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ABSTRACT

This work aim to introduce a new method of estimating the variance components in mixed

linear models. The approach will be done firstly for models with three variance components and

secondly attention will be devoted to general case of models with an arbitrary number of variance

components.

In our approach, we construct and apply a finite sequence of orthogonal transformations, here

named sub - diagonalizations, to the covariance structure of the mixed linear model producing a

set of Gauss-Markov sub-models which will be used to create pooled estimators for the variance

components. Indeed, in order to reduce the bias, we apply the sub - diagonalizations to its cor-

respondent restricted model, that is its projection onto the orthogonal subspace generated by the

columns of its mean design matrix. Thus, the Gauss - Markov sub-models will be centered. The

produced estimator will be called Sub-D.

Finally, the numerical behavior of the proposed estimator is examined for the case of models

with three variance components, comparing its performance to the ones obtained with the REML

and ANOVA estimators. Numerical results show that Sub-D produces reasonable and comparable

estimates, some times slightly better than those obtained with REML and mostly better than those

obtained with ANOVA.

Due to the correlation between the sub-models, the estimated variability of the variability of

Sub-D will be slightly bigger than the one of the REML estimator. In attempt to solve this problem

a new estimator will be introduced.

Keywords: Mixed Linear Models; Sub-diagonalizations; Variance components; Sub-D.
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RESUMO

Este trabalho pretende introduzir um novo método de estimação das componentes da variância

em modelos lineares mistos. Numa primeira instância, aborda-se a estimação em modelos com três

componentes da variância. Seguidamente, foca-se no caso geral: estimação em modelos com um

número arbitrário de componentes da variância.

Na nossa abordagem, construimos e aplicamos uma sequência finita de transformações ortogo-

nais - aqui denominadas sub-diagonalizadoras - à estrutura da covariância do modelo, produzindo

assim um conjunto de sub - modelos de Gauss-Markov que serão usados para criar estimadores

agrupados. Na verdade, com o intuito de reduzir o viés, aplicamos as sub-diagonalizadoras ao

modelo restrito correspondente, isto é, à projeção do complemento ortogonal no subspaço gerado

pelas colunas da sua matriz do delineamento para a esperança (parte dos efeitos fixos), pelo que

os sub-modelos de Gauss-Markov acima referidos terão média nula. O estimador resultante será

chamado de Sub-D.

Finalmente, examina-se o desempenho numérico do estimador proposto para o caso do modelo

com três componentes da variância, comparando-o com o dos estimadores REML e ANOVA.

Os resultados obtidos mostram que o nosso estimador (Sub-D) produz estimativas razovelmente

comparáveis, sendo, em alguns casos, ligeiramente melhores que os resultados obtidos com o

estimador REML e na maioria dos casos melhores que os obtidos com o estimador ANOVA.

Contudo, devido à dependência entre os sub-modelos, a variabilidade estimada será ligeiramente

maior que a do estimador REML. Na tentativa de ultrapassar esse problema um novo estimador

será introduzido.

Palavras-chave: Modelos lineares mistos; Sub-diagonalizadoras; Componentes da variância; Sub-

D.
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1
INTRODUCTION

Mixed linear models (MLM) have received much attention recently, namely because they constitute

an useful tool for modeling repeated measurement data, and, in particular, small sample and

longitudinal data (Wallace and Helms [27] developed procedures providing hypothesis tests and

confidence intervals for longitudinal data using MLM).

MLM arise due to the necessity of accessing the amount of variation caused by certain sources

in statistical designs with fixed effects (see Khuri [34]) for example the amount of variation that

are not controlled by the experimenter and those whose the levels are randomly selected from

a large population of levels. The variances of such sources of variation, currently refereed to as

variance components, have been widely investigated mainly in the last fifty years of the last century

(see Khuri and Sahai [35], Searle ([65], [66]), for example), and thanks to the proliferation of

research in applied areas such as genetic, animal and plant breeding, statistical process control and

industrial quality improvement (see Anderson ([2], [4], [3]), Anderson and Crump [6], Searle [65]

for instance) several techniques of estimation for the variances components have been proposed.

Among them we highlight the ANOVA and likelihood based method (see Searle at al. [67] and

Casella and Berger [14]), as well as those based on orthogonal block structure (OBS) (see Nelder

( [57], [58]). Nevertheless, notwithstanding the ANOVA method adapt readily to mixed models

with balanced data and save the unbiasedness, it does not adapt in situation with unbalanced data

(mostly because it uses computations derived from fixed effect models rather than mixed models).

On its turn, the maximum likelihood - based methods provide estimators with several statistical

optimal properties such as consistency and asymptotic normality either for models with balanced

data, or for those with unbalanced data. For these optimal properties we recommend, for instance,

Miller ( [46], [47]) and for some details on applications of such methods we suggest Anderson [4]

and Hartley and Rao [25]. The OBS based method plays important role in the theory of randomized

block designs (see Calinski and Kageyama ([12], [13])).

This work focuses on developing a new method of estimating variance components in MLM. It

will be done firstly for models with 3 variances components, and secondly attention will be devoted

1



CHAPTER 1. INTRODUCTION

to general case of models with an arbitrary number of variance components. In our approach, in

order to reduce the bias of our estimator, we will instead consider the orthogonal projection of the

normal MLM onto the subspace generated by the columns of its correspondent mean design matrix,

that is the restricted model. We construct and apply a finite sequence of orthogonal matrices to the

covariance structure of the restricted model thus producing a set of homoscedasticity sub-models

and then use that sub-models structure to developing the above announced estimator. For now

on the finite sequence of orthogonal matrices will be refereed to as sub-diagonalizations, and the

estimators developed here refereed to as Sub-D and Sub-DI, where Sub-DI is found in an attempt to

improve the Sub-D. Through this work sometimes we may have the need to refer to the underlying

deduction method of Sub-D and sometimes to the deducted estimator; when so, for the first case we

will refer to as Sub-D method, whereas for the second one as Sub-D estimator.

The firsts three Chapters of this work, Chapters 1, 2, and 3, are devoted to preliminary

notions and the literature review. The development of the estimators Sub-D and Sub-DI are done in

Chapter 4, and Chapter 5 is devoted to the numerical application for Sub-D and Sub-DI. Finally,

Chapter 6 is devoted to final comments and proposals for future works.
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2
ALGEBRAIC RESULTS

In this chapter we will review the elements of matrix theory needed in the remainder of the thesis,

especially in both chapter 3 and 4. The proofs of the results that seem, somehow, instructive will

be included. On the other hand, for the proofs of the remainder results we will always include

some references. Among them, we highlight Schott [64], Rao and Rao [61], and Rencher and

Schaalje [62].

We begin with the presentation of some basic notions on matrix theory in section 2.1 and next

we present results on orthogonal basis and projection matrices (section 2.2), followed by a brief

presentation and discussion of diagonalization of a symmetric Matrix. In section 2.3 the generalized

inverse matrix notions and some important results for the remainder chapter (see section 2.3).

Finally, at the last two sections (sections 2.4 and 2.5) discussion of needed notions and results on

Jordan algebra and on Kronecker product of matrices follow.

2.1 Notation And Preliminary Notions On Matrix Theory

Throughout this work we use the capital letter to represent a matrix and, when needed, the lower

case letter to represent a vector. Let M n×m stands for the set of matrices with n rows and m columns.

Thereby, with A ∈M n×m we mean a matrix whose the dimension is characterized by n rows and m

columns, and the element in the row 0 < i≤ n and column 0 < j ≤ m, that is, the (i, j)th element,

is a scalars or a variable, usually denoted by ai j.

Let

A =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...

an1 an2 . . . anm

 , (2.1)

be a matrix in the standard form. If m = 1, A is said to be a vector, and denoted by a lower case

letter a instead of A. In this case we will write Rn in place of M n×1.

3



CHAPTER 2. ALGEBRAIC RESULTS

Interchanging the rows and columns of A ∈M n×m the resulting matrix is said to be the

transpose matrix of A and is denoted by A>; that is, A> is a matrix whose the element at row i and

column j is exactly the element at row j and column i of matrix A. So,

A> =


a11 a21 . . . an1

a12 a22 . . . an2
...

...
. . .

...

a1m a2m . . . anm

 .

If n = m, A is said to be a square matrix and when A is a square matrix with ai j = 0, for i 6= j,

A is said to be a diagonal matrix. Here we denote it by D(a11, . . . ,ann) or just D when there is no

risk of misunderstanding. When ai j = 0, for all i and j, A is called a null matrix. We will represent

a null matrix by 0n,m.

Throughout this work we will assume the following notation for some especial matrices

(including the vectors):

• 0n denotes a vector in Rn whose the entries are all equals to 0;

• Jn,m denotes a matrix in ∈M n×m whose the entries are all equals to 1; when n = m it will be

denoted Jn;

• 1n denotes a vector in Rn whose the entries are all equals to 1.

A diagonal matrix A whose the diagonal elements are all equal to one is called identity matrix.

We will denote it here by In, or just I when there is no risk of misunderstanding.

Definition 2.1.1. Let A ∈M n×n; that is, a square matrix. A is said to be a symmetric matrix if it

holds A> = A. Here we denote the set of all symmetric matrices in M n×n by S n.

For what follows it is assumed that the reader is familiarized with sum and product of matrices

(if not, see Lay [38] for instance). We will introduce several functions of matrix and discuss a few

of them, mainly those with direct implication on the remainder chapters. For this latter ones we

will present the notions and the main results. for the remaining ones we recommend Lay [38] or

Schott [64], for instance.

One of the matrix function with no direct implication in this work is | |, the determinant of a

square matrix (see Horn and Johnson [30] for this topic). Given a square matrix A, if |A| 6= 0, A is

said to be a non-singular matrix. See Schott [64] or Lay [38] for more explanation.

Another function defined over a square matrix is the trace function.

Definition 2.1.2. Let A ∈M n×n. The trace of A, denoted by tr(A), is defined by

tr(A) =
n

∑
s=1

ass;

that is, the sum of the diagonal elements of A.

4



2.1. NOTATION AND PRELIMINARY NOTIONS ON MATRIX THEORY

The trace function plays an important role on statistic field, with some emphasis, for example,

on the distribution of quadratic forms (see Schott [64] or Rencher and Schaalje [62]). Indeed, given

a random vector y ∈Rn with mean vector µ and variance-covariance matrix Σ, and a symmetric

matrix A ∈M n×n, the expectation of the quadratic form y>Ay, denoted by E(y>Ay), is given by

E(y>Ay) = tr(AΣ)+ µ
>Σµ . (2.2)

If y has finite fourth moment, we have that the variance-covariance matrix of y>Ay, denoted by

Σ(y>Ay), is given by

Σ(y>Ay) = 2
(

tr([AΣ]2)+ 2µ
>AΣAµ

)
. (2.3)

The following result summarizes a few useful properties of the trace function.

Proposition 2.1.1. Let A,B ∈M n×n and α ∈R. Then

(a) tr(A>) = tr(A);

(b) tr(A+αB) = tr(A)+ tr(αB) = tr(A)+αtr(B);

(c) tr(AB) = tr(BA);

(d) tr(A>A) = 0n,n if and only if A = 0n,n.

Proof. For (a) we only have to note that the diagonal element of A are the same as those of A>. For

(b), with δii, i = 1, . . . ,n, denoting the diagonal elements of A+αB it follows that δii = aii +αbii,

where aii and bii denote the the diagonal elements of A and B, respectively. For (c), let Ai• and A• j

respectively denote the ith row and the jth column of the matrix A. Thus the element ci j of C = AB

will be

ci j = Ai•B• j =
n

∑
k=1

aikbik

and the element di j of D = BA will be

di j = Bi•A• j =
n

∑
k=1

bikaik.

tr(AB) = tr(C) =
n

∑
i=1

cii =
n

∑
i=1

Ai•B•i =
n

∑
i=1

n

∑
k=1

aikbki =
n

∑
k=1

n

∑
i=1

bkiaik =
n

∑
k=1

Bk•A•k =
n

∑
k=1

dkk

= tr(D) = tr(BA).

Finally, for (d), the sufficient condition is obviously once A = 0n,n implies A>A = 0n,n. Now, for

the necessary condition, with E = A> and nothing that Ei• = A•i, we will have

tr(A>A) =
n

∑
i=1

Ei•A•i =
n

∑
i=1

n

∑
k=1

eikaki =
n

∑
i=1

n

∑
k=1

a2
ki. (2.4)

Consequently, tr(A>A) = 0 holds if and only if aki = 0 for all k and all i which means exactly

A = 0n,n.

5



CHAPTER 2. ALGEBRAIC RESULTS

Definition 2.1.3. Let A ∈M n×n be a non-singular matrix. The unique matrix B such that

BA = AB = In

is called the inverse matrix of matrix A, and denoted by A−1.

As seen we gave the above notion presupposing the existence and the uniqueness of the inverse

of a non-singular matrix. The proofs for these facts can be explored at Schottt [64].

Next we summarize a few basic useful properties of the inverse of a matrix in the following

proposition. They all can be easily proved using the above definition.

Proposition 2.1.2. Let A,B ∈M n×n be non-singular matrices, and α a nonzero scalar.

(a) (αA)−1 = 1
α

A−1;

(b) (A>)−1 =
(
A−1

)>;

(c) (A−1)−1 = A;

(d)
∣∣A−1

∣∣= 1
|A| ;

(e) If A is symmetric, then A−1 is symmetric; that is, A−1 = (A−1)>;

( f ) (AB)−1 = B−1A−1;

(g) If A = D(a11, . . . ,ann), then A−1 = D
(

1
a11

, . . . , 1
ann

)
.

Proof. See Schott [64], Theorem 1.6.

Now we turn to what we may call inside structure of a matrix. Specifically, we will reveal a few

interesting and useful properties hidden in the matrix columns (rows).

Since each of the m columns of a matrix A ∈M n×m has n entries they may be identified with

vectors inRn so that we may write A = [v1 . . .vm], where vi =


a1i
...

ani

, i = 1, . . . ,m. It is easily noted

that the linear combination of the column vectors of A can be written as a product of A with a vector

x ∈Rm: Ax = x1v1 + . . .+ xmvm, where x =


x1
...

xm

.

Definition 2.1.4. The set of all possible linear combination of the column vectors v1, . . . ,vm of A is

called the range of A, and denoted by R(A); that is, with x = [x1 . . .xm]> representing any vector of

reals xi,

R(A) = {v ∈Rn : Ax = v} ⊂Rn.

Definition 2.1.5. The set of all vector w ∈Rm such that Aw = 0 is called the null space of A, and

denoted by N(A); that is,

N(A) = {w ∈Rm : Aw = 0n} ⊂Rm.

6



2.1. NOTATION AND PRELIMINARY NOTIONS ON MATRIX THEORY

As it may be noted, R(A) and N(A) are vector subspace of the vector spaces Rn and Rm,

respectively (see Schott [64]). We prove it on the next result.

Proposition 2.1.3. Let A ∈Rn×m. Then

(a) R(A) is a vector subspace of Rn;

(b) N(A) is a vector subspace of Rm;

Proof.

(a): 0n ∈ R(A), since A0m = 0n. If v,w ∈ R(A), we have that Ax = v and Ay = w for some

vectors x,y ∈ Rm. Thus, A(x+ y) = Ax+Ay = v+w so that v+w ∈ R(A). Finally, let α be an

scalar and v ∈ R(A). Then, since v = Ax for some vector x ∈Rm, and A(αx) = α(Ax) = αv, we

have that αv ∈ R(A) and so the proof for this part is completed; that is R(A) is a vector subspace.

(b): 0m ∈ N(A), since A0m = 0n. Letting v,w ∈ N(A) we have that Av = 0n and Aw = 0n. Then,

A(v+w) = Av+Aw = 0n and, therefore, v+w ∈ N(A). Finally, for any scalar α and v ∈ N(a) we

will have that A(αv) = α(Av) = 0n so that αv ∈ N(A) and so the proof is completed; that is N(A)

is a vector subspace.

Definition 2.1.6. The dimension of R(A) is called the rank of A. We denote it here by r(A).

The following theorems summarize a set of useful results on matrix rank. Some of them will

play important role in the chapter 4 (which we may call this work main contributes), since they will

have direct implication (either they justify some steps, or taken as consequence) on the proofs for

the most important results on that chapter.

Theorem 2.1.4. Let A ∈M n×m. Then

(a) r(A) and the dimension of the row space of A are equal; that is, r(A) = r(A>);

(b) r(A) + dimN(A) = m, where dimN(A) denotes the dimension of N(A).

(c) If n = m and A is a diagonal matrix, then r(A) = r, where r is the number of its nonzero

diagonal elements.

Proof. For the proof of (a) and (b) see Lay [38]. (c) is a direct consequence of the definition.

Theorem 2.1.5. Let A ∈M n×m, B ∈M n×n and C ∈M m×m be non-singular matrices. Then

(a) r(A) = r(A>) = r(A>A) = r(AA>);

(b) r(BAC) = r(BA) = r(AC) = r(A).

Proof. See Schott [64], Theorems 1.8 and 2.10.

Theorem 2.1.6. Let Ai ∈M n×m, i = 1,2, and B ∈M m×p. Then

(a) r(A1 +A2) ≤ r(A1)+ r(A2);

(b) r(A1B) ≤ min{r(A1),r(B)}.

Proof. See Schott [64], Theorem 2.10.
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CHAPTER 2. ALGEBRAIC RESULTS

2.1.1 Diagonalization Of A Symmetric Matrix

In this section we present some brief notions of eigenvalues and eigenvectors (which are solutions

of a specific equation of matrix functions) and then discuss a few important results concerning this

subject as well as some others connecting it with matrix rank. This concepts are defined over a

square matrix. The latter part of this section is devoted to a discussion on the diagonalization of

symmetric matrix, specifically, the spectral decomposition of a matrix.

Definition 2.1.7. Let A ∈M n×n. Any scalar λ such that

(A−λ In)v = 0, (2.5)

for some non-null vector v ∈Rn, is called an eigenvalue of A. Such a non-null vector v is called the

eigenvector of A and equation (2.5) the eigenvalue-eigenvector equation.

Since v 6= 0, it must be noted that the eigenvalue λ must satisfy the determinant equation

|A−λ In|= 0 (2.6)

which is known as characteristic equation of A since using the definition of determinant function

(see Schott [64]) it can be equivalently written as

θo−θ1λ + . . .+θn−1(−λ )n−1 +(−λ )n = 0, (2.7)

for some scalars θi, i = 0, . . . ,n−1, that is, as an nth degree polynomial in λ .

Theorem 2.1.7. Let A ∈M n×n . Then

(a) λ is eigenvalue of A if and only if λ is eigenvalue of A>;

(b) A is non-singular if and only if A has no null eigenvalues;

(c) If B ∈M n×n is a non-singular matrix, then the eigenvalues of BAB−1 are the same as the

those of A;

(d) |A| is equal to the product of the eigenvalues of A.

Proof. straightforward using the characteristic equation or the eigenvalue-eigenvector equation.

It is known that the polynomial in the left side of (2.7) has at most n real roots (and exactly

n complex roots); that is, there are at most n scalar, λ1, . . . ,λn say, satisfying the equation (2.7) if

solved in λ , so that A has at most n real eigenvalues.

Theorem 2.1.8. Let A ∈S n and B ∈M n×n. Then

(a) The set of eigenvectors associated to different eigenvalues of B are linearly independent.

(b) Let λ1, . . . ,λs, s≤ n, be the eigenvalues of A. Then λ1, . . . ,λs are all reals, and for each λi,

i = 1, . . . ,s, there is an eigenvector νi that is a vector of reals;
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(c) It is possible to construct a set of eigenvectors of A such that the set is orthonormal; that is

each element in the set has euclidean norm equal to one and they are pairwise orthogonal.

Proof. (a): with r < n, suppose ν1, . . . ,νr are the eigenvectors of A, and let the corresponding

eigenvalues λ1, . . . ,λr be such that λi 6= λ j, whenever i 6= j. Now suppose, by contradiction, that

ν1, . . . ,νr are linearly dependent. Let h be the largest integer for which ν1, . . . ,νh are linearly

independent (that is, ν1, . . . ,νh+1 must be linearly dependent). Thus, since no eigenvector can be a

null vector, there exist scalars α1, . . . ,αh+1 with at least two not equal to zero, such that

α1ν1 + . . .+αh+1νh+1 = 0n.

Premultiplying both the left-hand and the right-hand side of this equation by (A−λh+1In) it is

found that

α1 (A−λh+1In)ν1 + . . .+αh+1 (A−λh+1In)νh+1 = 0n ⇔

α1 (Aν1−λh+1ν1)+ . . .+αh+1 (Aνh+1−λh+1νh+1) = 0n ⇔

α1 (λ1ν1−λh+1ν1)+ . . .+αh+1 (λh+1νh+1−λh+1νh+1) = 0n ⇔

α1 (λ1−λh+1)ν1 + . . .+αh (λh−λh+1)νh = 0n. (2.8)

Thus, since ν1, . . . ,νh are linearly independent it follows that

α1 (λ1−λh+1) = · · ·= αh (λh−λh+1) = 0n.

Now, since at least one of the scalars α1, . . . ,αh is not equal to zero, for some i = 1, . . . ,h we have

that λi = λh1, which contradicts the condition of (a).

(b): Let λ = α + iβ be an eigenvalue of A and ν = x+ iz its corresponding eigenvector, where

i =
√
−1. Thus, we have that

Aν = λν ⇔ A(x+ iz) = (α + iβ )(x+ iz), (2.9)

and premultiplying by (x− iz)>, it yields

(x− iz)>(x+ iz) = (α + iβ )(x− iz)>(x+ iz). (2.10)

Hence A is symmetric equation (2.10) simplifys to

x>Ax+ z>Az = (α + iβ )
(

x>x+ z>z
)

. (2.11)

Since ν 6= 0n (it is an eigenvector) we have that
(
x>x+ z>z

)
> 0 and, consequently, β = 0 since

the left-hand side of the equation (2.11) is real. Now, replacing β with zero in the eigenvalue-

eigenvector equation (2.9) we get

A(x+ iz) = α(x+ iz)⇔

Ax+ iAz = αx+ iαz.

9
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Then ν = x+ iz will be an eigenvector of A corresponding to λ = α as long as Ax = αx, Az = αz

and at least one of the vectors x and z must be non-null (once ν 6= 0n). Finally, a real eigenvector

corresponding to λ = α is then constructed by choosing x 6= 0n such that Ax = αx and z = 0.

(c): Let ν be any non-null vector orthogonal to each of the eigenvectors in the set {ν1, . . . ,νh},
where 1 ≤ h < n. Note that the set {ν1, . . . ,νh} contains at least one eigenvector of A. Note also

that for any integer k ≥ 1, Akν is also orthogonal to each of the vectors in the set since, if λi is the

eigenvalue corresponding to νi, it follows from the symmetry of A and Theorem A.1.1 that

ν
>
i Ak

ν = Ak>
νi
>

ν = (Ak
νi)
>

ν = λ
k
i ν
>
i ν = 0.

According with the TheoremA.1.2 we have that the space spanned by the vectors ν , Aν , . . .,

Ar−1ν , r ≥ 1, contains an eigenvector of A. Let it be ν∗. Clearly ν∗ is also orthogonal to the vectors

in the set {ν1, . . . ,νh}, since it comes from a vector space spanned by a set of vectors which are

orthogonal ν1, . . . ,νh. Thus we can take νh+1 = (ν∗>ν)
−1
2 . Then, starting with any eigenvector of

A, and proceeding with the same argument n−1 times the theorem follows.

It must be noted that if the matrix A ∈M n×n has 1 < r ≤ n eigenvalues λ1, . . . ,λr whose the

corresponding eigenvectors will be the non-null vectors v1, . . . ,vr, i.e. (A−λi)vi = 0, i = 1, . . . ,r,

the eigenvalue - eigenvector equation can be written as

AV = V Λ or, equivalently, (AV −V Λ) = 0n,r, (2.12)

where V is a matrix in M n×r whose the columns are v1, . . . ,vr and Λ = D(λ1, . . . ,λr).

Thus, if the n (complex) eigenvalues λ1, . . . ,λn of A ∈M n×n are all distinct, it follows from

the Theorem 2.1.8, part (a), that the matrix V whose the columns are v1, . . . ,vn, the eigenvectors

associated to those eigenvalues, is non-singular. Thereby, in this case, the eigenvalue-eigenvector

equation (2.12) can equivalently be written as V−1AV = Λ or A =V ΛV−1, with Λ = D(λ1, . . . ,λn).

We may note that by the Theorem 2.1.7, part (c), the eigenvalues of Λ are the same as those of

A. Since A can be transformed into a diagonal matrix by post-multiplication by the non-singular

matrix V and pre-multiplication by its inverse, A is said to be a diagonalizable matrix (see this

notion in Schott [64]).

Now, provided A is in S n, we will have the following result.

Theorem 2.1.9. Let A ∈S n. Then, the eigenvectors of A associated to different eigenvalues are

orthogonal.

Proof. Let λi and λ j be two different eigenvalues of A whose the corresponding eigenvectors are vi

and v j, respectively. Since A is symmetric we will have that

λiv>i v j = (Avi)
>v j = v>i (Av j) = λ jv>i v j,

and since λi 6= λ j, it must holds v>i v j = 0.

10
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Thus, according with Theorem 2.1.8 (c), if A ∈S n, the n columns v1, . . . ,vn of the matrix

V , can be taken to be orthonormal so that, with out lost in generality, V can be taken to be an

orthogonal matrix. Thus, the eigenvalue - eigenvector equation can now be written as

V>AV = Λ or, equivalently, A = V ΛV>, (2.13)

which is known as spectral decomposition of A (see this notion in Schott [64]).

Theorem 2.1.10. Let A ∈S n and suppose A has r nonzero eigenvalues. Then r(A) = r;

Proof. Let A = V ΛV> be the spectral decomposition of A. Then, since the diagonal matrix Λ
has r non-null elements (the non-null eigenvalues of A) and the matrix V is an orthogonal matrix,

according with Theorem 2.1.7 (c), we have that

r(A) =
(

V ΛV>
)
= r(Λ) = r.

r(Λ) = r follows from the Theorem 2.1.4 (c).

2.2 Orthogonal Basis And Projection Matrices

Let S be an vector subspace of Rn and the set of vectors {e1, . . . ,en} be an orthonormal basis for

Rn. Let also the set {e1, . . . ,er}, with r < n, be an orthogonal basis for S. The above statements are

legitimate since every vector space (except the zero-dimensional one) has an orthogonal basis, as is

guaranteed by Schott [64] (See theorem 2.13). {e1, . . . ,en} being orthonormal basis for Rn means

e>i e j = 0, i 6= j, and e>i ei = 1, i = j, with ei ∈Rn, and the set {e1, . . . ,en} spans Rn.

Definition 2.2.1. The set of vectors in Rn which are orthogonal to every vector in S is said to be

the orthogonal complement of S, and is denoted by S⊥; that is, S⊥ = {x ∈Rn : x>y = 0, y ∈ S}.

Every vector x ∈Rn can be written as a sum of a vector u ∈ S with a vector v ∈ S⊥, where S⊥

denotes the orthogonal complement of the subspace S (see Schott [64], Theorem 2.14, for the proof

for such result).

