtime Production planning

Energy Consumption Monitoring the energy consumption of Test Area

Temperature and Humidity Production line monitoring and control

Production Station Product/material traceability

Processing Time Delays

Origin of raw material Product quality management

Product Details Storage location and space optimization

3.3.1. Smart-Shopfloor Scenario

The functionalities of a smart system that is able to perform the management of the devices in

an industry is countless, and each software specifications will depend on the specifications of

the implementation site. This dissertation objective is to demonstrate the applicability of

implementing an optimization process to the work quality of employees in a factory

environment, and thus justify the choice of sensors used on the system that has been developed.

Nowadays the environment of a shop floor is quite different from the one 20 years ago. The

progress of the machinery, especially on the efficiency and functionality, enabled the

exponential increase of the production capacity, which in turn meant the clients demanding

shorter deliver timelines. This increase of responsibility made a lot of companies to move the

technical work nearer to the employee direct contact, instead of being restricted to an office

space. The shop floor was no longer the machinery space but also become the office space.

Another huge contributor to this change was the unfolding of the product complexity, and

consequently the production lines that started to include different phases, as design, software,

and hardware, among others. This new business/production model required the constant

interaction between each group/element responsible for its share of the end product and

47

gathering all parties within a single space translated in an increase of the productivity through

enhanced communication among team members which in turn affected the output. As a result,

the control in the shop floor environment increased considerably through the detailed

management of activities and the flow of materials inside the plant, including employees,

materials, machines, and production time.

On another hand, to keep up with the technology efficiency it is necessary to ensure a

proportional efficiency in the workforce, offering them better work conditions. As the physical

boundaries are being bridged, a complex and competitive world focuses on innovation and

creativity is being developed. A smart shop floor now is one that ensures the optimal and

effective utilization of physical infrastructure and IT resources.

To build a smart shop floor is necessary to have an intelligent space that optimizes efficiency,

safety, comfort, system control and by collecting and analysing sensor data. In order to

interconnect different devices with different achievements, a smart shop floor will require

software with the ability to connect with everything – a middleware. It helps shop floor

managers to visualize information and make fast and precise decisions, through a management

system, increasing the employee’s productivity and decreasing the energy consumption and

operating costs.

For an illustrative example, let us consider three aspects that are directly related with the work

conditions in a shop floor, which are room temperature, luminosity and safety. For that purpose,

the sensors that can be chosen are:

 Temperature: this sensor is useful to guarantee the general comfort, in maintaining the

temperature and air circulation, in case it is connected to electrical windows or A/C;

 Photoresistor: this sensor will prevent the loss of visual capabilities caused by poor

illumination, it is also useful to turn on and off the lights, depending on the luminosity

levels;

 Ultrasonic: considering that in a plant we have people and machines working side by

side, it is of utmost importance to guarantee the safety of all elements. Thus, this sensor

is responsible to measure the distances with the purpose of alerting the workers in case

they enter a restricted area for machinery only.

48

Now based on these sensors, we can build different conditions that be used for detecting and

providing immediate actions in the shop floor. Table shows the function that each sensor may

represent to ameliorate the three aspects mentioned.

Table 5 Analysis of selected sensors

Sensors Controlling action

Temperature Temperature LOW or HIGH Threshold then AC ON or OFF

Photoresistor Light Intensity LOW or HIGH Threshold then Bulb Auto

ON/OFF Ultrasonic Distance LOW Threshold then Alarm/Buzzer ON

Temperature and

Photoresistor

Temperature LOW or HIGH Threshold AND Light Intensity LOW

or HIGH Threshold then Fire Alarm ON/OFF

Temperature and

Photoresistor and

Ultrasonic

Temperature LOW or HIGH Threshold AND Light Intensity LOW

or HIGH Threshold AND Distance LOW Threshold signal that

the room is overcrowded and not safe for working

It is important that the table above presents only the simple test cases that can be detected by

utilizing few sets of sensors mentioned before. The simple use-case has been considered not

only for understandability but also to be aligned with the experimentation set-up for testing in

the lab environment (reported in details in section 5). The main purpose of these simple

scenarios is to demonstrate that he system implemented and the sensors used can be utilized

(alone and integrated) in a shop floor environment to detect some interesting situations. But, it

is important to note that the IoT middleware solution that has been developed in the scope of

this dissertation can support other types of sensors, thus providing the possibility for realization

of more complex scenarios.

49

4. Proof of Concept Implementation

In this chapter is presented the practical implementation of the middleware. The development

is based on the architecture explained in chapter 3. Before going into the details of the

implementation, the first section presents the requirements and functionalities of the system.

The following section presents the technology that has been used for the implementation the

proof of concept, explaining their purpose and choice. Subsequently, the characteristics of the

hub are explained in different modules.

4.1. Requirements and Functionalities

In this section, firstly we present the generic requirements that the IoT system should fulfil,

which have guided the overall architecture development and implementation of the middleware

solution discussed in this dissertation. It also presents the functionalities that have been

implemented along with some assumptions that have been made to realize the solution. This is

an important section for understanding the overall IoT system requirements and corresponding

functionalities that have been addressed in the proof-of-concept implementation.

Requirements

 The architecture of the system should be interoperable: The main idea of having a

middleware is, mainly, to facilitate the data acquisition from a huge diversity of devices

which can have a large heterogeneity in communication domain.

 The architecture of the system should be scalable: The system should be able to easily

expand as more devices are added and also facilitate the addition of other processing

techniques and security development levels. Another important advantage to increase

the scalability is its capacity to work in different platform systems.

 The middleware should be able to react to a failure: In a real world there will be always

situations more difficult or impossible to control once we not leave in a perfect

environment. So the main idea of this requirement is “obligate” the middleware to be

more robust to external flaws.

50

 The middleware should be able to pre-process data before sending it to DCF: One of

the main requirements of this lightweight middleware is doing a pre data filtering

according with specifications of each device.

 The middleware should be able to identify the data belonging to each device: Despite

of having lots of sensors coupled at the same smart device, the idea is to maintain the

independence of each one.

 The middleware should be capable to identify which devices are reliable: The data

collection is not made to acquire data of all kind of sensors. The architecture must be

done to choose which devices we want to insert in the hub.

 The system should be capable to store data until DCF’s request: The fundamental idea

of collecting data is using it for a determinate purpose. Since the final user are the

clients, these hold the decision of when the data information provided by the sensors is

important. So, the middleware must be capable to acquire sensor data all the time, but

only send it when is requested by the Cloud application.

 The system should guarantee data security: This is one of the main issues in our digital

world and not only in IoT systems. The idea is to provide data confidentiality, integrity

and availability. Since the main idea of this dissertation is to study and develop

mechanisms of pre-processed data in different communication protocols, the security

was not the main focus. However, this is a complex and very important requirement in

every IoT system.

Functionalities

 Data collection is done only by known devices: The middleware receives a message

that contains the device’s characteristics that is going to be registered and only after

that is created the channel communication that allows the acquisition of data.

 The middleware is capable to collect data from devices with different communication

protocols: The middleware was developed with the ability of collecting data by sensors

connected with three different communication protocols.

 The middleware is prepared to easily add more communication protocols and more

pre-processed techniques: Each communication protocol is a Java Class, so if we want

51

to add more protocols (e.g. Bluetooth or RFID) we have to add the respective

dependencies and create another Java Class. The pre-processed techniques follow the

same strategy, however, this part will be dependent of the DCF’s message once the

characteristics of filtering of each device are sending by the Cloud.

