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“Sometimes we feel that what we do is nothing but a drop in the sea. But the ocean 

would be less if it lacked a drop.” 

Mother Teresa 

 

 

 

 

“… podemos muito mais do que imaginamos.” 

José Saramago 
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During the early life of Matrix-assisted laser desorption/ionization (MALDI), it 

took the (bio)scientific community a while to realize the great potential of the technique 

over a wide range of analytical problems, from the discovery or identification of (mostly) 

organic (macro)molecules through to structure analysis and function. Since then, the 

practical use of MALDI-MS has grown almost exponentially and it is today an 

indispensable laboratory tool, particularly in the life sciences. 

Matrix-assisted laser desorption/ionization (MALDI) is a “soft” ionization 

technique, which allows for the sensitive detection of large, non-volatile and labile 

molecules by mass spectrometry.  It is fast, allowing the analysis of hundreds of samples 

per day. It is expensive, as almost all mass spectrometry techniques, yet it is cost-

effective.  Currently the tandem MS and ion different fragmentation capabilities of most 

MALDI systems add an extra value to this technique as it allows for structural 

characterization of (bio)molecules. In addition to molecular identification and 

characterization, MALDI is an invaluable tool to profile and classify complex samples.  

In spite of its many advantages, MALDI has one achilles tendon. If the sample is 

not conveniently prepared, the ionization is hampered and then the analysis is not 

possible.  This is the reason why sample treatment for MALDI analysis is a never-ending 

hot topic in analytical chemistry. Thus, the methods used to identify proteins do not work 

with polymers and vice versa. In other words, for each new molecule a sample treatment 

optimization is needed so an adequate, well-defined, method of analysis is obtained. For 

this reason this thesis focused in the development of new sample treatments for MALDI-

based applications. To this end and when possible, ultrasonic energy is used as a tool to 

simplify the sample handling by matching the analytical minimalism concept as defined 

by Halls1. The molecules for which the new sample treatments were developed were 

proteins, polymers and small inorganic molecules. 

MALDI is the technique of preference for the analysis of polymers as with one 

single analysis the polymer´s typical values of number-average molecular weight, Mn, 
                                                

1  D. J. Halls, “Analytical minimalism applied to the determination of trace elements by atomic 
spectrometry. Invited lecture,” J. Anal. At. Spectrom, vol. 10, pp. 169–175, 1995. 

Abstract 
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and weight-average molecular weight, Mw, can be obtained. A detailed characterization 

of these materials is important to relate their chemical structure and composition to their 

functions. In this work a rapid sample treatment based on ultrasonic energy for the 

characterization of polymers was developed. Thus, a number of variables affect the 

efficiency of the ultrasonic energy and thus they were investigated over different 

polymers to study their influence in the Mn and Mw values. Different ultrasonic devices 

including ultrasonic bath with dual frequency, sonoreactor and ultrasonic probe were 

used. The selected variables were (i) Utrasonic frequency (35 kHz, 40 kHz and 130 kHz), 

(ii) ultrasonic amplitude and (iii) time of ultrasonication. This study was done over three 

standard polymers: poly(styrene) 2000 Da and 10,000 Da and poly(ethylene glycol) 1000 

Da. Furthermore, two common standard matrices, dithranol and 2,5-dihydroxybenzoic 

acid were used throughout the study. The results obtained show that the ultrasonic bath at 

35 kHz is the best option for the purpose of fast sample treatment for polymer 

characterization. The Mn and Mw values obtained for this ultrasonic device and for the 

three polymers tested using dithranol as MALDI matrix, were not statistically different 

from the ones acquired with vortex mixing and also were in concordance with the values 

recommended by the polymer manufacturers. 

MALDI as a tool for the study of small molecules and complexes has evolved 

slowly but constantly. During a time the main problem to deal with was the interfering 

peaks of the matrixes used. Their m/z signals used to interfere with the masses of the 

small molecules as they are of the same range. However, the discovering on new 

matrices, the development of MALDI-based MS/MS applications and specifically, the 

ability some molecules have to get ionized in the absence of matrix have pushed forward 

MALDI as a reference tool in research related to small molecules. In this thesis  anionic 

and cationic interactions with a new emissive imine-based b-naphthol molecular probe is 

assessed using MALDI. In addition, the results from the MALDITOF-MS studies suggest 

that L can be used to sense Cu2+ in positive mode, and cyanide in negative mode. 

Density functional theory (DFT) studies showed that the copper(II) complex is formed by 

the unprotonated L2 species as it was predicted experimentally. However, the anionic 

complexes with fluoride and cyanide take place via supramolecular interactions with the 

diprotonated L form. This clearly demonstrated that L is not deprotonated upon anion 

interaction. Furthermore, MALDI was used in the study of the synthesis, characterization 
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and spectroscopic studies of two new schiff-base bithienyl pendant-armed 15-crown-5 

molecular probes.  

Complex proteomes are deciphered using gel- or off-gel based protocols. In this 

work an ultrasonic multiprobe was assayed as a tool to develop a fast method to identify 

proteins from complex proteomes. The optimization is done using a pool of standard 

proteins and complex proteome derived from D. Desulfuricansa and Cyprinus carpio. 

Proteins are first separated from complex proteomes using gel electrophoresis. The gel 

spots containing the protein(s) are then excised, washed and submitted to the action of the 

enzyme trypsin, that cleaves the protein in small peptides. The pool of peptides obtained 

is used to identify the protein using peptide mass fingerprint. When compared to the 

traditional method, the use of the ultrasonic multiprobe allows the following features: (i) 

the number of steps and the handling is greatly reduced; (ii) the total time since the spot is 

excised till the protein is ready to be identified is reduced from twelve hours to eight 

minutes and (iii) the risk of contamination is greatly reduced. 

 

Keywords:  MALDI-TOF MS, sample treatment, Ultrasound, Polymers, Protein 

identification, Chemosensor.  
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A espectrometria de massa com ionização e dessorção a laser assistida por matriz 

(MALDI-TOF MS) é uma tecnologia extremamente poderosa e amplamente usada na 

análise de macromoléculas, embora não limitada a estas, por se tratar de uma técnica com 

inúmeras vantagens na obtenção de um espectro de massa: é rápida, de elevada 

sensibilidade e seletividade. Apesar destas vantagens, uma das principais limitações da 

técnica prende-se com a preparação da amostra que necessita de um tratamento especifico 

prévio à análise. Neste sentido, o trabalho desta tese pretende contribuir para o 

desenvolvimento de novos tratamentos de amostra, mais simples e eficientes. Foram 

escolhidos três tipos de analises, (i) identificação de proteínas por Peptide Mass 

Fingerprint (PMF), (ii) caracterização de polímeros e (iii) caracterização de moléculas 

pequenas. 

No tratamento de amostras para a caracterização de polímeros foram testados 

diversos dispositivos ultrassónicos. Foram explorados os efeitos das seguintes variáveis 

sobre a distribuição dos pesos moleculares: (i) frequência de ultrassons, (ii) amplitude de 

ultrassons, e (iii) tempo de sonicação. Procedeu-se à avaliação do efeito destas variáveis 

em três polímeros padrão, recorrendo a duas matrizes MALDI. Os resultados obtidos 

demonstram que o banho de ultrassons a 35 kHz é a melhor opção para o tratamento 

célere das amostras. Os valores de Mn e Mw obtidos para este dispositivo de ultrassons e 

para os três polímeros testados usando ditranol como matriz, não foram estatisticamente 

diferentes dos adquiridos com a metodologia padrão de agitação com vortex. 

No âmbito das moléculas pequenas, a tecnologia MALDI-TOF MS foi empregue no 

estudo de novas moléculas orgânicas com absorção no ultravioleta, verificando-se a sua 

capacidade de sensor, em fase gasosa, relativamente a catiões tais como Cu2+, Zn2+ e Al3+, 

e a aniões como F- e CN- , comportando-se de forma estável nas condições da análise 

MALDI-TOF MS. 

