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1

Introduction

Making a decision consists of committing to a plan of action, usually selected between

two or more competing alternatives. Numerous fields have studied the processes in-

volved in decision-making including psychology, economics, philosophy and statistics,

to name only a few. In neuroscience the study of decision-making has been extremely

fruitful in recent years and has focused on two main aspects: (1) perceptual decision-

making, interested in understanding how external information is perceived by the

sensory systems and used to make decisions; (2) value based decision-making, in-

terested in the mechanisms that cause and result from the association of subjective

values to the possible outcomes of a decision.

An important feature of decisions is that they can be made on very di↵erent and

flexible time scales. For example, we can make an immediate decision to stop the car

as we drive and see a red light in front of us. But we can also take a longer time to

make more complex decisions, such as deciding which career we want to pursue. This

characteristic of decision-making depends on the ability that animals have to combine

information over time and may be, in general, a hallmark of cognition (Shadlen and

Kiani, 2013).

In this thesis we aim at revealing some of the neural computations involved in

perceptual decisions that occur over time and are informed by the auditory and visual

sensory systems. The following sections will review our current understanding of the

mechanisms of perceptual decision-making and integration of sensory evidence over
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time and across modalities.

1.1 Perceptual decision-making

In a simplified context of decision-making, a subject is given two alternative choices

and has to commit to one of them based on information provided by the external

world. Faced with this problem the brain must implement at least three transfor-

mation steps (Graham, 1989) from the moment when the sensory inputs arrive until

the moment the choice is made. First, it must transform the sensory input into a

higher-order representation that is informative for the decision (sensory evidence).

For example, when deciding which of two rectangles is wider, our brain needs to have

access to a representation of the width of the two rectangles to be able to compare

them. Second, it must use this representation of the input to select the most appropri-

ate response. This step can also be viewed as computing a “decision variable” or, in

other words, the probability of choosing one of the two alternative responses. Third,

it must implement the action associated with the appropriate choice, by instantiat-

ing the probabilistic representation into a discrete behavioral output (for review, see

Sugrue et al., 2005).

These transformations have been explored extensively in the primate visual and

oculomotor systems. In these studies monkeys were typically asked to discriminate

noisy visual stimuli and report their perceptual judgments using eye movements.

Primary and secondary visual areas of the cortex (V1 and V2) and higher visual

areas, such as V4 and middle temporal area (MT, also known as V5), were found to

play a critical role in the representation of sensory evidence. For example, neurons in

area MT respond to the direction of visual motion. On the other hand, areas in the

frontal and parietal cortices — e.g. lateral intraparietal area (LIP), frontal eye fields

(FEF) and supplementary eye field (SEF) — intermediate between sensory areas and

the oculomotor nuclei in the brainstem, are thought to be responsible for translating

visual evidence into a “decision variable” that will inform the ultimate choice.
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1.1.1 Motion discrimination task

The random-dot motion direction discrimination task is, perhaps, the most successful

paradigm used in the study of perceptual decisions. It relies on the presentation of

dots that appear randomly on a circumscribed area of a screen (⇠ 5–10�) which

is positioned in front of the subject. Some of these dots move towards one of two

possible predefined directions. The goal of the subjects is to report which direction

the dots are moving towards, usually by making an eye movement (saccade) into

one of two targets on the screen. This task is designed in such a way that allows

the experimenter to change the di�culty of each trial by varying the percentage of

coherently moving dots.

Variants of this paradigm have been used in multiple studies to show that neurons

in the cortical visual area MT carry signals that can be used by the subjects to

discriminate the direction of visual motion. Here we list some of the findings:

1. The majority of neurons in area MT are tuned to the direction of visual motion

(Albright et al., 1984);

2. The response of individual MT neurons correlates with behavioral accuracy /

psychophysical performance (Britten et al., 1992; Shadlen et al., 1996);

3. The firing rate of single neurons in MT significantly predicts the subjects’

choices, even on error trials, on a trial by trial basis (choice probability, Britten

et al., 1996);

4. Lesioning MT causes an impairment in subjects’ ability to discriminate the

direction of visual motion (Newsome and Paré, 1988), suggesting the area is

necessary for the task;

5. Microstimulation of MT, taking advantage of the anatomical organization of the

area in terms of motion direction tuning, indicated that this area has a causal

role in the subjects’ ability to perform the task (Salzman et al., 1990).

3



These experiements not only showed the importance of MT in motion discrimi-

nation, they also led to new hypotheses. Britten, Newsome and colleagues suggested

that, in this task, the brain makes a decision based on the comparison between the

firing rate of two pools of neurons, each of them most sensitive to one of the two

possible directions of motion (Newsome et al., 1989; Britten et al., 1992). As an ex-

ample, if on a particular trial the random dots move leftwards, a pool of neurons with

a “preference” for motion towards the left (more tuned to that direction of motion)

would on average fire more than a pool of neurons with a preference for motion in

the opposite direction (rightward motion). The di↵erence between the firing rates of

these two pools of neurons can be used as a decision variable — if the di↵erence is

positive (on average), choose ‘left’; if the di↵erence is negative, choose ‘right’.

In the case of a weak stimulus (low proportion of coherently moving dots) the

di↵erence between the firing rate of the two pools of neurons becomes close to zero.

This compels the subjects to take some time before committing to a particular choice.

In other words, the subjects need to accumulate evidence for a certain period of time

in order to make accurate decisions. This corresponds to allowing the decision variable

to be integrated over time, as more evidence arrives, until it is possible to determine

with confidence if its value is positive or negative.

Together, these studies established a new paradigm for investigating the neural

mechanisms of decision formation by making it possible to characterize neural re-

sponses as the decision process unfolds.

One other key aspect of this task is that it sets up a clear association between

a decision about a stimulus and a behavioral response to report that decision: a

saccade towards one of two targets. This allowed scientist to look for a signature of

the decision variable in particular brain areas involved in the guiding or planning of

eye movements, like the lateral intraparietal area (LIP), the superior colliculus (SC)

and the frontal eye fields (FEF).
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1.1.2 Drift di↵usion model

Decisions that are based on noisy, unreliable information may benefit from the process

of integrating that same information over time. The reason is that integration provides

a way to average out the noise and therefore achieve more accurate decisions. This

is the idea behind integration models such as the drift di↵usion model (DDM). The

DDM assumes that infinitesimally small samples of a noisy signal are added together

continuously and that this summation represents evidence accumulated over time.

When this accumulated evidence reaches an upper or a lower bound, an appropriate

response is triggered (Ratcli↵, 1978).

To be more specific, let’s assume that a “decision system” implementing the DDM

receives an input signal corrupted by gaussian noise (stimulus), with mean µ and

standard deviation � (Figure 1.1, top). This device will sum this stochastic stimulus

over time (integrated evidence), producing a drift that fluctuates over time (Figure

1.1, bottom). At some point this drifting integrated evidence will cross one of two

thresholds — A or B (upper or lower bound). This event triggers the response of

the system: if threshold A was crossed, the systems returns the response RA (e.g.

select target ‘A’); if threshold B was crossed, the system returns the response RB

(e.g. select target ‘B’).

In the context of the motion discrimination task, the parameter µ is defined by

the stimulus strength (motion coherence) and the noise parameter � is considered

constant. The distance between the decision boundaries A and B and the initial value

of integrated evidence (evidence = 0) depends on the response bias of the subject, as

measured by the point of subjective equality (PSE) of the psychometric curve (see

Methods for explanation on psychometric curves).

This is a very simple model that, nonetheless, fits the behavioral data remarkably

well (Palmer et al., 2005). Furthermore, neurophysiological data collected from sub-

jects performing the task come in support of this view of integration of evidence at

the level of individual neurons.
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Integrated 
evidence

Stimulus A

A

B

Stimulus B

Time

Figure 1.1: Drift di↵usion model. Adapted from Uchida et al. (2006). Top,
schematic of two example input signals (saturated blue/red line) and signal with
added gaussian noise (stimulus; faded ragged blue/red trace). Bottom, cumulative
sum of six instantiations of the two example stimuli (representing the integrated
evidence), in which the signal was kept constant and the added noise varied. The
noise makes the integrated evidence drift over time. At some point in time this
integrated evidence crosses one of two thresholds (A or B), which is indicated by the
blue/red circles.

1.1.3 A signature of the decision variable

The lateral intraparietal area (LIP) is a subregion of the posterior parietal cortex

(PPC). It receives inputs from visual areas such as V3, V4 and MT (Felleman and

Van Essen, 1991) and the pulvinar (Hardy and Lynch, 1992). Neurons in this area

encode the direction and amplitude of an intended saccade (Gnadt and Andersen,

1988) and send these signals to structures involved in the control of eye movements

(Andersen et al., 1990). Researchers soon hypothesized that the activity of LIP

neurons could be correlated with a decision variable.

Indeed, experiments using the motion discrimination task described above revealed

that some neurons in LIP reflect the accumulation of evidence in favor of one choice

versus the other, i.e., the integration of the di↵erence in firing between the two pools

of MT neurons (Shadlen and Newsome, 1996). Moreover, the firing rate of these

LIP neurons increased proportionally to the motion coherence and reached the same

singular value, across trials, just before the decision was reported (Roitman and

Shadlen, 2002). These suggest a mechanism of integration of evidence over time until
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a specific threshold — or level of confidence in the decision — is crossed, very much

consistent with the drift di↵usion model.

Although microstimulation of LIP neurons during motion discrimination produces

a contralateral response bias (Hanks et al., 2006), this e↵ect is much smaller compared

to the one observed from microstimulation of MT neurons. It was not yet established if

LIP is, indeed, necessary for motion discrimination or if, instead, evidence integration

occurs elsewhere and this computation is simply reflected in LIP. One the reasons why

it has been di�cult to state the importance of LIP in the motion discrimination task

relates to the absence of techniques that would allow stimulation or inactivation of the

specific outputs of MT that connect to LIP. Optogenetics opens up this possibility but

methods for using this technique in primates are still in an early stage of development.

1.2 Integrating multiple sensory modalities

In the previous section we discussed how integration over time can ameliorate the

problem of making decisions based on noisy and unreliable evidence. In the current

section we will examine how the use of more than one sensory modality benefits

decision-making under the same conditions.

Our observation of the world may sometimes lead to ambiguous or uncertain

judgments. For example, imagine a situation where we are sitting inside an immobile

train at the station and there is a second train, also immobile, next to ours. If that

second train slowly starts moving, we sometimes perceive as if the train we are on is

the one moving instead. This illusion happens because this is an ambiguous visual

scene — based on our visual system, either scenario (‘my train is moving’ versus

‘the other train is moving’) would be conceivable. In situations like this one our

judgment typically improves when we use another sensory modality to disambiguate

our perception of the scene. In this case, using our vestibular system, for example,

would help us to recognize that we are not moving.

Many studies have approached this question of how the brain combines multiple

pieces of sensory information in order to achieve a more accurate perception and,
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therefore, be able to make more accurate decisions. Here we will introduce some of

the current views about multisensory integration.

1.2.1 Cue combination framework

The word ‘cue’ refers to a piece of sensory information that gives rise to a sensory

estimate of a particular scene. The process of combining di↵erent cues is referred to

as “cue combination” (or “cue integration”).

If we try to estimate the precise location of a bird that hides behind the leaves of a

tree, we may use both our vision and our audition, if the bird is singing, to do so. Our

perception of the location of the bird must then be given by a mixture between our

visual and auditory perceptions. But how exactly does the brain combine the two?

One possibility is that the brain computes a separate estimate for each cue (visual

cue and auditory cue) and then combines these estimates by computing a weighted

average of the two, creating a final estimate (Clark and Yuille, 1990).

The maximum likelihood estimation framework provides an ‘optimal’, i.e. most

advantageous, solution to the problem of determining how heavily each of the indi-

vidual estimates should be weighted to compute the final estimate. Assuming that

the noise corrupting each individual estimate is independent and gaussian, the best

final estimate is the one that weighs each estimate by the inverse of their variances

— maximum likelihood estimate, or MLE (see Methods for detailed deduction; for

review, see Ernst and Bültho↵, 2004). This ‘optimal’ way of integrating evidence

achieves a final estimate that is unbiased and that has the lowest possible variance.

From a Bayesian perspective, suppose that we want to estimate an external vari-

able, S, using two sensory cues. It is fair to assume that the neural representation of

these two cues, r1 and r2, is noisy and can, therefore, be seen as probabilistic. The

possible values of S are then given by a probability density function, P (S | r1, r2). If

the noise a↵ecting each cue is independent, P (S | r1, r2) can be calculated using the

Bayes’ theorem:

P (S | r1, r2) =
P (r1 |S) P (r2 |S) P (S)

P (r1) P (r2)
(1.1)
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The left hand side of this equation, called the posterior distribution, can be used to

estimate S (by taking the mean of this distribution, for example) and includes the

uncertainty associated with that estimate (its variance). P (r1 |S) and P (r2 |S) are

called the likelihood functions and quantify the probability of observing a particular

neural response for each of the two cues. P (S), the prior distribution, represents the

probability of a particular event S occurring in the first place. Here, our goal is to find

the value of S that maximizes the posterior. This optimization process is independent

of the terms P (r1) and P (r2). Assuming gaussian likelihoods and a uniform prior, it

follows that the solution S with the smallest variance is the MLE (Knill and Pouget,

2004; Angelaki et al., 2009).

Many studies have shown that this model describes well the behavior of human

subjects in cue combination tasks. In a target localization task, humans combine au-

ditory and visual cues, in an optimal way, according to each cue’s reliability (Battaglia

et al., 2003; Alais and Burr, 2004; Ghahramani and Wolpert, 1997). Humans com-

bine visual and haptic cues to optimally estimate object size (Ernst and Banks, 2002).

Surface slant estimates by humans using depth and texture cues result from optimal

cue combination (Knill and Saunders, 2003).

Most multisensory integration studies, like the ones mentioned above, have relied

on careful behavior and psychophysics with human subjects. Only a few recent studies

have gone further and approached this problem with a combination of phychophysics

and neural recordings in non-human primates, in search for a signature of multisensory

integration in the brain.

1.2.2 Heading discrimination task

Gu, Angelaki and colleagues designed a two-alternative forced choice task that asked

subjects to judge their heading direction using visual and vestibular cues. In this

task, subjects (macaque monkeys) were seated on a platform that moved on the

horizontal plane. A projector attached to the platform displayed a three-dimensional

field of moving dots that provided optic flow on a given direction. For a subject

seating on the platform, this optic flow simulates the translation of the platform in
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the opposite direction of flow. In each trial, the subjects experienced forward motion

with a small leftward or rightward component and were asked to report the perceived

heading direction. They found that subjects performed significantly better when

they used both cues (multisensory condition), compared to when they used only one

(single sensory condition). Subjects’ choices and how much they improved were well

predicted by the maximum likelihood model described above. Moreover, when the

reliability of the visual and vestibular cues changed, subjects quickly adjusted the

relative weighting of two cues as the model predicted (Gu et al., 2008).

Many neurons in the dorsal medial superior temporal area (MSTd) had been

found to respond strongly to both optic flow and translational movement (Du↵y,

1998), making this area a good candidate in the search for a signature of heading

perception. In a subset of neurons that had the same heading preference with both

visual and vestibular cues (“congruent neurons”), heading tuning became steeper —

more sensitive — in the multisensory condition. This finding suggested that these

neurons could be involved in heading discrimination. Furthermore, choice probability

analysis showed that trial-to-trial fluctuations in the firing rate of “congruent neurons”

was strongly correlated with the fluctuations in the subjects’ perceptual decisions,

consistent with the hypothesis that monkeys monitored these neurons to perform the

task.

Together these studies established the foundation for future research on the neural

basis of multisensory decisions and opened doors to new models of sensory integration.

1.2.3 Models of multisensory integration

One of the main findings in the studies mentioned above was that cue weighting was

adjusted on-the-fly as the reliability of each cue was changed by the experimenter

from trial to trial. This revelation suggests that optimal integration, which requires

knowledge of the variance of the estimates, can be accomplished on-line, as the evi-

dence arrives and allows us to exclude particular neural models of sensory integration.

Models that rely on plasticity to compute the uncertainty associated with a percep-

tual estimate, for example, may be too slow to follow the rapid changes observed in
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cue weighting. Instead, the neural implementation of cue combination may, perhaps,

be depended on network dynamics.

A plausible mechanism for determining the variance of a sensory estimate on-line

is one that monitors the di↵erent responses of a population of neurons to a single

sensory cue — referred to, in the literature, as a population code. As an example,

consider a population of neurons in primary auditory cortex that are sensitive to tone

frequency. This means that each neuron will fire the most in response to its preferred

tone and will fire less as the frequency of the tone diverges away from its preferred

one (tunning) In response to a particular tone, the firing of a population of auditory

neurons will follow a distribution that peaks at the presented tone frequency and with

a variance proportional to the uncertainty of the neural representation of the stimulus.

Moreover, combining the activity of two such populations of neurons, by multiplying

the two population firing distributions, results in an overall response distribution that

corresponds to the solution provided by maximum likelihood estimation (Ernst and

Bültho↵, 2004). In a Bayesian context, this corresponds to multiplying the likelihood

functions to obtain the posterior distribution (assuming a flat prior). This is true not

only for two populations of neurons that respond to only one sensory modality (e.g.

two populations of auditory neurons), but also for two populations of neurons that

respond to di↵erent sensory modalities — e.g. a population of auditory neurons and

a population of visual neurons.

Many studies have proposed neural models of sensory integration using popula-

tions codes (Pouget et al., 2000; Zemel and Dayan, 1997). Ma, Pouget and colleagues

demonstrated that, by taking advantage of the probabilistic nature of neural firing

— assuming Poisson-like variability — cue combination could be implemented as a

simple linear combinations of populations of neural activity (Ma et al., 2006). How-

ever, their model assumes fixed cue weighting and, thus, fails to explain the impact

of cue reliability in the combination rule (Morgan et al., 2008).

Ohshiro and colleagues proposed that “divisive normalization” could explain many

of the features of multisensory integration, including the change in neural weights

with cue reliability (Ohshiro et al., 2011). In this model, two sensory neurons (e.g.,
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one auditory neuron and one visual neuron) with overlapping receptive fields provide

input to the same multisensory neuron. In summary, the activity of each multisensory

neuron depends on a linear combination of the inputs, followed by an expansive power-

law nonlinearity, and is divided by the net activity of all multisensory neurons.

“Divisive normalization” (Heeger, 1992) has been used to explain how neurons

in primary visual cortex respond to a combination of stimuli with di↵erent contrasts

and orientations (Carandini et al., 1997) and proposed to be involved in attention

modulation (Reynolds and Heeger, 2009). It may, therefore, be a prevalent cortical

computation that relies on relatively simple operations, making it a plausible model

of multisensory integration.

1.3 The posterior parietal cortex

The posterior parietal cortex (PPC) is an association area of the brain traditionally

seen as critical for visuo-spatial perception and spatial attention. However, in recent

years, multiple studies have proposed its involvement in a wide range of cognitive

functions, such as working memory and decision-making.

In primates, the PPC receives inputs from the pulvinar and lateral posterior nuclei

of the thalamus. It is extensively connected with multiple sensory areas — visual,

auditory, somatosensory and vestibular sensory systems (Avillac et al., 2005) and

with subcortical structures, such as the superior colliculus (SC) and striatum. PPC

is also strongly interconnected with the prefrontal cortex (PFC), traditionally asso-

ciated with higher cognitive operations and executive functions (Miller and Cohen,

2001), premotor cortex and frontal eye fields (FEF). Its anatomical characteristics

have led researchers to propose that PPC is involved in directed spatial attention.

Indeed, unilateral and bilateral lesioning of PPC in humans cause strong deficits in

attentional processing, such as the notorious hemispatial neglect (for review, see Reep

and Corwin, 2009). Situated between multiple sensory inputs and a motor output,

PPC is also in a privileged position for the computation of the variables necessary

for decision-making. In fact, in decision-making tasks, neural responses in PPC re-
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flect, for example, evidence accumulation (see Section 1.1.3), categorization of visual

stimuli (Freedman and Assad, 2006), estimation of numerical quantities (Nieder and

Miller, 2004) and reward expectation (Platt and Glimcher, 1999). These studies show

a remarkable correlation between the neural activity in PPC and the decisions the

subjects were asked to make. However, it is not yet known whether PPC neurons

simply reflect a neural correlate of these decision-related signals or whether they are

indeed responsible for the computations of these signals. If the latter is true, it would

require downstream areas to be able to de-multiplex — i.e., independently decode —

the di↵erent signals carried by PPC neurons (Huk and Meister, 2012).

In rodents, the existence of a PPC has only recently been established, with several

studies identifying PPC as an autonomous region of the rodent brain (Kolb and Tees,

1990). In studies using retrograde tracers, Chandler, Reep and colleagues have found

that PPC in rodents could be defined based on its a↵erents from the lateral dorsal

and lateral posterior nuclei of the thalamus (Chandler et al., 1992; Reep et al., 1994).

Unilateral lesioning of this brain area in rodents produces severe multimodal neglect

— visual, tactile and auditory — similar to that observed in humans (Corwin et al.,

1994; King and Corwin, 1993). However, it is not yet clear the degree to which

the rodent PPC is homologous to the primate PPC. Other studies have shown the

importance of PPC in spatial attention as well as in learning (Robinson and Bucci,

2012) and memory (Myskiw and Izquierdo, 2012) in rodents, but its importance in

perceptual decisions has not been established in this model system.

1.4 Mixed selectivity and the argument against

neural categories

Neurons in early sensory areas typically (although not exclusively; see Saleem et al.,

2013) respond to a particular feature of the sensory environment. For example, some

neurons in primary visual cortex are active when a moving bar with a specific orien-

tation crosses the neuron’s receptive field. In contrast, neurons in higher order brain

structures often have more complex response properties and reflect more than one
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feature of the task the organism is dealing with. This ability that neurons in some

brain areas have to respond to multiple features is called “mixed selectivity”. The

PFC is predominantly composed of neurons with mixed selectivity. This makes its

responses very heterogeneous and, therefore, di�cult to interpret. However, mixed

selectivity might be crucial in giving areas like PFC the ability to be involved in

multiple tasks. Rigotti, Fusi and colleagues have shown that, whilst neurons in PFC

encode distributed information about many task-relevant features, each of those fea-

tures could be easily decoded from this population of mixed-selective neurons. They

argue that mixed selectivity is a signature of high-dimensional neural representations.