 The middleware has a bidirectional communication with the Cloud and unidirectional

communication with devices2: The bidirectional communication is for middleware

receive device’s information from the Cloud and then send the data collected. The

unidirectional communication is in the direction of data flow, devices to middleware.

 The middleware stores each device’s data independently from each other: Each device

has its own stack where data is stored, in memory, before it is sent to the DCF.

 The middleware store device’s information after switched off: After received by DCF,

this information is saved in a file.

 The middleware guarantees a Plug&Play functionality: Since the moment that is

plugged in, the device launch automatically the software.

4.2. Technology Adopted

In this section it will be described and explained the technology used in this dissertation. Since

the development of this system is separate into a middleware and a sensor node, this section

divides the technology in two different parts: software and hardware. So, this section sets out

the technology used in the implementation of the hub and sensor nodes.

4.2.1. Software Technology

Middleware Software

The programme language used to develop this platform was Java. The main reasons for this

choice were its ease of writing, compiling, debugging and learning. It presents very useful

features such as the fact that is object-oriented, this allows the creation of modular programs

2 Since the proof of concept uses only sensors as devices, the communication with the middleware is

unidirectional. However, if the system is formed by sensors and actuators (that need to receive input

commands) it is perfectly feasible to have a bidirectional communication.

52

and reusable code. Also the capability of multithreading is an important advantage, allowing the

program to perform several tasks simultaneously within a program.

Moreover, the ability to run the same program on many different systems is crucial to World

Wide Web software, and Java succeeds at this by being platform-independent at both the source

and binary levels. This important aspect allowed to run the code on the computer (in NetBeans

IDE installed in Windows environment), allowing correct the errors in a more effective way and

testing it before inserting the program in the device (in Linux environment). In fact, this induces

further advantage of this programming language, its reliability, once Java puts a lot of emphasis

on early checking for possible errors, as Java compilers are able to detect many problems that

would first show up during execution time in other languages. Another important aspect for this

choice of language was security. Although it is not considered a main focus in this dissertation,

Java considers security as part of its design. The Java language, compiler, interpreter, and

runtime environment were each developed with security in mind.

In the code transfer was used FileZilla3 program, which greatly facilitates the communication

and files transfer between computer and the device in which was built the hub. Widely used in

the access of the device from the command line was Putty software.

Dependencies Usability

The implementation of the project required the use of some Jars, library Jars and other specific

Artifacts4. The local repository used was Maven (could be three types: local, central or remote

repository) that keeps all the dependencies used. When a Maven build command is executed, it

starts looking for dependency libraries in the following sequence:

 Step 1 - The first place to search is in local repository;

 Step 2 - If not found locally, the search will be extended to the central repository. If not

found there are two options: a remote repository has been mentioned – Step 4 or not -

Step 3;

3 FileZilla Client is a cross-platform FTP, FTPS and SFTP client with lots of features and an intuitive

graphical user interface.

4 An artifact is something produced by the software development process, whether it be software

related documentation or an executable file – Jar.

53

 Step 3 – If a remote repository has not been mentioned, Maven simply stops the

processing and throws error;

 Step 4 – Search dependency in remote repository, when it is found it is downloaded to

local repository for future reference.

Sensor Nodes Software

The sensors used were coupled, each of them, to a microcontroller responsible for reading the

input (sensor) and turn on output for subsequent delivery. To this end, it was used the Arduino

Programming Language, based on wiring, and the open-source Arduino Software (IDE), based

on processing. The programming language used was C++.

The implementation of sensor nodes’ communication in Arduino IDE required the addition of

appropriate libraries for each protocol:

 The Serial communication, as having no hardware layer connected to Arduino, not

required extra libraries.

 In Wi-Fi communication, it was integrated a CC3000 shield to Arduino, whose use

required the addition of the respective files.

 However, in ZigBee implementation, in addition to the required libraries, it was

necessary to connect the ZigBee Arduino’s shield – router – with the ZigBee module

connected to the Raspberry Pi - coordinator. For this, it was used the XCTU program,

from Digi International.

4.2.2. Hardware Technology

Arduino

Arduino is an open-source prototyping platform based on easy-to-use hardware and

software. Arduino boards are able to read inputs - light on a sensor or a finger on a button - and

turn it into an output - activating a motor or turning on an LED. All Arduino boards are completely

open-source, empowering users to build them independently and eventually adapt them to

their particular needs. The chosen board for this thesis was the most common: Arduino Uno R3.

There are many other microcontrollers available for physical computing. Parallax Basic Stamp,

Net media’s BX-24, Phidgets, MIT's Handy board, and many others offer similar functionality. All

https://www.arduino.cc/en/Main/Products

54

of these tools take the messy details of microcontroller programming and wrap it up in an easy-

to-use package. Arduino also simplifies the process of working with microcontrollers, but it

offers some advantage over other systems, such as:

 Inexpensive - Arduino boards are relatively inexpensive compared to other

microcontroller platforms.

 Cross-platform - The Arduino Software (IDE) runs on Windows, Macintosh OSX, and

Linux operating systems. Most microcontroller systems are limited to Windows.

 Simple - The Arduino Software (IDE) is easy-to-use for beginners, yet flexible enough for

advanced users to take advantage of as well.

 Open source and extensible software - The Arduino software is published as open

source tools and the language can be expanded through C++ libraries.

 Extensible hardware - The plans of the Arduino boards are published under a Creative

Commons license, so experienced circuit designers can make their own version of the

module, extending it and improving it.

Raspberry Pi

A Raspberry Pi is a small device with an affordable price and works quite similar to a computer.

It is open hardware (with the exception of the primary chip), which runs many of the main

components of the board – CPU, graphics, memory, the USB controller, etc. These devices were

developed with the goal to create a low-cost device that would improve programming skills and

hardware understanding. It is slower than a modern laptop or desktop but it can provide all the

expected abilities that implies, at a low-power consumption level. Additionally, Raspberry Pi has

the advantage to have a large number of people who might be able to help if you have any

question regarding a project that you are working on because of the large reach of the

community. This is the big difference between choosing this device to any other available on the

market such as Allwinner A10 or CuBox. The available board to work in this thesis was the

Raspberry Pi 2 Model B.

Sensors

The sensors used in the implemented system were:

55

 Temperature – The sensor used was TMP36 and it has three output pins: +Vs, Vout and

GND. This sensor is low voltage (+2,7V to +5,5V) precision centigrade temperature.

Provides a voltage output that is linearly proportional to the Celsius temperature and

does not require any external calibration to provide typical accuracies of +-1ºC at +25ºC

and +-2ºC over the -40ºC to +125ºC temperature range. TMP36 provides a 750mV

output at 25ºC and has an output scale factor of 10 mV/ºC.

 Ultrasonic - Ultrasonic ranging module HC - SR04 has 4 output pins: Vcc, Trig, Echo, GND.

This module provides 2cm - 400cm non-contact measurement function, the ranging

accuracy can reach to 3mm. The modules include ultrasonic transmitters, receiver and

control circuit. The basic principle of work:

o 1) Using IO trigger for at least 10us high level signal,

o 2) The Module automatically sends out an 8 cycle burst of ultrasound at 40 kHz

and detect whether there is a pulse signal back.

o 3) If the signal back, through high level, time of high output IO duration is the

time from sending ultrasonic to returning.

