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ABSTRACT

This work aim to introduce a new method of estimating the variance components in mixed
linear models. The approach will be done firstly for models with three variance components and
secondly attention will be devoted to general case of models with an arbitrary number of variance
components.

In our approach, we construct and apply a finite sequence of orthogonal transformations, here
named sub - diagonalizations, to the covariance structure of the mixed linear model producing a
set of Gauss-Markov sub-models which will be used to create pooled estimators for the variance
components. Indeed, in order to reduce the bias, we apply the sub - diagonalizations to its cor-
respondent restricted model, that is its projection onto the orthogonal subspace generated by the
columns of its mean design matrix. Thus, the Gauss - Markov sub-models will be centered. The
produced estimator will be called Sub-D.

Finally, the numerical behavior of the proposed estimator is examined for the case of models
with three variance components, comparing its performance to the ones obtained with the REML
and ANOVA estimators. Numerical results show that Sub-D produces reasonable and comparable
estimates, some times slightly better than those obtained with REML and mostly better than those
obtained with ANOVA.

Due to the correlation between the sub-models, the estimated variability of the variability of
Sub-D will be slightly bigger than the one of the REML estimator. In attempt to solve this problem

a new estimator will be introduced.

Keywords: Mixed Linear Models; Sub-diagonalizations; Variance components; Sub-D.
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RESUMO

Este trabalho pretende introduzir um novo método de estimacao das componentes da variincia
em modelos lineares mistos. Numa primeira instancia, aborda-se a estima¢do em modelos com trés
componentes da variancia. Seguidamente, foca-se no caso geral: estimag¢do em modelos com um
nimero arbitrario de componentes da variancia.

Na nossa abordagem, construimos e aplicamos uma sequéncia finita de transformacdes ortogo-
nais - aqui denominadas sub-diagonalizadoras - & estrutura da covariincia do modelo, produzindo
assim um conjunto de sub - modelos de Gauss-Markov que serdo usados para criar estimadores
agrupados. Na verdade, com o intuito de reduzir o viés, aplicamos as sub-diagonalizadoras ao
modelo restrito correspondente, isto é, a projecdo do complemento ortogonal no subspago gerado
pelas colunas da sua matriz do delineamento para a esperanca (parte dos efeitos fixos), pelo que
os sub-modelos de Gauss-Markov acima referidos terdo média nula. O estimador resultante sera
chamado de Sub-D.

Finalmente, examina-se o desempenho numérico do estimador proposto para o caso do modelo
com trés componentes da variincia, comparando-o com o dos estimadores REML e ANOVA.
Os resultados obtidos mostram que o nosso estimador (Sub-D) produz estimativas razovelmente
comparéveis, sendo, em alguns casos, ligeiramente melhores que os resultados obtidos com o
estimador REML e na maioria dos casos melhores que os obtidos com o estimador ANOVA.
Contudo, devido a dependéncia entre os sub-modelos, a variabilidade estimada serd ligeiramente
maior que a do estimador REML. Na tentativa de ultrapassar esse problema um novo estimador

sera introduzido.

Palavras-chave: Modelos lineares mistos; Sub-diagonalizadoras; Componentes da variancia; Sub-
D.
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CHAPTER

INTRODUCTION

Mixed linear models (MLM) have received much attention recently, namely because they constitute
an useful tool for modeling repeated measurement data, and, in particular, small sample and
longitudinal data (Wallace and Helms [27] developed procedures providing hypothesis tests and
confidence intervals for longitudinal data using MLM).

MLM arise due to the necessity of accessing the amount of variation caused by certain sources
in statistical designs with fixed effects (see Khuri [34]) for example the amount of variation that
are not controlled by the experimenter and those whose the levels are randomly selected from
a large population of levels. The variances of such sources of variation, currently refereed to as
variance components, have been widely investigated mainly in the last fifty years of the last century
(see Khuri and Sahai [35], Searle ([65], [66]), for example), and thanks to the proliferation of
research in applied areas such as genetic, animal and plant breeding, statistical process control and
industrial quality improvement (see Anderson ([2], [4], [3]), Anderson and Crump [6], Searle [65]
for instance) several techniques of estimation for the variances components have been proposed.
Among them we highlight the ANOVA and likelihood based method (see Searle at al. [67] and
Casella and Berger [14]), as well as those based on orthogonal block structure (OBS) (see Nelder
([57], [58]). Nevertheless, notwithstanding the ANOVA method adapt readily to mixed models
with balanced data and save the unbiasedness, it does not adapt in situation with unbalanced data
(mostly because it uses computations derived from fixed effect models rather than mixed models).
On its turn, the maximum likelihood - based methods provide estimators with several statistical
optimal properties such as consistency and asymptotic normality either for models with balanced
data, or for those with unbalanced data. For these optimal properties we recommend, for instance,
Miller ( [46], [47]) and for some details on applications of such methods we suggest Anderson [4]
and Hartley and Rao [25]. The OBS based method plays important role in the theory of randomized
block designs (see Calinski and Kageyama ([12], [13])).

This work focuses on developing a new method of estimating variance components in MLM. It

will be done firstly for models with 3 variances components, and secondly attention will be devoted
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CHAPTER 1. INTRODUCTION

to general case of models with an arbitrary number of variance components. In our approach, in
order to reduce the bias of our estimator, we will instead consider the orthogonal projection of the
normal MLM onto the subspace generated by the columns of its correspondent mean design matrix,
that is the restricted model. We construct and apply a finite sequence of orthogonal matrices to the
covariance structure of the restricted model thus producing a set of homoscedasticity sub-models
and then use that sub-models structure to developing the above announced estimator. For now
on the finite sequence of orthogonal matrices will be refereed to as sub-diagonalizations, and the
estimators developed here refereed to as Sub-D and Sub-DI, where Sub-DI is found in an attempt to
improve the Sub-D. Through this work sometimes we may have the need to refer to the underlying
deduction method of Sub-D and sometimes to the deducted estimator; when so, for the first case we
will refer to as Sub-D method, whereas for the second one as Sub-D estimator.

The firsts three Chapters of this work, Chapters 1, 2, and 3, are devoted to preliminary
notions and the literature review. The development of the estimators Sub-D and Sub-DI are done in
Chapter 4, and Chapter 5 is devoted to the numerical application for Sub-D and Sub-DI. Finally,

Chapter 6 is devoted to final comments and proposals for future works.



CHAPTER

ALGEBRAIC RESULTS

In this chapter we will review the elements of matrix theory needed in the remainder of the thesis,
especially in both chapter 3 and 4. The proofs of the results that seem, somehow, instructive will
be included. On the other hand, for the proofs of the remainder results we will always include
some references. Among them, we highlight Schott [64], Rao and Rao [61], and Rencher and
Schaalje [62].

We begin with the presentation of some basic notions on matrix theory in section 2.1 and next
we present results on orthogonal basis and projection matrices (section 2.2), followed by a brief
presentation and discussion of diagonalization of a symmetric Matrix. In section 2.3 the generalized
inverse matrix notions and some important results for the remainder chapter (see section 2.3).
Finally, at the last two sections (sections 2.4 and 2.5) discussion of needed notions and results on

Jordan algebra and on Kronecker product of matrices follow.

2.1 Notation And Preliminary Notions On Matrix Theory

Throughout this work we use the capital letter to represent a matrix and, when needed, the lower
case letter to represent a vector. Let .#"*"™ stands for the set of matrices with n rows and m columns.
Thereby, with A € .Z"*" we mean a matrix whose the dimension is characterized by n rows and m
columns, and the element in the row 0 < i < n and column 0 < j < m, that is, the (i, j)th element,

is a scalars or a variable, usually denoted by a;;.

Let
ayiy a2 ... Qaim
a)y adyp ... Ay
A=| -, 2.1)
ayl ap2 ... QApm

be a matrix in the standard form. If m = 1, A is said to be a vector, and denoted by a lower case

letter a instead of A. In this case we will write R” in place of .#Z"*!.

3



CHAPTER 2. ALGEBRAIC RESULTS

Interchanging the rows and columns of A € .Z"*™ the resulting matrix is said to be the
transpose matrix of A and is denoted by AT ; that is, A" is a matrix whose the element at row i and

column j is exactly the element at row j and column i of matrix A. So,

aip  asig anl

T daiz ax a2
A =

Aim A2m - Aum

If n = m, A is said to be a square matrix and when A is a square matrix with a;; = 0, for i # j,
A is said to be a diagonal matrix. Here we denote it by D(ayy, ... ,a,m) or just D when there is no
risk of misunderstanding. When a;; = 0, for all i and j, A is called a null matrix. We will represent
a null matrix by 0,,,,,.

Throughout this work we will assume the following notation for some especial matrices

(including the vectors):
e (0, denotes a vector in R” whose the entries are all equals to O;

e J,» denotes a matrix in € .Z"*™ whose the entries are all equals to 1; when n = m it will be
denoted J,;

e 1, denotes a vector in R” whose the entries are all equals to 1.

A diagonal matrix A whose the diagonal elements are all equal to one is called identity matrix.

We will denote it here by I,,, or just / when there is no risk of misunderstanding.

Definition 2.1.1. Let A € .Z™*"; that is, a square matrix. A is said to be a symmetric matrix if it
holds AT = A. Here we denote the set of all symmetric matrices in .4™" by .#".

For what follows it is assumed that the reader is familiarized with sum and product of matrices
(if not, see Lay [38] for instance). We will introduce several functions of matrix and discuss a few
of them, mainly those with direct implication on the remainder chapters. For this latter ones we
will present the notions and the main results. for the remaining ones we recommend Lay [38] or
Schott [64], for instance.

One of the matrix function with no direct implication in this work is | |, the determinant of a
square matrix (see Horn and Johnson [30] for this topic). Given a square matrix A, if |A| # 0, A is
said to be a non-singular matrix. See Schott [64] or Lay [38] for more explanation.

Another function defined over a square matrix is the trace function.

Definition 2.1.2. Let A € .#™*". The frace of A, denoted by 7r(A), is defined by

n
t}"(A) = Zass;
s=1

that is, the sum of the diagonal elements of A.



2.1. NOTATION AND PRELIMINARY NOTIONS ON MATRIX THEORY

The trace function plays an important role on statistic field, with some emphasis, for example,
on the distribution of quadratic forms (see Schott [64] or Rencher and Schaalje [62]). Indeed, given
arandom vector y € R" with mean vector ( and variance-covariance matrix X, and a symmetric

matrix A € ./#"™", the expectation of the quadratic form y' Ay, denoted by E(y ' Ay), is given by
E(y'Ay) = tr(AZ) + u"Zp. (2.2)

If y has finite fourth moment, we have that the variance-covariance matrix of y' Ay, denoted by
Y.(y'Ay), is given by
Z(y'Ay) =2 (tr([AZ]z) + ZuTAZA/.L) . (2.3)

The following result summarizes a few useful properties of the trace function.
Proposition 2.1.1. Let A,B € .#"™" and o € R. Then
(a) tr(AT) =tr(A);
(b) tr(A+aB) =tr(A) +tr(aB) =tr(A) + atr(B);
(¢) tr(AB) =tr(BA);
(d) tr(ATA) =0, if and only if A = O,

Proof. For (a) we only have to note that the diagonal element of A are the same as those of A" For
(b), with &, i = 1,...,n, denoting the diagonal elements of A + oB it follows that &; = a;; + otby;,
where a;; and b; denote the the diagonal elements of A and B, respectively. For (c), let A;, and A,
respectively denote the ith row and the jth column of the matrix A. Thus the element ¢;; of C = AB
will be

n
cij =AwwBej =Y aitbi
k=1

and the element d;; of D = BA will be

n
dij = Bivoj = Z bixai.
k=1

n

tr(AB) = 1r(C) =Y ci=) AiBoi=Y Y aubii=Y Y buaix =) BreAer = Y du
i=1 k=1 k=1

i=1 i=1k=1 k=1i=1
= tr(D) =tr(BA).

Finally, for (d), the sufficient condition is obviously once A = 0,,,, implies AT A = 0,,,,. Now, for

the necessary condition, with £ = AT and nothing that E;, = A,;, we will have

tr(ATA) = Z Z eixa = ZZ% (2.4)

i=1k=

||
HM:

Consequently, tr(ATA) = 0 holds if and only if a;; = O for all k and all i which means exactly
A=0,,. O



CHAPTER 2. ALGEBRAIC RESULTS

Definition 2.1.3. Let A € .Z"*" be a non-singular matrix. The unique matrix B such that
BA=AB=1,
is called the inverse matrix of matrix A, and denoted by AL

As seen we gave the above notion presupposing the existence and the uniqueness of the inverse
of a non-singular matrix. The proofs for these facts can be explored at Schottt [64].
Next we summarize a few basic useful properties of the inverse of a matrix in the following

proposition. They all can be easily proved using the above definition.
Proposition 2.1.2. Let A,B € .#"™*" be non-singular matrices, and & a nonzero scalar.
(@) (o) = 3A7";
(b) (A7) = (Afl)T’.
(@ () =4
(d) |A‘1] = i
(e) IfA is symmetric, then A= is symmetric; that is, A~ = (A=) T;
(f) (AB)"'=B~1A"1;
(g) IfA=D(ai,...,am), then A~ :D( 1 ,L>
Proof. See Schott [64], Theorem 1.6. O

Now we turn to what we may call inside structure of a matrix. Specifically, we will reveal a few
interesting and useful properties hidden in the matrix columns (rows).
Since each of the m columns of a matrix A € .#Z"*™ has n entries they may be identified with
aii
vectors in R" so that we may write A = [vy...v,]|, where v, = | ¢ |,i=1,...,m. Itis easily noted

Ani
that the linear combination of the column vectors of A can be written as a product of A with a vector

X1
x € R™ Ax =x1vi +... 4+ x,,Vy, Where x =
Xm
Definition 2.1.4. The set of all possible linear combination of the column vectors vy,...,v,, of A is

called the range of A, and denoted by R(A); that is, with x = [x; ...x,,| " representing any vector of
reals x;,
R(A)={veR":Ax=v} CR"

Definition 2.1.5. The set of all vector w € R” such that Aw = 0 is called the null space of A, and
denoted by N(A); that is,
NA)={weR":Aw=0,} C R".
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As it may be noted, R(A) and N(A) are vector subspace of the vector spaces R" and R”,

respectively (see Schott [64]). We prove it on the next result.
Proposition 2.1.3. Let A € R""™. Then

(a) R(A) is a vector subspace of R";

(b) N(A) is a vector subspace of R™;

Proof.

(a): 0, € R(A), since A0, = 0,. If v,w € R(A), we have that Ax = v and Ay = w for some
vectors x,y € R™. Thus, A(x+y) = Ax+Ay = v+ w so that v+ w € R(A). Finally, let o be an
scalar and v € R(A). Then, since v = Ax for some vector x € R™, and A(ax) = o(Ax) = av, we
have that av € R(A) and so the proof for this part is completed; that is R(A) is a vector subspace.

(b):0,, € N(A), since A0, = 0,,. Letting v,w € N(A) we have that Av = 0,, and Aw = 0,,. Then,
A(v+w) =Av+Aw = 0, and, therefore, v+w € N(A). Finally, for any scalar o and v € N(a) we
will have that A(av) = a(Av) = 0, so that v € N(A) and so the proof is completed; that is N(A)

is a vector subspace. O
Definition 2.1.6. The dimension of R(A) is called the rank of A. We denote it here by r(A).

The following theorems summarize a set of useful results on matrix rank. Some of them will
play important role in the chapter 4 (which we may call this work main contributes), since they will
have direct implication (either they justify some steps, or taken as consequence) on the proofs for

the most important results on that chapter.

Theorem 2.1.4. Let A € .#/"""™. Then
(a) r(A) and the dimension of the row space of A are equal; that is, r(A) = r(A");
(b) r(A) + dimN(A) = m, where dimN (A) denotes the dimension of N(A).

(¢) If n=m and A is a diagonal matrix, then r(A) = r, where r is the number of its nonzero

diagonal elements.

Proof. For the proof of (a) and (b) see Lay [38]. (¢) is a direct consequence of the definition. [J
Theorem 2.1.5. Let A € #"", B . #"™" and C € .#"™ "™ be non-singular matrices. Then

(a) r(A) =r(AT) =r(ATA) = r(AAT);

(b) r(BAC) =r(BA) = r(AC) = r(A).
Proof. See Schott [64], Theorems 1.8 and 2.10. O]
Theorem 2.1.6. Let A; € .#"™, i = 1,2, and B € #"™*P. Then

(a) r(A1+A42) <r(A)) +r(Ar);

(b) r(A1B) <min{r(A),r(B)}.

Proof. See Schott [64], Theorem 2.10. O



CHAPTER 2. ALGEBRAIC RESULTS

2.1.1 Diagonalization Of A Symmetric Matrix

In this section we present some brief notions of eigenvalues and eigenvectors (which are solutions
of a specific equation of matrix functions) and then discuss a few important results concerning this
subject as well as some others connecting it with matrix rank. This concepts are defined over a
square matrix. The latter part of this section is devoted to a discussion on the diagonalization of

symmetric matrix, specifically, the spectral decomposition of a matrix.

Definition 2.1.7. Let A € .#Z"*". Any scalar A such that
(A—AL)v =0, (2.5)

for some non-null vector v € R”, is called an eigenvalue of A. Such a non-null vector v is called the

eigenvector of A and equation (2.5) the eigenvalue-eigenvector equation.

Since v # 0, it must be noted that the eigenvalue A must satisfy the determinant equation
|A—AL|=0 (2.6)

which is known as characteristic equation of A since using the definition of determinant function

(see Schott [64]) it can be equivalently written as
0, —OiA+...+6, 1 (—A)"'+(=1)" =0, 2.7)
for some scalars 6;,i = 0,...,n— 1, that is, as an nth degree polynomial in A.
Theorem 2.1.7. Let A € .#"™" . Then
(a) A is eigenvalue of A if and only if A is eigenvalue of AT ;
(b) A is non-singular if and only if A has no null eigenvalues;

(c) If B € .#4™" is a non-singular matrix, then the eigenvalues of BAB~! are the same as the
those of A;

(d) |A| is equal to the product of the eigenvalues of A.
Proof. straightforward using the characteristic equation or the eigenvalue-eigenvector equation. [J

It is known that the polynomial in the left side of (2.7) has at most n real roots (and exactly
n complex roots); that is, there are at most n scalar, A1,..., 4, say, satisfying the equation (2.7) if

solved in A, so that A has at most n real eigenvalues.
Theorem 2.1.8. Let A € " and B € .#"". Then
(a) The set of eigenvectors associated to different eigenvalues of B are linearly independent.

(b) Let Ay,..., Ay, s <n, be the eigenvalues of A. Then A,...,As are all reals, and for each A;,

i=1,...,s, there is an eigenvector V; that is a vector of reals;

8



2.1. NOTATION AND PRELIMINARY NOTIONS ON MATRIX THEORY

(¢) It is possible to construct a set of eigenvectors of A such that the set is orthonormal; that is

each element in the set has euclidean norm equal to one and they are pairwise orthogonal.

Proof. (a): with r < n, suppose Vi,...,V, are the eigenvectors of A, and let the corresponding
eigenvalues Ay,...,4, be such that A; # 4;, whenever i # j. Now suppose, by contradiction, that
Vi,...,V, are linearly dependent. Let & be the largest integer for which vy,..., v, are linearly
independent (that is, vy,..., V,+ must be linearly dependent). Thus, since no eigenvector can be a

null vector, there exist scalars a1, ..., o, with at least two not equal to zero, such that
avi+...+ 01 Vi1 = 0y

Premultiplying both the left-hand and the right-hand side of this equation by (A — A4 11,) it is
found that

o (A=Al i+ ..+ 01 (A= X1 ) Vip1 = 0, &

(
a1 (Avi = App1vi) oo+ g1 (AVir = A 1 Vig1) = 0, &
o (Mvi —Appivi) + oo+ gt (A 1 Vgt — M1 Vi) = 0, &
(

o (A — A1) Vit oo+ 05 (A — Ap1) Vi = 0, (2.8)
Thus, since vy,..., vy are linearly independent it follows that
o (A —Apg1) = = 0 (A — Apg1) = Op.
Now, since at least one of the scalars ¢y, ..., o is not equal to zero, for some i = 1,...,h we have

that A; = A;,1, which contradicts the condition of (a).

(b): Let AL = a+ i} be an eigenvalue of A and v = x + iz its corresponding eigenvector, where
i = v/ —1. Thus, we have that

Av=2Av&e A(x+iz) = (a+if)(x+iz), (2.9)
and premultiplying by (x —iz) ', it yields
(x—iz) " (x+iz) = (a+iB)(x—iz) " (x +1iz). (2.10)
Hence A is symmetric equation (2.10) simplifys to
xTax+2 Az = (@+iB) (Tx+27z). @.11)

Since v # 0, (it is an eigenvector) we have that (xTx—i— sz) > 0 and, consequently, § = 0 since
the left-hand side of the equation (2.11) is real. Now, replacing B with zero in the eigenvalue-

eigenvector equation (2.9) we get

Alx+iz) = a(x+iz) &
Ax+iAz=oax+iaz.

9
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Then v = x + iz will be an eigenvector of A corresponding to A = « as long as Ax = ox, Az = az
and at least one of the vectors x and z must be non-null (once v # 0,,). Finally, a real eigenvector
corresponding to A = « is then constructed by choosing x # 0, such that Ax = ax and z = 0.

(¢): Let v be any non-null vector orthogonal to each of the eigenvectors in the set {vy,...,V;},
where 1 < h < n. Note that the set {vj,...,V,} contains at least one eigenvector of A. Note also
that for any integer k > 1, A*v is also orthogonal to each of the vectors in the set since, if A; is the

eigenvalue corresponding to v;, it follows from the symmetry of A and Theorem A.1.1 that
T
viAky = ATy v = (Afv) Ty = AfvT v = 0.

According with the TheoremA.1.2 we have that the space spanned by the vectors v, Av, ...,

A"y, r > 1, contains an eigenvector of A. Let it be v*. Clearly v* is also orthogonal to the vectors

in the set {vi,..., v}, since it comes from a vector space spanned by a set of vectors which are
orthogonal vy,...,V;,. Thus we can take v, = (V*Tv) 7. Then, starting with any eigenvector of
A, and proceeding with the same argument n — 1 times the theorem follows. O

It must be noted that if the matrix A € .Z"*" has 1 < r < n eigenvalues A,,...,A, whose the
corresponding eigenvectors will be the non-null vectors vy,...,v,, i.e. (A — 7L,-)v,- =0,i=1,...,r,

the eigenvalue - eigenvector equation can be written as

AV =VA or, equivalently, (AV —VA) = 0,,,, (2.12)

where V is a matrix in .Z"*" whose the columns are vy,...,v, and A = D(?Ll, Ay,
Thus, if the n (complex) eigenvalues Ay,...,A, of A € .Z™*" are all distinct, it follows from
the Theorem 2.1.8, part (a), that the matrix V whose the columns are vy, ..., v,, the eigenvectors

associated to those eigenvalues, is non-singular. Thereby, in this case, the eigenvalue-eigenvector
equation (2.12) can equivalently be written as V" !AV = A orA = VAV, with A =D(A1,...,A,).
We may note that by the Theorem 2.1.7, part (c), the eigenvalues of A are the same as those of
A. Since A can be transformed into a diagonal matrix by post-multiplication by the non-singular
matrix V and pre-multiplication by its inverse, A is said to be a diagonalizable matrix (see this
notion in Schott [64]).

Now, provided A is in ., we will have the following result.

Theorem 2.1.9. Let A € . Then, the eigenvectors of A associated to different eigenvalues are

orthogonal.