Theorem 2.2.1. The orthogonal complement of S, S⊥, is also a vector subspace ofRn, i.e., S⊥⊂Rn.

Proof. See Schott [64], Theorem 2.15.

Let A1 = [e1 . . .er], A2 = [er+1 . . .en], and A = [A1A2], with ei ∈Rn, i = 1, . . . ,n, and {e1 . . .en}
an orthonormal basis for Rn.

The following results are quickly achieved.

Proposition 2.2.2. Consider the matrices A1, A2 and A defined above. Then

(a) A>1 A1 = Ir;

(b) A>2 A2 = In−r,n−r;

(c) A>1 A2 = 0r,n−r;

11
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(d) A>2 A1 = 0n−r,r;

(e) A>A = AA> = In.

Proof. All points arise due to the fact that the columns vectors e1, . . . ,en are orthonormal.

Since {e1, . . . ,en} is an orthonormal basis for Rn, any vector x ∈Rn can be written as x = Aα

for some α = [α∗1 α∗2 ]
>, with α∗1 = [α1 . . .αr] and α∗2 = [αr+1 . . .αn].

Definition 2.2.2. A vector u such that

A1A>1 x = A1A>1 Aα = [A1 0r,n−r][α
∗
1 α
∗
2 ]
> = A1α

∗
1 = u (2.14)

is said to the orthogonal projection of the vector x ∈ Rn onto the subspace S, and the matrix

PS = A1A>1 is said to be the projection matrix onto the subspace S. Similarly, a vector ν such that

A2A>2 x = A2A>2 Aα = [0n−r,r A2][α
∗
1 α
∗
2 ]
> = A2α

∗
2 = ν (2.15)

will be the orthogonal projection of the vector x ∈Rn onto the subspace S⊥.

The following notions are needed for our next result.

Definition 2.2.3. A matrix B ∈M n×n such that B2 = B is said to be idempotent.

Definition 2.2.4. Let the columns of the matrix B form a basis for the subspace S. An symmetric

and idempotent matrix PS such that r(B) = r(PS) is said to be the projection matrix onto S = R(B).

Note 2.2.1. We may sometimes write symmetric idempotent matrix in place of symmetric and

idempotent matrix.

The next result ensures that any symmetric idempotent matrix is a projection matrix for some

vector subspace.

Theorem 2.2.3. Let Q ∈M n×n be any symmetric idempotent matrix such that r(Q) = r. Then Q

is a projection matrix of some r-dimensional vector subspace (vector subspace with dimension r).

Proof. See Schott [64], Theorem 2.19.

The following theorem establishes that if S⊆Rn is r-dimensional subspace, then S⊥ is n− r-

dimensional.

Theorem 2.2.4. Let the columns of the matrix A1 form an orthonormal basis for S, and the columns

of A = [A1A2] an orthonormal basis for Rn. Then, the columns of A2 will be an orthonormal basis

for S⊥.

Proof. Let T be the vector space spanned by the columns of the matrix A2, i.e, T = R(A2). We

firstly prove that T ⊆ S⊥, and then that S⊥ ⊆ T . Let u ∈ S and v ∈ T . Then, u = α1e1 + . . .αrer

and v = αr+1er+1 + . . .αnen for some scalars α1, . . . ,αn. The orthogonality of the vectors e1, . . . ,en

holds u>v = 0, and therefore v ∈ S⊥, which means that T ⊆ S⊥.
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Now, conversely, suppose y ∈ S⊥. Due to the fact that S⊥ ⊆Rn (see Theorem 2.2.1), y = α1e1 +

. . .αnen for some scalars α1, . . . ,αn. Let u ∈ S, so u = α1e1 + . . .αrer, and since y ∈ S⊥ it must hold

y>u = α2
1 e>1 e1 +α2

r e>r er = α2
1 + . . .+α2

r = 0. But this result happens only if α1 = ... = αr = 0.

Thus, y = αr+1er+1 + . . .+αnen which means that y ∈ T , and therefore S⊥ ⊆ T . The proof was

established (see Schott [64], page 52).

By now we have material to set the following results, which are immediate consequences of the

results stated above in this section, so that sometimes we will not give the proofs.

Theorem 2.2.5. With x ∈Rn, and A, A1, and A2 matrices whose the columns form the orthonormal

basis for Rn, S, and S>, respectively:

1. The orthogonal projection of x onto S is given by PSx = A1A>1 x, for which A1A>1 is the

projection matrix for S (see equation (2.14));

2. The orthogonal projection of x onto Rn is given by PRnx = AA>x = (A1A>1 +A2A>2 )x = x,

for which PRn = AA> = Im is the projection matrix for Rn.

3. The orthogonal projection of x onto S⊥ is given by PS⊥x = A2A>2 x = [0 A2][α1 α2]> = A2α2,

for which PS⊥ = A2A>2 = (In−A1A>1 ) is the projection matrix for S⊥;

Although the vector spaces does not have an unique orthonormal basis, the projection matrix

formed by such basis is unique, as ensured by the following theorem.

Theorem 2.2.6. Let the columns of a matrix C and D each form an orthonormal basis for the

r-dimensional vector subspace S. Then, CC> = DD>.

Proof. Each column of D is a linear combination of the columns of the matrix C, since its columns

form a basis for S. So, there exists a matrix P such that D =CP. Once C and D have orthonormal

columns, C>C = D>D = Ir. Thus, Ir = D>D = (CP)>CP = P>P, which means that P is also an

orthogonal matrix. Consequently, PP> = Ir. The desired result: DD> =CP(CP)> =CPP>C> =

CC>.

The following theorems summarizes the results on the projection matrix.

Theorem 2.2.7. Let P ∈M n×n. Then, the following statements are equivalent.

(a) P is a projection matrix;

(b) (In−P) is a projection matrix;

(c) R(P) = N(In−P);

(d) N(P) = R(In−P);

(e) R(P)∩R(In−P) = {0n};

( f ) N(P)∩N(In−P) = {0n}.
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Proof. (a)⇒ (b): (In−P)>(In−P) = In−P−P>+P>P = In−P, since P> = P and P>P = P

due to the fact that P is a projection matrix. Therefore, In−P is a projection matrix.

(b)⇒ (c): Let x ∈ R(P). Then, since P is a projection matrix, Px = x. thus, (I−P)x = x−Px = 0n

so that x ∈ N(I−P). Now, conversely, let x ∈ N(In−P). Thus, (In−P)x = x−Px = 0n⇔ Px = x,

which means x ∈ R(P). Therefore R(P) = N(In−P).

(c)⇒ (d): Let x ∈ N(P). Then Px = 0n. Thus (In−P)x = x−Px = x, once Px = 0n. So x ∈
R(In−P). Conversely, let x ∈ R(In−P). Then

(In−P)x = x⇔ x−Px = x→ Px = 0n,

that is x ∈ N(P).

(d)⇒ (e): Let x ∈ R(P) and y ∈ R(In−P). Then, by point (d) we have that y ∈ N(P). We have

that

x>y = (Px)>(I−P)y = (Px)>(y−Py) = x>P>y = x>Py = 0n,

since P is a projection matrix and y ∈ N(P). In other hand

y>x = [(In−P)y]>Px = (y−Py)>Px = y>Px = [P>y]>x = 0n,

since P is a projection matrix and y ∈ N(P).

(e)⇒ ( f ): Let x ∈ N(P) and y ∈ N(In−P). Then, x ∈ R(In−P) and y ∈ R(P). Thus,

x>y = [(In−P)x]>Py = x>Py = [P>x]>y = 0n.

In other hand

y>x = (Py)>x = y>P>x = 0n.

Theorem 2.2.8. Let P1, . . . ,Pk be projections matrices such that PiPj = 0 for all i 6= j.Then

1. P = ∑
k
i=1 Pi is a projection matrix.

2. R(Pi)∩R(Pj) = {0} for all i 6= j, and R(P) = R(P1)⊕R(P1)⊕ . . .⊕R(Pk), with⊕ denoting

the direct sum of subspace.

Proof. See Rao and Rao [61], page 241.

2.2.1 Application To Statistics

Let {x1, ...,xr} be a basis for the vector space S⊆Rn, i.e., {x1, ...,xr} are linearly independent and

generate S. Let X ∈M n×r, a matrix whose columns are the vectors x1, ...,xr, i.e, X = [x1, . . . ,xr].

Then, the columns of the matrix Z = XA will form an orthonormal basis for S if A ∈M r×r is a

matrix such that

Z>Z = A>X>XA = Ir. (2.16)

Thus, A must be a non-singular matrix and r(A) = r(X) = r.

(r(X) = r, since X has r linearly independent columns.) So, A−1 exists.
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The equation (2.16) holds if (X>X) = (A−1)>A−1 or (X>X)−1 = AA>, where A is the square

root matrix of (X>X)−1.

By the Theorem 2.2.5 (see also Definition 2.2.2), the expression for the projection matrix onto

S, PS, is

PS = ZZ> = XAA>X> = X(X>X)−1X>. (2.17)

Therefore, the projection matrix onto the subspace of Rn spanned by the columns of the matrix X

is PS = X(X>X)−1X>.

Consider the simple fixed effect linear model

y = Xβ + ε , (2.18)

with X ∈ Mn,m a known matrix and β ∈ Rm a vector of unknown parameters, where y ∈ Rn

is an observable random vector with expectation E(y) = Xβ , and variance-covariance matrix

V = I ∈M n×n.

Let β̂ be an unbiased estimator for β . Hence, an unbiased estimator for y would be ŷ = X β̂ ,

in which ŷ is a point in a subspace of Rn, say S, which corresponds exactly to the subspace of Rn

spanned by the linear combinations of the columns of the matrix X .

Remark 2.2.1. According with the paragraph above, every unbiased estimator for y lies onto

S⊆Rn.

Now, the reader may wonder “what is the best unbiased estimator ŷ for y”. The answer follows:

Such (best) unbiased estimator must be the point in S which is closest to y, i.e., the orthogonal

projection of y onto the subspace spanned by the columns of X . That is, ŷ = X β̂ is the best unbiased

estimator for y if it is the orthogonal projection of the vector y onto S.

So, one must compute the orthogonal projection of y onto S. In order to do so, let r(X) = m.

By the equation (2.17) the projection matrix onto S is PS = X(X>X)−1X>, so that the orthogonal

projection of y onto S is given by PSy = X(X>X)−1X>y. Now, since ŷ is the best unbiased estimator

for y it holds:

ŷ = X β̂ = PSy = X(X>X)−1X>y. (2.19)

Pre - multiplying each part of the equation above by (X>X)−1X> it yields:

(X>X)−1X>X β̂ = (X>X)−1X>X(X>X)−1X>y

⇐⇒

β̂ = (X>X)−1X>y, (2.20)

which corresponds exactly to the least squares estimator for β .

Thus, β̂ is the estimator which minimizes the sum of the quadratic mean error, that is, the one

which satisfies

minβ (SSE) = minβ (y−Xβ )(y−Xβ ),

so that
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SSE
β̂

= (y−X β̂ )>(y−X β̂ )

= y>y− y>X(X>X)−1X>y

= y>
(

In−X(X>X)−1X>
)

y. (2.21)

According with Theorem 2.2.5, the term
(
In−X(X>X)−1X>

)
in the equation (2.21) is the projec-

tion matrix onto the orthogonal complement of S, S⊥, so that the term
(
In−X(X>X)−1X>

)
y is the

projection of y onto such space. So, the quadratic mean error of the estimator β̂ is the quadratic

distance of the projection of y onto S⊥.

2.3 Generalized Inverses

The generalized inverse, in short, g-inverse, play an important role in linear algebra, as well as in

statistics, as we will see throughout this work.

Let consider the following system of linear equation in an unknown vector x ∈Rn:

Ax = y, (2.22)

where A ∈M m×n and y ∈ Rm are unknown. Such system is said to be consistent if it admits a

solution in x.

If the matrix A is a non-singular, the solution for the equation (2.22) is x = A−1y, where A−1

denotes the matrix inverse of A.

When A does not admit an inverse matrix (A−1) but the system (2.22) still consistent, there still

having a simple way to solving the system (2.22) if r(A) = m or r(A) = n (A is a full rank matrix):

• If r(A) = m (the m rows of the matrix A are linearly independent) A admits a right inverse,

say L, so that the solution for (2.22) is x = Ly. Indeed, A(Ly) = ALAx = Ax = y.

• If r(A) = n (the n columns of the matrix A are linearly independent) A admits a left inverse,

say G, so that the solution for the equation (2.22) is x = Gy. Indeed, Ax = A(Gy) = AGAx =

AIx = Ax = y.

The results P.8.1.1 and P.8.1.2 of Rao and Rao [61] suggest L=A>(AA>)−1 or L=VA>(AVA>)−1,

where V is an arbitrary matrix satisfying r(A) = r(AVA>), and

G = (A>A)−1A> or G = (A>VA)−1A>V .

The g-inverses arises when one needs to determine solutions for the system (2.22) given it is

consistent, when A ∈M m×n has an arbitrary rank. Such inverse, which is denoted by A−, does

always exists for any matrix A, as proved by the result P.8.2.2 of Rao and Rao [61]. Thus, x = A−y

is a solution for the equation (2.22).

Before one set a possible definition of g-inverse, one set the following results (whose proofs

can be founded in Rao and Rao [61]) which may be useful for that purpose.
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Proposition 2.3.1. Let A ∈M m×n. Then, the following statement are equivalent.

(a) A− is a g-inverse of A.

(b) AA− is an identity on R(A), i.e., AA−A = A.

(c) AA− is idempotent and r(A) = r(AA−).

Proof. See Rao and Rao [61], page 267.

Hereupon, one way to define g-inverse may arise.

Definition 2.3.1. Let A ∈M m×n. De g-inverse of A is a matrix G ∈M n×m such that AGA = A.

As stated in the Proposition above, given a matrix the g-inverse does always exists, but it could

may not be unique. Many properties of the g-inverse can be stated including the one concerning the

conditions on the uniqueness.

Theorem 2.3.2. Let A ∈M m×n and A− its g-inverse. Then,

(a) (A−)> is a g-inverse of A>.

(b) α−1A− is a g-inverse of αA, where α is a scalar.

(c) If A is square and non-singular, A− = A−1 and it is unique.

(d) If B and C are non-singular, C−1A−B−1 is a g-inverse of BAC.

(e) r(A) = r(AA−) = r(A−A) ≤ r(A−).

( f ) r(A) = m if and only if AA− = Im.

(g) r(A) = n if and only if A−A = In.

Proof. See schott [64], Theorem 5.22.

An important matrix in the field of linear models is A(A>A)−A> as we will see throughout the

remaining sections. We see now some properties whose the proofs may be found in schott [64] or

Rao and Rao [61].

Proposition 2.3.3. Let (A>A)− stands for a g-inverse of A>A. Then

1. A(A>A)−(A>A) = A and (A>A)(A>A)−A> = A>).

2. A(A>A)−A> is the orthogonal projection matrix of the R(A).

Proof. See Schott [64] or Rao and Rao [61].

Now we turn to maybe the most important generalized inverse in statistical application in such

a way that we could not talking about g-inverses without mention it: the Moore-Penrose inverse.

We devote the next subsection for its approach.
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2.3.1 Moore-Penrose Inverse

Firstly defined by Moore [9] and later by Penrose [60], the greatest importance of the Moore-

Penrose inverse is due to the fact that it possesses four properties that the inverse of a square

non-singular matrix has (more evident with the Penrose [60] definition) and it is uniquely defined.

Such definitions, although from different times, are equivalent as shows the Theorem 5.2 of

Schott [64].

The Moore [9] definition follows.

Definition 2.3.2. Let A ∈M n×m. The Moore-Penrose inverse of A is the unique matrix, denoted

by A+ ∈M m×n, that satisfies the two following conditions:

(a) AA+ = PR(A).

(b) A+A = PR(A+).

The Penrose [60] definition follows.

Definition 2.3.3. Let A ∈M n×m. The Moore-Penrose inverse of A is the unique matrix, denoted

by A+ ∈M m×n, which satisfies the all four following conditions:

(a) AA+A = A.

(b) A+AA+ = A+.

(c) (AA+)> = AA+.

(d) (A+A)> = A+A.

Remark 2.3.1. One easily remark that the four conditions of the definition above are satisfied by

the inverse, say A−1, of a non-singular matrix A.

The following theorem guarantees the existence and the uniqueness of the Moore-Penrose

inverse.

Theorem 2.3.4. For each matrix A∈M n×m, there exists one and only one matrix, say A+, satisfying

the all four condition of the definition 2.3.3.

Proof. See Schott [64].

Theorem 2.3.5. Let A ∈M n×m.

(a) (αA)+ = α−1A+, α 6= 0.

(b) (A>)+ = (A+)>.

(c) (A+)+ = A.

(d) A+ = A−1, if A is square and non-singular.

(e) (A>A)+ = A+(A+)> and (AA>)+ = (A+)>A+.
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( f ) (AA+)+ = AA+ and (A+A)+ = A+A.

(g) A+ = (A>A)+A> = A>(AA>)+.

(h) A+ = (A>A)−1A> and A>A = In if r(A) = m.

(i) A+ = A>(AA>)−1 and AA+ = Im if r(A) = n.

( j) A+ = A> if the columns of A are orthogonal, that is A>A = In.

Proof. See schott [64], page 174.

Two results follows: one establishes the relation between the rank of a matrix and its Moore-

Penrose inverse, and the other one summarizes some special properties of a Moore-Penrose inverse

of a symmetric matrix.

Theorem 2.3.6. Let A ∈M n×m and A+ its Moore-Penrose inverse. Then,

r(A) = r(A+) = r(AA+) = r(A+A).

Proof. Using the conditions (a) and (b) of the definition 2.3.3 together with Theorem 4.2.1 of Rao

and Rao [61] it holds

r(A) = r(AA+A) ≤ r(AA+) ≤ r(A+)

(using condition (a)) and similarly

r(A+) = r(A+AA+) ≤ r(A+A) ≤ r(A)

(using condition (b)), from where the proposed results follows.

Theorem 2.3.7. Let A ∈M n×n be a symmetric matrix and A+ its Moore-Penrose inverse. Then

(a) A+ is Symmetric;

(b) AA+ = A+A;

(c) A+ = A if A is idempotent.

Proof.

Proof of property (a): using the part (b) of the Theorem 2.3.5 and the hypothesis condition

(A = A>) it follows

A+ = (A>)+ = (A+)>.

Proof of property (b): using the condition (c) of the definition 2.3.3 together with the fact that both

A and A+ are symmetric, it holds

AA+ = (AA+)> = (A+)>A> = A+A.

Proof of property (c): one proves it proving that, under hypothesis A2 = A, A+ = A verifies the

four properties of the definition 2.3.3. For the condition (a) and (b):

AA+A = AAA = AA = A2 = A.

For the condition (c) and (d):
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1. (AA+)> = (AA)> = A>A> = AA.

2. (A+A)> = (AA)> = A>A> = AA.

For more details concerning the Moore-Penrose inverse among others Schott [64] is recommended.

2.4 Jordan Algebras

Jordan algebras structures were first introduced by Jordan [32] (the structures name is due to his

name), and Jordan et al. [33] in the formalization of an algebraic structure for quantum mechanics.

Originally they were called “r-number systems”, but later they were renamed Jordan algebras by

Albert [1] who generalized its notions.

Definition 2.4.1. An algebra A is a vector space provided with a binary operation * (usually

denominated product), in which the following properties hold for all a,b,c ∈A :

• a∗ (b+ c) = a∗b+ a∗ c.

• (a+ b) ∗ c = a∗ c+ b∗ c.

• α(a∗b) = (αa) ∗b = a∗ (αb),∀α ∈R(C).

A is a real algebra (complex algebra) whether α is real (complex).

Definition 2.4.2. An algebra A is said to be commutative algebra if, for all a,b ∈A , a∗b = b∗a,

or associative algebra if, for all a,b,c ∈A , (a*b)*c = a*(b*c).

Definition 2.4.3. Let A be an algebra. S ⊆A is a sub-algebra if it is a vector space and if

∀a,b ∈S : a∗b ∈S .

Definition 2.4.4. Let A be an algebra provided with the binary operation “·” such that the following

properties hold for all a,b ∈A :

(J1) : a ·b = b ·a.

(J2) : a2 · (b ·a) = (a2 ·b) ·a, with a2 = a ·a. Holding such conditions, A is said to be a Jordan

algebra.

The product “·” defined above here is known as Jordan product.

Note 2.4.1.

• Properties J1 shows that a Jordan algebra is a commutative algebra, but, as shows J2, is not

an associative one. In fact, J2 shows that A has a restricted kind of associativity.
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• The definition of Jordan algebra presented above is not so practical and transparent, especially

in statistical models context, so that equivalents and more tractable definitions is presented

later in this section.

Next one see an example of a Jordan algebra: the space of real symmetric matrix of order n×n,

S n. That space (with finite dimension: 1
2 n(n+ 1)) will accompany us throughout our study in this

section.

Note 2.4.2. In what follows, AB means the product matrix in usual sense, that is, the product

between the matrices A and B.

Example 2.4.1. Define the product “·” on S n as

A ·B =
1
2
(AB+BA).

Provided with such product S n is a Jordan algebra. Indeed: A ·B = 1
2 (AB+BA) = 1

2 (BA+AB) =

B ·A, so that the condition J1 is proved. To prove the condition J2 one easy way is to compute the

left side separately and then the right side. After that, one concludes that both results are equal. One

should remark the importance of the S n due to the fact that the matrix of variance-covariance lies

on there.

Now one proceed in order to characterizes the idempotent and identity elements in Jordan

algebra and S n.

Definition 2.4.5. Let A be a Jordan algebra and B a sub-algebra of S n. A is said to be a special

Jordan algebra if and only if A is algebra-isomorphic to B, that is, there exists a bijective function

φ : A →B such that, for all α ,β ∈R and a,b ∈A :

1. φ (αa+βb) = αφ (a)+βφ (b).

2. φ (a∗b) = φ (a) ∗φ (b).

Definition 2.4.6. Consider the matrix E ∈S ⊆M n×n. E is said to be:

• An associative identity element of S if ES = SE = S,∀S ∈S ;

• A Jordan identity if E ·S = S,∀S ∈S .

Definition 2.4.7. Let E ∈M n×n. E is said to be idempotent matrix if E2 = E.

The following theorem (see Malley [43], Lemma 5.1) proves that any identity element in a

subspace of S n is also identity on Jordan algebra.

Theorem 2.4.1. Let S ⊆S n and E ∈S any idempotent element. Then,

∃S ∈S : E ·S = S⇒ ES = SE = S.

Proof. See Malley [43], page 9.

21



CHAPTER 2. ALGEBRAIC RESULTS

One prove next a more generally result, concern also the orthogonality, That is, orthogonal

elements on Jordan algebra are also orthogonal on subspaces of S n, and conversely.

Theorem 2.4.2. Let S , T ⊆S n, and E ∈S n an idempotent element. Then,

1. ∀S ∈S , E ·S = S⇐⇒∀S ∈S , ES = SE = S.

2. Let E1 and E2 idempotent elements. Then, E1 ·E2 = 0⇐⇒ E1Ee = 0.

3. ∀S ∈S ,∀T ∈T , S ·T = 0⇐⇒∀S ∈S ,∀T ∈T ,ST = 0.

Proof. We prove only the property 1, for the rest see Malley [43], page 10.

(1⇒) E is idempotent and such that E ·S = S (hypothesis).

Firstly, one may note: ESE = 2E · (E ·S)−E2 ·S = S. (The equality 2E · (E ·S)−E2 ·S = S is

easily proved provided the equality A ·B = 1
2 (AB+BA).) Indeed, using the equality 2E · (E ·S) =

1
2 (EES+ 2ESE + SEE) and E2 ·S = 1

2 (EES+ SEE), clearly 2E · (E ·S)−E2 ·S = ESE.

Hence,

ES = E(ESE) = E(ESE +E2 ·S−E2 ·S) = E(ESE +E2 ·S)−E(E2 ·S)

= EESE +ES−ES = ESE = S, (2.23)

using the hypothesis. To prove the case SE = S we proceed identically.

(1⇐) E is idempotent and such that ES = SE = S (hypothesis).

E ·S = E2 ·S = 2E · (S ·E)−ESE = 2
(

1
2
(E(S ·E)+ (S ·E)E)

)
−ESE

=
1
2

ES+
1
2

SE = S, (2.24)

using the hypothesis.

The next theorem, whose proof will be given here (see Malley [43]) establish some equivalent

conditions for a subspace of Sn with any identity element to be a Jordan algebra.

Theorem 2.4.3. Let S ⊆S n, and suppose S contains an identity element, say E. then, S is a

Jordan algebra if and only if any of the following equivalent conditions hold:

(i) ∀A,B ∈S , AB+BA ∈S .

(ii) ∀A,B ∈S , ABA ∈S .

(iii) ∀A ∈S , A2 ∈S .

Proof.

(i) =⇒ (ii) Note that C = A−E ∈S . Hence, ABA= (C+E)B(C+E) =C2+B+(CB+BC).

Now, given (i), C2 = 1
2 (C

2 +C2) ∈ S , and also 2C ·B = CB+ BC. Thus, ABA ∈ S proving

therefore such implication.

(ii) =⇒ (iii)

22



2.4. JORDAN ALGEBRAS

By (ii), for all A,B ∈S , ABA ∈S . Therefore, taking B = E ∈S , it holds AEA = A2 ∈S ,

proving therefore such implication.

(iii) =⇒ (i)

Consider C = A+B. Then, C2 = (A+B)2 = A2 +B2 +(AB+BA) ∈S , so (AB+BA) ∈S .

Hence, the proof is established.

Remark 2.4.1. The condition (ii) together with (iii) implies that if a matrix A belongs to a Jordan

algebra the An ∈S , for n≥ 1.

In what follows we establish the relationship between arbitrary sets of real symmetric matrices

and certain Jordan algebra derived from such sets.

Definition 2.4.8. Let S be a subspace of S n spanned by any arbitrary set of matrices {M1, . . . ,Mk},
with Mi ∈S n, and suppose S n has an identity element I. We define the following:

1. A = A (S) stands for the smallest associative algebra in Mn,n containing S.

2. B = B(S) = {B ∈ S : SBS ∈ S, ∀S ∈ S}.

3. L = L (S) ⊆S n stands for the smallest Jordan algebra in S n that containing S.

Theorem 2.4.4.

(a) Given S, B is the maximal subspace of S such that

BSB ∈B, ∀S ∈ S,∀S ∈ B ∈B,

and is finite dimensional formally real special Jordan algebra.

(b) Given S,A ,B,and L , it holds

B ⊆ S⊆L ⊆A ∩S n ⊆A .

Proof. See Malley [43].

In what follows, one presents some algebraic results established until now and that have

application to the study of random quadratic forms, by constructing an unique basis constituted by

mutual orthogonal projection matrices for commutative Jordan algebra.

Definition 2.4.9. Let S =
⊕s

i=1 Si be a subset of S n. The support of A ∈S , with A =
⊕s

i=1 Ai,

Ai ∈S , is the set {i ∈N : Ai 6= 0}.