It is possible to calculate the range through the time interval between sending trigger

signal and receiving echo signal. Formula: the range = high level time * velocity (340M/S)

/ 2. For this kind of sensor, it is suggested to use over 60ms measurement cycle, in order

to prevent trigger signal to the echo signal.

 Photoresistor – The sensor used is a light dependent resistor (LDR) photoconductive cell

VT900 Series. The resistance decreases with increasing incident light intensity. A

photoresistor is made of a high resistance semiconductor. In the dark, it can have a

resistance as high as several mega ohms, while in the light, it can have a resistance as

low as a few hundred ohms.

In Figure 18 is depicted the developed hardware system, in order to clarify the integration of the

elements earlier described. Since the circuits implemented were simple, the breadboard

presented in the figure was used for photoresistor and temperature circuit at the same time.

However, they are completely independent from each other. The ultrasonic sensor did not

necessitate an auxiliary breadboard because the outputs pins of the sensor (two digital ports,

VCC and GND) were directly attached to the Arduino’s Wi-Fi shield. The Wi-Fi dongle and the

https://en.wikipedia.org/wiki/Electrical_resistance
https://en.wikipedia.org/wiki/Semiconductor

56

Zigbee coordinator were the physical devices attached to the Raspberry Pi (where middleware

runs) responsible to connect with the ZigBee and Wi-Fi shields. In order to facilitate the system

understanding, the serial cable responsible to connect the temperature sensor node to the

Raspberry Pi was not introduced in this figure.

57

Figure 18 Implementation of the physical system

Legend:

 Data flow between sensor node and middleware

 Hardware system entities

 Hardware dongles communication – Wi-Fi and Zigbee Coordinator

Arduino with Wi-Fi shield and ultrasonic sensor
Arduino with temperature sensor
Arduino with ZigBee Shield (Rooter) and photoresistor ultrasonic sensor
Raspberry Pi 2 - Middleware

58

4.3. IoT Hub Detailed

In this section we will present the details on IoT hub, which acts as the intermediate solution

between the shopfloor devices and cloud service. It is to be noted that even though the overall

solution is implemented as one java project, the idea is to describe each module separately

facilitates both the understanding and scalability for further enhancements. Lastly, it is

presented the synthesis of the global system’s modules along with the interactions between

modules in the hub as well as a sequence diagram of the system that represents a detailed view

of the interactions between the internal components (clearly marked in Figure 19).

4.3.1. Controller

This package is constituted by three Java classes responsible to manage devices’ data and post

it in the cloud:

DataPoster – Responsible for sending the information of th5e conglomerate of devices to the

cloud. Only one DataPoster object is created. This object is then shared by all the listeners. When

a measure is received by one device, the DataPoster is informed, that measure is added to data

structure with key/value (Device ID/Measure) and check if it is time to send that information. If

it is not, remains idle. Otherwise, retrieves all the information from that data structure, with the

help of Json’s message builds the message in a correct way, calls object Monitoring to monitor

the hub at that point in time and when it has all this information, then posts to a server it via

http post.

DeviceManagement – Core Implementation for managing the devices. The steps are:

1) Initialize the registered listeners (available data listener are added in the

Resources/configs.xml). This is done using DataListenerFactory, a class that follows the

factory pattern5;

2) Initialize the registered devices (received by DCF). Available devices are in

Resources/devices.txt. This is the trick to deal when the machine is off. The devices are

written in a file, since the implementation of a lightweight Hub does not allow (although

it is possible) storing any information in a local database;

3) Add each device to its own listener;

5 It can be explained in (Object Oriented Design 2016).

59

4) Monitor the overall life cycle of a device added on the hub.

FileChangedWatcher – Implementation of ChangeListener that will allow us to monitor the

Resources/devices.txt. The file devices.txt is used to store all the details of the devices that have

been added to the hub via DCF. When the file undergoes any modification, this class notifies

DeviceManagement to the initialization of new devices. The changes occur in this file whenever

the system admin adds/deletes/updates the device details via the interface provided in the DCF.

RESTservice – This class launch the REST service to receive the information from DCF - hub’s

configuration. Upon receiving a Json’s message from some link (for instance, localhost:

3000/DCFconf), it proceeds with an analysis of its content and verification that is indeed a

message that comes from DCF. If passes the validation builds a string with the extracted

information to be written in the configs/devices.txt with the FilerReader object.

4.3.2. Data Listeners

This package is constituted for the communication protocols supported by the hub. To authorize

the devices registration in the hub, each protocol checks the received ID in DCF’s message. This

ID is used to query data structure of the channel, using the contains method. If data structure

has the ID, the system proceeds as explained below. If not, the values received are eliminated.

Serial – This class initialize data listener serial port where the Arduino is attached. As in Linux is

impossible to listen the Arduino ports directly, it takes a symlink to another port of my choice

(e.g. /dev/tty63) and then is synchronized. It is made the connection with serial port and set the

serial port parameters (such as data rate, data bits, stop bits and parity none). Finally, the system

starts to listen if there are data transmission in that port. If not, it remains in loop until some

data appear in that port.

ZigBee - Instantiates a new object physically connected to the given port name (e.g. /dev/ttyS88)

and configured at the provided baud rate. From the device is necessary to know the serial port

name where XBee device (the coordinator) is attached to and the baud rate to communicate

with the sensor node. Other connection parameters will be set as default (8 data bits, 1 stop bit,

no parity, and no flow control). This class has an XBee message containing the remote XBee

device the message belongs to, the content (data) of the message and a flag indicating if the

message is a broadcast message (was received or is being sent via broadcast).

60

Wi-Fi - This class implements server sockets (by TCP protocol). A socket is an endpoint for

communication between two machines. A server socket waits for requests to come in over the

network (sensor node made a request to send data acquired). Then it is performed the

operations of filtering based on that request.

4.3.3. Models

This package is used for creating the model of the devices that are connected to the hub. This

class models of the overall IoT system by providing different types of properties (properties can

be complex ones such as device, monitoring etc. which themselves have properties defined

within themselves) such as:

DataField – This class implements concept hierarchy generation filter based on the information

in Resources/devices.txt;

DataRangeTypeLoHi – This class implements the data range filter based on the information in

Resources/devices.txt;

Device – This class keeps information about device such as id, name, protocol, datatype, range

and stack of measures. It is this class that prepares the string with the information required to

send to the DCF. The string messages from this object was overwritten in order to be structured

in a way that is ready to send to the DCF.

Measure – This class keeps value and timestamp of data collected. It belongs to Device’s class;

Monitoring – This class keeps track of hub status such as free disk, disk size, total ram, free ram

and CPU temperature. Linux keeps all your information on file and it was intended to make a

call to the operating system about the desired commands. More information can be acquired, if

necessary, in another application. This information is sent to a server for further analysis of hub’s

health.

4.3.4. Utilities

All Java classes responsible for reading files and preparing messages for sending or reading

information were implemented in this package, such as:

FilerReader – This class is responsible to read the information of Json’s message and store

devices’ information in a file Resources/devices.txt. It is called in DeviceManagement to initiate

the devices;

61

HttpUtils – This class is called in DataPoster. Its function is establish the connection with URL

server where Json’s message will be sent. The object belongs to dataposter and its simple

function is to curl the Json content to web server.

JsonMessage – Build the Json message to be sent to the server (with measure and monitoring).

This class is called in DataPoster to transform the information store in the string to a Json object

in order to be sent through the service REST;

xmlReader – Responsible to read the file Resources/configs.xml. This class is called in the

DeviceManagement to initiate the listeners.