Proof. Let A; and A; be two different eigenvalues of A whose the corresponding eigenvectors are v;

and v, respectively. Since A is symmetric we will have that
Avivi=(Av) v, =v] (Av)) = A/ v,
and since A; # A;, it must holds v v; = 0. O

10
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Thus, according with Theorem 2.1.8 (c), if A € ", the n columns vy,...,v, of the matrix
V, can be taken to be orthonormal so that, with out lost in generality, V can be taken to be an

orthogonal matrix. Thus, the eigenvalue - eigenvector equation can now be written as

VTAV = A or, equivalently, A=VAV ', (2.13)
which is known as spectral decomposition of A (see this notion in Schott [64]).
Theorem 2.1.10. Let A € %" and suppose A has r nonzero eigenvalues. Then r(A) = r;

Proof. Let A= VAV be the spectral decomposition of A. Then, since the diagonal matrix A
has r non-null elements (the non-null eigenvalues of A) and the matrix V is an orthogonal matrix,

according with Theorem 2.1.7 (c¢), we have that
r(A) = (VAVT) = r(A) =r.

r(A) = r follows from the Theorem 2.1.4 (c). O

2.2 Orthogonal Basis And Projection Matrices

Let S be an vector subspace of R” and the set of vectors {ey,...,e,} be an orthonormal basis for
R”. Let also the set {e1,...,e,}, with r < n, be an orthogonal basis for S. The above statements are
legitimate since every vector space (except the zero-dimensional one) has an orthogonal basis, as is
guaranteed by Schott [64] (See theorem 2.13). {ey,...,e,} being orthonormal basis for R” means
eiTej =0,i# j,and ¢/ ¢; = 1,i = j, with ¢; € R", and the set {ey,...,e,} spans R".

Definition 2.2.1. The set of vectors in IR” which are orthogonal to every vector in S is said to be
the orthogonal complement of S, and is denoted by S*; that is, St = {x € R": x'y =0, y € S}.

Every vector x € R” can be written as a sum of a vector u € S with a vector v € S+, where S+
denotes the orthogonal complement of the subspace S (see Schott [64], Theorem 2.14, for the proof

for such result).
Theorem 2.2.1. The orthogonal complement of S, S*, is also a vector subspace of R", i.e., S* C R™.
Proof. See Schott [64], Theorem 2.15. ]

LetA; = [61 . ..er],Ag = [er_H .. .en], and A = [A1A2], withe; e R, i=1,...,n,and {81 .. .en}
an orthonormal basis for R”.

The following results are quickly achieved.
Proposition 2.2.2. Consider the matrices A1, A, and A defined above. Then
(a) ATAI =1,
(b) AJAs =lyyp—r;
(c) AJA2=0,,,;

11
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(d> A;Al = Onfr,r;
(e) ATA=AAT =1,.
Proof. All points arise due to the fact that the columns vectors ey, ..., e, are orthonormal. O

Since {ej,...,e,} is an orthonormal basis for R”, any vector x € R” can be written as x = Ao

for some o = [af 5] T, with of = [0y ... @] and & = [Q11 ... @)
Definition 2.2.2. A vector u such that
AA{x=AA[Aa =[A1 0, ][afe}]" =A 0 =u (2.14)

is said to the orthogonal projection of the vector x € R” onto the subspace S, and the matrix

Ps = A1A] is said to be the projection matrix onto the subspace S. Similarly, a vector v such that
ArA)x =AAJ A = [0,_,., A))[aj o] T = Ases = v (2.15)
will be the orthogonal projection of the vector x € R” onto the subspace S+.
The following notions are needed for our next result.
Definition 2.2.3. A matrix B € .#"*" such that B> = B is said to be idempotent.

Definition 2.2.4. Let the columns of the matrix B form a basis for the subspace S. An symmetric
and idempotent matrix Py such that r(B) = r(Ps) is said to be the projection matrix onto S = R(B).

Note 2.2.1. We may sometimes write symmetric idempotent matrix in place of symmetric and

idempotent matrix.

The next result ensures that any symmetric idempotent matrix is a projection matrix for some

vector subspace.

Theorem 2.2.3. Let Q € .#"*" be any symmetric idempotent matrix such that r(Q) = r. Then Q

is a projection matrix of some r-dimensional vector subspace (vector subspace with dimension r).
Proof. See Schott [64], Theorem 2.19. ]

The following theorem establishes that if S C IR” is r-dimensional subspace, then S* is n — r-

dimensional.

Theorem 2.2.4. Let the columns of the matrix A| form an orthonormal basis for S, and the columns
of A = [A1Az] an orthonormal basis for R". Then, the columns of A will be an orthonormal basis
for S*.

Proof. Let T be the vector space spanned by the columns of the matrix A,, i.e, T = R(A2). We
firstly prove that T C S*, and then that S* C T. Letu € Sand v € T. Then, u = ae; + ... 0ye,
and v = Oty4 16,41+ ... 0ze, for some scalars ¢y, . .., a,. The orthogonality of the vectors ey,...,e,
holds u"v = 0, and therefore v € S+, which means that 7 C S+.

12
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Now, conversely, suppose y € S+. Due to the fact that S+ C R” (see Theorem 2.2.1), y = Qje; +
... Oyey, for some scalars «,...,q,. Letu € S,sou = qje; + ... e, and since y € S+ it must hold
yTu = OclzelTel + arzerTe, = 0612 +...+ Ocr2 = 0. But this result happens only if o) = ... = o, = 0.
Thus, y = &4 1,41 + ...+ Oe, which means that y € T, and therefore S+ C T. The proof was
established (see Schott [64], page 52). L]

By now we have material to set the following results, which are immediate consequences of the

results stated above in this section, so that sometimes we will not give the proofs.

Theorem 2.2.5. With x € R", and A, Ay, and A, matrices whose the columns form the orthonormal

basis for R", S, and st respectively:

1. The orthogonal projection of x onto S is given by Psx = A lAirx, for which A 1A1T is the

projection matrix for S (see equation (2.14));

2. The orthogonal projection of x onto R" is given by Prix = AATx = (AlAlT +A2A2T)x =X,
for which Prn = AA" = I, is the projection matrix for R".

3. The orthogonal projection of x onto S* is given by P x = AyA) x = [0 Ax][oy 0n] T = Ay,
for which Py, = AyA) = (I, — A1A]) is the projection matrix for S*;

Although the vector spaces does not have an unique orthonormal basis, the projection matrix

formed by such basis is unique, as ensured by the following theorem.

Theorem 2.2.6. Let the columns of a matrix C and D each form an orthonormal basis for the

r-dimensional vector subspace S. Then, cCc' =DD'.

Proof. Each column of D is a linear combination of the columns of the matrix C, since its columns
form a basis for S. So, there exists a matrix P such that D = CP. Once C and D have orthonormal
columns, C'"C=D"D =1I,. Thus, I, = D'D = (CP) "CP = P' P, which means that P is also an
orthogonal matrix. Consequently, PP = I,. The desired result: DD = CP(CP)" =CPP'C" =
ccr. O

The following theorems summarizes the results on the projection matrix.

Theorem 2.2.7. Let P € .#"*". Then, the following statements are equivalent.

(a) P is a projection matrix;

(b) (I,— P) is a projection matrix;

(c) R(P) =N(I,—P);

(d) N(P) =R(I,—P);

() R(P)NR(ly—P) = {04}

(f) N(P)AN (I, —P) = {0,}.

13
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Proof. (a)= (b): (I, —P)" (I, —P)=1,—P—P"+P"P=1,—P,since P' =PandP'P=P
due to the fact that P is a projection matrix. Therefore, I, — P is a projection matrix.

(b) = (c): Letx € R(P). Then, since P is a projection matrix, Px = x. thus, (I — P)x =x—Px =0,
so that x € N(I — P). Now, conversely, let x € N(I, — P). Thus, (I, —P)x=x—Px =0, < Px =x,
which means x € R(P). Therefore R(P) = N(I, — P).

(¢) = (d): Let x € N(P). Then Px = 0,,. Thus (I, — P)x = x — Px = x, once Px =10,. So x €
R(I, — P). Conversely, let x € R(I, — P). Then

(l—P)x=x<x—Px=x—Px=0,,

that is x € N(P).
(d) = (e): Letx € R(P) and y € R(I, — P). Then, by point (d) we have that y € N(P). We have
that

xly=(Px) (I-P)y=(Px) (y—Py)=x'P'y=x"Py=0,

since P is a projection matrix and y € N(P). In other hand
yix=[(li=P)]"Px=(y—Py) Px=y"Px=[PTy]'x =0,

since P is a projection matrix and 'y € N(P).
(e) = (f):Letx € N(P) andy € N(I, — P). Then, x € R(I, — P) and y € R(P). Thus,

xTy=[(I,— P)x]TPy =x'Py= [PTx] Ty=0,.

In other hand
y'x=(Py)'x=y"PTx=0,.

Theorem 2.2.8. Let Py, ..., P be projections matrices such that P,P; = 0 for all i # j.Then
1. P= Zle P, is a projection matrix.

2. R(P)NR(P;) ={0} foralli+# j, and R(P) =R(P;) DR(P,) & ... DR(P;), with ® denoting

the direct sum of subspace.

Proof. See Rao and Rao [61], page 241. O

2.2.1 Application To Statistics

Let {xi,...,x, } be a basis for the vector space S C R”, i.e., {x1,...,x,} are linearly independent and
generate S. Let X € .#"*", a matrix whose columns are the vectors xi,...,x,, i.e, X = [x1,...,X].
Then, the columns of the matrix Z = XA will form an orthonormal basis for Sif A € #"" is a
matrix such that

Z2'2Z=ATX"XA=1,. (2.16)

Thus, A must be a non-singular matrix and r(A) = r(X) = r.

(r(X) = r, since X has r linearly independent columns.) So, A~! exists.

14
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The equation (2.16) holds if (X X) = (A"1)TA L or (X"X)"! =AAT, where A is the square
root matrix of (X 'X)~!.
By the Theorem 2.2.5 (see also Definition 2.2.2), the expression for the projection matrix onto
S, Ps, is
Ps=27Z" =XAATXT =x(x"x)"'x". (2.17)

Therefore, the projection matrix onto the subspace of R” spanned by the columns of the matrix X
isPs=X(X"X)"xT.

Consider the simple fixed effect linear model
y=XB+e, (2.18)

with X € M, ,, a known matrix and € R” a vector of unknown parameters, where y € R”
is an observable random vector with expectation E(y) = X3, and variance-covariance matrix
V=Ie.#4™"

Let ﬁ be an unbiased estimator for 3. Hence, an unbiased estimator for y would be = X ﬁ,
in which y is a point in a subspace of R”", say S, which corresponds exactly to the subspace of R”

spanned by the linear combinations of the columns of the matrix X.

Remark 2.2.1. According with the paragraph above, every unbiased estimator for y lies onto
SCR".

Now, the reader may wonder “what is the best unbiased estimator y for y”. The answer follows:
Such (best) unbiased estimator must be the point in S which is closest to y, i.e., the orthogonal
projection of y onto the subspace spanned by the columns of X. Thatis, y = X 3 is the best unbiased
estimator for y if it is the orthogonal projection of the vector y onto S.
So, one must compute the orthogonal projection of y onto S. In order to do so, let r(X) = m.
By the equation (2.17) the projection matrix onto S is Ps = X (X 'X)~'XT, so that the orthogonal
projection of y onto S is given by Psy = X (X "X)~'X Ty. Now, since ¥ is the best unbiased estimator
for y it holds:
P=XB=Py=X(X"X)""'xTy. (2.19)

Pre - multiplying each part of the equation above by (X "X) !XT it yields:

x'X)"'x"xp = xX'X)'x'xx'x)"'xTy
—

A

B = (xX'x)"'xTy, (2.20)

which corresponds exactly to the least squares estimator for f3.
Thus, B is the estimator which minimizes the sum of the quadratic mean error, that is, the one

which satisfies
ming (SSE) = ming(y —XB)(y —XB).

so that
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SSEg = (v—XB)"(y—Xp)
= yy—y'X(x'x)'x"y
= ' (In—X(XTX)”XT>y. 2.21)

According with Theorem 2.2.5, the term (I, —X (X "X)~'X ") in the equation (2.21) is the projec-
tion matrix onto the orthogonal complement of S, S*, so that the term (I, — X (X "X)~'X ") yis the
projection of y onto such space. So, the quadratic mean error of the estimator 3 is the quadratic

distance of the projection of y onto S

2.3 Generalized Inverses

The generalized inverse, in short, g-inverse, play an important role in linear algebra, as well as in
statistics, as we will see throughout this work.

Let consider the following system of linear equation in an unknown vector x € R":
Ax =y, (2.22)

where A € .Z™*" and y € R are unknown. Such system is said to be consistent if it admits a
solution in x.

If the matrix A is a non-singular, the solution for the equation (2.22) is x = A~ 'y, where A~!
denotes the matrix inverse of A.

When A does not admit an inverse matrix (A~!) but the system (2.22) still consistent, there still

having a simple way to solving the system (2.22) if r(A) = m or r(A) = n (A is a full rank matrix):

e If r(A) = m (the m rows of the matrix A are linearly independent) A admits a right inverse,
say L, so that the solution for (2.22) is x = Ly. Indeed, A(Ly) = ALAx = Ax = y.

e If r(A) = n (the n columns of the matrix A are linearly independent) A admits a left inverse,
say G, so that the solution for the equation (2.22) is x = Gy. Indeed, Ax = A(Gy) = AGAx =
Alx =Ax=y.

The results P.8.1.1 and P.8.1.2 of Rao and Rao [61] suggest L=A" (AAT) ' orL=VAT (AVAT)~!,
where V is an arbitrary matrix satisfying r(A) = r(AVA"), and

G=(A"A)"ATorG=(ATvAa) ATV,

The g-inverses arises when one needs to determine solutions for the system (2.22) given it is
consistent, when A € ™" has an arbitrary rank. Such inverse, which is denoted by A~, does
always exists for any matrix A, as proved by the result P.8.2.2 of Rao and Rao [61]. Thus,x =A"y
is a solution for the equation (2.22).

Before one set a possible definition of g-inverse, one set the following results (whose proofs

can be founded in Rao and Rao [61]) which may be useful for that purpose.
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Proposition 2.3.1. Let A € .#™*". Then, the following statement are equivalent.
(a) A™ is a g-inverse of A.
(b) AA™ is an identity on R(A), i.e., AA”A = A.
(c) AA™ is idempotent and r(A) = r(AA™).
Proof. See Rao and Rao [61], page 267. O
Hereupon, one way to define g-inverse may arise.
Definition 2.3.1. Let A € .Z"™*". De g-inverse of A is a matrix G € .Z"*™ such that AGA = A.

As stated in the Proposition above, given a matrix the g-inverse does always exists, but it could
may not be unique. Many properties of the g-inverse can be stated including the one concerning the

conditions on the uniqueness.
Theorem 2.3.2. Let A € #"™*" and A~ its g-inverse. Then,
(a) (A7)" is a g-inverse of A".
(b) a~'A~ is a g-inverse of aA, where o is a scalar.
(c) IfA is square and non-singular, A~ = A~" and it is unique.
(d) If B and C are non-singular, C"'A=B~! is a g-inverse of BAC.
(e) r(A)=r(AA™) =r(A"A) <r(A7).
(f) r(A) =mifand only if AA~ = .
(g) r(A) =nifand only if A=A = I,.
Proof. See schott [64], Theorem 5.22. L]

An important matrix in the field of linear models is A(ATA)~A" as we will see throughout the
remaining sections. We see now some properties whose the proofs may be found in schott [64] or
Rao and Rao [61].

Proposition 2.3.3. Let (AT A)~ stands for a g-inverse of AT A. Then
1. A(ATA) " (ATA) =Aand (ATA)(ATA)"AT =AT).
2. A(ATA)~AT is the orthogonal projection matrix of the R(A).
Proof. See Schott [64] or Rao and Rao [61]. O]

Now we turn to maybe the most important generalized inverse in statistical application in such
a way that we could not talking about g-inverses without mention it: the Moore-Penrose inverse.

We devote the next subsection for its approach.
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2.3.1 Moore-Penrose Inverse

Firstly defined by Moore [9] and later by Penrose [60], the greatest importance of the Moore-
Penrose inverse is due to the fact that it possesses four properties that the inverse of a square
non-singular matrix has (more evident with the Penrose [60] definition) and it is uniquely defined.
Such definitions, although from different times, are equivalent as shows the Theorem 5.2 of
Schott [64].

The Moore [9] definition follows.

Definition 2.3.2. Let A € .#"™ ™. The Moore-Penrose inverse of A is the unique matrix, denoted
by AT € .#™*", that satisfies the two following conditions:

(a) AA+ = PR(A)'
(b) A+A - PR(A*)'
The Penrose [60] definition follows.

Definition 2.3.3. Let A € .#Z"*". The Moore-Penrose inverse of A is the unique matrix, denoted
by AT € .#™*", which satisfies the all four following conditions:

(a) AATA=A.

(b) ATAAT =AT.
(c) (AAT)T =A™,
(d) (ATA)T =ATA.

Remark 2.3.1. One easily remark that the four conditions of the definition above are satisfied by

the inverse, say A~!, of a non-singular matrix A.

The following theorem guarantees the existence and the uniqueness of the Moore-Penrose

inverse.

Theorem 2.3.4. For each matrix A € .#™ ™, there exists one and only one matrix, say A™, satisfying
the all four condition of the definition 2.3.3.

Proof. See Schott [64]. ]
Theorem 2.3.5. Let A € .4 ™.

(a) (aA)" =a AT, a #0.

(b) (AT)F=(a")".

() (A1) =A

(d) AT = A7, if A is square and non-singular.

(e) (ATA)T =AT(AT)T and (AAT)T = (AT)TAT.
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(i) AT =AT(AAT) L and AAT =1, if r(A) = n.
(j) AT = AT ifthe columns of A are orthogonal, that is ATA = I,,.
Proof. See schott [64], page 174. 0

Two results follows: one establishes the relation between the rank of a matrix and its Moore-
Penrose inverse, and the other one summarizes some special properties of a Moore-Penrose inverse

of a symmetric matrix.
Theorem 2.3.6. Let A € .#™ and A" its Moore-Penrose inverse. Then,
r(A) =r(AT) =r(AAT) = r(ATA).

Proof. Using the conditions (a) and (b) of the definition 2.3.3 together with Theorem 4.2.1 of Rao
and Rao [61] it holds
r(A) = r(AATA) < r(AAT) < r(A™)

(using condition («@)) and similarly
r(AT) =r(ATAAT) <r(ATA) <r(A)
(using condition (b)), from where the proposed results follows. 0
Theorem 2.3.7. Let A € .#4™" be a symmetric matrix and A" its Moore-Penrose inverse. Then
(a) AT is Symmetric;
(b) AAT =ATA;
(c) AT =AifAis idempotent.

Proof.
Proof of property (a): using the part (b) of the Theorem 2.3.5 and the hypothesis condition
(A=AT) it follows
A+ — (AT)+ — (A+)T,

Proof of property (b): using the condition (c) of the definition 2.3.3 together with the fact that both
A and AT are symmetric, it holds

AAT = (AAT)T = (AT)TAT =ATA.

Proof of property (c): one proves it proving that, under hypothesis A2 = A, AT = A verifies the
four properties of the definition 2.3.3. For the condition (a) and (b):

AATA = AAA = AA = A? = A.

For the condition (¢) and (d):
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1. (AAT)T = (AA)T =ATAT = AA.
2. (ATA)T = (AA)T =ATAT = AA.

For more details concerning the Moore-Penrose inverse among others Schott [64] is recommended.
O

2.4 Jordan Algebras

Jordan algebras structures were first introduced by Jordan [32] (the structures name is due to his
name), and Jordan et al. [33] in the formalization of an algebraic structure for quantum mechanics.
Originally they were called “r-number systems”, but later they were renamed Jordan algebras by

Albert [1] who generalized its notions.

Definition 2.4.1. An algebra <7 is a vector space provided with a binary operation * (usually
denominated product), in which the following properties hold for all a,b,c € </ :

e ax(b+c)=axb+axc.
e (a+b)xc=axc+bxc.
e a(axb) = (aa)xb=ax(ab),Ya € R(C).
& is a real algebra (complex algebra) whether « is real (complex).

Definition 2.4.2. An algebra 7 is said to be commutative algebra if, for all a,b € o/, axb = bxa,

or associative algebra if, for all a,b,c € <7, (a*b)*c = a*(b*c).
Definition 2.4.3. Let <7 be an algebra. . C .o/ is a sub-algebra if it is a vector space and if
Ya,be . :axbec.?.

Definition 2.4.4. Let <7 be an algebra provided with the binary operation *“-” such that the following
properties hold for all a,b € o7:

(J1):a-b=b-a.

(J2): @*-(b-a) = (a*-b)-a, with a®> = a - a. Holding such conditions, .7 is said to be a Jordan
algebra.

The product “-” defined above here is known as Jordan product.

Note 2.4.1.

e Properties J1 shows that a Jordan algebra is a commutative algebra, but, as shows J2, is not

an associative one. In fact, J2 shows that ./ has a restricted kind of associativity.
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e The definition of Jordan algebra presented above is not so practical and transparent, especially
in statistical models context, so that equivalents and more tractable definitions is presented

later in this section.

Next one see an example of a Jordan algebra: the space of real symmetric matrix of order n X n,
" That space (with finite dimension: %n(n + 1)) will accompany us throughout our study in this

section.

Note 2.4.2. In what follows, AB means the product matrix in usual sense, that is, the product

between the matrices A and B.

Example 2.4.1. Define the product “-” on .#" as
1
A-B=_(AB+BA).

Provided with such product . is a Jordan algebra. Indeed: A-B = % (AB+BA) = (BA+AB) =
B - A, so that the condition J1 is proved. To prove the condition J2 one easy way is to compute the
left side separately and then the right side. After that, one concludes that both results are equal. One
should remark the importance of the .#" due to the fact that the matrix of variance-covariance lies

on there.

Now one proceed in order to characterizes the idempotent and identity elements in Jordan
algebra and 7",

Definition 2.4.5. Let <7 be a Jordan algebra and & a sub-algebra of .#". < is said to be a special
Jordan algebra if and only if o7 is algebra-isomorphic to 2, that is, there exists a bijective function
¢: o/ — % such that, for all o, B € R and a,b € -

1. ¢(axa+Bb) = ad(a)+Po(b).
2. ¢(axb) = d(a)* 9 (b).
Definition 2.4.6. Consider the matrix E € . C .#Z™*". E is said to be:
e An associative identity element of . if ES = SE = §,VS € .7
e A Jordan identity it E-S = S,VS € .&.
Definition 2.4.7. Let E € .#"*". E is said to be idempotent matrix if E> = E.

The following theorem (see Malley [43], Lemma 5.1) proves that any identity element in a

subspace of .%" is also identity on Jordan algebra.

Theorem 2.4.1. Let ¥ C /" and E € . any idempotent element. Then,
e S E-S=S=ES=SE=S.
Proof. See Malley [43], page 9. O
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One prove next a more generally result, concern also the orthogonality, That is, orthogonal

elements on Jordan algebra are also orthogonal on subspaces of .#", and conversely.
Theorem 2.4.2. Let ., T C .", and E € " an idempotent element. Then,
1.VSe S, E-S=8S<=VSec./, ES=SE=S.
2. Let E| and E; idempotent elements. Then, E| -E; =0 <= E\E, = 0.
3.V5¢eSNTeT,ST=0«<=VSe ./ VNT €. 7,ST =0.

Proof. We prove only the property 1, for the rest see Malley [43], page 10.

(1 =) E is idempotent and such that E - S = S (hypothesis).

Firstly, one may note: ESE = 2E - (E-S) —E?-S = S. (The equality 2E - (E-S) —E*-S=Sis
easily proved provided the equality A-B = 1 (AB+ BA).) Indeed, using the equality 2E - (E - §) =
1(EES+2ESE + SEE) and E*- S = $(EES+ SEE), clearly 2E - (E -S) —E*-S = ESE.

Hence,

ES = E(ESE)=E(ESE+E*.S—E*.S)=E(ESE+E*-S)—E(E*-S)
= EESE+ES—ES=ESE =S5, (2.23)

using the hypothesis. To prove the case SE = § we proceed identically.
(1 <) E is idempotent and such that ES = SE = S (hypothesis).

E-§S = EZ-S:2E-(S-E)—ESE:2(;(E(S-E)—F(S-E)E)) —ESE

1 1
= —ES+-SE=S, 2.24
SES+5 (2.24)
using the hypothesis. O

The next theorem, whose proof will be given here (see Malley [43]) establish some equivalent

conditions for a subspace of S,, with any identity element to be a Jordan algebra.