Relativamente ao tratamento de amostras de proteínas, o trabalho refere-se à 

aplicação de uma multi-sonda de ultrassons de 4 pontas, para desenvolver procedimentos 

rápidos para digestão de proteínas em proteomas complexos. As proteínas são separadas 

com recurso à eletroforese em gel. A utilização de ultrassons com uma multi-sonda, 

Resumo 
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permite (i) diminuir o número de etapas do tratamento e a manipulação da amostra, (ii) 

diminuir os tempos necessários para completar o tratamento, (iii) diminuir o riscos de 

contaminação. O tratamento completo desde que a proteína é separada no gel até à sua 

identificação é realizado em poucos minutos comparado com o método clássico. Foi 

ainda usado o método de marcação isotópica com 18O para estudar o tipo de péptidos 

extraídos dos géis, assim como a eficiência da extração. A otimização da metodologia foi 

feita com recurso a proteínas padrão, sendo que proteínas separadas por eletroforese em 

gel, a partir de extratos de D. desulfuricans, e de Cyprinus carpio, foram utilizadas como 

“proof of concept”. 

 

 

Palavras-chave: MALDI-TOF MS, tratamento de mostras, proteómica, ultrassons, 

identificação de proteínas, polímeros, quimiossensores 
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I.1 Mass Spectrometry with matrix-assisted laser desorption ionization accomplished 

to time of flight analysers. 

I.1.1 Basics on Mass Spectrometry approaches 

The beginning of mass spectrometry can be traced back till the end of the XIX 

century, when Eugen Goldstein did the first experiments about canal rays in 1886. Later, 

in 1898, Wilhelm Wien and J. J. Thomson further developed the canal rays experiments 

using low pressure, being able of measuring the mass-to-charge ratio of electrons and 

protons [1], [2]. Currently, mass spectrometry is used to measure masses of molecules, to 

unravel their composition as well as for elucidating their chemical structure. 

A mass spectrum is obtained from gaseous molecules or species desorbed from 

condensed phases that are first ionized, then accelerated by an electric field and finally 

separated according to their mass-to-charge ratio, m/z. Figure I.1 shows a matrix assisted 

laser desorption ionization, MALDI, mass spectrum of an enzymatic digest of BSA 

protein along with a comprehensive scheme of the working of a MALDI mass 

spectrometer. As a general role a mass spectrometer is build with three main components: 

an ion source, to convert in ions the molecules of the sample; a mass analyser, which 

separates the ions according to their mass-to-charge ratio using electromagnetic fields; 

and a detector, which transforms the current of ions in a measurable signal. Figure I.1 

identifies those components for the case of a MALDI-TOF mass spectrometer, the most 

common interfaces is between a MALDI source and a time-of-flight (TOF) mass analyser. 

The most intense peak in the spectrum (see Fig. I.1) is called the base peak and the 

intensities of other peaks are expressed as a percentage of the base peak intensity. 

Mass spectrometry allows for the separation and identification of natural isotopes 

of elements and also allows for the separation and identification of isotopic distribution 

patterns of complex molecules, such as the case of the inset highlighted in Figure I.1, 

where the isotopic distribution of peptide m/z 927 from BSA is shown. Such patterns help 

to classify molecules. For instance the isotopic distribution patterns of one peptide is 

different from the one belonging to one lipid. Because the isotopic distributions of 

different molecules can be detected at the same time, if the spectrum is very complex, 
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isotopic distributions can be an additional headache for data interpretation, making data 

interpretation difficult [3].  

 

 

 

Figure I.1 The principle components of a MALDI time-of-flight mass spectrometry consisting of 

the ionization source followed by the mass analyser and detector. A computer is used to generate a 

spectrum with the data provided by the detector. 

 

 

I.1.2 Matrix assisted laser desorption ionization. 

I.1.2.1 The MALDI concept 

It was believed during long time that molecules with large masses, e.g. 1000 Da, 

could not be measured by mass spectrometry in their intact form as they tend to get 

fragmented. Field desorption (FD), secondary ion mass spectrometry (SIMS) and fast 

atom bombardment (FAB) are techniques that precluded the advent of MALDI. It was 

during the development of FD, FAB and SIMS that the first attempts to desorb large 

molecules with laser irradiation began. It was during this time that the concept of “matrix” 

as a substance to help in the desorption process of large molecules and in enhancing ion 

yield was coined. The MALDI principle was first addressed in 1984 and the principle and 

acronyms were first published in 1985 [4], although the background to develop this 

technique existed since 1975 [5] and even earlier [6]. 



Chapter I. Introduction 

	
   5 

In brief, the sample containing the analyte of interest is mixed with a large excess 

of a small chemical compound, generally known as matrix. The matrix helps in the 

ionization of the sample favouring the absorption of the laser as well as promoting the 

protonation of the molecules of interest. Once into the apparatus, the sample is irradiated 

with a laser, which transfers energy to form a plume of molecules, which is transferred to 

a mass analyser, where the molecules are separated as a function of their mass-to-charge 

ratio. Finally, the molecules reach the detector, promoting a signal that is recorded and 

transformed in the characteristic mass spectrum [3], [7]. 

I.1.2.2 The Matrix 

As it has been written above, the use of a chemical matrix in large excess over the 

analyte, with the main aim to help to promote ionization by absorbing the laser energy 

and/or transferring protons to the analyte is the core of MALDI principle. In addition to 

chemical matrices, other approaches to facilitate analyte ionization have been described in 

literature. For example, the use of nanoparticles as a matrix was first reported by Tanaka 

and co-workers in 1988 [8], and the use of dry carbon with the same purpose was first 

reported by Sunner and co-workers in 1995 [9]. Although the use of MALDI matrices can 

be traced back to more than 20 years ago, the complete physical and chemical processes 

involving the analyte-matrix-laser ionization process have not been yet fully understood 

[10]. Therefore, matrices have been matched analytes on a trial and error basis. A matrix 

can be found appropriate for an analyte whilst inappropriate for another one. As a matter 

of fact, the matrix used with peptides does not work properly with proteins and vice versa. 

Table I.1 presents the most common matrices for peptides, proteins, small molecules and 

polymers. 
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Table 1.1 Exemple of common matrices used in MALDI-MS. (Reproduces from references 
[2], [3]) 
    

Matrix Structure λ (nm) Application 

3-Amino-4-hydroxybenzoic acid 
 

337 Oligosaccharides 

2,5-Dihydroxibenzoic acid 
(DHB)  

337, 353 
Proteins, peptides, 
carbohydrates, synthetic 
polymers 

5-Hydroxy-2-methoxybenzoic acid 
 

266, 337, 
355 Lipids, Proteins,  

2(4-Hydroxyphenylazo)benzoic acid 
(HABA)  

266, 337 Proteins, lipids 

Cinnamic Acid 
 

337 General 

4-Methoxycinnamic acid 
 

337 Proteins 

Ferlulic acid 
 

337, 266, 
355 Proteins 

Sinapinic acid 
 

266, 337, 
353, 355 Proteins, peptides, 

α- Cyano-4-hydroxycinnamic acid 
(CHCA)  

337, 353, 
355 Peptides fragmentation 

6,7-Dihydroxycoumarin 
 

337 Lipids, peptides 

3-Hydroxypicolinic acid 
(3-HPA)  

337, 353, 
355 

Oligonucleotides, 
Synthetic polymers 

Nicitinic acid  266 Proteins, peptides, adduct 
formation 

Picolinic acid 
 

266 Oligonucleotides 

3- Aminopicolinic acid 
 

337, 355 Oligonucleotides 

6-Aza-2-thiothymine 
 

337, 353 
Proteins, peptides, non- 
covalent complexes; near-
neutral pH  

2,6-Dihydroxyacetophenone 
 

337, 353 
Proteins, peptides, non- 
covalent complexes, 
Oligonucleotides 

2,4,6-Trihydroxyacetophenone 
 

337, 353 
Proteins, peptides, non- 
covalent complexes, 
Oligonucleotides 

3-Aminoquinoline  337 Oligosaccharides 

1,5-Diaminonaphthalene 
 

337 Lipids 

Trans-3-indoleacrylic acid 
(IAA)  

337 Synthetic polymers 

Dithranol 
 

337 Synthetic polymers, 
Lipids, small molecules 
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I.1.2.3 Lasers for MALDI 

The two main types of laser used in MALDI are based on infrared, IR, or 

ultraviolet, UV, wavelength [1], [10]. The absorption coefficient of common IR-matrices, 

such as glycerol, are high enough to guarantee a penetration depth of the laser beam of 

about 1 µm, more than 20-fold than a typical penetration achieved with an UV laser. As 

consequence, the mass of sample ablated for the same exposure time is 10 times higher 

for an IR laser than for an UV laser, being the sample consumption proportionally higher 

in IR-ablation as well [3]. 