4.3.5. Synthesis

In order to clarify the objective of the modules implemented inside the hub and its interaction

with outside components, in Table 6 is shown the major information flow in this system:

Table 6 Information flow between the modules of the system

Interaction Information Flow

Device / IoT Hub

Arduino starts to acquire analog inputs and transforming in digital

values;

Devices get connected to the IoT Hub;

Devices communicate to provide data via. Protocol Adapter depending

on the communication protocol of the device.

Inside IoT Hub

Communication component interacts with the Device Management

component to check authenticity of the device before starting collecting

data from it;

Device Management initiate the communication and devices listeners to

start the communication with sensor nodes. Device component updates

itself with a stack of data already pre-processed and defined by the DCF.

62

IoT Hub / DCF

DCF Resource Management communicates with the IoT hub to provide

the details of the resource instance being created;

IoT Hub communicates with the DCF Request/Response Message Queue

(API) to push data being collected into the DCF and to monitoring hub’s

health;

DCF communicates with IoT hub to update the devices registered in the

hub.

Specifically described and explained the internal operations of the hub implementation in the

earlier sub-sections, is shown in Figure 19, the sequence diagram representing the functionality

of the whole system encompassed around the developed middleware. This solution has

emerged based on the concept outlined in section 3.2 and also through the objectives that this

thesis intended to achieve. So, the mainly steps done by the system are:

1. Launch the DeviceManagement class;

2. Initialize the listeners. The xmlReader is called to read the settings in

Resources/configs.xml;

3. The listeners are launched using DataListenerFactory way. Every time that xmlReader

“send” a listener, DeviceManagement launch the DataListenerFactory to obtain the

channel communication. After that, the channel is initialized according with your

protocol adapter;

4. Initialize the devices. The FilerReader is called to read the settings in

Resources/devices.txt;

5. Each device is added to your own listener (according with communication protocol);

6. Launch RESTservice;

7. Execute the function MonitorForNewDevices that contains a FileChangedWatcher

object that is constantly monitoring the changes in devices.txt file, in order to initialize

new devices added (by DCF through RESTservice) in this file;

8. After the communication process is being done, the system starts to collecting data

coming from data sources;

9. The concept hierarchy generation and range filter are executed (by DataField and

DataRangeTypeLoHi, respectively);

10. After data filtering, is created an object Measure (with device’s ID and the value

collected) that will be added to the stack of this Device’s class;

63

11. The string containing device’s information is sent to DataPoster;

12. In DataPoster, if the time defined by DCF to send the message is reached, the string that

contains device’s information is conglomerate with the string responsible to Monitoring

(this class is executed at this point) the hub’s health.

13. The JsonMessage class is called in DataPoster;

14. Posteriorly, is sent the Json’s message (measure and monitoring) through a class called

in DataPoster – HttpUtils.

64

Figure 19 Information flow in IoT Hub

65

5. Testing and Hypothesis Validation

In this section the testing of implementation will be addressed by validating the requirements

and functionalities of the system. The testing aims to evaluate the level of confidence of using

the system in normal circumstances. However, since testing of realistic systems can never be

exhaustive because it is limited to a restricted period of time, it is not possible to ensure

complete accuracy of a system implementation. Testing can only show the presence of errors,

not their absence (Tretmans 2001).

To sum up, in this chapter will be presented:

 The methodology applied to the proof-of-concept implementation;

 The main tests performed based on the chosen methodology;

 The validation of hypothesis and the implemented concept.

5.1. Testing Methodology

The importance of testing is explicit explained in Volume 2 of (Marciniak 2002). In this book is

concluded that, as maintenance and upgrades of existing systems increase in number and depth,

a significant amount of testing will also be needed to verify the systems after the changes are

made.

In this perspective, there are number of methods that can be applied to guarantee the quality

of a deployed system. Testing is involved in every stage of software life cycle, but the testing

done at each level of software development is different in nature and has different objectives.

Mainly there are four key steps (Luo 2001):

 Unit Testing: is done at the lowest level. It tests the basic unit of software, which is the

smallest testable piece of software;

 Integration Testing: is performed when two or more tested units are combined into a

larger structure;

66

 System Testing: tends to affirm the end-to-end quality of the entire system, evaluating

its functionality;

 Acceptance Testing: is done when the completed system is handed over from the

developers to the customers or users. The purpose of acceptance testing is rather to

give confidence that the system is working than to find errors.

Based on the information flow, a testing technique specifies the strategy that is used to select

input test cases and analyse its results, as different techniques reveal different quality aspects

of a software system. There are two major categories of testing techniques, functional and

structural:

 Functional Testing: the software program or system under test is viewed as a “black

box”. Is evaluated by observing the box externally with no reference of its internal

details or implementation. The selection of test cases for functional testing is based on

the requirement or design specification of the software entity under test. Functional

testing emphasizes on the external behaviour of the software entity;

 Structural Testing: the software entity is viewed as a “white box”. The selection of test

cases is based on the implementation of the software entity. The goal of selecting such

test cases is to analyse each code line executed, at least one time, covering all possible

paths of execution, specific statements and branches. Structural testing emphasizes on

the internal structure of a computer program.

5.1.1. Testing and Test Control Notation

Testing research techniques leads to obtaining practical testing methods and tools. Progress

towards this achievement requires fundamental research, and the creation, refinement,

extension, and popularization of better methods. For this reason, the chosen methodology was

Testing and Test Control Notation (TTCN).

The Testing and Test Control Notation, previously called Tree and Tabular Combined Notation,

which is defined in (ETSI 2013), is a notation standardised by the ISO/IEC 9646-1 for the

specification of tests for communicating systems and has been developed within the framework

of standardised conformance testing.

67

Based on the “black box” testing model, the tests are defined through tables containing general

description, constraints, behaviour and verdict. In TTCN, the behaviour test is defined by a

sequence of events which represent the test per se. The sequence of events can be represented

by a tree with branches of actions based on the evaluation of the system output after one (or a

series of) executed event(s). Each event has its own respective level of indentation and can be

of one of two types, action or question:

 Actions are preceded by an exclamation point before its brief description, and represent

actions performed on the SUT;

 Questions are preceded by an interrogation point, and represent evaluations of the

output of the SUT after one or more actions are completed. Since the answer can be

positive or negative, multiple questions can exist at the same indentation level, covering

all possible outputs of the system.

After a completion of a TTCN test table a verdict must be deliberate: “Success”, “Failure” or

“Inconclusive”. This verdict is based on the sequence of events which travel through the tree,

and was conditioned by the outputs of the system and evaluated by the question events. Table

7 is a simplified example of a TTCN table test.

Table 7 Example of a TTCN test in table format (Tretmans 2001)

Test Case Dynamic Behaviour

Test Case: Conn_Estab

Purpose: Transport / Connection

Purpose: Check connection establishment with remote initiative

Behaviour Constraints Verdict

+preamble

 LT ! T-PDU-connect-request

 UT ? T-SP-connection-indication

 UT ! T-SP-connection-response

 LT ? T-PDU-connect-confirm Success

 OTHERWISE Failure

 LT ? T-PDU-disconnect-request Inconclusive

 OTHERWISE Failure

68

5.2 Testing Implementation

As explained in 5.1, there are two main techniques for testing: functional and structural.