This high-dimensionality is what allows a linear classifier — such as a simple neu-

ron model that combines information from a population of neurons — to decode

information about any task-relavant feature (Rigotti et al., 2013).

Recent studies have extended mixed selectivity to neurons in PPC. Monkey LIP

neurons were found to frequently respond to a mixture of decision signals, such as the

accumulated evidence, and decision-irrelevant signals — other parameters of the task

that do not inform the decision process, such as the presence of a choice target in

the neurons receptive field (Meister et al., 2013). Other studies have emphasized this

property of LIP neurons by showing that, while these neurons are strongly influenced

by visual-spatial factors, such as the direction of a future saccade, they also carry

signals about more abstract, nonspatial factors, such as the learned category of the

direction of moving dots (Freedman and Assad, 2009).

Here we argue that the view that individual neurons belong to specialized classes,

apt for particular computations, while important for understanding early sensory ar-

eas, may be inappropriate for the study of higher order brain areas. Instead, we

speculate that single neurons in areas such as PPC and PFC may reflect a random

combination of task-related parameters, therefore challenging the idea of neural cat-

egories. Mixed selectivity does not imply random combination of parameters per se.

However, there is a major advantage to this kind of configuration: a task parame-

ter that is randomly distributed across a population of neurons can be decoded by

linearly combining an arbitrary group of neurons from that population (for review,
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see Ganguli and Sompolinsky, 2012). An important consequence of this is that if a

population with these characteristics is randomly connected to multiple downstream

neurons, each of these neurons would receive enough information to be able to read

out (decode) any particular task parameter that is encoded by the neural population.

1.5 Thesis outline

The following chapters report the main findings that came out of this research work

(Chapters 2–4), the methodologies and details of the analyses used (Chapter 5) and,

lastly, a summary of the conclusions we take and their relevance in the larger picture

of understanding the computations that allow multisensory decision-making to take

place in the brain (Chapter 6).

Chapter 2 describes our e↵orts to bring the rodent model to the field of mul-

tisensory decision-making. We lay out a new task that allowed us to observe that

rodents, as humans, are able to combine auditory and visual information to make

more accurate decisions.

In Chapter 3 we reveal the response properties of neurons in the posterior parietal

cortex of rats performing a multisensory decision-making task. The neural recordings

that we have conducted reveal mixed selectivity of PPC neurons and suggest that the

population is category-free — characteristics that allow them to encode multiple task

parameters, while granting easy decoding of those same parameters by downstream

neurons. In this chapter we also analyze the impact of PPC inactivation during

multisensory decision-making.

Chapter 4 describes the consequences of disrupting the normal activity of PPC in

a spatially and temporally precise manner, using optogenetics. Our findings suggest

that disruption impairs the use of sensory evidence in decisions and is followed by a

slow network recovery.
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2

Multisensory decision-making in

rats and humans

A large body of work has shown that animals and humans are able to combine infor-

mation across time to make decisions in some circumstances (Roitman and Shadlen,

2002; Mazurek et al., 2003; Palmer et al., 2005; Kiani et al., 2008). Specifically,

combining information across time can be a good strategy for generating accurate de-

cisions when incoming signals are noisy and unreliable (Link and Heath, 1975; Gold

and Shadlen, 2007). For noisy and unreliable signals, combining evidence across sen-

sory modalities might likewise improve decision accuracy, but little is known about

whether the framework for understanding combining information over time might

extend to combining information across sensory modalities.

The ability of humans to combine multisensory information to improve perceptual

judgments for static information has been well established (for review, see Alais et al.,

2010). Psychophysical studies have shown that multisensory enhancement requires

that information from the two modalities be presented within a temporal “window”

(Slutsky and Recanzone, 2001; Miller and D’Esposito, 2005). Physiological studies

suggest the same: SC neurons show enhanced responses for multisensory stimuli

only when those stimuli occur close together in time (Meredith et al., 1987). Such a

temporally precise mechanism would serve a useful purpose for localizing or detecting

objects. Therefore, temporal synchrony (or near-synchrony) provides an important

cue that two sensory signals are related to the same object (Lovelace et al., 2003;
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Burr et al., 2009).

In other circumstances, multisensory decisions might have more lax requirements

for the relative timing of events in each modality. For example, when multiple audi-

tory and visual events arrive in a continuous stream, temporal synchrony of individual

events might be di�cult to assess. Auditory and visual stimuli drive neurons with

di↵erent latencies (Pfingst and O’Connor, 1981; Maunsell and Gibson, 1992; Recan-

zone et al., 2000), making it di�cult to determine which events belong together.

It is not known whether information in streams of auditory and visual events can

be combined to improve perceptual judgments; if they can, this could be evidence

for a di↵erent mechanism of multisensory integration that has less strict temporal

requirements compared with the classic, synchrony-dependent mechanisms.

To invite subjects to combine information across both time and sensory modal-

ities for decisions, we designed an audiovisual rate discrimination decision task. In

the task, subjects are presented with a series of auditory and/or visual events and

report whether they perceive the event rates to be high or low. Because of di↵ering

latencies for the auditory and visual systems, our stimulus would pose a challenge to

synchrony-dependent mechanisms of multisensory processing. Nevertheless, we saw

a pronounced multisensory enhancement in both humans and rats. Importantly, this

enhancement was present whether the event streams were identical and played syn-

chronously or were independently generated, suggesting that the enhancement did

not rely on mechanisms that require precise timing. Together, these results suggest

that some mechanisms of multisensory enhancement might exploit abstract informa-

tion that is accumulated over the trial duration and therefore must rely on neural

circuitry that does not require precise timing of auditory and visual events.

2.1 Rate discrimination task

We developed a novel behavioral task designed to invite subjects to combine informa-

tion across time and sensory modalities. Each trial consisted of a series of auditory

or visual “events” (duration: 10ms for humans, 15ms for rats) with background
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noise between events (Figure 2.1a, top). Visual events were flashes of light, and audi-

tory events were brief sounds (see below for methodological details particular to each

species). The amplitude of the events was adjusted for each subject so that on the

single-sensory trials performance was ⇠70–80% correct and matched for audition and

vision. We chose these values because previous studies have indicated that multisen-

sory enhancement is the largest when individual stimuli are weak (Stanford et al.,

2005). This appears to be particularly true for synchrony-dependent mechanisms of

multisensory integration (Meredith et al., 1987).

Trials were generated so that the instantaneous event rate fluctuated over the

course of the trial. Each trial was created by sequentially selecting one of two in-

terevent intervals: either a long duration or a short duration (Figure 2.1a, bottom)

until the total trial duration exceeded 1000ms (or occasionally slightly longer/shorter

durations for “catch trials”; see below). Trial di�culty was determined by the propor-

tion of interevent intervals from each duration. As the proportion of short intervals

varied from zero to one, the average rate smoothly changed from clearly low to clearly

high. For example, when all of the interevent intervals were long, the average rate was

clearly low (Figure 2.1a, left), and similarly when all of the interevent intervals were

taken from the short interval, the average rate was clearly high (Figure 2.1a, right).

When interevent intervals were taken more evenly from the two values, the average

of the fluctuating rate was intermediate between the two (Figure 2.1a, center). When

the number of long intervals exceeded the number of short intervals, subjects were

rewarded for making a “low rate” choice and vice versa. When the numbers of short

and long intervals in a trial were equal, subjects were rewarded randomly. Note that

in terms of average rate this reward scheme places the low rate–high rate category

boundary closer to the lower extreme (all long durations) than to the higher extreme

(all short durations) because of the di↵ering duration of the intervals. The strategies

of both human and rat subjects reflected this: typically, subjects’ points of subjective

equality (PSEs) were closer to the lowest rate and less than the median of the set

of unique stimulus rates presented. Nevertheless, for simplicity, we plotted subjects’

choices as a function of stimulus rate. Nearly equivalent results were achieved when
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Figure 2.1: Schematic of rate discrimination decision task and experimental
setup. a, Each trial consists of a stream of events (auditory or visual) separated
by long or short intervals (top). Events are presented in the presence of ongoing
white noise. For easy trials, all interevent intervals are either long (left) or short
(right). More di�cult trials are generated by selecting interevent intervals of both
values (middle). Values of interevent intervals (bottom) reflect those used for all
human subjects. b, Example auditory and visual event streams for the synchronous
condition. Peaks represent auditory or visual events. Red dashed lines indicate that
auditory and visual events are simultaneous. c, Example auditory and visual event
streams for the independent condition. d, Schematic drawing of rodent in operant
conditioning apparatus. Circles are the “ports” where the animal pokes his nose to
initiate stimuli or receive liquid rewards. The white rectangle is the panel of LEDs.
The speaker is positioned behind the LEDs.

we analyzed subjects’ responses as a function of the number of short intervals in a

trial rather than stimulus rate.

For single-sensory trials, event streams were presented to just the auditory or

just the visual system. Visual trials were always 1000ms long. Auditory trials were

usually 1000ms long, but we sometimes included catch trials that were 800 or 1200ms.

Catch trials were collected for four human subjects. The purpose of the catch trials
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was to determine whether subjects’ decisions were based on just event counts or

event counts relative to the total duration over which those counts occurred. Catch

trials constituted a total of 2.31% of the total trials. We reasoned that using such a

small percentage of the trials for variable durations would make it possible to probe

subjects’ strategy without encouraging them to alter it. For these trials, we rewarded

subjects based on event counts rather than the rate. This should have increased the

likelihood that subjects would have made their decisions based on count, if they were

able to detect that stimuli were sometimes of variable duration.

For multisensory trials, both auditory and visual stimuli were present and played

for 1000ms. To distinguish possible strategies for improvement on multisensory trials,

we used two conditions. First, in the synchronous condition, identically timed event

streams were presented to the visual and auditory systems simultaneously (Figure

2.1b). Second, in the independent condition, auditory and visual event streams were

on average in support of the same decision (i.e., the proportion of interevent inter-

vals taken from each duration was the same), but each event stream was generated

independently (Figure 2.1c). As a result, auditory and visual events frequently did

not occur at the same time. Auditory and visual events did not occur simultaneously

even for the highest stimulus strengths because we imposed a 20ms delay between

events. Although a 20ms delay does prevent auditory and visual events from being

synchronous at the highest and lowest rates, the delay may be too brief to prevent au-

ditory and visual stimuli from being perceived as synchronous (Fujisaki and Nishida,

2005). To be sure that our conclusions about the independent condition were not

a↵ected by these “perceptually synchronous” trials at the highest and lowest rates,

we analyzed the independent condition both with and without the easiest trials (see

Section 2.3). The multisensory e↵ects we observed were very similar regardless of

whether or not we included the easy trials.

Because auditory and visual event streams were generated independently, trials

for this condition fell into one of four categories:

• Matched trials, where auditory and visual event streams had the same number

of events (example match trials are shown in Figure 2.1c);
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• Bonus trials, where both modalities provided evidence for the same choice, but

one modality provided evidence that was one events/s stronger than the other

(i.e., auditory and visual streams had proportions of short or long durations

both above or below 0.5, but were not equal);

• Neutral trials, where only one modality provided evidence for a particular

choice, whereas the other modality provided evidence that was so close to the

PSE that it did not support one choice or the other;

• Conflict trials, where each modality provided evidence for a di↵erent choice.

Conflict trials were used to reveal di↵erential weighting of sensory cues by explic-

itly varying the reliability of the single-sensory stimuli (see Section 2.5), as previously

described in other multisensory paradigms (Fine and Jacobs, 1999; Hillis et al., 2004;

Fetsch et al., 2009).

2.2 Rats, as humans, combine auditory and

visual stimuli to improve decision accuracy

We examined whether subjects could combine information about the event rate of a

stimulus when the information was presented in two modalities. Combining evidence

should produce lower multisensory thresholds relative to single sensory thresholds.

We first describe results from the synchronous condition where the same stream of

events was presented to the auditory and visual systems, and the events occurred

simultaneously (Figure 2.1b).

We quantified subjects’ performance by computing their probabilities of high-

rate decisions across the range of trial event rates and fitting psychometric functions

to the choice data using standard psychophysical techniques (see Methods). Figure

2.2a shows results for the synchronous condition for a representative human subject:

the subject’s psychophysical threshold (�) was lower for multisensory trials compared

with single-sensory trials (Figure 2.2a, blue line is steeper than green and black lines),

demonstrating that subjects made more correct choices on multisensory trials. The
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Figure 2.2: Subjects’ performance is better on multisensory trials. a, Perfor-
mance of a single subject plotted as the fraction of responses judged as high against
the event rate. Green trace, auditory only; black trace, visual only; blue trace,
multisensory. Error bars indicate SEM (binomial distribution). Smooth lines are cu-
mulative Gaussian functions fit via maximum-likelihood estimation. n = 7680 trials.
b, Same as a but for one rat (rat 3). n = 12459 trials. c, Scatter plot comparing
the observed thresholds on the multisensory condition with those predicted by the
single-cue conditions for all subjects. Circles, human subjects; squares, rats. Green
symbols are for the example rat and human shown in a and b. Black solid line shows
x = y; points above the line show a suboptimal improvement. Error bars indicate
95% CIs. Prop, Proportion.

di↵erence between the single-sensory and multisensory thresholds was highly signif-

icant (auditory: p = 0.0001; visual: p < 0.0003); the change in threshold was not

significantly di↵erent from the optimal prediction (see ‘Optimal cue weighting’, Equa-

tion 5.4 in Methods for details; measured: 1.75 [1.562, 1.885]; predicted: 1.69 [1.54,

1.84]; p = 0.38). In contrast, the PSE for multisensory trials was similar to those

seen on single-sensory trials (auditory: p = 0.06; visual: p = 0.52).

The example was typical: all subjects we tested showed an improvement on the

multisensory condition, and this improvement was frequently close to optimal (Figure

2.2c, circles are close to the x = y line, indicating optimal performance). On average,

this improvement was not accompanied by a change in PSE (mean PSE di↵erence

between visual and multisensory: 0.54 [0.48, 1.56], p = 0.23; mean PSE di↵erence

between auditory and multisensory: 0.05 [�0.66, 0.75], p = 0.87).

Significant multisensory enhancement was also observed in all three rats. Figure

2.2b shows results for a single rat. The di↵erence in thresholds between the single-

sensory and the multisensory trials was highly significant (auditory: p < 10�5; visual:
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p < 10�5). The improvement exceeded that predicted by optimal cue combination

(measured: 1.97 [1.72, 2.21]; predicted: 2.70 [2.57, 2.83]; p < 10�5). This improve-

ment was also seen in the remainder of our rat cohort (Figure 2.2c, squares); the

improvement was significantly greater than the optimal prediction in one of the two

additional animals (rat 1, p < 10�5); the improvement nearly reached significance in

a third (rat 2, p = 0.06).

Multisensory enhancement on our task could be driven by decisions based on

estimates of event rate of the stimulus or estimates of the number of events. Human

subjects have previously been shown to be adept at estimating counts of sequentially

presented events, even when they occur rapidly (Cordes et al., 2007). In principle,

either strategy could give rise to uncertain estimates in the single-sensory modalities

that could be improved with multisensory stimuli. To distinguish these possibilities,

we included a small number of random catch trials that were either longer or shorter

than the standard trial duration. Consider an example trial that has 11 events (Figure

2.3a, arrow). If subjects use a counting strategy, they would make the same proportion

of high choices whether the 11 events are played over 800, 1000, or 1200ms. We did

not observe these results in our data. Rather, subjects made many fewer high choices

when the same number of events were played over a longer duration (Figure 2.3a,

blue trace) compared with a shorter duration (Figure 2.3a, red trace).

These findings argue that subjects normalize the total number of events by the

duration of the trial. In fact, the example subject in Figure 2.3, a and b, normalized

quite accurately: he made the same proportion of high choices for a given rate (Figure

2.3c, arrow) whether that rate consisted of a small number of events played over a

short duration (red traces) or a larger number of events played over a longer durations

(green and blue traces). The tendency to make choices based on stimulus rate rather

than stimulus count was evident when examined in a single subject (Figure 2.3a,b) and

in the population of four subjects (Figure 2.3c,d). Note that our subjects exhibited

such a rate strategy despite the fact that we rewarded them based on the absolute

event count, not the event rate (see Methods).
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Figure 2.3: Subjects make decisions according to event rates, not event
counts. a, Example subject. Abscissa indicates the number of event counts. Each
colored line shows the subject’s performance for trials where the event count on
the abscissa was presented over the duration specified by the labels. For a given
event count (11 events, black arrow) the subject’s choices di↵ered depending on trial
duration. n = 3656 trials. b, Same data and color conventions as in a except that
the abscissa indicates event rate instead of count. For a given event rate (11 events/s,
black arrow), the subject’s choices were very similar for all trial durations. c, d, Data
for four subjects; conventions are the same as in a and b. n = 9727 trials. Prop,
Proportion.

2.3 Multisensory enhancement occurs even when

audio-visual events are asynchronous

The multisensory enhancement observed for our task (Figure 2.2) might simply have

resulted because the auditory and visual stimuli were presented amid background

noise and therefore were di�cult to detect. Thus, in the synchronous condition,

multisensory information may have enhanced subjects’ performance by increasing

the e↵ective signal-to-noise ratio for each event by providing both auditory and visual

events at the same time. To evaluate this possibility, we tested subjects on a condition

designed to prevent multisensory information from facilitating event detection: we
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achieved this by generating auditory and visual event streams independently. We

term this the “independent condition”. On each trial, we used the same ratio of short

to long events for the auditory and visual stimuli. First, we restricted our analysis to

the case where the resulting rates were identical or nearly identical (matched trials).

Importantly, the auditory and visual events did not occur at the same time and could

have had di↵erent sequences of long and short intervals (Figure 2.1c). Because the

events frequently did not occur simultaneously, subjects had little opportunity to

use the multisensory stimulus to help them detect individual events. Despite this,

subjects’ performance still improved on the multisensory condition compared with the

single-sensory condition. This is evident in the performance of a single human and rat

subject (Figure 2.4a,c). For both the human and the rat, thresholds were significantly

lower on multisensory trials compared with visual or auditory trials (human: auditory,

p = 0.0002, visual, p < 10�5; rat: auditory, p < 10�5, visual, p < 10�5). The change

in threshold was close to the optimal prediction for the human (measured: 2.08

[1.70, 2.46]; optimal: 2.39 [2.60, 2.17]; p = 0.09) and was lower than the optimal

prediction for the rat (measured: 2.64 [2.47, 2.81]; optimal: 3.26 [3.10, 3.38]; p <

10�5). This example was typical: all subjects we tested showed an improvement

on the multisensory condition, and multisensory thresholds were frequently slightly

lower than the optimal prediction (Figure 2.4e, many circles are below the x = y

line); the improvement was significantly greater than the optimal prediction for one

additional rat (rat 1, p < 10�5). On average, this improvement was not accompanied

by a change in PSE, for neither the humans (mean PSE di↵erence between visual and

multisensory condition: 0.45 [�1.93, 1.04], p = 0.47; mean PSE di↵erence between

auditory and multisensory conditions: 0.62 [�0.4, 1.65], p = 0.18) nor the rats (mean

PSE di↵erence between visual and multisensory condition: 0.48 [�0.33, 1.29], p =

0.13; mean PSE di↵erence between auditory and multisensory conditions: 0.55 [�2.04,

3.14], p = 0.46). To ensure that subjects’ improvement on the independent condition

was not driven by changes at the highest and lowest rates (where stimuli might be

perceived as synchronous), we repeated this analysis excluding trials at those rates.

The multisensory improvement was still evident for the example human and was
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again very close to the optimal prediction (measured: 2.45 [1.85, 3.05]; optimal: 2.79

[2.40, 3.18]; p = 0.82). The multisensory improvement for the example rat was also

present and was still better than the optimal prediction (measured: 2.75 [2.41, 3.09];

optimal: 3.53 [3.19, 3.88]; p = 0.0008). For the collection of human subjects, we found

that thresholds were lower for multisensory trials compared with visual (p = 0.039)

or auditory (p = 0.003) trials. For the rats, thresholds were lower for multisensory

trials compared with visual (p = 0.02) or auditory (p = 0.04) trials. Excluding

trials with the highest/lowest rates did not cause significant changes in the average

ratio of multisensory to single-sensory thresholds for either modality or either species

(p < 0.05).

Subjects might have shown a multisensory improvement on the independent con-

dition for two trivial reasons. First, the presence of two modalities together might

have been more engaging and therefore recruited additional attentional resources com-

pared with single-sensory trials. Second, events in the independent condition might

sometimes occur close enough in time to aid in event detection. We performed two

additional analyses that ruled out both of these possibilities.

First, we examined subsets of trials from the independent condition where the

rates were di↵erent for the auditory and visual trials (bonus trials). For these trials,

evidence from one modality (say, vision) provided stronger evidence about the correct

decisions than the other modality (say, audition). For example, the auditory stimulus

might be 10 Hz, a rate that is quite close to threshold, but still in favor of a low

rate choice, while the visual stimulus is 9Hz (Figure 2.4b, arrow, cyan line). We

compared such trials possessing di↵erent auditory and visual rates with “matched-

evidence” trials where both stimuli had the same rate (Figure 2.4b, arrow, blue line).