I.1.2.4 The ionization process 

The ionization process takes place after laser has ablated the surface of the matrix-

analyte sample. However, it seems that the majority of the material that becomes part of 

the plume of molecules is present in neutral form. The ablation process itself is not well 

understood yet, although some interesting works have been done to this end. Such works 

suggest that ions are formed only within the first 300 ns after laser interaction with the 

material [11], [12]. However, the mechanism involved in the ion formation are even less 

understood that the laser ablation itself. Currently, two models are found in literature 

explaining the ionization process. The first model assumes two main steps for ion 

formation: (i) neutral analyte molecules and photoionization of the matrix molecules and 

(ii) charge transfer to the analyte molecules in the plume [13]. The second model assumes 

analytes as charges species within the matrix which becomes mostly neutralized during 

the ablation process due to interactions with the matrix [14]. 

Table I.2 Types of Ions in LDI and MALDI-MS. (Reproduced from reference [1]) 
Analytes Positive Ions Negative Ions 
Non-polar M+� M−� 
Medium polarity M+� and/or [M+H]+, [M+alkali]+, 

{clusters [2M]+� and/or [2M+H]+,  
[2M+alkali]+, adducts [M+Ma+H]+,  
[M+Ma+alkali]+}b 

M−� and/or [M-H]−, 
{clusters [2M]−� and/or [2M-H]−,  
 adducts [M+Ma]−�, [M+Ma-H]−} 

Polar [M+H]+, [M+alkali]+,  
Exchange [M-Hn+alkalin+1]

+, 
High-mass anal. [M+2H]2+, [M+2alkali]2+, 
{clusters [nM+H]+,  
[nM+alkali]+, adducts [M+Ma+H]+,  
[M+Ma+alkali]+} 

[M-H]−, 
Exchange [M-Hn+alkalin-1]

−, 
{clusters [nM-H]−,  
adducts [M+Ma-H]−} 

Ionica C+, [Cn+An-1]
+,{[CA]+�} A−,[Cn-1+An]

−,{[CA]−� } 
a Comprising of catión C+ and anion A−. b Enclosure in parentheses denotes rarely observed species. 
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I.1.2.5 The Fragmentation process 

The fragmentation process depends on many different variables, such as laser 

fluence and focus, ion extraction field strength and delay, as well as the choice of an 

adequate matrix [15]. Matrixes favouring high degree of fragmentation are classified as 

hard whilst matrixes that do not promote fragmentation are called “soft”. For instance α-

cyano-4-hydroxycinnamic, the matrix of choice for peptide mass fingerprint, is one of the 

hardest matrices used whilst “super DHB” is one of the softest matrices, used for the 

measured of intact proteins [7].  

Three different process account for fragmentation. First, ions absorb energy from 

the laser. Laser´s energy promotes collisions with the matrix molecules. Second, the 

electric field in the source will accelerate the ions make them crash within them and 

against other molecules present in the plume [7]. In addition to this processes, the plume 

is a very reactive medium where hydrogen and proton transfers between molecules takes 

place. All this factors contribute to the breaking of many molecules. Thus phosphor- or 

sulfo- peptides or glycolipids get dissociated before or during detection [3].  

Tandem mass spectrometry is the process of selecting an ion, causing it to 

fragment and recording a mass spectrum of the fragments ions. Fragment ions carry 

information about the ion structure. One ion can be selected and isolated and then 

fragmented n times [1]–[3], [7], [16]. Through this method the amino acid sequence of 

one peptide can be elucidated. 

Post-source decay (PSD) fragment ions correspond to the fragment ions formed 

between the ion source and reflectron in a reflectron TOF mass spectrometer [17]. Since 

PSD ions are unfocused or metastable, they appear as broad peaks at higher apparent mass 

than their focused counterparts. PSD ions can be focused by stepping the reflectron 

voltage and combining the resulting partial spectra. These methods were used extensively 

for the structural determination  of carbohydrates [1]. PSD fragmentation is influenced by 

the matrix employed. Matrices such as 4-CHCA, classified as "hot",  usually catalyze 

considerable fragmentation, whereas “cold” matrices such as DHB, SA, ATT or 1,3,5-

THAP do not [18]–[20]. Using MALDI-PSD it is possible to obtain sequence information 

with the MALDI method by generating fragment ions [21]. However, the PSD 
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fragmentation is rather complex. The recent availability of MALDI sources for analyzers 

such as the Q-TOF, TOF/TOF, FT and QIT, enable far more efficient production and 

detection of product ions than is possible with PSD [3], [7]. 

I.1.2.6 Mass analysers: TOF mass spectrometer 

I.1.2.6.1 Linear TOF mass spectrometer 

Figure I.2 shows a typical linear TOF mass spectrometer. In this type of 

instruments all charged ions are first accelerated by a potential difference, between the 

sample support and a nearby grid. This accelerated the ions, which then travel down a 

field free path of variable length, generally 1m. This TOF render mass resolutions below 

20 000. 

 
 

Figure I.2. Schematic representation of the linear time-of-flight mass analyser. 

 

I.1.2.6.2 Reflectron TOF mass spectrometer 

Figure I.3 shows a typical reflecton TOF Mass spectrometer. In this type of 

instruments the travel path distance is increased by using one reflector, also known as ion 

mirror, that reflects the ions from the first field free drift region to the second field free 

drift region. In addition, the reflector also compensates differences in ion travel energies, 

making the same m/z ions travel to more similar speeds. This type of TOF render mass 

resolutions higher than 20 000 and mass accuracy of 2-5 ppm [3]. 
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Figure I.3 Schematic representation of the reflectron time-of-flight mass analyser. 

I.1.2.6.3 Tandem TOF mass spectrometer 

Figure I.4 shows a typical tandem TOF mass spectrometry. Tandem procedure 

requires the selection of an ion, called precursor ion, fragmenting it, and the recording of 

the signal of all fragments in a single spectrum. This type of analysis reveals structural 

information. Fragmentation, for instance, allows knowing the sequence of a peptide, it 

allows determination of sites of deamidation, phosphorylation or sequence variation from 

mutation of the peptide´s parent DNA [3], [7]. 

 
Figure I.4 Schematic representation of the tandem time-of-flight mass analyser. 
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I.2 MALDI-MS for proteomics 

I.2.1 Basics on MALDI-MS for proteomics 

MALDI-MS is a helpful tool in all type of studies involving proteins, from 

individual proteins to the analysis of large complex proteomes. It must be mind that 

proteins constitute the elemental block of the living organisms. Proteins are involved in 

all living processes and can be linked to diseases as well as to genetic mutations. 

Therefore the analysis of proteins using MALDI mass spectrometry is nowadays an 

important tool in many different fields of knowledge, such as biology, biomedicine or 

biotechnology. 

Proteins can be studied using MALDI in three different ways. Intact proteins are 

studied using linear MALDI-TOF. Depending on the mass of the protein, the actual one 

may be obtained within and error of some Da. Figure I.5 shows a MALDI spectrum of a 

mixture of proteins. It may be noted that as the mass of the protein increases so it does the 

error in the mass determination.  