Although both techniques were used, the structural test was performed during the code

development (using the tools provided by the IDE NetBeans). Thus, this section lists the

functional tests (intended to demonstrate the capabilities of middleware) resulting from a

subsequent acceptance of structural tests. In testing process of the architecture implemented

in this work, it was taken into consideration more specific criteria such as:

 Interoperability – between devices and the hub, as it is a key element in its

development;

 Recovery capacity – what is the hub’s behaviour when the communication wires are

physically disconnected, power is turned off or the devices and communication channels

are turned down;

 Performance - to determine how fast a feature of a system performs under a particular

workload, in order to validate that the system meets the expected response time.

To address the functional and non-functional testing of the implementation, all the models that

were explained in the section 4.3, will be demonstrated and followed by showing how the

middleware works. Figure 20 presents the main perspective of the tested system divided by five

layers (respectively from down to up: acquisition, transport, collection, transport and delivery)

where the data has to pass from the edge – sensor nodes, to the core – cloud platform.

69

DCF

Message Protocol REST/HTTP

Middleware

Communications

Protocols

Sensor Nodes

Figure 20 Technologies used for testing

5.3.1. Functional Tests

In the test definition, it is intended to describe the general purpose of the test implemented.

Later, in test execution, it is intended to demonstrate the different tests that have occurred and

that demonstrate the system reliability.

Test Definition

Since the goal is to test whether the data collection is carried out in a correct way, the only test

that serves associated with the ultimate goal is the functionality of the entire system, defined in

Table 8. The system fails if it is not established communication or data filtering is not being done

or not send data in the time set by DCF.

70

Table 8 Middleware Definition Test - Entire System

Collection of Pre-Processed Data from Devices to the Cloud

Test Name: System of Data Collected

Purpose:
Evaluate the sensor’s communication with the middleware and it capacity to
filter faulty data before sending to DCF

Line Number Behaviour Verdict

1 ! Reading detailed device information

2 ? Stablish communication with Sensor Node

3 ! Reading detailed device information

4 ? Filter sensor data and store data in the stack

5 ? Store unfiltered data in the stack FAIL

6 ! Reading detailed device information

7 ? Sending Data to the DCF SUCCESS

8 ? OTHERWISE FAIL

9 ? No data is received FAIL

Test Execution

As explained in the previous subsection, only a test that demonstrates the functionality of the

entire system serves to validate the whole architecture. However, the implementation was done

gradually, for several steps. Therefore, tests were performed to each unit/module developed.

The presented tests intended to demonstrate the system development order, with a gradual

increased complexity. First, it was tested the communication of each sensor and afterwards the

integration of all sensors and the respective data pre-processing. Is important to note that in

addition to the communication and processing, were taken into account three key aspects that

were tested and that increase the system reliability, which are:

 Beginning of data collection after registration of the device in the hub;

 Sending Data to the DCF in appropriate time.

The tests were executed several times with different inputs to verify the consistency of the

results. In Table 9 is shown the succinct conclusions of Test 5, since it is the test that includes all

features. It should be noted that

71

 Test 1: The simplest case to be tested occurred with the Serial. Since the communication

is done via cable, the data transmission is safer than other types of wireless

communication. So, it is easier to test if the problem is the implementation of the hub

and not the configuration between communication modules once they do not exist. To

test if data collected was real, the temperature sensor was heated by hand for a few

seconds to check that the values increased and then turned to decline to relatively

constant value that remained before being heated.

 Test 2: The second protocol to be tested was ZigBee. To avoid connection problems

between the communication modules relating to its operating range, the router was

tested at a maximum distance of 5 meters from the coordinator. Considering that the

router (the shield that communicate with Raspberry Pi coordinator) did not use the only

Arduino serial port, it was possible to verify the sensor data by the output window of

the Arduino IDE. Afterward, these values were compared with the values read by the

middleware. As in the first test, it was also verified the reliability of the sensor. During

data collection, the sensor was covered and uncovered, to see if the values were

changing in case of the sensor has more or less light shining on it.

 Test 3: The last protocol to be tested was Wi-Fi. In the test laboratory, the only network

available was the Eduroam (European network for the academic community) that

contains security services that made it impossible to connect the devices. The

alternative was to connect both devices to a network created by a smartphone – a

portable hotspot. As in the second test, to avoid range problems, the Wi-Fi Arduino’s

shield and the dongle connected in Raspberry Pi were placed to a maximum of 5 meters

from the hotspot to ensure that there were no range problems. The data collected by

the sensor was compared in the same manner as the second test. Finally, the reliability

of the ultrasonic sensor was also tested, towards and away of objects so that the sensor

could read different distances.

 Test 4: After testing the communication of all units separately, it was executed the

integrity test. The main objective of this test was to verify if there was no problem with

the three threads running simultaneously. Since the goal was to have sensors

completely independent and different from the others, the data collection was

performed with different sending times.

72

 Test 5: The last test to be executed was the system test. After the communication only

the data pre-processing strategies needed to be tested. In order to test data filtering,

was introduce in the system three devices with different purposes. It should be notice

that both filtering techniques was tested in all sensors. The test presented in Table

marks the first experimentation of the system test. The input 1 is protocol adaptation,

the method is connect both parts (input 2), the event is acquisition of data (input 3) and

lastly, the input 4 is the acquired data in the sensor node. The output 1 represents the

value received in the channel communication before the acquisition of data (always

none, obviously) and output 2 the data pre-processed, stored in memory, before being

sent to DCF. The devices’ characteristics were:

Serial

{"action":"add","id":225712,"name":"test10","dataType":"units","dataRange":{"lowerRang

e":0,"higherRange":100},"datafilterrule":{"dataFilterRule":"N/A"},"CommunicationListener

Type":"DataListenerSerialPort"}

ZigBee

{"action":"add","id":214713,"name":"test11","dataType":"units","dataRange":{"lowerRang

e"250:,"higherRange":600},"datafilterrule":{"dataFilterRule":"N/A"},"CommunicationListen

erType":"DataListenerXbee"}

Wi-Fi

{"action":"add","id":215785,"name":"test12","dataType":"units","dataRange":{"lowerRang

e":0,"higherRange":500},"datafilterrule":{"dataFilterRule":"N/A"},"CommunicationListener

Type":"DataListenerWifi"}

The dataType filter was tested in serial communication. In this case, the node is constituted

by the temperature sensor that provides values with decimals. Here we also tested the

concept of hierarchy generation. For instance, if sensor node reads 25,7 Celsius degrees, IoT

hub stores in memory 26 Celsius degrees.

In ZigBee communication was tested dataRange. The sensor measure values between 100

and 200 when a hand is put over the sensor instead of values near to 500. So, the lower

range of this device was 250. Which was tested to see if this values is eliminated for being

too low. The same procedure was performed for higher values.

73

In Wi-Fi communication the filtering process was not tested. This happens to be test case to

ensure that, both lower and higher range were set to be too low and high, respectively, in

order to include all values.

Table 9 Middleware Execution Tests - Entire System

Input Output
Result

(Test Definition
Line Number)

I1:
Protocol

I2:
Method

I3: Event
I4:

Sensor Node

O1:
E.R.b.e

O2:
E.R.a.e

Expected Actual

Serial Connect Acquisition 25,7 Celsius No Data 26 (7) (7)

Zigbee Connect Acquisition 138 units No Data No Data (7) (7)

Wifi Connect Acquisition 53 cm No Data 53 cm (7) (7)

5.3.2. Non-Functional Tests

In an IoT data collection system, an important non-functional requirement is the response time.