Theorem 2.4.5. Let S ⊆S n and I ∈S . Then, for any A,B ∈B, the following are equivalent:

(i) ∀S ∈S , it holds SASBS = 0n,n.

(ii) AS B = 0n,n.
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(iii) ABB = 0n,n.

(iv) A and B have disjoint support in B.

Theorem 2.4.6. Let S ⊆S n and I ∈S . Then, for any A,B ∈L , the following are equivalent:

(i) ∀S ∈L , it holds SASBS = 0n,n.

(ii) AS B = 0n,n.

(iii) AL B = 0n,n.

(iv) A and B have disjoint support in L .

Theorem 2.4.7. Let A,B ∈S n. Then, AS B = 0n,n⇐⇒ AL B = 0n,n.

Proof. See Malley [43].

Now, we give some results connecting the commutative Jordan algebra and the symmetric

matrices spaces for the purpose of the work developed in latter chapters. The first one (Theorem

2.4.8) is a consequence of the Lemma 1 and Lemma 2 of Seely [68].

Theorem 2.4.8. For every commutative Jordan algebra, there exists at least one basis

{Q1, ...,Qs}

constituted by projection matrices Qi, i ∈ {1, . . . ,s} such that QiQ j = 0n,n, i 6= j, i, j ∈ {1, . . . ,s}.

Proof. See Seely [68].

Theorem 2.4.9. A subspace S ⊆S n is a commutative Jordan algebra if and only if there exists

a basis {Q1, . . . ,Qs} formed by orthogonal projection matrices, such that QiQ j = 0n,n, i 6= j,

i, j ∈ {1, . . . ,s}. Moreover, such a basis is unique.

Proof. The existence is proved by Theorem 2.4.8. To prove the uniqueness, let {P1, . . . ,Ps} be

another basis for S such that Pi, i ∈ {1, . . . ,s}, are orthogonal projection matrices and PiPj = 0n,n,

i 6= j, i, j ∈ {1, . . . ,s}. Let the coefficients α1, . . . ,αs and βn,1, . . . ,βn,s be unique such that

Pn =
s

∑
i=1

αiQi, n ∈ {1, . . . ,s}, and Qt =
s

∑
j=1

βt, jPj, t ∈ {1, . . . ,s}.

Now one may note that

PnQt =

(
s

∑
i=1

αiQi

)
Qt = αtQtQt = αtQt , (2.25)

since QiQ j = 0, i 6= j, i, j ∈ {1, . . . ,s}, and Q1, . . . ,Qs are orthogonal projection matrices.

On the other hand

PnQt = Pn

(
s

∑
j=1

βt, jPj

)
= βt,nPnPn = βt,nPn, (2.26)
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since PiPj = 0, i 6= j, i, j ∈ {1, . . . ,s}, and P1, . . . ,Ps are orthogonal projection matrices. Hence,

βt,nPn = PnQt = αtQt , t ∈ {1, . . . ,s}.

Thus, since Q1, . . . ,Qs are linearly independent and the α1, . . . ,αs and βn,1, . . . ,βn,s must be equal

to one or zero, it holds Pn = Qt , for some t ∈ {1, . . . ,s}. This result holds for every n ∈ {1, . . . ,s},
so that the proof is established.

2.5 Kronecker Product

Since the matrices involved in analysis of variance related to a statistical model mostly possess

a particular type of structure that allows them to be expressed as the Kronecker product of other

matrices with well suited structure, this product play an important role in statistics field.

Thus we introduce next the notion of Kronecker product⊗ as well as some of its basic properties

(see Schott [64] or Rao and Rao [61]). At the end of this section we generalize the results in the

Theorem 7.6. (d,e) and the Theorem 7.7. of Schott [64] (see Proposition 2.5.4).

Definition 2.5.1. Given the matrices A ∈M m×n and B ∈M p×q, the Kronecker product of A and

B, denoted by A⊗B, is defined by

A⊗B =


a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
. . .

...

am1B am2B . . . amnB

 ∈M mp×nq. (2.27)

We list some remarkable properties of this operation in the following three nex theorems. The

proofs of some of the properties in the two first ones stem directly from its definition. For the other

properties we recommend Rao and Rao [61] or Schott [64].

Theorem 2.5.1. Let A, B, and C be any matrices; a and b be any two vectors, and α and β be any

two scalars. Then

(a) ab> = a⊗b> = b>⊗a;

(b) α⊗A = A⊗α = αA;

(c) (αA)⊗ (βB) = αβ (A⊗B).

Theorem 2.5.2. Let A ∈M n×m, B ∈M p×q, and C ∈M r×s. Then

(a) (A⊗B)> = A>⊗B>;

(b) (A⊗B)⊗C = A⊗ (B⊗C);

(c) (A+B)⊗C = (A⊗C)+ (B⊗C), if n = p and m = q;

(d) A⊗ (B+C) = (A⊗B)+ (A⊗C), if p = r and q = s;
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(e) (A⊗B)+ = A+⊗B+.

Theorem 2.5.3. LetA ∈M n×m, B ∈M p×q, C ∈M m×s, and D ∈M q×t . Then

(A⊗B)(C⊗D) = AC⊗BD.

Proof. See Rao and Rao [61], P6.1.1(4), or Schott [64], Theorem 7.7.

We give the generalization of Theorem 2.5.3 in the next result.

Proposition 2.5.4. Let A j ∈M m j×h j , B j ∈M h j×q j , Ca ∈M o×p, and Db ∈M u×v, j = 1, . . . ,r > 2,

a = 1, . . . ,s, b = 1, . . . , t, with s and t positive integers. Then,

(a) (
r⊗

j=1

A j

)(
r⊗

i=1

Bi

)
=

(
r⊗

j=1

A jB j

)
∈M m×q,

where m = ∏
r
j=1 m j and q = ∏

r
j=1 q j;

(b) (
s

∑
a=1

Ca

)
⊗

(
t

∑
b=1

Db

)
=

s

∑
a=1

t

∑
b=1

Ca⊗Db

For the case r = 2 see Schott [64], Theorem 7.7.

Proof. We proof part (a).

Due to associativity of the kronecker product and according with the Theorem 2.5.3, we will

have the following: (
r⊗

j=1

A j

)(
r⊗

i=1

Bi

)
= (A1B1)⊗ (E1F1), (2.28)

where Ei =
⊗r

j=i+1 A j and Fi =
⊗r

j=i+1 A j, with i = 1, . . . ,r−2. Now if we repeat the process in

(2.28) r−2 times (restarting now with E1F1) we will have(
r⊗

j=1

A j

)(
r⊗

i=1

Bi

)
= (A1B1)⊗ (E1F1)

= (A1B1)⊗ (A2B2)⊗ (E2F2)

. . .

= (A1B1)⊗ . . .⊗ (Ar−2Br−2)⊗Er−2Fr−2.

Thus, the proof will be complete if we note that

Er−2Fr−2 = (Ar−1⊗Ar)(Br−1⊗Br)

= (Ar−1Br−1)⊗ (ArBr).

The statement
(⊗r

j=1 A jB j
)
∈M m×q becomes clear if we observe that AiBi ∈M m j×q j .

The proof for the part (b) is straightforward if we use the Theorem 2.5.2.
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The following theorem address the relationship of the eigenvalues of the Kronecker product of

two matrices and the eigenvalues of each one of them.

Theorem 2.5.5. Let λ1, . . . ,λn be the eigenvalues of A ∈M n×n and α1, . . . ,αm be the eigenvalues

of B ∈M m×m. Then, eigenvalues of A⊗B will be λiα j, i = 1, . . . ,n and j = 1, . . . ,m.

Proof. See Schott [64], Theorem 7.10, or Rao and Rao [61], P.6.1.2.

The next theorem identifies the relationship between the determinant of the Kronecker product

of two matrices and the determinants of each one of them, as well as the relationship between the

rank of that product of two matrices and the rank of each matrix.

Theorem 2.5.6. Let A ∈M n×m and B ∈M p×q. Then

(a) r(A⊗B) = r(A)r(B);

(b) |A⊗B|= |A|p |B|n, if n = m and p = q.

Proof.

(a): By Theorem 2.1.5 together with Theorems 2.5.2 (c) and 2.5.3 we have that

r(A⊗B) = r((A⊗B)A⊗B>) = r(AA>⊗BB>).

Since AA>⊗BB> is symmetric, r(AA>⊗BB>) is the number of nonzero eigenvalues of AA>⊗BB>

(see Theorem 2.1.8). Let λ1, . . . ,λn be the eigenvalues of AA> and α1, . . . ,αp be the eigenvalues

of BB>. Then, by the Theorem 2.5.5, the eigenvalues of AA>⊗BB> will be λiα j, i = 1, . . . ,n

and j = 1, . . . , p. Thus, since λiα j = 0 if and only if λi = 0 or α j = 0, the number of nonzero

eigenvalues of AA>⊗BB> will be the number of nonzero eigenvalues of AA> times the number of

nonzero eigenvalues of BB>. Now, and finally, since AA> and BB> are symmetric matrices, the

number of nonzero eigenvalues of AA> and BB> are given by r(AA>) and r(BB>), respectively.

(b): According with Theorem 2.5.5 (d), we have that

|A|=
n

∏
i=1

λi and |B|=
p

∏
j=1

α j.

Now, since the eigenvalues of A⊗B are λiα j (see Theorem 2.5.5), we have that

|A⊗B| =
n

∏
i=1

p

∏
j=1

λiα j =
n

∏
i=1

λ
p
i

(
p

∏
j=1

α j

)
=

n

∏
i=1

λ
p
i |B|

= |B|n
n

∏
i=1

λ
p
i = |B|n

(
n

∏
i=1

λi

)p

= |B|n |A|p ,

as wished.
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3
MIXED LINEAR MODELS

Traditionally, statistical models (designs) have been associated with fixed effect models in a given

linear model involving one factor with k levels defining groups, referred to as predictor, and ni

independent sampling units in each group i, i = 1, . . . ,k, referred to as residual errors, which can be

written as the following scalar equation:

yi j = µ +αi + εi j, i = 1, . . . ,k; j = 1, . . . ,ni, (3.1)

where µ and {αi} are fixed and unknown finite constants which characterized the model means, and

{εi j} the independent random residual errors with mean zero and variance σ2
ε . It is often assumed

that the errors are normal distributed, that is εi j ∼N
(
0, σ2

ε

)
.

In matrix notation the model (3.1) can be written as

y = Xν + ε , (3.2)

where

y =



y11

. . .

y1n1

y21

. . .

y2n2

. . .

. . .

yk1

. . .

yknk



, ε =



ε11

. . .

ε1n1

ε21

. . .

ε2n2

. . .

. . .

εk1

. . .

εknk



, X =



1 1 0 . . . . . . 0

. . . . . . . . . . . . . . . . . .

1 1 0 . . . . . . 0

1 0 1 0 . . . 0

. . . . . . . . . . . . . . . . . .

1 0 1 0 . . . 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

1 0 0 . . . 0 1

. . . . . . . . . . . . . . . . . .

1 0 0 . . . 0 1



∈M (∑
k
s=1 ns)×(k+1),

29



CHAPTER 3. MIXED LINEAR MODELS

and ν> =
[
µ α1 . . . αk

]
, where ε is assumed to have a distribution with mean 0

∑
k
s=1 ns

and

variance-covariance matrix σ2
ε I

∑
k
s=1 ns

or, often, ε ∼ N
(

0
∑

k
s=1 ns

, σ2
ε I

∑
k
s=1 ns

)
. Hence, with Σ(z)

denoting the variance-covariance matrix of a random vector z, the model (3.2) has a distribution

with mean Xν and variance-covariance matrix Σ(y) = σ2
ε I

∑
k
s=1 ns

.

Due to the necessity of incorporate the amount of variations caused by certain uncontrollable

sources in statistical designs with fixed effects, for example, the amount of variations within groups

that the experimenter is not able to control and those whose levels must be selected at random, in

research fields like as genetic, animal breeding, and quality control and improvement, in early 1960

several designs with both fixed and random effects terms were introduced and widely investigated.

Among those designs, nowadays called mixed linear models or linear mixed models, we highlight

the well known and probably most widely discussed mixed linear model: “one-way design” (see

Khuri [34]), whose algebraic characterization is the one presented in (3.1), but here µ is a fixed and

unknown constant characterizing the means, {αi} are the independent effects due the observed y of

the i-th group, assumed to have a distribution with mean zero and variance σ2
α , and {εi j} are the

independent random errors, assumed to have a distribution with mean zero and variance σ2
ε , so that

in matrix notation it is written as

y = Zµ +Z1α + ε , (3.3)

where

Z = 1
∑

k
s=1 ns

, Z1 =



1 0 . . . . . . 0

. . . . . . . . . . . . . . .

1 0 . . . . . . 0

0 1 0 . . . 0

. . . . . . . . . . . . . . .

0 1 0 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 0 . . . 0 1

. . . . . . . . . . . . . . .

0 0 . . . 0 1



∈M (∑
k
s=1 ns)×k,

α =

α1

. . .

αk

 has a distribution with mean 0k and variance-covariance matrix σ2
α Ik, and y and ε

defined as in (3.2). αi and εi j are assumed to be mutually independent. Thus, the model (3.3) has a

distribution with mean Xµ and variance-covariance matrix given by

Σ(y) = σ
2
αZ1Z>1 +σ

2
ε I

∑
k
s=1 ns

.

The parameters σ2
α and σ2

ε are refereed to as variance components.

The model (3.3) is said to be balanced if there is the same number of observations in every

groups, that is ni = n for every groups. Otherwise the model is said to be unbalanced. Silva et

al. [69] approach the balanced “two-way nested model” in the context of tolerance interval studies.
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Example 3.0.1. Consider a particular balanced design of (3.3) with k = 3 and ni = 3, i = 1,2,3.

This model will have mean 19⊗µ and variance-covariance

Σ(y) = I3⊗
(
σ

2
αJ3 +σ

2
ε I3
)

.

Others widely discussed designs with linear mixed structure are the both “nested (hierarchical)”

and “two-way crossed (with interaction or without interaction)” models (see Khuri [34]). We

introduce here the “two-way nested models” with mixed linear structure (For the nested design

notions, we recommend Anderson and Bancroft [5] and Bainbridge [8], for instance). These models

consist of two groups of treatment, A and B say, where the bi, i = 1, . . . ,a, levels of group B are

nested within the i-th level of group A, so that we write them as

yi jk = µ +αi +βi j + εi jk, (3.4)

i = 1, . . . ,a; j = 1, . . . ,bi; k = 1, . . . ,ni j,

where µ is the general mean, {αi} the independent random effects due to the i-th level of the group

A, {βi j} the independent random effects due to the j-th level of the group B nested within the i-th

level of the group A, and {εi jk} the independent residual errors associated to the observed value

Yi jk. It is assumed that αi, βi j, and εi jk are mutually independent. The effects associated with any

group are, clearly, the effects that its levels have on the interest response variable.

In matrix notation the model can be written as

y =W µ +W1α +W2β + ε , (3.5)

where W = 1∑i ∑ j ni j , y and ε are vectors whose the entries are, respectively, the observed values

{yi jk} and the random errors {εi jk}, with ε having a distribution with mean 0∑i ∑ j ni j and variance-

covariance matrix σ2
ε I∑i ∑ j ni j , and, for instance, for a particular unbalanced design with a = 2,

b1 = 3, b2 = 2, n11 = 2, n12 = 2, n13 = 3, n21 = 3,and n22 = 2, we will have that

W1 =



1 0

1 0

1 0

1 0

1 0

1 0

0 1

0 1

0 1

0 1

0 1

0 1



, W2 =



1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1



,
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α has a distribution with mean 02 and variance-covariance matrix σ2
α I2, and β has a distribution with

mean 05 and variance-covariance matrix σ2
β

I5. It is often assumed that β =


β11

β12

β13

β21

β22

∼N
(

05, σ2
β

I5

)
,

α =

[
α1

α2

]
∼N

(
02, σ2

α I2
)

and ε ∼N
(

0∑i ∑ j ni j , σ2
ε I∑i ∑ j ni j

)
.

Thus, we have that this particular design of the model (3.5) has a distribution with mean

1∑i ∑ j ni j µ = 112µ and variance-covariance matrix given by

Σ(y) = σ
2
αW1W>2 +σ

2
β
W2W>2 +σ

2
ε I∑i ∑ j ni j ,

= I2⊗
(
σ

2
αJ6 +σ

2
ε I6
)
+σ

2
β
(Π1 +Π2⊗ J2) ,

where Π1 =


04,4 04,3 04,3 04,2

03,4 J3 03,3 03,2

03,4 03,3 J3 03,2

02,4 02,3 02,3 02,2

 and Π2 =

 I2 02,3 02

03,2 03,3 03

0>2 0>3 1

.

We have thus three variance components to be estimated: σ2
α , σ2

β
, and σ2

ε .

The “two - way crossed models” with mixed effects structure is defined as

yi jk = µ + τi +β j + γi j + εi jk, (3.6)

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,ni j,

consisting of two groups of treatments, C and D say, where µ is the general mean, {τi} the random

effects due to the group C, assumed to be normal distributed with mean zero and variance σ2
τ , {β j}

the random effects due to the group D, assumed to be normal distributed with variance σ2
β

, {γi j}
the random effects due to interaction of the i-th level of the group C with the j-th level of the group

D, assumed to be normal distributed with mean zero and variance σ2
γ , and {εi jk} the independent

residual errors, assumed to be normal distributed with mean zero and variance σ2
ε . It is assumed

that αi, βi j, and εi jk are mutually independent. For models with no interaction {γi j} are taken to be

all nulls.

In matrix notation, the model (3.6) can be written as

y = Mµ +M1τ +M2β +M3γ + ε , (3.7)

where M = 1∑i ∑ j ni j , y and ε are random vectors whose the entries are, respectively, the observed

values yi jk and the random errors εi jk so that ε has a distribution with mean 0∑i ∑ j ni j and variance-

covariance matrix σ2
ε I∑i ∑ j ni j (often assumed ε ∼N (0∑i ∑ j ni j , σ2

ε I∑i ∑ j ni j)), and, for instance, for

a particular design with a = 2 and b = 3 we have that M1 =



∆1
11

∆1
12

∆1
13

∆2
21

∆2
22

∆2
23


, M2 =



Λ1
11

Λ2
12

Λ3
13

Λ1
21

Λ2
22

Λ3
23


, M3 =



O1
11

O2
12

O3
13

O4
21

O5
22

O6
23


,
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τ , β and γ have respectively distribution with mean 02, 03 and 06 and variance-covariance matrix

σ2
τ I2, σ2

β
I3 and σ2

γ I6, with ∆k
i j, k = 1,2, an ni j× 2 matrix whose the column k is a vector of 1’s

and the remain one is a vector of zeros, Λ j
i j an ni j× 3 matrix whose the column j is a vector

of 1’s and the remains ones are vectors of zeros, and Os
i j, s = 1, . . . ,6, an ni j× 6 matrix whose

the column s is a vector of 1’s and the remains ones are vectors of zeros. It is oftem assumed

τ =

[
τ1

τ2

]
∼N

(
02, σ2

τ I2
)
, β =

β1

β2

β3

∼N
(

03, σ2
β

I3

)
and γ =

γ1

. . .

γ6

∼N
(
06,σ2

γ I6
)
.

Thus the model (3.7) has a distribution with mean Mµ and variance-covariance matrix given by

Σ(y) = σ
2
τ M1M>1 +σ

2
β

M2M>2 +σγM3M>3 +σ
2
ε I∑i ∑ j ni j ,

where

M1M>1 =

 J
∑

3
j=1 n1 j

0
∑

3
j=1 n1 j ,∑3

j=1 n2 j

0
∑

3
j=1 n2 j ,∑3

j=1 n1 j
J

∑
3
j=1 n2 j

 ,

M2M>2 =



Jn11 0n11,n12 0n11,n13 Jn11,n21 0n11,n22 0n11,n23

0n12,n11 Jn12 0n12,n13 0n12,n21 Jn12,n22 0n12,n23

0n13,n11 0n13,n12 Jn13 0n13,n21 0n13,n22 Jn13,n23

Jn21,n11 0n21,n12 0n21,n13 Jn21 0n21,n22 0n21,n23

0n22,n11 Jn22,n12 0n22,n13 0n22,n21 Jn22 0n22,n23

0n23,n11 0n23,n12 Jn23,n13 0n23,n21 0n23,n22 Jn23



M3M>3 =



Jn11 0n11,n12 0n11,n13 0n11,n21 0n11,n22 0n11,n23

0n12,n11 Jn12 0n12,n13 0n12,n21 0n12,n22 0n12,n23

0n13,n11 0n13,n12 Jn13 0n13,n21 0n13,n22 0n13,n23

0n21,n11 0n21,n12 0n21,n13 Jn21 0n21,n22 0n21,n23

0n22,n11 0n22,n12 0n22,n13 0n22,n21 Jn22 0n22,n23

0n23,n11 0n23,n12 0n23,n13 0n23,n21 0n23,n22 Jn23


.

The parameters σ2
τ , σ2

β
, σ2

γ and σ2
ε are the variance components.

The major innovation here is that the mixed linear models with its structures incorporating the

expected values and the variance-covariance matrix specified as a function of a finite number of

parameters constitutes an useful tool for modeling mistimed or irregularly timed data, and missing

observations result in incomplete data, even those who come in small sample or in longitudinal

set (Wallace and Helms [27] developed procedures that provide hypothesis tests and confidence

intervals for these kind of data using the mixed linear model). The fixed effect and random

effects models may provide well-behaved estimation but may have difficulty providing completely

accurate inference in small samples. See Muller and Stewart [52] for more explanation. Among a

selective books covering this mater we could, for instance, suggest Demidenko [16], Rencher and

Schaalje [62].

Letting y ∈Rn denotes the vector of responses (observed data), the mixed linear models can be

expressed as

y = Xβ +
n+1

∑
i=1

Xiβi, (3.8)
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with Xn+1 = In, Xi ∈M ni×pi and βi ∈Rpi , where X ∈M n×p is the known (possible non full-rank)

design matrix for the fixed effects, β ∈ Rp the vector of the (unknown) fixed expected values,

Xi, i = 1, . . . ,n+ 1, the known and fixed (full-rank) design matrices for the variance-covariance

structure, βi, i = 1, . . . ,n, the unknown vectors of the unobservable random effects, and βn+1

the vector of the residual errors. The model includes the following reasonable assumptions (see

McCulloch and Searle [44]): βi, i = 1, . . . ,n+ 1, are mutually independent random vectors such

that E(βi) = 0pi and Σ(βi) = σ2
i Ipi , so that

E(y) = Xβ and

Σ(y) =
n+1

∑
i=1

σ
2
i Mi,

where Mi = XiX>i , and σ2
1 , . . . ,σ2

n+1 are unknown and fixed positive parameters referred to as vari-

ance components, verifying σ2
i ≥ 0, i = 1, . . . ,n, and σ2

n+1 > 0. The estimation of these parameters

is the major goal of this work. The vectors of the unobserved random effects βi, i = 1, . . . ,n+ 1,

are often taken to be normal distributed, but in this work we only require them to have second

moment.

Thus, since there is no distribution assumed for the model (3.8), we will denote it as

y∼ (Xβ , Σ), where Σ = Σ(y), (3.9)

i.e., y is distributed with expectation Xβ and variance-covariance matrix Σ.

As pointed out earlier, the proliferation of research on mixed linear models leaded to the

development of several methods of estimation for the variance components; highlighting the

ANOVA-based, Maximum likelihood-based, and the OBS-based methods (see, for example, Searle

et al. [67], Casella and Berger [14], and Calinski and Kageyama ([12], [13]). See Hocking [29] for

estimation with ANOVA-based and Maximum likelihood-based methods, and Nelder ( [57], [58])

for OBS - based method.

The next three sections are devoted to the introduction of these methods, starting with the

ANOVA-based (Section 3.1) followed by the Maximum likelihood-based (Section 3.2), and finally

the OBS-based (Section 3.3).

3.1 Variance Components Estimation - ANOVA Method

The ANOVA - based method is one of the most common procedure for the estimation of vari-

ance components. Among its many approach we highlight the one suggested by Henderson (see

Henderson [28] for explanation) through is three variations known as method 1, method 2, and

method 3, especially because of its simplicity in what concern the computational implementation

(even on a hand-held calculator), and unbiasedness, properties saved by all ANOVA-based methods.

All such methods have the common underlying idea: equating the (observed) quadratic errors for

the different sources of variations to their respective expected values (in some case with some

readjustment), leading to a system of linear equations, which solved for the variance components

gives the corresponding estimators.
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3.1. VARIANCE COMPONENTS ESTIMATION - ANOVA METHOD

Let S2
i , i = 1, . . . ,n+ 1, denote the quadratic error for the ith source of variation in the model

(3.8). Then, the quadratic errors in the different sources may be given as S2
i = y>Piy, where Pi ∈S n

is such that X>PiX = 0p,p, and so, since (see Schott [64], Theorems 9.18. and 1.3)

E
(
S2

i
)

= tr(PiΣ)+ (Xβ )>Pi(Xβ )

= tr

(
n+1

∑
j=1

γ jPiM j

)

=
n+1

∑
j=1

γ jtr
(

X>j PiX j

)
, (3.10)

the expected value of S2
i will depend only on the variance components.

With S =

 S2
1

. . .

S2
n+1

 and γ =

 γ1

. . .

γn+1

, we will have that

E(S) =Cγ , where C =


tr(X>1 P1X1) . . . tr(X>n+1P1Xn+1)

... . . .
...

tr(X>1 Pn+1X1) . . . tr(X>n+1Pn+1Xn+1)

 .

Thus, equating S to E(S), i.e., S =Cγ , it holds

γ̂ =C−1S, (3.11)

provided C is squared and non-singular.

C is a square matrix once the number of sources of variations equals the number of variance

components. For the situation in which there is more sources of variations than variance components,

it might be used one of the variation of the ANOVA-based estimator:

γ̃ = (C>C)−1C>S,

the least square one, provided C is of full-rank. Clearly, both γ̂ and γ̃ are unbiased; indeed,

E(γ̂) =C−1E(S) =C−1Cγ = γ;

E(γ̃) = (C>C)−1C>E(S) = (C>C)−1C>Cγ = γ .

Example 3.1.1. Lets consider the following unbalanced “one-way design” from the model (3.3):

yi j = µ +αi + ei j,

i = 1,2,3; j = 1, . . . ,ni; ni = i+ 1.

In matrix notation it becomes

y = Xµ +X1α +X2e,
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where X = 19, X1 =

12 02 02

03 13 03

04 04 14

, X2 = I9, α> = [α1 α2 α3], and y,e ∈R. Thus, the variance-

covariance matrix of y, Σ(y), will be Σ(y) = γ1M1 + γ2I9, where

M1 = X1X>1 =

 Jn1 0n1,n2 0n1,n3

0n2,n1 Jn2 0n2,n3

0n3,n1 0n3,n2 Jn3

 .