 
Figure I.5  MALDI spectrum of a proteins mixture. 

Figure I.5 shows an example of this problem. If the mass of the protein changes 

from 17 kDA to 40 KDa the error vary from 0.03 Da to 11.02 Da. 
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The identification of a protein, and therefore its sequence, can be obtained using 

two different strategies. The first strategy entails the purification and isolation of the 

proteins by gel electrophoresis or by HPLC, and its subsequent digestion using one 

enzyme, generally trypsin. The digested protein is summited to MALDI-MS and one 

spectrum with a number of peptides is obtained. This spectrum is introduced in a 

searching engine (Generally MASCOT), which matches the experimental spectrum 

against a large database of millions of sequences of proteins “in silico” derived from 

genetical data. If the protein we are interested in is in the database, and the spectrum has 

enough quality, the protein and its sequence is retrieved. This methodology is known as 

peptide mass fingerprint, PMF. The second strategy uses tandem mass spectrometry over 

a peptide belonging to the protein, which is being identified. The peptide is sequenced by 

tandem mass spectrometry. The sequence of amino acids is introduced in the search 

engine (again, MASCOT) and then is matched against billions of sequences of peptides. 

Finally, the peptide is linked to one protein. This method is also called peptide fragment 

fingerprint, PFF or protein identification by MS/MS [3], [7], [22]–[24]. 

1.2.2 Peptide mass fingerprinting  

The first step in peptide mass fingerprinting is the isolation and separation of 

proteins from complex mixtures. This is generally done using HPLC, gel electrophoresis 

(one dimension, 1D, or two dimensional, 2D) or a combination of both [7], [25]. 

Whatever the strategy used it must be ensured at this stage that there is only one protein in 

our sample before proceeding to the digestion step. The digestion step is addressed to 

obtain the peptides that constitute the protein. To obtain this set of peptides, enzymes that 

cleavage the proteins in a specific and reproducible manner are used. For instance, trypsin 

cleaves peptide chains mainly at the carboxyl side of the amino acids lysine or arginine, 

except when it is followed by proline. The peptide mass map produced by specific 

cleavage reagents or enzymes is unique for the protein and its post-translational 

modifications. In theory, after digestion, all peptides should be at the same concentration 

in the sample, and therefore the intensity of their signal should be the same in the MALDI 

mass spectrum. However, different mechanisms accounts for this not to happen [3], [7].  
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Figure I.6 Principle of protein identification by MALDI mass spectrometry-based peptide mass 

fingerprint. The experimentally determined MALDI-MS peptide mass map is compared to the “in-

silico” (theoretical) peptide mass map of all proteins included in a biological database using 

computer-based search algorithms. A scoring scheme is used to retrieve the best match. Protocol 

A corresponds to the classical protein analysis, in which proteins are initially separated according 

to their isoelectric point and then according to their molecular weight. Protocol B corresponds to 

the typical gel-free approach, in which proteins are digested prior to any separation step and then 

the whole peptide pool is separated using multi-dimensional chromatography in tandem with mass 

spectrometry. Protocol C represents the new trends in protein digestion using immobilized trypsin. 

Firstly, proteins can be separated using different chromatography steps, and are then digested in-

column, and, finally, the peptide pool is separated and analysed. (Adapted with permission from 

reference [24]) 
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The ionization process is different for each peptide and this is reflected in the 

ionization efficiencies [7], which may vary over several orders of magnitude. For this 

reason, some peptides can be not detected in the spectrum [3]. The causes for those 

differences in the ionization efficiency are not well understood yet and they need to be 

elucidated. As an example, arginine containing peptides ionize very well as compared 

with peptides with a lack in arginine [7], [26]. This is the reason why an in-deep analysis 

by MALDI-MS of a mixture of peptides requires a previous separation using HPLC or 

Gel electrophoresis. 

Table I.3 Computational services and tools for protein mass spectrometry. (Adapted from 
reference [3]) 

Name Website Purpose References 

ExPASy www.expasy.org 
Resource/software for protein 
sequence and mass analysis Public 

EBI www.ebi.ac.uk Biological databases and query 
tools Public 

NCBI www.ncbi.nlm.nih.gov 
Biological databases and query 

tools Public 

GPMAW www.gpmaw.com 
Protein sequence and mass 

analysis Commercial 

Mascot www.matrixscience.com 

Computational tool for protein 
identification by MS and 

MS/MS data. For links to more 
search engines, see ExPASy 

Public/Com
mercial 

X! Tandem www.thegpm.org/TANDEM/ Computational tool for protein 
identification by MS/MS data 

Public/Com
mercial 

Phenyx 

www.ionsource.com/functional_r
eviews/Phenyx/phenyx-web.htm 

 

Computational tool for protein 
identification by MS/MS data, 

quantitation 
Commercial 

MSQuant 

 

msquant.sourceforge.net Tool for protein quantitation Freeware 

Protein-
Prospector Prospector.ucsf.edu/ 

Various tools for protein 
analysis and identification by 

MS and MS/MS data 
Public 

ProteinCenter www.proxeon.com 
Computational tool for analysis 

of large proteomic data sets Commercial 

NetPhos 
Cbs.dtu.dk/services/NetPhos 

 

Predictions for phosphorylation 
sites. For links to other 
predictors, see ExPASy public 
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Protein identification using data retrieved from mass spectrometry in combination 

with protein sequence database searching was first proposed by a number of research 

groups [26]–[30]. Different methods of work are found to this end, which are summarized 

in Figure I.6. As stated above, the main aim of any PMF-based method consists in to 

obtain an experimental list of peptide masses belonging to the same protein. This list is 

compared with all the ones presented in a database. The protein whose theoretical, also 

known as in-silico, list of peptide masses best matched the experimental one is retrieved 

as the protein identified by the searching engine. A list of computational services and 

tools for protein mass spectrometry is presented in Table I.3. 

I.2.2.1 Sample Treatment for protein identification through PMF 

  Proteins are cleavage on their constituents peptides by enzymatic digestion or 

chemical cleavage with acids [24], [31], [32]. The type of enzyme selected, or the type 

and concentration of acid depends on the protein and on the type of analysis to be done. 

For instance, the sample treatment to study phosphorylation is different from the sample 

treatment used to study glycosylation. The enzymes used to digest proteins for protein 

identification belongs to the family of proteases and comprises the following groups [32]: 

serine; aspartic; cysteine; or metalloproteases. Each enzyme cleaves the proteins at 

specific sites in a reproducible manner. As a general role for proteins identification the 

serine enzyme trypsin is used. This enzyme cleavages the protein at each arginine and 

lysine residue, each 10-12 aminoacids approximately, leading to the production of 

peptides with masses comprised between 800 to 2000 Da, which are very appropriated for 

mass spectrometry analysis [24]. Such peptides can be further fragmented in the mass 

spectrometer using different approaches, being the most frequent the named collision-

induced dissociation, CID. This fragmentation allows the sequencing of peptides in a 

reproducible and fashion manner, allowing the identification of proteins trough the 

sequencing of peptides [7]. The variables affecting the protein cleavage performance are 

enzyme concentration, temperature and pH. 

The sample treatment pipelines used for mass spectrometry-based protein 

identification are depicted in Figure I.6. Complex proteomes can be interrogated using 

protein separation and isolation by gel electrophoresis in the first and in the second 

dimension. The spots containing the protein(s) are submitted to the process named in-gel 
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protein digestion [33]. Other possibility entails the direct cleave of all the proteins present 

in a complex proteome by adding the enzyme to the sample. Thus, a highly complex 

solution of peptides is obtained which is subsequently separated by multi-dimensional 

chromatography [34]. Finally, the digestion of a protein or a complex proteome can be 

done in an automated mode using chromatography [25], [35], [36]. Table I.4 shows the 

advantages and drawbacks of the aforementioned approaches. 

Table I.4 Analytical parameters for enzymatic protein digestion. (Reproduced with permission 
from reference [24]. 