That criteria can be used to judge the entire architecture implemented and to change results

thought to be correct at the outset. Therefore, in Table 50 is presented the time response of the

communication stablished between the sensor node and the middleware when the system

works without problems, while in Table 61 is presented the time response when the devices are

switched off (for unexpected reason). In both of the tables, device’s communication are tested

in separate and in integrity with the other devices, in order to test the performance and the

efficiency of the architecture implemented. In Table 72 is presented the behaviour of each

sensor when the hub is restarted.

The “Real Time” that was taken account is seconds and the measurement was made with a

chronometer since the moment that the system starts until the moment that the first value of

each device appears in the window’s output of raspberry pi. In order to ensure more reliability

on the results, the tests were performed three times.

74

Table 50 Non-functional test in normal conditions

 Communication
Conditions

Test 1

(seconds)

Test 2

(seconds)

Test 3

(seconds)

Stablish Serial

communication

Single 3 2 2

Integrated 2 2 2

5S4tablish ZigBee

Communication

Single 4 5 4

Integrated 5 6 5

Stablish Wi-Fi

Communication

Single 51 48 50

Integrated 46 51 48

Table 61 Non-functional test in abnormal conditions

 Communication

Conditions

Test 1

(seconds)

Test 2

(seconds)

Test 3

(seconds)

Serial device restarting Single 2 2 2

Integrated 3 4 2

ZigBee device restarting Single 3 3 4

Integrated 4 4 4

Wi-Fi device restarting Single 49 47 48

Integrated 48 49 48

Table 72 Sensors' behaviour in an abnormal situation in the hub

 Protocol Test 1 (seconds) Test 2 (seconds) Test 3 (seconds)

Hub restarting
Serial 3 3 3

ZigBee 5 5 3

Wi-Fi 47 52 47

5.3. Hypothesis Validation

From the executed tests, the main conclusion that can be drawn is that the implemented proof

of concept successfully passed all the tests. The main improvement that is necessary to be made

from the observed tests is that the delay that occurred in the Wi-Fi communication to start

collecting data needs to be solved. This delay comes mainly due to the handshaking (about 20

seconds to connect in the network) and the request message sent to the hub (about 25 seconds

to find the IP address of the hub). However, after connection, this protocol works perfectly equal

to the other protocols. In final analysis, it provides a system capable to transmit the data from

the sensors to the cloud. The tests done to the system were designed taking into consideration

75

the problem characteristics presented in section 4.1. However, some features and

functionalities can be added and improved as it is explained in future works (c.f. section 6.2).

In summary, it can be concluded that the hypothesis formulated in section 1.3 is a valid

hypothesis, and that the created architecture is capable of handling with the objectives defined.

Furthermore, since the industrial target of this implementation was the SME’s, the proposed

middleware solution was achieved successfully once it fulfilled the main objectives and it was

able to collect data from sources and send it to the cloud, detecting and filtering the unnecessary

data. The main achievements are the realization of IoT middleware solution that allows

extendibility across different protocols and increase the dependability of the data collected by

eliminating faulty data at the source. At the same time the solution presented decreases

communication and processing overload between the data producers and consumers.

Another important aspect of the developed solution is affordability both from the perspective

of installation cost and resource consumption. In fact, the technology used is quite affordable.

The sensors and microcontrollers used are easily to acquire as well as the device to develop the

hub. This last one, despite of being affordable, has a considerable processing capacity, being

capable of supporting communication with multiple sensors and respective acquisition and pre-

filtering data for onward delivery to the DCF.

5.4. Scientific and Industrial Validation

The research results of this dissertation mainly the implementation has been performed in close

collaboration with GRIS, UNINOVA. The Group of Research in Interoperability of Systems (GRIS)

is inserted in the centre of technology and systems Uninova research institute, which belongs to

the Faculty of Science and Technology of Universidade Nova de Lisboa (UNL), and is part of this

project. Its main contribution is the scientific development and technological solutions in the

field of interoperability of systems and applications, to be subsequently used in industry

(Uninova 2014). Besides the industrial use-cases from the FP8-FoF project C2NET, the

implementation is based the following publication of the fellow researchers at GRIS, UNINOVA:

 Sudeep Ghimire; Raquel Melo; José Ferreira; Carlos Agostinho and Ricardo Gonçalves:

“Continuous Data Collection Framework for Manufacturing Industries”. OTM Workshops

2015: 29-40 (Ghimire et al. 2012)

76

 AGOSTINHO, C. et al., 2016. A Distributed Middleware Solution for Continuous Data Collection in

Manufacturing Environments, IESA-2016 Workshop on Cloud Collaborative Manufacturing

Networks (AGOSTINHO et al. 2016)

On the industrial validation front, this research work has been performed in the scope of C2NET

- Cloud Collaborative Manufacturing Networks – which aims to increase productivity, reduce

complexity for the decentralization of production systems, as well as to increase the reaction of

businesses to changing tools and optimization that the market demands. This project is mainly

directed to SMEs, due to the fact that it has scarce access to self-management as it requires

more advanced efficiency tools and help increase competitiveness systems (C2NetProject 2015).

The research results from this thesis are being applied in the industrial use-cases being

developed in the C2NET scope which can be understood in details from (C2NET Consortium

2015). C2NET is an ongoing project thus, actual industrial validation results are not available

currently.

77

78

6. Conclusions and Future Work

6.1. Conclusions

In an IoT paradigm, distributed scenario prevails where the data sources are physically separated

and are often consumer by autonomous data consumers, which are often the higher level

applications with functionality for high-end data analytics and event detection. But, these type

of distributed scenario can create lots of problems for scalability and maintenance if the data

sources and data consumers are tightly coupled. It, means the changes in the standards of data

sources or consumers for communication and data exchange changes, the overall systems needs

to undergo respective changes to deal with the new requirements. So, it is an utmost industrial

and technological solution need to have a system for seamless integration of data sources with

high level of abstraction between the data sources and consumers. . Middleware aims to reduce

the complexity of such systems by hiding unnecessary details. As with most types of software,

there are many different types of middleware, each having different aims and their own set of

advantages and disadvantages. There are no good or bad types of middleware; the best choice

depends on both the task at hand and the skills of the team who will be using it.

This research work presents a technological solution along with necessary reference

architecture for scalable for IoT Middleware. The approach that has been presented will

enhance the use of IoT in the industrial world and seamless integration of existing legacy devices.

Besides the technological solution this research work also provides detailed study on the

challenges and issues in IoT paradigm that can pave path for further research and

implementations. The results from this dissertation also play an important part for realization

of complete C2NET data collection framework. In comparison to some existing solutions in IoT

paradigm, the main advantage of this solution is affordability because the test results by utilizing

low-powered computing resources such as raspberry-pi has produced results as expected. Thus,

the technical results from this research work can be an affordable solution for SMEs who want

to deploy IoT based solutions.

6.2. Future Work

One of the possible enhancements that could be applied to the architecture developed is the

integration of security constraints such as data authentication, access control and client privacy.

79

The issues that can be associated in an unsecure system are enormous and to deploy this

software in an industrial vision is crucial to put data security on a par with the quality of a

product. Since there are several aspects to consider and data security must be made at a later

stage to the implementation of the product, this aspect was taken into account in some

parameters but was has not been developed in the current implementation. Building security

and trust over IoT ecosystem can be an interesting and challenging future work.