Theorem 2.4.3. Let ¥ C ", and suppose . contains an identity element, say E. then, % is a
Jordan algebra if and only if any of the following equivalent conditions hold:

(i) VA,Be ., AB+BA € ..
(ii) VA,BE ., ABA€ 7.
(iiil) VA€ ., A’ € 7.

Proof.

(i) = (ii) Note that C=A—E € .%. Hence, ABA = (C+E)B(C+E) =C?>+B+ (CB+BC).
Now, given (i), C? = 1(C?+ C?) € ., and also 2C- B = CB + BC. Thus, ABA € . proving
therefore such implication.

(i) = (iii)
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By (ii), for all A,B € ., ABA € .#. Therefore, taking B=E € .7, it holds AEA = A% € .,
proving therefore such implication.
(iif) = (i)
Consider C = A+ B. Then, C> = (A+B)> = A>+ B’ + (AB+BA) € ¥, s0 (AB+BA) € .¥.
Hence, the proof is established.
O

Remark 2.4.1. The condition (ii) together with (iii) implies that if a matrix A belongs to a Jordan
algebrathe A" € .7, forn > 1.

In what follows we establish the relationship between arbitrary sets of real symmetric matrices

and certain Jordan algebra derived from such sets.

Definition 2.4.8. Let S be a subspace of . spanned by any arbitrary set of matrices {M, ..., M},
with M; € %", and suppose ." has an identity element I. We define the following:

1. o = o/ ($) stands for the smallest associative algebra in M, containing $.
2. B=RB(3)={BcS:SBSeS, VScS}
3. & =2(8) C.7" stands for the smallest Jordan algebra in " that containing $.

Theorem 2.4.4.

(a) Given'S, A is the maximal subspace of $ such that
BSBec $,VSeS$,VSeBc %,
and is finite dimensional formally real special Jordan algebra.
(b) Given S,/ ,B,and £, it holds

BCICLCANS"C .

Proof. See Malley [43]. ]

In what follows, one presents some algebraic results established until now and that have
application to the study of random quadratic forms, by constructing an unique basis constituted by

mutual orthogonal projection matrices for commutative Jordan algebra.

Definition 2.4.9. Let . = @j_, S; be a subset of .”. The support of A € .7, withA = @H;_, A,
A€ S istheset {ic IN: A; #0}.

Theorem 2.4.5. Let ¥ C /" and I € .. Then, for any A,B € B, the following are equivalent:
(i) VS €., it holds SASBS = 0, .
(ii) ASB=0,,.
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(iii) ABB = 0,,,.
(iv) A and B have disjoint support in B.
Theorem 2.4.6. Let . C /" and I € .. Then, for any A,B € Z, the following are equivalent:
(i) VS €%, it holds SASBS = 0.
(i) ASB=0,,.
(iii) ALB=0,,.
(iv) A and B have disjoint support in £.
Theorem 2.4.7. Let A,B € ./". Then, A.YB = 0,,, <= A LB = 0.
Proof. See Malley [43]. ]

Now, we give some results connecting the commutative Jordan algebra and the symmetric
matrices spaces for the purpose of the work developed in latter chapters. The first one (Theorem

2.4.8) is a consequence of the Lemma 1 and Lemma 2 of Seely [68].

Theorem 2.4.8. For every commutative Jordan algebra, there exists at least one basis

{01,....0s}
constituted by projection matrices Q;, i € {1,...,s} such that Q;Q; = 0p,, i # j, i,j € {1,...,s}.
Proof. See Seely [68]. O]

Theorem 2.4.9. A subspace S C " is a commutative Jordan algebra if and only if there exists
a basis {Q1,...,0Qs} formed by orthogonal projection matrices, such that Q;Q; = Opp, i # J,

i,j €{l,...,s}. Moreover, such a basis is unique.

Proof. The existence is proved by Theorem 2.4.8. To prove the uniqueness, let {Pj,...,P;} be
another basis for S such that P, i € {1,...,s}, are orthogonal projection matrices and PP;=0,,,
i# j,i,j€{l,...,s}. Let the coefficients ¢,..., 0 and B, 1,..., B, be unique such that

S S
P, = Z%Qi, ne{l,...,s}, and Q; = Zﬁ,,ij, te{l,...,s}
i=1 =1

Now one may note that

N
P.Q; = (Z a,-Q,-> 0 = 040,01 = 0, (2.25)
i=1
since Q;Q; =0, i # j,i,j € {1,...,s},and Qy,...,Qy are orthogonal projection matrices.
On the other hand
S
PO =P, (Z ﬁt,jpj> = ﬁt,nPnPn = Bt,nPns (2.26)
j=1
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since P,P; =0, i # j,i,j € {1,...,s}, and Py,..., P, are orthogonal projection matrices. Hence,

ﬁt,nPn :Pth = atQt, te {1,...,5}.

Thus, since Qy, ..., Qy are linearly independent and the @, ..., 0 and B, ..., B,s must be equal
to one or zero, it holds P, = Q;, for some ¢ € {1,...,s}. This result holds for every n € {1,...,s},
so that the proof is established. 0

2.5 Kronecker Product

Since the matrices involved in analysis of variance related to a statistical model mostly possess
a particular type of structure that allows them to be expressed as the Kronecker product of other
matrices with well suited structure, this product play an important role in statistics field.

Thus we introduce next the notion of Kronecker product ® as well as some of its basic properties
(see Schott [64] or Rao and Rao [61]). At the end of this section we generalize the results in the
Theorem 7.6. (d,e) and the Theorem 7.7. of Schott [64] (see Proposition 2.5.4).

Definition 2.5.1. Given the matrices A € .Z"™*" and B € .#7*4, the Kronecker product of A and
B, denoted by A ® B, is defined by

a“B alzB cee alnB
ayB a»nB ... ay,B

ARB=| " e, 2.27)
amlB asz e amnB

We list some remarkable properties of this operation in the following three nex theorems. The
proofs of some of the properties in the two first ones stem directly from its definition. For the other

properties we recommend Rao and Rao [61] or Schott [64].

Theorem 2.5.1. Let A, B, and C be any matrices; a and b be any two vectors, and o, and B be any

two scalars. Then
(a) ab" =a®b" =b" ®@a;
() 0®A=A® 0 = 0A;
(c) (@A) (BB) = af(A®B).
Theorem 2.5.2. Let A c . #"", Bc #P*9 and C € .#"*. Then
(a) (A®B)" =AT®BT;
(b) (A®B)®C=A® (BRC);
(c) (A+B)®@C=(A®C)+ (B®C), ifn=pand m = g;
(d) AQ(B+C)=(A®B)+ (A®C),ifp=rand q=s;
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(e) (A®B)T =AT®B™.
Theorem 2.5.3. LetA € . #™™, Bc #P*9, Cc . #"5, and D € #7. Then
(A®B)(C®D) =AC®BD.
Proof. See Rao and Rao [61], P6.1.1(4), or Schott [64], Theorem 7.7. O

We give the generalization of Theorem 2.5.3 in the next result.

Proposition 2.5.4. Let A; € .#4"*", Bj € .M4"7*9, Cy € M*P, and Dy € M, j=1,...,7r>2,

a=1,...,s, b=1,....t, with s and t positive integers. Then,

) (@2)-(810)

where m = H§:1 m;j and g = H;':l qj>

(a)

(D)
s 1 s t
YG|o(YD|=Y ) CoD,
a=1 b=1 a=1b=1
For the case r = 2 see Schott [64], Theorem 7.7.

Proof. We proof part (a).
Due to associativity of the kronecker product and according with the Theorem 2.5.3, we will

have the following:
<®Aj> <®Bi> = (A1B1) ® (E\F1), (2.28)
j=1 i=1

where E; = ®'_; 1 Ajand F; = ®'—;; 1 Aj, with i =1,...,r — 2. Now if we repeat the process in
(2.28) r — 2 times (restarting now with £} F}) we will have

(®A1> <®Bi> = (A1B1)®(EIF)

= (A1B1) ® (A2B2) @ (E2F)

= (A1B1)®...®(Ar—2Br—2) ®E,_2F,_».
Thus, the proof will be complete if we note that

E, o2F, > = (Arfl ®Ar) (Brfl ®Br)
= (Ar—lBr—l) ® (ArBr)-

The statement (®’_; A;B,) € .4 becomes clear if we observe that A;B; € .44
The proof for the part () is straightforward if we use the Theorem 2.5.2. O
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The following theorem address the relationship of the eigenvalues of the Kronecker product of

two matrices and the eigenvalues of each one of them.

Theorem 2.5.5. Let Ay, ..., A, be the eigenvalues of A € .#"" and oy, .., 0, be the eigenvalues
of B€ A" Then, eigenvalues of A® B will be Aiaj, i=1,...,nand j=1,...,m.

Proof. See Schott [64], Theorem 7.10, or Rao and Rao [61], P.6.1.2. ]

The next theorem identifies the relationship between the determinant of the Kronecker product
of two matrices and the determinants of each one of them, as well as the relationship between the

rank of that product of two matrices and the rank of each matrix.
Theorem 2.5.6. Let A € .#"*" and B € #P*9. Then
(a) r(A®B) =r(A)r(B);

(b) |A®B|=|A|”|B|", if n=mand p=gq.

Proof.
(a): By Theorem 2.1.5 together with Theorems 2.5.2 (¢) and 2.5.3 we have that

r(A®B)=r((A®B)A®B") =r(AA" ®BB").

Since AAT @ BB' is symmetric, r(AA" ® BB") is the number of nonzero eigenvalues of AA"T @ BB'
(see Theorem 2.1.8). Let A4,...,A, be the eigenvalues of AAT and ay, ..., o, be the eigenvalues
of BBT. Then, by the Theorem 2.5.5, the eigenvalues of AAT @ BBT will be 7L,-aj, i=1,...,n
and j = 1,...,p. Thus, since 4;a; = 0 if and only if 4; = 0 or o; = 0, the number of nonzero
eigenvalues of AA" @ BB" will be the number of nonzero eigenvalues of AA" times the number of
nonzero eigenvalues of BB . Now, and finally, since AA" and BB' are symmetric matrices, the
number of nonzero eigenvalues of AA" and BB are given by r(AA") and r(BB"), respectively.
(b): According with Theorem 2.5.5 (d), we have that

n

p
‘A’ = H)" and |B‘ = H(Xj.
j=1

i=1

Now, since the eigenvalues of A ® B are A;¢t; (see Theorem 2.5.5), we have that

n p n )4 n
‘A@B‘ = HH)@OC]' = H)Lip (H OC]'> = H)Lip |B‘
i=1j=1 i=1 j=1 i=1
n n P
= |B'[TA" =BI" <Hki>
i=1 i=1
= |B]"|A]",
as wished. O
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CHAPTER

MIXED LINEAR MODELS

Traditionally, statistical models (designs) have been associated with fixed effect models in a given
linear model involving one factor with k levels defining groups, referred to as predictor, and #»;
independent sampling units in each group i, i = 1,...,k, referred to as residual errors, which can be

written as the following scalar equation:
yij=H+oi+g,i=1,... .k j=1,....n, 3.1

where u and {o;} are fixed and unknown finite constants which characterized the model means, and
{&:;} the independent random residual errors with mean zero and variance 67. It is often assumed
that the errors are normal distributed, that is &; ~ .4 (0, 67).

In matrix notation the model (3.1) can be written as

y=Xv+eg, (3.2)
where

(11 ] T 11 0 ... ... 0]

Yin 81”1 1 1 0 0

y21 &1 1 0 1 O

V= |y | €= lem|.X=]1 0 1 0 .. 0ofec.aZanm)n,
Ykl &1 1 0 0 ... 0 1
_yknk_ _8knk_ L 1 0 0 O 1 |
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andv' =|u oy ... o, where € is assumed to have a distribution with mean Ozkilns and

variance-covariance matrix Ggl):f:lnx or, often, € ~ A (Ozf:lns’ Gglzﬁzlnx). Hence, with X(z)
denoting the variance-covariance matrix of a random vector z, the model (3.2) has a distribution
with mean X v and variance-covariance matrix X(y) = Gglz(;:l -

Due to the necessity of incorporate the amount of variations caused by certain uncontrollable
sources in statistical designs with fixed effects, for example, the amount of variations within groups
that the experimenter is not able to control and those whose levels must be selected at random, in
research fields like as genetic, animal breeding, and quality control and improvement, in early 1960
several designs with both fixed and random effects terms were introduced and widely investigated.
Among those designs, nowadays called mixed linear models or linear mixed models, we highlight
the well known and probably most widely discussed mixed linear model: “one-way design” (see
Khuri [34]), whose algebraic characterization is the one presented in (3.1), but here u is a fixed and
unknown constant characterizing the means, {0} are the independent effects due the observed y of
the i-th group, assumed to have a distribution with mean zero and variance o2, and {&;;} are the
independent random errors, assumed to have a distribution with mean zero and variance 682, so that

in matrix notation it is written as

y=Zu+Za+e, (3.3)
where ] -
1 0 0
1 0 0
0 0 0
Z=1x ,.Z1=|0 1 0 .. 0 e g (Teams) <k
s=1""s
0 O 0 1
(0 0 ... 0 I
o
a = |...| has a distribution with mean 0; and variance-covariance matrix 62, and y and &
Otk

defined as in (3.2). ¢; and §g;; are assumed to be mutually independent. Thus, the model (3.3) has a
distribution with mean X 1t and variance-covariance matrix given by

2(y) = 0aZiZ| + ¢l

=1ns.

The parameters 62 and 67 are refereed to as variance components.
The model (3.3) is said to be balanced if there is the same number of observations in every
groups, that is n; = n for every groups. Otherwise the model is said to be unbalanced. Silva et

al. [69] approach the balanced “two-way nested model” in the context of tolerance interval studies.
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Example 3.0.1. Consider a particular balanced design of (3.3) withk =3 andn; =3,i=1,2,3.

This model will have mean 19 ® u and variance-covariance

(y) =L ® (0403 +071).
Others widely discussed designs with linear mixed structure are the both “nested (hierarchical)”
and “two-way crossed (with interaction or without interaction)” models (see Khuri [34]). We
introduce here the “two-way nested models” with mixed linear structure (For the nested design
notions, we recommend Anderson and Bancroft [5] and Bainbridge [8], for instance). These models
consist of two groups of treatment, A and B say, where the b;, i = 1,...,a, levels of group B are

nested within the i-#h level of group A, so that we write them as

Yigk= M+ &+ Bij+ &je (34
i= 1,...,61; ]: 1,...,b,'; k= 1,...,]’1,']‘,

where U is the general mean, {@;} the independent random effects due to the i-th level of the group
A, {Bi;} the independent random effects due to the j-th level of the group B nested within the i-th
level of the group A, and {g;;} the independent residual errors associated to the observed value
Y;jk. It is assumed that o, f3;;, and & are mutually independent. The effects associated with any

group are, clearly, the effects that its levels have on the interest response variable.

In matrix notation the model can be written as
y=Wu+wio+Wp+e, (3.5)

where W = 1y.y ;. y and € are vectors whose the entries are, respectively, the observed values
{vijx} and the random errors {&;;; }, with € having a distribution with mean Oy, y ,,; and variance-
covariance matrix 68212’,2/.,1[._/., and, for instance, for a particular unbalanced design with a = 2,

by =3,bp=2,n11 =2, nip =2, ni3 =3, ny; = 3,and ny» = 2, we will have that

[1 0] (1 0 0 0 0
10 10000
10 01000
10 01000
10 00100
wi |10 00 ool
0 1 00100
0 1 00010
0 1 00010
0 1 00010
0 1 00001
0 1] 0000 1
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« has a distribution with mean 0, and variance-covariance matrix Gé]z, and f3 has a distribution with

[Bi1 ]
Bz
mean 05 and variance-covariance matrix 0'315. Itis often assumed that B = | B13| ~ A~ (05, G§I5>,
B2
B2 |
o= [Z;] ~ N (0y, 62L) and € ~ A (02,-):,nl-j’ Gglzizjn,.j)

Thus, we have that this particular design of the model (3.5) has a distribution with mean

1y,y,n;1 = 11244 and variance-covariance matrix given by
(y) = ogWiWy +opWaWs' + 6705y
= hL®(0yJs+07l) + 05 (I +Th ),

044 043 043 04

0 J5 035 0O b s b

where ITy = | >4 % 7 20 and 11, = 03, 033 03
034 0335 J3 032 T T

o] o 1

024 023 023 02
We have thus three variance components to be estimated: ¢2, Gé, and 62.

The “two - way crossed models” with mixed effects structure is defined as

Yijk = M+T+Bi+ %+ ik (3.6)
i:1,...,a,j:1,...,b,k:1,...,n,-j,

consisting of two groups of treatments, C and D say, where p is the general mean, {7;} the random
effects due to the group C, assumed to be normal distributed with mean zero and variance 62, {8 i
the random effects due to the group D, assumed to be normal distributed with variance Gé, {7}
the random effects due to interaction of the i-¢h level of the group C with the j-th level of the group
D, assumed to be normal distributed with mean zero and variance G%, and {&;;} the independent
residual errors, assumed to be normal distributed with mean zero and variance o7. It is assumed
that o, B;j, and g; jx are mutually independent. For models with no interaction {7;;} are taken to be
all nulls.

In matrix notation, the model (3.6) can be written as
y=Mu+M7T+MpB+My+e, (3.7

where M = 1y, nij Y and € are random vectors whose the entries are, respectively, the observed
values y;jx and the random errors ;i so that € has a distribution with mean Oy, ¥ and variance-

covariance matrix GsZIZijmj (often assumed € ~ A" (0y., ¥ini olly, Y, n;))» and, for instance, for

A%l A%l 0 %1
AL, A% 0%,
Al A3 o3

. . . _ _ _ P13 _ 13 _ 13

a particular design with a = 2 and b = 3 we have that M| = Sl M, = Ol M3 = L

A3 Ay 03
A3 A3 03
A% | A3 053]
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7, B and Yy have respectively distribution with mean 0,, 03 and 0 and variance-covariance matrix

02D, 61%13 and 0'}316, with Af.‘j, k = 1,2, an n;; x 2 matrix whose the column & is a vector of 1’s

and the remain one is a vector of zeros, A/ jan ngj X 3 matrix whose the column j is a vector

of 1’s and the remains ones are vectors of zeros, and ij, s=1,...,6, an n;; x 6 matrix whose
the column s is a vector of 1’s and the remains ones are vectors of zeros. It is oftem assumed
T Bi "
_ |4 2 _ 2 _ 2
T= - ~ N (02, Grlz), B = BZ ~N (03, O'ﬁl3> and Y= 1...] ~ N (06,67/[6)-
Bs %

Thus the model (3.7) has a distribution with mean My and variance-covariance matrix given by

2(y) = o;MiM[ + OMaMy + 0y MaM3 + Ol y s

where
MlMIr _ J):?:1 ay 023:1 Lo nj ’
023:1 ”ZJ’Z;:I nj JE}:I ny;

Jn11 0n11,n12 0n11,n13 Jn”’,m Onll,nzz ()n“’n23
00121, Jn, 0ninis Onpr Jnonn Onpanns
MzMzT _ 0n13,n11 0n13,n12 Jn13 0,,13,,121 0,113,"22 Jn13,n23
an' s 0”21 M2 0"21 113 J, naj 0nz| 122 0n21 23
Onzz ROV J; ny,n12 Onzz,n 3 0,,22, o1 anz Onzz s

_0n23,n11 0n23,n|2 ang,n|3 0n23,n2| 0,,23’,122 Jn23
Jnn 0n|1,n12 0n1],n13 0n1|,n21 0”11,1122 0n|1,n23
0n12,n11 Jn12 0,,12,,,13 Onlz,rm ()nlz’n22 0"12,n23
M3M3T _ 0n13,n|1 0n|3,n12 Jnis 0n13,n21 0,113,,122 0ﬂ|3,l’l23
0n21,n11 0n21,n12 0n21,n13 s ()nzm22 0n21,n23
Onsonr Onomia Onmapnis Oy Iy Ongynas

-0n23’n“ 0n23,n12 0”23’”13 0”23,'121 01223,7122 s

The parameters 62, 63, 67% and o7 are the variance components.

The major innovation here is that the mixed linear models with its structures incorporating the
expected values and the variance-covariance matrix specified as a function of a finite number of
parameters constitutes an useful tool for modeling mistimed or irregularly timed data, and missing
observations result in incomplete data, even those who come in small sample or in longitudinal
set (Wallace and Helms [27] developed procedures that provide hypothesis tests and confidence
intervals for these kind of data using the mixed linear model). The fixed effect and random
effects models may provide well-behaved estimation but may have difficulty providing completely
accurate inference in small samples. See Muller and Stewart [52] for more explanation. Among a
selective books covering this mater we could, for instance, suggest Demidenko [16], Rencher and
Schaalje [62].

Letting y € R" denotes the vector of responses (observed data), the mixed linear models can be

expressed as
n+1

y=XB+ Y X (3.8)

i=1
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with X, 1 = I,, X; € 4" and B; € R, where X € .#"*? is the known (possible non full-rank)
design matrix for the fixed effects, § € R” the vector of the (unknown) fixed expected values,
Xi,i=1,...,n4 1, the known and fixed (full-rank) design matrices for the variance-covariance
structure, fB;, i = 1,...,n, the unknown vectors of the unobservable random effects, and 3,1
the vector of the residual errors. The model includes the following reasonable assumptions (see
McCulloch and Searle [44]): B;, i = 1,...,n+ 1, are mutually independent random vectors such
that E(B;) = 0,, and £(;) = 671,,, so that

E(y)=Xp and
n+1

Z(y) = Z G?M,',
i=1

where M; = X;X,", and 6f,...,02,, are unknown and fixed positive parameters referred to as vari-
ance components, verifying Giz >0,i=1,...,n,and G,f 1 > 0. The estimation of these parameters
is the major goal of this work. The vectors of the unobserved random effects §;, i=1,...,n+1,
are often taken to be normal distributed, but in this work we only require them to have second
moment.

Thus, since there is no distribution assumed for the model (3.8), we will denote it as
y~ (XB, L), where £ = %(y), (3.9)

i.e., y is distributed with expectation X 8 and variance-covariance matrix X.

As pointed out earlier, the proliferation of research on mixed linear models leaded to the
development of several methods of estimation for the variance components; highlighting the
ANOVA-based, Maximum likelihood-based, and the OBS-based methods (see, for example, Searle
et al. [67], Casella and Berger [14], and Calinski and Kageyama ([12], [13]). See Hocking [29] for
estimation with ANOVA-based and Maximum likelihood-based methods, and Nelder ( [57], [58])
for OBS - based method.

The next three sections are devoted to the introduction of these methods, starting with the
ANOVA-based (Section 3.1) followed by the Maximum likelihood-based (Section 3.2), and finally
the OBS-based (Section 3.3).

3.1 Variance Components Estimation - ANOVA Method

The ANOVA - based method is one of the most common procedure for the estimation of vari-
ance components. Among its many approach we highlight the one suggested by Henderson (see
Henderson [28] for explanation) through is three variations known as method 1, method 2, and
method 3, especially because of its simplicity in what concern the computational implementation
(even on a hand-held calculator), and unbiasedness, properties saved by all ANOVA-based methods.
All such methods have the common underlying idea: equating the (observed) quadratic errors for
the different sources of variations to their respective expected values (in some case with some
readjustment), leading to a system of linear equations, which solved for the variance components

gives the corresponding estimators.
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3.1. VARIANCE COMPONENTS ESTIMATION - ANOVA METHOD

Let Siz, i=1,...,n+1, denote the quadratic error for the ith source of variation in the model
(3.8). Then, the quadratic errors in the different sources may be given as Sl-2 =y Py, where P, € /"
is such that X 'P.X = 0,.,, and so, since (see Schott [64], Theorems 9.18. and 1.3)

E(S}) = tr(PZ)+(XB)"P(XB)

n+1
= Ir ’}’]P,Mj
j=1

n+1
= ) v (X,TPI-X j) , (3.10)
=1

J

the expected value of Si2 will depend only on the variance components.