If subjects exhibit improved event detection on the multisensory condition because of

near-simultaneous events, they should perform worse on the bonus evidence trials (at

least for low rates), because the likelihood of events occurring at the same time is lower

when there are fewer events (10 and 10 events for matched trials; 10 and 9 events

for bonus trials). To the contrary, we found that performance improved on bonus

evidence trials: in the example, the subject made fewer high choices on the bonus
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Figure 2.4: The multisensory enhancement is still present for the indepen-
dent condition. a, Performance of a single subject. Conventions are the same as
in Figure 2a. n = 4255 trials. b, A comparison of accuracy for matched trials (blue
trace), bonus trials (cyan trace), and neutral trials (orange trace). Abscissa plots the
rate of the auditory stimulus. Data are pooled across six humans. n = 1957 (matched
condition), 2933 (bonus condition), and 3825 (neutral condition). c, Same as a, but
for a single rat (rat 1). n = 13116 trials. d, Same as b, but for a single rat. n = 3725
(matched condition), 244 (bonus condition), and 247 (neutral condition) e, Scatter
plot for all subjects comparing the observed thresholds on the multisensory condition
with the predicted thresholds. Conventions are the same as in Figure 2c. Error bars
indicate 95% CIs. Prop, Proportion.

trials at low rates (Figure 2.4b, arrow, cyan trace below blue trace), demonstrating

improved performance. Accuracy was improved at the higher rates as well, leading to

a significantly lower threshold for bonus trials (matched: � = 2.3 [2.00, 2.57]; bonus:

� = 1.3 [1.12, 1.38]; p < 10�5). The enhanced performance seen in this subject was

typical: five of six subjects showed lower thresholds for bonus evidence trials, and

this reached statistical significance (p = 0.05) in three individual subjects. Data from

an example rat subject supported the same conclusion (Figure 2.4d): performance on

bonus trials was better than performance on matched trials (matched: � = 2.6 [2.42,

2.78]; bonus: � = 1.4 [0.71, 2.09]; p = 0.02). Bonus trials were collected from one of
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the remaining two rats; for this rat also, performance on bonus trials was better than

performance on matched trials (rat 2; matched: � = 4.4±0.22; bonus: � = 2.6±0.70;

p = 0.008).

Next, we examined subsets of neutral trials for which the rate of one modality

(say, vision) was so close to the PSE that it did not provide compelling evidence

for one choice or the other. If multisensory trials are simply more engaging and

help subjects pay attention, performance should be the same on matched trials and

neutral trials. To the contrary, we found that performance was worse for neutral

trials compared with matched trials: the example subject made many more errors

on neutral trials and had elevated thresholds (matched: � = 2.3 [2.00, 2.57]; neutral:

� = 4.2 [3.56, 4.57]; p < 10�5). The decreased performance seen on neutral trials

was typical: all subjects showed higher thresholds for neutral trials, and this was

statistically significant (p = 0.05) in five subjects. Data from an example rat subject

support the same conclusion (Figure 2.4d): performance on the neutral trials was

worse than performance on matched trials (� = 2.6 [2.42, 2.78]; neutral: � = 5.0

[3.80, 6.20]; p < 10�5). Neutral trials were collected from one of the remaining two

rats; for this rat also, performance on neutral trials was worse than performance on

matched trials (matched: � = 4.4 [4.03, 4.76]; neutral: � = 6.6 [5.09, 8.11]; p = 0.01).

Because we typically collected data from only the independent condition or the

synchronous condition on a given day, we could not rule out the possibility that

subjects developed di↵erent strategies for the two conditions. If true, then their

performances should decline when the trials from the two conditions were mixed

within a session. To test this, we collected data from four additional subjects on a

version of the task where the synchronous and independent conditions were presented

in alternating blocks of 160 trials over the course of each day. Because the condition

switched so frequently within a given experimental session, subjects would have a

di�cult time adjusting their strategy. Therefore, a comparable improvement on the

two tasks can be taken as evidence that subjects can use a similar strategy for both

conditions. Indeed, we found that subjects showed a clear multisensory enhancement

on both conditions, even when they were presented in alternating blocks (Figure
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Figure 2.5: Human subjects’ performance is better on multisensory trials
even when the synchronous and independent conditions are presented in
alternating blocks. a, Scatter plot for all subjects comparing the observed thresh-
olds on the multisensory condition with the predicted thresholds. Data from the
synchronous (circles) and independent (triangles) conditions are shown together. Er-
ror bars indicate 95% CIs. b, Subjects perform better on bonus trials compared with
the matched trials and slightly worse on neutral trials. Conventions are the same
as in Figure 4c. n = 1390 (matched condition), 2591 (bonus condition), and 2464
(neutral condition). Prop, Proportion.

2.5a, triangles and circles close to the x = y line). Further, this group of subjects

showed the same enhancement on bonus trials as did subjects who were tested in the

more traditional configuration (Figure 2.5b; matched: � = 3.7 [2.93, 4.45]; bonus:

� = 1.9 [1.67, 2.04]; p < 10�5). Individual subjects all showed reduced thresholds for

the bonus condition; this di↵erence reached significance for one individual subject.

This group of subjects also showed significantly increased thresholds on neutral trials

relative to matched trials (Figure 2.5b) (matched: � = 3.7 [2.93, 4.45]; neutral:

� = 6.4 [4.91, 7.89]; p = 0.0008). This e↵ect was also observed in all four individual

subjects.

2.4 Subjects’ decisions reflect evidence

accumulated over the course of the trial

Our stimulus was deliberately constructed so that the stimulus rate fluctuated over

the course of the trial. We exploited these moment-to-moment fluctuations in rate
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to determine which time points in each trial influenced the subjects’ final decisions.

To explain this analysis, consider a group of trials that was selected because they

had the same average rate during the first 700ms of the trial (Figure 2.6a, top). By

examining the average stimulus rate in the last 300ms of the trial and comparing it

for trials that end in high versus low choices, we can determine whether rates during

that late interval influenced the subjects’ final choice. In the schematic example, trials

preceding low choices (Figure 2.6a, red traces, top) had a lower rate during the final

300ms compared with trials preceding high choices (Figure 2.6a, blue traces, top).

We denote di↵erences in rate within such windows as the “excess rate” supporting

one choice over the other. The same process can be repeated for other windows within

the trial (Figure 2.6a, bottom). Systematically varying the temporal window makes

it possible to generate a time-varying weighting function, termed the choice-triggered

average (Kiani et al., 2008; Nienborg and Cumming, 2006; Sugrue et al., 2004), that

describes the degree to which each moment in the trial influenced the final outcome

of the decision. When excess rate > 0 at a particular time point, we conclude that

stimuli at that time influence the decision. By comparing the timecourse of the excess

rate curves between di↵erent trial types, we gain insight into the animals underlying

strategies. For example, if the excess rate was elevated only very late in the trial,

this suggests that the subjects either did not pay attention early in the trial or did

not retain the information (a leaky integrator) and simply based their decision on

what happened at the end of the trial. By contrast, if the excess rate was elevated

for the entire duration of the trial, this suggests that subjects exploited information

presented at every moment.

The excess rate that we computed was elevated over the course of the entire trial

for human subjects (Figure 2.6b) and over ⇠ 600ms for rodents (Figure 2.6c). This

suggests that subjects integrate evidence over time for the majority of the trial. The

integration time appears to be longer for humans compared with rats: the choice-

triggered average for rats was not elevated during the first 200 or last 100ms of the

trials. On average, humans’ excess rates were significantly larger for multisensory

trials compared with auditory-only or visual-only trials (multisensory: 1.63 ± 0.05;
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Figure 2.6: Subjects’ decisions reflect evidence accumulated over the course
of the trial. a, Schematic of average stimulus frequencies for trials supporting
opposing decisions. Top, Trials were selected if their average stimulus rate from 0 to
700 ms was 10 Hz (seven events over 700 ms). Trials were then grouped according to
whether the subject chose low (red) or high (blue) on each trial. Average stimulus
rate within the bin of interest (700–1000 ms; dashed lines) was then compared for
stimuli preceding left and right choices. Bottom, Same as in top panel except that
the window of interest occurred early in the trial (0–300 ms). b, Solid traces indicate
di↵erence in average event rate for trials that preceded left versus right choices for all
time points in a trial. Color conventions are the same as in Figure 2, a and b. Thin
lines indicate SEM computed via bootstrapping. Dashed traces indicate di↵erence in
average rate for trials assigned randomly to two groups. Data were pooled from six
human subjects. Trial numbers di↵ered slightly for each time point; ⇠ 1800 trials
were included at each point. c, Same as b but for an individual rat. Trial numbers
di↵ered slightly for each time point; ⇠3200 trials were included at each point.

visual: 1.16 ± 0.04; auditory: 1.19 ± 0.03; multisensory > auditory, p < 10�5;

multisensory > visual, p < 10�5). The multisensory excess rate was also elevated in

the example rat (multisensory: 1.99± 0.08; visual: 1.05± 0.04; auditory: 1.29± 0.04;

multisensory > auditory, p < 10�5; multisensory > visual, p < 10�5). Similar results

were observed in the other two rats: the choice-triggered averages exhibited simi-

lar shapes and the magnitude of the multisensory trials was larger than that of the

single-sensory trials (rat 2: multisensory > auditory, p < 10�5; multisensory > visual,

p < 10�5; rat 3: multisensory > auditory, p > 10�5; multisensory > visual, p > 10�5).
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2.5 Perceptual weights change with stimulus

reliability

We examined the decisions of rat and human subjects on a version of the rate dis-

crimination task in which we systematically varied both the stimulus strength (i.e.,

the trial-averaged event rate) and the reliability (i.e., SNR) of auditory and visual

stimuli.

On single-sensory trials, estimated psychophysical thresholds (�) were compara-

ble across modalities for matched reliability trials but significantly smaller for high-

relative to low-reliability trials of either modality, as highlighted in a representative

human subject (Figure 2.7a, green and black lines steeper than blue and gray lines;

�± SE: high-reliability auditory: 1.01± 0.12 < low-reliability auditory: 3.20± 0.21,

p < 10�5; high-reliability visual: 1.24 ± 0.11 < low-reliability visual: 3.40 ± 0.30,

p < 10�5). Rats were similarly presented low-reliability and high-reliability audi-

tory stimuli, but only a single reliability level was used for the visual stimuli. Rats’

thresholds also di↵ered significantly between the two auditory reliability levels, as

demonstrated in an example rat (Figure 2.7c, green line steeper than blue line; high-

reliability auditory: 1.93 ± 0.35 < low-reliability auditory: 5.32 ± 0.95, p = 0.0004),

with an intermediate threshold for visual trials (black line; visual: 2.72 ± 0.31). In

both species, we attempted to minimize bias; however, achieving zero bias for all

three (rat) or four (human) single sensory trial types proved challenging. Analyses

that could in principle be a↵ected by subject bias were always repeated in subsampled

data where biases were minimal.

As in the experiments described in Section 2.2, both rats’ and humans’ per-

formances improved on multisensory trials, and the performances were frequently

close to the optimal prediction. The magnitude of the multisensory improvement

(�predicted/�observed; see Methods) was unrelated to the magnitude of the cue conflict

(mean correlations averaged across trial types, 95% CIs; humans: r = 0.07 [�0.13,

0.26], rats: r = 0.03 [�0.25, 0.31]). We took advantage of cue conflict trials and asked

whether subjects’ multisensory decisions reflected the relative reliabilities of the au-
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Figure 2.7: Single sensory performance on rate discrimination task depends
on sensory reliability. a, Performance of an individual human subject, displayed
as the proportion of high-rate decisions plotted against the trial-averaged event rate.
Data are presented separately for each single sensory trial type. Lines indicate psycho-
metric functions fit via maximum likelihood estimation. Data were combined across
multiple behavioral sessions (2161 trials). b, Psychophysical thresholds obtained from
seven human subjects for each single sensory trial type (low/high reliability auditory:
blue/green; low/high reliability visual: gray/black). Symbols depict individual sub-
jects. c, Single sensory performance in an individual rat, pooled from two consecutive
sessions (975 trials). d, Single sensory thresholds obtained across cohort of 5 rat sub-
jects (symbols). Thresholds in b and d were estimated from data combined across
multiple behavioral sessions (humans/rats: 19143/62363 total single sensory trials).
Star symbols indicate the example human and rat subjects used in a and c. Error
bars indicate standard errors in all panels.

ditory and visual stimuli as estimated from subjects’ single sensory psychophysical

thresholds. To assess the relative weights subjects assigned to the auditory and vi-

sual stimuli, we compared subjects’ decisions on multisensory trials across a range of
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conflict levels for each of the possible reliability pairings.

Both humans’ and rats’ decisions on multisensory trials were influenced by the rel-

ative reliabilities of the auditory and visual stimuli. The e↵ects of stimulus reliability

on subjects’ decisions can be visualized by comparing subjects’ choice data on trials

with di↵erent levels of conflict between the auditory and visual event rates. When

auditory and visual reliabilities are matched, subjects should weigh both modalities

equally. Indeed, on matched reliability trials, conflict in the event rates did not sys-

tematically bias subjects’ decisions towards either cue. When sensory reliabilities

were unequal, however, subjects preferentially weighted the more reliable modality,

and their PSEs were systematically shifted towards this cue on conflict trials (Figure

2.8a,b; red, blue curves). These results are in agreement with previous observations

from experiments using static stimuli (Ernst and Banks, 2002; Jacobs, 1999). The

shifts in the psychometric functions for the example rat subject were smaller than

in the human. The smaller magnitude of the shift in the rat relative to the human

reflects the fact that the single sensory thresholds (and thus the sensory reliabilities)

were more disparate between the two modalities in the human than in the rat (i.e.,

compare human and rat psychometric curves in Figure 2.7a,c).

The magnitude and direction of the shift in PSE depended on the magnitude

and direction of the stimulus conflict as well as the relative reliabilities of the two

modalities. Figure 2.8, c and d, displays the example subjects’ estimated PSEs as

a function of conflict level for two multisensory trial types. For multisensory trials

featuring low-reliability visual and high-reliability auditory stimuli in the example

human, linear regression of PSE against conflict level (�) produced slopes significantly

greater than zero (Figure 2.8c, left; slopes, 95% CIs: 0.36 [0.26, 0.46]). On the other

hand, the slope of this regression was significantly less than zero for multisensory

trials featuring high-reliability visual and low-reliability auditory stimuli (Figure 2.8c,

right; slopes, 95% CIs: �0.46 [�0.59,�0.33]). The positive and negative slopes of

the regression lines indicate stronger and weaker weighting of the auditory stimulus

(respectively) relative to the visual stimulus; thus, this subject weighed the high-

reliability modality more strongly than the low-reliability modality in either case.
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Figure 2.8: Subjects weigh auditory and visual evidence in proportion to
sensory reliability. a, Performance on multisensory trials in an individual human
pooled over multiple sessions (values on abscissae indicate mean trial event rates av-
eraged between auditory and visual stimuli). Colors indicate level of conflict between
modalities (� = visual rate � auditory rate). Presented human data were obtained
from the low-reliability visual/high-reliability auditory condition. b, Same as a but
for one rat. Data were obtained from the visual/high-reliability auditory condition.
c, Points of subjective equality (PSEs) from multisensory trials plotted as a func-
tion of conflict level for di↵erent pairings of auditory and visual stimulus reliabilities,
shown for the same subject as in a. Fitted lines were obtained via linear regression.
Plotted data correspond to trials consisting of low- and high-reliability auditory stim-
uli paired with high- and low-reliability visual stimuli, respectively. Analogous fits
were obtained for the other pairings of auditory and visual reliabilities presented to
human subjects. d, Same as c but for the single rat subject in b. e, Comparisons of
the observed visual weights to the values predicted from the example human’s single
sensory thresholds. Data pertain to the same two multisensory trial types reported
in c. N = 3, 861 trials. f, same as e but for the rat in b and d. N = 4, 018 trials.
Error bars indicate standard errors in all panels.
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Similarly, slopes of the PSE versus � regression lines di↵ered significantly between

the two multisensory trial types in the example rat, reflecting the relative reliabilities

of auditory and visual stimuli (Figure 2.8d: visual/high-reliability auditory: 0.09

[0.005, 0.18]; visual/low-reliability auditory: �0.22 [�0.32, �0.12], p < 10�5).

The changes in subjects’ PSEs across the range of cue conflicts agreed well with

predictions based upon the sensory reliabilities we inferred from subjects’ performance

on single sensory trials. To test whether subjects’ cue weighting approximated statis-

tically optimal behavior, we compared the observed sensory weights estimated from

the slopes of the regression lines with the theoretical weights predicted by subjects’

thresholds on the corresponding unisensory auditory and visual trials (see Methods;

Young et al., 1993). The observed and predicted weights were in close agreement for

all multisensory trial types in both example subjects (Figure 2.8e,f).

The weighting of multisensory stimuli seen in the example human and rat was

typical: nearly all humans and rats weighed sensory information in a manner that

reflected the relative reliabilities of auditory and visual stimuli (Figure 2.9). For each

subject, we computed the di↵erence in wV between multisensory trials consisting

of high-reliability auditory/low-reliability visual versus low-reliability auditory/high-

reliability visual stimulus pairings. This change was significantly greater than zero

for six of seven individual humans (Figure 2.9a, p < 0.007, one-tailed Z-tests). This

indicates that nearly all human subjects increasingly relied on the visual or auditory

evidence when its reliability was increased relative to the other modality. The increase

in wV between multisensory trials containing low- versus high-reliability auditory

stimuli was likewise significant in four out of five rats (Figure 2.9d; p < 0.032, Z-

tests). The remaining human and rat also showed changes in wV in the expected

direction, but the changes did not reach significance (p > 0.19).

2.5.1 Optimal cue weighting

Having established that both humans and rats dynamically changed their perceptual

weights on multisensory trials in a manner that reflected the relative reliabilities of

the auditory and visual evidence, we examined the degree to which these changes
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matched the statistically optimal predictions. These predictions are based on the

sensory reliabilities inferred by subjects’ performance on single sensory trials (see

Methods). In humans, observed visual weights were generally closely matched to

predictions within the individual subjects (Figure 2.9b); seven of 28 comparisons

(7 subjects ⇥ 4 multisensory trial types) exhibited significant deviations between

predicted and observed weights (p < 0.05, Z-tests). The observed deviations were

distributed across four subjects. Interestingly, six of the seven deviations involved

overweighting of visual evidence relative to predictions when the auditory reliability

was high (Figure 2.9b, green and orange symbols). The remaining 21 comparisons

for the other human subjects revealed no significant di↵erences between observed

and predicted weights. A limitation of our analysis is that we cannot rule out the

possibility that some of the apparent deviations from optimality were, in fact, false

positives arising from the large number of comparisons; however, all seven deviations

remained robust to multiple comparisons correction after allowing for a false discovery

rate of 20% (Benjamini and Hochberg, 1995).

In rats, as in humans, the perceptual weights for many individual subjects were

close to the optimal predictions (Figure 2.9e). In general, rats came closest to the

optimal prediction on high-reliability auditory trials (observed visual weights did

not di↵er significantly from predictions in any of the rats; p > 0.18, two-tailed Z-

tests). Deviations from the optimal prediction were observed more frequently on

trials where the auditory stimulus reliability was low. On such trials, the perceptual

weights for three of five rats di↵ered significantly from optimality (p < 0.05, Z-tests).

One other rat’s perceptual weights also di↵ered from the optimal prediction on such

trials, though the e↵ect was only marginally significant (p = 0.07). In all four of

these cases, observed visual weights were lower than predicted, suggesting that rats

may systematically under-weigh visual evidence relative to the optimal prediction

when auditory reliability is low (Figure 2.9e: black square, triangle, diamond, and

circle). This contrasted with the deviations from optimality observed in humans, in

which subjects occasionally overweighted visual evidence when auditory reliability

was high. Note that these observations do not mean that the rats ignored the visual
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Figure 2.9: Reliability-based sensory weighting is observed consistently
across subjects. Cue weights were estimated from data pooled over multiple be-
havioral sessions (humans/rats = 23,873/17,984 total multisensory trials). a, Data
points indicate the change in observed cue weights observed in seven individual human
subjects, computed as the di↵erences in subjects’ visual cue weights between high-
reliability visual/low-reliability auditory and low-reliability visual/high-reliability au-
ditory trials. Asterisk indicates significant change in visual cue weights (p < 0.05,
within-subjects one-tailed Z-tests). b, Scatterplot compares observed visual cue
weights (ordinate) to predicted values (abscissa) for all multisensory trial types in
the individual human subjects. Legend indicates colors corresponding to each mul-
tisensory trial type. c, Comparison of the observed visual cue weights (ordinate) to
the PSE for unisensory auditory trials (abscissa). Color conventions are the same as
in b. d, Same as a but for five individual rats. e, Same as b but showing data for
five rats. f, Same as c but for five rats. Error bars indicate 95% confidence intervals
in all panels.

stimulus; when auditory reliability was low, rats generally relied more heavily on

the visual stimulus than on the auditory stimulus (i.e., wV > 0.5). The deviations

from optimality here imply that the rats would have made better use of the available

information had they relied even more heavily on the visual stimulus than observed.

It is unlikely that our changing cue weights were driven by unisensory biases. First,
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unisensory biases have previously been shown to have very little e↵ect on weights

measured during multisensory trials (Fetsch et al., 2012). This is because although

nonnegligible single sensory biases are assumed to systematically shift the PSE on

multisensory trials in proportion to the relative reliabilities of either cue, such biases

should shift the PSE in an identical manner on conflict trials and nonconflict trials.

Therefore, our estimates of wV and wA, which are generated by taking the slope

of the line relating PSE and cue conflict (Figure 2.8c), should not be a↵ected by

unisensory bias under the classic cue integration framework (Young et al., 1993).

Nevertheless, we took two additional steps to guard against the possibility that our

results were confounded by single sensory bias. The first step was to examine whether

wV (and by extension wA) was related to unisensory bias. We found that for every

multisensory trial type considered individually in both rats and humans, wV was

unrelated to the PSE measured from corresponding unisensory auditory trials (all

p-values > 0.05, across-subject Pearson’s correlations, Figure 2.9c,f). In other words,

subjects who had a slight bias on auditory trials were just as likely as any other

subject to demonstrate a particular cue weight. This was also true for the relationship

between wV and visual PSE (all p-values > 0.05). These observations are consistent

with theoretical predictions and provide reassurance that discrepant biases on the

two unisensory conditions had no systematic e↵ects on cue weights. Our second step

to guard against artifacts from unisensory bias was to recompute wV for humans

and rats after restricting the included data to behavioral sessions for which subjects’

single-sensory PSEs were all equal within a tolerance of ±2 events/second (i.e., less

than the range of cue conflicts presented), and obtained nearly equivalent results in

both species.