Now, for the two source of variation let SSB and SSW respectively denotes the between groups

sum of squares and the within groups sum of squares, having therefore S2
1 = SSB and S2

2 = SSW . In

matrix notation (see Searle et al. [67]) we have that S2
1 = y>P1y and S2

2 = y>P2y, where

P1 = M1− JN and P2 = IN−M1, (3.12)

with N = ∑
3
i ni = 9.

Finally, with C =

[
tr(X1P1X1) tr(P1)

tr(X1P2X1) tr(P2)

]
and S =

[
S2

1

S2
2

]
, we find that the ANOVA - based

estimator for γ> =

[
γ1

γ2

]
is γ̂ =

[
γ̂1

γ̂2

]
, where γ̂ =C−1S, having therefore

γ̂2 =
S2

2
N−3

and γ̂1 =

S2
1

2 −
S2

2
N−3

1
2

(
N− 1

N ∑
3
i=1 n2

i

) .

The ANOVA - based estimators are useful tools when the estimation process involves repeating

the experiments, since been unbiased means among all repetition it is expected that the estimated

value equals the true value. The problem arises, for example, when the estimation process requires

large amount of data or the data collection process is not so easy. On this situation the repeating

process will not be so practical, so that the unbiasedness might be adjudicated in favor of other

estimators with better performances in those kind of data. For more details, see, for instance, Searle

et al. [67], among many other references.

Nevertheless, notwithstanding the ANOVA-based method adapt readily to mixed models with

balanced data and save the unbiasedness, it does not adapt in situation with unbalanced data, mostly

because it uses computations derived from fixed effect models rather than mixed models.

3.2 Variance Components Estimation - Likelihood Aproach

Adding the Gaussian assumption the model (3.8) (equivalently (3.9)) may be expressed as

y∼N (Xβ ,Σ). (3.13)

This assumption will allow to carry maximum likelihood estimation from the data. For an

overview on likelihood approach we recommend, among other references, Harville [26] for a com-

prehensive review of the estimation procedures along with computational techniques; Fairclough

and Helms [18] and Andrade and Helms [7] which explored the ML estimation procedures for the

linear mixed models; and Lair and Ware [37] who discussed the REML estimation relationship to

variance components estimation.
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3.2.1 ML - Based Method

The likelihood function of the random vector y in model (3.13) is given by

L(β ,γ) = (2π)−
n
2 |Σ|

−1
2 e{

−1
2 (y−Xβ )>Σ−1(y−Xβ )}. (3.14)

The maximum likelihood estimation of the variance components from the available data is achieved

by maximizing the logarithm of the likelihood function,

l(β ,γ) = log[L(β ,γ)]

= −n
2

log(2π)− 1
2

log |Σ|− 1
2
(y−Xβ )>Σ−1(y−Xβ ), (3.15)

differentiating it with respect to the variance components and set to zero. Doing so it yields (see

Theorems A.1.3 and A.1.4)

∂ l(β ,γ)
∂γi

= −1
2

tr
(
Σ−1Mi

)
+

1
2
(y−Xβ )>Σ−1MiΣ−1(y−Xβ )

= 0, i = 1, . . . ,n+ 1, (3.16)

and thus, equivalently,

tr
(
Σ−1Mi

)
= (y−Xβ )>Σ−1MiΣ−1(y−Xβ ) i = 1, . . . ,n+ 1. (3.17)

Hence, defining

P = Σ−1−Σ−1X
(

X>Σ−1X
)−1

X>Σ−1, (3.18)

and noting that Σ−1(y−Xβ ∗) = Py, where β ∗ is the solution of the general normal equations

X>Σ−1Xβ = X>Σ−1y in β , we will have

tr
(
Σ−1Mi

)
= y>PMiPy, i = 1, . . . ,n+ 1. (3.19)(

X>Σ−1X
)−1 should be replaced with

(
X>Σ−1X

)− when
(
X>Σ−1X

)
is a singular matrix.

Noting that

tr
(
Σ−1Mi

)
= tr

(
Σ−1MiΣ−1Σ

)
=

n+1

∑
j=1

γ jtr
(
Σ−1MiΣ−1M j

)
, (3.20)

the system of equations (3.19) becomes (in matrix notation)
y>PM1Py

y>PM2Py
...

y>PMn+1Py

=


tr
(
Σ−1M1Σ−1M1

)
. . . tr

(
Σ−1M1Σ−1Mn+1

)
tr
(
Σ−1M2Σ−1M1

)
. . . tr

(
Σ−1M2Σ−1Mn+1

)
...

. . .
...

tr
(
Σ−1Mn+1Σ−1M1

)
. . . tr

(
Σ−1Mn+1Σ−1Mn+1

)




γ1

γ2
...

γn+1

 (3.21)

which solved in γ> = [γ1 γ2 . . . γn+1] gives its desired estimate γ̂> = [γ̂1 γ̂2 . . . ˆγn+1]; γ̂ is called

ML estimator for γ .
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3.2.2 REML - Based Method

Restricting the distribution of y into the dependence only on the variance components, by consider-

ing the distribution of z = Qy, where Q is a matrix such that QX = 0m,p, where m is the number of

rows of Q, and Z retain sufficient information needed to estimate the variance components, and

carrying the ML estimation for the variance components in the new model z, we develop the named

restricted maximum likelihood (REML) estimator for the variance components, introduced and

explored by Patterson and Thompson [59].

Hence in z the dependence on the fixed effect β is eliminated, z will have less degrees of

freedom than y, and consequently the estimators based on it will have less bias. Due to the reduction

on the bias the REML method is rather preferable than the ML one (see Muller and Pasour [53]).

Recalling the distribution of y in (3.13), and using the Theorem A.1.8, we have that

z = Qy∼N (0m,Σ◦), (3.22)

where Σ◦ = ∑
n+1
i=1 γiQMiQ>. According with Theorem A.1.9, a matrix Q such that QX = 0m,p

and with sufficient information needed to estimate the variance components must be of full

rank with maximal number of rows and an element of M (n−r)×n, where r = r(X), and of the

form Q = C
(

I−X
(
XT X

)−1 X>
)

, where C specifies a full rank transformation of the rows of

X(XT X)−1X>.
(
XT X

)−1 must be replaced with
(
XT X

)− when
(
XT X

)
is singular.

The logarithm of the likelihood function of the new model z (model (3.22)) will be

l◦(γ) = −n− r
2

log(2π)− 1
2

log |Σ◦|− 1
2

z> (Σ◦)−1 z. (3.23)

Taking now the partial derivative of l◦ with respect to the variance components, and setting it

to zero it holds (See Theorems A.1.3 and A.1.4)

∂ l◦(γ)
∂γi

= −1
2

tr
(
(Σ◦)−1 ∂ Σ◦

∂γi

)
+

1
2

z>
(
(Σ◦)−1 ∂ Σ◦

∂γi
(Σ◦)−1

)
z

= −1
2

tr

(
(Σ◦)−1

n+1

∑
j=1

∂

∂γi
γ jQM jQ>

)

+
1
2

z>
(
(Σ◦)−1 ∂

∂γi

(
n+1

∑
j=1

γ jQM jQ>
)
(Σ◦)−1

)
z

= −1
2

tr
(
(Σ◦)−1QMiQ>

)
+

1
2

z>
(
(Σ◦)−1QMiQ>(Σ◦)−1

)
z

= 0, i = 1, . . . ,n+ 1,

so that

tr
(
(Σ◦)−1QMiQ>

)
= z>

(
(Σ◦)−1QMiQ>(Σ◦)−1

)
z (3.24)

Nothing that (see Proposition 2.1.1) the left-hand side of the equation (3.24) is equivalent to
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tr
(
(Σ◦)−1QMiQ>(Σ◦)−1Σ◦

)
= tr

(
(Σ◦)−1QMiQ>(Σ◦)−1

n+1

∑
j=1

γ jQM jQ>
)

=
n+1

∑
j=1

γ jtr
(
(Σ◦)−1QMiQ>(Σ◦)−1QM jQ>

)
=

n+1

∑
j=1

γ jtr
(

Q>(Σ◦)−1QMiQ>(Σ◦)−1QM j

)
. (3.25)

Thus, equation (3.24) becomes

χ = Mγ (3.26)

where χ =


z>
(
(Σ◦)−1QM1Q>(Σ◦)−1

)
z

z>
(
(Σ◦)−1QM2Q>(Σ◦)−1

)
z

...

z>
(
(Σ◦)−1QMn+1Q>(Σ◦)−1

)
z

, γ =


γ1

γ2
...

γn+1

, and

M =


tr
(
Q>Σ−1QM1Q>Σ−1QM1

)
. . . tr

(
Q>Σ−1QM1Q>Σ−1QMn+1

)
tr
(
Q>Σ−1QM2Q>Σ−1QM1

)
. . . tr

(
Q>Σ−1QM2Q>Σ−1QMn+1

)
...

. . .
...

tr
(
Q>Σ−1QMn+1Q>Σ−1QM1

)
. . . tr

(
Q>Σ−1QMn+1Q>Σ−1QMn+1

)

.

Under certain regularity conditions the likelihood - based estimators have many desirable

properties such as consistence, normal asymptotic, and efficiency (see Harville [26], Magnus [42],

and Miller( [46], [47]), among other references). See Harville [26] for a comprehensive review

on estimation procedure along with computational techniques, and Lair and Ware [37] for a

comprehensive discussion on REML estimation relationship to variance components. For some

details on applications of such methods we recommend, for example, Anderson [4] and Hartley

and Rao [25].

Meanwhile, as we may see, both system of equations (3.21) and (3.26) cannot be directly

managed (in order to produce solutions), since the matrices in the right-hand side ass well as the

vectors in the left-hand side are them self dependent on the variance components (see the example

below), so that, typically, the usual approaches require iterative methods (see McCulloch and

Searle [44]).

Example 3.2.1. Lets consider the unbalanced “one-way model” from the Example 3.1.1. Recall

that P = Σ−1−Σ−1X
(
X>Σ−1X

)−1 X>Σ−1 (see (3.18)), a quantity which depends on γ1 and γ2

(through Σ−1).

The desired ML-based estimator γ̂ =

[
γ̂1

γ̂1

]
for γ is achieved solving on γ the system of equation:

[
y>PM1Py

y>P2y

]
=

[
tr
(
Σ−1M1Σ−1M1

)
tr
(
Σ−1M1Σ−1

)
tr
(
Σ−1Σ−1M1

)
tr
(
Σ−1Σ−1

) ][γ1

γ2

]
. (3.27)
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Clearly the left-hand side and the right-hand side of (3.27) deponds on γ1 and γ2.

The most common methods implement a Newton-Rapson type algorithm (Fisher scoring

algorithm and average information algorithm, for example). See Gilmour et al. [21]. For the case

when some estimate for some of the variance components produced thought the iterative method is

negative the log likelihood might be reexamined to find values of the variance components within

the non negative ones that maximize that function.

The practical alternatives to Newton-Rapson type algorithm are the EM algorithm (see Lind-

strom et al. [40], for example) and the Parameter expanded (PX) EM algorithm (see Liu et al. [41]

or Lewandowski et al. [39], for example), since they both have desirable properties of monotonic

convergence and the component updates remains in their parameter space. In addition, the PX

algorithm has a rate of convergence that is no slower than the EM algorithm (see Liu et al. [41]),

which made it preferred in a practical implementation point of view. However, they both still have

gap to be filled once the computational implementation is expensive at each iterate with, as made

clear before, relatively slow convergence.

Diffey et al. [17] presented an improved algorithm of PX REML algorithm and EX REML

algorithm for the variance components estimation in MLM. In their approach the authors proposed

alternative algorithms by consider a new incomplete data specification. Both PX and EM algorithm

require specification of the complete data, comprising the incomplete and missing data.

3.3 Variance Components Estimation - Models With OBS

Mixed linear models with orthogonal block structure (OBS), introduced and investigated by Nelder

( [57], [58]), has playing important role in design experiments (see Houtmam and Speed [31],

Mejza [45], for instance) and in nowadays, after more detailed definition and the introduction

of orthogonal designs by Houtman and Speed [31], is playing important role in the theory of

randomized block designs (see Calinski and Kageyama ([12], [13])).

Definition 3.3.1. The model (3.9) is said to have OBS if its variance-covariance matrix, Σ, can be

expressed as

Σ =
s

∑
i=1

ζiQi, (3.28)

where each Qi, i = 1, . . . ,s, is a projection matrix, and Q1, . . . ,Qs are pairwise orthogonal matrix,

such that ∑
s
i=1 Qi = I, and ζi, i = 1, . . . ,s, are non-negative parameters.

Example 3.3.1. As an example, let

yi jkl = µ +αi +βi j + δi jk + ei jkl ,

with i = 1, . . . ,n, j = 1, . . . ,ni, k = 1, . . . ,ni j, and l = 1, . . . ,ni jk, be a nested model (see (3.4)

for further explanation) where u and the vector α> = [α1 . . .αn] are the fixed effect, and β> =

[β11 . . .βnnn ] and δ> = [δ111 . . .δnnnnnn
] the random effect vectors. Under the usual assumption for
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a mixed linear model, with X = [1ni jk ,A] standing for the fixed effect design matrix and X1 and X2

for the random effect design matrices, the model can be represented in matrix notation as

y = Xµ
∗+X1β +X2δ + e, (3.29)

with µ∗ =

[
µ

δ

]
.

Since R
(
1ni jk

)
⊂ R(A) ⊂ R(X1) ⊂ R(X2), according with VanLeeuwen et al. [72] the set

of matrices {1ni jk ,A,X1,X2} is said to be nested. Supposing the model is completely balanced,

that is ni jk = r and ni j = t, we will have that X>1 X1 = D(ni jni jk) = D(rt, . . . ,rt) = rtI and

X>2 X2 = D(ni jk) = D(r, . . . ,r) = rI so that X1X>1 = rtPX1 and X2X>2 = rtPX1 . Then, according

with Theorem A.1.10, y has OBS.

With T = PR(X) = XX+, the projection matrix onto the subspace spanned by the columns

of the design matrix for the fixed effect X , the model is said to be COBS if T commutes with

Q ∈ {Q1, . . . ,Qs} (see Fonseca et al. [19]). In this Section we aim to introduce the estimation of

variance components in mixed linear models with OBS. We introduce the estimation procedure

based in likelihood.

Theorem 3.3.1. Let y have OBS, with variance - covariance matrix Σ = ∑
s
i=1 ζiQi, and put

r(Qi) = ri. Then

(a) |Σ|= ∏
s
i=1 ζ ri

i ;

(b) Σ−1 = ∑
s
i=1

1
ζi

Qi.

Proof. To prove (a) we may note that ζi will be the eigenvalue of Σ and ri its correspondent root.

For (b), it follows that

Σ−1Σ =
s

∑
i=1

s

∑
j=1

ζ j

ζi
QiQ j =

s

∑
i=1

QiQi +
s

∑
i 6= j

ζ j

ζi
Q jQi

=
s

∑
i=1

Qi = I. (3.30)

Now, adding the Gaussian assumption to the OBS model (3.3.1), with ζ> = [ζ1 . . .ζs], the

logarithm of the likelihood function will be given by

l(β , ζ ) = −n
2

log(2π)− 1
2

log |Σ|− 1
2
(y−Xβ )>Σ−1(y−Xβ )

= −n
2

log(2π)− 1
2

s

∑
i=1

rilog(ζi)−
1
2

s

∑
i=1

(y−Xβ )>Qi(y−Xβ ). (3.31)

Noting that Qi = Σ−1QiΣ−1
i , and taking the partial derivative in order to ζ and equating it to zero

we will have that

ri

ζi
=

1
ζ 2

i
(y−Xβ )>Σ−1QiΣ−1(y−Xβ ), i = 1, . . . ,s.
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Therefore

ζ̂i =
1
ri

y>PQiPy, (3.32)

with Σ−1(y−Xβ ∗) = Py and P = Σ−1−Σ−1X
(
X>Σ−1X

)−X>Σ−1, where β ∗ is the solution of

the general least square equation ∑
s
i=1

1
ζi

X>Qi(y−Xβ ) = 0.
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4
VARIANCE COMPONENTS ESTIMATION - THE SUB-D

METHOD

4.1 Introduction And Literature Review

It is not fair discussing variance components estimation without discussing it’s relation to the

underlying design, since the quality of the estimation depends to a large extent on the design used

to generate the data (see Khuri [34]). On the matter of search for optimal designs for variance

components estimation, Anderson ([4], [3]) and many of his co-authors (see Crump [15], Anderson

and Crump [6], Bush and Anderson [11], Muse [55], Muse and Anderson [56], etc) are the main

contributors. Most of the works on that matter focus on “one-way designs” (see model (3.3)),

nested designs (see the “two-way nested design” (3.4) or (3.5), for example), and the crossed

designs (see the “two - way crossed designs” (3.6) or (3.7), for example). This designs received

much attention due to its application on genetics, animal breeding, process control, and quality

control and improvement. We start our review by introducing an overview on (optimal) designs for

variance components estimation (see Khuri [34]), and secondly the main contributes on estimation

procedures for variance components. The main contributers for this last topic are Anderson [2],

Anderson and Bancroft [5], Yates [73], Nelder ( [57], [58]), among others.

4.1.1 Designs For Variance Components Estimation

According with Khuri [34] works on design aspects of the variance components estimation is

somewhat limited. Hammesley [24], Crump [15] and Anderson and Crump [6] provided the first

works on optimal design for variance components.

Recall the “one-way model” (3.3). Considering, in this model, the ANOVA estimators σ̂2
α and

σ̂2
ε for σ2

α and σ2
ε , respectively, and a fixed k, Crump [15] proposed a criterion for the choice of

optimal design for the model (3.3), which goes through find the minimum of Σ(σ̂2
ε ) or Σ( σ̂2

α

σ̂2
ε

). For

a fixed value of N = ∑
k
i=1 ni, Hammesley(1949) observed that the minimum of Σ(σ̂2

ε ) is achieved
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when the model is taken to be balanced and ni = n is taken to be the closest integer of N(ρ++1)+1
Nρ+1 ,

where ρ = σ2
α

σ2
ε

. In addition, for fixed k and N, Anderson and Crump [6] showed that the minimum

is achieved when ni = n = N
k , and in this case the optimal design is achieved by taking k to be the

closest integer of k∗ = N(Nρ+2)
N(ρ+1)+1 = N

n . Consequently, n has to be the closest integer of N(ρ+1)+1
Nρ+2 .

Anderson and Crump [6] also showed that the optimal design for estimating σ2
α is to allocate

p+1 observations to each of the r groups and p observations to each of the remaining k− r groups,

where N = pk+ r, and 0≤ r < k. This means that the design is as closest as possible of a balanced

model. Further more, Anderson and Crump [6] suggested that the value of k which minimizes

Σ( σ̂2
α

σ̂2
ε

) is the closest integer of k∗∗ = (N−5)(Nρ+1)
2Nρ+N−3 . Since, asymptotically, k∗

k∗∗ =
1+2ρ

1+ρ
, when N is

relatively large it seems that there are needed more groups to estimate σ2
α then to estimate ρ (see

Khuri [34]).

Reexamining the optimal designs suggested by Anderson and Crump [6], using the restricted

ANOVA estimator σ̂2
α , ML and modified ML (MML) estimators (see Klotz et al [36] for the last

one),Thonson and Anderson [71] showed that, for a small value of N and ρ < 1, a MML estimator

of σ2
α is superior for certain unbalanced designs.

For fixed k and N, Mukerjee [50] showed that the optimal design is achieved by minimizing

uniformly Σ(σ̃2), where σ̃2 = (σ̃2
α , σ̃2

ε ) is the minimum quadratic unbiased estimator of σ2 =

(σ2
α ,σ2

ε ). Mukerjee and Huda [51] reached a similar conclusion (see Khuri [34]).

The problem in the search for optimal designs in context of crossed models, was approached

for several authors. Gaylor [20], Bush and Anderson [11] and Mostafa [49] are some of the works

with a great impact in this matter.

Mostafa [49] proposed two designs, D1 and D2, for the crossed model provided the total number

of observations N = ∑
k
i=1 ∑

b
j=1 ni j is expressed as either N = r1(r1 +1) (for D1) or N = r2(r2 +2)

(for D2), where ri denotes the number of observations in row and column of the design Di. Using

Yates [73] methods to obtain unbiased estimators for σ2
τ , σ2

β
, σ2

γ and σε , he showed that designs D1

and D2 are more efficient for estimating σ2
τ , σ2

β
, σ2

γ than a balanced model with the same number

of observations, particularly in situation that σ2
τ

σε
> 1,

σ2
β

σε
> 1 and

σ2
γ

σε
> 1.

Muse [55] and Muse and Anderson [56] did a notable work comparing several designs for the

“two-way crossed model” with no interaction. The authors used the asymptotic variances of the

ML estimators and the trace of asymptotic variance-covariance matrix of the vector of the ML

estimators of σ = (στ ,σβ ,σγ ,σε). Further more, the authors provided a report with constructive

recommendation (see Khuri [34]) in order to choose the more adequate design. They suggested

that prior information is necessary for the selection of a reasonable design; under certain condition,

considering the trace criterion, the balanced designs seems to be less efficient than some of the other

designs considered in the comparison process. Another notable work is due to Muse et al [54] who

extended the comparison to “two-way crossed model” with no interaction, based on asymptotic

ML procedures. Haile and webster [23] provided comparison including balanced incomplete block

designs, for models without interaction.

Nested (hierarchical) models - useful tool for experiments where the treatment are separated

into several groups - was also widely investigated (see Anderson and Bancroft [5], Anderson [2],
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Bainbridge [8], for instance). It is known that these designs allocate the degrees of freedom mostly

in the last group of treatments, which clearly causes certain unbalanceness in the model. To avoid

this problem it requires to increase the size of experiments, which, sometimes, may not be so

practical. Bainbridge [8] showed that this problem would be overcome using particular types of

unbalanced nested designs.

Goldsmith and Gaylor [22] compared 61 different designs for the random “two-way nested

model” (3.4) using the ANOVA estimation procedures for variance components. With σ̂2
ε , σ̂2

β
, and

σ̂2
α denoting the ANOVA estimators for the variance components σ2

ε , σ2
β

, and σ2
α , respectively, in

their approach, the authors considered three different criterion based on functions of the variance-

covariance matrix of the vector f = [σ̂2
ε σ̂2

β
σ̂2

α ]
>: the trace criterion - tr(Σ( f )) = Σ(σ̂2

ε ) +

Σ(σ̂2
β
) +Σ(σ̂2

α); the determinant criterion - | f |; and the adjusted trace criterion - tr(Σ∗( f )) =

Σ(σ̂2
ε ) +

Σ(σ̂2
β
)

ρ2
1

+ Σ(σ̂2
α )

ρ2
2

, where ρ1 =
σ2

β

σ2
ε

, ρ2 = σ2
α

σ2
ε

, and Σ∗( f ) is simply Σ( f ) with each of its

elements scaled by the size of the variance components involved in the computation of the element.

Evidently, a particular design will be optimum in a given class of designs if it has the smallest value

of a particular criterion for a given sample size and variance component configuration. The authors

reported the following:

(i) The trace criterion (widely used) revealed to be the best one since it tended to concentrate

the sampling at the group for which the variance component is large relative to the others;

(ii) When the variance components for the first and the second group were small, compared

to the error variance, the balanced design is found to be optimum since it concentrates the

sampling in the third stage. More over, if any stage has large variance components, then the

highest degrees of freedom for that stage are selected.

4.1.2 Procedures For Variance Components Estimation

A part of the problem of the search for optimal designs, variance components have been widely

investigated and several methods for its estimation has been suggested. We highlight the ANOVA

based methods, the ML based methods, and OBS models. Thanks to its simplicity regarding the

implementation, since its underlying idea is to equate the quadratic error for the different sources of

variations to their respective expected values and solve for the variance components, the ANOVA

based methods are common procedures for the variance components estimation (see Section 3.1).

The underling idea of the ML based methods goes through assuming the Gauss distribution for

the random effects and carrying the maximum likelihood estimation from the data (see Section 3.2).

In context of mixed linear models, we highlight the ML estimator and REML estimator (see

Harville [26], Fairclough and Helms [18], Andrade and Helms [7] and Lair and Ware [37]).

Finally, the OBS models (see Nelder ( [57], [58])) plays important role in design experiments

(see Houtmam and Speed [31] and Mejza [45], for instance) and, nowadays, after more detailed

definition the introduction of orthogonal designs (see Houtmam and Speed [31]) plays as well an

important role in theory of randomized block desings (see Calinski and Kageyama ([12], [13])) so

that it constitutes an optimal tool for estimating variance components in mixed linear models.
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Some of the methods referred here are summarized in Searle et al. [67].

4.2 Sub-Diagonalizing The Variance-Covariance Matrix

Variance components estimation in linear models (with mixed and/or fixed effect) have been widely

investigated and consequently several methods for estimation with relevant properties have been

derived.

The aim of this work is to provide a new method for estimating the variance components in

the MLM with properties that may bring some gain relatively to the previous ones. We start our

approach introducing a method to “diagonalize” the variance-covariance matrix

V =
r+1

∑
d=1

γdNd

on the mixed linear model

z∼ (Xβ , V ) , (4.1)

where γd ≥ 0, d = 1, . . . ,r, γr+1 > 0, are unknown parameters called variance components, Nd =

XdX>d ∈S m, with Xd ∈M md×sd the known design matrices for the random effects, and Nr+1 = Im,

and develop optimal estimators for the variance components γ1, . . . ,γr+1. See Silva et al. [70].

Our approach will not assume no underling distribution for the model as do the likelihood based

method, we will only require it to have second moment as do the ANOVA - based methods. We

will introduce our method firstly for the model with 3 variance components and secondly for the

model with an arbitrary number of variance components.

Since the parameters we want to estimate do not depend on the fixed effect part, it is convenient

to us to remove the dependence of the model on the fixed effect part, remarking that this action will

cause no loss of information needed to estimate these parameters and will reduce the complexity of

the model for the algebraic manipulation, as well as the bias in estimation process. The strategy

that we will follow is in all similar to the first phase of REML: we will project the observations

vector on the orthogonal complement of X, the subspace spanned by the men vector.

Let Po = PR(X) denotes the projection matrix onto the subspace spanned by the columns of the

matrix X , and P∗ = PR(X)⊥ = Im−Po the projection matrix onto the orthogonal complement of the

columns space of X . There exists a matrix Bo whose columns are the eigenvectors associated to the

null eigenvalues of Po such that

B>o Bo = Im−r(Po) and BoB>o = P∗.

Thus, instead of the model (4.1) we will consider the restricted model:

y = B>o z∼

(
0n,

r+1

∑
d=1

γdMd

)
, (4.2)

where Md = B>o NdBo, n = m− r(Po).

Before proceeding with the method deduction process, we set a needed notion for such a

process.
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Definition 4.2.1. Let

A =


A11 . . . A1n

...
. . .

...

An1 . . . Ann


be a diagonal blockwise matrix. We say that a matrix T sub-diagonalizes A if TA produces a

blockwise matrix whose matrices in the diagonal are all diagonal matrices, that is T diagonalizes

the matrices A11, . . . ,Ann in the diagonal of A.