St N
WithS= | ... | andy=| ... |, we will have that
Sr21+1 Ya+1
tr(X,) PX1) ... tr(X, PiXuy1)
E(S) = Cy, where C = : :
tr(X" Posi X)) .. tr(X,) P Xas)

Thus, equating S to E(S), i.e., S = Cy, it holds
y=cCls, (3.11)

provided C is squared and non-singular.
C is a square matrix once the number of sources of variations equals the number of variance
components. For the situation in which there is more sources of variations than variance components,

it might be used one of the variation of the ANOVA-based estimator:
y=(c'c)Ic's,
the least square one, provided C is of full-rank. Clearly, both ¥ and ¥ are unbiased; indeed,

E(f)=C'E(S)=C"'Cy=r,
E(f)=(Cc'C)"'CcTE(S)=(c"C)" 'cTcy=y.

Example 3.1.1. Lets consider the following unbalanced “one-way design” from the model (3.3):

Yij = M+oi+e,
i=1,23;j=1,....,n5n, =i+ 1.

In matrix notation it becomes

y=Xu+X o+ Xse,

35



CHAPTER 3. MIXED LINEAR MODELS

1, 0, 0,
where X =19, X; = [05 13 03|, X2 =, a' = [0 op 03], and y,e € R. Thus, the variance-
0, 04 14

covariance matrix of y, 2(y), will be £(y) = 1M, + 11y, where
I Ommy Oy
My =XiX\" = |00 Ty Ouy
0n Oy, Jig
Now, for the two source of variation let SSp and SSy respectively denotes the between groups
sum of squares and the within groups sum of squares, having therefore S% = SSp and S% = SSw. In
matrix notation (see Searle et al. [67]) we have that S% = yTPl y and S% = yTng, where

P1:M1—JN anszle—Ml, (3.12)
with N = Y3 n; = 9.

. . tr(XlPle) t}"(Pl) S%
Finally, with C = and § = | |, we find that the ANOVA - based
tr(XleXl) tl’(Pz) S2
estimator for y' = n is 9= n , where = C~1S, having therefore
17 ¥
$ i
P = and § = - .
N-3 %(N_ﬁz?:ﬂiz)

The ANOVA - based estimators are useful tools when the estimation process involves repeating
the experiments, since been unbiased means among all repetition it is expected that the estimated
value equals the true value. The problem arises, for example, when the estimation process requires
large amount of data or the data collection process is not so easy. On this situation the repeating
process will not be so practical, so that the unbiasedness might be adjudicated in favor of other
estimators with better performances in those kind of data. For more details, see, for instance, Searle
et al. [67], among many other references.

Nevertheless, notwithstanding the ANOVA-based method adapt readily to mixed models with
balanced data and save the unbiasedness, it does not adapt in situation with unbalanced data, mostly

because it uses computations derived from fixed effect models rather than mixed models.

3.2 Variance Components Estimation - Likelihood Aproach

Adding the Gaussian assumption the model (3.8) (equivalently (3.9)) may be expressed as
y~ AN (XB,X). (3.13)

This assumption will allow to carry maximum likelihood estimation from the data. For an
overview on likelihood approach we recommend, among other references, Harville [26] for a com-
prehensive review of the estimation procedures along with computational techniques; Fairclough
and Helms [18] and Andrade and Helms [7] which explored the ML estimation procedures for the
linear mixed models; and Lair and Ware [37] who discussed the REML estimation relationship to

variance components estimation.
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3.2.1 ML - Based Method

The likelihood function of the random vector y in model (3.13) is given by
L(B.y) = (2m) 4 5|7 A ZOXPTEO-XB)} (3.14)

The maximum likelihood estimation of the variance components from the available data is achieved

by maximizing the logarithm of the likelihood function,

1(B,y) = log[L(B,7)]

1 1
= —Slog(2m) — Slog[Z] — 5 (y—XB) L' (y—XB), (3.15)

differentiating it with respect to the variance components and set to zero. Doing so it yields (see
Theorems A.1.3 and A.1.4)

dl(B.7y) 1 -1 1 Te—lyss—1
= —ur(TM)+=(-XB) T ME  (y—X
PP Str (X7 M) + 5 (y=XB) (y—XB)
= 0, i=1,...,n+1, (3.16)
and thus, equivalently,
tr(E'M) = (-XB)'E'ME ' (y—XB) i=1...n+1 (3.17)
Hence, defining
-1
p=x -z (xTz X)Xz (3.18)

and noting that ©~!(y — X3*) = Py, where B* is the solution of the general normal equations
X' 'XB =X"="yin B, we will have

tr(Z7'M;) =y PM;iPy, i=1,...,n+1. (3.19)

(xTz7X) ! Should be replaced with (XTZ7'X) " when (X "271X) is a singular matrix.
Noting that

tr(Z7'M) = tr(Z'MET'E)
n+1
= Y yrr(Z'ME M), (3.20)
j=1

the system of equations (3.19) becomes (in matrix notation)

y' PM,Py tr(ZMEMy) L e (BT IME T M) N
y' PM>Py tr(E7MpE M) L o (BTIMeE T M) )

: = : (3.21)
TPM, 1Py tr (T My M)t (BT My 2 M) ] [

which solved in y" = [y1 75 ... Yu+1] gives its desired estimate " = [fi > ... ¥.1]; 7 is called
ML estimator for 7.
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3.2.2 REML - Based Method

Restricting the distribution of y into the dependence only on the variance components, by consider-
ing the distribution of z = Qy, where Q is a matrix such that QX = 0,, ,, where m is the number of
rows of Q, and Z retain sufficient information needed to estimate the variance components, and
carrying the ML estimation for the variance components in the new model z, we develop the named
restricted maximum likelihood (REML) estimator for the variance components, introduced and
explored by Patterson and Thompson [59].

Hence in z the dependence on the fixed effect 8 is eliminated, z will have less degrees of
freedom than y, and consequently the estimators based on it will have less bias. Due to the reduction
on the bias the REML method is rather preferable than the ML one (see Muller and Pasour [53]).

Recalling the distribution of y in (3.13), and using the Theorem A.1.8, we have that

=0y~ N (0,,%°), (3.22)

where X° = Z?i]l %OM;Q". According with Theorem A.1.9, a matrix Q such that QX = 0,
and with sufficient information needed to estimate the variance components must be of full
rank with maximal number of rows and an element of .2 "~")*"  where r = r(X), and of the
form Q =C (1 —-X (X Tx )_1 X T>, where C specifies a full rank transformation of the rows of
X(xXTx)"'x7. (XTx )71 must be replaced with (X7X)~ when (X7X) is singular.

The logarithm of the likelihood function of the new model z (model (3.22)) will be

- 1 1 )
ey =" : "log(2m) — 5log|=°] - izT (=)' (3.23)

Taking now the partial derivative of [° with respect to the variance components, and setting it
to zero it holds (See Theorems A.1.3 and A.1.4)

5 (e ) e B )

so that
tr <<Z°)’1QM,-QT> =z' ((Z")’IQM,-QT(Z")”) z (3.24)
Nothing that (see Proposition 2.1.1) the left-hand side of the equation (3.24) is equivalent to
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3.2. VARIANCE COMPONENTS ESTIMATION - LIKELIHOOD APROACH

n+1
tr ((Zo)—IQMiQT(Zo)—IZo) = tr ((ZO)_IQMI'QT(ZO)_I Z ')/]QMJQT>
j=1

n+1

= Yy (=) oMo (=) om07)
=1

n+1

= Yoyr(QT(®) oMo (=) Mom;). (3:25)
j=1

Thus, equation (3.24) becomes

x =My (3.26)
2 (=) toM QT (£°) 1)z n
T 3o -1 M. T 3o —1
where y = : (( ) Q.ZQ( ) )Z Y= }Tz , and

2 () 'oM 0T (2°) 1) 2 Ynt1
tr(QTEZ oM QT oMy) ... tr(QTETIOMIQTE T OM, )
o tr(Q'E oM 0" oMy) L tr(QTETOMLOTE T OM, 1)
ir(Q"L oM, 1 QTEToMy) .. ir (QTET'OM, 1 QTETIOM,, )

Under certain regularity conditions the likelihood - based estimators have many desirable
properties such as consistence, normal asymptotic, and efficiency (see Harville [26], Magnus [42],
and Miller( [46], [47]), among other references). See Harville [26] for a comprehensive review
on estimation procedure along with computational techniques, and Lair and Ware [37] for a
comprehensive discussion on REML estimation relationship to variance components. For some
details on applications of such methods we recommend, for example, Anderson [4] and Hartley
and Rao [25].

Meanwhile, as we may see, both system of equations (3.21) and (3.26) cannot be directly
managed (in order to produce solutions), since the matrices in the right-hand side ass well as the
vectors in the left-hand side are them self dependent on the variance components (see the example
below), so that, typically, the usual approaches require iterative methods (see McCulloch and
Searle [44]).

Example 3.2.1. Lets consider the unbalanced “one-way model” from the Example 3.1.1. Recall
that P =X - 271X (XTZ*IX)_1 X Tx~! (see (3.18)), a quantity which depends on y; and
(through =7 1).

The desired ML-based estimator § = ?:1 for 7y is achieved solving on 7 the system of equation:
N
y'PMiPy|  |tr(ET'MZIMY) or (ETTMETY) | | (3.27)
yTsz tr (Z_lZ_lMl) tr (Z_IZ_I) 0o ' .

39



CHAPTER 3. MIXED LINEAR MODELS

Clearly the left-hand side and the right-hand side of (3.27) deponds on 7; and 7.

The most common methods implement a Newton-Rapson type algorithm (Fisher scoring
algorithm and average information algorithm, for example). See Gilmour et al. [21]. For the case
when some estimate for some of the variance components produced thought the iterative method is
negative the log likelihood might be reexamined to find values of the variance components within
the non negative ones that maximize that function.

The practical alternatives to Newton-Rapson type algorithm are the EM algorithm (see Lind-
strom et al. [40], for example) and the Parameter expanded (PX) EM algorithm (see Liu et al. [41]
or Lewandowski et al. [39], for example), since they both have desirable properties of monotonic
convergence and the component updates remains in their parameter space. In addition, the PX
algorithm has a rate of convergence that is no slower than the EM algorithm (see Liu et al. [41]),
which made it preferred in a practical implementation point of view. However, they both still have
gap to be filled once the computational implementation is expensive at each iterate with, as made
clear before, relatively slow convergence.

Diffey et al. [17] presented an improved algorithm of PX REML algorithm and EX REML
algorithm for the variance components estimation in MLM. In their approach the authors proposed
alternative algorithms by consider a new incomplete data specification. Both PX and EM algorithm

require specification of the complete data, comprising the incomplete and missing data.

3.3 Variance Components Estimation - Models With OBS

Mixed linear models with orthogonal block structure (OBS), introduced and investigated by Nelder
( [57], [58]), has playing important role in design experiments (see Houtmam and Speed [31],
Mejza [45], for instance) and in nowadays, after more detailed definition and the introduction
of orthogonal designs by Houtman and Speed [31], is playing important role in the theory of
randomized block designs (see Calinski and Kageyama ([12], [13])).

Definition 3.3.1. The model (3.9) is said to have OBS if its variance-covariance matrix, 2., can be

expressed as

S
=Y G0 (3.28)
i=1
where each Q;,i =1,...,s, is a projection matrix, and Q1,..., Qs are pairwise orthogonal matrix,
suchthat Y}, Q; =1,and {;, i = 1,...,s, are non-negative parameters.

Example 3.3.1. As an example, let
Yijet = W+ 04 + Bij + Giji + eijus

withi=1,....,n, j=1,...,n;, k=1,...,n;;, and [ = 1,...,n;j, be a nested model (see (3.4)
for further explanation) where u and the vector o' = [061 ... OCn] are the fixed effect, and ﬁT =

[Bi1-..Bum,) and 87 = [5111 . ..B,Wnnn] the random effect vectors. Under the usual assumption for

40
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a mixed linear model, with X = [ln,,jk,A] standing for the fixed effect design matrix and X; and X»

for the random effect design matrices, the model can be represented in matrix notation as

y:Xu*—}—X]B +X,0 +e, (3.29)

with y* — [g] .

Since R (1,,) C R(A) C R(X1) C R(X;), according with VanLeeuwen et al. [72] the set
of matrices {1,,,,A,X;,X>} is said to be nested. Supposing the model is completely balanced,
that is n;j = r and n;; = t, we will have that X;'X; = D(n;jn;jx) = D(rt,...,rt) = rtI and
X' Xo = D(njjx) = D(r,...,r) = rl so that X;X;' = rtPy, and XoX,” = rtPx,. Then, according
with Theorem A.1.10, y has OBS.

With T = Ppx) = XX *, the projection matrix onto the subspace spanned by the columns
of the design matrix for the fixed effect X, the model is said to be COBS if T commutes with
0 €{01,...,0;} (see Fonseca et al. [19]). In this Section we aim to introduce the estimation of
variance components in mixed linear models with OBS. We introduce the estimation procedure
based in likelihood.

Theorem 3.3.1. Let y have OBS, with variance - covariance matrix % = Y ;_, §;Q;, and put
r(Q;) =ri. Then

(a) |Z| =TT, &
(b) xl= f:1éQi-

Proof. To prove (a) we may note that §; will be the eigenvalue of ¥ and r; its correspondent root.
For (b), it follows that

>l = ZZ%QQJ ZQQ1+ZC’Q1Q1
i=1j=1 3t i#j
R (3.30)

—

O

Now, adding the Gaussian assumption to the OBS model (3.3.1), with {T = [{; ... ], the
logarithm of the likelihood function will be given by

1. ¢) = —glog(m)—%loglzl—l(y—XB)TZ*l(y—Xﬁ)
= —glog (2m) — ;irllog &) — li —XB). (3.31)

i=1 1:1
Noting that Q; = Z*IQiZi’l, and taking the partial derivative in order to { and equating it to zero
we will have that

ri 1

z= Cz( ~xB)' 'O N (y—XB), i=1,...,s.
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Therefore
s 1
G =~y PQiPy, (3.32)
l

with 2 ' (y—XB*) =Pyand P=%"" -2 X (X"27'X) X"Z"!, where B* is the solution of
the general least square equation ) ;_; 1xT0;(y—-xpB ) =0.
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CHAPTER

VARIANCE COMPONENTS ESTIMATION - THE SUB-D
METHOD

4.1 Introduction And Literature Review

It is not fair discussing variance components estimation without discussing it’s relation to the
underlying design, since the quality of the estimation depends to a large extent on the design used
to generate the data (see Khuri [34]). On the matter of search for optimal designs for variance
components estimation, Anderson ([4], [3]) and many of his co-authors (see Crump [15], Anderson
and Crump [6], Bush and Anderson [11], Muse [55], Muse and Anderson [56], etc) are the main
contributors. Most of the works on that matter focus on “one-way designs” (see model (3.3)),
nested designs (see the “two-way nested design” (3.4) or (3.5), for example), and the crossed
designs (see the “two - way crossed designs” (3.6) or (3.7), for example). This designs received
much attention due to its application on genetics, animal breeding, process control, and quality
control and improvement. We start our review by introducing an overview on (optimal) designs for
variance components estimation (see Khuri [34]), and secondly the main contributes on estimation
procedures for variance components. The main contributers for this last topic are Anderson [2],
Anderson and Bancroft [5], Yates [73], Nelder ( [57], [58]), among others.

4.1.1 Designs For Variance Components Estimation

According with Khuri [34] works on design aspects of the variance components estimation is
somewhat limited. Hammesley [24], Crump [15] and Anderson and Crump [6] provided the first
works on optimal design for variance components.

Recall the “one-way model” (3.3). Considering, in this model, the ANOVA estimators 2 and
62 for 62 and o2, respectively, and a fixed k, Crump [15] proposed a criterion for the choice of
optimal design for the model (3.3), which goes through find the minimum of ¥(62) or Z(g—é‘). For

a fixed value of N = Y'*_| n;, Hammesley(1949) observed that the minimum of X(62) is achieved
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N(p++1)+1
Np+1  °

where p = %‘2. In addition, for fixed k and N, Anderson and Crump [6] showed that the minimum

when the model is taken to be balanced and n; = n is taken to be the closest integer of

is achieved when n; = n = % and in this case the optimal design is achieved by taking k to be the
N(Np+2) N(p+1)+1
N(p+1)+1 Np+2

Anderson and Crump [6] also showed that the optimal design for estimating 63 is to allocate

closest integer of k* = = % Consequently, n has to be the closest integer of

p+ 1 observations to each of the r groups and p observations to each of the remaining k — r groups,
where N = pk+r, and 0 < r < k. This means that the design is as closest as possible of a balanced

model. Further more, Anderson and Crump [6] suggested that the value of k which minimizes
(N=5)(Np+1) K _ 142
2Np+N-3 = T+p >

relatively large it seems that there are needed more groups to estimate 67 then to estimate p (see
Khuri [34]).

A2
Z(%) is the closest integer of k** = . Since, asymptotically, when N is

Reexamining the optimal designs suggested by Anderson and Crump [6], using the restricted
ANOVA estimator 6&, ML and modified ML (MML) estimators (see Klotz et al [36] for the last
one), Thonson and Anderson [71] showed that, for a small value of N and p < 1, a MML estimator
of 62 is superior for certain unbalanced designs.

For fixed k and N, Mukerjee [50] showed that the optimal design is achieved by minimizing
uniformly X(6?), where 62 = (62,62) is the minimum quadratic unbiased estimator of 6 =
(O‘é, 63). Mukerjee and Huda [51] reached a similar conclusion (see Khuri [34]).

The problem in the search for optimal designs in context of crossed models, was approached
for several authors. Gaylor [20], Bush and Anderson [11] and Mostafa [49] are some of the works

with a great impact in this matter.

Mostafa [49] proposed two designs, D1 and D, for the crossed model provided the total number
of observations N = Zé‘:l Zl;':l n;j is expressed as either N = ry (r; + 1) (forDy)or N = rz(rz +2)
(for D), where r; denotes the number of observations in row and column of the design D;. Using
Yates [73] methods to obtain unbiased estimators for G%, GE, 67% and o, he showed that designs D

and D, are more efficient for estimating GTZ, o2, 0'% than a balanced model with the same number

of observations, particularly in situation that (;—f > 1, z—é > 1 and Z—f > 1.

Muse [55] and Muse and Anderson [56] did a notable work comparing several designs for the
“two-way crossed model” with no interaction. The authors used the asymptotic variances of the
ML estimators and the trace of asymptotic variance-covariance matrix of the vector of the ML
estimators of 0 = (GT, 0p, Oy, O¢ ). Further more, the authors provided a report with constructive
recommendation (see Khuri [34]) in order to choose the more adequate design. They suggested
that prior information is necessary for the selection of a reasonable design; under certain condition,
considering the trace criterion, the balanced designs seems to be less efficient than some of the other
designs considered in the comparison process. Another notable work is due to Muse et al [54] who
extended the comparison to “two-way crossed model” with no interaction, based on asymptotic
ML procedures. Haile and webster [23] provided comparison including balanced incomplete block
designs, for models without interaction.

Nested (hierarchical) models - useful tool for experiments where the treatment are separated

into several groups - was also widely investigated (see Anderson and Bancroft [5], Anderson [2],
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Bainbridge [8], for instance). It is known that these designs allocate the degrees of freedom mostly
in the last group of treatments, which clearly causes certain unbalanceness in the model. To avoid
this problem it requires to increase the size of experiments, which, sometimes, may not be so
practical. Bainbridge [8] showed that this problem would be overcome using particular types of
unbalanced nested designs.

Goldsmith and Gaylor [22] compared 61 different designs for the random “two-way nested
model” (3.4) using the ANOVA estimation procedures for variance components. With 62, 6[52, and
62 denoting the ANOVA estimators for the variance components 62, 62, and 63, respectively, in
their approach, the authors considered three different criterion based on functions of the variance-
covariance matrix of the vector f = [67 6& 62]T: the trace criterion - tr(X(f)) = Z(62) +
2(65) +X(62); the determinant criterion - | f|; and the adjusted trace criterion - tr(2*(f)) =
(62) + %{Zﬁz) + %@“2), where p; = Z—é P2 = %‘%, and X*(f) is simply X(f) with each of its
elements scalled by thze size of the Variani:e comporients involved in the computation of the element.
Evidently, a particular design will be optimum in a given class of designs if it has the smallest value
of a particular criterion for a given sample size and variance component configuration. The authors

reported the following:

(i) The trace criterion (widely used) revealed to be the best one since it tended to concentrate

the sampling at the group for which the variance component is large relative to the others;

(ii) When the variance components for the first and the second group were small, compared
to the error variance, the balanced design is found to be optimum since it concentrates the
sampling in the third stage. More over, if any stage has large variance components, then the

highest degrees of freedom for that stage are selected.

4.1.2 Procedures For Variance Components Estimation

A part of the problem of the search for optimal designs, variance components have been widely
investigated and several methods for its estimation has been suggested. We highlight the ANOVA
based methods, the ML based methods, and OBS models. Thanks to its simplicity regarding the
implementation, since its underlying idea is to equate the quadratic error for the different sources of
variations to their respective expected values and solve for the variance components, the ANOVA
based methods are common procedures for the variance components estimation (see Section 3.1).
The underling idea of the ML based methods goes through assuming the Gauss distribution for
the random effects and carrying the maximum likelihood estimation from the data (see Section 3.2).
In context of mixed linear models, we highlight the ML estimator and REML estimator (see
Harville [26], Fairclough and Helms [18], Andrade and Helms [7] and Lair and Ware [37]).
Finally, the OBS models (see Nelder ( [57], [58])) plays important role in design experiments
(see Houtmam and Speed [31] and Mejza [45], for instance) and, nowadays, after more detailed
definition the introduction of orthogonal designs (see Houtmam and Speed [31]) plays as well an
important role in theory of randomized block desings (see Calinski and Kageyama ([12], [13])) so

that it constitutes an optimal tool for estimating variance components in mixed linear models.
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Some of the methods referred here are summarized in Searle et al. [67].

4.2 Sub-Diagonalizing The Variance-Covariance Matrix

Variance components estimation in linear models (with mixed and/or fixed effect) have been widely
investigated and consequently several methods for estimation with relevant properties have been
derived.

The aim of this work is to provide a new method for estimating the variance components in
the MLM with properties that may bring some gain relatively to the previous ones. We start our

approach introducing a method to “diagonalize” the variance-covariance matrix

r+1
V=) YiaNa
d=1
on the mixed linear model
2~ (XB, V), 4.1)
where y; > 0,d =1,...,r, ¥.4+1 > 0, are unknown parameters called variance components, Ny =

XX J € .M with X; € .#"*5 the known design matrices for the random effects, and N, | = I,,,
and develop optimal estimators for the variance components y,...,¥+1. See Silva et al. [70].

Our approach will not assume no underling distribution for the model as do the likelihood based
method, we will only require it to have second moment as do the ANOVA - based methods. We
will introduce our method firstly for the model with 3 variance components and secondly for the
model with an arbitrary number of variance components.

Since the parameters we want to estimate do not depend on the fixed effect part, it is convenient
to us to remove the dependence of the model on the fixed effect part, remarking that this action will
cause no loss of information needed to estimate these parameters and will reduce the complexity of
the model for the algebraic manipulation, as well as the bias in estimation process. The strategy
that we will follow is in all similar to the first phase of REML: we will project the observations
vector on the orthogonal complement of X, the subspace spanned by the men vector.

Let B, = Pg(x) denotes the projection matrix onto the subspace spanned by the columns of the
matrix X, and P* = Py(x)1 = In — F, the projection matrix onto the orthogonal complement of the
columns space of X. There exists a matrix B, whose columns are the eigenvectors associated to the

null eigenvalues of P, such that
ByB,=1, ., and B,B) = P".

Thus, instead of the model (4.1) we will consider the restricted model:

d=1

r+1
y=Byz~ <0m Y %sz> , 4.2)

where My = B) NyB,, n = m—r(P,).
Before proceeding with the method deduction process, we set a needed notion for such a

process.
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Definition 4.2.1. Let
A11 e Aln

Ay oo Apg

be a diagonal blockwise matrix. We say that a matrix 7" sub-diagonalizes A if TA produces a
blockwise matrix whose matrices in the diagonal are all diagonal matrices, that is 7 diagonalizes
the matrices Ay1,...,A;, in the diagonal of A.