2.6 Discussion

In this chapter we report five main findings:

1. Subjects can combine multisensory information for decisions about an abstract

quantity, event rate, which arrives sequentially over time;
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2. Similar, near-optimal multisensory enhancement was observed in humans and

rats. This suggests that the neural mechanisms underlying this multisensory

enhancement are very general and are not restricted to a particular species;

3. Multisensory enhancement is present both when the sensory inputs presented

to each modality were redundant and when they were generated independently.

This finding is consistent with a model where event rates are estimated inde-

pendently for each modality and then are fused into a single estimate at a later

stage;

4. Most subjects based decisions on sensory evidence presented throughout the

trial duration;

5. Dynamic weighting of sensory inputs extends to time-varying stimuli and is not

restricted to primates.

Our results di↵er from previous observations about multisensory integration in a

number of ways. First, our stimulus is unique in that the relevant information, event

rate, is not available all at once but must be accumulated over time. Most prior

studies of multisensory integration have not explicitly varied the incoming evidence

with respect to time (Ernst et al., 2000; Ernst and Banks, 2002; Alais and Burr,

2004). Some previous studies have presented time-varying rates in a multisensory

context (Recanzone, 2003), but have not, to our knowledge, asked whether subjects

can exploit the multisensory information to improve performance. Second, we have

shown multisensory enhancement in both humans and rodents. Most of the multi-

sensory integration studies in animals have been performed with nonhuman primates

(Avillac et al., 2007; Gu et al., 2008). There have been some studies of multisen-

sory integration in rodents (Sakata et al., 2004; Hirokawa et al., 2008), but our study

goes further than those in several ways. Previous studies did not establish animals’

thresholds or PSEs. Our approach allowed us to determine the animals’ psychophys-

ical thresholds and PSEs and therefore compare changes on multisensory trials to

a maximum-likelihood prediction. Further, previous studies in rodents also did not
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compare human data alongside the animals, making it di�cult to know whether the

two species use similar strategies when combining multisensory information.

Our results are perhaps consistent with a di↵erent mechanism for multisensory

integration than has been thus far observed physiologically. Recordings from the SC in

anesthetized animals have made it clear that temporal synchrony (or near-synchrony)

of individual stimulus events is a requirement for multisensory integration (Meredith

et al., 1987). Because we observed multisensory integration in the absence of temporal

synchrony, the circuitry in the SC probably does not underlie the improvement we

observed. Instead, our observations point to mechanisms that estimate more abstract

quantities, such as the average rate over a long time interval.

Critical features of the task we used may have invited modality-independent com-

bination of evidence. First of all, auditory and visual events probably arrived in

the brain with di↵erent latencies even on the synchronous condition (Pfingst and

O’Connor, 1981; Maunsell and Gibson, 1992; Recanzone et al., 2000). More impor-

tantly, the stimulus rates were su�ciently high that connecting individual auditory

and visual events was likely not feasible for most subjects. Previous research has

shown that when auditory and visual events are embedded in periodic pulse trains,

the detection of temporal synchrony falls to chance levels at only 4Hz (Fujisaki and

Nishida, 2005). A separate study found that discrimination thresholds for time inter-

val judgments are approximately five times longer for multisensory stimuli than for

auditory of visual stimuli alone (Burr et al., 2009).Together, those studies and ours

suggest that the brain faces a major challenge when trying to associate specific audi-

tory or visual events that are arriving quickly. A reasonable solution to this problem

is to generate separate estimates for each modality and then combine them at a later

stage, perhaps in an area outside of the SC that receives both auditory and visual

inputs, such as the parietal cortex (Reep et al., 1994; Mazzoni et al., 1996). This type

of strategy may not be necessary for stimuli that lack discrete events. It remains to

be seen whether other continuously varying stimuli would likewise be integrated over

time at an early stage and then combined later on (Fetsch et al., 2009).
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We have argued that our subjects use data presented over the entire duration of

the trial. Because we presented stimuli for a fixed duration (1000ms), however, we

make this conclusion with caution. The choice-triggered average we report suggests

that subjects use information over long periods of time in the trial, but a reaction

time paradigm is necessary to make this conclusion with complete confidence.

Although we conclude that rats and humans are both quite capable of multisensory

integration, there are small di↵erences in the behavior of the two species. Specifically,

humans’ decisions were influenced by stimuli at all times during the trial (Figure 2.6b),

whereas rats’ decisions were influenced mainly by the middle 650ms (Figure 2.6c).

The weak influence of stimuli at the very beginning of the trial is consistent with a

“leaky integrator” that accumulates evidence but leaks it away according to a time

constant that is shorter than the trial. An alternative explanation is that the rats had

little time to prepare for the onset of the stimulus. The stimulus began as soon as

the rats initiated a nose poke into the center port. The human subjects, by contrast,

began each trial with a brief fixation period before the stimulus began, providing them

with some preparation time. Accordingly, humans’ decisions were clearly influenced

by stimuli very early on in the trial. Several explanations are consistent with the

weak influence of stimuli near the end of the trial. One possibility is that the rats

accumulated evidence up to a threshold level or bound that was frequently reached

before the end of the trial. If this were the case, stimuli arriving after the bound was

reached would not influence the animals’ decisions, leading to the pattern of results

that we observed. A signature of this has been previously reported in monkeys (Kiani

et al., 2008). A second possibility is that stimuli late in the trial did not influence the

rats’ choices because the rats used the last 200ms of the trial to prepare the full-body

movement that was required to report their decisions. Human observers, by contrast,

made much smaller movements to report their decisions, so they might not have

needed the additional movement preparation time. Further, human subjects almost

never responded before the stimulus was over. Rodents’ more frequent early responses

were consistent with the possibility that they used part of the stimulus presentation

time to plan a movement. Note that other aspects of the choice triggered average
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were quite similar for the two species. For example, we observed a reliable di↵erence

in the magnitude of the choice-triggered average for single-sensory and multisensory

trials. This suggests that multisensory stimuli exert more influence over the choice

compared with single sensory stimuli, a conclusion that is in agreement with the

overall improvements we observed on multisensory trials.

A final caveat is the observation that our subjects, particularly the rats, frequently

showed multisensory enhancements that were larger than one would expect based on

maximum-likelihood combination. Individual sessions with superoptimal enhance-

ments have been observed previously in animals (Fetsch et al., 2009, 2012), so our

observations are not without precedent. Nevertheless, the tendency toward supraop-

timality is more prevalent and consistent in our dataset than in previous ones. The

most likely explanation is that performance on single-sensory trials provides an imper-

fect estimate of a modality’s reliability. The apparent supraoptimal cue combination

likely indicates that, at least for a few subjects, we underestimated the reliability of

the single-sensory stimulus. A possible explanation is that the animals had di↵erent

levels of motivation on single-sensory versus multisensory trials. One reason for this

might be as follows: the rats are, in general, very sensitive to overall reward rate. For

example, we have observed improved overall performance on a given modality when

we decrease the proportion of easy trials for that modality. This suggests that the an-

imals may strive for a particular reward rate and adjust their motivation levels when

they exceed or fall short of that rate. Because single-sensory trials yield lower av-

erage reward rates compared with multisensory trials, animals might have decreased

motivation on those trials, particularly when they are interleaved with higher-reward

rate multisensory trials. Although this explanation is a speculative one, we favor it

over other possibilities, such as the possibility that there is an additive noise source:

high-level decision noise, for example. Additive noise would indeed cause underes-

timates of the subjects’ reliability on the single-sensory condition; however, it has

been previously demonstrated to have only a very small e↵ect on the relationship

between the measured and predicted behavior on the multisensory condition (Knill

and Saunders, 2003). Indeed, if high-level decision noise were present and constant
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across single-sensory and multisensory trials (Hillis et al., 2004), it would result in

an overestimate of multisensory improvement, whereas we observed multisensory im-

provements greater in magnitude than predicted by the maximum-likelihood model.

Our behavioral evidence argues for the existence of neural circuits that make it

possible to flexibly fuse information across time and sensory modalities. Our obser-

vations suggest that this kind of multisensory integration may use di↵erent circuitry

compared with the synchrony-dependent mechanisms that have been reported previ-

ously. The existence of many mechanisms for multisensory integration likely reflects

the fact that multisensory stimuli in the world probably activate neural circuits on a

variety of timescales. As a result, many di↵erent mechanisms, each of them suited to

the particular constraints of a class of stimuli, may operate in parallel in the brain.

Extending dynamic weighting to rodents indicates that the ability to estimate

stimulus reliability for dynamic stimuli is conserved across diverse species in the

mammalian lineage. Although previous behavioral studies on multisensory integra-

tion have been conducted in rats (Sakata et al., 2004; Hirokawa et al., 2008, 2011),

they have not systematically varied stimulus reliability in a way that made it possible

to estimate perceptual weights. The dynamic weighting we observed in rats suggests

that the ability to estimate reliability and use such estimates to guide decisions likely

relies on neural mechanisms common across many species. Further, by establishing

dynamic weighting for rodents, we open the possibility of using this species to examine

the underlying neural circuits that drive this behavior.

The ease with which rats dynamically reweighed inputs, even when reliability lev-

els changed unpredictably from trial to trial, suggests that rodents, like primates,

possess flexible neural circuits that are designed to exploit all incoming sensory in-

formation regardless of its modality. What neural mechanisms might underlie this

ability to flexibly adjust perceptual weights? Although a wealth of multisensory ex-

periments have been carried out in anesthetized animals (Jiang et al., 2001; Meredith

et al., 1987; Stanford et al., 2005), many fewer have been carried out in behaving

animals; as a result, much about the underlying neural mechanisms for optimal inte-

gration remain unknown. Here, our subjects reweighed sensory inputs even when the
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relative reliabilities varied from trial to trial, suggesting that the dynamic weighting

could not have resulted from long-term changes in synaptic strengths (for instance,

between primary sensory areas and downstream targets). The required timescales of

such mechanisms are far too long to explain dynamic weighting. One possibility is

that populations of cortical neurons automatically encode stimulus reliability due to

the firing rate statistics of cortical neurons. Assuming Poisson-like firing statistics,

neural populations naturally reflect probability distributions (Salinas and Abbott,

1994; Sanger, 1996). Unreliable stimuli may generate population responses with re-

duced gain and increased variability at the population level (Beck et al., 2008; Deneve

et al., 2001; Ma et al., 2006). Such models of probabilistic population coding o↵er

an explanation for how dynamic cue weighting might be automatically implemented

as a circuit mechanism without changes in synaptic strengths. A plausible circuit

implementation of such a coding scheme has been recently described in the con-

text of multisensory integration (Ohshiro et al., 2011); this model allows for random

connectivity among populations of sensory neurons and achieves sensitivity to stimu-

lus reliability using well-established mechanisms of divisive normalization (Sclar and

Freeman, 1982; Heeger, 1993; Carandini et al., 1997).

A competing explanation for multisensory enhancement is that it arises from syn-

chronous activity between areas responsive to each individual sensory modality (for

review, see Senkowski et al., 2008). Indeed, classic work in the superior colliculus sug-

gests that precise timing of sensory inputs is crucial for multisensory enhancement of

neural responses (Meredith et al., 1987), and psychophysical e↵ects can likewise re-

quire precise timing of the relevant inputs (Lovelace et al., 2003; Shams et al., 2002).

By contrast, multisensory improvements on our task do not require synchronous au-

ditory and visual stimuli. Our subjects’ ability to combine independent streams of

stochastic auditory and visual information bearing on a single perceptual judgment

is testament to the flexibility of multisensory machinery in the mammalian brain.
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3

A category-free neural population

supports evolving demands during

decision-making

Individual neurons are often seen as members of highly specialized categories, with

response properties making them suitable for particular classes of computations (Bar-

low, 1953; Ku✏er, 1953). This view has been fruitful for understanding early sensory

areas, where single neurons can be strongly tuned for task parameters, such as direc-

tion of motion (Britten et al., 1996) or disparity (Nienborg and Cumming, 2006).

The assumption of neural categories is reflected in many experimental designs

and analysis methods, even those focusing on neural structures far downstream of

early sensory areas. This assumption can be evident in the way neurons are sampled:

sometimes, neurons must meet certain response criteria to be included for study, such

as responsiveness to certain stimuli or activity during a delay period (Roitman and

Shadlen, 2002; Balan et al., 2008; Georgopoulos et al., 1982; Churchland et al., 2008).

Implicit in this approach is the idea that the cell’s response during one stimulus iden-

tifies it as a member of the category being examined. The assumption of categories

can also be evident during analysis: pie charts, a common way of summarizing popu-

lation data (Arimura et al., 2013; Viswanathan and Nieder, 2013; Roth et al., 2012),

explicitly assign neurons to categories. Another way of summarizing a population

response, averaging over many neurons, likewise reflects the assumption that each
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neuron is an exemplar of a category, di↵erent from other category members mainly

because of noise.

An alternative hypothesis is that neurons reflect random combinations of param-

eters, leading to neural populations in which neurons’ responses defy categorization.

Theoretical work suggests a major advantage for category-free populations: when pa-

rameters are distributed randomly across neurons, an arbitrary group of them can be

linearly combined to estimate the parameter needed at a given moment (Ganguli and

Sompolinsky, 2012; Salinas, 2004; Pouget and Sejnowski, 1997). This obviates the

need for precisely prepatterned connections between neurons and their downstream

targets and also means that all information is transmitted. This latter property

could allow the same network to participate in multiple behaviors simply by using

di↵erent readouts of the neurons. Experimental work has not tested directly whether

neural populations are category free, but many observations are broadly consistent

with this possibility. Specifically, recent studies have demonstrated that neurons in

parietal (Rishel et al., 2013; Meister et al., 2013; Freedman and Assad, 2009; Park

et al., 2014) and frontal (Rigotti et al., 2013; Mante et al., 2013) areas have mixed

selectivity: individual neurons are modulated by multiple task parameters. Mixed

selectivity would be expected if neurons reflect random mixtures of parameters, but

it also might exist under other assumptions. Other experimental work has probed

for the existence of neural categories defined by the timing of a neuron’s response

(Harvey et al., 2012). That work argued against categories, but it tested only for

categories defined by response sequence. A more general test is thus required. Fur-

ther, because neurons in that study responded sparsely, it was not possible to test

whether the same neurons participated statically or dynamically in the network as

the behavioral demands evolved from decision to movement.

Here, we developed a multisensory decision task rich enough to expose the func-

tional organization of a neural population, both at a single moment and over the

course of a complex choice with evolving behavioral demands. Our data suggest

that in the PPC, the population is category free: response features are randomly

distributed across neurons. A possible explanation for this configuration is that it
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confers flexibility, allowing the brain to use the same neurons in di↵erent ways, de-

pending on the needs of the animal. In keeping with this explanation, we found that

the population can be decoded instantaneously to estimate multiple task parameters

and that the population activity explored di↵erent dimensions as the animal’s needs

evolved from decision formation to movement.

3.1 PPC inactivation reduces visual performance

We trained a new cohort of rats on the rate discrimination task described in Section

2.1. As before, animals reported a judgment about a 1-second series of auditory

clicks and/or full-field visual flashes. In this chapter we refer to this 1-second period

as “decision formation” because we have demonstrated that stimuli throughout this

period influence the animals’ decisions (see Section 2.4; Raposo et al., 2012; Sheppard

et al., 2013). Once the stimulus terminated, animals reported whether the event rate

of the stimulus was above or below an experimenter-imposed category boundary.

They reported decisions via movement to one of two choice ports. Rats were mostly

stationary during stimulus presentation and did not typically move toward or away

from the direction of the port they ultimately chose (Figure 3.1b,c). Rats mastered the

ability to categorize the stimulus and report the decision regardless of whether stimuli

were unisensory (visual-only or auditory-only) or multisensory. As in other studies

(Angelaki et al., 2009), when auditory and visual stimuli were presented together

(multisensory trials), performance was enhanced (Figure 3.1a).

We first evaluated whether PPC inactivation a↵ected decisions in any of the

modalities tested. Even if the area is not causally involved in every modality, having

multiple task parameters that modulate neurons can greatly aid our understanding:

it allows a broad search for categories that could be defined by a number of features.

In addition, modulation from a second, noncausal modality could still be of inter-

est to the animal, since these inputs might be required for behaviors beyond those

studied here.

We suppressed spiking activity of PPC neurons using two complementary strate-
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Figure 3.1: Rats’ behavior in the rate discrimination task. a, Example be-
havioral data (818 trials; 1 session) from a single animal (rat 4). Smooth lines are
cumulative Gaussian fits. Error bars reflect the Wilson binomial confidence inter-
val. b, Head angle measured during a single session. Dashed: trials that ended in
a high-rate choice; solid: trials that ended in a low-rate choice. Dashed/solid traces
are largely overlapping during decision formation (while animals are still) but diverge
during the time animals report their choices. c, Di↵erence in head or body angle
for trials ending in right vs. left choices (i.e., dashed minus solid traces in b). Each
trace reflects the average of multiple sessions in which neurons were recorded: Stim,
stimulus onset; Move, withdrawal time from center port.

gies. First, we made double bilateral infusions of muscimol, a GABAA agonist, into

PPC (2 rats). We compared performance for inactivation versus control days and

observed shallower psychometric functions (more errors) on inactivation days (Figure

3.2a, �saline = 2.640.39; �muscimol = 4.670.67; standard errors computed by bootstrap-

ping, see Methods). This example was typical: PPC inactivation reliably impaired

visual decisions (Figure 3.2b, middle; Mann-Whitney U test; p < 0.001, pooled across

animals). Animals retained some ability to make visual judgments despite the inac-

tivation, suggesting either that inactivation was incomplete or that structures in ad-

dition to PPC support the task, consistent with other studies of parietal inactivation

(Balan and Gottlieb, 2009; Li et al., 1999).

Impairment was specific to visual trials and had no consistent e↵ect on auditory
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Figure 3.2: E↵ect of PPC inactivation during audio-visual decisions. a,b,
E↵ects of muscimol inactivation. a, Example psychometric functions for 1 animal
(visual trials only). Dark blue, a single session following saline injection; light blue,
a single session the next day following muscimol injection. b, E↵ects of inactivation
on performance for auditory (green), visual (blue) and multisensory (orange) trials.
Ordinate, impairment ratio: the ratio of values for � parameter from cumulative
Gaussian fit to the data (see Methods). A value of 1 indicates no e↵ect; values > 1
indicate performance was worse on a single inactivation session (muscimol) relative
to the previous control session (saline). Symbols, individual animals (N = 2); hori-
zontal lines, median across animals and sessions. c,d, Same as a,b, but for separate
inactivation experiments implemented with DREADD (N = 2). CNO, clozapine
N-oxide.

decisions (Figure 3.2b, left; p = 0.41, pooled across animals). The sparing of auditory

decisions reveals that inactivation did not reduce the animal’s motivation or introduce

confusion about the stimulus-response contingency. Further, we observed sparing of

the multisensory enhancement, the improved sensitivity for multisensory relative to

unisensory decisions (Figure 3.2b, right). This spared enhancement implies that PPC

likely does not drive multisensory enhancement and leaves open the possibility that

PPC may process visual inputs before they are integrated with other modalities. Un-

der this scenario, we would predict only a small change in multisensory performance
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even when visual inputs are impaired. This is because multisensory mechanisms can

still use the remaining, weak visual signal to improve their estimation alongside the

spared auditory signal. The framework for multisensory integration therefore predicts

a very minor change in enhancement during inactivation of one modality, even if that

modality is clearly impaired.

One possible explanation for impaired visual decision-making is that the muscimol

might have spread to portions of neighboring visual areas, posterior to PPC. This

seems unlikely to have driven the e↵ect because the retinotopic organization of visual

areas means that restricted spread of muscimol would only have a↵ected a portion of

the visual field. Since our stimulus was full field, the una↵ected parts of the visual

field could likely have supported the behavior (Glickfeld et al., 2013). Nevertheless,

we wished to determine the spread of the inactivation.

To achieve this, we used a second inactivation strategy: DREADD (designer recep-

tor exclusively activated by designer drug), a pharmacogenetic inactivation method

that permits visualization of the agent to determine its spread (Rogan and Roth,

2011). These e↵ects were similar to the e↵ects of muscimol inactivation in a sec-

ond set of 2 rats: impairment of visual decisions (Figure 3.2c, �saline = 3.890.64;

�CNO = 5.290.71) and sparing of auditory decisions and multisensory integration (Fig-

ure 3.2d; visual trials impaired: p = 0.011; auditory trials spared: p = 0.91, pooled

across animals). Histological examination (Figure 3.3a–e) revealed that DREADD

expression was minimal beyond the posterior border of PPC, defined as 5.0mm pos-

terior to bregma (Reep et al., 1994). For one rat, expression was less than 0.12% of

maximal expression; for the second rat, expression was 20.3% of maximal expression

(Figure 3.3a-e; see Methods). The more posterior expression was apparently not the

source of the impairment because the rat with more expression posterior to PPC had

weaker visual impairment compared to the other rat. We did not detect DREADD

expression in other areas. Overall, results were similar for all animals with both mus-

cimol and DREADD inactivation. E↵ects were individually significant in 3 of 4 cases

for visual trials and 0 of 4 cases for auditory trials.

Impairments on visual decision making might be driven by a change in the reliabil-
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Figure 3.3: DREADDs expression and hystology. a, Histological section show-
ing DREADD expression in the PPC of one rat and the region that was manually
selected for quantification of expression (ROI, green contour). b, Same as a but
for brain section closer to the border between PPC and secondary visual cortex. c,
Quantification of expression levels in PPC (green trace) and near the border of PPC
(orange trace; see Methods). DREADD expression near the border of PPC was weak
or absent. d, Quantification of DREADD expression levels (see Methods). Heat
map of average pixel intensity across columns of pixels for 7 brain sections, spanning
3.36 to 4.68 mm posterior to Bregma. Sections’ anterior-posterior locations were es-
timated using the Paxinos brain atlas. e, Same as in d, but for second rat injected
with DREADD.

ity of incoming visual signals or by a change in the animal’s decision-making strategy.