The two next subsections, 4.2.1 and 4.2.2, approach the diagonalization of the variance -

covariance matrix in the mixed linear model (4.2) for the case of models with 3 variance components,

that is r = 2. The third one is devoted to the general case, that is, the diagonalization of the variance

- covariance matrix in models with any arbitrary r ≥ 1 variance components.

4.2.1 The Case r = 2

In this section we sub-diagonalize the variance - covariance matrix in the mixed linear model (4.2)

for r = 2, that is

y∼ (0n, γ1M1 + γ2M2 + γ3In) . (4.3)

Since M1 is a symmetric matrix there exists any orthogonal matrix (see Schott [64])

P1 =


A11

...

A1h1

 ∈M

(
∑

h1
i=1 gi

)
×n, (4.4)

with A1i ∈M gi×n (∑h1
i=1 gi = n), such that M1 = PT

1 D1P1, or equivalently P1M1PT
1 = D1, where

D1 =


θ11Ig1 0 . . . 0

0 θ12Ig2 . . . 0
...

...
. . .

...

0 0 . . . θ1h1Igh1

 (4.5)

is a diagonal matrix whose diagonal entries θ1i, i = 1, . . . ,h1, are the h1 different eigenvalues of the

matrix M1 with corresponding roots (multiplicities) gi = rank(A>1i), i = 1, . . . ,h1. It must be noted

that the set of columns of each matrix A>1i forms a set of gi orthonormal vectors associated to the

eigenvalue θ1i of the matrix M1 (Theorem 2.1.8 guarantees the existence of such matrix A>1i), so

that A1iA>1i = Igi and A>1iA1i = PR(A>1i)
. Clearly, we have that P1P>1 = In, and (see Theorem 2.2.8)

P>1 P1 = A>11A11 + . . .+A>1h1
A1h1

= PR(A>11)
+ . . .+PR(A>1h1

)

= In. (4.6)

Putting

A1iM2A>1s =

{
M2

ii i = s

W 2
is i 6= s

(4.7)
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we will have that

Σ(P1y) = γ1P1M1P>1 + γ2P1M2P>1 + γ3P1P>1

= γ1


θ11Ig1 0 . . . 0

0 θ12Ig2 . . . 0
...

...
. . .

...

0 0 . . . θ1h1Igh1

+ γ2


M2

11 W 2
12 . . . W 2

1h1

W 2
21 M2

22 . . . W 2
2h1

...
...

. . .
...

W 2
h11 W 2

h12 . . . M2
h1h1



+γ3


Ig1 0 . . . 0

0 Ig2 . . . 0
...

...
. . .

...

0 0 . . . Igh1


= γ1D(θ1Ig1 . . .θh1Igh1

)+ γ2Γ+ γ3D(Ig1 . . . Igh1
), (4.8)

where

Γ =


M2

11 W 2
12 . . . W 2

1h1

W 2
21 M2

22 . . . W 2
2h1

...
...

. . .
...

W 2
h11 W 2

h12 . . . M2
h1h1

 .

It is clear that for the three matrix D(θ1Ig1 . . .θh1Igh1
), D(Ig1 . . . Igh1

) and Γ appearing in (4.8),

the blockwise matrix Γ is the only one which is not diagonal.

We diagonalize the symmetric matrices M2
ii, i = 1, . . . ,h1, that appear in the diagonal of the

matrix Γ; that is, we sub-diagonalize the matrix Γ.

Since M2
ii is symmetric there exists (see Schott [64]) an orthogonal matrix

P2i =


A2i1

...

A2ih2i

 ∈M

(
∑

h2i
j=1 gi j

)
×gi ,

where A2i j ∈M gi j×gi (∑h2i
j=1 gi j = gi), such that

D2
ii = P2iM2

iiP
>
2i =


θ2i1Igi1 0 . . . 0

0 θ2i2Igi2 . . . 0
...

...
. . .

...

0 0 . . . θ2ih2iIgih2i

 , i = 1, . . . ,h1. (4.9)

It must be noted that the matrix A>2i j, i = 1, . . . ,h1, j = 1, . . . ,h2i, is an orthogonal matrix whose

columns form a set of gi j = rank(A>2i j) orthonormal eigenvectors associated to the different eigenval-

ues θ2i j of the matrix M2
ii; that is, gi j is the multiplicity of the eigenvalues θ2i j, and A>2i jA2i j =PR(A>2i j)

and A2i jA>2i j = Igi j .

Let

P2 =


P21 0 . . . 0

0 P22 . . . 0
...

...
. . .

...

0 0 . . . P2h1

 ∈M

(
∑

h1
i=1 ∑

h2i
j=1 gi j

)
×
(

∑
h1
i=1 gi

)
. (4.10)
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Proposition 4.2.1. P2 is an orthogonal matrix.

Proof.

P2P>2 =


P21P>21 0 . . . 0

0 P22P>22 . . . 0
...

...
. . .

...

0 0 . . . P2h1P>2h1

 ,

where

P2iP>2i =


A2i1A>2i1 0 . . . 0

0 A2i2A>2i2 . . . 0
...

...
. . .

...

0 0 . . . A2ih2i
A>2ih2i

 .

Noting that A2i1A>2i1 = Igi j , we see that P2P>2 = I
∑

h1
i=1 gi

.

Now,

P>2 P2 =


P>21P21 0 . . . 0

0 P>22P22 . . . 0
...

...
. . .

...

0 0 . . . P>2h1
P2h1

 ,

with (see Theorem 2.2.8)

P>2i P2i = A>2i1A2i1 +A>2i2A2i2 + . . .+A>2ih2i
A2ih2i

= PR(A>2i1
)+PR(A>2i2

)+ . . .+PR(A>2ih2i
)

= Igi , (4.11)

which completes the proof.

Thus, the new model P2P1Y will have variance -covariance matrix given by

Σ(P2P1y) = γ1P2D(θ1Ig1 . . .θh1Igh1
)PT

2 + γ2P2ΓPT
2 + γ3P2D(Ig1 . . . Igh1

)PT
2

= γ1


θ11P21PT

21 0 . . . 0

0 θ12P22PT
22 . . . 0

...
...

. . .
...

0 0 . . . θ1h1P2h1PT
2h1



+γ2


D2

11 P21W 2
12PT

22 . . . P21W 2
1h1

PT
2h1

P22W 2
21PT

21 D2
22 . . . P22W 2

2h1
PT

2h1
...

...
. . .

...

P2h1W
2
h11PT

21 P2h1W
2
h12PT

22 . . . D2
h1h1



+γ3


P21PT

21 0 . . . 0

0 P22PT
22 . . . 0

...
...

. . .
...

0 0 . . . P2h1PT
2h1

 , (4.12)
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where

P2iP>2i =


A2i1A>2i1 0 . . . 0

0 A2i2A>2i2 . . . 0
...

...
. . .

...

0 0 . . . A2ih2iA
>
2ih2i

=


Igi1 0 . . . 0

0 Igi2 . . . 0
...

...
. . .

...

0 0 . . . Igih2i

 ,

and, with i 6= s,

P2iW 2
isP>2s =


A2i1W 2

isA>2s1 A2i1W 2
isA>2s2 . . . A2i1W 2

isA>2sh2s

A2i2W 2
isA>2s1 A2i2W 2

isA>2s2 . . . A2i2W 2
isA>2sh2s

...
...

. . .
...

A2ih2iW
2
isA>2s1 A2ih2iW

2
isA>2s2 . . . A2ih2iW

2
isA>2sh2s

 .

The Matrix D2
ii = P2iM2

iiP
T
2i , i = 1, . . . ,h1, appearing in the diagonal in the right side of (4.12) is

defined in (4.9).

Definition 4.2.2. The orthogonal matrices P1 and P2 respectively defined in (4.4) and (4.10) will

be called sub-diagonalization matrices; the matrix P2P1 sub-diagonalizes the variance-covariance

matrix, ∑
3
d=1 γdMd , where M3 = In.

Note that

P2P1y =



A211A11y
...

A21h21A11y

A221A12y
...

A22h22A12y
...

A2h11A1h1y
...

A2h1h2h1
A1h1y



.

The distribution of the sub-models

yi j = A2i jA1iy, i = 1, . . . ,h1, j = 1, . . . ,h2i,

as well as the cross-covariance between the sub-models, yi j and ysk say, are summarized in the

following results.

Proposition 4.2.2.
yi j ∼

(
0gi j , λi jIgi j

)
, i = 1, . . . ,h1; j = 1, . . . ,h2i,

where λi j = γ1θ1i + γ2θ2i j + γ3.

50



4.2. SUB-DIAGONALIZING THE VARIANCE-COVARIANCE MATRIX

Proof.

Recalling that A2i jA1i ∈M gi j×n and gi j ≤ n, according with Theorem A.1.8(c) we will have

that

yi j ∼

(
0gi j ,

2

∑
d=1

γdA2i jA1iMdA>1iA
>
2i j + γ3A2i jA1iA>1iA

>
2i j

)
.

The portions ∑
2
d=1 γdA2i jA1iMdAT

1iA
T
2i j and γ3A2i jA1iAT

1iA
T
2i j in the variance-covariance matrix yield:

2

∑
d=1

γdA2i jA1iMdAT
1iA

T
2i j = γ1A2i j (θ1iIgi)AT

2i j + γ2A2i jM2
iiA

T
2i j

= γ1θ1iIgi j + γ2θ2i jIgi j ;

and

γ3A2i jA1iAT
1iA

T
2i j = γ3A2i jIgiA

T
2i j = γ3Igi j

which, clearly, complete the proof.

Proposition 4.2.3. With i≤ s and j ≤ k (symmetry applies)

Σ(yi j, ysk) =


0gi j ,gik i = s; j 6= k

λi jIgi j i = s; j = k

γ2A2i jA1iM2A>1sA
>
2sk i 6= s.

(4.13)

Clearly the sub-models yi j and ysk are correlated for i 6= s, and not correlated for i = s.

Proof.

Σ(yi j, ysk) = A2i jA1iΣ(y)A>1sA
>
2sk (4.14)

= A2i jA1i(γ1M1 + γ2M2 + γ3In)A>1sA
>
2sk

= γ1U1 + γ2U2 + γ3U3,

where Ud = A2i jA1iMdA>1sA
>
2sk, with M3 = In.

When i = s and j = k it holds Σ(yi j, ysk) = Σ(yi j) = λi j, as we may remark from the previous

proposition. When i = s and j 6= k it holds the following:
U1 = θ1iA2i jA>2ik = 0gi j ,gik ;

U2 = A2i jM2
iiA
>
2ik = 0gi j ,gik ;

U3 = A2i j(Igi j ,gik)A2ik = 0gi j ,gik .

Finally, when i 6= s we found that
U1 = A2i j(0gi,gs)A

>
2sk = 0gi j ,gsk ;

U2 = A2i jW 2
isA2sk;

U3 = A2i j(0gi,gs)A2sk = 0gi j ,gsk .
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4.2.2 Estimation For r = 2

From the subsection 4.2.1 we see that P2P1y produces (with i and j respectively replaced by i1 and

i2, for convenience) the fixed linear sub-models

yi1i2 ∼
(

0gi1i2
, λi1i2Igi1i2

)
, i1 = 1, . . . ,h1, i2 = 1, . . . ,h2i1 , (4.15)

with λi1i2 = γ1θ1i1 + γ2θ2i1i2 + γ3, the model y∼ (0n, γ1M1 + γ2M2 + γ3In).

An estimator for λi1i2 in the model (4.15) is

S2
i1i2 =

y>i1i2yi1i2

gi1i2
,

i1 = 1, . . . ,h1, i2 = 1, . . . ,h2i1 .

Indeed (see Theorem A.1.8),

E(S2
i1i2) =

1
gi1i2

tr
{

λi1i2Igi1i2

}
= λi1i2 . (4.16)

Thus

E(S2
i1i2) = λi1i2 = γ1θ1i1 + γ2θ2i1i2 + γ3, i1 = 1, . . . ,h1, i2 = 1, . . . ,h2i1

so that , with S =



S2
11

. . .

S2
1h21

S2
21

. . .

S2
2h22

. . .

S2
h11

. . .

S2
h1h2h1



, Θ =



θ11 θ211 1

. . . . . . . . .

θ11 θ21h21 1

θ12 θ221 1

. . . . . . . . .

θ12 θ22h22 1

. . . . . . . . .

θ1h1 θ2h11 1

. . . . . . . . .

θ1h1 θ2h1h2h1
1



, and γ =

γ1

γ2

γ3

, we will have

E(S) = Θγ . (4.17)

Thus, for i1 = 1, . . . ,h1, i2 = 1, . . . ,h2i1 , equalizing the variances λi1i2 to the correspondent

estimators of S2
i1i2 it yields the following system of equations:
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S2
11 = γ1θ11 + γ2θ211 + γ3;

. . . . . . . . . . . . . . . . . . ;

S2
1h21

= γ1θ11 + γ2θ21h21 + γ3;

S2
21 = γ1θ12 + γ2θ221 + γ3;

. . . . . . . . . . . . . . . . . .

S2
2h22

= γ1θ12 + γ2θ22h22 + γ3;

. . . . . . . . . . . . . . . . . . ;

S2
h11 = γ1θ1h1 + γ2θ2h11 + γ3;

. . . . . . . . . . . . . . . . . . ;

S2
h1h2h1

= γ1θ1h1 + γ2θ2h1h2h1
+ γ3;

which in matrix notation becomes

S = Θγ . (4.18)

Proposition 4.2.4. Θ in equation (4.18) is a full-rank matrix.

Proof. Let Θ = [c1c2c3], where ci, i = 1, . . . ,3, denotes its ith column. We thus have that: (a) the

entries of c1 are θ11, . . . ,θ1h1 , the different eigenvalues of the symmetric matrix M1; (b) the entries

of c2 are θ211, . . . ,θ2h1h2h1
, where θ2i11, . . ., θ2i1h2i1

are the different eigenvalues of the symmetric

matrix M2
ii; (c) c3 = 1

∑
h1
i1=1 h2i1

, i.e., is a vector of 1’s.

Let a and b be any scalars. Then,

ac1 + bc3 = 0⇔


θ11 = −b

a
...

θ1h1 = −b
a

⇔ θ11 = . . .= θ1h1

which can not be truth (by construction θ1i1 6= θ1i′1
, i1 6= i

′
1), unless y is an 1×1 vector.

ac2 + bc3 = 0⇔


θ2i11 = −b

a
...

θ2i1h2i1
= −b

a

⇔ θ2i11 = . . .= θ2i1h2i1

which cannot be truth once by construction θ2i1i2 6= θ2i1i′2
, i2 6= i

′
2, and (Mi1i1 6= Mi′1i′1

for i1 6= i
′
1)

θ2i1i2 6= θ2i′1i2
for i1 6= i

′
1. Finally,

ac1 + bc2 = 0⇔


aθ1i1 + bθ2i11 = 0

...

aθ1i1 + bθ2i1h2i1
= 0

⇔


θ2i11 = −a

b θ1i1
...

θ2i1h2i1
= −a

b θ1i1

⇔ θ2i11 = . . .= θ2i1h2i1

which cannot be truth (by construction θ2i1i2 6= θ2i1i′2
, i2 6= i

′
2). We must note as well that θ2i1i2 6=

θ2i′1i2
, i1 6= i

′
1, once the Mi1i1 6= Mi′1i′1

. Therefore, r(Θ) = 3.
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By the Theorem A.1.5 the matrix

Θ>Θ =



∑
h1
i1 ∑

h2i1
i2 θ 2

1i1 ∑
h1
i1 ∑

h2i1
i2 θ1i1θ2i1i2 ∑

h1
i1 ∑

h2i1
i2 θ1i1

∑
h1
i1 ∑

h2i1
i2 θ1i1θ2i1i2 ∑

h1
i1 ∑

h2i1
i2 θ 2

2i1i2 ∑
h1
i1 ∑

h2i1
i2 θ2i1i2

∑
h1
i1 ∑

h2i1
i2 θ1i1 ∑

h1
i1 ∑

h2i1
i2 θ2i1i2 ∑

h1
i1 ∑

h2i1
i2


is positive - definite, and by Theorem A.1.6 it follows that Θ>Θ is a non-singular matrix. We,

thus, take its inverse to be (Θ>Θ)−1.

Now, Pre-multiplying the system (4.18) in both side by Θ> the resulting system of equations

will be

Θ>S = Θ>Θγ , (4.19)

whose unique solution (and therefore an estimator for γ) is

γ̂ = (Θ>Θ)−1Θ>S. (4.20)

We call it Sub-D estimator.

Proposition 4.2.5. The Sub-D estimator, γ̂ = (Θ>Θ)−1Θ>S, is an unbiased estimator of γ .

Proof.

Indeed, E(γ̂) = E
(
(Θ>Θ)−1Θ>S

)
= (Θ>Θ)−1Θ>E(S) = (Θ>Θ)−1Θ>Θγ = γ .

We may now be interested in find out the distribution of Sub-D estimator. In order to do it, we

consider the next results.

Proposition 4.2.6.

Σ
(
S2

i j, S2
i∗ j∗
)
=


(a) i = i∗; j 6= j∗ : 0,

(b) i = i∗; j = j∗ : 2
λ 2

i j
gi j

,

(c) i 6= i∗ : 2γ2
2 tr(ΩM2),

where Ω = ∇i jM2∇i∗ j∗ , with ∇i j =
A>1iA

>
2i jA2i jA1i

gi j
.

Proof.
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We have

Σ
(
S2

i j,S
2
i∗ j∗
)

= Σ

(
y>i jyi j

gi j
;

y>i∗ j∗yi∗ j∗

gi∗ j∗

)

= Σ

(
y>
(

A>1iA
>
2i jA2i jA1i

gi j

)
y; y>

(
A>1i∗A

>
2i∗ j∗A2i∗ j∗A1i∗

gi∗ j∗

)
y

)
= Σ

(
y>∇i jy; y>∇i∗ j∗y

)
= 2tr (∇i jV ∇i∗ j∗V )

= 2γ
2
1 tr(∇i jM1∇i∗ j∗M1)+ 2γ1γ2tr(∇i jM1∇i∗ j∗M2)+ 2γ1γ3tr(∇i jM1∇i∗ j∗)

+ 2γ2γ1tr(∇i jM2∇i∗ j∗M1)+ 2γ
2
2 tr(∇i jM2∇i∗ j∗M2)+ 2γ2γ3tr(∇i jM2∇i∗ j∗)

+ 2γ3γ1tr(∇i j∇i∗ j∗M1)+ 2γ3γ2tr(∇i j∇i∗ j∗M2)+ 2γ
2
3 tr(∇i j∇i∗ j∗)

=


i = i∗; j 6= j∗ : 0,

i = i∗; j = j∗ : 2
λ 2

i j
gi j

,

i 6= i∗ : 2γ2
2 tr(∇i jM2∇i∗ j∗M2).

For the case (a), that is i = i∗ and j 6= j∗, we have that

∇i jM1∇i j∗ =
1

gi jgi j∗
A>1iA

>
2i jA2i jA1iM1A>1iA

>
2i j∗A2i j∗A1i

=
1

gi jgi j∗
A>1iA

>
2i jA2i j (θ1iIgi)A>2i j∗A2i j∗A1i

= 0gi×gi (see (4.5) ); (4.21)

∇i jM2∇i j∗ =
1

gi jgi j∗
A>1iA

>
2i jA2i jA1iM2A>1iA

>
2i j∗A2i j∗A1i

=
1

gi jgi j∗
A>1iA

>
2i jA2i j

(
M2

ii
)

A>2i j∗A2i j∗A1i

= 0gi×gi (see (4.9)); (4.22)

∇i j∇i j∗ =
1

gi jgi j∗
A>1iA

>
2i j

(
0gii×gi j∗

)
A2i j∗A1i

= 0gi×gi . (4.23)

(4.21), (4.22) and (4.23) together with Proposition 2.1.1 (c) proofs the case (a).

For the case (c), that is i 6= i∗, the desired result becomes clear if we note that

A1iM1A1i∗ = A1iA1i∗ = 0gi×gi∗ ,

tr(∇i jM2∇i∗ j∗M1) = tr(∇i∗ j∗M1∇i jM2) = 0, and tr(∇i jM2∇i∗ j∗) = tr(∇i∗ j∗∇i jM2) = 0.

Finally, for the case (b), that is i = i∗; j = j∗, recalling yi j ∼
(
0gi j , λi jIgi j

)
, it holds

Σ
(
S2

i j
)

= Σ

(
y>i jyi j

gi j
;
y>i jyi j

gi j

)
= 2tr

{
λi j

gi j
Igi j

λi j

gi j
Igi j

}
= 2

λ 2
i j

g2
i j

tr
{

Igi j

}
= 2

λ 2
i j

gi j
, (4.24)

and therefore the proof is complete.
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The next result introduce the variance-covariance matrix of the Sub-D estimator:

γ̂ = (Θ>Θ)−1Θ>S.

Proposition 4.2.7. Let ΣSi jSkl denotes Σ(S2
i j, S2

kl). Then,

Σ(γ̂) = (Θ>Θ)−1Θ>Σ(S)Θ(Θ>Θ)−1, (4.25)

where Σ(S) =



D1 Λ12 Λ13 . . . Λ1h1

Λ21 D2 Λ23 . . . Λ2h1

Λ31 Λ32 D3 . . . Λ3h1

...
...

...
. . .

...

Λh11 Λh12 Λh13 . . . Dh1


, with Di = 2



λ 2
i1

gi1
0 . . . 0

0 λ 2
i2

gi2
. . . 0

...
...

. . .
...

0 0 . . .
λ 2

ih2i
gih2i

 and Λks =


ΣSk1Ss1 ΣSk1Ss2 . . . ΣSk1Ssh2s

ΣSk2Ss1 ΣSk2Ss2 . . . ΣSk2Ssh2s
...

...
. . .

...

ΣSkh2k Ss1 ΣSkh2k Ss2 . . . ΣSkh2k Ssh2s

.

The next section intends to generalize the method introduced here, that is, introducing the

Sub-D estimator for a MLM with an arbitrary number of variance components.

4.2.3 The General Case: r ≥ 1

The general mixed linear models may be expressed as (see (3.8))

z = Xβ +
r+1

∑
i=1

Xiβi, (4.26)

with Xr+1 = Im, Xi ∈M mi×pi and βi ∈Rpi , where X ∈M m×p is the known (possible non full-rank)

design matrix for the fixed effects, β ∈ Rp is the vector of the (unknown) fixed effects values,

Xi, i = 1, . . . ,r+ 1, the known and fixed (full-rank) design matrices for the variance-covariance

structure, βi, i = 1, . . . ,r, the unknown vectors of the unobservable random effects, and βr+1

the vector of the residual errors, where βi, i = 1, . . . ,r+ 1, are mutually independent, such that

E(βi) = 0pi and Σ(βi) = γiIpi . Thus,

z∼

(
Xβ ,

r+1

∑
i=1

γiNi

)
,

where Ni = XiX>i , and the unknown fixed parameters γi ≥ 0, i = 1 . . . ,r, γr+1 > 0 denote the

variance components.

In order to reduce the complexity of the algebraic manipulation in the estimator development

process, and since the bias will be reduced with no loss of information needed to estimate the

variance components (see Section 4.2), we will approach the model

y = B>o z∼

(
0n,

r+1

∑
d=1

γdMd

)
, (4.27)
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with Md = B>o NdBo ∈S n, n = m−r(Po), where Bo is a matrix whose columns are the eigenvectors

associated to the null eigenvalues of Po = PR(X), such that B>o Bo = Im−r(Po) and BoB>o = P∗, with

P∗ = PR(X)⊥ = Im−Po.

One may note that y = B>o z = ∑
r+1
d=1 B>o Xdβd , where

βd ∼ (0sd , γdIsd ), d = 1, . . . ,r, βr+1 ∼ (0n, γdIn).

With i1 = 1, . . . ,h1, i j = 1, . . . ,h j,i1,...,i j−1 , consider the finite sequence of r matrices P1, P2, . . . ,

Pr defined as follow:

P1 =


A11

A12
...

A1h1

 ∈M

(
∑

h1
i1

gi1

)
×n, with A1i1 ∈M (gi1 )×n (note that

h1

∑
i1

gi1 = n);

P2 =


P21 0 . . . 0

0 P22 . . . 0
...

...
. . .

...

0 0 . . . P2h1

 ∈M

(
∑

h1
i1

∑
h2,i1
i2

gi1i2

)
×
(

∑
h1
i1

gi1

)
, where

P2i1 =


A2i11

A2i12
...

A2i1h2i1

 ∈M

(
∑

h2,i1
i2

gi1i2

)
×gi1 , with

h2,i1

∑
i2

gi1i2 = gi1 and A2i1i2 ∈M gi1i2×gi1 ;

P3 =


P31 0 . . . 0

0 P32 . . . 0
...

...
. . .

...

0 0 . . . P3h1

 ∈M

(
∑

h1
i1

∑
h2,i1
i2

∑
h3,i1,i2
i3

gi1i2i3

)
×
(

∑
h1
i1

∑
h2,i1
i2

gi1i2

)
,

where P3i1 =


P3i11 0 . . . 0

0 P3i12 . . . 0
...

...
. . .

...

0 0 . . . P3i1h2,i1

 ∈M

(
∑

h2,i1
i2

∑
h3,i1,i2
i3

gi1i2i3

)
×
(

∑
h2,i1
i2

gi1i2

)
and

P3i1i2 =


A3i1i21

A3i1i22
...

A3i1i2h3,i1,i2

 ∈M

(
∑

h3,i1,i2
i3

gi1i2i3

)
×gi1i2 , with

h3,i1,i2

∑
i3

gi1i2i3 = gi1i2 and

A3i1i2i3 ∈M gi1i2i3×gi1i2 ;
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Thus, for r ≥ 2, each matrix Pr will be given by (P1 is given in (4.28)):

Pr =


Pr1 0 . . . 0

0 Pr2 . . . 0
...

...
. . .

...

0 0 . . . Prh1

 (4.28)

∈M

(
∑

h1
i1
...∑

hr,i1,...,ir−1
ir gi1 ...ir

)
×
(

∑
h1
i1
...∑

h(r−1),i1,...,ir−2
i(r−1)

gi1 ...i(r−1)

)
,

where

Pri1 =


Pri11 0 . . . 0

0 Pri12 . . . 0
...

...
. . .

...

0 0 . . . Pri1h2,i1


∈M

(
∑

h2,i1
i2

...∑
hr,i1,...,ir−1
ir gi1 ...ir

)
×
(

∑
h2,i1
i2

...∑
h(r−1),i1,...,ir−2
i(r−1)

gi1 ...i(r−1)

)
,

. . . . . . . . . . . . . . .

Pri1...i(r−2) =


Pri1...i(r−2)1 0 . . . 0

0 Pri1...i(r−2)2 . . . 0
...

...
. . .

...

0 0 . . . Pri1...i(r−2)hr−1,i1,...,ir−2


∈M

(
∑

h(r−1),i1,...,ir−2
i(r−1)

∑

hr,i1,...,ir−1
ir gi1 ...ir

)
×
(

∑

h(r−1),i1,...,ir−2
i(r−1)

gi1 ...i(r−1)

)
,

and Pri1...i(r−1) =


Ari1...i(r−1)1

Ari1...i(r−1)2
...