The two next subsections, 4.2.1 and 4.2.2, approach the diagonalization of the variance -
covariance matrix in the mixed linear model (4.2) for the case of models with 3 variance components,
that is = 2. The third one is devoted to the general case, that is, the diagonalization of the variance

- covariance matrix in models with any arbitrary r > 1 variance components.

4.2.1 The Caser =2

In this section we sub-diagonalize the variance - covariance matrix in the mixed linear model (4.2)
for r = 2, that is
y~ (0p, My + Mo+ 331,) . 4.3)

Since M| is a symmetric matrix there exists any orthogonal matrix (see Schott [64])

Aqy .
L,
A=l | enBhe)e (4.4)
Aip,

with Ay; € A 8" (fo;l gi = n), such that M| = PlTDlPl, or equivalently P1M1P1T = Dy, where

6l, O .. 0
0 6l ... O

D= . S _ (4.5)
0 0 .. Oy,

is a diagonal matrix whose diagonal entries 6y;, i = 1,...,hy, are the h; different eigenvalues of the
matrix M with corresponding roots (multiplicities) g; = rank(AlTL-), i=1,...,hy. It must be noted
that the set of columns of each matrix AITI. forms a set of g; orthonormal vectors associated to the
eigenvalue 6); of the matrix M| (Theorem 2.1.8 guarantees the existence of such matrix AlTl-), SO
that Aj;AJ, = I, and AJAy; = Pe(ay)- Clearly, we have that PP/ =1,, and (see Theorem 2.2.8)

P'P = Al An+... A, A
= Fraajy T TPy,
= I, (4.6)
Putting
M?2 | —
AliMzAlTS:{ i @.7)
Wi  i#s
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we will have that

S(Py) = nPMP +pPIMP + 3PP
O, O ... 0 My Wh o W
0 Ol ... 0 Wi M3, ... Wy,
= N : ) . ) +rnl . ) )
0 0 6lhllghl W/’1211 Wh212 M’%]h]
L, O 0
0 I 0
1 "
0 0 ... I,
= ND(6ily, .. Only, ) + BT+ 1D, .. I, ), (4.8)
where
M121 W122 W12h1
B Wi M3, ... W
W,le thlz M,flhl

It is clear that for the three matrix D611y, ... Op1lg, ), D(I, ... Iy, ) and I' appearing in (4.8),
the blockwise matrix I is the only one which is not diagonal.

We diagonalize the symmetric matrices Ml-zl.,

i=1,...,hy, that appear in the diagonal of the
matrix I'; that is, we sub-diagonalize the matrix I'.
Since Ml%- is symmetric there exists (see Schott [64]) an orthogonal matrix
Azji /
i .. .
hi=1] : | € ///<Z-’:1g”) 8

s

Adiny,

where Ay;j € A/8i*8i (2?2:"1 gij = &i) such that

92i11g,-1 0 R 0
0 92i21g, ... 0 )
Di=PM2P) = | o , Li=1,...,h. (4.9)
0 0 e 92ih2i18i/12,~
It must be noted that the matrix AZTI. > i=1,...,h, j=1,...,hy;, is an orthogonal matrix whose

columns form a set of g;; = rank(A,; j) orthonormal eigenvectors associated to the different eigenval-

ues 6,;; of the matrix M, z.

i that is, g;; is the multiplicity of the eigenvalues 6,;;, and AZTI. Azij =Py (47,)
and Ag;jAg;; = Iy,

Let
Py O ... O
0 P 0 hy owh h .
p=|. P T etttz (4.10)
0 0 ... Py,
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Proposition 4.2.1. P, is an orthogonal matrix.

Proof.

PP, =

where

PyPy); =

Noting that A2i1A2Ti = Iy, we see that P2P2T = IZ

Now,

PP

with (see Theorem 2.2.8)

PPy =

which completes the proof.

Thus, the new model P,P;Y will have variance -covariance matrix given by

S(PPiy) = nPD(Oly, ... Ol )Py + 1nPUP] +13PaD(I, .. Iy, )Py
611 P P 0 0
0 012P P, 0
= N .
0 0 011, Pon, Py,
D%l P21W122P2T2 P21W12h1P2Thl
P 22W221P 2T1 D%z P. 22W22h1P ZTh]
+7 . . .
| Pon, Wi\ Py Pon, Wi, P, Dj .
(PP, 0 0
0  PpPl 0
+71 ) ) )
. 0 0 chleThl

.
i=18i

PyP, 0
0 PnP),
0 0
A2,~1A2T,.1 0
0 A2,~2A2T,.2
0 0

PiPy 0
0 PLPn
0 0

.
Pop, Py,

.
Py, Pop,

T

AJ; Aoiy + A Adiy + ... + Az, Ay,
Friag) T Prag) +FPrag, )
L,
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where
AritAg; 0
Pyp] — 0 Aziz'Ang-z
0 0

and, with i # s,

A W2AJ

ArpWi ZA].
P21W2P23 _ l 2s1
AZihle A2sl
The Matrix D% = PyMZPL, i =1
defined in (4.9).

Definition 4.2.2. The orthogonal matrices P; and P, respectively defined in (4.4) and (4.10) will

be called sub-diagonalization matrices; the matrix P, P, sub-diagonalizes the variance-covariance

matrix, 22:1 YaMy, where M3 = I,.

Note that

PPy =

The distribution of the sub-models

yij = AgijAny, i=1,...

as well as the cross-covariance between the sub-models, y;; and yg say, are summarized in the

following results.

Proposition 4.2.2.

Yij ~ (0g,s Aijlg,;)

where A;;

=161+ 1260 + 15

T
AZihZiAZihzl'

A211W A252
A212W A2s2

A2ihz,W szz

AoiAnry

Aoiny Arry
AxiAqpy

Aopy, A2y

Aop 1Ay

50

[ A2hy iy Ay Y ]

i, j=1,...

Ly, O 0
0 Igiz 0
0 0 Igihzl-
AZzIW A25h2
AznW; Amz

AZihz,W Ao,

.,h1, appearing in the diagonal in the right side of (4.12) is

Jhoj,

=L...h;j=1.. hy
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Proof.
Recalling that Ay;jA|; € .#%7" and g;; < n, according with Theorem A.1.8(c) we will have
that

2
Yij ~ <0gij, Z ')/dA2ijAliMdA1TiA2Tij + Y3A2ijA15A1T,-A2Tij> .
d—=1

The portions 23121 YaAzi jAliMdAlTiAzTi ; and p3A2;;A| iAlTl.Agi i in the variance-covariance matrix yield:

;YdAﬁjAliMdAlTiAZTij = ThAij (elilgi)AZTij+y2A2ijMi2iAgij
) = NO6uly,; + 1260l
and
YAz ALATAL = PAi jIg,-Agij = Pl
which, clearly, complete the proof. O

Proposition 4.2.3. Withi < s and j < k (symmetry applies)

0.5 i=sj#k
Z(y,'j, ysk) = A’ijlgij i= S;j =k (413)
72A2ijA1iM2A1TSA2Tsk i 75 S.

Clearly the sub-models y;; and yg are correlated for i # s, and not correlated for i = s.
Proof.

L(ij k) = AsjALZ(y)AAry (4.14)
AsiiAi (M + My + 1A AL
= nUr+rnl+yUs,

where Uy = Ag;jA1iM4A| A, with Mz = I,.
When i = s and j = k it holds X(yij, ys) = 2(yij) = Aij, as we may remark from the previous
proposition. When i = s and j # k it holds the following:

_ T _ )
U = 61A2ijAyy = 0445

_ a2AT )
U, = A2l.IMiiA2ik - Ogi,-,g[k’
U = A2ij (Igij,gik )Alik = Ogijagik'

Finally, when i # s we found that

U = Ay (ng,gx)A;sk =0g,.0.5
U, = Az iW2Ag;
Us = Agij(0g0,)A25k = Og;; -
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4.2.2 Estimation For r =2

From the subsection 4.2.1 we see that P, Py produces (with i and j respectively replaced by i; and
i, for convenience) the fixed linear sub-models

yiliz ~ (OgiliZ, A'iliZIgiliz) ’ ll = 17""h1$ 12 = 1,"'ah2i17 (415)

with A, = %161i, + %262:,i, + 13, the model y ~ (0,,, My + 12M> + 31,).

An estimator for 4;,;, in the model (4.15) is

Y

Ty
yilizylllz
lliz ’

8iriy
ir=1,...,h, i2=1,... hy.

Indeed (see Theorem A.1.8),

1

2

E(Siliz) = g tr{xiliZIgi]iz}
1i2

Aijiy - (4.16)

Thus

E(S7,) =i, = 101, + 16+ 1 i1 =1k, i =1, hy,

[ s, 6 6 1]
S%/‘lz] 91 1 92 1hy; 1
85, 012 6 1 .
i
sothat, withS§=| , |[,0=|"" T l,andy= ||, we will have
Shs 02 Onpy 1 "
S O, O 1
2
_Shlh2h1_ _91/11 92h1h2h1 1 ]
E(S) = Oy. 4.17)

Thus, for iy = 1,...,hy, i» = 1,...,hy;,, equalizing the variances A;;, to the correspondent
estimators of Sl-z1 i, it yields the following system of equations:
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St 7011+ b+ 1
S = O £
3 %1612+ 126201 + 755
S%/m = ')’1' 912+ 7’2922h22 + %
Sill = 'YI' 91h1 + Yz ‘éznh'l 1 ’-I— 133
S = MO+ 1O 47

which in matrix notation becomes
S =0y. (4.18)

Proposition 4.2.4. O in equation (4.18) is a full-rank matrix.

Proof. Let © = [cicac3], where ¢, i = 1,...,3, denotes its ith column. We thus have that: (a) the
entries of ¢; are 0y1,...,0yy,, the different eigenvalues of the symmetric matrix M;; () the entries
of ¢y are 014, ..., 92h1hzhl , where 6,1, ..., 92,'1112[.] are the different eigenvalues of the symmetric
matrix M?%; (c) ¢3 = 12?11:1]’[21'1 ,i.e., is a vector of 1’s.
Let a and b be any scalars. Then,
61 = -2
aci+bcz =0< & 0 =... =0,

__b
Oy = —4

which can not be truth (by construction 6y;, # 6“/1 , i1 # i’l), unless y is an 1 x 1 vector.

_ b
021 = —4,

acr +bcz =0& = 921']1 =...= 92i1h2,-l

_ b
62i1hzil -

which cannot be truth once by construction 63, 7 6,; /. i2 7 i/2, and (M;,;, # My ; for iy # i’l)
2 14
Oy # Oy, for i1 # iy. Finally,

a6y, + b6 =0 61 = —3 61,
aci+bcy =0& : =

: = 92,'11 =...= (-)2,-1;,2,.1
abyj; +b6ip,, =0

iy, = — 50614,

which cannot be truth (by construction 6; ;, # 62!‘11"2’ ip # ilz). We must note as well that 6,;,;, #

0 iy # i, once the My,;, # M, ;. Therefore, r(®) = 3. O
1°1

s
2iip’
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By the Theorem A.1.5 the matrix

haiy hai, hai,

h 2 h h 1
Z,‘ll Z,‘z 9],'1 Z,‘ll Z,‘z 911'1921'11'2 Z,‘ll Ziz elil

Te = hy yoh2iy hy vy g2 hy yhaiy
O 0= |y, 616, Y'Y, 65, LY, 6

haiy haiy haiy

h ! h
Zill Ziz 911'1 Z,’lll Ziz 921‘.1‘2 Zill Ziz

is positive - definite, and by Theorem A.1.6 it follows that ® " © is a non-singular matrix. We,
thus, take its inverse to be (@' ©®)~!.

Now, Pre-multiplying the system (4.18) in both side by @ " the resulting system of equations
will be

0's=0"0y, (4.19)

whose unique solution (and therefore an estimator for ) is
7=(0'®)"'0's. (4.20)
We call it Sub-D estimator.

Proposition 4.2.5. The Sub-D estimator, § = (©'©®)~'@'S, is an unbiased estimator of .

Proof.
Indeed, E(§) =E ((0'0©)"'07S) = (0'0) '0TE(S) = (0'®) " '0'Or=1. 0

We may now be interested in find out the distribution of Sub-D estimator. In order to do it, we

consider the next results.

Proposition 4.2.6.

2 2 .. . A%
L(Sip Sip) =q @) i=ij=j 25
(c)i##i*: 2p3tr(QM,),
TAT AL
where () = V;iMyV s js, with V;; = fh/*zgiizu/%.

Proof.
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‘We have
Ty vl v
5(s5,8,) = 2o B
8ij 8i* j*

ATAT AsiiAy; ALALL Ay Ay
—— (y‘r ( 1422i 4 2ue y; yT 1+4724% j ] 4 y
8ij 8i j*

= X (yTVinZ yTvi*j*)’>
= 2tr (VijVVi*j*V)
= Zﬁtr(V,-le Vi*j*Ml) + 2’}’1 }/zl‘r(vile Vi*j*Mz) + 2’)/1 }@tr(V,le V,'*j*)

+ 200tr(ViMaVie o My) +29%tr(ViiMyVie M) + 2013t (VijMo Ve )
+ 2y3y1tr(V,-jV,-*j*M1) + 2y3y2tr(V,-jV,-*j*M2) + 2'}’§l‘r(vijvi*j*>
i=i'j£j: 0,
A2
= i=i'j=j": 2g—”_;,
i # i ZYZZIV(V,Jszl*J*Mz)
For the case (a), that is i = i* and j # j*, we have that
1
ViiMiV = @ABAZTUAQUA],-MlAlTiAzTij*Az,-j*Al,-
ij8ij
1
- EAIT,.AZTI. A2ij (B1il,) Ay AijAvi
1j8ij
= 04, (see (4.5)); 4.21)
1
VijMZVij* = @AI‘A;UAZUAliMZAEA;ij*AZij*Ali
ij8ij
1
= e ATiAY A (M) Ay AnijAri
1j8ij
= 04,xq (see (4.9)); 4.22)
LT
VijVij = mAquij (Oguxgij*>A2ij*A1i
ij8ij
= 0, (4.23)

(4.21), (4.22) and (4.23) together with Proposition 2.1.1 (¢) proofs the case (a).

For the case (c), that is i # i*, the desired result becomes clear if we note that
AyiMiA = AAres = 0gxgs s

Z‘I"(Vijszi*j*Ml) = l‘l"(V,’*j*M]VijMz) =0, and tr(Vijszi*j*) = tr(Vi*j*VijMz) =0.
Finally, for the case (b), that is i = i*; j = j*, recalling y;; ~ (Og[j, lijlgij), it holds

T T 2

i Yij YijYij Aij A Aij

$(s3) = w2 :ztr{’fzg,.jfzg,.j}:z;zr{zgij}
8ij 8ij 8ij 8ij g

ij
2
= 2, (4.24)
8ij
and therefore the proof is complete. O
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The next result introduce the variance-covariance matrix of the Sub-D estimator:
7=(0@'@)"'0's.

Proposition 4.2.7. Let I, s,, denotes X(S7;, Sg;). Then,

()= (@) 'o'x(s)e®'e) !, (4.25)
Dy A Az ... Ay S 1
Ao Dy Ay ... Ay %l A3
where (S) = | As1 A2 D3 ... Az |, withD;=2| | #i2 ) | and A =
S C
_Ah11 Ah12 Ah13 ... Dy, ] L T 8imy
281, LsuSo - ZSkISsth
255,551 LSSy Z‘Skzss/m
ZSk;12k551 ZskhszxZ Z‘Skhzkss/%

The next section intends to generalize the method introduced here, that is, introducing the

Sub-D estimator for a MLM with an arbitrary number of variance components.

4.2.3 The General Case: r > 1

The general mixed linear models may be expressed as (see (3.8))

r+1
i=1

with X, = I, X; € #™7Pi and B; € RPi, where X € .#™*P is the known (possible non full-rank)
design matrix for the fixed effects, B € R” is the vector of the (unknown) fixed effects values,
X;,i=1,...,r+ 1, the known and fixed (full-rank) design matrices for the variance-covariance
structure, fB;, i = 1,...,r, the unknown vectors of the unobservable random effects, and B,
the vector of the residual errors, where f3;, i = 1,...,r + 1, are mutually independent, such that
E(Bi) =0,, and X(B;) = %lp,. Thus,

r+1
zn~ <Xﬁ’ Y %’Ni> :
i=1

where N; = Xin-T, and the unknown fixed parameters %; > 0, i = 1...,r, %41 > 0 denote the
variance components.

In order to reduce the complexity of the algebraic manipulation in the estimator development
process, and since the bias will be reduced with no loss of information needed to estimate the

variance components (see Section 4.2), we will approach the model

d=1

r+1
y=Byz~ <0n, Y }'de> ; 4.27)
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with M,; = B;NdBO eSS n=m— r(Po), where B, is a matrix whose columns are the eigenvectors
associated to the null eigenvalues of P, = Pg(x), such that B, B, = I,,_,(p,) and B,B, = P*, with
P = Prixyr =In—Po.

One may note that y = B z = Z;;ll B, X,B4, where
ﬁd ~ (OS,{’ ydlsd)7 d - 1" e ﬁr—H ~ (Ona '}’dln)

Withiy =1,...,hy,i; = 1,...,hj,,-1,”_,,‘j71, consider the finite sequence of r matrices Pj, P, ...,
P. defined as follow:

Ay
Ay b, I
P=| |€ .//1<2’1 g")xn, with Ay;, € .8 (note that Y g, =n):
. i
Ajp,
(P 0 ... 0
0 Pp ... O (zf-” 52 g )x I
p = e \Th TR <1 '),where
| 0 0 ... Py,
[ Az
Az <):§12J' 8iyi )Xgi hai
P2i1 = .1 eM\ " 1’ Withzghiz = 8i and A2i1i2 € M B8
. i
_A2i1h2il
[Py 0 ... 0
hy <2, M3y hy <M.
P3 _ 0 P32 e 0 c %(Z”I Zi2 1 Zi3 1-2 gi1i2i3> X <Zi1| Ziz 1 gi1i2>
| O 0 ... Py,
B 0 0
0 P3' 2 e 0 <Z?2J1 Z;lz'il’iz 8iyini >>< (Z?Z’il 8iyi )
where Py, = | | .l' _ ] < AN 1 2 "12) and
0 0 e P3i1/12,i1
A3iiir1
A3i1i22 (Z?s’il’iz 8iyii )xgi i . haa
P3m'2 = . eM\"? 15 12, with Z 8iiihis = &iiin and
: i3

A3ijishy;, iy
L 8iyiniz X&iyiy »
A3111213€% 11213 X 8iyip -
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Thus, for r > 2, each matrix P, will be given by (P is given in (4.28)):

Py 0 ... O

0 Pr ... O
P. = ) L ) (4.28)

where

Pri| 1 0 e 0
0 P2 ... 0
Pril = . . X

0 0 ... Puim,

/12,1- hr,il,...,i,.,l h2,i h(r—l),il,...,ir,z
c //{<Zi2 Ll X, gil---ir> x <Zi2 1 .“Zi(r—l) Bt

Pril-ui(rfz)l 0 .. 0
o 0 Pri|. l(r72)2 0
Pril-“i(yfz)
0 0 s Pril---i(rfz)hr—l,il,...,ir72
h . . h.: . h . .
(r=1)siqseeip_9 Pl (r=1)si iy o
c %(Zi(r—l) Zir gll.,,zr> X (Zi(r—l) gzl..,z()_71)> ’
Ari..‘ l(,,l)l )
Aviyip 12 (Z-Zr’i"""i**‘ o )>< _
wel(r—1) ir 8iy..ir 8iy..i —1
and Prl'l.“l.(rfl) - . E % ( ),
Aril---i(,_1)hr,i1,...,ir |
]’lr,i|,...,[,7] hl i X o i
with Z 8iy.iy = gil..,i(,,l),zgil =n, Ay,.q € M
i i

Theorem 4.2.8. Let the matrices Py, Ps,. .., P, defined above be such that:

(c1) The columns ofATl.l, it =1,...,hy, form a set of g;, = r(Ai'—il) orthonormal eigenvectors

associated to the different eigenvalues 0y;, of the matrix My (0y;, has multiplicity g;, );
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(¢2) The columns ofAzTiliz, ir=1,...,hy;, formasetof g, = r(A;”lz) orthonormal eigenvectors
associated to the different eigenvalues 6y;,;, of the matrix Ml1 W= Ali]MzAlTil (6i,i, has
multiplicity gi,i,);

(c3) The columns 0]‘1431”213 i3 =1,...,h3,,i, form a set of gi i, = r(A;-lizl-}) orthonormal

eigenvectors associated to the different eigenvalues 63, ;,;, of the matrix

.
Asis M3, Agiy iy = Adiyiy Aty MBAT; Asiiy

i

(83i,iyi;, has multiplicity i iyi;);

form a set of gi, .. (A,T,1 i ) orthonormal

of the matrix

slr—12

(c;) The columns ofA,,1 i =1 e

eigenvectors associated to the different eigenvalues 0,;,

Ly

T T
A(r_])il“'i(r—]) o 'AlierAlil o 'A(r—l)iln.i(,.fl) (4‘29)

(0, ..i, has multiplicity g;, ;).

Then each matrix Py, d = 1,...,r, in the finite sequence of matrices Py, P», ..., Pr will be orthogonal

matrices.
Proof.
According with the way Py is defined (see (4.28)), since
| Adiyijg_p)1 ]
Pdi1-~-i(d—1> - o :(d " sl = Lo Aoy
| Adir.itg_yyhaiy, iy, |

and according with condition c; we see that the matrices Py;, are orthogonal. Thus, the desired

d—1
result comes if we see that PdT Py will be a diagonal blockwis<e rr)latrix whose diagonal entries are
PT Py 11 = 1,...,h;. The diagonal entries PdTi1 Py;, will be diagonal blockwise matrices whose
diagonal entries will be dl]tzpdili2’ ip =1,...,h; . Proceeding this way d — 2 times, we will find
that the diagonal entries of the blockwise matrices P;li

will be (see Theorem 2.2.8)

""(dfz)Pd"““i(d—z) via—2) = Lo s a2y, iy

T _ T
Pdi]. Pdilu 1 - Adi] Adil--

.l(([,” 1 ]Adil..

T
..i(l,v, ) |)1 + e +Adi1...i

a-1) A(d- (d-1)hd,iy iy Aa-1yhaiy, gy
Igil.‘.iwil) ’

reaching, therefore, the desired result. Proceeding in same way we would also see that

T
Pdilmi(df])Pdl'l '“i(dfl)

is a Blockwise diagonal matrix whose diagonal entries are
Adiy iy 1Al .

d 1) (d l).]’ ] 1""’hd,i1,...,id,l9

so that PP, is an identity matrix. O
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The model P. ... PPy will produces the following sub - models:

Yiveoir = Ariy i A= 1)iy iy - A2 AL s (4.30)

il = 1,...,h1,ij = 1"“’hj»il»~~aij—l'

Definition 4.2.3. The orthogonal matrices P,, r > 1, defined in (4.28) will be called
sub-diagonalization matrices; here it make sense since the matrix P, ... PP, sub-diagonalizes the

variance-covariance matrix, Zl’ill YaMy, where M, = I,,.

At this point we are able to summarize the distribution of the sub-models in (4.30) as well as

the cross-covariance between the sub-models, y;, ;. and Yit...ir Say, in the following results.

Proposition 4.2.9.
Yiy.iy ™ <0gil...ir’ )’ilmirlgil...ir) ’
where Ai....i,- = Z(rj:] yded,-lmid + Yr+1-

Proof.
The proof becomes clear after looking to the proof of the proposition 4.2.2. O

Proposition 4.2.10. Withi; =1,... ,hj,,-],._‘,,-j_l, j=1...,randi; < i;‘- (symmetry applies) we have

L L . e
ogil,,.ir’gi?..iﬁ =15 0lb—1 =4 1, Iy 7 I
A’ilmirlgil...ir
Ya—oYaVa i #1]

Yo—si1YaVa ij:i;‘.,jzl,...,s—l, s # i, l<s<r—1

=i j=1,...,r
Z(Viyis Yitoiz) = = 4.31)

where Vg = A, i .. .AUMdAi'—iT .. .A;ET «. This result ensure that the sub-models y;, .; and Vit

Lk
are correlated for iy # ii, 1 < s <r—1, and not correlated for iy =i}, s <r—1, i, # i}.