The next future work that needs to be undertaken is extending the solution and testing with

other different types of devices and their respective standards. Even, though the solution

supports easy integration of protocol adapters, it requires the implementation of protocol

adapter module to handle more protocols such as Bluetooth, RFID or NFC. At the same time

some further enhancements are necessary in the data filtering component to enable

specification of more complex data filtering for instance by utilizing the rules that can be applied

over a long stream of data rather than a single data stream. Other direction that be taken for

the data filtering process is making use of statistical analysis to re-construct missing data in the

collected stream. Note that statistical analysis consumes quite a lot of resources, so doesn’t fit

in the requirement of light-weight IoT middleware, but can be a very interesting solution for

cases with higher computing resources.

Another future work is towards the compatibility of the solution across various platforms.

Currently the solution is compliant with Debian OS and all the tests were performed in the scope

of Debian OS. It will also be an interesting challenge to further reduce the resource consumption

by the solution and test them on other low-resources computing devices.

80

References

Aazam, M. & Huh, E.N., 2014. Fog computing and smart gateway based communication for cloud of
things. Proceedings - 2014 International Conference on Future Internet of Things and Cloud,
FiCloud 2014, pp.464–470.

Aazam, M. & Huh, E.N., 2015. Fog computing micro datacenter based dynamic resource estimation and
pricing model for IoT. Proceedings - International Conference on Advanced Information
Networking and Applications, AINA, 2015-April, pp.687–694.

Aberer, K., Hauswirth, M. & Salehi, A., 2006. Middleware support for the “Internet of Things.” 5th GI/ITG
KuVS Fachgespräch “Drahtlose Sensornetze”, (5005), p.5.

Abowd, G.D. et al., 1999. Towards a Better Understanding of Context and Context-Awareness. , pp.304–
307.

AGOSTINHO, C. et al., 2016. A Distributed Middleware Solution for Continuous Data Collection in
Manufacturing Environments,

Amaravadhi, S., 2015. FOG COMPUTING. Available at: http://www.slideshare.net/saisharansai/fog-
computing-46604121 [Accessed August 11, 2016].

Atzori, L., Iera, A. & Morabito, G., 2010. The Internet of Things: A survey. Computer Networks, 54(15),
pp.2787–2805. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1389128610001568.

Bechtold, J. et al., 2014. Industry 4.0 - The Capgemini Consulting View. Capgemnini Consulting, p.31.

Bonomi, F. et al., 2012. Fog Computing and Its Role in the Internet of Things. Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, pp.13–16. Available at:
http://doi.acm.org/10.1145/2342509.2342513\npapers2://publication/doi/10.1145/2342509.234
2513.

Bradley, J., Barbier, J. & Handler, D., 2013. Embracing the Internet of Everything To Capture Your Share
of $ 14 . 4 Trillion. Cisco, pp.1–18.

Brown, E., 2014. The Cloud - Gateway to Enterprise Mobility. Available at: http://ericbrown.com/cloud-
gateway-enterprise-mobility.htm [Accessed August 11, 2016].

Buest, R., 2013. Analyst POV › Fog Computing: Data, Information, Application and Services needs to be
delivered more efficient to the enduser. Available at: http://analystpov.com/analysis/fog-
computing-data-information-application-and-services-needs-to-be-delivered-more-efficient-to-
the-enduser-22362 [Accessed June 3, 2016].

Buyya, R., Broberg, J. & Goscinski, A., 2011. Cloud Computing Principles and Paradigms,

C2NET Consortium, 2015. Industrial scenarios addressed by C2NET Platform. , pp.1–84.

C2NetProject, 2015. C2Net | Overview. Available at: http://c2net-project.eu/overview [Accessed
February 17, 2016].

Camarinha-matos, L.M. & Terminology, B., 2016. SCIENTIFIC RESEARCH Unit 2 : SCIENTIFIC METHOD. ,
pp.2009–2016.

Chaqfeh, M.A. & Mohamed, N., 2012. Challenges in middleware solutions for the internet of things.
Proceedings of the 2012 International Conference on Collaboration Technologies and Systems, CTS
2012, pp.21–26.

Chen, H. et al., 2004. Meet the Semantic Web in Smart Spaces. IEEE Internet Computing, 8(6), pp.69–79.
Available at:

81

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1355924&tag=1\nhttp://www.computer.or
g/csdl/mags/ic/2004/06/w6069-abs.html.

Colitti, W. et al., 2011. Evaluation of Constrained Application Protocol for Wireless Sensor Networks.
Local & Metropolitan Area Networks (LANMAN), 2011 18th IEEE Workshop on.

Collett, T.H.J., MacDonald, B. a & Gerkey, B.P., 2005. Player 2.0: Toward a Practical Robot Programming
Framework. In Proceedings of the Australasian Conference on Robotics and Automation, p.8.

Davies, R., 2015. Industry4.0 - Digitalisation for productivity and growth. European Union, (September).

Doulkeridis, C. et al., 2007. Peer-to-peer similarity search in metric spaces. Proceedings of the 33rd
international conference on Very Large Databases, pp.986–997. Available at:
http://portal.acm.org/citation.cfm?id=1325851.1325962.

Duffy, P., 2013. A Cisco View on IoT Protocols. Available at: http://blogs.cisco.com/digital/beyond-mqtt-
a-cisco-view-on-iot-protocols [Accessed August 11, 2016].

Esposito, C., Russo, S. & Di Crescenzo, D., 2008. Performance Assessment of OMG compliant Data
Distribution Middleware.pdf. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on Miami. IEEE.

ETSI, 2013. Testing and Test Control Notation. Available at: http://www.ttcn-3.org/ [Accessed August 29,
2016].

Fernandes, J.L. et al., 2013. Performance evaluation of RESTful web services and AMQP protocol.
International Conference on Ubiquitous and Future Networks, ICUFN, (July 2013), pp.810–815.

Fersi, G., 2015. Middleware for internet of things: A study. Proceedings - IEEE International Conference
on Distributed Computing in Sensor Systems, DCOSS 2015, 2(3), pp.230–235.

Fielding, R.T. & Taylor, R.N., 2002. Principled Design of the Modern Web Architecture.

Fosstrak, 2009. Fosstrak - Open source RFID Software Platform. Available at: http://fosstrak.github.io/
[Accessed February 20, 2016].

Gartner, 2015. Gartner Says 6.4 Billion Connected “Things” Will Be in Use in 2016, Up 30 Percent From
2015. Available at: http://www.gartner.com/newsroom/id/3165317 [Accessed February 18,
2016].

Ghimire, S. et al., 2012. On the Move to Meaningful Internet Systems: OTM 2012 R. Meersman et al.,
eds., Berlin, Heidelberg: Springer Berlin Heidelberg. Available at:
http://link.springer.com/book/10.1007/978-3-642-25126-9/page/1.

Gligoric, N. et al., 2012. CoAP over SMS: Performance evaluation for machine to machine
communication. 2012 20th Telecommunications Forum, TELFOR 2012 - Proceedings, (November),
pp.1–4.

Gomez-Goiri, A. & Lopez-de-Ipina, D., 2010. A Triple Space-Based Semantic Distributed Middleware for
Internet of Things. Current Trends in Web Engineering, 6385s, pp.447–458. Available at: <Go to
ISI>://WOS:000290453500043.

Gong, C. et al., 2010. The Characteristics of Cloud Computing.

Hajibaba, M. & Gorgin, S., 2014. A Review on Modern Distributed Computing Paradigms : Cloud
Computing , Jungle Computing. , pp.69–84.