Ari1...i(r−1)hr,i1,...,ir−1

 ∈M

(
∑

hr,i1,...,ir−1
ir gi1 ...ir

)
×gi1 ...i(r−1) ,

with
hr,i1,...,ir−1

∑
ir

gi1...ir = gi1...i(r−1) ,
h1

∑
i1

gi1 = n, Ari1...ir ∈M
gi1 ...ir×gi1 ...i(r−1) ;

Theorem 4.2.8. Let the matrices P1,P2, . . . ,Pr defined above be such that:

(c1) The columns of A>1i1 , i1 = 1, . . . ,h1, form a set of gi1 = r(A>1i1) orthonormal eigenvectors

associated to the different eigenvalues θ1i1 of the matrix M1 (θ1i1 has multiplicity gi1);
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(c2) The columns of A>2i1i2 , i2 = 1, . . . ,h2,i1 , form a set of gi1i2 = r(A>2i1i2) orthonormal eigenvectors

associated to the different eigenvalues θ2i1i2 of the matrix M2
i1i1 = A1i1M2A>1i1 (θ2i1i2 has

multiplicity gi1i2);

(c3) The columns of A>3i1i2i3 , i3 = 1, . . . ,h3,i1,i2 , form a set of gi1i2i3 = r(A>3i1i2i3) orthonormal

eigenvectors associated to the different eigenvalues θ3i1i2i3 of the matrix

A2i1i2M3
i1i1A>2i1i2 = A2i1i2A1i1M3A>1i1A2i1i2

(θ3i1i2i3 has multiplicity gi1i2i3);

. . . . . . . . . . . . . . .

(cr) The columns of A>ri1...ir , ir = 1, . . . ,hr,i1,...,ir−1 , form a set of gi1...ir = r(A>ri1...ir) orthonormal

eigenvectors associated to the different eigenvalues θri1...ir of the matrix

A(r−1)i1...i(r−1)
. . .A1i1MrA>1i1 . . .A

>
(r−1)i1...i(r−1)

(4.29)

(θri1...ir has multiplicity gi1...ir ).

Then each matrix Pd , d = 1, . . . ,r, in the finite sequence of matrices P1,P2, . . . ,Pr will be orthogonal

matrices.

Proof.

According with the way Pd is defined (see (4.28)), since

Pdi1...i(d−1)
=


Adi1...i(d−1)1

Adi1...i(d−1)2
...

Adi1...i(d−1)hd,i1,...,id−1

 , i(d−1) = 1, . . . ,h(d−1),i1,...,id−2
,

and according with condition cd we see that the matrices Pdi1...i(d−1)
are orthogonal. Thus, the desired

result comes if we see that P>d Pd will be a diagonal blockwise matrix whose diagonal entries are

P>di1Pdi1 , i1 = 1, . . . ,h1. The diagonal entries P>di1Pdi1 will be diagonal blockwise matrices whose

diagonal entries will be P>di1i2Pdi1i2 , i2 = 1, . . . ,h2,i1 . Proceeding this way d−2 times, we will find

that the diagonal entries of the blockwise matrices P>di1...i(d−2)
Pdi1...i(d−2)

, i(d−2) = 1, . . . ,h(d−2),i1,...,id−3
,

will be (see Theorem 2.2.8)

P>di1...i(d−1)
Pdi1...i(d−1)

= A>di1...i(d−1)1Adi1...i(d−1)1 + . . .+A>di1...i(d−1)hd,i1,...,id−1
Adi1...i(d−1)hd,i1,...,id−1

= Igi1 ...i(d−1)
,

reaching, therefore, the desired result. Proceeding in same way we would also see that

Pdi1...i(d−1)
P>di1...i(d−1)

is a Blockwise diagonal matrix whose diagonal entries are

Adi1...i(d−1)1A>di1...i(d−1) j, j = 1, . . . ,hd,i1,...,id−1 ,

so that PdP>d is an identity matrix.
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The model Pr . . .P2P1y will produces the following sub - models:

yi1...ir = Ari1...ir A(r−1)i1...i(r−1)
. . .A2i1i2A1i1y, (4.30)

i1 = 1, . . . ,h1, i j = 1, . . . ,h j,i1,...,i j−1 .

Definition 4.2.3. The orthogonal matrices Pr, r ≥ 1, defined in (4.28) will be called

sub-diagonalization matrices; here it make sense since the matrix Pr . . .P2P1 sub-diagonalizes the

variance-covariance matrix, ∑
r+1
i=1 γdMd , where Mr+1 = In.

At this point we are able to summarize the distribution of the sub-models in (4.30) as well as

the cross-covariance between the sub-models, yi1...ir and yi∗1...i
∗
r

say, in the following results.

Proposition 4.2.9.
yi1...ir ∼

(
0gi1 ...ir

, λi1...ir Igi1 ...ir

)
,

where λi1...ir = ∑
r
d=1 γdθdi1...id + γr+1.

Proof.

The proof becomes clear after looking to the proof of the proposition 4.2.2.

Proposition 4.2.10. With i j = 1, . . . ,h j,i1,...,i j−1 , j = 1, . . . ,r, and i j ≤ i∗j (symmetry applies) we have

Σ(yi1...ir , yi∗1...i
∗
r
) =


0gi1 ...ir ,gi∗1 ...i

∗r
i1 = i∗1, . . . , ir−1 = i∗r−1, ir 6= i∗r

λi1...ir Igi1...ir
i j = i∗j , j = 1, . . . ,r

∑
r
d=2 γdVd i1 6= i∗1

∑
r
d=s+1 γdVd i j = i∗j , j = 1, . . . ,s−1, is 6= i∗s , 1 < s < r−1

(4.31)

where Vd = Ari1...ir . . .A1iMdA>1i∗1
. . .A>ri∗1...i

∗
r
. This result ensure that the sub-models yi1...ir and yi∗1...i

∗
r

are correlated for is 6= i∗s , 1≤ s < r−1, and not correlated for is = i∗s , s≤ r−1, ir 6= i∗r .

Proof.

We proceed as at the case of three variance components.

Starting with case i1 = i∗1, . . . , ir−1 = ir−1, ir 6= i∗r , we have the following:

V1 = Ari1...ir(θ1iIgi1...ir−1
)A>ri∗1...i

∗
r
= 0gi1 ...ir ,gi∗1 ...i

∗r
;

V2 = Ari1...ir(θ2i1i2Igi1 ...ir−1
)A>ri∗1...i

∗
r
= 0gi1 ...ir ,gi∗1 ...i

∗r

. . .

Vr−1 = Ari1...ir(θ(r−1)i1...ir−1
Igi1 ...ir−1

)A>ri∗1...i
∗
r
= 0gi1 ...ir ,gi∗1 ...i

∗r

Vr = 0gi1 ...ir ,gi∗1 ...i
∗r

Vr+1 = 0gi1 ...ir ,gi∗1 ...i
∗r

The result for Vr is due to the fact that the columns of A>ri1...ir form a set of orthonormal eigenvectors

associated to the different eigenvalues θri1...ir of Ari1...ir . . .A1i1MrA>1i1 . . .A
>
(r−1)i1...ir−1

.

When i j = i∗j , j = 1, . . . ,r, we have

Σ(yi1...ir , yi∗1...i
∗
r
) = Σ(yi1...ir) = λi1...ir ,
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as seen at the previous proposition.

For the case when i j = i∗j , j = 1, . . . ,s−1, is 6= i∗s , 1≤ s < r−1 we have the following:


V1 = Ari1...ir(θ1iIgi1 ...ir−1

)A>ri∗1...i
∗
r
= 0gi1 ...ir ,gi∗1 ...i

∗r
;

. . .

Vs−1 = Ari1...ir l . . .Asi1...is(θ(s−1)i1...is−1
Igi1 ...is−1

)A>si∗1...i
∗
s
. . .A>ri∗1...i

∗
r
= 0gi1 ...ir ,gi∗1 ...i

∗r
,

but with s≤ d ≤ r, we have Vd = Ari1...ir . . .Asi1...isM
(s−1)
d Asi∗1...i

∗
s
. . .A>ri∗1...i

∗
r
, where

M(s−1)
d = A(s−1)i1...i(s−1)

. . .A1iMdA>1i1 . . .A
>
(s−1)i1...i(s−1)

. Now, since Mr+1 = In, it is straightforward

verified that Vr+1 = 0gi1 ...ir ,gi∗1 ...i
∗r
.

Finally, the case i1 6= i∗1 refer to the previous case when s = 1.

4.2.4 The General case: Estimation For r ≥ 1

Recalling that for the mixed linear model (4.2), Pr . . .P2P1y produces the sub-models

yi1i2...ir ∼ (0gi1 ...ir
, λi1i2...ir Igi1i2 ...ir

),

i1 = 1, . . . ,h1, i j = 1, . . . ,h j,i1,...,i j−1 (4.32)

where

λi1i2...ir =
r

∑
d=1

γdθdi1...id + γr+1.

The matrices Pd , d = 1, . . . ,r, are defined in the subsection (4.2.3).

An unbiased estimator of λi1i2...ir in the model (4.32) is (the one based on least squares)

S2
i1i2...ir =

1
gi1i2...ir

y>i1i2...ir yi1i2...ir

Indeed (see Theorem A.1.8 (b) and the explanation for (4.16)),

E
(
S2

i1i2...ir

)
=

λi1i2...ir

gi1i2...ir
tr
[
Igi1i2 ...ir

]
= λi1i2...ir . (4.33)

For convenience, instead of S2
i1i2...ir , we may sometimes use the notation S2

i1i2...i(r−1)ir
in what follows.

Thus

E(S2
i1i2...ir) =

r

∑
d=1

γdθdi1...id + γr+1

= γ1θ1i1 + γ2θ2i1i2 + . . .+ γrθri1i2...ir + γr+1,

i1 = 1, . . . ,h1; i j = 1, . . . ,h j,i1,...,i j−1
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so that , with

S∗ =



S2
11...11

S2
11...12

. . .

S2
11...1hr,1,...,1

S2
11...21

. . .

S2
11...2hr,1,...,2

. . .

S2
h11...11

. . .

S2
h1h2,h1 ...hr,h1,...,hr−1



,

Θ∗ =



θ11 θ211 θ3111 . . . θr11...11 1

θ11 θ211 θ3111 . . . θr11...12 1

. . . . . . . . . . . . . . . . . .

θ11 θ211 θ3111 . . . θr11...1hr,1,...,1,hr−1
1

θ11 θ211 θ3111 . . . θr11...21 1

. . . . . . . . . . . . . . . . . .

θ11 θ211 θ3111 . . . θr11...2hr,1,...,2,hr−1
1

. . . . . . . . . . . . . . . . . .

θ1h1 θ2h11 θ3h111 . . . θrh11...11 1

. . . . . . . . . . . . . . . . . .

θ1h1 θ2h1h2,h1
θ3h1h2,h1 h3,h1,h2

. . . θrh1h2,h1 ...h(r−1),h1,...,hr−2
hr,h1,...,hr−1

1



,

and γ∗ =



γ1

γ2

γ3

. . .

γr

γ(r+1)


, we will have

E(S∗) = Θ∗γ∗. (4.34)

Thus, for i1 = 1, . . . ,h1, i j = 1, . . . ,h j,i1,...,i j−1 , j > 1, equalizing the variances λi1i2...ir to the

correspondent estimators S2
i1i2...ir yields the following system of equations (in matrix notation)

S∗ = Θ∗γ∗. (4.35)

Proposition 4.2.11. Θ∗ in equation (4.35) is a full-rank matrix.

Proof. The proof is done in same fashion as for the Proposition 4.2.4. Indeed, by construction

θ1i1 6= θ1i′1
they are the different eigenvalues of M1, θ2i1i2 6= θ2i1i′2

the distinct eigenvalues of M2
ii =
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A1i1M2A>1i1 , θ3i1i2i3 6= θ3i1i2i′3
the distinct eigenvalues of A2i1i2A1i1M2A>1i1A>2i1i2 , . . . , θri1i2...i(r−1)ir 6=

θri1i2...i(r−1)i
′
r

the distinct eigenvalues of

A(r−1)i1i2...i(r−1)
. . .A1i1MrA>1i1 . . .A

>
(r−1)i1i2...i(r−1)

where i j 6= i
′
j, j = 1, . . . ,r. Thus we have that r(Θ∗) = r+ 1.

By the Theorem A.1.5, with ∑ denoting ∑
h1
i1 ∑

h2
i2 . . .∑

hr
ir , the matrix

(Θ∗)>Θ∗ =



∑θ 2
1i1 ∑θ1i1θ2i1i2 ∑θ1i1θ3i1i2i3 . . . ∑θ1i1θri1...ir ∑θ1i1

∑θ1i1θ2i1i2 ∑θ 2
2i1i2 θ2i1i2θ3i1i2i3 . . . ∑θ2i1i2θri1...ir ∑θ2i1i2

∑θ1i1θ3i1i2i3 ∑θ2i1i2θ3i1i2i3 ∑θ 2
3i1i2i3 . . . ∑θ3i1i2i3θri1...ir ∑θ3i1i2i3

...
...

...
. . .

...
...

∑θ1i1θri1...ir ∑θ2i1i2θri1...ir ∑θ3i1i2i3θri1...ir . . . ∑θ 2
ri1...ir ∑θri1...ir

∑θ1i1 ∑θ2i1i2 ∑θ3i1i2i3 . . . ∑θri1...ir ∑


is positive - definite, and by Theorem A.1.6 it follows that (Θ∗)>Θ∗ is non-singular; that is, it is

invertible. We take its inverse to be
(
(Θ∗)>Θ∗

)−1
.

Now, premultiplying the system (4.35) in both side by ΘT the resulting system of equations

will be

(Θ∗)> S = (Θ∗)>Θ∗γ , (4.36)

whose unique solution (and therefore any estimator of γ) is

γ̂ =
(
(Θ∗)>Θ∗

)−1
(Θ∗)> S. (4.37)

Proposition 4.2.12. γ̂ = ((Θ∗)>Θ∗)−1 (Θ∗)> S is an unbiased estimator of γ =



γ1

γ2

γ3

. . .

. . .

γr

γ(r+1)


, where



γ̂1

γ̂2

γ̂3

. . .

. . .

γ̂r

ˆγ(r+1)


.
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Indeed,

E(γ̂) = E
((

(Θ∗)>Θ∗
)−1

(Θ∗)> S
)
=
(
(Θ∗)>Θ∗

)−1
(Θ∗)>E(S)

=
(
(Θ∗)>Θ∗

)−1
(Θ∗)>Θ∗γ = γ . (4.38)

4.3 Improving The Sub-D Estimator

As demonstrated in previous section through theoretical results, and corroborated with numerical

simulations (see chapter 5), the Sub-D estimator provides unbiased estimates whatever the mixed

linear design we choose, having overcame the performance of ANOVA estimator in crossed and

nested designs with unbalanced data, and the one of REML estimator in nested design; indeed, as

may be seen in chapter 5, when applied to nested design, REML provides low accurate estimates for

some parameters, whereas when applied to crossed and nested designs ANOVA provides unrealistic

estimates for some parameters. It must be point out that all designs referenced here have some

empty cells.

As we may remark from the chapter 5, despite its great performance, the numerical test

reveals that the Sub-D estimator produces estimates with a higher variability comparing to the

variability of the estimates produced with REML estimator. This problem seems to be due to

the non null correlation between the sub-models (it is null for models with one or two variance

components and orthogonal models). For example, for the case of models with three variance

components (see model (4.3)), the sub-models yi j =A2i jA1iy and ysk =A2skA1sy, with i,s= 1, . . . ,h1,

j,k = 1, . . . ,h2i,h2s, are correlated as seen before. From (4.13) we see that the variance-covariance

matrix of the new model P2P1y is a blockwise matrix whose diagonal matrices are D1, . . . ,Dh1 ,

where Di = diag(λi1 . . .λih2i), corresponding to Σ(yi j, ysk) for i = s, j = k, and the off diagonal

matrices are the non-null matrices γ2A2i jA1iM2A>1sA
>
2sk, corresponding to Σ(yi j, ysk) for i 6= s; this

last one, i.e the cross-covariance between yi j and ysk for i 6= s, is not considered by the Sub-D

estimator on its deduction process as we may have seen.

In attempt to reduce the variability of the estimated values produced with Sub-D estimator, we

introduce now an improved estimator for variance components; the improvement is achieved by

incorporating the structure of the covariance in the Sub-D estimator deduction process. This new

estimator will be referred to as Sub-DI estimator.

Recall (from the previous section) that the Sub-D estimator is a solution (in γ) for the system of

equations

S∗ = Θ∗γ∗ (4.39)

(for the case of three variance components: S = Θγ), which consists in equating the sum of square

errors for each sub-model to its respective expectation; clearly, as previously remarked, it does

not take in account the correlation between the sub-models yi1,...,ir and yi∗1,...,i∗r for i j = i∗j , j =

1, . . . ,s−1, is 6= i∗s , 1≤ s < r−1 (for the case of three variance components: y2i jand y2sk, i 6= s).

Considering that in data collecting process for some experiment a large amount of data is

required, the repeating process may not be so practical, so that the unbiasedness of a particular
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4.3. IMPROVING THE SUB-D ESTIMATOR

estimator might be neglected in favor of others estimators with better performance such as consis-

tency, asymptoticity, among others. Hence, considering the idea of improving the Sub-D estimator

in that sense, we may be interested in incorporate the system of equations which take into account

the cross-covariance between the sub-models yi1,...,ir and yi∗1,...,i∗r for i j = i∗j , j = 1, . . . ,s−1, is 6=
i∗s , 1≤ s < r−1 to the system of equations (4.39), been aware that the unbiasedness might not be

preserved.

Given that the expectations for all sub-models yi1,...,ir are null vectors, i.e. E(yi1,...,ir) = 0gi1,...,ir
,

it holds (see Theorem A.1.7 and Proposition 4.2.10)

E(yi1,...,ir y
>
i∗1,...,i∗r ) = Σ(yi1,...,ir , yi∗1,...,i∗r )

=
r

∑
d=s+1

γdV d
i1,...,ir ,i∗1,...,i∗r

(4.40)

for i j = i∗j , j = 1, . . . ,s−1, is 6= i∗s , 1 < s < r−1, where

V d
i1,...,ir ,i∗1,...,i∗r

= Ari1...ir . . .A1iMdA>1i∗1
. . .A>ri∗1...i

∗
r
.

The result in (4.40) is equal to ∑
r
d=2 γdV d

i1,...,ir ,i∗1,...,i∗r
when s = 1 (see (4.31)).

Recall the system of equations that produce the Sub-D estimator,

E(S2
i1i2...i(r−1)ir) = E

(
y>i1,...,ir yi1,...,ir

gi1,...,ir

)

=
r

∑
d=1

γdθdi1...id + γr+1 (4.41)

i1 = 1, . . . ,h1; i j = 1, . . . ,h j,i1,...,i j−1

(see system (4.39) for matrix notation), system which, as stated before, doesn’t take into account

the fact that the sub-models are correlated. Now, noting that with y(k)i1,...,ir , k = 1, . . . ,gi1,...,ir , denoting

the kth element of the sub-model yi1,...,ir , we find that

E(y(k)i1,...,ir y
(l)
i∗1,...,i∗r

) =
r

∑
d=s+1

γdvd(kl)
i1,...,ir ,i∗1,...,i∗r

, (4.42)

where vd(kl)
i1,...,ir ,i∗1,...,i∗r

is the entry at row k and column l of matrix V d
i1,...,ir ,i∗1,...,i∗r

.

Finally, equating
y>i1,...,ir yi1,...,ir

gi1,...,ir
to its expectation ∑

r
d=1 γdθdi1...id + γr+1, and yi1,...,ir y

>
i∗1,...,i∗r

to its

expectation ∑
r
d=s+1 γdV d

i1,...,ir ,i∗1,...,i∗r
, and putting together both the equations in one single system of

equations (see (4.43) below), the new estimator for the variance components, which we shall call

Sub-D improved, denoted as Sub-DI, will be the solution in γ̃> = [γ̃1 . . . γ̃r+1] for the system

y>i1,...,ir yi1,...,ir

gi1,...,ir
= ∑

r
d=1 γ̃dθdi1...id + γ̃r+1

for i j = i∗j , j = 1, . . . ,r

y(k)i1,...,ir y
(l)
i∗1,...,i∗r

= ∑
r
d=s+1 γ̃dvd(kl)

i1,...,ir ,i∗1,...,i∗r

for i j = i∗j , j = 1, . . . ,s−1, is 6= i∗s , 1 < s < r−1,

(4.43)

with i1 = 1, . . . ,h1; i j = 1, . . . ,h j,i1,...,i j−1 ; it must be noted that right hand-side of the second equation

in the system (4.43) is equal to ∑
r
d=s γ̃dvd(kl)

i1,...,ir ,i∗1,...,i∗r
when s = 1.
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Remark 4.3.1. As it may be seen, for models with one or two variance components (fixed effect

or “one-way” models) the sub-models yi = A1iy will not be correlated so that, for these models,

the Sub-DI estimator is equivalent to Sub-D, since the right-hand side of the second system of

equations in (4.43) will be null.
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5
NUMERICAL RESULTS

In order to test the performance of Sub-D estimator, as well as its improved version, the Sub-DI

estimator, we carry out numerical tests for several types of designs for MLM. More precisely, we

test their performance using a balanced and an unbalanced “one-way designs”, an unbalanced

“two-way crossed design” and an unbalanced “two-way nested design”. The test will be done

comparing its performance with the performance of REML and ANOVA estimators. For the REML

estimator we will use the lme4 package (for R software), which covers approximately the same

ground as the earlier nlme package, providing also functions for fitting and analyzing mixed models,

but with some additional advantages in what concerning the MLM, namely (see Bates et al. [10]):

(1) It uses modern and efficient linear algebra methods and reference classes to avoid undue

copying of large objects; it is therefore likely to be faster and more memory-efficient than

nlme;

(2) It includes generalized linear mixed model (GLMM) capabilities (via the glmer function);

(3) It offers built-in facilities for likelihood profiling and parametric bootstrapping;

(4) Notwithstanding it is not (yet) as well-documented as nlme, it is designed to be more modular

than nlme, making it easier for end-users to re-use its components for extensions of the basic

mixed model framework;

(5) It also allows more flexibility for specifying different functions for optimizing over the

random-effects variance-covariance parameters.

For the computational implementation of ANOVA method we will follow Sahai and Ojeda [63].

REML is the preferred method for estimating the variance components in MLM (Diffey et

al. [17]); it is therefore likely that for the Sub-D and Sub-DI estimators a reasonable way to prove

their values goes through producing results which can be compared with those of the REML

estimator.
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5.1 The Choice Of Designs

Due to their widely application, with special emphasis on genetics, process control and quality

control and improvement, most of works on “search for optimal designs for variance components

estimation” and “estimation procedures for variance components” focus on one-way designs (see

model in (3.3)), nested designs (see the “two-way nested design” in (3.4) or (3.5)) and crossed

designs (see the “two - way crossed design” in (3.6) or (3.7)); it is therefore likely that on the

matter of search for its place within estimators for variance components on MLM the Sub-D and

Sub-DI estimators must prove their values facing these designs.

On this purpose, and since the smaller the sample, more difficulty to provide accurate estimates

for either fixed and random linear models or MLM, we will test the performance of Sub-D and Sub-

DI using reasonably small samples. The test will be done using an unbalanced “two-way crossed

design” and an unbalanced “two-way nested design” with 12 observations each, constituting,

reasonably, a small sample. We also used two “one-way designs”, one with balanced data and the

other with unbalanced data. Both the “one-way designs” will include 21 observations.

For the “two-way designs” (crossed and nested) some cells will be taken to be empty in order

to take the methods to the extreme.

The test will be done proceeding as follows: for the same 10000 observations of the underlying

model, the three estimators will be simultaneously applied and, in order to favor the comparison,

the results will be organized in different tables.

We will use the R software for all the simulations in this work, and the results will be rounded

to four decimal places.

5.2 The Performance I: “One-Way Design”

Recall the “one-way design” (see Section 3)

z = Zµ +Z1α + e,

where

Z = 1
∑

k
s=1 ns

, Z1 =



1 0 . . . . . . 0

. . . . . . . . . . . . . . .

1 0 . . . . . . 0

0 1 0 . . . 0

. . . . . . . . . . . . . . .

0 1 0 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 0 . . . 0 1

. . . . . . . . . . . . . . .

0 0 . . . 0 1



∈M (∑
k
s=1 ns)×k, and α =

α1

. . .

αk

 .
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5.2.1 Balanced “One Way Design”

Lets consider a particular balanced design of the “one-way design” with k = 3 and ni = 7, i = 1,2,3.

Thus we will have that

z∼ (Zµ , V ), where V = γ1Z1Z>1 + γ2I
∑

3
i=1 ni

, (5.1)

with Z = 121 and Z1Z>1 =

 J7 07,7 07,7

07,7 J7 07,7

07,7 07,7 J7

. Let Bo be a matrix whose columns are the eigenvec-

tors associated to the null eigenvalues of 1
21 J21. Then BoB>o = I21− 1

21 J21 and B>o Bo = I20, and so

the new model will be

y = B>o z∼ (020, γ1M+ γ2I20) ,

where M = B>o Z1Z>1 Bo.

Since r(Z1Z>1 ) = 3 it follows that (see Theorem 2.1.5) r(M) = r(B>o Z1Z>1 Bo) = 3. The eigen-

values of M are θ11 = 7, with multiplicity equal to 2, and θ12 = 0 with multiplicity equal to 18.

Thus Θ =

[
7 1

0 1

]
.

Now, assuming α ∼N (03, γ1I3) and e ∼N (020, γ2I20), with γ2 = 1 fixed, the particular

design can be rewritten as

y = B>o Z1α +B>o e. (5.2)

For each γ1 ∈ {0.1, 0.25, 0.5, 0.75, 1, 2, 5}, we simulated 10000 observations of the model stated

in (5.1) and for each observation the Sub-D is applied and the variance components γ1 and γ2 (error)

are estimated. In order to compare the performance of Sud-D with the ones of REML and ANOVA,

for the same 10000 observation of y, REML and ANOVA methods were applied and the average of

the estimated values presented in Tables 5.1, 5.2, 5.3, and 5.4.

Table 5.1: Estimates for γ1 using Sub-D, REML and ANOVA.

γ1 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.0999 0.2454 0.5036 0.7529 1.0083 1.9966 5.0378
REML 0.1379 0.2715 0.5201 0.7646 1.0175 2.0014 5.0402
ANOVA 0.0999 0.2454 0.5036 0.7529 1.0083 1.9966 5.0378

Table 5.2: Mean Square Error of estimated γ1 using Sub-D, REML and ANOVA.

γ1 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.2474 0.3910 0.6607 0.9040 1.1624 2.1466 5.2111
REML 0.2213 0.3698 0.6466 0.8935 1.1541 2.1421 5.2088
ANOVA 0.2474 0.3910 0.6607 0.9040 1.1624 2.1466 5.2111

As it may be seen from the Tables 5.1, 5.2, 5.3, and 5.4, the average estimates for variance

components as well as their respective standard deviation using Sub-D estimator are exactly the
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Table 5.3: Estimates for γ2 (error) using Sub-D, REML and ANOVA.