Proof.
We proceed as at the case of three variance components.

Starting with case iy =i},...,i,—1 = i,—1, i, # iy, we have the following:

Vi = Ari1---ir (elilgi|...ir_1 )ArTi’l‘...iﬁ = 081|...ir’gi’l‘.,,ii;
V2 = Ari1..-ir (921'11'21&1...;',,1 )A;E’l“..i’; = Ogil...iwgi?..i;‘
Vet = Aviy i (00— 1y i Ja i )AIT...,'»; =00 g e
Py
2 = Ogl']---iwgifmif
L Vigr = Ogil...iwgi’f,..i;f

The result for V;, is due to the fact that the columns of A|. . form a set of orthonormal eigenvectors

riy...0y
associated to the different eigenvalues 6,, ; of A, ;. .. .Al,-lM,AlTil .. .A(Tr_])il._.l._il.

Wheni; =1ij, j=1,...,r, we have

Z(iycis Yitiz) = ZViyoiy) = Xy
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as seen at the previous proposition.

For the case when i; =i}, j = 1,....s— 1, iy # iy, 1 <5 <r—1 we have the following:

_ L. . T _ .
V] — Arll...lr (elllgil___[ril )Arl’{l’; - 081,...1,,g,-?“i5 5
_ L. L. L T T _
Vici = Arzl...z,l . 'ASll--~l_v(9(571)11..‘%,1]&']...ixfl )Asi’[,,.i§ . 'Ari‘f__,i’; - Og"l---"r’gfi‘---ii"

but withs <d <r,wehave V; =A,;, ; .. .AS,-I_,.i_ch(lS_l)AxiTmi; .. .AT@._i*, where

ry

M[(lrl) = Al 1)iy i L ALMA]; "'Az;fl)ip..i(x,l)' Now, since M, = I, it is straightforward
verified that V.1 = 0g, o ..
Sy

Finally, the case i; # i} refer to the previous case when s = 1. O

4.2.4 The General case: Estimation For » > 1

Recalling that for the mixed linear model (4.2), P.... P, P,y produces the sub-models

Yirig.iy ™ (Ogil...ir’ A’iliZ-»-irlgil iz,..ir)’
ir=1,....h,ij= anhj,il,...,ij,] 4.32)

where

.
Miviy.iy = Y, YaOuiy..iy + V1.
d=1

The matrices P;, d = 1,...,r, are defined in the subsection (4.2.3).

An unbiased estimator of 4;,;, ; in the model (4.32) is (the one based on least squares)
2 _ 1

T
SlliZ---ir - fyiliz..,irylllz...lr
gl]lz...lr

Indeed (see Theorem A.1.8 (b) and the explanation for (4.16)),

Ao
2 _ 1110...1y
E(Si,.i) = —Ir |:Igi1i2...ir:|

8ilis...i,
= Aijip..iy- (4.33)
For convenience, instead of Sl-zl ir..i,» We may sometimes use the notation Sizl by 1)ir in what follows.

Thus
> r
E(Siliz...i,) = Z YaOui...iy + Yr+1
d=1

= %9111 +7202i1i2+---+'}’r9ri1i2...i,+'}’r+l,

i1 = ],...,hl;ij = 1,-~-ahj,i1,-»~,l'j—1
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so that , with

2
St
2
STz
2
STt by
2
STi.21
S* = - s
2
Sti.on, s
2
St 11
2
Shlhz,hl . PTI
011 0211 03111 0r11...11 1
011 6211 63111 0r11..12 1
011 6211 63111 . Ortiin, i 1
011 6211 63111 0r11..21 1
0= ,
011 6211 63111 e Ort1.2m,, 2 1
O, Oony1 B3, 11 Oriy1...11 1
_elhl 92h1h2,n, 63hlh2,h]h3,hl,h2 erhlhz,hl-~-h(r—1),h1,.,,,hr,zhnhl,---,/1,,] 1 ]
n
)23
V3 )
and y* = , we will have
Y
[ Vr+1)

E(S") = @y (4.34)

Thus, for iy = 1,...,hy, i; = 1,...,hj; i, j > 1, equalizing the variances A;;, ;. to the
2

correspondent estimators S7
112...1

yields the following system of equations (in matrix notation)
SF=0"y". (4.35)
Proposition 4.2.11. @* in equation (4.35) is a full-rank matrix.

Proof. The proof is done in same fashion as for the Proposition 4.2.4. Indeed, by construction

01i, # 911./' they are the different eigenvalues of M, 6y;,;, # 9251/2 the distinct eigenvalues of Ml% =
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A1i1M2A1T,~1, 63i,iris 7 631.”.2[./3 the distinct eigenvalues of Ay;, ,-ZAI,-IMzAlTi1

0 i the distinct eigenvalues of

riliz...i(,,l

T T
A(rfl)l]l'z..‘l'(r,]) . ‘A]ierAlil .. A

where i; # i;-, j=1,...,r. Thus we have that r(®*) = r+ 1.

By the Theorem A.1.5, with Y denoting Zf’l‘ ZZZ .. fo_’, the matrix

>
L6, Y6162 L6030,
2
Y. 01, 021 Y65, 011> 031, iy
2
Y01 03iis L6210, 03001015 X654,

(@*)T OF =

Y 61,6 ir Y0200 ir Y. 03i,ii3 0y ir

Zelil ZGZiliz Ze3i1i2i3

(rfl)i|i2“.i(,,1)

Y 61,65, ir

Y 6210, 6ri; i

Y 603103 0riy ir

Y 6y,

Zeril...ir

)y

Y 65,

Y 63i1iris

s Briviyi_ iy 7

is positive - definite, and by Theorem A.1.6 it follows that (@*)T ®* is non-singular; that is, it is

-1
invertible. We take its inverse to be ((@")T ®*> .

Now, premultiplying the system (4.35) in both side by @ the resulting system of equations

will be
(@) s=(0) 0.
whose unique solution (and therefore any estimator of y) is
—1

7=(©)"e) ©)'s

Proposition 4.2.12. 7= ((©*)" ©*)~1(©*)" S is an unbiased estimator of y =

N
b7l
V3

¥r
_’)/(rjrl)_
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12}
V3

Y

_Y(H-l)_

(4.36)

4.37)

, where
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Indeed,

pp) = E((@)e) ©)'s) = (@) e) @) EE

= (@)'e) (o) ey=v. (4.38)

4.3 Improving The Sub-D Estimator

As demonstrated in previous section through theoretical results, and corroborated with numerical
simulations (see chapter 5), the Sub-D estimator provides unbiased estimates whatever the mixed
linear design we choose, having overcame the performance of ANOVA estimator in crossed and
nested designs with unbalanced data, and the one of REML estimator in nested design; indeed, as
may be seen in chapter 5, when applied to nested design, REML provides low accurate estimates for
some parameters, whereas when applied to crossed and nested designs ANOVA provides unrealistic
estimates for some parameters. It must be point out that all designs referenced here have some
empty cells.

As we may remark from the chapter 5, despite its great performance, the numerical test
reveals that the Sub-D estimator produces estimates with a higher variability comparing to the
variability of the estimates produced with REML estimator. This problem seems to be due to
the non null correlation between the sub-models (it is null for models with one or two variance
components and orthogonal models). For example, for the case of models with three variance
components (see model (4.3)), the sub-models y;; = A;jA1;y and yg = AogA sy, withi,s = 1,..., hy,
Jj.k=1,..., hy;, hys, are correlated as seen before. From (4.13) we see that the variance-covariance
matrix of the new model P,Pyy is a blockwise matrix whose diagonal matrices are D1,...,Dy,,
where D; = diag(A; .. .lihz‘.), corresponding to %(y; s ysk) fori = s, j =k, and the off diagonal
matrices are the non-null matrices »A»; jAliMzAlTsAzTSk, corresponding to X(y; s ysk) for i # s; this
last one, i.e the cross-covariance between y;; and yy for i # s, is not considered by the Sub-D
estimator on its deduction process as we may have seen.

In attempt to reduce the variability of the estimated values produced with Sub-D estimator, we
introduce now an improved estimator for variance components; the improvement is achieved by
incorporating the structure of the covariance in the Sub-D estimator deduction process. This new
estimator will be referred to as Sub-DI estimator.

Recall (from the previous section) that the Sub-D estimator is a solution (in ) for the system of
equations

S* =0 (4.39)

(for the case of three variance components: S = @Y), which consists in equating the sum of square
errors for each sub-model to its respective expectation; clearly, as previously remarked, it does
not take in account the correlation between the sub-models y;, ;. and Vit oot for i; = i;f, j=
1,...,s =1, iy #ij, 1 <s <r—1 (for the case of three variance components: y,;jand yos, i 7 5).

Considering that in data collecting process for some experiment a large amount of data is

required, the repeating process may not be so practical, so that the unbiasedness of a particular
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estimator might be neglected in favor of others estimators with better performance such as consis-
tency, asymptoticity, among others. Hence, considering the idea of improving the Sub-D estimator
in that sense, we may be interested in incorporate the system of equations which take into account
the cross-covariance between the sub-models y;, ;. and Vit fori; = z’; j=1,...,s—1, i, #
iy, 1 <s < r—1to the system of equations (4.39), been aware that the unbiasedness might not be

preserved.
Given that the expectations for all sub-models y;, ___;, are null vectors, i.e. E(y;,. ;) = O s
it holds (see Theorem A.1.7 and Proposition 4.2.10)
E(yll lryll ..... lr) = ZI(yll »»»»» Ir> yll aaaaa l*)
= ) Vi it (4.40)
d=s+1
fori; = i}‘-,j: L,...,s—1, i #ii, 1 <s<r—1, where
d T T
Vi i it T Ariyciy - -AliMdAu;* = 'Arif...i’;’
The result in (4.40) is equal to Y, _, Y4V ” ..... bl when s = 1 (see (4.31)).
Recall the system of equations that produce the Sub-D estimator,
T
2 - Vit ooy itoeosir
(Sl|l2 A l)lr) = E ( Qi )
P
= Z YaOuiy...iy + Vrs1 (4.41)

d=1
il = 1,...,h1;ij = 1,...,hj’,'1’4__’,'/.71

(see system (4.39) for matrix notation), system which, as stated before, doesn’t take into account

the fact that the sub-models are correlated. Now, noting that with y(k)“’ir, k=1,...,8,...denoting

1

the kth element of the sub-model y;, . ; , we find that

(k)
E(y;.. y,l Z i . (4.42)
d=s+1
where vd(kl)i i is the entry at row k and column / of matrix V.d it ot
slpslyseessly 0 2 ey Fal]senns >
1,«))11 -----

Finally, equatmg - to its expectation Y. Y40ui,..i, + Y41, and y;, l,yl i to its
expectation i Y4V, 1] il et and putting together both the equations in one smgle system of
equations (see (4.43) below), the new estimator for the variance components, which we shall call

Sub-D improved, denoted as Sub-DI, will be the solution in 7" = [ ... 1] for the system

Yigvooip Yig iy . - ~
1 iy = Yu—1¥aOai..i, + ¥r+1
fori;=i%,j=1,...,r

K 0 7 ’J( W (4.43)
VivoitVitvis = Ld=s+1 YVil it s

fOflj:lj,]—l,..., s—1 i #Fi, 1<s<r—1,

withip =1,...,h;;i;=1,... ,hj,,-l,__,,-H ; it must be noted that right hand-side of the second equation

in the system (4.43) is equal to )/, }7dvfl(kl). . . whens=1.

,,,,, T S
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Remark 4.3.1. As it may be seen, for models with one or two variance components (fixed effect
or “one-way”’ models) the sub-models y; = Aj;y will not be correlated so that, for these models,
the Sub-DI estimator is equivalent to Sub-D, since the right-hand side of the second system of

equations in (4.43) will be null.

66



CHAPTER

NUMERICAL RESULTS

In order to test the performance of Sub-D estimator, as well as its improved version, the Sub-DI
estimator, we carry out numerical tests for several types of designs for MLM. More precisely, we
test their performance using a balanced and an unbalanced “one-way designs”, an unbalanced
“two-way crossed design” and an unbalanced “two-way nested design”. The test will be done
comparing its performance with the performance of REML and ANOVA estimators. For the REML
estimator we will use the Ime4 package (for R software), which covers approximately the same
ground as the earlier nlme package, providing also functions for fitting and analyzing mixed models,

but with some additional advantages in what concerning the MLM, namely (see Bates et al. [10]):

(1) It uses modern and efficient linear algebra methods and reference classes to avoid undue
copying of large objects; it is therefore likely to be faster and more memory-efficient than

nlme;
(2) Itincludes generalized linear mixed model (GLMM) capabilities (via the glmer function);
(3) It offers built-in facilities for likelihood profiling and parametric bootstrapping;

(4) Notwithstanding it is not (yet) as well-documented as nlme, it is designed to be more modular
than nlme, making it easier for end-users to re-use its components for extensions of the basic

mixed model framework;

(5) It also allows more flexibility for specifying different functions for optimizing over the

random-effects variance-covariance parameters.

For the computational implementation of ANOVA method we will follow Sahai and Ojeda [63].
REML is the preferred method for estimating the variance components in MLM (Diffey et
al. [17]); it is therefore likely that for the Sub-D and Sub-DI estimators a reasonable way to prove
their values goes through producing results which can be compared with those of the REML

estimator.
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5.1 The Choice Of Designs

Due to their widely application, with special emphasis on genetics, process control and quality
control and improvement, most of works on “search for optimal designs for variance components
estimation” and “estimation procedures for variance components” focus on one-way designs (see
model in (3.3)), nested designs (see the “two-way nested design” in (3.4) or (3.5)) and crossed
designs (see the “two - way crossed design” in (3.6) or (3.7)); it is therefore likely that on the
matter of search for its place within estimators for variance components on MLM the Sub-D and
Sub-DI estimators must prove their values facing these designs.

On this purpose, and since the smaller the sample, more difficulty to provide accurate estimates
for either fixed and random linear models or MLLM, we will test the performance of Sub-D and Sub-
DI using reasonably small samples. The test will be done using an unbalanced “two-way crossed
design” and an unbalanced “two-way nested design” with 12 observations each, constituting,
reasonably, a small sample. We also used two “one-way designs”, one with balanced data and the
other with unbalanced data. Both the “one-way designs” will include 21 observations.

For the “two-way designs” (crossed and nested) some cells will be taken to be empty in order
to take the methods to the extreme.

The test will be done proceeding as follows: for the same 10000 observations of the underlying
model, the three estimators will be simultaneously applied and, in order to favor the comparison,
the results will be organized in different tables.

We will use the R software for all the simulations in this work, and the results will be rounded

to four decimal places.

5.2 The Performance I: “One-Way Design”
Recall the “one-way design” (see Section 3)

=ZUu+27Zicx+e,

where

1 0 0]

o ... ... 0
O 1 O 0

Z=1gy . Zi={0 1 0 .. 0|ec.Z")* mda=
Ok

0O O 0 1
10 0 0 1]
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5.2.1 Balanced “One Way Design”

Lets consider a particular balanced design of the “one-way design” withk =3 andn; =7,i=1,2,3.

Thus we will have that

72~ (Zu, V), where V=927 + Blys s (5.1
J1 017 075
with Z = 1,; and ZlZlT = 1077 J7 077].Let B, be a matrix whose columns are the eigenvec-
077 077 J7

tors associated to the null eigenvalues of %ng. Then BOBOT =D — %121 and BOTBO = b, and so
the new model will be

y=Byz~ (020, M +12l0),
where M = B} Z,Z] B,,.

Since 7(Z1Z]' ) = 3 it follows that (see Theorem 2.1.5) (M) = (B} ZZ| B,) = 3. The eigen-
values of M are 6;; = 7, with multiplicity equal to 2, and 6, = 0 with multiplicity equal to 18.
7 1
0 1] '

Now, assuming o ~ 4 (03, y153) and e ~ A (020, Yrl20), with 1» = 1 fixed, the particular

Thus © =

design can be rewritten as
y=B)Za+Be. (5.2)

For each 1 € {0.1, 0.25, 0.5, 0.75, 1, 2, 5}, we simulated 10000 observations of the model stated
in (5.1) and for each observation the Sub-D is applied and the variance components ¥, and 7> (error)
are estimated. In order to compare the performance of Sud-D with the ones of REML and ANOVA,
for the same 10000 observation of y, REML and ANOVA methods were applied and the average of
the estimated values presented in Tables 5.1, 5.2, 5.3, and 5.4.

Table 5.1: Estimates for y; using Sub-D, REML and ANOVA.

" |01 [025 |05 075 |1 | 2 |5 |
Sub-D | 0.0999 | 0.2454 | 0.5036 | 0.7529 | 1.0083 | 1.9966 | 5.0378

REML | 0.1379 | 0.2715 | 0.5201 | 0.7646 | 1.0175 | 2.0014 | 5.0402
ANOVA | 0.0999 | 0.2454 | 0.5036 | 0.7529 | 1.0083 | 1.9966 | 5.0378

Table 5.2: Mean Square Error of estimated 7; using Sub-D, REML and ANOVA.

|7 01 o025 [05 [075 |1 2 5

Sub-D 0.2474 | 0.3910 | 0.6607 | 0.9040 | 1.1624 | 2.1466 | 5.2111
REML | 0.2213 | 0.3698 | 0.6466 | 0.8935 | 1.1541 | 2.1421 | 5.2088
ANOVA | 0.2474 | 0.3910 | 0.6607 | 0.9040 | 1.1624 | 2.1466 | 5.2111

As it may be seen from the Tables 5.1, 5.2, 5.3, and 5.4, the average estimates for variance

components as well as their respective standard deviation using Sub-D estimator are exactly the

69



CHAPTER 5. NUMERICAL RESULTS

Table 5.3: Estimates for 9 (error) using Sub-D, REML and ANOVA.

|7 (01 |025 [05 075 |1 2 5

Sub-D 1.0018 | 1.0020 | 0.9983 | 1.0041 | 1.0019 | 0.9990 | 1.0001
REML | 0.9752 | 0.9838 | 0.9867 | 0.9959 | 0.9955 | 0.9926 | 0.9973
ANOVA | 1.0018 | 1.0020 | 0.9983 | 1.0041 | 1.0019 | 0.9990 | 1.0001

Table 5.4: Mean Square Error of estimated 7 (error) using Sub-D, REML and ANOVA.

| 7 01 025 |05 [075 |1 2 5

Sub-D 0.3320 | 0.3324 | 0.3303 | 0.3357 | 0.3339 | 0.3328 | 0.3332
REML | 0.3190 | 0.3233 | 0.3248 | 0.3314 | 0.3306 | 0.3312 | 0.3321
ANOVA | 0.3320 | 0.3324 | 0.3303 | 0.3357 | 0.3339 | 0.3328 | 0.3332

same as those obtained using ANOVA estimator. As seen, the Sub-D and ANOVA estimates are
extremely unbiased unlike the REML ones. Indeed, despite its slightly smaller variation than Sub-D
and ANOVA (see Tables 5.2 and 5.4), REML estimator provided low accurate estimates for small
values (see the REML estimates for y; = 0.1, 0.25, 0.5); therefore, Tables 5.1 and 5.2 suggest that
Sub-D and ANOVA estimators are preferred, particularly when the variance components are small

values.

5.2.2 Unbalanced “One-Way Design”

Now we consider a particular unbalanced design of the one-way design with k =3, ny =2, np =12

and n3 = 7, having therefore that y ~ (Zu, V'), where

V=nZiZ| +plp

n;’

Jr 012 027
with Z = 1, and lel—r = 012’2 Ji2 012’7 .
070 0720 J7

With B, a matrix whose columns are the eigenvectors associated to the null eigenvalues of %Jﬂ,
yielding so BOBI =Dh— %ng and BIBO = Ig, we have that the eigenvalues of M = BIZlZlTBO
will be 6;; = 8.9321, 6, = 2.6869 and 6,3 = 0, with ;3 having root equal 18.

Once again, for each 71 € {0.1, 0.25, 0.5, 0.75, 1, 2, 5}, we simulate 10000 observations of
the model stated in (5.1), and for each observation the three methods (Sub-D, REML and ANOVA)
are applied and the variance components y; and }» are estimated. The average of the estimated
values are available in Tables 5.5, 5.6, 5.7, and 5.8.

From Tables 5.5 and 5.7 we may see that the Sub-D steel providing unbiased estimates although
with larger dispersion (see Tables 5.6 and 5.8). For » REML provides accurate estimates, although
not so accurate as those provides by Sub-D. But for values 0.1, 0.25, 0.5 and 0.75 of y; the estimates
are not so accurate as those when the values for y; are 1, 2 and 5. Although no accurate, ANOVA

provides acceptable estimates for 7;, but for 9 it produces unrealistic estimates.
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Table 5.5: Estimates for y; using Sub-D, REML and ANOVA.

|y | 01 | 025 | 05 | 075 | 1 2 5

Sub-D | 0.1059 | 0.2457 | 0.4950 | 0.7458 | 1.0063 | 2.0045 | 4.9568
REML | 0.1584 | 0.2931 | 0.5322 | 0.7757 | 1.0276 | 2.0221 | 4.9622
ANOVA | 0.1979 | 0.3410 | 0.5915 | 0.8410 | 1.1009 | 2.1018 | 5.0516

Table 5.6: Mean Square Error of estimated 7; using Sub-D, REML and ANOVA.

n | 01 [ 025 | 05 [ 075 | 1 | 2 | 5 |
Sub-D | 0.3234 | 0.5506 | 0.9107 | 1.3175 | 1.7040 | 3.2762 | 7.8761

REML | 0.2928 | 0.4456 | 0.6941 | 0.9617 | 1.2195 | 2.2725 | 5.2650
ANOVA | 0.3012 | 0.4500 | 0.7139 | 1.0063 | 1.2943 | 2.4726 | 5.9077

Table 5.7: Estimates for 9» using Sub-D, REML and ANOVA.

| n | 01 | 025 | 05 | 075 1 2 5

Sub-D | 0.9954 | 1.0057 | 1.0069 | 1.0019 | 1.0018 | 1.0095 | 1.0002
REML | 0.9735 | 0.9809 | 0.9823 | 0.9876 | 0.9946 | 0.9917 | 0.9951
ANOVA | 0.4585 | 0.4543 | 0.4521 | 0.4507 | 0.4517 | 0.4511 | 0.4514

Table 5.8: Mean Square Error of estimated 7 using Sub-D, REML and ANOVA.

| 0w | 01 | 025 | 05 | 075 | 1 2 5

Sub-D | 0.9137 | 1.2392 | 1.7770 | 2.4312 | 3.0030 | 5.3988 | 12.333
REML | 0.3212 | 0.3240 | 0.3248 | 0.3261 | 0.3323 | 0.3328 | 0.3312
ANOVA | 0.5854 | 0.5878 | 0.5888 | 0.5902 | 0.5898 | 0.5912 | 0.5895

5.3 The Performance II: “Two-Way Crossed Design”

In this section we approach the test for the performance of Sub-D and Sub-DI in an unbalanced “two-

way crossed design” with no interaction (a MLM with three variance components), comparing it to

the ones of REML and ANOVA. Consider the the “two-way crossed design” (with no interaction)

=Xu+X1p1 +Xof3 +e, (5.3)

where z ~ (X, N1 + N2+ p3112), with Nj = XijT, Jj = 1,2, whose design matrices are

Il 02 0
05 13 O
15 05 05 3 13 03
04 04 14
X=1p, X5 = 05 15 Os ,and X, = 0 0
04 04 1
4 4 4 0 1 0
L. 0 O—

Let B, be a matrix whose columns are the eigenvectors associated to the null eigenvalues of
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ﬁflz- Then, since BOBI =1 — ﬁ] 12 and BIBO = I11, the new model to be approached will be

y=B,z~ (011, nM; + pMy +pl11),

where My = B) N;B,,d = 1,2.
The eigenvalues of M| = BINdB(, are 6;; = 4.5000, 6,2 = 3.3333 and 0;3 = 0. 03 has root

equal to 9. Recalling that A, A and A3 are matrices whose columns are the eigenvectors
associated to the eigenvalues 611, 0;2 and 03, respectively, we have that Mlzl =A 11M2A1T1 =
1.23809 and M2, = A;pMbA[, = 0.52857 are 1 x 1 matrices, and M2, = Aj3MrA[; is a 9 x 9

matrix.