Variable 
In gel digestion In-solution 

digestion 

In column 

digestion 
Treatment time up to 12 h up to 12 h up to 10 min. 
Handling high medium low 
Sample throughput low medium high 
On-line application no yes yes 
Protein digestion yield low medium high 
Robustness low high medium 
Protein/enzyme ratio low very low medium 
Cost low low medium 

 

I.2.3 Classic protocols 

I.2.3.1 In-gel protein digestion 

This methodology is time consuming, it requires operator skills and in handling 

intensive. However, it is not expensive if compared with the HPLC-based methods. The 

major advantages are its cost-effectiveness and that protein post-translational 

modifications can be seen at a glance. Figure I.7 shows how complicated the pipeline is 

for a Gel-based method. First proteins need to be purified and prepared to be separated 

using the gel [37]. Further preparation it requires protein concentration as well as the 

elimination of interfering substances with the electrophoretic separation. As an example, 

proteins can be precipitated using a mixture of trichloroacetic acid (TCA) / acetone [38].  
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Figure I.7 Detailed description of an in-gel protein digestion protocol. (Figure reproduced with 

permission from reference [24]) 
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Proteins are denatured and solubilized in urea/thiourea solutions at concentrations 

up to 9 M [39]. This helps to obtain a subsequent in-gel efficient separation of proteins. In 

a typical 2D gel electrophoresis experiment the proteins are first separated as a function of 

their isoelectric points, pI, (first dimension). After the completion of the first dimension, 

and in order to avoid further re-oxidation, it becomes necessary to reduce cystine residues 

using dithiothreitol (DTT). The resulting cysteines are then obstructed with iodoacetamide 

(IAA). Afterwards, proteins are then separated following their size (second dimension). 

[40]. Once the proteins have been separated, they need to be visualized. This is done using 

Coomassie Blue, fluorescent dyes, or with MS-compatible silver nitrate [41]. An example 

of a typical electrophoretic separation is given in Figure I.6, protocol A, where a gel 

corresponding to the second dimension is presented. Each dark spot corresponds to one or 

to some proteins, that can be extracted intact using  (i) passive elution [42], (ii) electro 

elution [43], or (iii) the ultrasonic-assisted elution [44]. After elution, proteins are 

digested in solution, then analysed by PMF and finally, identified. 

 Protein elution from gels is troublesome, however, a faster and easiest approach is 

done where the protein is digested in the own gel, then the peptides are eluted from the gel 

into a solution, sometimes with the aid of ultrasonication. As a result, solid protocols have 

been developed for in-gel digestion [45], [46]. Furthermore, automated protein digestion 

is available in a large number of proteomic facilities. 

Whatever the method of choice, the procedure is always the same. First, the bands 

(1D) or the spots (2D) are cut from the gel and then the staining chemicals are removed. 

For this, there are some specific protocols depending on the type of staining [47]. Then, 

an adequate amount of enzyme is introduced in the solution and the enzyme is allowed to 

reach the protein trapped in the gel, sometimes with the aid of microwave energy or 

ultrasonic energy. For this purpose, it is fundamental that the solvent composition inside 

the gel be rigorously controlled. Therefore, gel slides must firstly be dehydrated using 

acetonitrile and finally dried in a speed vacuum [36], [48], [49].  

The pH and temperature are also controlled during all the procedure to ensure 

enzyme activity. Digestion is done in a couple of hours or during overnight incubation at 

30 ºC or 37 ºC [24]. Lastly, the supernatant which contains the peptides is acidified in 

order to stop the digestion process and then submitted to MS analysis for protein 

identifications by PMF. A MALDI-TOF instrument is normally used in this process [50], 
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[51]. The in-gel digestion protocol presents, however, various disadvantages, as (i) 

inaccessibility of some peptide bonds to the enzyme as a result of the process of trapping 

protein substrates in the gel, and (ii) inability of some peptides produced during the 

digestion to be diffused freely from the gel. The aforementioned disadvantages clarify 

different results between in-gel and in- solution digestion methods [36].  

 

I.2.3.2 In-solution protein digestion 

In-solution protein digestion of complex proteomes and subsequent protein 

identification (shotgun proteomics), developed by Link et al. [34], is currently the most 

popular and powerful method to identify proteins in large scale. It is very simple: the 

whole proteome under study is cleavage at once. This produces a solution containing 

hundreds of thousands of peptides. Some precautions must be taken into consideration, 

namely (i) that the more abundant proteins are normally easier to identify; (ii) that some 

fractionation is needed in order to get the identification of less abundant proteins easier; 

and, (iii) that variation in the yield of digestion observed from sample to sample might 

happen due to the quantity and number of proteins, heterogeneity in the matrix, and its 

physical and chemical properties [7]. 

 

 The in-solution procedure requires, first, the precipitation of the proteins with 

cold acetone or TCA, to separate them from other components, such as nucleic acid 

contaminants, lipids and salts from biological samples. Then, it is necessary to re-suspend 

the proteins again. To this end ammonium bicarbonate buffer supplemented with 8 M 

urea or another chaotropic agent (e.g., guanidine hydrochloride) is used. This solution 

helps to solubilise the proteins. Then, the disulphide bonds are reduced and alkylated with 

DTT and IAA respectively to avoid protein refolding [49]. Digestion is generally done 

with trypsin and because this enzyme is inactive if urea concentration is higher than 2 M, 

the solutions containing the 8-9 M urea must be diluted [45]. However, the enzyme 

Lysine-C is active at a concentration of 8 M and can be used to digest the protein [52], 

[53]. Protein digestion is usually performed overnight (12-24 hours), or it is speeded using 

microwave energy or ultrasonic energy [49], [54]. The cleavage is then stopped by adding 

an acid, to lower the solution´s pH to 2–3. Finally, the complex mixture of peptides is 
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separeted and desalted using Multi dimensional liquid chromatography and then analyzed 

by MS. 

 In-solution digestion has the advantage of being suitable for on-line applications 

and the sample treatment is easier than the in-gel approach stated earlier. Yet, there are 

still some disadvantages, such as time-consuming enzymatic digestion and the 

background noise in MS analysis introduced by enzyme autolysis products [24], [55]. 

 A special mention is needed for membrane proteins, with low solubility in water. 

Cyanogen bromide, methanol or the use of acid labile surfactants are generally used to 

handle membrane proteins successfully [56], [57], [58]. Then, the complex mixture of 

peptides produced by the in-solution digestion procedure is separated using multi-

dimensional chromatography coupled to tandem mass spectrometry [1], [7]. Proteins are 

then identified by the fragmentation spectra (amino acid sequence) of the peptides. This 

procedure is known as peptide fragment fingerprinting (PFF) [59]. 

 

1.2.3.3 In-column protein digestion 

Several drawbacks can be pointed for the in-solution and in-gel digestion methods. 

First, long digestion time, typically overnight, is required. Second, the trypsin undergoes 

autolysis, what makes the solution reach in peptides of this enzyme, which may affect the 

analysis [7]. Third, if the protein concentration is low, in the micromolar range, low 

digestion yields are obtained. Fourth, they are time consuming and handling intensive and 

fifth, peptide losses by adsorption can occur [24]. 