γ1 0.1 0.25 0.5 0.75 1 2 5
Sub-D 1.0018 1.0020 0.9983 1.0041 1.0019 0.9990 1.0001
REML 0.9752 0.9838 0.9867 0.9959 0.9955 0.9926 0.9973
ANOVA 1.0018 1.0020 0.9983 1.0041 1.0019 0.9990 1.0001

Table 5.4: Mean Square Error of estimated γ2 (error) using Sub-D, REML and ANOVA.

γ1 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.3320 0.3324 0.3303 0.3357 0.3339 0.3328 0.3332
REML 0.3190 0.3233 0.3248 0.3314 0.3306 0.3312 0.3321
ANOVA 0.3320 0.3324 0.3303 0.3357 0.3339 0.3328 0.3332

same as those obtained using ANOVA estimator. As seen, the Sub-D and ANOVA estimates are

extremely unbiased unlike the REML ones. Indeed, despite its slightly smaller variation than Sub-D

and ANOVA (see Tables 5.2 and 5.4), REML estimator provided low accurate estimates for small

values (see the REML estimates for γ1 = 0.1, 0.25, 0.5); therefore, Tables 5.1 and 5.2 suggest that

Sub-D and ANOVA estimators are preferred, particularly when the variance components are small

values.

5.2.2 Unbalanced “One-Way Design”

Now we consider a particular unbalanced design of the one-way design with k = 3, n1 = 2, n2 = 12

and n3 = 7, having therefore that y∼ (Zµ , V ), where

V = γ1Z1Z>1 + γ2I
∑

3
i=1 ni

,

with Z = 121 and Z1Z>1 =

 J2 02,12 02,7

012,2 J12 012,7

07,2 07,12 J7

.

With Bo a matrix whose columns are the eigenvectors associated to the null eigenvalues of 1
21 J21,

yielding so BoB>o = I21− 1
21 J21 and B>o Bo = I20, we have that the eigenvalues of M = B>o Z1Z>1 Bo

will be θ11 = 8.9321, θ12 = 2.6869 and θ13 = 0, with θ13 having root equal 18.

Once again, for each γ1 ∈ {0.1, 0.25, 0.5, 0.75, 1, 2, 5}, we simulate 10000 observations of

the model stated in (5.1), and for each observation the three methods (Sub-D, REML and ANOVA)

are applied and the variance components γ1 and γ2 are estimated. The average of the estimated

values are available in Tables 5.5, 5.6, 5.7, and 5.8.

From Tables 5.5 and 5.7 we may see that the Sub-D steel providing unbiased estimates although

with larger dispersion (see Tables 5.6 and 5.8). For γ2 REML provides accurate estimates, although

not so accurate as those provides by Sub-D. But for values 0.1, 0.25, 0.5 and 0.75 of γ1 the estimates

are not so accurate as those when the values for γ1 are 1, 2 and 5. Although no accurate, ANOVA

provides acceptable estimates for γ1, but for γ2 it produces unrealistic estimates.
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Table 5.5: Estimates for γ1 using Sub-D, REML and ANOVA.

γ1 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.1059 0.2457 0.4950 0.7458 1.0063 2.0045 4.9568
REML 0.1584 0.2931 0.5322 0.7757 1.0276 2.0221 4.9622
ANOVA 0.1979 0.3410 0.5915 0.8410 1.1009 2.1018 5.0516

Table 5.6: Mean Square Error of estimated γ1 using Sub-D, REML and ANOVA.

γ1 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.3234 0.5506 0.9107 1.3175 1.7040 3.2762 7.8761
REML 0.2928 0.4456 0.6941 0.9617 1.2195 2.2725 5.2650
ANOVA 0.3012 0.4500 0.7139 1.0063 1.2943 2.4726 5.9077

Table 5.7: Estimates for γ2 using Sub-D, REML and ANOVA.

γ1 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.9954 1.0057 1.0069 1.0019 1.0018 1.0095 1.0002
REML 0.9735 0.9809 0.9823 0.9876 0.9946 0.9917 0.9951
ANOVA 0.4585 0.4543 0.4521 0.4507 0.4517 0.4511 0.4514

Table 5.8: Mean Square Error of estimated γ2 using Sub-D, REML and ANOVA.

γ1 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.9137 1.2392 1.7770 2.4312 3.0030 5.3988 12.333
REML 0.3212 0.3240 0.3248 0.3261 0.3323 0.3328 0.3312
ANOVA 0.5854 0.5878 0.5888 0.5902 0.5898 0.5912 0.5895

5.3 The Performance II: “Two-Way Crossed Design”

In this section we approach the test for the performance of Sub-D and Sub-DI in an unbalanced “two-

way crossed design” with no interaction (a MLM with three variance components), comparing it to

the ones of REML and ANOVA. Consider the the “two-way crossed design” (with no interaction)

z = Xµ +X1β1 +X2β2 + e, (5.3)

where z∼ (Xµ , γ1N1 + γ2N2 + γ3I12), with N j = X jX>j , j = 1,2, whose design matrices are

X = 112, X1 =

13 03 03

05 15 05

04 04 14

 , and X2 =



12 02 02

03 13 03

04 04 14

1 0 0

0 1 0

1 0 0


.

Let Bo be a matrix whose columns are the eigenvectors associated to the null eigenvalues of
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1
12 J12. Then, since BoB>o = I12− 1

12 J12 and B>o Bo = I11, the new model to be approached will be

y = B>o z∼ (011, γ1M1 + γ2M2 + γ3I11) ,

where Md = B>o NdBo, d = 1,2.

The eigenvalues of M1 = B>o NdBo are θ11 = 4.5000, θ12 = 3.3333 and θ13 = 0. θ13 has root

equal to 9. Recalling that A11, A12 and A13 are matrices whose columns are the eigenvectors

associated to the eigenvalues θ11, θ12 and θ13, respectively, we have that M2
11 = A11M2A>11 =

1.23809 and M2
22 = A12M2A>12 = 0.52857 are 1× 1 matrices, and M2

33 = A13M2A>13 is a 9× 9

matrix.

For the matrices M2
11, M2

22 and M2
33 we have the following: M2

11 has eigenvalue θ211 = 1.23809;

M2
22 has eigenvalue θ221 = 0.52857; M2

33 has 3 eigenvalues: θ231 = 3.96142; θ232 = 2.27191;

θ233 = 0. θ233 has multiplicity equal to 7.

Finally we found that Θ =


4.5000 1.23809 1

3.33333 0.52857 1

0 3.96142 1

0 2.27191 1

0 0 1

.

Assuming βi ∼N (03, γiI3), i = 1,2, and e ∼N (012, I12), for each pair of γ1 and γ2 taking

values in {0.1, 0.25, 0.5, 1, 2, 5, 10} and γ3 = 1 fixed, the model in (5.3) is observed 1000 times

and for each observation the four methods Sub-D, Sub-DI, REML and ANOVA are applied and

the variance components γ1, γ2, and γ3 (error) estimated. See Tables 5.9, 5.11, and 5.13 for

the respective average of the estimated values of γ1, γ2, and γ3. For the mean square error of the

respective estimated values see Tables 5.10, 5.12, and 5.14.

As it may be pointed out, Sub-D and Sub-DI estimators provided accurate estimates for all

the parameters γ1, γ2 and γ3 while, similarly to what happened in the “one-way designs”, REML

estimator provided accurate estimates for γ1, γ2,γ3 ∈ {1, 2, 5} but however not so accurate as

those provided by Sub-D and Sub-DI. For γ1, γ2, γ3 ∈ {0.1,0.25, 0.5} REML produced estimates

with low accuracy. All the tree estimators, Sub-D, Sub-DI, and REML, produces comparable and

accurate estimates for γ3. It must be pointed out, however, that the estimates produced with Sub-D

and Sub-DI have a slightly higher standard deviation than the ones produced with REML. Despite

their accuracy, as seen from the Tables 5.9, 5.11, and 5.13, the estimates produced with Sub-DI

have in general smaller mean square error than those produced with Sub-D, as it was expected;

indeed, for γ2 and γ3 it is clearly that Sub-DI produces estimates with smaller mean square error

than Sub-D, whereas for γ1 the mean square error are somewhat comparable.

The ANOVA estimator provided acceptable estimates for γ1 (although with low accuracy) but

for γ2 and γ3 the estimates provided are extremely unrealistic in such a way that we may not be

interested in apply such a method in any study for which there may have empty cells in the model.
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5.4 The Performance III: “Two-Way Nested Design”

In this section we test for the performances of Sub-D and Sub-D in an unbalanced “two-way nested

design” (which is a MLM with three variance components) with some empty cells, comparing them

to the ones of REML and ANOVA.

Supposing that the data come from the “two-way nested design”

z = Zµ +Z1β1 +Z2β2 + e, (5.4)

where z∼ (Zµ , γ1N1 + γ2N2 + γ3I12), with N j = Z jZ>j , j = 1,2, whose design matrices are

Z = 112, Z1 =

14 04 04

05 15 05

03 03 13

 , and Z2 =


12 02 02 02

04 14 04 04

03 03 13 03

03 03 03 13

 .

Letting Bo be the matrix defined in Section 5.4, holding therefore BoB>o = I12− 1
12 J12 and B>o Bo =

I11, the new model to be approached will be

y = B>o z∼ (011, γ1M1 + γ2M2 + γ3I11) ,

where Md = B>o NdBo, d = 1,2.

The eigenvalues of M1 are θ11 = 4.5000, θ12 = 3.3333 and θ13 = 0. θ13 has root equal to

9. We have that M2
11 = A11M2A>11 = 1.5 and M2

22 = A12M2A>12 = 2.9333 are 1× 1 matrices, and

M2
33 = A13M2A>13 is a 9×9 matrix.

For the matrices M2
11, M2

22 and M2
33 we have the following: M2

11 has eigenvalue θ211 = 1.5000;

M2
22 has eigenvalue θ221 = 2.9333; M2

33 has 4 eigenvalues: θ231 = 3.3135; θ232 = 1.0864; θ233 = 0.

θ233 has multiplicity equal to 7.

The matrix Θ is given by Θ =


4.5000 1.5000 1

3.33333 2.9333 1

0 3.3136 1

0 1.0864 1

0 0 1

 . Assuming β1 ∼N (03, γ1I3), β2 ∼

N (04, γ2I4) , and e∼N (012, I12), for each pair of γ1 and γ2 taking values in

{0.25, 0.5, 0.75, 1, 2, 5} and γ3 = 1 fixed, the model in (5.4) is observed 10000 times. For each

observation the four methods Sub-D, Sub-DI, REML and ANOVA are applied and the variance

components γ1, γ2, and γ3 (error) are estimated. See Tables 5.15, 5.17, and 5.19 for the average of

the estimated values of γ1, γ2, and γ3. For the standard deviation of the respective estimated values

see Tables 5.16, 5.18, and 5.20.

Taking a look at Tables 5.15, 5.17, and 5.19, and comparing the averages of the estimated

values from the Sub-D and Sub-DI methods to the ones of the REML and ANOVA, the reader

may easily reaches the conclusion that the only ones accurate estimates are the ones provided by

Sub-D and Sub-DI. More over, both REML and ANOVA methods provided estimates with low

accuracy, being that ANOVA produces unrealistic estimates, as we may see by looking to those of
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γ1; therefore, as suggested by the results, the Sub-D and Sub-DI estimators are the preferred ones.

Once again, Tables 5.16, 5.18, and 5.20, evidence that the estimates produced by Sub-DI have

in general smaller mean square error than those produced by Sub-D, as it was suspected; indeed,

it is clearly that Sub-DI produces estimates with smaller mean square errors than Sub-D for all

parameters γ1, γ2 and γ3.

In general, we may point out that Sub-D and Sub-DI kept a constant and accurate performance

towards all designs approached here.
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Table 5.9: Estimation on unbalanced “two-way crossed design”: estimate for γ1.

γ1\γ2 0.1 0.25 0.5 0.75 1 2 5

0.1

Sub-D
Sub-DI
REML

ANOVA

0.1020
0.1029
0.1954
0.1049

0.0966
0.0953
0.1979
0.1006

0.1025
0.1034
0.2081
0.1124

0.1022
0.1022
0.2076
0.1176

0.1020
0.1007
0.2145
0.1243

0.0933
0.0967
0.2128
0.1438

0.0985
0.0964
0.2185
0.2073

0.25

Sub-D
Sub-DI
REML

ANOVA

0.2561
0.2568
0.3248
0.2588

0.2523
0.2526
0.3318
0.2591

0.2528
0.2529
0.3288
0.2595

0.2474
0.2458
0.3381
0.2653

0.2542
0.2550
0.3372
0.2721

0.2583
0.2589
0.3494
0.3029

0.2589
0.2650
0.3536
0.3770

0.5

Sub-D
Sub-DI
REML

ANOVA

0.5089
0.5072
0.5599
0.5078

0.4920
0.4916
0.5498
0.4956

0.4909
0.4878
0.5594
0.5019

0.4983
0.4951
0.5739
0.5178

0.4879
0.4863
0.5608
0.5095

0.4974
0.5006
0.5822
0.5538

0.4971
0.5037
0.5763
0.6147

0.75

Sub-D
Sub-DI
REML

ANOVA

0.7548
0.7570
0.7946
0.7583

0.7598
0.7578
0.8055
0.7632

0.7544
0.7552
0.8015
0.7661

0.7583
0.7616
0.8044
0.7715

0.7512
0.7507
0.8136
0.7781

0.7406
0.7403
0.8131
0.7974

0.7630
0.7565
0.8140
0.8658

1

Sub-D
Sub-DI
REML

ANOVA

1.0148
1.0185
1.0424
1.0178

0.9784
0.97985
1.0167
0.9852

1.0245
1.0238
1.0487
1.0258

1.0153
1.0182
1.0580
1.0376

1.0191
1.0280
1.0473
1.0441

1.0330
1.0345
1.0479
1.0665

0.9971
0.9840
1.0682
1.1033

2

Sub-D
Sub-DI
REML

ANOVA

2.0089
2.0113
2.0369
2.0209

1.9906
1.9906
2.0153
2.0003

2.0344
2.0335
2.0459
2.0396

1.9651
1.9697
1.9837
1.9877

1.9832
1.9844
2.0303
2.0202

1.9749
1.9823
1.9997
2.0301

1.9980
2.0032
2.0259
2.1150

5

Sub-D
Sub-DI
REML

ANOVA

4.9369
4.9358
4.9537
4.9476

5.0755
5.0829
5.0854
5.0915

4.9950
4.9925
4.9756
4.9851

4.9530
4.9561
4.9554
4.9653

4.9347
4.9337
4.9729
4.9725

4.9842
4.9833
4.9930
5.0262

5.011
5.0243
5.0284
5.1425
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Table 5.10: Estimation on unbalanced “two-way crossed design”: mean square error of γ1.

γ1\γ2 0.1 0.25 0.5 0.75 1 2 5

0.1

Sub-D
Sub-DI
REML

ANOVA

0.4265
0.4384
0.3588
0.3981

0.4653
0.4947
0.3646
0.4287

0.5451
0.6005
0.3829
0.4976

0.6043
0.6866
0.3808
0.5516

0.6766
0.7888
0.3993
0.6242

0.8785
1.1236
0.3946
0.8707

1.4192
2.0992
0.4053
1.6423

0.25

Sub-D
Sub-DI
REML

ANOVA

0.5885
0.5979
0.5047
0.5454

0.6425
0.6684
0.5318
0.5908

0.6946
0.7474
0.5215
0.6284

0.7692
0.801
0.5380
0.6967

0.8473
0.9610
0.5388
0.7663

1.0855
1.3219
0.5617
1.0306

1.6419
2.2891
0.5611
1.7816

0.5

Sub-D
Sub-DI
REML

ANOVA

0.8737
0.8773
0.7730
0.7974

0.8952
0.9133
0.7619
0.8067

0.9688
1.0161
0.7809
0.8751

1.0374
1.1112
0.7920
0.9316

1.1045
1.2080
0.7943
0.9935

1.3920
1.6215
0.8305
1.2856

2.0089
2.6554
0.8204
2.0502

0.75

Sub-D
Sub-DI
REML

ANOVA

1.1637
1.1646
1.0399
1.0660

1.2015
1.2206
1.0308
1.0858

1.2532
1.2951
1.0412
1.1282

1.3624
1.4427
1.0481
1.2137

1.4050
1.5141
1.0644
1.2711

1.6609
1.8935
1.0664
1.5166

2.3786
2.9986
1.0884
2.3151

1

Sub-D
Sub-DI
REML

ANOVA

1.4102
1.4091
1.2619
1.2879

1.4306
1.4447
1.2679
1.2987

1.5823
1.6264
1.3061
1.4086

1.5741
1.6434
1.3037
1.4221

1.6999
1.8053
1.3290
1.5291

1.9768
2.2082
1.3277
1.7784

2.602
3.1934
1.3394
2.4834

2

Sub-D
Sub-DI
REML

ANOVA

2.5588
2.5395
2.3262
2.3408

2.5064
2.4985
2.2226
2.2589

2.7236
2.7428
2.3279
2.4200

2.7200
2.7724
2.3147
2.4490

2.7397
2.8164
2.3379
2.4808

3.0712
3.2845
2.3153
2.7471

3.9100
4.4813
2.3499
3.5315

5

Sub-D
Sub-DI
REML

ANOVA

5.8325
5.7587
5.2549
5.2852

6.0874
6.0489
5.4043
5.4842

6.1362
6.0841
5.2836
5.4189

6.0655
6.0547
5.2692
5.4136

6.1062
6.1438
5.3028
5.4887

6.4789
6.6297
5.4262
5.8101

7.2090
7.7095
5.3899
6.4425
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Table 5.11: Estimation on unbalanced “two-way crossed design”: estimates for γ2.

γ1\γ2 0.1 0.25 0.5 0.75 1 2 5

0.1

Sub-D
Sub-DI
REML

ANOVA

0.0924
0.0956
0.1881
0.0514

0.2588
0.2539
0.3224
0.1420

0.5071
0.5107
0.5575
0.2843

0.7379
0.7380
0.7758
0.3979

1.0085
1.0036
1.0277
0.5417

2.0307
2.0434
2.0654
1.1056

4.9809
4.9732
4.9705
2.7132

0.25

Sub-D
Sub-DI
REML

ANOVA

0.1006
0.1034
0.1995
0.0540

0.2566
0.2576
0.3355
0.1398

0.5152
0.5154
0.5644
0.2856

0.7577
0.7520
0.7967
0.3970

0.9986
1.0014
1.0303
0.5487

2.0215
2.0237
2.0357
1.0844

4.9437
4.9660
4.9766
2.7067

0.5

Sub-D
Sub-DI
REML

ANOVA

0.1020
0.0969
0.1978
0.0517

0.2546
0.2533
0.3375
0.1336

0.5117
0.5005
0.5669
0.2677

0.7528
0.7410
0.8003
0.4025

0.9874
0.9815
1.0284
0.5341

1.9948
2.0068
2.0320
1.0760

4.9851
5.0096
5.0399
2.7609

0.75

Sub-D
Sub-DI
REML

ANOVA

0.1051
0.1129
0.2173
0.0616

0.2540
0.2469
0.3330
0.1337

0.4884
0.4913
0.5588
0.2584

0.7529
0.7650
0.7988
0.4105

0.9888
0.9869
1.0323
0.5353

2.0423
2.0411
2.0682
1.0855

5.1110
5.0871
5.0763
2.7212

1

Sub-D
Sub-DI
REML

ANOVA

0.0893
0.1029
0.2029
0.0609

0.2433
0.2487
0.3349
0.1380

0.5175
0.5149
0.5642
0.2752

0.7388
0.7494
0.8046
0.4042

0.9771
1.0096
1.0395
0.5536

2.0575
2.0633
2.0483
1.1185

4.9926
4.9445
4.9404
2.6696

2

Sub-D
Sub-DI
REML

ANOVA

0.0927
0.1015
0.2189
0.0557

0.2475
0.2475
0.3417
0.1343

0.5193
0.5160
0.5783
0.2752

0.7497
0.7665
0.8136
0.4220

0.9790
0.9833
1.0361
0.5321

1.9829
2.0101
2.0231
1.0912

5.0865
5.1056
5.1289
2.7774

5

Sub-D
Sub-DI
REML

ANOVA

0.0922
0.0879
0.2143
0.0421

0.2319
0.2591
0.3387
0.1390

0.5240
0.5150
0.5661
0.2734

0.7410
0.7525
0.7996
0.4205

0.9817
0.9778
1.0304
0.5286

2.0399
2.0365
2.0571
1.1144

4.9576
5.0062
5.0435
2.7291
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Table 5.12: Estimation on unbalanced “two-way crossed design”: mean square error of γ2.

γ1\γ2 0.1 0.25 0.5 0.75 1 2 5

0.1

Sub-D
Sub-DI
REML

ANOVA

0.5008
0.4142
0.3424
0.3620

0.7061
0.5659
0.5043
0.4709

1.0061
0.8098
0.7603
0.6759

1.3086
1.0468
0.9840
0.8699

1.6618
1.3235
1.2595
1.0744

2.9127
2.3450
2.3142
1.9233

6.8080
5.3876
5.2795
4.4902

0.25

Sub-D
Sub-DI
REML

ANOVA

0.5350
0.4660
0.3615
0.3978

0.7178
0.6112
0.5258
0.5040

1.0312
0.8576
0.7803
0.7058

1.3329
1.1750
1.0312
0.8980

1.6886
1.3794
1.2999
1.1144

2.9682
2.3622
2.2881
1.8964

6.7244
5.3736
5.2680
4.5355

0.5

Sub-D
Sub-DI
REML

ANOVA

0.6005
0.5388
0.3600
0.4560

0.7483
0.6698
0.5283
0.5449

1.0783
0.9255
0.7967
0.7536

1.3944
1.1862
1.0581
0.9562

1.6789
1.3942
1.2773
1.1415

2.9889
2.4615
2.3164
1.9774

6.8052
5.5450
5.4290
4.5846

0.75

Sub-D
Sub-DI
REML

ANOVA

0.6936
0.6436
0.4020
0.5295

0.8316
0.7701
0.5319
0.6219

1.0757
0.9785
0.7876
0.7901

1.3991
1.2404
1.0421
0.9963

1.6769
1.4622
1.2745
1.1892

3.0952
2.5848
2.4075
2.0226

6.9255
5.6195
5.3686
4.5250

1

Sub-D
Sub-DI
REML

ANOVA

0.7509
0.7139
0.3744
0.5922

0.8828
0.8383
0.5316
0.6761

1.1666
1.0946
0.7815
0.8661

1.4571
1.3171
1.0618
1.0470

1.7414
1.5755
1.3003
1.2547

3.0626
2.6295
2.3582
2.1240

6.8400
5.5654
5.2727
4.5393

2

Sub-D
Sub-DI
REML

ANOVA

1.1915
1.1034
0.4044
0.8395

1.2631
1.1835
0.5505
0.9103

1.5131
1.4475
0.8176
1.0754

1.7181
1.6422
1.0615
1.2759

1.9761
1.8429
1.2938
1.4361

3.1884
2.9196
5.5311
4.8245

7.1184
6.0685
5.5311
4.8245

5

Sub-D
Sub-DI
REML

ANOVA

2.4776
2.1245
0.3972
1.5199

2.5930
2.3748
0.5339
1.7097

2.6931
2.4603
0.8068
1.7869

2.8484
2.6703
1.0770
1.9590

3.0409
2.8962
1.2965
2.1322

3.8888
3.8043
2.3694
2.9358

7.3530
6.7677
5.4310
5.3588
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Table 5.13: Estimation on unbalanced “two-way crossed design”: estimates for γ3.

γ1\γ2 0.1 0.25 0.5 0.75 1 2 5

0.1

Sub-D
Sub-DI
REML

ANOVA

1.0003
0.9936
0.8743
1.0269

0.9809
0.9909
0.8820
1.0704

0.9931
0.9859
0.8963
1.1515

0.9953
0.9951
0.9071
1.2355

0.9823
0.9923
0.9017
1.3111

1.0235
0.9978
0.9111
1.6450

0.9783
0.9939
0.9130
2.5577

0.25

Sub-D
Sub-DI
REML

ANOVA

0.9958
0.9903
0.8841
1.0271

0.9979
0.9958
0.8934
1.0750

0.9869
0.9864
0.9149
1.1578

0.9942
1.0058
0.9151
1.2441

0.9884
0.9827
0.9232
1.3100

0.9953
0.9907
0.9300
1.6468

1.0459
1.0006
0.9356
2.5643

0.5

Sub-D
Sub-DI
REML

ANOVA

0.9818
0.9941
0.8971
1.0287

0.9909
0.9936
0.9074
1.0787

0.9936
1.0163
0.9241
1.1663

1.0054
1.0293
0.9287
1.2403

1.0037
1.0159
0.9361
1.3161

1.0508
1.0264
0.9478
1.6528

1.0629
1.0133
0.9523
2.5637

0.75

Sub-D
Sub-DI
REML

ANOVA

1.0076
0.9918
0.9047
1.0333

0.9913
1.0056
0.9207
1.0825

1.0133
1.0074
0.9373
1.1680

0.9953
0.9706
0.9440
1.2411

1.0205
1.0242
0.9441
1.3190

1.0277
1.0303
0.9518
1.6661

0.9388
0.9872
0.9663
2.6409

1

Sub-D
Sub-DI
REML

ANOVA

1.0097
0.9821
0.9112
1.0239

1.0119
1.0009
0.9280
1.0813

0.9637
0.9688
0.9411
1.1611

1.0189
0.9975
0.9376
1.2311

1.0232
0.9573
0.9470
1.3000

0.9327
0.9210
0.9573
1.6266

0.9450
1.0425
0.9725
2.5923

2

Sub-D
Sub-DI
REML

ANOVA

1.0289
1.0110
0.9099
1.0284

1.0108
1.0108
0.9321
1.0819

0.9801
0.9868
0.9511
1.1673

1.0254
0.9913
0.9564
1.2352

1.0462
1.0376
0.9550
1.3151

1.0443
0.9891
0.9714
1.6297

1.0425
1.0040
0.9810
2.6166

5

Sub-D
Sub-DI
REML

ANOVA

1.0208
1.0295
0.9165
1.0349

1.0414
0.9863
0.9378
1.0757

0.9286
0.9469
0.9563
1.1596

0.9929
0.9698
0.9582
1.2189

1.0531
1.0608
0.9766
1.3304

0.9930
1.0000
0.9851
1.6437

1.1287
1.0302
0.9949
2.5896
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Table 5.14: Estimation on unbalanced “two-way crossed design”: mean square error of γ3.