Changes in decision-making strategy could include making ‘snap judgments’ that re-

lied only on evidence presented at the beginning of the trial or ‘leaking’ evidence

causing decisions to be made using only evidence presented late in the trial. To

distinguish changes in stimulus reliability from changes in strategy, we performed an

analysis of animals’ decisions that took advantage of the ongoing fluctuations in visual

and auditory rates that occur throughout the 1-second decision formation period (see
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Figure 3.4: E↵ect of PPC inactivation on use of evidence. a, Excess rate is
higher for a single rat on visual trials in saline (dark blue) than in muscimol (light blue)
sessions. Values on abscissa, centers of sliding windows; shaded regions, confidence
bounds (mean ± s.e.m.). b, Excess rate for the same rat on auditory trials with saline
(dark green) and muscimol (light green).

Methods and Section 2.4; Brunton et al., 2013). This analysis revealed no evidence

of snap judgments or evidence leak. Instead, the analysis indicates that inactivation

reduced the signal-to-noise of incoming evidence (Figure 3.4a). No e↵ects were ob-

served on auditory trials (Figure 3.4b). The reduced excess rate on visual trials and

unchanged excess rate on auditory trials also confirms the outcome of the previous

analysis using a model-free approach that does not rely on fitted parameters.

The reduced excess rate over the entire course of visual trials suggests that in-

activation reduced the reliability or signal-to-noise of visual signals. Behavioral ex-

periments in which we reduced the brightness of visual flashes a↵ected psychometric

functions and excess rate nearly identically to these inactivations (Sheppard et al.,

2013). Taken together, our inactivation experiments and analyses suggest that PPC

is required for accurate visual decision-making, perhaps by converting incoming visual

signals into evidence for a decision. These observations point to PPC as causal for

visual decision-making, laying the foundation for subsequent recording experiments

that probe the functional organization and dynamics of cortical networks within PPC.
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3.2 Choice and modality both modulate neural

responses

To evaluate whether PPC neurons demonstrate mixed selectivity, we recorded from

single, well-isolated neurons in the left PPC of five trained rats. Trials were grouped

by modality and by the animal’s choice. Rare neurons had pure choice selectivity

(Figure 3.5a) or pure modality selectivity (Figure 3.5b). However, most neurons

mixed information about modality and choice (Figure 3.5c,d). For such neurons, the

mixing sometimes resulted in identical firing rates for di↵erent conditions (Figure

3.5c).

We assessed the e↵ect of the animal’s choice on neural responses during decision

formation. We used ROC analysis to generate an index of choice divergence that

measures how strongly a neuron’s firing rate for a correct leftward response diverges

from the firing rate for a correct rightward response (Figure 3.5a). The divergence

could be driven by a number of factors, including accumulation of evidence for a

decision, a developing motor plan, or a sensory preference for a particular stimulus

frequency. Choice divergence became positive about 200ms after stimulus onset and

continued to grow over the course of the decision (Figure 3.5e). Choice divergence

here was computed using ‘easy’ unisensory trials (stimulus rates > 2 events/s from the

category boundary) and was similar for auditory and visual stimuli (Figure 3.5e; for

multisensory, see Figure 3.6a). Stronger choice divergence was evident on multisen-

sory trials at many points during the trial (Figure 3.6b,c); stronger choice divergence

was also evident on easy versus more di�cult trials (Figure 3.6d–f).

Responses on multisensory trials were usually well predicted by a linear combina-

tion of auditory and visual responses. Simple linear regression revealed that 80.1% of

neurons (218 of 272 units) had a multisensory response that was better predicted by

the auditory and visual responses than by the multisensory mean (assessed on left-

out data). Across all neurons, a linear combination of visual and auditory responses

accounted for a median 68.2% of the multisensory variance.

An additional index, choice preference, captured not only the magnitude of the
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Figure 3.5: PPC neurons show mixed selectivity for choice and modality.
Plots display visual and auditory trials (blue and green, respectively). a–d, Peri-
stimulus time histograms for four single neurons. Mean spike counts were computed
in 10-ms time windows smoothed with a Gaussian (� = 50ms). Error trials were
excluded. Trials grouped by stimulus rate. Solid line, low-rate stimulus; dashed line,
high-rate stimulus. Auditory trials, green; visual trials, blue. Shaded fills, s.e.m.
Responses aligned to the time the visual or auditory stimulus began (Stim). a,
A neuron reflecting mainly categorical choice (392 trials). b, A neuron reflecting
mainly stimulus modality (414 trials). c, A neuron mixing categorical choice and
modality (586 trials). Arrow highlights ambiguous moment in which high-rate visual
and low-rate auditory stimuli gave rise to the same firing rate. d, A neuron mixing
categorical choice and modality and displaying complex temporal dynamics (440 tri-
als). e, Choice divergence (see Methods) for auditory trials (green; average of 262
neurons) and visual trials (blue; average of 268 neurons), and modality divergence
(black; average of 266 neurons). Shaded fills, s.e.m. (bootstrap). f, Histogram of
choice preference for auditory trials, measured 200ms before decision end. Filled
bars indicate neurons for which index was significantly di↵erent from 0 (p < 0.01,
1000 bootstraps). g, Same as f but for visual trials. h, Same as f,g, but for modality.

choice divergence but also whether it was in favor of a high-rate or low-rate choice (see

Methods). Choice preference was significant 200ms before movement in over a third

of individual neurons for both auditory and visual trials (Figure 3.5f,g; 35.5% and

37.3% of neurons were significant on auditory and visual trials, respectively; for mul-

tisensory, see Figure 3.6g). Strong choice preferences for both ipsi- and contralateral

decisions were observed. For both auditory and visual decisions, a slight majority of
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1 or 2 events/s from the category boundary). g, Histogram of choice preference for
multisensory trials, measured 200ms before decision end. 39.8% of neurons (of 236
total) had significantly nonzero choice preference.

neurons fired more in advance of ipsilateral as compared to contralateral choices (two-

sided sign test; auditory, median choice preference = �0.061, p = 0.0011, N = 262
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p < 0.001). Shading indicates significance.

neurons; visual, median choice preference = �0.038, p = 0.0502, N = 268 neurons).

Choice preferences computed during visual and auditory trials were strongly corre-

lated (Figure 3.7a, N = 262 neurons, r = 0.74, p < 104); preferences during each

unimodal stimulus were also correlated with preference during multisensory stimuli

(Figure 3.7b, N = 236 neurons; auditory, r = 0.668, p < 0.001; visual, r = 0.807,

p < 0.001).

We next assessed the e↵ect of stimulus modality on responses during decision for-

mation. “Modality divergence” measured how strongly a neuron’s responses diverged

for auditory versus visual trials (for example, Figure 3.5b). Compared to choice

divergence, modality divergence increased earlier and faster during the stimulus pre-

sentation but was weaker overall (Figure 3.5e). “Modality preference” captured not

only the magnitude of the modality divergence but also whether it was in favor of vi-

sual versus auditory stimuli. A third of the neurons (33.8%) had significant modality

preference (Figure 3.5h). Visual-preferring and auditory-preferring neurons were ob-

served in nearly equal numbers (Figure 3.5h; median modality preference was 0.017

and did not di↵er significantly from 0; p = 0.088; N = 269 neurons). For both

choice and modality, similar results were achieved when we assessed selectivity using
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a rate-based rather than ROC-based analysis (data not shown).

3.3 PPC is category-free

The data thus far indicate that many individual neurons are strongly modulated

by modality or choice. We next investigated how frequently individual neurons had

mixed selectivity for modality and choice. If mixed selectivity is common, many

neurons should have a nonzero choice preference and a nonzero modality preference.

This is exactly what we observed (Figure 3.8a). Neural responses were not restricted

to pure selectivity. Instead, most neurons had mixed selectivity for modality and

choice. Moreover, a major component of the mixed selectivity was linear: that is,

when predicting the neuron’s response to a given choice and modality (for example, a

high-rate choice for visual stimuli), linear sensitivity to each task parameter alone was

more important than a nonlinear interaction between parameters (data not shown).

The nonlinear component we observed in PPC was smaller and more variable than

for neurons in the prefrontal cortex (Rigotti et al., 2013), perhaps suggesting that

nonlinear mixed selectivity emerges gradually across cortical areas or depends on the

nature of the task.

The existence of individual cells with mixed selectivity would be expected under

two scenarios: response features might be randomly distributed across PPC neurons,

or particular response features might cluster together, defining categories of neurons

that are specialized for particular computations. The data (Figure 3.8a) hint that

choice and modality selectivity are randomly distributed across neurons. For example,

choice and modality preferences were uncorrelated (N = 268 neurons, r = 0.074,

p = 0.23). This is in keeping with studies from monkey PPC in which selectivity for

spatial versus category parameters were likewise unrelated (Rishel et al., 2013).

However, lack of correlation does not conclusively rule out the existence of func-

tional categories: selectivity for task features could still define categories. This could

be the case if, for instance, the points in Figure 3.8a formed an “X” or formed clus-

ters that were symmetrically arranged around the origin. We therefore wished to
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test whether neurons formed categories (broadly construed) or whether, instead, tun-

ing for one feature was independent of tuning for others. To do so, we examined

each neuron’s “feature vector” the pair of values describing how strongly the neu-

ron contributed to decoding choice and modality (see Section 3.4 and Figure 3.8b).

Each neuron’s feature vector was compared with its nearest neighbors in this feature

space. If some neural responses fell into categories, these neurons would tend to have

closer neighbors in feature space than if there were not categories (Indyk and Mot-

wani, 1998). The distribution of nearest-neighbor angles for the population can thus

distinguish the presence or absence of such neural categories. We used these nearest-

neighbor angles to compute a statistic indicating whether the population had an

excess of small nearest-neighbor angles. We term this statistic “PAIRS”: projection

angle index of response similarity (see Methods).

The PAIRS test did not indicate categories (Figure 3.8c). The distributions of

nearest-neighbor angles were statistically indistinguishable from a control distribution

generated by randomly oriented two-dimensional vectors (for rat 5, PAIRS index

= �0.052; p = 0.632). No evidence for clear categories was present in any animal

(PAIRS indices for rats 14: �0.135, 0.117, �0.080, �0.142; p-values from Monte

Carlo simulations: 0.236, 0.253, 0.399, 0.004; the one significant p-value indicated

less clustering than expected by chance). This observation is critical: it argues that

neurons with pure selectivity (for example, Figure 3.5a,b) are exceptions and occur

about as often as would be expected by chance.

This analysis argues that choice and modality selectivity do not define categories.

However, this leaves open the possibility that there are categories defined by other fea-

tures of the data. More generally, a category might be defined by a shared pattern of

firing rates across conditions and time. To test for this, we used principal component

analysis to identify a set of neural response features that were not imposed by us. This

version of the test is thus quite general because it captures whatever features of the

responses were strongest and is sensitive to numerous such features (Figure 3.9). The

PAIRS test again pointed to a category-free population (Figure 3.8d,e). The overall

lack of categories was not simply because neural variability caused our analysis to
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Figure 3.9: Time-varying firing rate patterns across neurons. The eight prin-
cipal components used in the PAIRS analysis. These were generated from the pop-
ulation data (N = 94 neurons) from one animal (Rat 4). Colors indicate modality;
dashed lines: data from high rate trials; solid lines: data from low rate trials.

miss structure: when we introduced synthetic categories into the population with

noise derived from the real neural data, a strikingly di↵erent PAIRS distribution was

evident (Figure 3.8e; see Methods). Relatively close neuron pairs were occasionally

observed, but these di↵ered from chance in only 1 of 5 cases (PAIRS index for rats 15:

�0.011, 0.108, �0.038, 0.011, �0.007; p-values from Monte Carlo simulations: 0.621,

0.001, 0.209, 0.491, 0.857). These deviations from the random distribution indicate

that a small fraction of neurons do have pairs in feature space. However, such neu-

rons are rare; most neurons reflect a unique combination of response features. Most

individual neurons participate in random combinations of response patterns: that is,

they randomly mix task parameters and temporal response features.

3.4 Decoding choice and modality from a mixed

population

Here we evaluate whether the mixed selectivity of PPC neurons poses any problem for

decoding the key task variables. We first tested whether the animal’s choice could be
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Figure 3.10: Choice and modality can be decoded from population activity.
a, Weighted sums of neural responses; weights were chosen by the classifier. Blue,
visual; green, auditory; dashed lines, high-rate trials; solid lines, low-rate trials. Data
from rat 4, N = 94 neurons. b, The choice decoder could correctly classify responses
as left versus right on trials where the rat was successful (bright red traces, one per
rat), but is at chance for auditory versus visual (blue traces). On trials where the rat
chose the incorrect port, the decoding tracked the rats choice (brown traces). Traces
reflect the average of 1000 classifications. c, Same as b for all five rats, correct trials
only. Each animal has one trace for modality and one for choice. d, Bars, values of the
weights used to generate the traces in a, ordered by magnitude. Purple lines, values of
randomly generated 94-dimensional vectors ordered by magnitude. e–h, Same as a–d
but for the modality decoder. The modality decoding was nearly identical whether
the rats chose the correct or incorrect port (f, light versus dark blue).

decoded from the population response during decision formation. To achieve this, we

used a machine learning classifier (support vector machine, SVM; Cortes and Vapnik,

1995; Rust and Dicarlo, 2010) as our decoder, trained with single-trial population

responses for correct high-rate versus low-rate choices (see Methods). The decoder

successfully identified neural weights so that a weighted sum of the neural population

was strongly choice dependent but mostly modality independent (Figure 3.10a).

We trained the decoder using a portion of the stimulus epoch (500–700ms after

stimulus onset), then tested the decode over the entire epoch. Time windows out-

side the training window test the generality of the decoder and probe the consistency

of the population response throughout decision formation. We first examined both
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correct and incorrect choices for animals with su�cient error trials (2 rats). For

both rats (Figure 3.10b), PPC activity tracked the animal’s choice. As expected,

decoder performance grew over the course of the trial. For all 5 rats (Figure 3.10c),

we examined correct-choice trials at the time point 700–800ms after stimulus onset

(outside the decoder’s training epoch). Decoder performance was significantly better

than chance for all animals tested (Figure 3.10c; decoding performances were 68.9%,

61.2%, 59.4%, 80.2%, 70.1%; 4 rats p < 0.001, rat 3 p = 0.002). The same decoder did

not perform significantly better than chance when estimating stimulus modality (Fig-

ure 3.10c; performance of 48.0%, 51.0%, 54.3%, 48.8%, 48.6%, all rats p > 0.2). Our

decoding of choice was not perfect, but this is unsurprising: decoding was performed

on a sample of tens of neurons out of many thousands, on a task where the animal’s

performance is likely noise limited. Further, since the decoder indicated the opposite

choice for error trials, this implies that correct choices could be distinguished from

errors. Moreover, unlike in typical monkey experiments (Britten et al., 1996; Roitman

and Shadlen, 2002; Churchland et al., 2008), the stimulus was not optimized for each

neuron’s preference and neurons were not selected on the basis of tuning properties.

The analysis above was restricted to auditory and visual trials. We next tested the

ability of the same decoder, trained only on unisensory trials, to classify performance

on multisensory trials. Decoder performance was significantly better than chance

for all animals tested (Figure 3.11; all p < 0.001). This speaks to the generality of

the decoder and also highlights that the network is used similarly during decision

formation regardless of the modality.

One concern is that the choice decoder’s success might have resulted from heavily

weighting rare neurons with pure selectivity for choice (for example, Figure 3.5a).

This was not the case. The neural weights were nonzero for all neurons, indicating

that every member of the population contributed (Figure 3.10d). Importantly, the

distribution of neural weights in the data did not di↵er from those that would be

expected by chance if neurons reflected random weightings (Figure 3.10d; for rats

1–5, p-values for kurtosis were 0.696, 0.470, 0.134, 0.198, 0.430; see Methods). This is

an independent indicator that neurons mix information about task parameters with
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Figure 3.11: Choice can be estimated on multisensory trials, even when the
decoder is trained on data from unisensory trials. a, Weighted sums of neu-
ral responses; weights were chosen by the classifier. Blue, visual; green, auditory;
orange, multisensory; dashed lines: high-rate trials; solid lines: low-rate trials. Data
from unisensory trials is the same as in Figure 4a. Data from Rat 4, N = 94 neurons.
b, The choice decoder could correctly classify responses as left vs. right on multi-
sensory trials where the rat was successful (bright red traces, one per rat). Decoder
performance was significantly better than chance for all animals tested. Rat 5 was
excluded from this analysis because of insu�cient days on which multisensory trials
were presented. c, Same as a but for the modality decoder.

random weights.

Having examined choice, we tested whether stimulus modality could also be de-

coded from the population response during decision formation. Again, we trained an

SVM classifier with single-trial population responses, this time to distinguish auditory

versus visual trials. The decoder successfully identified a weighted sum of neurons

such that the population readout was strongly modality dependent but choice inde-

pendent (Figure 3.10e). The decoder was able to estimate modality at a rate better

than chance when testing generalization for all 5 animals tested (Figure 3.10g; de-

coding performances were 59.8%, 56.6%, 60.4%, 83.7%, 70.0%; p-values 0.010, 0.045,

0.002, < 0.001, < 0.001).

Modality was decoded nearly identically whether the animal’s choice was correct

or incorrect (Figure 3.10f); this is expected because errors do not reflect incorrect

categorization of modality. As before, the accurate performance seen at the end of

the trial was for time points outside the training window. The same decoder did

not perform significantly better than chance when estimating choice (Figure 3.10g,
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performance of 48.0%, 51.6%, 50.4%, 50.2%, 51.5%, all p-values > 0.5). Again, the

decoder achieved this performance using all the neurons; the distribution of weights,

as with choice, did not di↵er significantly from the random distribution (Figure 3.10h;

for rats 1–5, all p-values > 0.4).

The ability of the same population of neurons to reliably and independently rep-

resent information about both choice and modality is a direct consequence of mixed

selectivity: the joint modulation of neurons by choice and modality allows them to be

combined in di↵erent ways to give rise to whatever estimate is needed. The above re-

sults have two implications. First, the fact that choice and modality can be decoded

independently implies that these two representations are nearly orthogonal in the

population. That is, presenting a high versus low rate stimulus evokes one pattern of

activity across neurons, presenting a visual versus auditory stimulus evokes another

(di↵erent) pattern of activity across neurons, and these two patterns are unrelated.

More operationally, a decoder vector summarizes the pattern of activity (across the

population) evoked in response to one stimulus versus another. Since choice and

modality can be decoded independently, the patterns of activity for di↵erent parame-

ters must be uncorrelated, as expected from Figure 3a. This can be verified directly:

the average angle between the choice decoder and the modality decoder was 86.5�,

only slightly less than a perfectly orthogonal 90�. Second, the consistent decoding

performance over time implies that the choice representation remains in the same neu-

ral dimension (covariance pattern across neurons) in PPC over the course of decision

formation, and the modality representation does the same.

3.5 The network explores di↵erent dimensions

during decision and movement

Perhaps the neural state explores yet other dimensions (patterns of neural covariance)

when the animal’s brain needs to perform a substantially di↵erent function (Harvey

et al., 2012). This could permit PPC to control what signals are routed to di↵erent

areas at di↵erent times. As shown recently, exploiting additional dimensions can be
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Figure 3.12: Many PPC neurons switch preference between decision forma-
tion and movement. a, Example neuron with a sustained preference for high-rate
stimuli (dashed line) over low-rate ones (solid line). Responses were aligned to stim-
ulus onset (left) and to movement onset (right). Alignment to these two events was
necessary because the time between the stimulus end and the animal’s movement var-
ied slightly from trial to trial. Traces reflect averaged responses of all correct visual
trials (and s.e.m.) computed as in Figure 3.5a–d. b, Example neuron that switched
its preference over the course of the trial. c, Choice preference during decision forma-
tion (200ms before decision end, abscissa) and movement (200ms after animal leaves
choice port, ordinate) frequently di↵ered but were nonetheless correlated across all
cells; N = 268 neurons, r = 0.302, p < 0.001; symbols, individual animals.

particularly useful to control when movement should be produced (Kaufman et al.,

2014). We searched for a signature of the neural states either aligning (using the

same dimensions at di↵erent times) or exploring di↵erent dimensions during di↵erent

epochs. To do so, we compared two moments in the trial where the animal’s behavior

di↵ered: during decision formation, when animals remain still to integrate sensory

signals (Figure 3.1b) and during movement, when they rapidly reorient their bodies

to harvest a reward. Examination of PSTHs (Figure 3.12a,b) shows that neural ac-

tivity can di↵er substantially during decision formation and movement. For example,

the neuron in Figure 3.12b has an elevated response during trials preceding a left-

wards choice but is then suppressed during the leftwards movement used to report

the choice. Such switching of preference from decision formation to movement was

observed frequently (Figure 3.12c).

To quantify the alignment of state spaces during decision and movement, we de-

veloped an analysis that we term variance alignment (see Methods). The intuition

behind this analysis is that if neurons’ firing rates co-vary in similar ways during

decision and movement, then the dimensions that best capture the variance for one
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epoch will also capture much of the variance for the other epoch. The alternative

is that the dimensions that account for much variance in one epoch will account for

little variance in the other epoch: that is, that neurons will co-vary in completely

di↵erent patterns from one epoch to the other. In this latter scenario, the neural

state spaces for the two epochs can be described as misaligned.

We tested for alignment by computing an index that describes whether the di-

mensions that capture most of the variance during movement likewise capture the

variance during decision formation. Crucially, this measure describes whether the

neural state moves through the same dimensions (that is, maintains the same pat-

terns of covariance), not whether the trajectories are similar within those dimensions.

Four two-dimensional projections of decision epoch data are shown in Figure 3.13a–d.