To overcome these problems, columns filled with immobilized trypsin can be used 

to digest the samples on-line. Using this procedure lower digestion times, increased 

digestion ratios as well as the reduction of enzyme autolysis products are obtained. In 

addition, the columns can be incorporated in HPLC-based pipelines [60], as it is shown in 

Fig. I.8. This system shows the coupling of three HPLC pumps, two digestion columns, 

two separation columns and three injection valves [24].  
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Figure I.8 An on-line protein digestion system. comprising three HPLC pumps (two gradient and 

one isocratic), three switching valves, and four columns (two used for protein digestion and two 

other for peptide separation). The whole system is connected on line to a mass spectrometer. To 

increase throughput of the analysis, each gradient HPLC pump is connected to one digestion 

column and one separation column through switching valves. These are synchronized to separate 

(separation-column 1) the digested peptides coming from digestion-column A using one of the 

gradient HPLC systems. In the meantime, the second gradient system delivers a protein mixture to 

digestion-column B, while separation-column 2 is being conditioned with the solvent delivered by 

the isocratic pump. (Figure reproduced with permission from reference [24]) 

 

I.2.4 Accelerated protocols 

Modern approaches to boost or to enhance the performance of proteomics 

pipelines are currently consisted on the following approaches: (i) heating, (ii) microspin 

columns, (iii) ultrasonic energy, (iv) high pressure, (v) infrared energy, (vi) microwave 

energy, (vii) alternating electrical fields, and (viii) microreactors,	
  are some examples of 

new methodologies developed to accelerate protein digestion. For a detailed description of 

those approaches the revision done by Capelo, et al., is recommend [49]. Below a detailed 

description of the application of ultrasonic energy to proteomics pipelines is provided.  
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1.2.4.1 Basics on Ultrasonics 

The ultrasonic frequency range is normally divided into two principal zones, see 

Figure I.9, depending on the effects instigated by the ultrasonic wave on the liquid media 

during it’s passage through it.  

 

 
Figure I.9 Sound frequency ranges. (from Mason et al. [61]) 
 

High frequency ultrasound, with values comprised between 2Mhz and 10Mhz, or 

medical ultrasound, another designation for which is known, is largely used for medical 

purposes due to the immutability of the liquid media chemical and physical properties 

where the ultrasound is applied. 

Low frequency ultrasound, is comprised within a range from 20Khz to 100Khz, and 

promotes several physical and chemical changes in the liquid media where they are used 

[62]. Low frequency ultrasound promotes in the liquid media a phenomenon known as 

cavitation (figure I.10). 
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Figure I.10 Development and collapse of cavitation bubbles. (from Mason et al. [61]) 

 

Cavitation happens when waves cross the liquid with such a speed that liquid 

molecules can’t follow the cycles of compression and decompression of the wavelength 

with the same speediness [54]. At some point the creation of cavities happens because the 

forces that keep liquid molecules together are broken. These formed cavities are named as 

cavitation bubbles. As more energy is supplied to the cavities in the form of ultrasound 

waves, the cavitation bubbles grow in size through the process called rectified diffusion 

[63]. Stable cavitation is defined by successive cycles of compression and decompression, 

as the wavelength passes through the liquid media. Yet, cavitation bubble never implodes 

[54]. Transient cavitation is defined by the impetuous collapse of the bubble, after it grow 

until reaching a maximum. In this implosion, temperatures and pressures of about 5000 ºC 

and 1000 atm, are reached respectively as indicated by the Hot-Spot theory [63]–[65]. The 

erosion and disruption of solid surfaces caused by the formation of micro-jets liquids 

during the implosion at c.a. 400 Km h-1 as well as the increase of mass transfer processes 

in heterogeneous systems constitute additional effects (see Fig. I.11). The formation of 

highly reactive radical species that can be used to enhance chemical reactions has been 

also described. 
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Figure I.11 Disruption effect of ultrasound in solid material. Different beads (200mg) were 

suspended in 1mL of Milli-Q water and ultrasonicated for 2min with an ultrasonic probe at 

different ultrasonic amplitudes. The microscopic pictures were taken with a magnification of 100 

× and the scale corresponds to 200 mm. (A) silica particles; (B) glass particles; (C) magnetic 

particles; (D) sepharose particles; 1, intact particles; 2, disrupted particles; 3, aggregated particles. 

(Figure reproduced with permission from reference [66]) 

 

The right application of the ultrasonic energy is dependent of several variables, as 

listed in Figure I.12 [67]. Succinctly, the following can be pointed: ultrasound frequency, 

UF, ultrasound intensity, UI, ultrasound amplitude, UA, time of application, temperature, 

external pressure, type of liquid media, and type of gas present in the liquid media. These 

variables and the effects they cause, have been, to some extent, discussed in previous 
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publications from the Bioscope Group, concerning the ultrasonic-based sample treatment 

[16], [48], [66]–[82]. Nevertheless, it will be concisely exposed below. 

 
Figure I.12 This figure shows the new ultrasonic multiprobe coupled to the 96-well plate. (Figure 

reproduced with permission from reference [67]) 

 

Ordinary ultrasonic devices delivers a significant range of electrical energy, which 

is mentioned as the “power” of the ultrasonicator. It´s common to find ultrasonic 

apparatus classified according to the watts they deliver. The electrical energy is converted 

into mechanical (vibration) energy. This can be understood as a motion walking through 

the ultrasonic tip, inducing it to move up and down. The distance of the movement of 

vibration is called its amplitude. Depending on the power delivered by the ultrasonicator, 

there is the possibility to control vibration amplitude up to a maximum. Ultrasonic´s 

amplitude and intensity own a direct connection. As the intensity of an ultrasonic wave is 

proportional to the square of its amplitude, the highest is the amplitude the bigger will be 

the intensity [54].  

For the same kind of sample, low amplitude and intensity will be achieved, if the 

output power is adjusted to low values. The effectiveness achieved with the ultrasonicator 

is directly proportional to amplitude and intensity. Therefore, the lower amplitude and 

intensity the lower effectiveness reached with the ultrasonicator. This is also valid for the 

opposite. 

Current proteomics workflows using ultrasonic energy as a tool in sample 

treatment relay in short times of exposure, normally under 2 minutes time, and in the use 

of high intensity devices characterized for their capability of delivering frequencies 
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among 20KHz and 40KHz values. Ultrasound amplitudes are normally settled to 50%.The 

devices presently more used to deliver ultrasonic energy in proteomics are the ultrasonic 

probe (or multiprobe), the cup-horn and the sonoreactor. Modern ultrasonic devices can 

be used in the “pulse” mode. In this working mode, the amplifier switches the power on 

and off repeatedly, avoiding excessive warming of the bulk sample. External cooling can 

also be applied [16], [54], [68], [70]. 

The use of ultrasonic energy in proteomics, under atmospheric pressure, has been 

always done with success. Thus, this is a variable (external pressure) that should not be 

considered. With respect to liquid media, ultrasound has been applied with very good 

results to a large diversity of water or mixed organic-water solutions for both in-gel or in-

solutions based approaches [16], [83], [82], [74], [81]. Due to the volatile nature of the 

organic solvents in the reaction mixture the possible changes in the reaction volume 

should be mind. Added gas in a reaction mixture will act as nucleation sites for the 

cavitation spots and thus will enhance the cavitation [16]. In the case of pressure, this 

particular variable appears to be of no importance, since the applications carried out so far 

have been successfully done with no need to add gas into the solutions. 

 
Figure I.13 Advances on ultrasonic probe technology: (a) silica glass probe; (b) spiral probe; (c) 

dual probe; (d) multi probe; (e) cup horns; (f) sonoreactor; (g) microplate horns. (a–d) are 

reproduced with permission of BandelinCompany; (e) and (g) are reproduced with permission of 

MisonixCompany; (e) is reproduced with permission of dr. Hielscher Company. (Figure 

reproduced with permission from reference [70]) 
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Ultrasonic energy (UE) is frequently applied in proteomics in two diverse forms, 

in the following way: Direct ultrasonication (ultrasonic probe) is a term, which refers to 

the use of ultrasonic probes. Whenever this system is employed, a titanium tip is 

submerged into the sample. Indirect ultrasonication is a term referred to any system in 

which the sample is reached by the ultrasound though the walls of the sample container 

[70]. Modern ultrasonic devices are shown in Figure I.13. 

Currently, indirect ultrasonication (cup-horns, sonoreactor) offers a number of 

advantages over the use of direct ultrasonication, as it follows. As no tip is inserted into 

the sample when indirect ultrasonication is applied, the risk of cross-contamination 

between samples is avoided. Also, samples can be treated in closed containers, which 

allow the treatment and safe handling of dangerous samples. Furthermore, some devices 

allow treating a considerable number of samples at once, thus opening high sample 

throughput for clinical purposes. Moreover, sample cooling is easily done. 