For the matrices M 121, MZZ2 and M323 we have the following: M 121 has eigenvalue 6,;; = 1.23809;
M%z has eigenvalue 6, = 0.52857; M323 has 3 eigenvalues: 0,37 = 3.96142; 0,3, = 2.27191;
6,33 = 0. 633 has multiplicity equal to 7.

[4.5000 1.23809 1]

3.33333 0.52857 1

Finally we found that © = 0 3.96142 1{.
0 227191 1

| 0 0 1]

Assuming B; ~ A (03, ¥%:13),i= 1,2, and e ~ A4 (012,112), for each pair of ; and }, taking
values in {0.1, 0.25, 0.5, 1, 2, 5, 10} and 3 = 1 fixed, the model in (5.3) is observed 1000 times
and for each observation the four methods Sub-D, Sub-DI, REML and ANOVA are applied and
the variance components ¥;, ¥, and 3 (error) estimated. See Tables 5.9, 5.11, and 5.13 for
the respective average of the estimated values of ¥, ¥», and 73. For the mean square error of the

respective estimated values see Tables 5.10, 5.12, and 5.14.

As it may be pointed out, Sub-D and Sub-DI estimators provided accurate estimates for all
the parameters 71, ¥» and 73 while, similarly to what happened in the “one-way designs”’, REML
estimator provided accurate estimates for y;, %,7; € {1, 2, 5} but however not so accurate as
those provided by Sub-D and Sub-DI. For 1, 1, 13 € {0.1,0.25, 0.5} REML produced estimates
with low accuracy. All the tree estimators, Sub-D, Sub-DI, and REML, produces comparable and
accurate estimates for J3. It must be pointed out, however, that the estimates produced with Sub-D
and Sub-DI have a slightly higher standard deviation than the ones produced with REML. Despite
their accuracy, as seen from the Tables 5.9, 5.11, and 5.13, the estimates produced with Sub-DI
have in general smaller mean square error than those produced with Sub-D, as it was expected;
indeed, for 9» and 73 it is clearly that Sub-DI produces estimates with smaller mean square error

than Sub-D, whereas for y; the mean square error are somewhat comparable.

The ANOVA estimator provided acceptable estimates for ; (although with low accuracy) but
for p» and 73 the estimates provided are extremely unrealistic in such a way that we may not be

interested in apply such a method in any study for which there may have empty cells in the model.
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5.4 The Performance III: “Two-Way Nested Design”

In this section we test for the performances of Sub-D and Sub-D in an unbalanced “two-way nested
design” (which is a MLM with three variance components) with some empty cells, comparing them
to the ones of REML and ANOVA.

Supposing that the data come from the “two-way nested design”
1=ZU+Z\i + 2B +e, (5.4)

where z ~ (Zu, yiNy + N2 + p3112), with N; = ZijT, Jj = 1,2, whose design matrices are

1, 0, 0, O
L 0s O 2 0 0 0o
04 14 04 O4
Z:112,le 05 15 05 ,and22:
03 03 13 03
03 03 13
03 03 03 13

Letting B, be the matrix defined in Section 5.4, holding therefore BOBI =1 — 11—2J12 and BIBO =
111, the new model to be approached will be

y =Bz~ (011, nMi +pM> +pl1),

where M; = BoTNdBo, d=1,2.

The eigenvalues of M; are 6;; = 4.5000, 0, = 3.3333 and 63 = 0. 613 has root equal to
9. We have that M?, = A;1MbA|, = 1.5 and M3, = AjpMbA |, = 2.9333 are 1 x | matrices, and
M323 = A13M2A1T3 is a 9 X 9 matrix.

For the matrices Mlzl, M%z and M323 we have the following: Mlz1 has eigenvalue 6,;; = 1.5000;
M%z has eigenvalue 6,5 = 2.9333; M323 has 4 eigenvalues: 831 = 3.3135; 0,3, = 1.0864; 6,33 = 0.
6,33 has multiplicity equal to 7.

[ 45000 1.5000 1
3.33333 29333 1
The matrix © is given by © = 0 33136 1| . Assuming B; ~ A4 (03, 153), o~
0 1.0864 1
0 0 1

N (04, 21y) ,and e ~ A (012,112), for each pair of and 7, taking values in

{0.25, 0.5, 0.75, 1, 2, 5} and y3 = 1 fixed, the model in (5.4) is observed 10000 times. For each
observation the four methods Sub-D, Sub-DI, REML and ANOVA are applied and the variance
components Y, %, and 3 (error) are estimated. See Tables 5.15, 5.17, and 5.19 for the average of
the estimated values of ¥;, 72, and 73. For the standard deviation of the respective estimated values
see Tables 5.16, 5.18, and 5.20.

Taking a look at Tables 5.15, 5.17, and 5.19, and comparing the averages of the estimated
values from the Sub-D and Sub-DI methods to the ones of the REML and ANOVA, the reader
may easily reaches the conclusion that the only ones accurate estimates are the ones provided by
Sub-D and Sub-DI. More over, both REML and ANOVA methods provided estimates with low
accuracy, being that ANOVA produces unrealistic estimates, as we may see by looking to those of
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T; therefore, as suggested by the results, the Sub-D and Sub-DI estimators are the preferred ones.
Once again, Tables 5.16, 5.18, and 5.20, evidence that the estimates produced by Sub-DI have
in general smaller mean square error than those produced by Sub-D, as it was suspected; indeed,
it is clearly that Sub-DI produces estimates with smaller mean square errors than Sub-D for all
parameters 7;, 7> and 3.

In general, we may point out that Sub-D and Sub-DI kept a constant and accurate performance
towards all designs approached here.
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Table 5.9: Estimation on unbalanced “two-way crossed design”: estimate for 7.

n\» ‘ 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.1020 0.0966 0.1025 | 0.1022 | 0.1020 | 0.0933 | 0.0985
Sub-DI 0.1029 0.0953 0.1034 | 0.1022 | 01007 | 00967 | 0.0964
I REML 0.1954 0.1979 02081 | 02076 | 02145 | 02128 | 02185
ANOVA 0.1049 0.1006 0.1124 | 0.1176 | 0.1243 | 0.1438 | 0.2073
Sub-D 0.2561 0.2523 02528 | 02474 | 02542 | 02583 | 0.2589
Sub-DI 0.2568 0.2526 02529 | 02458 | 02550 | 02589 | 0.2650
% REML 0.3248 0.3318 0.3288 | 0.3381 03372 | 03494 | 0.3536
ANOVA | 02588 0.2591 02595 | 02653 | 02721 | 03029 | 03770
Sub-D 0.5089 0.4920 0.4909 | 04983 | 04879 | 04974 | 0.4971
Sub-DI 0.5072 0.4916 0.4878 | 0.4951 04863 | 05006 | 0.5037
**  REML 0.5599 0.5498 0.5594 | 05739 | 05608 | 0582 | 0.5763
ANOVA | 05078 0.4956 05019 | 05178 | 05095 | 05538 | 0.6147
Sub-D 0.7548 0.7598 0.7544 | 0.7583 | 07512 | 07406 | 0.7630
Sub-DI 0.7570 0.7578 0.7552 | 07616 | 07507 | 0.7403 | 0.7565
“”  REML 0.7946 0.8055 0.8015 | 0.8044 | 08136 | 08131 0.8140
ANOVA | 0.7583 0.7632 07661 | 0.7715 | 0.7781 | 0.7974 | 0.8658
Sub-D 1.0148 | 0.9784 1.0245 1.0153 1.0191 1.0330 | 0.9971
Sub-DI 1.0185 | 0.97985 1.0238 1.0182 | 1.0280 | 1.0345 | 0.9840
' REML 1.0424 | 1.0167 1.0487 1.0580 | 1.0473 1.0479 1.0682
ANOVA 1.0178 | 0.9852 1.0258 1.0376 | 1.0441 1.0665 1.1033
Sub-D 2.0089 1.9906 2.0344 | 19651 1.9832 | 1.9749 1.9980
Sub-DI 2.0113 1.9906 2.0335 1.9697 1.9844 | 1.9823 | 2.0032
REML 2.0369 2.0153 2.0459 1.9837 | 2.0303 1.9997 | 2.0259
ANOVA 2.0209 2.0003 20396 | 1.9877 | 2.0202 | 2.0301 | 2.1150
Sub-D 4.9369 5.0755 49950 | 49530 | 49347 | 49842 | 5.011
Sub-DI 4.9358 5.0829 49925 | 49561 | 49337 | 49833 | 5.0243
REML 4.9537 5.0854 49756 | 49554 | 49729 | 49930 | 5.0284
ANOVA 4.9476 5.0915 49851 | 49653 | 49725 | 5.0262 | 5.1425
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Table 5.10: Estimation on unbalanced “two-way crossed design”: mean square error of 7.

’ n\» ‘ 0.1 0.25 0.5 0.75 1 2 5
Sub-D 04265 | 04653 | 05451 | 0.6043 | 0.6766 | 0.8785 1.4192
Sub-DI 04384 | 04947 | 06005 | 0.6866 | 0.7888 1.1236 | 2.0992

“' REML 03588 | 03646 | 03829 | 03808 | 03993 | 03946 | 0.4053
ANOVA 0.3981 04287 | 04976 | 05516 | 0.6242 | 08707 1.6423
Sub-D 0.5885 | 0.6425 | 0.6946 | 0.7692 | 0.8473 1.0855 1.6419
Sub-DI 05979 | 0.6684 | 07474 | 0.801 09610 | 13219 | 2.2891

% REML 0.5047 | 05318 | 05215 | 05380 | 05388 | 05617 | 05611
ANOVA | 05454 | 05908 | 0.6284 | 0.6967 | 0.7663 1.0306 | 1.7816
Sub-D 0.8737 | 08952 | 0.9688 1.0374 | 1.1045 13920 | 2.0089
Sub-DI 0.8773 | 0.9133 1.0161 11112 | 12080 | 1.6215 | 2.6554

**  REML 07730 | 07619 | 07809 | 07920 | 0.7943 | 0.8305 | 0.8204
ANOVA | 07974 | 08067 | 08751 | 09316 | 0.9935 12856 | 2.0502
Sub-D 1.1637 1.2015 12532 | 13624 | 14050 | 1.6609 | 23786
Sub-DI 1.1646 12206 | 1.2951 1.4427 1.5141 1.8935 | 2.9986

“7  REML 1.0399 1.0308 1.0412 1.0481 1.0644 1.0664 1.0884
ANOVA | 1.0660 | 1.0858 1.1282 | 12137 12711 15166 | 23151
Sub-D 1.4102 14306 | 1.5823 1.5741 1.6999 1.9768 | 2.602
Sub-DI 1.4091 1.4447 1.6264 | 1.6434 | 18053 | 22082 | 3.1934

' REML 1.2619 1.2679 1.3061 1.3037 13290 | 1.3277 1.3394
ANOVA 12879 | 1.2987 1.4086 | 1.4221 1.5291 17784 | 2.4834
Sub-D 25588 | 25064 | 27236 | 27200 | 27397 | 3.0712 | 3.9100
Sub-DI 25395 | 24985 | 27428 | 27724 | 28164 | 32845 | 4.4813
REML 23262 | 22226 | 23279 | 23147 | 23379 | 23153 | 2.3499
ANOVA 23408 | 22589 | 24200 | 24490 | 24808 | 2.7471 3.5315
Sub-D 58325 | 60874 | 61362 | 60655 | 6.1062 | 6.4789 | 7.2090
Sub-DI 57587 | 6.0489 | 6.0841 | 6.0547 | 6.1438 | 6.6297 | 7.7095
REML 52549 | 54043 | 52836 | 52692 | 53028 | 54262 | 5.3899
ANOVA 52852 | 54842 | 54189 | 5.4136 | 54887 | 58101 | 6.4425
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Table 5.11: Estimation on unbalanced “two-way crossed design”: estimates for 7.

n\» ‘ 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.0924 | 02588 | 05071 | 0.7379 | 1.0085 | 20307 | 4.9809
Sub-DI 0.0956 | 02539 | 05107 | 07380 | 1.0036 | 2.0434 | 49732
I REML 0.1881 | 03224 | 05575 | 0.7758 1.0277 | 2.0654 | 4.9705
ANOVA 0.0514 | 0.1420 | 02843 | 03979 | 05417 1.1056 | 27132
Sub-D 0.1006 | 02566 | 05152 | 0.7577 | 0.9986 | 20215 | 4.9437
Sub-DI 0.1034 | 02576 | 05154 | 07520 | 1.0014 | 20237 | 4.9660
% REML 0.1995 | 03355 | 05644 | 0.7967 1.0303 | 20357 | 4.9766
ANOVA | 00540 | 0.1398 | 02856 | 03970 | 0.5487 1.0844 | 27067
Sub-D 0.1020 | 02546 | 05117 | 07528 | 09874 | 1.9948 | 4.9851
Sub-DI 0.0969 | 02533 | 05005 | 0.7410 | 09815 | 2.0068 | 5.0096
**  REML 0.1978 | 03375 | 05669 | 0.8003 1.0284 | 2.0320 | 5.0399
ANOVA | 00517 | 01336 | 02677 | 04025 | 05341 1.0760 | 2.7609
Sub-D 0.1051 | 02540 | 04884 | 07529 | 0.9888 | 2.0423 | 5.1110
Sub-DI 0.1129 | 02469 | 04913 | 07650 | 09869 | 20411 | 5.0871
“”  REML 02173 | 03330 | 05588 | 0.7988 1.0323 | 20682 | 5.0763
ANOVA | 00616 | 0.1337 | 02584 | 04105 | 0.5353 1.0855 | 27212
Sub-D 0.0893 | 02433 | 05175 | 07388 | 09771 | 2.0575 | 4.9926
Sub-DI 0.1029 | 02487 | 05149 | 0.7494 | 1.0096 | 20633 | 4.9445
' REML 02029 | 03349 | 05642 | 0.8046 1.0395 | 2.0483 | 4.9404
ANOVA 0.0609 | 0.1380 | 02752 | 0.4042 | 05536 | 1.1185 | 2.6696
Sub-D 0.0927 | 02475 | 05193 | 07497 | 09790 | 1.9829 | 5.0865
Sub-DI 0.1015 | 02475 | 05160 | 0.7665 | 0.9833 | 20101 | 5.1056
REML 02189 | 03417 | 05783 | 0.8136 1.0361 | 2.0231 | 5.1289
ANOVA 0.0557 | 0.1343 | 02752 | 04220 | 05321 1.0912 | 2.7774
Sub-D 0.0922 | 02319 | 05240 | 07410 | 09817 | 2.0399 | 4.9576
Sub-DI 0.0879 | 02591 | 05150 | 0.7525 | 0.9778 | 20365 | 5.0062
REML 02143 | 03387 | 05661 | 0.799 1.0304 | 2.0571 | 5.0435
ANOVA 0.0421 | 01390 | 02734 | 04205 | 05286 | 1.1144 | 27291
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Table 5.12: Estimation on unbalanced “two-way crossed design”: mean square error of 9.

’ n\» ‘ 0.1 0.25 0.5 0.75 1 2 5

Sub-D 0.5008 0.7061 1.0061 1.3086 1.6618 2.9127 6.8080
Sub-DI 0.4142 0.5659 0.8098 1.0468 1.3235 2.3450 5.3876
REML 0.3424 0.5043 0.7603 0.9840 1.2595 2.3142 5.2795
ANOVA 0.3620 0.4709 0.6759 0.8699 1.0744 1.9233 4.4902

0.1

Sub-D 0.5350 0.7178 1.0312 1.3329 1.6886 2.9682 6.7244
Sub-DI 0.4660 0.6112 0.8576 1.1750 1.3794 2.3622 5.3736
REML 0.3615 0.5258 0.7803 1.0312 1.2999 2.2881 5.2680
ANOVA 0.3978 0.5040 0.7058 0.8980 1.1144 1.8964 4.5355

0.25

Sub-D 0.6005 0.7483 1.0783 1.3944 1.6789 2.9889 6.8052
Sub-DI 0.5388 0.6698 0.9255 1.1862 1.3942 24615 5.5450
REML 0.3600 0.5283 0.7967 1.0581 1.2773 2.3164 5.4290
ANOVA 0.4560 0.5449 0.7536 0.9562 1.1415 1.9774 4.5846

0.5

Sub-D 0.6936 0.8316 1.0757 1.3991 1.6769 3.0952 6.9255
Sub-DI 0.6436 0.7701 0.9785 1.2404 1.4622 2.5848 5.6195
REML 0.4020 0.5319 0.7876 1.0421 1.2745 2.4075 5.3686
ANOVA 0.5295 0.6219 0.7901 0.9963 1.1892 2.0226 4.5250

0.75

Sub-D 0.7509 0.8828 1.1666 1.4571 1.7414 3.0626 6.8400
. Sub-DI 0.7139 0.8383 1.0946 1.3171 1.5755 2.6295 5.5654
REML 0.3744 0.5316 0.7815 1.0618 1.3003 2.3582 5.2727
ANOVA 0.5922 0.6761 0.8661 1.0470 1.2547 2.1240 4.5393
Sub-D 1.1915 1.2631 1.5131 1.7181 1.9761 3.1884 7.1184
Sub-DI 1.1034 1.1835 1.4475 1.6422 1.8429 2.9196 6.0685
REML 0.4044 0.5505 0.8176 1.0615 1.2938 5.5311 5.5311
ANOVA 0.8395 0.9103 1.0754 1.2759 1.4361 4.8245 4.8245
Sub-D 24776 2.5930 2.6931 2.8484 3.0409 3.8888 7.3530
Sub-DI 2.1245 2.3748 2.4603 2.6703 2.8962 3.8043 6.7677
REML 0.3972 0.5339 0.8068 1.0770 1.2965 2.3694 5.4310

ANOVA 1.5199 1.7097 1.7869 1.9590 2.1322 2.9358 5.3588
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Table 5.13: Estimation on unbalanced “two-way crossed design”: estimates for ;3.

n\» ‘ 0.1 0.25 0.5 0.75 1 2 5
Sub-D 1.0003 | 0.9809 | 09931 | 09953 | 0.9823 1.0235 | 0.9783
Sub-DI 0.9936 | 09909 | 09859 | 0.9951 | 0.9923 | 09978 | 0.9939
*' REML 0.8743 | 0.8820 | 0.8963 | 0.9071 | 09017 | 09111 0.9130
ANOVA 1.0269 1.0704 | 1.1515 1.2355 13111 1.6450 | 2.5577
Sub-D 0.9958 | 09979 | 09869 | 0.9942 | 0.9884 | 0.9953 1.0459
Sub-DI 0.9903 | 09958 | 09864 | 1.0058 | 0.9827 | 0.9907 1.0006
% REML 0.8841 0.8934 | 09149 | 09151 0.9232 | 09300 | 0.9356
ANOVA | 1.0271 1.0750 | 1.1578 1.2441 13100 | 1.6468 | 2.5643
Sub-D 0.9818 | 09909 | 09936 | 1.0054 | 1.0037 1.0508 1.0629
Sub-DI 09941 | 09936 | 1.0163 1.0293 1.0159 1.0264 | 1.0133
**  REML 0.8971 | 09074 | 09241 | 09287 | 09361 | 09478 | 09523
ANOVA 1.0287 1.0787 1.1663 1.2403 1.3161 1.6528 | 2.5637
Sub-D 1.0076 | 0.9913 1.0133 | 0.9953 1.0205 1.0277 | 0.9388
Sub-DI 0.9918 1.0056 | 1.0074 | 0.9706 1.0242 | 1.0303 | 0.9872
“”  REML 0.9047 | 09207 | 09373 | 09440 | 0.9441 0.9518 | 0.9663
ANOVA | 1.0333 1.0825 1.1680 | 12411 13190 | 1.6661 | 2.6409
Sub-D 1.0097 1.0119 | 0.9637 1.0189 1.0232 | 09327 | 0.9450
Sub-DI 0.9821 1.0009 | 09688 | 09975 | 09573 | 09210 | 1.0425
' REML 09112 | 09280 | 09411 | 09376 | 09470 | 09573 | 09725
ANOVA 1.0239 1.0813 1.1611 1.2311 13000 | 1.6266 | 25923
Sub-D 1.0289 1.0108 | 0.9801 1.0254 | 1.0462 | 1.0443 1.0425
Sub-DI 1.0110 | 1.0108 | 0.9868 | 0.9913 1.0376 | 0.9891 1.0040
REML 09099 | 09321 | 09511 | 09564 | 09550 | 09714 | 0.9810
ANOVA 1.0284 | 1.0819 1.1673 12352 | 1.3151 1.6297 | 2.6166
Sub-D 1.0208 1.0414 | 09286 | 0.9929 1.0531 | 09930 | 1.1287
Sub-DI 1.0295 | 09863 | 0.9469 | 0.9698 1.0608 1.0000 | 1.0302
REML 09165 | 09378 | 09563 | 09582 | 09766 | 09851 | 0.9949
ANOVA 1.0349 1.0757 1.1596 | 12189 | 13304 | 1.6437 | 25896
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Table 5.14: Estimation on unbalanced “two-way crossed design”: mean square error of 3.

’ n\» ‘ 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.8624 | 09828 1.239 1.4553 17420 | 2.826 5.937
Sub-DI 0.8218 | 0.9053 1.0368 1.1662 | 12860 | 1.6812 | 2.5478

I REML 04491 | 04583 | 04644 | 04620 | 04657 | 04680 | 04744
ANOVA 05334 | 05907 | 0.6873 | 0.7884 | 0.9241 15014 | 3.1818
Sub-D 1.0037 | 1.1400 | 13434 | 15773 1.8297 | 2.8760 | 5.9856
Sub-DI 0.9729 1.0854 | 12086 | 13110 | 1.4999 1.9449 | 2.9199

% REML 0.4575 | 0.4631 04707 | 04757 | 04709 | 04856 | 0.4824
ANOVA | 05500 | 05915 | 07033 | 08204 | 09572 | 15076 | 3.1751
Sub-D 1.2462 13516 | 1.5495 1.8026 | 2.0044 | 3.0443 | 6.1719
Sub-DI 12250 | 1.3353 14732 | 1.6623 17873 | 23800 | 3.5615

**  REML 04578 | 04678 | 04789 | 04819 | 04838 | 04903 | 0.5002
ANOVA | 05669 | 06233 | 07260 | 08464 | 09610 | 15279 | 3.2260
Sub-D 1.5570 | 1.6491 1.8059 | 2.0345 | 22366 | 32449 | 63159
Sub-DI 14990 | 1.6254 | 17820 | 1.9825 | 21356 | 27443 | 4.0825

“7  REML 0.4645 | 04739 | 04866 | 04868 | 0.4911 0.4999 | 0.5051
ANOVA | 06051 | 06566 | 07555 | 0.8823 | 0.9918 1.6313 | 3.3963
Sub-D 1.8128 1.8726 | 2.0869 | 23070 | 24787 | 33826 | 6.2802
Sub-DI 17232 | 1.8410 | 21071 | 22386 | 24644 | 3.0640 | 4.4107

' REML 04772 | 04804 | 04878 | 04924 | 04960 | 05038 | 05131
ANOVA 0.6363 | 0.6888 | 0.7912 | 0.8945 1.0267 1.5860 | 3.3086
Sub-D 31543 | 31371 | 33679 | 3.4201 | 35698 | 43222 | 7.2249
Sub-DI 2.8608 | 2.8984 | 32357 | 33407 | 35079 | 43117 | 6.1946
REML 04728 | 04821 | 04926 | 05029 | 05059 | 05181 | 0.5269
ANOVA 0.7463 | 07937 | 09030 | 1.0189 | 1.1494 | 17062 | 3.5398
Sub-D 6.9049 | 7.1216 | 7.1263 | 72161 | 73574 | 7.8234 | 10.051
Sub-DI 58670 | 63473 | 63308 | 65306 | 68999 | 7.6876 | 9.9917
REML 04761 | 04928 | 04985 | 05054 | 05282 | 05276 | 05354
ANOVA 1.1629 | 1.2871 1.3445 1.4426 1.6024 | 2.1386 | 3.7606
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Table 5.15: Estimation on unbalanced “two-way nested design’: estimate for ;.

n\» ‘ 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.1005 | 0.1050 | 0.0994 | 0.1025 | 0.0865 | 0.1032 | 0.1128
Sub-DI 0.1002 | 0.1044 | 00994 | 0.1022 | 0.0861 | 0.1054 | 0.1112

I REML 0.1878 | 02307 | 02766 | 03363 | 03655 | 05556 | 0.8387

ANOVA 0.0955 | 0.0823 | 00512 | 0.0427 | -0.001 -0.064 20311

Sub-D 02440 | 02465 | 02527 | 02464 | 02355 | 02642 | 02287
Sub-DI 02439 | 02468 | 02535 | 02458 | 02364 | 02652 | 02314
% REML 03022 | 0.3441 0.4087 | 04545 | 04928 | 0.6744 | 0.9984

ANOVA | 02380 | 02224 | 02142 | 0.1754 | 0.1499 | 0.0975 | -0.193
Sub-D 05041 | 04916 | 04961 | 04965 | 05024 | 04861 | 04419
Sub-DI 0.5049 | 04924 | 04953 | 04957 | 05033 | 0.4861 0.4417

**  REML 05309 | 05474 | 06022 | 06565 | 0.7088 | 0.8705 1.2005
ANOVA | 05010 | 04741 | 04574 | 04303 | 04127 | 03081 | -0.005
Sub-D 07471 | 07419 | 07532 | 07403 | 0.7357 | 07411 | 07291
Sub-DI 0.7470 | 07428 | 07543 | 07411 | 07356 | 07410 | 0.7336

“”  REML 0.7380 | 07769 | 0.8407 | 08720 | 0.9159 1.0833 1.4658

ANOVA | 07455 | 07269 | 07143 | 0.6787 | 0.6389 | 05777 | 03002
Sub-D 1.0014 | 1.0022 | 1.0040 | 0.9797 1.0106 | 0.9931 1.0169

Sub-DI 1.0019 1.0024 | 1.0038 | 0.9791 1.0116 | 0.9908 1.0099

' REML 0.9833 1.0145 1.0595 1.0856 1.1626 | 13046 | 1.6756
ANOVA 09933 | 09790 | 09590 | 0.9267 | 09301 | 08230 | 0.5597

Sub-D 1.9613 | 20174 | 19894 | 19769 | 20024 | 1959 | 2.0267

Sub-DI 19614 | 20176 | 1.9898 1.9775 | 2.0009 1.9595 | 2.0305
REML 1.8956 | 1.9745 1.9749 | 2.0145 | 20465 | 21666 | 2.6138

ANOVA 1.9580 | 1.9990 | 1.9537 1.9204 | 1.9087 1.7868 1.6325

Sub-D 49632 | 49570 | 50111 | 49951 | 49934 | 50276 | 5.0872

Sub-DI 49647 | 49605 | 5.0112 | 49953 | 49972 | 5.0244 | 5.0877
REML 48168 | 48326 | 48870 | 49012 | 49277 | 49684 | 53729

ANOVA 49539 | 49463 | 49743 | 49586 | 49002 | 48368 | 4.6882
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Table 5.16: Estimation on unbalanced “two-way nested design”: mean square error of 7.