A projection onto the first two principal components is shown in Figure 3.13a. For

comparison, we can view di↵erent two-dimensional projections of the exact same data,

with the projection chosen based on the movement-epoch activity (Figure 3.13b), a

random projection (Figure 3.13c), or the smallest two principal components (Figure

3.13d). The key element of these plots is the size of the ellipse representing the s.d.:

if a space captures the decision-epoch variance well, then the s.d. should be nearly as

large as in Figure 3.13a. Surprisingly, we found that dimensions that captured consid-

erable variance during the movement captured the variance during decision formation

far less well (Figure 3.13b), arguing against aligned state spaces for decision forma-

tion and movement. Indeed, the amount of alignment was slightly less than would be

expected by chance (Figure 3.13e). This absence of alignment (index near zero) or

even significant misalignment (index near �1) was present in all animals tested (rat 1,

index = �0.498, p = 0.0012; rat 2, index = �0.145, p = 0.51; rat 3, index = �0.559,

p = 0.003; rat 4, index = �0.230, p = 0.27; rat 5, index = �0.219, p = 0.20).

For comparison as a positive control, we repeated the variance alignment analy-

sis on neural responses during decision formation, comparing two di↵erent stimulus

conditions: visual and multisensory. This analysis, by contrast, revealed strong align-

ment (Figure 3.13f, index near 1 for rat 4; index = 0.840, p < 10�4), present in all

rats tested (indices were 0.644, 0.883 and 0.812 for rats 1, 2 and 3, p < 10�4 in all
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Figure 3.13: PPC neurons exhibit di↵erent covariance patterns during de-
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projected into the space specified by the panel’s title. Color and line style same as
in Figure 3.5. a, Space chosen as first two principal components (PCs) of decision-
epoch data. b, Space chosen as first two PCs of movement-epoch data. c, Space
chosen randomly from top 8 PCs. d, Space chosen as PCs 7 and 8 of decision-epoch
data. e, Variance alignment analysis indicates that activity patterns across neurons
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cases). This strong alignment indicates that the inherent noisiness of neural responses

does not cause neural states to falsely appear misaligned and therefore provides re-

assurance that the misalignment of states during decision and movement indicates
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a real di↵erence in neural covariance. Thus, PPC employs highly similar patterns

of population activity during visual and multisensory stimuli, but it explores quite

di↵erent patterns of population activity during stimulus than during movement.

Finally, we asked whether the misalignment of stimulus and movement activity

might be due to simply having di↵erent neurons active during these two epochs.

This hypothesis predicts that neurons that are strongly modulated during the stim-

ulus should be less modulated during movement, and vice versa. This was not the

case: instead, we observed a strong correlation between modulation during stimu-

lus and modulation during movement (Figure 3.13g; correlations of log(stimulus) to

log(movement) for rats 1–5 were r = 0.709, r = 0.655, r = 0.577, r = 0.666, r = 0.763;

all p < 10�4). This implies that the misalignment of stimulus and movement activity

is a population- level phenomenon, not due to having separate groups of neurons.

3.6 Discussion

We used a multisensory decision task to understand the organization and dynamics

of PPC, an area that we demonstrate to be causal for visual decisions. We found that

PPC neurons have mixed selectivity for two task parameters: the animal’s developing

choice and the modality of the stimulus. We used a new test, PAIRS, to demonstrate

that task parameters and time-varying response features are distributed randomly

across neurons. This configuration does not pose a problem for decoding: a linear

SVM could accurately estimate the modality of the stimulus and the rat’s choice on

the basis of single-trial responses. A final analysis further demonstrated the flexibility

of the population: our variance alignment test revealed that the network explores

di↵erent dimensions during decision and movement. This may allow PPC to translate

the decision about rate into an abstractly related action. Taken together, these results

point to PPC neurons as a category-free population that is combined dynamically as

the behavioral demands of a complex decision evolve.

Theoretical motivations for functionally specialized neurons, and their existence

in early visual areas (Barlow, 1953), has driven a widespread assumption of cate-
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gories that has influenced both experimental design (Roitman and Shadlen, 2002;

Balan et al., 2008; Georgopoulos et al., 1982; Churchland et al., 2008) and analysis

(Arimura et al., 2013; Viswanathan and Nieder, 2013; Roth et al., 2012; Russo et al.,

2002). Our finding of a category-free neural population challenges these assumptions

about the organization of cortical structures. As a caveat, we note that neural cat-

egories defined by other properties, such as cell type or connectivity, might reveal

specialization. Indeed, a few studies have found projection-based categories that are

functionally specific (Segraves, 1992; Movshon and Newsome, 1996; Chen et al., 2013),

although many other studies report that connectivity-defined categories are function-

ally diverse (Churchland and Lisberger, 2005; El-Shamayleh et al., 2013; Paré and

Wurtz, 2001). By demonstrating here that cortical areas can lack categories defined

by selectivity to task parameters (Figure 3.8a–c) or by time-dependent response fea-

tures (Figure 3.8d,e), our findings invite a new approach to interpreting population

data. Specifically, future studies can test directly for the existence of categories and

design appropriate analyses if neurons are shown to reflect random combinations of

task parameters, as they are here.

Although individual neurons reflected random combinations of task components

(as predicted by theory Salinas, 2004; Pouget and Sejnowski, 1997; Sussillo and Ab-

bott, 2009), the observed responses were nonetheless structured. Specifically, we

observed that most neurons that were driven by choice had ‘tolerance’ for modal-

ity: they retained their choice preference whether the stimulus was auditory, visual

or multisensory (Figure 3.7a,b). Neurons in monkey inferotemporal cortex are like-

wise tolerant: many neurons have a preferred stimulus identity that is stable, though

modulated, across many retinal positions (Rust and Dicarlo, 2010). Indeed, our task

configuration is reminiscent of that used to study object recognition: just as a given

object can be viewed from two di↵erent angles, a ‘low rate’ decision here can be

informed by two di↵erent modalities. In inferotemporal cortex, the possibility of us-

ing the same linear decoder under many conditions, indicating tolerance, is taken

as evidence that the neural data has been reformatted from an original, ‘tangled’

representation in earlier sensory areas (Cortes and Vapnik, 1995). In PPC, analo-
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gously, a linear decoder was capable of reading out the animal’s choice independent

of modality. Combined with evidence that PPC responses are nearly linear functions

of choice and modality, this suggests that PPC may likewise be at an advanced stage

of processing where representations have been untangled to guide decisions. To ob-

tain such a representation, multiple stages of reformatting may be required (Pagan

et al., 2013); this may explain the surprising prevalence of multisensory neurons in

early sensory areas (Ghazanfar et al., 2005).

In our study, as in primate work, neural responses in PPC seem likely to reflect

a process of transforming ambiguous sensory information into action. As in primate

vision studies (Roitman and Shadlen, 2002; Churchland et al., 2008), responses gradu-

ally diverged according to the eventual decision outcome (Figure 3.5a–e); the response

divergence had a long latency, but was evident many hundreds of milliseconds before

the animal reported the choice. This was true for both auditory and visual decisions.

Primate PPC neurons are active in advance of movements driven by auditory stim-

uli as well (Linden et al., 1999; Mullette-Gillman et al., 2005). However, it was not

known whether PPC neurons were causally involved. Our inactivation results were

surprising in that auditory decisions were spared despite a clear signature of the de-

veloping choice in PPC neurons. Auditory responses in PPC, though apparently not

necessary for this task, may be invoked by other decision tasks, such as those that

require the animal to decide when to stop accumulating evidence (Churchland et al.,

2008), those that require a report of confidence (Kiani and Shadlen, 2009) or those

that require temporally precise multisensory information (Shams et al., 2002).

Two methodological di↵erences between our study and primate decision-making

studies are notable. First, our stimuli were full-field rather than spatially restricted,

and were related abstractly to their required movement (for example, low rate, move

left). These features may explain why we found no bias for contralateral movements

(Figure 3.5f,g). Second, we recorded from all encountered neurons and used identical

stimuli for each. The more traditional approach of using neuron selection criteria

and customized stimuli is successful in identifying neurons with strong choice signals,

but may leave unexamined neurons with subtler choice signals that nonetheless shape
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the evolving decision. This point is underscored by our observation that most of our

neurons contributed to the choice and modality decoding, including neurons that were

modulated only weakly by those parameters (Figure 3.10d,h).

PPC thus represents multiple behaviorally relevant variables in the same popu-

lation of neurons, with these representations structured in a way that could allow

easy decoding by subsequent cortical areas — perhaps especially those that inform

movements. These patterns of activity are dynamic and task dependent, and are de-

termined by more than connectivity alone. This use of di↵erent patterns of activity

could confer flexibility on PPC in converting stimuli into action, and it highlights

the importance of understanding the population activity over the course of decision

formation.
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4

Optogenetic disruption of PPC

In the previous chapter we hypothesized that PPC is required for accurate visual

decision-making by converting incoming visual signals into evidence for a decision.

Our pharmacological and chemogenetic inactivation experiments (see Section 3.1;

Raposo et al., 2014) indeed point to a causal role of this area in visual decision-

making. However, the slow timescale and large spatial extent of the inactivations

prevent us from establishing PPC as critical for visual decisions that require evidence

integration.

In the following set of experiments we aimed to determine the role of PPC in the

integration of evidence for visual decison-making, by disrupting the normal activity

of the area on a fast timescale, using optogenetics.

Expressing the transmembrane ion channel channelrhodopsin-2 (ChR2) in neurons

makes them permeable to cations when exposed to blue light. This allows a fast and

robust cellular depolarization, inducing action potentials in response to brief flashes

of blue light with millisecond precision (Boyden et al., 2005). We used this technique

to disrupt the activity of PPC neurons of rats trained, as in previous experiments, to

integrate evidence about the rate of visual events presented over 1000ms (see Section

2.1). Rats were injected to express ChR2 pan-neuronally in PPC and were implanted

with fibers to allow optical stimulation.

As reported in Section 3.2, electrophysiological recordings in PPC show that in-

dividual neurons in this area can either be suppressed or elevated during decision
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formation. We have also shown that decision variables like choice and modality may

be encoded at the population level, with many hundreds of neurons participating in

that coding scheme (see Section 3.3; Raposo et al., 2014). This evidence suggested

to us that pan-neuronal stimulation of PPC neurons could cause a disruption in

the rats’ decision-making by disrupting a dynamic population code. Indeed, optical

stimulation presented throughout the decision period reliably reduced accuracy of

rats’ decisions on visual trials. This suggests that disruption of PPC impairs visual

decision-making, even when disruption is rare and spatially restricted.

Stimulation could reduce decision accuracy by weakening the influence of visual

evidence on choice or by allowing irrelevant task features to more strongly influence

choice. To determine if either of these possibilities was true we fit a logistic regression

model to the behavioral data. This analysis revealed that sensitivity to visual evidence

was significantly weaker on stimulation trials, while bias and trial history dependence

were not consistently a↵ected.

Finally, to define the temporal dynamics governing PPC’s involvement in deci-

sions that require evidence integration, we disrupted neural activity during restricted

epochs of the decision. Surprisingly, when stimulation took place during the first

250ms of the decision, accuracy was reduced to the same extent as observed during

full 1000ms stimulation. By contrast, accuracy was largely una↵ected when stimula-

tion took place during the last 250ms of the decision. The e↵ect on accuracy during

the middle of the decision (250-500 ms; 500–750ms) was intermediate.

Taken together, these results suggest that PPC activity is required for the inte-

gration of evidence in visual decisions, but that the integrated evidence is maintained

elsewhere (outside PPC) throughout the trial duration. The long-lasting e↵ect of

brief stimulation early in the trial suggests that stimulation interrupted an ongoing

process that could not recover within the timescale of the trial. This suggests that

several hundred milliseconds may be required for the network to re-establish a state

that is receptive to visual evidence for decisions.
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4.1 Pan-neuronal ChR2 stimulation of PPC

neurons

We expressed ChR2 in the PPC of rats using the adeno-associated virus (AAV,

serotype 9) carrying the gene ChR2 fused with green fluorescent protein (GFP) under

the control of the CAG promoter (AAV9-CAG-ChR2-GFP). This promoter allows the

expression of ChR2 in all cell types. Unilateral injections of this construct were made

in the left PPC of two rats (3-4 weeks old), in three separate penetrations along the

medial-lateral axis with the goal of maximizing expression in PPC and minimizing

the spread outside of this area (stereotactic coordinates: �3.8mm AP, �2.2 / �3.2

/ �4.2mm ML, relative to Bregma). We restricted injection depth to 800µm below

the pia to avoid viral spread to subcortical structures.

After allowing 2–3 weeks of recovery from surgery the rats were trained in the

rate discrimination task described in Section 2.1. Both rats became proficient in the

task and were subsequently subject to another surgery, this time with the goal of

implanting optical fibers in PPC, which now expressed ChR2. These optical fibers

provide us with a way to deliver blue light to ChR2-expressing neurons in a small

region of the brain. A microdrive array carrying 8 individually movable optical fibers,

each of them attached to a tetrode, was implanted in the center of the injected area.

Fibers were sharpened using a diamond wheel to improve tissue penetration, maximize

the angle of the light exit cone and increase light transmission. The spatial extent

of the optical stimulation is dependent on the spread of the light in the brain, which

drops o↵ approximately with square of the distance (Aravanis et al., 2007), and the

ChR2 expression levels, which may vary from neuron to neuron.

On a subset of randomly selected trials (“stimulation trials”, 15–25%) we delivered

blue light to activate ChR2-expressing neurons in PPC, using a 473 nm diode-pumped

solid-state (DPSS) laser. On these trials the laser was triggered at the beginning of

the stimulus (visual or auditory) presentation and was kept on throughout the entire

decision formation period (1000ms), delivering light pulses at a rate of 40Hz (Figure

4.1a). On the remaining trials (“control trials”, 75–85%) optical stimulation did not
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Figure 4.1: Optical stimulation of PPC neurons disrupts visual decision-
making. a, Schematic of optical stimulation time course (blue) in a trial relative to
onset and o↵set of sensory stimulus (black). b, Psychometric curves for one example
rat (rat 1) and one example optical fiber site, on visual control trials (black) and visual
trials with optical stimulation (blue). c, Same as in b but for a di↵erent rat (rat 2).
d, Comparison between the slope (/ 1/�) of psychometric curves for stimulation (y
axis) and control trials (x axis). Circles, di↵erent optical fiber sites for rat 1; squares,
di↵erent optical fiber sites for rat 2. Black, visual trials; green, auditory trials. Dashed
line, x = y. Points below the dashed line represent performance impairment.

occur. We covered the rats’ implants with back insulating tape in the beginning

of every session. This proved to be a good way to prevent the rats’ behavior from

being altered by the presence of an additional light source – i.e., the stimulation light

(Figure 4.2a).

In both rats, we saw a significant and consistent decrease in accuracy for stimula-

tion versus control trials in which decisions were based on visual stimuli (Figure 4.1b,c

and Figure 4.1d, black symbols). Performance change was significant in 4 out of 4

fiber sites for rat 1 and in 4 out of 4 for rat 2, reinforcing the observations we previ-

ously made using pharmacological and chemogenetic manipulations (see Section 3.1).

During decisions based on auditory stimuli the impairment was not systematic across

fiber sites (Figure 4.1d, green symbols). Performance impairment was significant in

1 out of 4 fiber sites for rat 1 and in 3 out of 4 for rat 2.

We repeated these experiments on a third rat which was not injected and, as
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Figure 4.2: Performance is unchanged during optical stimulation if PPC
neurons do not express ChR2. a-c, Psychometric curves for one uninjected
rat (rat 3) and one optical fiber site, in control trials (black) and stimulation trials
(cyan). Each plot shows data pooled across seven consecutive sessions. a, Condition
1: implant was covered with black tape to prevent light to be seen by the rat. b,
Condition 2: implant was not covered and, as such, light from optical fiber was visible
to the rat. c, Condition 3: implant was not covered and second optical fiber was used
to mask light from stimulation fiber.

such, did not express ChR2 in PPC neurons. As we did in the previous optogenetic

experiments, the rat’s implant was covered with black tape to avoid that any light

coming from the optical fiber could be seen by the rat. Under these conditions,

optical stimulation showed no e↵ect on this control rat (Figure 4.2a). We repeated

this control experiment under two di↵erent conditions: one where we did not cover

the implant with black tape and, therefore, the light coming from the optical fiber

was visible to the rat during stimulation trials; another one where we did not cover

the implant with black tape and used a second optical fiber – connected to a second

laser source – which was attached to the implant near the stimulation fiber. The

light coming from this second fiber was blocked from going into the rat’s brain and

was on on every trial (control trials and stimulation trials), serving as a mask to

the actual stimulation light. Results from these two additional control experiments

showed that the rat’s behavior was influenced by the presence of a visible light coming

from the optical fibers (Figure 4.2b,c). In particular, we observed a high-rate bias on

conditions where the stimulation light was visible.
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The observation that optical stimulation reduces decision accuracy could either

be the result of weakening the influence of visual evidence on the choice or of allowing

irrelevant task features to more strongly influence choice. To distinguish these two

alternatives we used a probabilistic model in which the observer makes a decision

based upon a weighted sum of a sensory term, two strategy terms and an overall bias

(this model is identical to the one described in Busse et al., 2011). In this model

the sensory term is a measure of the stimulus rate on each trial. More precisely,

it measures the di↵erence between the stimulus rate and the category boundary,

ranging from �3.5 to 3.5 (events/s). The two strategy terms express the outcome of

each trial’s preceding trial. The first one reflects if the preceding trial was not correct

(0), a correct trial where the subject chose high-rate (1) or a correct trial where the

subject chose low-rate (�1). We call this term “success history”. The second strategy

term reflects if the preceding trial was not incorrect (0), incorrect where the subject

chose high-rate (1) or incorrect where the subject chose low-rate (�1). We call this

term “failure history”. We fitted the four parameters in this model using logistic

regression.

The model can be formalized by the following expression:

ln(
p

1� p

) = �0 + �1 r + �2 hsucc + �3 hfail (4.1)

where p is the probability of a high-rate choice, r is the sensory term, hsuss and hfail

are the success and failure history terms.

We were able to fit the rats’ behavior well using this model both on control trials,

where the performance was una↵ected (Figure 4.3a) and on stimulation trials, where

the performance was impaired (Figure 4.3b).

The coe�cients fitted by the model (�0�3) provide insight into how much each

parameter of the model influences the choice on any given trial — stimulation or

control. For both rats, on control trials, stimulus rate and success history had coef-

ficients significantly di↵erent than zero while failure history did not (Figure 4.4a,b,

left). This tells us two things: (1) as expected, the rats used the evidence provided
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Figure 4.3: Probabilistic model fits rats’ behavioral data well. a, Comparison
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in b but for optical stimulation trials.

by the stimulus to make their decisions; (2) on each particular trial the rats’ choice

was a↵ected by the choice they made on the preceding trial, but only if that trial

was rewarded. In fact, because the success history coe�cient was positive, we can

say that, after a reward, rats had the tendency to repeat the choice they had just

made. Even though the failure history coe�cients did not significantly di↵er from

zero, a propensity for taking negative values is noticeable. This means that after an

incorrect trial (unrewarded and followed by a short time out) the rats had a slight

preference to make the opposite choice. The bias coe�cient fluctuated from session

to session, but we did not observe a consistent bias across animals or sessions (Figure

4.4c, left). These observations were likewise true for auditory control trials (Figure

4.4d–f, left).

Comparing the coe�cients obtained on control trials versus stimulation trials re-

vealed that visual evidence had consistently lower weights on stimulation trials (lower

coe�cient for the sensory term, Figure 4.4a, right). This means that visual evidence

had a lower weight on the rats’ choices when optical stimulation occurred. This was

not systematically observed on auditory trials (Figure 4.4d, right). Additionally, the

influence of the preceding choice as well as the overall bias were not a↵ected by the
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stimulation. This was true on both visual (Figure 4.4b,c, right) and auditory trials

(Figure 4.4e,f, right). Together, these suggest that optical stimulation caused an im-

pairment in the ability to use visual evidence to guide decisions but did not have an

impact on the strategy used by the rats in the task.

4.2 Behavior disruption and recovery dynamics

Next, we aimed to understand the temporal dynamics guiding PPC’s involvement

in the integration of visual evidence for decision-making. To do that we repeated

the experiments described in Section 4.1 but this time we disrupted neural activity

in PPC during restricted epochs within the decision formation period. The optical

stimulation was now limited to 250ms and, on each particular stimulation trial (25%
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of all trials), it could have one of four di↵erent start times: 0, 250, 500 or 750ms

relative to sensory stimulus onset (Figure 4.5a).

These experiments led once again to the observation that optical stimulation of

PPC neurons disrupts rats’ decision accuracy on visual trials. Remarkably, this dis-

ruption was strongest when stimulation took place during the first 250ms of the

decision formation period and this impairment was as e↵ective as the one observed

during full 1000ms stimulation (Figure 4.5b,c, leftmost point and blue shaded area).

By contrast, the ability to make visual decisions was largely spared when stimulation

took place during the last 250ms of the decision (Figure 4.5b,c, rightmost point and

shaded gray area). The decline in accuracy was smaller but nevertheless significant

when stimulation took place during the middle of the decision (Figure 4.5b,c, two

middle points).

One possible explanation for the strong deficit observed in the rats’ decision accu-

racy when stimulation occurred in the first 250ms is that rats were only using visual

evidence that was presented early in the trial to make their choices. This is unlikely

to have happened because we know from previous experiments that rats tend to use

most of the evidence throughout the trial in our task (see Section 2.4). An alternative

hypothesis is that optical stimulation causes a disruption in the normal activity of the

neurons from which it takes a long time (in the order of seconds or at least hundreds

of milliseconds) to recover.

To investigate this question we computed psychophysical kernels to measure how

rats weigh each moment of the evidence in their decisions. We employed a similar

technique to the one described in Section 2.4, but this time directly modeling the

subjects’ choices by assigning weights to small portions of the stimulus. This analysis

allowed us to have greater statistical power, given the larger number of conditions in

these experiments, because it does not require discarding any trials.

This model used logistic regression to fit the behavioral data and it can be for-
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malized by the following expression:

ln(
p

1� p

) = �0 +
NX

i=1

�i Ci (4.2)

where p is the probability of a high-rate choice, N is the total number of stimulus

portions and Ci is the number of stimulus events that occur in the portion i of the

stimulus. The coe�cients of the model, �i, reflect how much each portion of the

stimulus is weighted in the rats’ choices.