1.2.4.2 The use of Ultrasonic energy in Proteomics 

Ultrasonic energy is currently used to speed proteomics workflows addressed to 

identify proteins. Such workflows are mainly based on two different pipelines. The first 

one is gel-based, where proteins in complex mixtures are separated using gel 

electrophoresis in the first or in the second dimension. In this pipeline ultrasonication is 

used (i) to speed gel washing, (ii) to speed protein reduction and alkylation and (iii) to 

speed protein digestion. On the overall, the total time is reduced from 24 h to 4 minutes 

per sample, if a cup horn is used, where 6 samples can be treated at once. The second 

pipeline entails the use of in-solution approaches, this is, the proteins will be digested 

first, and then peptides are separated using off-gel based approaches, generally HPLC. For 

this case, (i) protein reduction, (ii) protein alkylation and (iii) protein digestion can be 

done also under the effects of an ultrasonic field, being time needed to handle a sample 

reduced from 12 h to merely 4 minutes [16], [70].  

The use of ultrasound application in rapid sample treatment for protein 

identification will be further explored in chapter VI. 
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I.3 MALDI-MS for Polymer Characterization 

I.3.1 Basics on polymer characterization using MALDI-MS 

Characterize the chemical structure of a polymer is important because it can be 

directly linked to its function. A simple modification in the chemical structure of a 

polymer can have a deep impact in its macromolecular characteristics such as chemical 

reactivity, solubility and miscibility. Over the years, mass spectrometry, MS, has become 

a powerful tool in polymer characterization [1], [84], [85]. MS is used to detect and to 

identify minor polymer components or impurities, it helps to investigate by products of 

polymerization reactions and it can provide information to determine the average 

molecular mass and the molecular mass distribution of a polymer. 

The following features can be considered the major advantages of polymer analysis by 

MALDI [3], [10], [86], [75]:  

(i) Absolute molecular weights of narrowly distributed polymers (polydispersity< 1.2) can 

be determined as opposed to relative molecular weights obtained by chromatographic 

techniques. 

(ii) The MALDI analysis of polymers does not require the use of polymer standards to 

assign molecular weights to oligomers. 

 (iii) Using submilligram amounts of sample material, the actual analysis can be 

accomplished in few minutes. 

(iv) In addition, MALDI can determine the molecular weight independently of the 

polymer structure. 

Because of these attributes, in many labs, MALDI MS has become a routine tool for 

polymer characterization. 

As a general role, in MALDI-based polymer analysis, the sample (a polymer) is mixed 

with an adequate matrix and with a cationization reagent. The mixture is deposited in the 

MALDI target and then is analysed. The individual oligomer is ionized during the 

MALDI process by the attachment of a cation (cationization) which, in most cases, takes 

place in the gas phase [86], [75]. 
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Polymer characteristics that can readily be determined by MALDI include the following 

[75]:  

• The number-average molecular weight, Mn. Which provides an average weight of 

a given polymer;  

• The weight-average molecular weight, Mw. Is another form to give the molecular 

weight of a polymer and is calculated as the arithmetic mean or average on the 

molecular weights of a certain number of molecules; 

•  The mass of repeat units; 

• The polydispersity, PDI, which is the ratio Mw to Mn;  

•  The end-group mass structure.  

 

Polymer distributions are typically characterized by Mn and Mw. The equations used for 

molecular mass determination and polydispersity calculation are [1]: 

 

Where Mi and Ii represent the molecular weights of the oligomeric components and their 

signal intensities, respectively. It is assumed a linear relationship between number of ions 

and signal intensity [1], [3], [75]. 

 

Sample preparation is a key issue to obtain reliable results and this subject is 

discussed below. 
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I.4.2 Sample Treatment for polymer characterization using MALDI-MS 

The type of polymer to be studied dictates the type of matrix, the cationization 

reagent and the solvents to be chosen to perform MALDI-MS-based studies. In fact the 

knowledge accumulated during the last decades has been developed in an empiric way, 

following the strategy of trial-and-error. This is because there is no universal matrix to be 

used for MALDI analysis of polymers. For an unknown polymer this strategy begins with 

a screening process, where some known matrices are checked for its MALDI suitability 

with the targeted polymer. The matrix or matrices for which the best results are obtained 

are then selected for further studies. From one matrix to another, variables such as 

sensitivity, mass working range and oligomer resolution can vary dramatically. The 

reasons for these differences remain unclear. For instance, over the same polymer, the 

matrix DHB required twice the laser power used for matrixes HABA and IAA, 

Furthermore, the shot-to-shot reproducibility, sensitivity and resolution was poorer using 

DHB [1], [84]–[86]. 

In addition to these problems, the ionization of polymers requires the presence of a 

cationization reagent. To this end, Na+, K+, and Ag+ are generally the cations screened in 

first place. The use of one cation or another influences, for instance, the mass range of 

analysis and the uniformity of detection from oligomer to oligomer [84], [85].  

Another problem to consider when dealing with polymer characterization by 

MALDI is the solvent or solvents used to prepare the samples and the matrix [87]. The 

solvent greatly influences the size and shape of the crystals formed as well as crystal 

density. In addition, the solvent selected also determines the incorporation and 

distribution of the polymer in the crystal. As consequence, the reproducibility, the 

detection sensitivity and relative intensities of components of a mixture greatly depend 

upon the solvent used. Besides the aforementioned issue, problems dealing with the 

polymer and matrix compatibility with the solvent must be taken into consideration. Very 

often the solvent that dissolves the polymer cannot dissolve the matrix and vice versa. 

Whenever possible, a single solvent should be used, but if it is necessary to use one 

mixture, then both solvents must be compatible. For this reason care in the selection of the 

solvents is recommend when a new polymer is going to be analysed. It is rather obvious 

that a complete mixing of the polymer with the matrix is a key issue, especially if, as 

mentioned above, problems related to solubility are found during the experimental. To 
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this end, the effects of ultrasonic-based mixing of matrices and polymers to form more 

homogeneous mixtures has not been systematically studied for sample preparation of 

polymers for MALDI characterization yet [88]–[90]. 

The chapter III is devoted to assess the effects of ultrasonication in sample 

treatment for polymer characterization. Thus, the mixing of different matrices to form 

more homogeneous samples, has not been systematically studied in literature for sample 

preparation of polymers for MALDI characterization yet, despite of the advantages of 

high throughput and simplicity allowed by ultrasonication. To overcome this drawback, 

an ultrasonic bath with dual frequency, a sonoreactor, and an ultrasonic probe, were used 

to study the influence of the following ultrasonic parameters in the sample treatment of 

polymers:(i) frequency of sonication, (ii) amplitude of sonication and (iii) time of 

sonication on the Mn and Mw values obtained using MALDI analysis. Vortex mixing was 

used for comparative purposes and it was considered the reference procedure for 

polymer/matrix homogenization. Poly(styrene) (PS) and poly(ethylene glycol) (PEG) 

polymers were used as target analytes. 
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I.4 MALDI-MS for small molecules 

I.4.1 Introduction 

MALDI technology was originally developed with the main aim to investigate on 

molecules of high molecular mass. Such molecules, as proteins, used to fragment when 

they were analysed by electrospray-based mass spectrometry, ESI-MS. However, MALDI 

offers the advantage of tolerance for contamination and buffers, spectra of easy 

interpretation, as most ions are singly charged ions and rapid analysis compared to ESI-

MS [7]. Such advantages have led to a slow but constant development of MALDI 

applications in the study of small molecules [3]. 