’ n\» ‘ 0.1 0.25 0.5 0.75 1 2 5

Sub-D 0.4823 0.6032 0.7565 0.9087 1.0671 1.7920 3.8020
Sub-DI 0.4732 0.5874 0.7312 0.8767 1.0255 1.7112 3.6133
REML 0.3784 0.4774 0.5694 0.7079 0.7979 1.2920 2.3357
ANOVA 0.5474 0.6965 0.8976 1.1088 1.3164 2.2438 4.8475

0.1

Sub-D 0.6414 0.7373 0.8689 1.0575 1.2085 1.9021 3.8404
Sub-DI 0.6318 0.7213 0.8451 1.0220 1.1658 1.8201 3.6498
REML 0.5469 0.5980 0.7259 0.8357 0.9493 1.4138 2.4919
ANOVA 0.6821 0.7998 0.9944 1.2292 1.4417 2.3408 4.8712

0.25

Sub-D 0.8836 0.9841 1.1247 1.2802 1.4522 2.0756 4.0664
Sub-DI 0.8726 0.9668 1.0975 1.2437 1.4039 1.9944 3.8780
REML 0.7898 0.8508 0.9616 1.0747 1.1706 1.6070 2.7156
ANOVA 0.8871 1.0061 1.2032 1.4175 1.6217 2.4858 5.1019

0.5

Sub-D 1.1585 1.2509 1.3920 1.5241 1.6893 2.3507 4.2620
Sub-DI 1.1443 1.2300 1.3629 1.4829 1.6385 2.2604 4.0597
REML 1.0213 1.1172 1.2452 1.3262 1.4209 1.8737 2.8391
ANOVA 1.1167 1.2337 1.4401 1.6081 1.8307 2.7058 5.2088

0.75

Sub-D 1.4420 1.5296 1.6994 1.7580 1.9792 2.5305 4.5685

. Sub-DI 1.4269 1.5052 1.6664 1.7167 1.9240 24373 4.3645
REML 1.3255 1.3706 1.5002 1.5519 1.7390 2.0728 3.1299
ANOVA 1.3842 1.4725 1.6990 1.8102 2.0701 2.8370 5.4976
Sub-D 2.5265 2.7061 2.7276 2.8952 3.0893 3.5652 5.4697
Sub-DI 2.4966 2.6699 2.6825 2.8426 3.0259 3.4619 5.2523
REML 2.2974 24571 2.4979 2.6624 2.7361 3.06338 4.2182
ANOVA 2.3289 2.5237 2.5932 2.8225 3.0326 3.7374 6.2409
Sub-D 5.9223 5.8785 6.1256 6.1631 6.2676 6.8900 8.5391
Sub-DI 5.8617 5.8185 6.0471 6.0748 6.1719 6.7518 8.2930
REML 5.2967 5.3841 5.5423 5.6354 5.6455 6.0925 7.0896

ANOVA 5.3516 5.4092 5.6219 5.7504 5.8311 6.5798 8.9226
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Table 5.17: Estimation on unbalanced “two-way nested design’: estimates for 7.

n\» ‘ 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.1033 | 02434 0.5013 0.7667 1.0028 | 20369 | 4.9549
Sub-DI 0.1049 | 02477 0.5015 0.7688 1.0051 | 2.0216 | 4.9668
I REML 0.1744 | 0.2841 0.4852 0.6858 | 0.8812 17468 | 4.4893
ANOVA 0.0926 | 0.2494 0.5169 0.7568 1.0020 | 20115 | 4.9748
Sub-D 0.1103 | 02482 0.5032 0.7483 1.0059 | 2.0040 | 5.0332
Sub-DI 0.1110 | 0.2456 0.4978 07523 | 0.9993 1.9968 | 5.0141
% REML 02108 | 0.3067 0.4926 0.7055 | 0.8970 17792 | 45139
ANOVA | 0.1074 | 02534 0.4943 07642 | 1.0002 | 1.9995 | 5.0265
Sub-D 0.1131 | 02551 | 04845 0.7581 | 09961 | 20121 | 5.0047
Sub-DI 0.1074 | 02498 | 0.4899 07635 | 09894 | 2.0121 5.0060
**  REML 02218 | 03348 | 0.5254 0.7446 | 09376 | 18137 | 4.5676
ANOVA | 00958 | 02441 | 048175 | 07608 | 09998 | 20276 | 5.0654
Sub-D 0.1044 | 02697 0.5024 0.7501 | 09897 | 20073 | 4.9985
Sub-DI 0.1050 | 0.2635 0.4952 07446 | 09901 | 2.0078 | 4.9666
“”  REML 0.2497 | 0.3609 0.5462 0.7547 | 0.9694 1.8297 | 4.5394
ANOVA | 0.0903 | 0.2530 0.4956 0.7431 1.0164 | 19975 | 5.0074
Sub-D 0.1112 | 02459 0.5147 0.7478 | 09962 | 20080 | 4.9622
Sub-DI 0.1079 | 0.2447 0.5166 07520 | 09892 | 2.0242 | 5.0120
' REML 02638 | 03724 0.5774 0.7672 | 0.9799 1.8819 | 4.6375
ANOVA 0.1099 | 0.2504 0.5110 0.7280 | 09867 | 2.0164 | 5.0636
Sub-D 0.0982 | 02663 0.5000 0.7608 | 09843 | 20343 | 4.9964
Sub-DI 0.0973 | 0.2643 0.4975 07560 | 09952 | 2.0348 | 4.9695
REML 02867 | 04228 0.6346 0.8400 | 1.0740 | 1.9810 | 4.6380
ANOVA 0.0875 | 0.2603 0.4896 0.7446 | 1.0077 | 2.0368 | 4.9383
Sub-D 0.0995 | 02831 0.5184 0.7700 | 0.9763 1.9345 | 5.0321
Sub-DI 0.0883 | 0.2586 0.5175 07682 | 09497 | 19576 | 5.0287
REML 03433 | 04941 0.7109 0.9229 1.1655 | 2.1271 | 4.9520
ANOVA 0.0977 | 02584 0.5014 07160 | 09969 | 19866 | 4.9750
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Table 5.18: Estimation on unbalanced “two-way nested design”: mean square error of 7.

’ n\» ‘ 0.1 0.25 0.5 0.75 1 2 5

Sub-D 0.6236 0.8331 1.1512 1.4745 1.8100 3.1769 7.2599
Sub-DI 0.5196 0.6807 0.9466 1.2086 1.4882 2.5949 5.9306
REML 0.3528 0.4768 0.7113 0.9196 1.1388 1.9727 4.5617
ANOVA 0.6054 0.7635 1.0393 1.2931 1.5764 2.7044 6.0615

0.1

Sub-D 0.7007 0.8978 1.1924 1.5133 1.8494 3.1996 7.1163
Sub-DI 0.5990 0.741 0.9837 1.2330 1.5144 2.5994 5.7695
REML 0.4161 0.5328 0.7241 0.9642 1.1644 2.0598 4.6022
ANOVA 0.6167 0.7668 1.0017 1.2860 1.5576 2.6786 6.0029

0.25

Sub-D 0.8782 1.0389 1.3402 1.6433 2.0217 3.2509 7.2862
Sub-DI 0.7422 0.8656 1.0983 1.3409 1.6405 2.6526 5.9341
REML 0.4470 0.5804 0.7882 1.0147 1.2180 2.0655 4.6149
ANOVA 0.6114 0.7499 1.0136 1.2850 1.5805 2.6401 6.0117

0.5

Sub-D 1.0658 1.2341 1.5108 1.7953 2.1108 3.4252 7.2936
Sub-DI 0.8984 1.0425 1.2595 1.4571 1.7122 2.7794 5.8989
REML 0.5248 0.6354 0.8280 1.0636 1.2605 2.1567 4.6937
ANOVA 0.6055 0.7572 0.9951 1.2793 1.5701 2.6446 5.9878

0.75

Sub-D 1.2554 1.4179 1.6895 1.9329 2.2688 3.5614 7.5266

. Sub-DI 1.0666 1.1751 1.4013 1.5766 1.8329 2.8857 6.1418
REML 0.5368 0.6513 0.8979 1.0801 1.3315 2.2063 4.8250
ANOVA 0.6101 0.7594 1.0497 1.2529 1.5476 2.6593 6.1121
Sub-D 2.0739 2.2694 24371 2.6854 2.9262 4.1564 7.8640
Sub-DI 1.7178 1.8725 2.0036 2.1914 2.3979 3.3339 6.3360
REML 0.6266 0.8035 1.0649 1.2402 1.4892 2.4098 4.9291
ANOVA 0.6082 0.7518 1.0119 1.2731 1.5731 27114 5.8598
Sub-D 4.5957 4.7497 4.9588 5.1901 5.3053 6.2507 9.8571
Sub-DI 3.8065 3.9031 4.0163 4.2035 4.2878 4.9624 7.9472
REML 0.9769 1.1772 1.3347 1.6247 1.8047 2.8375 5.6901

ANOVA 0.6181 0.7661 1.0261 1.2456 1.5493 2.6080 6.0478
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Table 5.19: Estimation on unbalanced “two-way nested design’: estimates for J;3.

n\» ‘ 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.9815 1.0177 1.0219 | 09874 | 1.0086 | 0.9553 1.0438
Sub-DI 0.9791 1.0111 1.0216 | 0.9843 1.0051 | 09789 | 1.0254

*' REML 0.8826 | 09095 | 09195 | 09207 | 09391 | 09328 | 0.9527
ANOVA 0.9959 1.0095 1.0011 0.9978 1.0119 | 0.9937 1.0090
Sub-D 1.0039 1.0021 | 0.9884 1.0163 | 0.9953 1.0021 1.0009
Sub-DI 1.0028 1.0061 09969 | 1.0100 | 1.0055 1.0131 1.0303
% REML 0.8993 | 09047 | 09197 | 09276 | 09410 | 09496 | 0.9539

ANOVA | 1.0041 | 09969 | 09988 | 09974 | 1.0060 | 1.0046 | 1.0035
Sub-D 09774 | 09996 | 1.0029 | 1.0024 | 1.0026 | 1.0110 | 1.0859
Sub-DI 09862 | 1.0079 | 09946 | 09940 | 1.0129 1.0109 | 1.0839

**  REML 09021 | 09255 | 09284 | 09327 | 09429 | 09455 | 09634
ANOVA | 0.9999 1.0139 1.0041 | 0.9999 1.0033 | 0.9923 1.0035
Sub-D 0.9982 | 09856 | 09924 | 0.9819 1.0218 1.0028 1.0037
Sub-DI 09972 | 09952 | 1.0035 | 0.9905 1.0213 1.0020 | 1.0529

“”  REML 09157 | 09230 | 09322 | 09304 | 0938 | 09665 | 0.9559

ANOVA | 1.0134 | 1.0049 | 09995 | 09916 | 0.9907 1.0099 | 0.9923
Sub-D 0.9978 1.0037 | 09807 | 09813 | 0.9895 1.0231 1.1419

Sub-DI 1.0030 | 1.0055 | 09777 | 0.9749 1.0002 | 0.9981 1.0650

' REML 09087 | 09184 | 09224 | 09418 | 09488 | 09653 | 09712
ANOVA 0.9983 | 0.9986 | 0.9897 1.0024 | 1.0008 1.0060 | 1.0039

Sub-D 0.9974 | 09951 | 09888 | 0.9738 1.0314 | 1.0010 | 0.9424

Sub-DI 0.9987 | 09983 | 09927 | 0.9813 1.0145 1.0004 | 0.9840

REML 09193 | 09269 | 09339 | 0938 | 09562 | 09662 | 09818

ANOVA 1.0097 | 0.9997 | 0.9979 | 0.9915 1.0026 | 0.9957 1.0044

Sub-D 0.9958 | 09704 | 09861 | 09414 | 1.0225 1.0565 | 0.9437

Sub-DI 1.0131 1.0082 | 09876 | 09442 | 1.0637 1.0208 | 0.9489

REML 09157 | 09256 | 09479 | 09501 | 0.9574 | 09706 | 0.9934

ANOVA 1.0003 | 09964 | 1.0068 | 0.9986 | 1.0055 | 0.9985 1.0062
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Table 5.20: Estimation on unbalanced “two-way nested design”: mean square error of 3.

’ n\» ‘ 0.1 0.25 0.5 0.75 1 2 5
Sub-D 0.8656 | 1.0355 12806 | 1.4894 | 17167 | 27652 | 6.1466
Sub-DI 0.7868 | 0.8909 1.0543 1.1441 1.2998 1.9424 | 4.1094

I REML 04445 | 04620 | 04779 | 04741 | 04806 | 04825 | 0.5332
ANOVA 05277 | 05402 | 05420 | 05336 | 05365 | 05273 | 04935
Sub-D 0.9667 | 1.0859 1.3251 1.5956 1.8118 | 29562 | 6.1851
Sub-DI 0.8847 | 0.9527 1.0892 | 12460 | 13850 | 20989 | 4.1439

% REML 04582 | 04614 | 04723 | 04776 | 0.4895 | 04993 | 0.5059
ANOVA | 05359 | 05319 | 05328 | 05276 | 05376 | 0538 | 0.5391
Sub-D 1.1154 | 12573 1.4866 | 1.7132 1.9917 | 3.0555 | 6.3437
Sub-DI 1.0054 | 1.0816 | 12242 | 13387 15103 | 22089 | 4.3396

**  REML 04629 | 04683 | 04752 | 04856 | 04910 | 05020 | 0.5072
ANOVA | 05356 | 05361 | 05341 | 05352 | 05340 | 05322 | 05327
Sub-D 13044 | 1.4681 1.6800 | 1.9058 | 21322 | 32666 | 6423
Sub-DI 1.1359 12640 | 1.3995 1.4955 1.6309 | 23706 | 4.3260

“7  REML 04679 | 04716 | 04819 | 04805 | 04855 | 05097 | 05101
ANOVA | 05421 | 05328 | 05373 | 05260 | 05237 | 05418 | 05336
Sub-D 1.5138 1.6392 | 1.8546 | 20969 | 23808 | 3.4153 | 6.6557
Sub-DI 13212 | 13926 | 15215 1.6517 18257 | 24512 | 4.5444

' REML 04704 | 04692 | 04805 | 04953 | 04971 | 05053 | 05154
ANOVA 05347 | 05317 | 05275 | 05423 | 05376 | 05336 | 0.5327
Sub-D 23981 | 25889 | 27542 | 29721 | 3.1300 | 4.1260 | 7.3119
Sub-DI 19709 | 21133 | 22134 | 23410 | 24474 | 3.0435 | 5.0833
REML 04698 | 04761 | 04882 | 04817 | 04967 | 05117 | 0.5328
ANOVA 05332 | 05337 | 05360 | 05201 | 05323 | 05283 | 0.5385
Sub-D 51947 | 53592 | 55787 | 5.8248 | 58859 | 6.7661 | 9.7886
Sub-DI 4.1480 | 42305 | 43155 | 45098 | 45694 | 5.0368 | 7.1337
REML 04759 | 04796 | 04937 | 05029 | 0.499 | 0.557 0.5420
ANOVA 05356 | 05320 | 05394 | 05392 | 05309 | 05326 | 0.5313
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As pointed out before, REML is the preferred method for estimating variance components in MLM
(Diffey et al. [17]). In addition to its simple and fast computational implementation, once it depends
only on the information retained by the eigenvalues of the design matrices and the quadratic errors
of the sub-models, Sub-D provides unbiased estimates whether the data is balanced or unbalanced
and in both crossed and nested designs, even having empty cells. This is not the case of ANOVA

and REML estimators as seen through the tests carried out at the previous chapter.

As seen at Chapter 5, Sub-D estimator provides a slightly more accurate estimates (due to its
unbiasedness) than REML estimator in all the designs approached, having, in some case, a little
more dispersion (mostly in unbalanced models, but steel comparable; when the model is balanced
they have a little bit more comparable dispersion). This problem is attenuated with the introduction
of the Sub-DI estimator, which also produces unbiased estimates but with less dispersion than
Sub-D.

REML estimator does not look to have a good performance in nested designs (see section 5.4)
with low accurate estimates unlike Sub-D and Sub-DI which, as previously seen, provides accurate
estimates. The ANOVA estimator provides low accurat estimates in all the crossed and nested
designs as seen in previous chapter, it just seem to provide accurate estimates in “one-way designs”;
this is rightful since ANOVA uses fixed effect techniques. The reader must be aware that, despite
the samples considered are reasonably small, both the crossed and nested designs considered in the

numerical simulation have some empty cells, so that the estimators were taking to the extreme.

As a complement, we may remark that Sub-D and Sub-DI keep a somewhat constant perfor-
mance for all the models in which it was applied, providing always accurate estimates whereas
REML does not show a constant performance (for example, in a particular unbalanced “two - way
nested design” (see Section 5.4) REML provided non centered estimates). It also seems it have
better performance for variance components with values bigger than 1. For the ANOVA estimator,

the scenario is even worse, since it does provide non centered estimates in both nested and crossed
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design (see the both nested and crossed design approached in the previous chapter).

Since in any computational program (source code) when we are interested in share the code,
create package or use it repeatedly, we might consider its efficiency and, for this matter, the code
run-time constitutes a good start point. Doing so, to compute the estimates and the corresponding
standard deviation in each two-way designs considered here, with y;, 9» and J3 taking values
in {0.25, 0.5, 0.75, 1, 2, 5}, for 10000 observations we found that the ANOVA, Sub-D and Sub-DI
run-times are about 1.2471, 2.06 and 4.3338 seconds respectively, while the REML estimator
run-time is about 6.2618 minutes, which means that the code for ANOVA and Sub-D are more than
187 times faster than the one for REML.

The process of sub-diagonalizing the variance-covariance matrix in different orders will be

considered in future works; more over, the following topics will also be considered in future works:
e Improving the variability of the estimated values obtained with Sub-D and Sub-DI;

e Confidence region and tests of hypothesis for the variance components.
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A.1 Useful Results

A.1.1 Algebraic Results

Theorem A.1.1. Let A € .#"" and let A be its eigenvalue with correspondent eigenvector v. Then

(a) A™ is an eigenvalue of A™ corresponding to the eigenvector v, where m is an integer that
m>1.

(b) A~V is an eigenvalue of A~" corresponding to the eigenvector v, providing A is non-singular.
Proof. See Theorem 3.4 of Schott [64]. ]

Theorem A.1.2. Let A € /" and let v € R" be any nonzero vector. Then the vector space spanned

(generated) by the vectors v, Av, ..., A"~'Vv contains an eigenvector of A, for some r > 1.
Proof. See Theorem 3.9 of Schott [64]. ]

Theorem A.1.3. Let H € .#"*" be a non-singular matrix with derivative dH / dx. Then

—1
PLA P P

—1
ox 8xH '

Proof. Since A is non-singular, we have H 'H = 0,,5,. Thus, ag—;H +H! %—If = 0,,x,, SO that

OH ' yy —~19H : oH! _ —19H gy—1
o H=-H 5, leadingto “3— = —H "5°H . O

Theorem A.1.4. Let H € .#"*" be a positive definite matrix. Then

dlog|H| _,0H
78)( =1tr (H x .

Proof. O
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Theorem A.1.5. Let A € .#"*P. Then

(a) ATA is positive definite, if r(A) = p.

(b) ATA is positive semi-definite, if r(A) = n.
Proof. O
Theorem A.1.6. A positive definite matrix is non-singular.

Proof. See the Theorem 2.6¢ and its corollary in Rencher and Schaalje [62]. O

A.1.2 Statistical Results

Theorem A.1.7. Lety € R" and z € R be random vectors with second moment such that E (y) = 0,
and E(z) = 0,,. Then,
Z(y.2) =E(yz').

Proof.
o(v2) = E(b-EO0)-E@)]")
= E(yz')—yE(x)' —E(y)z' +E()E(2)"
= E(y") (A1)

O]

Theorem A.1.8. Lety ~ A (U, L), where L € R”", and consider A € .4™" a matrix of constants
and B € .". Then

(a) z=Ay ~ N (Au,AZA");
(b) E(yBy) =1r(BX) + u'Bp.
(c) z=Ay~ (Au, AXA"), provided y ~ (AL, X).

Proof. See Theorem 2.1.2 and Theorem 1.3.1 of Moser [48] for (a) and (c), respectively, and
Theorem 5.2a and 3.6d of Rencher and Schaalje [62] for (b). Typically it is assumed m < n. [

Theorem A.1.9. Lety ~ A (XB,X), with ¥ = YI_| %ZiZ + Vr11, where X € 4™ is of rank
r < p,and X € .#"™" is a positive definite matrix.

Then a full-rank matrix K with maximal number of rows such that KX = 0, is in # (n=r)xn,

Furthermore, K must be of the form
K=C(-H)=C <I—X(XTX)T) ,
where C specifies a full-rank transformation of the rows of the matrix [ — H.

Proof. See Theorem 17.4a. of Rencher and Schaalje [62]. O
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Theorem A.1.10. Lety ~ (XB,%), where ¥ = Y %Z:Z' + Yr+11, and consider the set % =
{Z,...,Zr} of known matrices Z,,...,Zr. Then, if B is balanced and nested, y has OBS.

Proof. See Proposition 3.3. of VanLeeuwen at all [72]. O
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