This analysis revealed two things. First, that rats do not weigh early evidence
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onset of optical stimulation.

more than they weigh evidence in the middle or the end of the decision formation

period (Figure 4.6a, black line). The coe�cients are elevated above zero throughout

most of the trial. Second, that rats are not only unable to use the evidence provided

by the visual stimulus during optical stimulation, but they are also unable to use

that visual evidence for a long time after the stimulation ended (Figure 4.6b). If it

were the case that optical stimulation had a short transient e↵ect, we would expect

to see the coe�cients increase soon after the end of the stimulation epoch. But, as

evident in Figure 4.6b, that increase does not occur, for at least another 300ms. This

explains the observations that optical stimulation has the strongest e↵ect on decision

accuracy early in decision formation (see Section 4.1). Moreover, it suggest that the

disruption caused by optical stimulation of PPC is long lasting, requiring hundreds

of milliseconds to fully recover.

4.3 Discussion

Previous pharmacological and chemogenetic experiments have implicated PPC in vi-

sual decision-making. However these manipulations did not establish for which aspect

of the task PPC is required. It is plausible that PPC is required for visual evidence
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integration but it is also possible that it is required to translate the integrated visual

evidence into a motor command (e.g. action selection or movement preparation). By

disrupting the activity of these neurons in a temporally precise manner we can get

insights into the dynamics of PPC’s involvement in the task and rule out hypotheses.

Our results using optogenetics to disrupt neural activity reinforce the idea that

PPC is required for visual decisions in a task where subjects need to integrate evidence

over time. We observed that PPC is mostly required early in decision formation rather

than late. This suggests that PPC is not involved in the process of converting the

accumulated evidence for or against a particular choice (e.g. evidence supporting a

high-rate choice) into an action (e.g. moving body to the reward port on the right).

If that were the case we would expect the impairment to be strong towards the end

of the decision formation period, when the animals need to start planning a motor

response.

The substantial impairment observed when we stimulated PPC early in the trial

raises two possibilities: (1) there is a critical event in the decision process that is

temporally restricted and happens early in decision formation; (2) optical stimulation

of PPC neurons has a long lasting e↵ect, in the order of hundreds of millisecond,

that extends beyond the stimulation epoch. It is important to note that these two

possibilities are not mutually exclusive. Our psychophysical kernel analysis provides

evidence in support of the latter, but is insu�cient to rule out the former. However,

the fact that the impairment is still present when stimulation occurs in the middle of

decision formation indicates that the first possibility may not be true. Yet, further

experiments, with shorter stimulation epochs for example, need to be done to confirm

this interpretation.
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5

Materials and methods

5.1 Behavioral task and subjects’ training

We examined the choice behavior of rodents and humans on a rate discrimination

task described in Section 2.1. Stimuli consisted of 1-s streams of auditory and/or

visual events separated by random sequences of short and long interevent intervals of

fixed duration. The ratio of short to long intervals over the course of the whole trial

determined the average event rate of each trial. Trials consisting solely of long inter-

vals produced the lowest possible event rates; trials consisting of only short intervals

produced the highest rates. Subjects made two-alternative low- / high-rate judgments

by comparing the average rate of each trial to an enforced category boundary. Stimuli

with more equal proportions of short and long intervals produced intermediate event

rates di�cult to classify as low or high.

5.1.1 Human subjects

We report data from 10 human volunteers (5 male, 5 female, age 22–60 years) with

normal or corrected-to-normal vision and normal hearing. Two subjects were re-

searchers connected to this study; the remaining eight subjects were naive about the

experiment. Volunteers were recruited through fliers posted at Cold Spring Harbor

Laboratory. Experiments were conducted in a large sound-isolating booth (Industrial

Acoustics).
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Visual stimuli were displayed on a CRT monitor (Dell M991) using a refresh rate

of 100Hz. Subjects were seated comfortably in front of the monitor; the distance

from their eyes to the screen was ⇠ 51 cm. Stimulus presentation and data acquisi-

tion were controlled by the Psychophysics Toolbox (Pelli, 1997) running on MATLAB

(Mathworks) on a Quad Core Macintosh computer (Apple). Subjects were instructed

to fixate a central black spot (0.22⇥0.24� of visual angle); eye position was not mon-

itored because small deviations in eye position are unlikely to impact rate judgments

about a large flashing stimulus. After a delay (500ms), the stimulus presentation

began.

Auditory events were pure tones (220Hz) that were played from a single speaker

attached to the left side of the monitor. Speakers were generic mini-USB speakers

(4.8 ⇥ 7.2 cm; Hewlett Packard; azimuth = 22.6�) that produced 78 dB� SPL in

the range of 200–240Hz at the position of the subject (tested using a pressure-field

microphone, Brüel & Kjær). Waveforms were created in software at a sampling

rate of 44 kHz and delivered to speakers through a digital (TOSlink optical) audio

output using the PsychPortAudio function in the Psychophysics Toolbox. The visual

stimulus, a flashing square that subtended 10⇥10� of visual angle (azimuth = 17.16�),

was positioned eccentrically so that its leftmost edge touched the left side of the

screen. This configuration meant that auditory and visual stimuli were separated

by only 3.5 cm (the width of the plastic frame of the CRT). The top of the speaker

was collinear with the top of the flashing visual square. We positioned the stimuli

close together because spatial proximity has been previously shown to encourage

multisensory binding (Slutsky and Recanzone, 2001; Körding et al., 2007). The timing

of auditory and visual events was checked regularly by using a photodiode and a

microphone connected to an oscilloscope. Both auditory and visual events were played

amid background white noise. For the visual stimulus, the white noise was restricted

to the region of the screen where the stimulus was displayed.

Subjects reported their decisions by pressing one of two keys on a standard key-

board. They received auditory feedback about their choices: correct choices resulted

in a high tone (6400Hz) and incorrect choices resulted in a low tone (200Hz). We
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provided feedback to the human subjects so that their experience with the task would

be as similar as possible to the rats. Feedback for the rats was essential because the

liquid rewards the rats received motivated them to do the task (see below). The two

intervals used to generate the stimuli were 60 and 120ms. Individual events were

10ms. The resulting trials had fluctuating rates whose averages ranged from 7 to

15Hz.

We trained subjects for 4–6 days so that they could learn the association be-

tween stimulus rate and the correct choice. We began by presenting very salient

unimodal stimuli, both visual and auditory; initially, the rates used were uniformly

low or uniformly high. Over the course of several days, we used a staircase proce-

dure to gradually make the task more di�cult by lowering the amplitude (contrast

or volume) of the stimuli. We also began to include trials with mixtures of long

and short interevent intervals so that the overall rate was harder to judge, as well

as multisensory trials. Subjects typically achieved a high performance level on both

unisensory and multisensory trials within 3 days. We typically used an additional

2-3 days for training during which we made slight adjustments to the auditory and

visual background noise so that the two modalities were equally reliable (as measured

by the subjects’ thresholds on single modality trials). After this additional training,

subjects’ performance was typically well matched for the two modalities and also very

stable from session to session. Once trained, subjects began each additional day with

a 100 trial warm-up session. They then completed approximately five blocks of 160

trials on a given day.

5.1.2 Animal subjects

We collected data from adult male LongEvans rats (250–350 g; Taconic Farms) that

were trained to do freely moving two-alternative forced-choice behavior in a sound

isolating booth (Industrial Acoustics). Trials were initiated when the rats poked their

snouts into a centrally positioned port. Placing their snouts in this port broke an

infrared beam; this event triggered onset of the visual or auditory stimulus.

Auditory events were played from a single, centrally positioned speaker and con-
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sisted of pure tones (15 kHz) or bursts of white noise with sinusoidal amplitude

modulation. Speakers were generic electromagnetic dynamic speakers (Harman Kar-

don) calibrated by using a pressure-field microphone (Brüel & Kjær) to produce

75 dB� SPL in the range of 5–40 kHz at the position of the subject. Waveforms were

created in software at a sampling rate of 200 kHz and delivered to speakers through

a Lynx L22 sound card (Lynx Studio Technology).

Visual stimuli were presented on a centrally positioned panel of 96 LEDs that

spanned 6 cm high ⇥ 7 cm wide (118� horizontal angle ⇥ 67� vertical angle). The

bottom edge of the panel was ⇠ 4 cm above the animals’ eyes. Note that because the

interior of the acoustic box was dark, it was not necessary for the rats to look directly

at the LED panel to see the stimulus events. The use of a large, stationary visual

stimulus ensured that small head or eye movements during the stimulus presentation

period did not grossly distort the incoming visual information. The LEDs were driven

by output from the same sound card that we used for auditory stimuli; the sound card

has two channels (typically used for a left and right speaker), which can be controlled

independently. Auditory and visual stimuli were sent to di↵erent channels on the

sound card so that we could use di↵erent auditory/visual stimuli for the independent

condition. The timing of auditory and visual events was checked regularly by using

a photodiode and a microphone connected to an oscilloscope.

Animals were required to stay in the port for 1000ms. Mean wait times were very

close to 1000ms for all three animals. Withdrawal from the center port before the

end of the stimulus presentation resulted in a 2000–3000ms “timeout” during which

a new trial could not be initiated. These trials were excluded from further analysis.

Animals typically displayed equal numbers of early withdrawal trials for auditory,

visual, and multisensory stimuli. When animals successfully waited for the entire

duration, they then had up to 2000ms to report their decision by going to one of two

eccentrically positioned reward ports, each of which was arbitrarily associated with

either a high rate or a low rate. The time delay between leaving the center port and

arriving at the reward port varied across animals. When the rats correctly went to

the port corresponding to the presented rate, they received a drop of water (15-20µl)
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delivered directly into the port through tubing connected to a solenoid. Open times

of the solenoid were regularly calibrated to ensure that equal amounts of water were

delivered to each side.

In the experiments reported in Chapter 2, the two intervals used to generate the

stimuli were slightly di↵erent for the three rats. For rat 1, intervals had durations of

30 and 70ms. The resulting trials had fluctuating rates whose averages ranged from

12 to 22 Hz. For rat 2, intervals had durations of 17 and 67ms. The resulting trials

had fluctuating rates whose averages ranged from 12 to 32Hz. Shorter intervals (and

therefore higher rates) were used with the first two animals because we had originally

feared that the lower rates used on the human task would be di�cult for the rats

to learn (lower rates require longer integration times because the information arrives

more slowly). However, this proved to be incorrect: for rat 3, the intervals were very

similar to those used in humans: intervals were 50 and 100ms; the resulting trials

had fluctuating rates whose averages ranged from 9 to 15Hz. No major di↵erences in

multisensory enhancement were observed in the three animals. The main consequence

of using di↵erent rates for each animal is that it prevented us from pooling data across

animals for certain analyses. For these analyses, we report results from each animal

individually. In the experiments reported in Chapters 3 and 4, the intervals used were

the same for all rats: 50 and 100ms.

Animals were first trained by using auditory stimuli alone. Once they had achieved

proficiency with the task, we introduced a small proportion of multisensory trials

where the auditory and visual events were played synchronously. Shortly thereafter,

we introduced some trials that contained only the visual stimulus. Performance on

these trials was typically near chance for the first few days and improved rapidly

thereafter. Once proficiency was achieved on the visual task, animals were presented

with equal numbers of auditory, visual, and multisensory trials interleaved in a single

block.

All experimental procedures were in accordance with the National Institutes of

Health’s Guide for the Care and Use of Laboratory Animals and approved by the

Cold Spring Harbor Animal Care and Use Committee.
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5.1.3 Stimulus reliability

To manipulate sensory reliability, we adjusted the signal-to-noise ratios (SNRs) of the

auditory and visual stimuli. The SNR of either modality could be independently ma-

nipulated since auditory and visual stimuli were presented amidst background noise.

To gauge how strongly subjects weighted evidence from one sensory modality relative

to the other for each pairing of sensory reliabilities, we presented multisensory trials

in which the auditory and visual rates conflicted. To generate a multisensory trial, we

first randomly selected a conflict level (for example, 2 events/s). Next, we randomly

selected a pair of rates with the specified conflict (for example, 9 and 11 events/s). Be-

tween the two event rates chosen, the lower and higher rates were randomly assigned

to the visual and auditory stimuli, respectively, leading to “positive” or “negative”

cue conflicts in equal proportions. When the randomly selected conflict level was 0,

the same rate was assigned to both modalities. Mixtures of long and short interevent

intervals were then sampled randomly to generate independent auditory and visual

event streams with the desired trial-averaged event rates.

Note that because event rates fluctuated in time due to the random sequences

of short and long intervals in a trial, auditory and visual stimuli arrived at di↵erent

moments and had di↵erent instantaneous rates on multisensory trials even when the

trial-averaged event rates were equal. At the lowest and highest event rates (when all

intervals were either short or long), auditory and visual stimuli still arrived at di↵erent

times since a brief o↵set (humans: 20ms; rats: 0-50ms randomly selected for each

trial) was imposed between the two event streams. Previous work indicates that this

configuration leads to multisensory improvements in performance comparable to that

observed when auditory and visual events are presented simultaneously. This is likely

because the window of auditory-visual integration can be very flexible, depending on

the task (Powers et al., 2009; Serwe et al., 2011).
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5.2 Analysis of behavioral data

5.2.1 Psychometric curves

The performance of a subject on a perceptual task can be assessed by the subject’s

‘psychometric curve’, which models their choices on the task as a function of the

strength (or intensity) of the physical stimulus – e.g. the relation between the contrast

of a visual stimulus and the observer’s ability to detect it. A steeper psychometric

curve corresponds to a greater ability of the subject to discriminate stimuli of di↵erent

strengths.

In this work, four-parameter psychometric functions were fit to the subjects’ choice

data using the Psignifit version 3 toolbox for MATLAB (http://psignifit.sourceforge.net),

following the maximum likelihood methods described by Wichmann and Hill (Wich-

mann and Hill, 2001a,b). Psychometric functions were parameterized as

f(r, µ, �, �,�) = � + (1� � � �) (1 + erf(
r � µ

�

p
2
)) (5.1)

where r is the trial event rate, µ and � are the first and second moments of a cu-

mulative Gaussian function, � and � are the guessing and lapse rates (constrained so

that 0  �  0.1, 0  �  0.1), and erf is the error function. � is referred to as

the psychophysical threshold; smaller � results in a steeper psychometric function.

Standard errors for � were computed via bootstrap analysis of the choice data (2000

resamples).

5.2.2 Optimal cue weighting

For a multisensory trial with auditory and visual event rate estimates r̂A and r̂V , we

model the subject’s final rate estimate r̂ on a multisensory trial as

r̂ = r̂A wA + r̂V wV (5.2)
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where wA and wV are linear weights such that wA + wV = 1 (Ernst and Banks,

2002; Young et al., 1993). Assuming r̂A and r̂V are unbiased, minimum variance

in r̂ is achieved by assigning sensory weights proportional to the relative reliabil-

ities (i.e., reciprocal variances) of the estimates obtained from the two modalities

(Landy and Kojima, 2001; Young et al., 1993). As in previous work, we estimated

the single-sensory reliabilities (R) as the squared reciprocal of subjects’ psychophysi-

cal thresholds obtained from their single sensory psychometric data: R = 1/�2 (Ernst

and Banks, 2002; Young et al., 1993). Given only the single sensory thresholds �A

and �V , an optimal maximum likelihood estimator assigns sensory weights

wA =
�

2
V

�

2
A + �

2
V

and wV =
�

2
A

�

2
A + �

2
V

(5.3)

It follows that more reliable cues have a greater weighting in the bimodal (multisen-

sory) estimate, and its variance is predicted to be lower than that of the unimodal

estimates, according to

�

2
Bimodal =

�

2
A �

2
V

�

2
A + �

2
V

(5.4)

Predicted weights can be compared to estimates of the subjects’ actual sensory weights

obtained from multisensory stimuli in which the conflict between auditory and visual

event rates is systematically varied. In this conflict analysis, we assess each subject’s

point of subjective equality (PSE; the average event rate for which the subject is

equally likely to make low- and high-rate decisions, estimated from the psychometric

function) as a function of the sensory conflict �:

� = rV � rA (5.5)

where rV and rA are the presented visual and auditory rates. Rearranging Equation

5.2, we obtain

wV =
r̂ � rA

�
(5.6)

Neglecting choice biases, r̂ will equal the category boundary rate (rCB) when the

average event rate, rmean, is equal to PSEAV (where rmean = rA +�/2 and PSEAV
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is the PSE for the given multisensory trial type; see Fetsch et al., 2012; Young et al.,

1993). Substituting these terms into Equation 5.6 and solving for PSEAV yields

PSEAV = � (
1

2
� wV ) + rCB (5.7)

One can thus estimate the perceptual weights by measuring subjects’ PSEs for

multisensory trials presented across a range of conflict levels (Young et al., 1993),

since the slope obtained from simple linear regression of PSEAV against � provides

an empirical estimate of wV :

ŵV =
1

2
� slope (5.8)

We used this approach to compare the empirically estimated weights to the weights

predicted from subjects’ single sensory thresholds (henceforth, observed and predicted

weights). Standard errors for the predicted and observed weights were estimated

by propagating the uncertainty associated with �A, �V , and PSEAV . Statistical

comparisons of observed and predicted weights in individual subjects were performed

using Z-tests.

5.2.3 Excess Rate

The Excess Rate analysis, described in Section 2.4, complements the psychometric

function as a means of quantifying the animal’s decision-making behavior. The idea is

to relate momentary fluctuations in the instantaneous rate with the animal’s choice

by computing a quantity termed “Excess Rate” in sliding 200ms windows in the

trial. Consider an example window from 0–200ms after stimulus onset. Three steps

are required. First, we select all trials in which the rate outside the window (e.g.,

200–1000ms) is neutral. The resulting group of trials di↵er only in the stimulus rate

presented from 0–200ms. Next, we separate trials into groups where the rat made

a left vs. right choice. Finally, we average the rate for each group and take the

di↵erence in rate between trials preceding right vs. left choices. If the di↵erence is

zero, this indicates that trials preceding left and right choices were identical and that

the time window under study did not influence the choice. Stimulus rates in excess
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of zero indicate that the window under study did influence the choice. This process

is repeated for sliding 200ms windows, generating Excess Rates for every moment

in time. Excess rate for data is compared to a shu✏e in which trials are randomly

assigned to a “left” and “right” pool.

5.3 Electrophysiology

Custom tetrode implants were prepared in-house following previously published meth-

ods (Znamenskiy and Zador, 2013). Briefly, each assembly contained up to 8 tetrodes.

Tetrodes were connected to an EIB-36 narrow connector board (Neuralynx, Bozeman,

MT) mounted on the assembly. The assembly was secured within a plastic enclosure

prior to implanting. Tetrodes were gold-plated to 300–700 k⌦ at 1 kHz; one addi-

tional tetrode was used as an internal reference for electrophysiological recordings

and plated to ⇠ 100 k⌦.

Spike-triggered waveforms were recorded from each tetrode using Digital Lynx SX

hardware and Cheetah data acquisition software (Neuralynx, Bozeman, MT). Data

were acquired with a sampling rate of 32 kHz, and spike waveforms were bandpass

filtered at frequency ranges of 600–6000Hz. Tetrodes were moved 40–80µm after each

recording session to ensure that independent populations of neurons were sampled

across sessions.

5.3.1 Monitoring of head/body orientation during

recordings

We used two methods to monitor the animal’s orientation during electrophysiol-

ogy sessions. First, we connected red and green LEDs to the animal’s implant and

tracked head orientation throughout the behavioral session using Cheetah data ac-

quisition software (Neuralynx, Bozeman, MT). LED positions were sampled at 30Hz.

Head angles were computed at each sample time and then smoothed with a Gaus-

sian. For the second method, we used an open-source software package (Bonsai –

https://bitbucket.org/horizongir/bonsai; Lopes et al., 2015) to track the animal’s
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whole body orientation. Body angle was sampled at 100Hz. The estimates produced

using the implant LEDs and body tracking were generally in good agreement, al-

though there tended to be more variability in body angle than head angle (e.g., the

rat’s head could remain stationary in the central port despite small body movements).

5.3.2 Analysis of electrophysiological data

Raw spike-triggered waveforms were manually clustered using MClust software (A.D.

Redish) for MATLAB (Mathworks). Only isolated clusters corresponding to single

neurons were included for analysis. Neural recordings were also trimmed or excluded

if a portion of the recording had a strongly non-stationary mean firing rate over time,

based on automated criteria. In addition, neurons had to satisfy a signal-to-noise

criterion. Specifically, the firing-rate range (over conditions and times) divided by

the maximal s.e.m. (for all conditions and times) had to be greater than 3.3.

Peri-stimulus time histograms (PSTHs) were computed for two epochs in the trial:

a “decision formation epoch” (the time during stimulus presentation and enforced

central fixation) and a “movement epoch”, for which the spike trains were aligned to

the stimulus onset or to the movement onset, respectively. Firing rates were averaged

across like trials and smoothed over time with a Gaussian kernel (sd = 50ms).

Chapter 3 reports electrophysiological data from 5 rats. One animal in the cohort

had stimulating fibers implanted alongside tetrodes. This animal was used as a con-

trol for a separate optogenetic study. For 9 of 18 electrophysiology sessions in this

animal, laser stimulation (473 nm) was introduced through the fibers on 50% of trials.

The animal expressed no light-activated ion channels in its brain, however, and laser

stimulation had no e↵ect on neural activity or behavior.

5.4 Choice selectivity and modality selectivity

PSTHs were constructed from spike trains by averaging firing rates within 10-ms bins

and smoothing with a Gaussian kernel (sd = 50ms). Correct trials were grouped

according to two di↵erent aspects of the trials. The first way was based on the
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animal’s response: trials ending in a contralateral choice versus trials ending in an

ipsilateral choice. The second way was based on the stimulus modality: visual trials

versus auditory trials. We used ROC analysis (Green and Swets, 1966) to calculate

the ability of an ideal observer to correctly classify the animal’s choice or the stimulus

modality. This was done on each trial from the smoothed spike trains, at intervals

throughout the trial. Choice and modality preference were derived from the area

under the ROC curve (AUC) and defined for each time point as 2 (AUC � 0.5); this

value ranged from �1 to 1 (Feierstein et al., 2006). A choice preference of �1 indicates

that a cell always fired more during trials ending in an ipsilateral choice; a value of 1

means that the cell always fired more during trials ending in a contralateral choice.