Harbinger Systems, 2015. IoT Cloud Platforms and Middleware for Rapid Application Development.
Available at: http://www.slideshare.net/hsplmkting/webinar-iot-cloud-platforms-and-
middleware-for-rapid-application-development [Accessed August 11, 2016].

Hota, C., 2013. Peer-to-Peer Network Security. Symposium on Privacy & Security 2013, IIT, Kanpur.
Available at: http://slideplayer.com/slide/4615691/ [Accessed August 11, 2016].

82

Huang, Y. & Li, G., 2010. Descriptive models for Internet of Things. In Intelligent Control and Information
Processing (ICICIP), 2010 International Conference on. pp. 483–486.

IERC, 2010. IERC-European Research Cluster on the Internet of Things.

Indulska, J. & Sutton, P., 2003. Location management in pervasive systems. Conferences in Research and
Practice in Information Technology Series; Vol. 34, p.143. Available at:
http://portal.acm.org/citation.cfm?id=828003.

J.Han, J.Pei, M.Kamber, 2012. Data Mining: Concepts and Techniques,

Jones, M.T., 2009. Meet the Extensible Messaging and Presence Protocol (XMPP). Available at:
http://www.ibm.com/developerworks/library/x-xmppintro/ [Accessed September 5, 2016].

Joseph Bradley, Joel Barbier, D.H., 2013. Embracing the Internet of Everything To Capture Japan ’ s Share
of $ 14 . 4 Trillion. , pp.1–13.

Kahanwal, B. & Pal Singh, T., 2012. The Distributed Computing Paradigms: P2P, Grid, Cluster, Cloud, and
Jungle. International Journal of Latest Research in Science and Technology, 1(2), pp.183–187.
Available at:
http://arxiv.org/ftp/arxiv/papers/1311/1311.3070.pdf\nhttp://www.mnkjournals.com/ijlrst.htm
\n.

Karnouskos, S. et al., 2011. Requirement considerations for ubiquitous integration of cooperating
objects. 2011 4th IFIP International Conference on New Technologies, Mobility and Security, NTMS
2011 - Proceedings.

Katasonov, A. et al., 2008. Smart Semantic Middleware for the Internet of Things. Icinco-Icso, pp.169–
178. Available at: http://www.mit.jyu.fi/ai/papers/ICINCO-2008.pdf.

Kleyman, B., 2013. Welcome to the Fog: Extending the Cloud to the Edge. Available at:
http://www.datacenterknowledge.com/archives/2013/08/23/welcome-to-the-fog-a-new-type-of-
distributed-computing/ [Accessed June 3, 2016].

Locke, D., 2010. MQ Telemetry Transport (MQTT) V3.1 Protocol Specification. Available at:
http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html [Accessed
September 5, 2016].

Luckenbach, T. et al., 2005. TinyREST: A protocol for integrating sensor networks into the internet.
Proceedings of REALWSN. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.5129&rep=rep1&type=
pdf.

Luo, L., 2001. Software testing techniques. Institute for software research international Carnegie mellon
university Pittsburgh, PA, 15232(1-19), p.19.

Marciniak, J.J., 2002. Encyclopedia of Software Engineering J. J. Marciniak, ed., Hoboken, NJ, USA: John
Wiley & Sons, Inc. Available at: http://doi.wiley.com/10.1002/0471028959.

Marrón, P.J. et al., 2009. Research Roadmap on Cooperating Objects, Available at:
http://www.cooperating-objects.eu/roadmap/download-2/.

Mell, P., Grance, T. & Grance, T., 2009. The NIST Definition of Cloud Computing Recommendations of
the National Institute of Standards and Technology.

Microsoft, 2009. Manufacturing 2.0 – It’s Time to Rethink Your Manufacturing IT Strategy. , (July).

Microsoft, 2016. What is a sensor? Available at: http://windows.microsoft.com/en-us/windows7/what-
is-a-sensor [Accessed February 19, 2016].

Minerva, R., Biru, A. & Rotondi, D., 2015. Towards a definition of the Internet of Things (IoT). IEEE
Internet Things, pp.1–86. Available at:
http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_

83

27MAY15.pdf.

Object Oriented Design, 2016. Factory Pattern. Available at: http://www.oodesign.com/factory-
pattern.html [Accessed August 8, 2016].

Padraig Scully, 2016. 5 Things To Know About The IoT Platform Ecosystem. Available at: https://iot-
analytics.com/5-things-know-about-iot-platform/ [Accessed August 9, 2016].

Perera, C. et al., 2014. Context aware computing for the internet of things: A survey. IEEE
Communications Surveys and Tutorials, 16(1), pp.414–454.

Pietschmann, S. et al., 2008. C RO C O : Ontology-Based , Cross-Application Context Management.
Context.

Quigley, M. et al., 2009. ROS: an open-source Robot Operating System. Icra, 3(Figure 1), p.5. Available
at: http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf.

Roalter, L., Kranz, M. & Möller, A., 2010. A middleware for intelligent environments and the internet of
things. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 6406 LNCS, pp.267–281.

Santucci, G., Martinez, C. & Vlad-câlcic, D., 2012. The Sensing Enterprise. In FInES Workshop at FIA 2012.
pp. 1–14.

Schmidt, L., Mitton, N. & Simplot-Ryl, D., 2009. Towards unified tag data translation for the Internet of
Things. Proceedings of the 2009 1st International Conference on Wireless Communication,
Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology,
Wireless VITAE 2009, pp.332–335.

Sheng, Z. et al., 2015. Recent Advances in Industrial Wireless Sensor Networks Toward Efficient
Management in IoT. IEEE Access, 3(Oma Dm), pp.622–637. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7110295.

Stanford-Clark, A. & Truong, H.L., 2013. MQTT For Sensor Networks (MQTT-SN) Protocol Specification.

Stöllinger, R. et al., 2013. wiiw Research Report 391: A “Manufacturing Imperative” in the EU – Europe’s
Position in Global Manufacturing and the Role of Industrial Policy. , (October).

Techopedia, 2016a. Data Preprocessing. Available at:
https://www.techopedia.com/definition/14650/data-preprocessing [Accessed July 25, 2016].

Techopedia, 2016b. What is a Communication Protocol? - Definition from Techopedia. Available at:
https://www.techopedia.com/definition/25705/communication-protocol [Accessed February 18,
2016].

TheOpenGroup, 2013. Cloud Computing for Business: What is Cloud? Available at:
http://www.opengroup.org/cloud/cloud/cloud_for_business/what.htm [Accessed August 11,
2016].

Tretmans, J., 2001. An Overview of OSI Conformance Testing. Methods, pp.1–14.

Uninova, F.-U., 2014. Mission | GRIS. Available at: http://gris.uninova.pt/mission [Accessed February 18,
2016].

Waher, P. & Doi, Y., 2014. XEP-0322 : Efficient XML interchange (EXI) format. Available at:
http://xmpp.org/extensions/xep-0322.pdf.

Winter, I.C.S. & Rosenblum, D.S., 2001. Interoperability Why Is Interoperability Important ?
Interoperability and Software Architecture Assumptions Leading to Architectural Mismatch (I)
Assumptions Leading to Architectural Mismatch (II) Syntactic and Semantic Interoperability
Approaches to . , pp.1–5.

With, S.A., 2013. Powering Situational Awareness with M2M Technology.

84

Zhu, J. et al., 2013. Improving Web Sites Performance Using Edge Servers in Fog Computing Architecture.