γ1\γ2 0.1 0.25 0.5 0.75 1 2 5

0.1

Sub-D
Sub-DI
REML

ANOVA

0.8624
0.8218
0.4491
0.5334

0.9828
0.9053
0.4583
0.5907

1.239
1.0368
0.4644
0.6873

1.4553
1.1662
0.4620
0.7884

1.7420
1.2860
0.4657
0.9241

2.826
1.6812
0.4680
1.5014

5.937
2.5478
0.4744
3.1818

0.25

Sub-D
Sub-DI
REML

ANOVA

1.0037
0.9729
0.4575
0.5500

1.1400
1.0854
0.4631
0.5915

1.3434
1.2086
0.4707
0.7033

1.5773
1.3110
0.4757
0.8204

1.8297
1.4999
0.4709
0.9572

2.8760
1.9449
0.4856
1.5076

5.9856
2.9199
0.4824
3.1751

0.5

Sub-D
Sub-DI
REML

ANOVA

1.2462
1.2250
0.4578
0.5669

1.3516
1.3353
0.4678
0.6233

1.5495
1.4732
0.4789
0.7260

1.8026
1.6623
0.4819
0.8464

2.0044
1.7873
0.4838
0.9610

3.0443
2.3800
0.4903
1.5279

6.1719
3.5615
0.5002
3.2260

0.75

Sub-D
Sub-DI
REML

ANOVA

1.5570
1.4990
0.4645
0.6051

1.6491
1.6254
0.4739
0.6566

1.8059
1.7820
0.4866
0.7555

2.0345
1.9825
0.4868
0.8823

2.2366
2.1356
0.4911
0.9918

3.2449
2.7443
0.4999
1.6313

6.3159
4.0825
0.5051
3.3963

1

Sub-D
Sub-DI
REML

ANOVA

1.8128
1.7232
0.4772
0.6363

1.8726
1.8410
0.4804
0.6888

2.0869
2.1071
0.4878
0.7912

2.3070
2.2386
0.4924
0.8945

2.4787
2.4644
0.4960
1.0267

3.3826
3.0640
0.5038
1.5860

6.2802
4.4107
0.5131
3.3086

2

Sub-D
Sub-DI
REML

ANOVA

3.1543
2.8608
0.4728
0.7463

3.1371
2.8984
0.4821
0.7937

3.3679
3.2357
0.4926
0.9030

3.4201
3.3407
0.5029
1.0189

3.5698
3.5079
0.5059
1.1494

4.3222
4.3117
0.5181
1.7062

7.2249
6.1946
0.5269
3.5398

5

Sub-D
Sub-DI
REML

ANOVA

6.9049
5.8670
0.4761
1.1629

7.1216
6.3473
0.4928
1.2871

7.1263
6.3308
0.4985
1.3445

7.2161
6.5306
0.5054
1.4426

7.3574
6.8999
0.5282
1.6024

7.8234
7.6876
0.5276
2.1386

10.051
9.9917
0.5354
3.7606
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5.4. THE PERFORMANCE III: “TWO-WAY NESTED DESIGN”

Table 5.15: Estimation on unbalanced “two-way nested design”: estimate for γ1.

γ1\γ2 0.1 0.25 0.5 0.75 1 2 5

0.1

Sub-D
Sub-DI
REML

ANOVA

0.1005
0.1002
0.1878
0.0955

0.1050
0.1044
0.2307
0.0823

0.0994
0.0994
0.2766
0.0512

0.1025
0.1022
0.3363
0.0427

0.0865
0.0861
0.3655
-0.001

0.1032
0.1054
0.5556
-0.064

0.1128
0.1112
0.8387
-0.311

0.25

Sub-D
Sub-DI
REML

ANOVA

0.2440
0.2439
0.3022
0.2380

0.2465
0.2468
0.3441
0.2224

0.2527
0.2535
0.4087
0.2142

0.2464
0.2458
0.4545
0.1754

0.2355
0.2364
0.4928
0.1499

0.2642
0.2652
0.6744
0.0975

0.2287
0.2314
0.9984
-0.193

0.5

Sub-D
Sub-DI
REML

ANOVA

0.5041
0.5049
0.5309
0.5010

0.4916
0.4924
0.5474
0.4741

0.4961
0.4953
0.6022
0.4574

0.4965
0.4957
0.6565
0.4303

0.5024
0.5033
0.7088
0.4127

0.4861
0.4861
0.8705
0.3081

0.4419
0.4417
1.2005
-0.005

0.75

Sub-D
Sub-DI
REML

ANOVA

0.7471
0.7470
0.7380
0.7455

0.7419
0.7428
0.7769
0.7269

0.7532
0.7543
0.8407
0.7143

0.7403
0.7411
0.8720
0.6787

0.7357
0.7356
0.9159
0.6389

0.7411
0.7410
1.0833
0.5777

0.7291
0.7336
1.4658
0.3002

1

Sub-D
Sub-DI
REML

ANOVA

1.0014
1.0019
0.9833
0.9933

1.0022
1.0024
1.0145
0.9790

1.0040
1.0038
1.0595
0.9590

0.9797
0.9791
1.0856
0.9267

1.0106
1.0116
1.1626
0.9301

0.9931
0.9908
1.3046
0.8230

1.0169
1.0099
1.6756
0.5597

2

Sub-D
Sub-DI
REML

ANOVA

1.9613
1.9614
1.8956
1.9580

2.0174
2.0176
1.9745
1.9990

1.9894
1.9898
1.9749
1.9537

1.9769
1.9775
2.0145
1.9204

2.0024
2.0009
2.0465
1.9087

1.9596
1.9595
2.1666
1.7868

2.0267
2.0305
2.6138
1.6325

5

Sub-D
Sub-DI
REML

ANOVA

4.9632
4.9647
4.8168
4.9539

4.9570
4.9605
4.8326
4.9463

5.0111
5.0112
4.8870
4.9743

4.9951
4.9953
4.9012
4.9586

4.9934
4.9972
4.9277
4.9002

5.0276
5.0244
4.9684
4.8368

5.0872
5.0877
5.3729
4.6882
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Table 5.16: Estimation on unbalanced “two-way nested design”: mean square error of γ1.

γ1\γ2 0.1 0.25 0.5 0.75 1 2 5

0.1

Sub-D
Sub-DI
REML

ANOVA

0.4823
0.4732
0.3784
0.5474

0.6032
0.5874
0.4774
0.6965

0.7565
0.7312
0.5694
0.8976

0.9087
0.8767
0.7079
1.1088

1.0671
1.0255
0.7979
1.3164

1.7920
1.7112
1.2920
2.2438

3.8020
3.6133
2.3357
4.8475

0.25

Sub-D
Sub-DI
REML

ANOVA

0.6414
0.6318
0.5469
0.6821

0.7373
0.7213
0.5980
0.7998

0.8689
0.8451
0.7259
0.9944

1.0575
1.0220
0.8357
1.2292

1.2085
1.1658
0.9493
1.4417

1.9021
1.8201
1.4138
2.3408

3.8404
3.6498
2.4919
4.8712

0.5

Sub-D
Sub-DI
REML

ANOVA

0.8836
0.8726
0.7898
0.8871

0.9841
0.9668
0.8508
1.0061

1.1247
1.0975
0.9616
1.2032

1.2802
1.2437
1.0747
1.4175

1.4522
1.4039
1.1706
1.6217

2.0756
1.9944
1.6070
2.4858

4.0664
3.8780
2.7156
5.1019

0.75

Sub-D
Sub-DI
REML

ANOVA

1.1585
1.1443
1.0213
1.1167

1.2509
1.2300
1.1172
1.2337

1.3920
1.3629
1.2452
1.4401

1.5241
1.4829
1.3262
1.6081

1.6893
1.6385
1.4209
1.8307

2.3507
2.2604
1.8737
2.7058

4.2620
4.0597
2.8391
5.2088

1

Sub-D
Sub-DI
REML

ANOVA

1.4420
1.4269
1.3255
1.3842

1.5296
1.5052
1.3706
1.4725

1.6994
1.6664
1.5002
1.6990

1.7580
1.7167
1.5519
1.8102

1.9792
1.9240
1.7390
2.0701

2.5305
2.4373
2.0728
2.8370

4.5685
4.3645
3.1299
5.4976

2

Sub-D
Sub-DI
REML

ANOVA

2.5265
2.4966
2.2974
2.3289

2.7061
2.6699
2.4571
2.5237

2.7276
2.6825
2.4979
2.5932

2.8952
2.8426
2.6624
2.8225

3.0893
3.0259
2.7361
3.0326

3.5652
3.4619
3.06338
3.7374

5.4697
5.2523
4.2182
6.2409

5

Sub-D
Sub-DI
REML

ANOVA

5.9223
5.8617
5.2967
5.3516

5.8785
5.8185
5.3841
5.4092

6.1256
6.0471
5.5423
5.6219

6.1631
6.0748
5.6354
5.7504

6.2676
6.1719
5.6455
5.8311

6.8900
6.7518
6.0925
6.5798

8.5391
8.2930
7.0896
8.9226
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5.4. THE PERFORMANCE III: “TWO-WAY NESTED DESIGN”

Table 5.17: Estimation on unbalanced “two-way nested design”: estimates for γ2.

γ1\γ2 0.1 0.25 0.5 0.75 1 2 5

0.1

Sub-D
Sub-DI
REML

ANOVA

0.1033
0.1049
0.1744
0.0926

0.2434
0.2477
0.2841
0.2494

0.5013
0.5015
0.4852
0.5169

0.7667
0.7688
0.6858
0.7568

1.0028
1.0051
0.8812
1.0020

2.0369
2.0216
1.7468
2.0115

4.9549
4.9668
4.4893
4.9748

0.25

Sub-D
Sub-DI
REML

ANOVA

0.1103
0.1110
0.2108
0.1074

0.2482
0.2456
0.3067
0.2534

0.5032
0.4978
0.4926
0.4943

0.7483
0.7523
0.7055
0.7642

1.0059
0.9993
0.8970
1.0002

2.0040
1.9968
1.7792
1.9995

5.0332
5.0141
4.5139
5.0265

0.5

Sub-D
Sub-DI
REML

ANOVA

0.1131
0.1074
0.2218
0.0958

0.2551
0.2498
0.3348
0.2441

0.4845
0.4899
0.5254
0.48175

0.7581
0.7635
0.7446
0.7608

0.9961
0.9894
0.9376
0.9998

2.0121
2.0121
1.8137
2.0276

5.0047
5.0060
4.5676
5.0654

0.75

Sub-D
Sub-DI
REML

ANOVA

0.1044
0.1050
0.2497
0.0903

0.2697
0.2635
0.3609
0.2530

0.5024
0.4952
0.5462
0.4956

0.7501
0.7446
0.7547
0.7431

0.9897
0.9901
0.9694
1.0164

2.0073
2.0078
1.8297
1.9975

4.9985
4.9666
4.5394
5.0074

1

Sub-D
Sub-DI
REML

ANOVA

0.1112
0.1079
0.2638
0.1099

0.2459
0.2447
0.3724
0.2504

0.5147
0.5166
0.5774
0.5110

0.7478
0.7520
0.7672
0.7280

0.9962
0.9892
0.9799
0.9867

2.0080
2.0242
1.8819
2.0164

4.9622
5.0120
4.6375
5.0636

2

Sub-D
Sub-DI
REML

ANOVA

0.0982
0.0973
0.2867
0.0875

0.2663
0.2643
0.4228
0.2603

0.5000
0.4975
0.6346
0.4896

0.7608
0.7560
0.8400
0.7446

0.9843
0.9952
1.0740
1.0077

2.0343
2.0348
1.9810
2.0368

4.9964
4.9695
4.6380
4.9383

5

Sub-D
Sub-DI
REML

ANOVA

0.0995
0.0883
0.3433
0.0977

0.2831
0.2586
0.4941
0.2584

0.5184
0.5175
0.7109
0.5014

0.7700
0.7682
0.9229
0.7160

0.9763
0.9497
1.1655
0.9969

1.9345
1.9576
2.1271
1.9866

5.0321
5.0287
4.9520
4.9750
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Table 5.18: Estimation on unbalanced “two-way nested design”: mean square error of γ2.

γ1\γ2 0.1 0.25 0.5 0.75 1 2 5

0.1

Sub-D
Sub-DI
REML

ANOVA

0.6236
0.5196
0.3528
0.6054

0.8331
0.6807
0.4768
0.7635

1.1512
0.9466
0.7113
1.0393

1.4745
1.2086
0.9196
1.2931

1.8100
1.4882
1.1388
1.5764

3.1769
2.5949
1.9727
2.7044

7.2599
5.9306
4.5617
6.0615

0.25

Sub-D
Sub-DI
REML

ANOVA

0.7007
0.5990
0.4161
0.6167

0.8978
0.741
0.5328
0.7668

1.1924
0.9837
0.7241
1.0017

1.5133
1.2330
0.9642
1.2860

1.8494
1.5144
1.1644
1.5576

3.1996
2.5994
2.0598
2.6786

7.1163
5.7695
4.6022
6.0029

0.5

Sub-D
Sub-DI
REML

ANOVA

0.8782
0.7422
0.4470
0.6114

1.0389
0.8656
0.5804
0.7499

1.3402
1.0983
0.7882
1.0136

1.6433
1.3409
1.0147
1.2850

2.0217
1.6405
1.2180
1.5805

3.2509
2.6526
2.0655
2.6401

7.2862
5.9341
4.6149
6.0117

0.75

Sub-D
Sub-DI
REML

ANOVA

1.0658
0.8984
0.5248
0.6055

1.2341
1.0425
0.6354
0.7572

1.5108
1.2595
0.8280
0.9951

1.7953
1.4571
1.0636
1.2793

2.1108
1.7122
1.2605
1.5701

3.4252
2.7794
2.1567
2.6446

7.2936
5.8989
4.6937
5.9878

1

Sub-D
Sub-DI
REML

ANOVA

1.2554
1.0666
0.5368
0.6101

1.4179
1.1751
0.6513
0.7594

1.6895
1.4013
0.8979
1.0497

1.9329
1.5766
1.0801
1.2529

2.2688
1.8329
1.3315
1.5476

3.5614
2.8857
2.2063
2.6593

7.5266
6.1418
4.8250
6.1121

2

Sub-D
Sub-DI
REML

ANOVA

2.0739
1.7178
0.6266
0.6082

2.2694
1.8725
0.8035
0.7518

2.4371
2.0036
1.0649
1.0119

2.6854
2.1914
1.2402
1.2731

2.9262
2.3979
1.4892
1.5731

4.1564
3.3339
2.4098
2.7114

7.8640
6.3360
4.9291
5.8598

5

Sub-D
Sub-DI
REML

ANOVA

4.5957
3.8065
0.9769
0.6181

4.7497
3.9031
1.1772
0.7661

4.9588
4.0163
1.3347
1.0261

5.1901
4.2035
1.6247
1.2456

5.3053
4.2878
1.8047
1.5493

6.2507
4.9624
2.8375
2.6080

9.8571
7.9472
5.6901
6.0478
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5.4. THE PERFORMANCE III: “TWO-WAY NESTED DESIGN”

Table 5.19: Estimation on unbalanced “two-way nested design”: estimates for γ3.

γ1\γ2 0.1 0.25 0.5 0.75 1 2 5

0.1

Sub-D
Sub-DI
REML

ANOVA

0.9815
0.9791
0.8826
0.9959

1.0177
1.0111
0.9095
1.0095

1.0219
1.0216
0.9195
1.0011

0.9874
0.9843
0.9207
0.9978

1.0086
1.0051
0.9391
1.0119

0.9553
0.9789
0.9328
0.9937

1.0438
1.0254
0.9527
1.0090

0.25

Sub-D
Sub-DI
REML

ANOVA

1.0039
1.0028
0.8993
1.0041

1.0021
1.0061
0.9047
0.9969

0.9884
0.9969
0.9197
0.9988

1.0163
1.0100
0.9276
0.9974

0.9953
1.0055
0.9410
1.0060

1.0021
1.0131
0.9496
1.0046

1.0009
1.0303
0.9539
1.0035

0.5

Sub-D
Sub-DI
REML

ANOVA

0.9774
0.9862
0.9021
0.9999

0.9996
1.0079
0.9255
1.0139

1.0029
0.9946
0.9284
1.0041

1.0024
0.9940
0.9327
0.9999

1.0026
1.0129
0.9429
1.0033

1.0110
1.0109
0.9455
0.9923

1.0859
1.0839
0.9634
1.0035

0.75

Sub-D
Sub-DI
REML

ANOVA

0.9982
0.9972
0.9157
1.0134

0.9856
0.9952
0.9230
1.0049

0.9924
1.0035
0.9322
0.9995

0.9819
0.9905
0.9304
0.9916

1.0218
1.0213
0.9380
0.9907

1.0028
1.0020
0.9665
1.0099

1.0037
1.0529
0.9559
0.9923

1

Sub-D
Sub-DI
REML

ANOVA

0.9978
1.0030
0.9087
0.9983

1.0037
1.0055
0.9184
0.9986

0.9807
0.9777
0.9224
0.9897

0.9813
0.9749
0.9418
1.0024

0.9895
1.0002
0.9488
1.0008

1.0231
0.9981
0.9653
1.0060

1.1419
1.0650
0.9712
1.0039

2

Sub-D
Sub-DI
REML

ANOVA

0.9974
0.9987
0.9193
1.0097

0.9951
0.9983
0.9269
0.9997

0.9888
0.9927
0.9339
0.9979

0.9738
0.9813
0.9383
0.9915

1.0314
1.0145
0.9562
1.0026

1.0010
1.0004
0.9662
0.9957

0.9424
0.9840
0.9818
1.0044

5

Sub-D
Sub-DI
REML

ANOVA

0.9958
1.0131
0.9157
1.0003

0.9704
1.0082
0.9256
0.9964

0.9861
0.9876
0.9479
1.0068

0.9414
0.9442
0.9501
0.9986

1.0225
1.0637
0.9574
1.0055

1.0565
1.0208
0.9706
0.9985

0.9437
0.9489
0.9934
1.0062
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Table 5.20: Estimation on unbalanced “two-way nested design”: mean square error of γ3.

γ1\γ2 0.1 0.25 0.5 0.75 1 2 5

0.1

Sub-D
Sub-DI
REML

ANOVA

0.8656
0.7868
0.4445
0.5277

1.0355
0.8909
0.4620
0.5402

1.2806
1.0543
0.4779
0.5420

1.4894
1.1441
0.4741
0.5336

1.7167
1.2998
0.4806
0.5365

2.7652
1.9424
0.4825
0.5273

6.1466
4.1094
0.5332
0.4935

0.25

Sub-D
Sub-DI
REML

ANOVA

0.9667
0.8847
0.4582
0.5359

1.0859
0.9527
0.4614
0.5319

1.3251
1.0892
0.4723
0.5328

1.5956
1.2460
0.4776
0.5276

1.8118
1.3850
0.4895
0.5376

2.9562
2.0989
0.4993
0.5386

6.1851
4.1439
0.5059
0.5391

0.5

Sub-D
Sub-DI
REML

ANOVA

1.1154
1.0054
0.4629
0.5356

1.2573
1.0816
0.4683
0.5361

1.4866
1.2242
0.4752
0.5341

1.7132
1.3387
0.4856
0.5352

1.9917
1.5103
0.4910
0.5340

3.0555
2.2089
0.5020
0.5322

6.3437
4.3396
0.5072
0.5327

0.75

Sub-D
Sub-DI
REML

ANOVA

1.3044
1.1359
0.4679
0.5421

1.4681
1.2640
0.4716
0.5328

1.6800
1.3995
0.4819
0.5373

1.9058
1.4955
0.4805
0.5260

2.1322
1.6309
0.4855
0.5237

3.2666
2.3706
0.5097
0.5418

6.423
4.3260
0.5101
0.5336

1

Sub-D
Sub-DI
REML

ANOVA

1.5138
1.3212
0.4704
0.5347

1.6392
1.3926
0.4692
0.5317

1.8546
1.5215
0.4805
0.5275

2.0969
1.6517
0.4953
0.5423

2.3808
1.8257
0.4971
0.5376

3.4153
2.4512
0.5053
0.5336

6.6557
4.5444
0.5154
0.5327

2

Sub-D
Sub-DI
REML

ANOVA

2.3981
1.9709
0.4698
0.5332

2.5889
2.1133
0.4761
0.5337

2.7542
2.2134
0.4882
0.5360

2.9721
2.3410
0.4817
0.5201

3.1300
2.4474
0.4967
0.5323

4.1260
3.0435
0.5117
0.5283

7.3119
5.0833
0.5328
0.5385

5

Sub-D
Sub-DI
REML

ANOVA

5.1947
4.1480
0.4759
0.5356

5.3592
4.2305
0.4796
0.5320

5.5787
4.3155
0.4937
0.5394

5.8248
4.5098
0.5029
0.5392

5.8859
4.5694
0.4996
0.5309

6.7661
5.0368
0.557
0.5326

9.7886
7.1337
0.5420
0.5313
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As pointed out before, REML is the preferred method for estimating variance components in MLM

(Diffey et al. [17]). In addition to its simple and fast computational implementation, once it depends

only on the information retained by the eigenvalues of the design matrices and the quadratic errors

of the sub-models, Sub-D provides unbiased estimates whether the data is balanced or unbalanced

and in both crossed and nested designs, even having empty cells. This is not the case of ANOVA

and REML estimators as seen through the tests carried out at the previous chapter.

As seen at Chapter 5, Sub-D estimator provides a slightly more accurate estimates (due to its

unbiasedness) than REML estimator in all the designs approached, having, in some case, a little

more dispersion (mostly in unbalanced models, but steel comparable; when the model is balanced

they have a little bit more comparable dispersion). This problem is attenuated with the introduction

of the Sub-DI estimator, which also produces unbiased estimates but with less dispersion than

Sub-D.

REML estimator does not look to have a good performance in nested designs (see section 5.4)

with low accurate estimates unlike Sub-D and Sub-DI which, as previously seen, provides accurate

estimates. The ANOVA estimator provides low accurat estimates in all the crossed and nested

designs as seen in previous chapter, it just seem to provide accurate estimates in “one-way designs”;

this is rightful since ANOVA uses fixed effect techniques. The reader must be aware that, despite

the samples considered are reasonably small, both the crossed and nested designs considered in the

numerical simulation have some empty cells, so that the estimators were taking to the extreme.

As a complement, we may remark that Sub-D and Sub-DI keep a somewhat constant perfor-

mance for all the models in which it was applied, providing always accurate estimates whereas

REML does not show a constant performance (for example, in a particular unbalanced “two - way

nested design” (see Section 5.4) REML provided non centered estimates). It also seems it have

better performance for variance components with values bigger than 1. For the ANOVA estimator,

the scenario is even worse, since it does provide non centered estimates in both nested and crossed
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design (see the both nested and crossed design approached in the previous chapter).

Since in any computational program (source code) when we are interested in share the code,

create package or use it repeatedly, we might consider its efficiency and, for this matter, the code

run-time constitutes a good start point. Doing so, to compute the estimates and the corresponding

standard deviation in each two-way designs considered here, with γ1, γ2 and γ3 taking values

in {0.25, 0.5, 0.75, 1, 2, 5}, for 10000 observations we found that the ANOVA, Sub-D and Sub-DI

run-times are about 1.2471, 2.06 and 4.3338 seconds respectively, while the REML estimator

run-time is about 6.2618 minutes, which means that the code for ANOVA and Sub-D are more than

187 times faster than the one for REML.

The process of sub-diagonalizing the variance-covariance matrix in different orders will be

considered in future works; more over, the following topics will also be considered in future works:

• Improving the variability of the estimated values obtained with Sub-D and Sub-DI;

• Confidence region and tests of hypothesis for the variance components.
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APPENDIX

A.1 Useful Results

A.1.1 Algebraic Results

Theorem A.1.1. Let A∈M n×n and let λ be its eigenvalue with correspondent eigenvector ν . Then

(a) λ m is an eigenvalue of Am corresponding to the eigenvector ν , where m is an integer that

m≥ 1.

(b) λ−1 is an eigenvalue of A−1 corresponding to the eigenvector ν , providing A is non-singular.

Proof. See Theorem 3.4 of Schott [64].

Theorem A.1.2. Let A ∈S n and let ν ∈Rn be any nonzero vector. Then the vector space spanned

(generated) by the vectors ν , Aν , . . ., Ar−1ν contains an eigenvector of A, for some r ≥ 1.

Proof. See Theorem 3.9 of Schott [64].

Theorem A.1.3. Let H ∈M n×n be a non-singular matrix with derivative ∂H/∂x. Then

∂
H−1

∂x
= H−1

∂
H
∂x

H−1.

Proof. Since A is non-singular, we have H−1H = 0n×n. Thus, ∂H−1

∂x H +H−1 ∂H
∂x = 0n×n, so that

∂H−1

∂x H = −H−1 ∂H
∂x , leading to ∂H−1

∂x = −H−1 ∂H
∂x H−1.

Theorem A.1.4. Let H ∈M n×n be a positive definite matrix. Then

∂ log |H|
∂x

= tr
(

H−1 ∂H
∂x

)
.

Proof.
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Theorem A.1.5. Let A ∈M n×p. Then

(a) A>A is positive definite, if r(A) = p.

(b) A>A is positive semi-definite, if r(A) = n.

Proof.

Theorem A.1.6. A positive definite matrix is non-singular.

Proof. See the Theorem 2.6c and its corollary in Rencher and Schaalje [62].

A.1.2 Statistical Results

Theorem A.1.7. Let y∈Rn and z∈Rm be random vectors with second moment such that E(y) = 0n

and E(z) = 0m. Then,

Σ(y,z) = E(yz>).

Proof.

Σ(y,z) = E
(
[y−E(y)][z−E(z)]>

)
= E(yz>)− yE(z)>−E(y)z>+E(y)E(z)>

= E(yz>) (A.1)

Theorem A.1.8. Let y∼N (µ , Σ), where µ ∈Rn, and consider A ∈M m×n a matrix of constants

and B ∈S n. Then

(a) z = Ay∼N (Aµ ,AΣA>);

(b) E(yBy) = tr(BΣ)+ µ>Bµ .

(c) z = Ay∼
(
Aµ , AΣA>

)
, provided y∼ (Aµ , Σ).

Proof. See Theorem 2.1.2 and Theorem 1.3.1 of Moser [48] for (a) and (c), respectively, and

Theorem 5.2a and 3.6d of Rencher and Schaalje [62] for (b). Typically it is assumed m≤ n.

Theorem A.1.9. Let y∼N (Xβ ,Σ), with Σ = ∑
r
i=1 γiZiZ>i + γr+1I, where X ∈M n×p is of rank

r ≤ p, and Σ ∈M n×n is a positive definite matrix.

Then a full-rank matrix K with maximal number of rows such that KX = 0, is in M (n−r)×n.

Furthermore, K must be of the form

K =C(I−H) =C
(

I−X(X>X)>
)

,

where C specifies a full-rank transformation of the rows of the matrix I−H.

Proof. See Theorem 17.4a. of Rencher and Schaalje [62].

90



A.1. USEFUL RESULTS

Theorem A.1.10. Let y ∼ (Xβ ,Σ), where Σ = ∑
r
i=1 γiZiZ>i + γr+1I, and consider the set B =

{Z1, . . . ,Zr} of known matrices Z1, . . . ,Zr. Then, if B is balanced and nested, y has OBS.

Proof. See Proposition 3.3. of VanLeeuwen at all [72].
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