Modality preference was computed separately for rightward and leftward trials and

averaged. A modality preference of �1 indicates that a cell always fired more during

auditory trials; a modality preference of 1 means that the cell always fired more during

visual trials.

Choice divergence was computed the same way as choice preference except that

each neuron was assigned a “preferred” choice or modality based on its responses at

the end of the trial (100–200ms before movement onset). Choice divergence at other

time points was computed based on this preference. This is a closely related measure

to the absolute value of choice preference, but this way of computing the index has

the advantage that it prevents small fluctuations in selectivity due to noise (either

positive or negative) at the beginning of the trial from giving the incorrect impression

that the neuron is selective before stimulus onset (Erlich et al., 2011). For choice and

modality preference, significance (p < 0.01, one-sided) was assessed via bootstrapping

(1000 iterations). A neuron was considered to have significant modality preference if

this value was significant for either rightward or leftward trials.

5.5 Analysis of response clustering

To test for the presence of neural clusters, we developed a novel analysis, PAIRS:

Projection Angle Index of Response Similarity. To calculate the statistic, we first
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built a matrix of the trial-averaged neural data (the “A” matrix). This matrix had n

rows by ct columns, where n is the number of neurons, c is the number of conditions

(6 conditions: 2 choices ⇥ 3 sensory modality conditions), and t is the number of

time points in the decision epoch (including 300ms before stimulus onset). We then

reduced the dimensionality of this matrix using one of two methods. One method

was to perform principal component analysis (PCA) on the A matrix, reducing the

dimensionality (number of rows) to 8. This dimensionality was estimated from the

data, and the results were not sensitive to the exact dimensionality used. For the

alternative “feature based” method, we used the two dimensions specified by our

choice decoder and our modality decoder. In this case, the two dimensions were

orthogonalized using the Gram-Schmidt algorithm (since they were nearly orthogonal

but not perfectly so) to ensure that they captured independent variance. The PCA

method is assumed for further description below.

The coe�cients matrix resulting from PCA is of size 8 by n; that is, each neuron

received a single 8-element vector representing its response profile across conditions

and over time. If a pair of neurons had similar response profiles, they would receive

similar vectors (i.e., the vectors would form a small angle). For each neuron, we found

the angle it made with each of its k most similar partners (e.g., k = 3 partners). For

each neuron, these k values were then averaged. This produced a distribution of

near-neighbor angles, ✓data, with one angle per neuron. We took the median of this

distribution, denoted ✓̃data, which will be small for data with strong clustering of

neural responses or larger if there is little or no clustering.

For comparison, we generated 10,000 simulated datasets composed of n random

vectors from a 2- or 8-dimensional Gaussian distribution, as appropriate. For each

simulated dataset, we then computed the distribution of angles ✓random using exactly

the same method of k nearest neighbors. Note that the distribution for each simulated

dataset depends on the number of neurons in the original dataset (n), the dimension-

ality (here 2 or 8), and k, and that each of the 10,000 datasets was independent

from the others. We collected the resulting n ⇥ 10,000 angles, then computed the

median near-neighbor angle ✓̃random from this grand distribution. For each rat, we
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then computed the PAIRS statistic:

PAIRS =
✓̃random � ✓̃data

✓̃random

(5.9)

This statistic is 1 if all neurons have at least k identical partners, and 0 if clustering

is only as strong as expected by chance. Since we could compute ✓̃random for each of

the 10,000 simulated datasets separately, we used these values to find the distribution

of the PAIRS statistic expected by chance. A two-sided p-value was then computed

by comparing this distribution to the PAIRS statistic obtained from the neural data.

The value k was selected automatically. To do so, we found the smallest value

of k for which ✓̃random exceeded a target value. When using the PCA method, this

value was ⇡/4 (halfway between 0 and orthogonal, ⇡/2). For our data, this produced

values of k from 2 to 4. When using the feature based method, the space was only

two dimensional and therefore the feature vectors were packed more tightly. To avoid

having overly large values of k (which would limit us to finding only large clusters),

we chose a smaller value for the target angle: ⇡/8. This produced values of k from 9

to 24.

We also compared the neural data with synthetic data that had artificial clusters

introduced. To do so, we first selected one fifth of our neurons at random. For each

neuron selected, we generated a quintet of “partner” neurons related to the original.

These partners were produced by resampling trials with replacement, then producing

PSTHs as in the real data. In the resulting synthetic data, there were as many faux

neurons as in the original data, but each faux neuron was related to four others. These

faux neurons had exactly the same amount of noise as their originating neurons. This

process was repeated 1,000 times. The distribution of the resulting ✓clustered values is

plotted as the dashed line in Figure 3.8e.

Finally, we note that PAIRS is not only a test for clustering, but also more gen-

erally for non-uniformity of the distribution of tuning across neurons. For example,

if a strong majority of neurons “preferred” the high-rate stimulus, then the neurons’

coe�cient vectors would be mostly packed into half the space. The near-neighbor
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angles would therefore be reduced relative to fully random, and PAIRS would detect

“clustering” (properly, non-uniformity). While it is probably not possible to detect

all conceivable ways in which the data might cluster, this method is a reasonably

general test.

5.6 Decoding neural responses

The goal of the decoding analysis was to train a trial-by-trial classifier that could

identify left versus right choices but was tolerant of modality, or separated auditory

from visual trials but was tolerant of choice. That is, we looked for a weighted sum of

neurons such that the result was high for one choice and low for the other regardless

of modality, and a second weighted sum of neurons that was high for one modality

and low for the other regardless of choice.

For a neuron to be included in this analysis, we required at least 20 successful

trials each for all four choice/modality pairs (only visual and auditory modalities

were used). Most of our neurons were not recorded simultaneously; we therefore con-

structed “pseudo-trials” by choosing random trials of the desired condition (defined

by choice and stimulus modality) for each neuron. The epoch from 500 to 700ms after

stimulus onset was used for training the classifier. We assembled as many pseudo-

trials as possible by randomly sampling trials from each neuron without replacement;

because the number of trials from each neuron was balanced across conditions when

training the classifiers, the process was limited by the neuron with the fewest trials

in any one condition (21–32). We then used a standard machine learning technique,

the linear Support Vector Machine (SVM), to train one classifier for choice and a sec-

ond for modality. Training was repeated 1,000 times with di↵erent random samples of

pseudo-trials, resulting in 1,000 trained classifiers each for choice and stimulus modal-

ity. These were combined using a standard technique called bootstrap aggregation

(“bagging”; see Breiman, 1996), described below.

Each of these classifiers is a vector consisting of a set of linear weights, with

one weight per neuron. We averaged the 1,000 trained classifier vectors to obtain a
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final classifier orientation for choice and a final classifier orientation for modality. In

addition, the classifiers required a threshold. To obtain the thresholds, we randomly

sampled additional balanced sets of pseudo-trials, projected them onto our classifier

vector, and found the optimal threshold based on Gaussian fits to the two classes

(high vs. low rate or visual vs. auditory). Classifier thresholds were averaged across

25 iterations of this process.

To test the performance of the classifier, we randomly sampled additional sets

of pseudo-trials. Spike trains were filtered with a 100ms boxcar, then each time

point was classified. This was repeated 1,000 times and performance was averaged.

To assess statistical significance, we assessed generalization performance on the epoch

from 700 to 800ms after stimulus onset. Performance of the classifier on 1,000 pseudo-

trials was compared with the performance of 10,000 random classifiers on the same

number of pseudo-trials. To generate the random classifiers, we first chose a random

vector with n elements (n the number of neurons). Since di↵erent neurons have

unequal variances and high-variance neurons will tend to be used more heavily by a

trained classifier, we multiplied each element of the random vector by the standard

deviation of the corresponding neuron. P-values are two-sided.

To interpret the weights chosen by the classifier, we examined whether only a sub-

set of neurons might be used heavily, or whether all the neurons were used. To do so,

we compared the distribution of weights from the classifier found using the real data

with the distribution of weights from the random classifiers described above (shown

as purple lines in Figure 3.10d,h). To evaluate whether the real classifier was signifi-

cantly di↵erent from the random ones, we determined the kurtosis of the distribution

of weights from the data, and the kurtosis for each random classifier. To obtain a

p-value, we could then compare the kurtosis for the real classifier’s weights to the dis-

tribution of kurtosis expected by chance. If the real classifiers weight kurtosis di↵ered

from chance, this would indicate either that fewer neurons were strongly involved in

the classifier compared to a random classifier, or that neurons contributed more uni-

formly to the classifier than expected by chance. Neither of these was observed (all

p > 0.1, two-sided).
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5.7 Variance Alignment analysis

We initially reduced the dimensionality of the data as above to k dimensions (chosen

as 8) using PCA. This step de-noised the data. For this analysis, the A matrix

on which we performed PCA contained data from both the decision and movement

epochs together; this ensured that the resulting space captured the structure of both

epochs. We then determined the shape of the variance ellipsoid for the movement

epoch alone (�200 to 800ms from movement onset). That is, we rotated the data in

the k-dimensional space so that the first dimension captured as much movement-epoch

variance as possible, the second the next most, etc. This was accomplished using

PCA on the (k-dimensional) movement-epoch data alone, retaining all components.

The decision data was then rotated into this movement-determined orientation. For

each dimension d (1 to k, horizontal axis in Fig. 3.13e), we could then determine

how much variance was present in the decision data. These values were normalized

by the maximum possible variance that could be captured in the same number of

dimensions: if the rotation were found using PCA on the decision-epoch data itself.

Perfect alignment would produce a unity Variance Alignment value, while maximal

misalignment defines the lower bound (i.e., if the highest-variance dimension during

the movement epoch were the lowest-variance dimension during the decision epoch).

To determine the chance Variance Alignment, 10,000 randomly oriented orthogonal

bases for the k-space were chosen. The confidence intervals shown in Figure 3.13e,f

were derived from these random bases (not corrected for multiple comparisons).

To obtain a summary “Variance Alignment index”, we computed the area be-

tween the data curve and the chance curve. If the data curve was above the chance

curve, the index was taken as positive and was normalized by the area between the

perfect alignment curve and the chance curve. If the data curve was below the chance

curve, the index was taken as negative and was normalized by the area between the

chance curve and the maximally misaligned curve. The index thus ranges from �1

(maximally misaligned) to 1 (perfectly aligned). This index was also computed for

each of the 10,000 random orientations. The resulting chance distribution was used
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to calculate a p-value (two-sided).

For a control comparison, we repeated this analysis on two di↵erent modality

conditions (visual and multisensory) during the decision epoch. This is a useful

comparison because if activity patterns during the visual condition and multisensory

condition are aligned, it demonstrates that the finding of chance-level alignment dur-

ing decision formation and movement truly results from misaligned states and not

noise. For this analysis, we determined the ordering of dimensions using data from

multisensory trials. Then, data from visual trials was rotated into the multisensory-

determined orientation. This analysis was performed on rats 1–4; Rat 5 was excluded

because this animal had some neurons for which multisensory trials were not collected.

To better interpret the result, we asked whether neurons that had strong stimulus-

epoch modulation tended to have strong or weak movement-epoch modulation. To

measure the depth of modulation for each neuron, we first created a vector containing

the trial-averaged firing rate at each time point for each condition. For each neuron,

there was one vector for the stimulus epoch (starting 300ms before stimulus onset)

and one vector for the movement epoch (�200 to 800ms from movement onset).

The variance of each vector was then taken. Since the resulting distributions were

approximately log-normal, we took the log of these values before correlating them.

5.8 Testing for linear and nonlinear components

of neurons’ responses

We wished to test how much of neurons’ tuning was a linear function of choice or

stimulus modality, and how much was a function of nonlinear interaction between

choice and stimulus modality. To determine this, we considered one neuron at a

time, and analyzed only successful visual and auditory trials (multisensory trials and

failures were excluded). We first reduced the neurons response on each trial to a single

number: the spike count in a 200ms window of time (600 to 800ms after stimulus

onset). This produced a spike count vector y with as many elements as included
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trials. Our model of the neuron’s response was:

y = X � + ⌘ (5.10)

where X is a design matrix (see below), � is a vector of regression coe�cients, and ⌘

is a noise term. The design matrix X was of size r by 4, with r the number of trials.

Each row summarized the conditions for the corresponding trial. For each row, the

first element was always one, to capture the mean across trials. The second element

captured choice preference, set to +1 for rightward trials and �1 for leftward trials.

The third element captured modality preference, set to +1 for visual trials and �1

for auditory trials. The last element captured the interaction, set to +1 for visual

rightward trials and auditory leftward trials, and �1 otherwise.

To find �, we performed a Generalized Linear Model regression (GLM regression;

see Nelder and Wedderburn, 1972) with a Poisson noise distribution (since single-trial

spike counts are typically assumed to have Poisson noise). In order to have orthogonal

columns of X, it was necessary to have equal numbers of trials for each combination

of left and right and visual and auditory. We therefore randomly downsampled trials

to make these groups equal size before performing the regression. This was done 100

times for each neuron, and the resulting �’s were averaged. For analysis, we examined

the two linear terms of � and compared them with the final, interaction term of �.

5.9 Surgical procedures

All rats subject to surgery were anesthetized with isoflurane and administered 5mg/kg

ketoprofen before surgery for analgesia. Isoflurane anesthesia was maintained by

monitoring respiration and foot pinch responses throughout the surgical procedure.

Ophthalmic ointment was applied to keep the eyes moistened throughout surgery.

Lidocaine solution (⇠ 0.1mL) was injected below the scalp to provide local analgesia

prior to performing scalp incisions. 0.05mg/kg buprenorphine was administered daily

for post-surgery analgesia (usually 2–3 days). All surgical procedures conformed to

the guidelines established by the National Institutes of Health and were approved by
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the Institutional Animal Care and Use Committee of Cold Spring Harbor Laboratory.

5.9.1 Injections

Two rats, 3–5 weeks of age, were anesthetized and placed in a stereotaxic apparatus

(Kopf Instruments). Small craniotomies were made over PPC (3.8mm posterior to

Bregma; 2.2, 3.2, and 4.2mm left/right of midline). One of the rats was subject

to unilateral injections (left hemisphere), and the second rat was subject to bilat-

eral injections. Small durotomies were performed at each craniotomy and virus was

pressure injected at depths of 400, 600, and 800µm below the pia (140 nL/depth)

using calibrated pipettes and a syringe (rate of ⇠ 1 nL/second). 2–3 minutes were

allowed following injection at each depth to allow for di↵usion of virus. Adeno-

associated virus expressing muscarinic receptor hM4D-mCitrine under an hSyn pro-

moter (AAV5-hSyn-HA-hM4D-IRES-mCitrine; construct provided by Bryan Roth,

UNC; virus produced by UNC Gene Therapy Center) was used.

5.9.2 Cannulae implant

Rats were anesthetized and placed in the stereotax. Two craniotomies were made

on each side of the brain; these were positioned to cover medial and lateral PPC on

each side (4.0mm posterior to Bregma and extending from 2.0 to 3.6mm left/right

of midline). Durotomies were performed and a double guide cannula (PlasticsOne,

C235G-1.2) was placed in the brain 100–200µm below the pia at each craniotomy.

The exposed brain was covered with 2% agarose solution and both cannulae were

anchored to the skull with dental acrylic (Lang Dental).

5.9.3 Tetrode array implant

After scalp shaving and incision, the skull was cleaned, and anchoring screws were

drilled into 6 locations on the skull. Dental cement (Parkell, Inc.) was applied to

the skull surface and a craniotomy was made above left PPC (4mm posterior to

Bregma; 2.5mm left of midline; ⇠ 2.4mm anteroposterior ⇥ ⇠ 3.4mm mediolateral
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in size). A durotomy was performed and the implant assembly was lowered until the

tetrodes just penetrated the pial surface. 2% agarose solution was applied to cover

the tetrodes and craniotomy, and dental acrylic (Lang Dental) was applied to secure

the implant to the skull. The incision was closed around the base of the implant using

Vetbond (3M). Following surgery, tetrodes were advanced in increments of 40–80µm

until action potentials were encountered.

5.10 Inactivations

5.10.1 Muscimol inactivation sessions

Muscimol was infused into PPC with a concentration of 0.5–1.0mg/mL and a volume

of 0.3µL per site. A double-internal cannula (PlasticsOne, C235I/SP), connected to

2 microliter syringes (Hamilton microliter syringe, 7000 series), was inserted into

each previously implanted guide cannula. Internal cannulae extended 0.5mm below

the guide (estimated 600–700µm below the pia). Muscimol was delivered using an

infusion pump (Harvard PHD 22/2000) at a rate of 0.1µL/min. Internal cannulae

were kept in the brain for 3–5 additional minutes to allow for di↵usion of muscimol.

Rats were removed from anesthesia and returned to cages for 30 minutes before

beginning behavioral sessions. The same procedure was used in control sessions,

where muscimol was replaced with sterile saline.

5.10.2 DREADD inactivation sessions

Prior to DREADD inactivation and control sessions, clozapine N-oxide (CNO, 1mg/kg)

or sterile saline was injected intraperitoneally into rats expressing the muscarinic re-

ceptor hM4D. Animals were returned to their cages for 30 minutes post-injection

before beginning behavioral sessions.
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5.11 Histology

At the conclusion of physiological experiments, animals were deeply anesthetized with

ketamine and medetomidine. To indicate the final positions of electrodes, electrolytic

lesions were made at the tetrode tips by passing 30µA current through each electrode

for ⇠ 10–15 seconds. After lesioning, animals were perfused transcardially with 4%

paraformaldehyde. Brains were extracted and post-fixed in 4% paraformaldehyde for

24–48 hours. After post-fixing, 100µm coronal sections were cut from one of the

brains on a vibratome (Leica).

At the conclusion of inactivation experiments, both animals that had been injected

with DREADD were perfused transcardially with 4% paraformaldehye. One of the

brains was extracted, post-fixed and sectioned following the protocol described above.

The second brain was post-fixed, then kept in 30% sucrose solution for 48 hours,

then frozen at �80� C. 20µm coronal sections were cut from this brain using a

cryostat (Leica CM1850). In both cases, brain sections were mounted on slides with

Vectashield mounting medium.

5.11.1 Quantification of DREADD expression

Brain sections were imaged using an epifluorescence microscope. The resulting images

were analyzed with MATLAB software. A region of interest (ROI) was manually

defined for each brain section that was analyzed. The ROI extended from ⇠ 1.5 to

5.0mm lateral to the midline and ⇠ 0.2 to 1mm below the pia. A second, smaller ROI

was defined near the first one, in a region that was not infected by the virus (which

thus should have had no expression). This region was used as a measure for baseline

pixel intensity. Average pixel intensity across columns of pixels was calculated inside

the first ROI, then normalized by the average pixel intensity inside the second ROI

(baseline). To quantify expression levels on a particular brain section, we calculated

the area below the average pixel intensity curve for that section and above baseline

(a flat line at unity). We used this measurement to compare the expression levels in

two places: at the border between PPC and secondary visual cortex, and near the
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injection site in PPC.
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6

Final remarks

We developed a novel behavioral paradigm particularly useful for the study of multi-

sensory decision-making in rodents. This paradigm allowed us to show that improve-

ment in decision accuracy due to multisensory integration is not restricted to humans

and non-human primates. We found that rats are, as primates, able to use visual

and auditory information to make decisions, as it arrives over time, and they weigh

that information in an optimal way, so as to minimize the variance of their perceptual

judgments. Our results using this task open possibilities to further understand the

computations that allow the brain to combine information across time and sensory

modalities. It also opens doors for the rodent model to be more widely used both in

multisensory and decision-making studies. The genetic and optogenetic techniques

available nowadays for this animal model will be, in our view, critical to uncover the

circuits and computations used by the brain during perceptual decisions.

The inactivation experiments presented here suggest that the posterior parietal

cortex is required for accurate decisions informed by the visual system. This is, to

our knowledge, the first study to reveal the impact of temporarily shutting down

this area during perceptual judgments. Our results also suggest that, even though

PPC receives inputs from primary auditory cortex as well as visual cortex, the area is

not required for auditory decisions or multisensory integration. This argues in favor

of a more sensory related, visual role for PPC, as it is defined today. Recent work

have shown that PPC in rats exhibits significant di↵erences along the medial-lateral
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axis, defining subregions that may have distinct functions (Wilber et al., 2014). An

important line of work would be to explore the role of these di↵erent subregions within

PPC.

One of the main results of this work came from electrophysiological recordings

that we have done in the PPC of rats performing our task. We have shown that

the di↵erent responses of PPC neurons cannot be grouped into categories. In other

words, neurons’ response features are randomly distributed across the population.

This configuration provides a flexible way for one single brain area to encode multiple

variables which can be easily (linearly) decoded by single downstream neurons. An

open question is then what variables, encoded in PPC, are being passed on and read

out by downstream areas. One possibility is that PPC is providing information to

premotor areas about abstract features of a visual stimulus, so that di↵erent cate-

gorical choices can be e↵ectuated in di↵erent situations. It is conceivable that one

of those features transmitted by PPC is the accumulated visual evidence in favor or

against a particular choice, as suggested by the primate decision-making literature.

Further experiments, in which the activity of PPC and one of its downstream areas is

monitored simultaneously, would perhaps bring us closer to answering this question.

The optogenetic experiments developed in this work reveal, for the first time, the

consequences of spatial and temporally precise disruption of PPC during a decision-

making task. Our results point to a causal role of this area in visual decisions and

suggest a slow recovery of the network to its normal state after a short disruption.

Future experiments must take place to explain the nature of this causal role. It would

be important to distinguish if the the optogenetic disruption causes an attentional

deficit or, instead, an inability to integrate visual evidence, for example. An approach

similar to the one we used in these experiments can be used to disrupt specific inputs

to PPC. Stimulation of only the axonal terminals of neurons that project from visual

cortex to PPC may provide insights into the computations implemented by PPC and,

more generally, the nature of its role in visual decisions.
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