I.4.2 Type of matrices for small molecule analysis using MALDI-MS 

A good practice in the studying of small molecules by MALDI consists in to 

dissolve the molecule of interest in an adequate solvent to make an ultra violet spectrum 

of the solution. If the molecule absorbs in the wavelength range at which the MALDI 

laser works is a good signal, because the molecule will absorb the laser energy efficiently, 

thus facilitating the formation of the plume. In fact, for some molecules the addition of 

matrix becomes not necessary. However, even for molecules absorbing in the laser´s 

working wavelength, the use of matrix can be advantageous. As a general role, the matrix 

must match the following requirements: (i) to provide an efficient ionization and (ii) to 

produce minimal or non-interfering fragmentation. A way to overcome matrix 

interferences in the study of small molecules is to use a higher molecular weight matrix, 

which does not interfere in the low-mass region [3]. For instance, porphyrins have been 

used with this purpose [91]. 

Matrices used in the analysis of small molecules are generally classified in two 

main groups, organic and inorganic matrices. Organic matrices are mainly derived from 

cinnamic acid and from aromatic carbonyls. Two of the most frequently used molecules 

are α-cyano-4-hydroxycinnamic acid (α-CHCA) and 2,5-dihydroxy benzoic acid (DHB). 

It must be mind that the matrix-to-analyte molar ratio is much lower when studying low 

molecular weight compounds by MALDI, typically 10-1:1 to 103:1, than when studying 

high molecular weight compounds, typically 103 to 105:1 [3]. 
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Tanaka et al. first introduced the use of inorganic matrices in 1988. They used an 

ultra fine metal powder (cobalt powder of about 300 Å diameter) suspended in glycerol to 

analyse polyethylene glycol 200 [8]. Following this approach soon it was introduced the 

use of graphite particles suspended in a mixture of glycerol, sucrose and methanol [92]. 

Many other approaches have been reported in literature since the firs communication done 

by Tanaka et al [93]. For instance, the use of carbon nanotubes has been also cited [94], 

[95]. 

In addition to organic and inorganic matrices, the use of liquid matrices has been 

also reported [96], [97]. The use of these matrices brings a number of benefits, such as 

higher signal reproducibility and the possibility to dissolve both polar and non-polar 

analytes. A number of drawbacks must be also reported for the use of liquid matrices, 

such as high chemical background, potential instrument contamination and poor 

ionization efficiency. 

As it was written above, some matrix-free approaches are also possible, taking 

advantage of the own molecular structure of the target analyte. Other approaches 

introduce technical modification on the surface of the MALDI target. Such is the case for 

the desorption ionization on silicon mass spectrometry [98], [99]. In this technique the 

molecules of interest are deposited onto a porous silicon surface. This methodology 

enables the analysis of compounds with little or no fragmentation. 

 

I.4.3 Sample Treatment for small molecule analysis using MALDI-MS 

The method of matrix-to-sample mixing is very important as it influences the 

performance of the analysis. The most common method of work is the dried droplet 

method. In this method the analyte solution is mixed with the matrix, previously dissolved 

in an organic solvent/water mixture, with an appropriate matrix: analyte ratio, generally 

higher than 10:1 [2]. The mixture is deposited in the MALDI target and air-drying. 

Electrospray deposition has also been cited [100], [88], [101]. However others sample 

treatment methodologies as layer by layer technique can be also explored. In this case, 

several layers of the organic molecule with the inorganic or organic analyte are 

superimposing in the MALDI plate. 
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I.4.4 The Derivatization of the matrix: Towards new Active matrices. 

The derivatization of the matrix is an alternative to improve the performance of the 

analysis. It allows increment the ionization efficiency, and also helps to observe 

interactions in the gas phase between the matrix and the analytes [102], [103]. Signals due 

to the increment in the mass of the analyte as consequence of the derivatized matrix must 

be observed. In some cases, for specific analysis (steroids) the introduction of isotopic 

labels allows for analyte quantification [78], [77], [104]. 

In chapters IV and V, MALDI is applied to measure the masses as well as to 

retrieve structural information of new in-situ formed inorganic complexes and adducts. 

Furthermore, MALDI is used to follow titrations of the aforementioned organic 

derivatized molecules used as Active Matrices in the presence of metal ions and inorganic 

or organic anions. 
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II.1 Objectives 

 

This thesis is developed with the goal to aid the mass spectrometry service of the 

Department of Chemistry of the Faculty of Sciences and Technology of the New 

University of Lisbon, DQ-FCT-UNL, to provide a service as good and modern as possible 

in the analysis of different types of molecules. To achieve this commitment a number of 

molecules have been selected following the criteria of utility, pursuing always to serve the 

research interests of the members of the DQ-FCT-UNL. Therefore, the objectives were: 

 
1. To establish a routine protocol for protein identification in a large set of samples. 

The protocol must be ideally, fast, clean, and should match the analytical 

minimalisms roles1. 

 
2. To establish a routine protocol for the characterization of polymers, focusing in 

the values of number-average molecular weight, Mn, and weight-average 

molecular weight, Mw. 

 
3. To establish a routine protocol for the characterization of small molecules. 

 
4. To assemble matrix laser assisted desorption ionization as a tool to characterize 

the structure of molecules in conjunction with other analytical techniques. 

 
5.  To assess the effectiveness of ultrasonic energy as a tool to reduce the handling, 

time and complexity of current protocols for sample treatment for protein 

identification. 

 
6.  To study the effects of ultrasonic energy in the values of number-average 

molecular weight, Mn, and weight-average molecular weight, Mw, for polymers 

when ultrasound is used as a tool to simplify and speed the procedures for polymer 

characterization using MALDI. 
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   D. J. Halls, “Analytical minimalism applied to the determination of trace elements by atomic 

spectrometry. Invited lecture,” J. Anal. At. Spectrom, vol. 10, pp. 169–175, 1995.	
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II.2 Working Plan 	
  
	
  

In order to achieve the objectives described above, whenever possible while 

executing the experiments, the expertise of the Bioscope research group related with the 

simplification of sample treatments using ultrasonic energy will be considered to achieve 

better results, particularly those related with proteins and polymers. 

 
The first part is dedicated to test and to evaluate the effect of three ultrasonic 

devices: ultrasonic probe, ultrasonic bath and sonoreactor in the sample treatment for 

polymers characterization. The evaluation is done using three standard polymers. In 

addition two different MALDI matrixes were assayed. The influence on the following 

ultrasonic variables over the sample treatment are studied: i) sonication amplitude, ii) 

sonication frequency and iii) sonication time. 

 
The second part is focused in small molecules, and in their sensing capability of 

new compounds that readily ionize in MALDI, with and without the use of a matrix. New 

methodologies for sample preparation will be established using in situ titrations. This 

methodology allows testing the sensor capability of these molecules in the presence of 

metal ions and anions, evaluating their selectivity for a particular ion, and subsequently it 

will define its potential use as an active complexed matrix to detect these ions by 

MALDI-TOF MS. 

 
In the final part of the work involved in this thesis, ultrasonic energy will be 

evaluated as a tool to develop a fast protocol to cleavage proteins of complex proteomes 

for subsequent protein identification using MALDI. An ultrasonic multiprobe of four tips 

will be used, along with a 96-well plate, for the treatment of proteins separated in gel, that 

will be used also to study, based on labeling 18O, the type of peptides extracted from the 

gels when the extraction is carried out with the help of ultrasonic energy. The proteins are 

firstly separated using gel electrophoresis, and then the ultrasonic energy is applied to the 

key steps of the sample treatment for proteins identification by protein mass fingerprint in 

order to speed up and simplify the following steps: (i) the washing steps (ii) alkylation, 

(iii) reduction, (iv)  gel bands digestion and (v) extraction of peptides. The influence on 

the following ultrasonic variables over the sample treatment are studied: i) sonication 

amplitude, ii) sonication frequency and iii) sonication time.  
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III.1 Abstract 

Different ultrasonic devices including ultrasonic bath with dual frequency, 

sonoreactor and ultrasonic probe, were tested for their viability in the sample treatment 

for polymer characterization by matrix-assisted laser desorption/ionization time of flight 

mass spectrometry analysis. The effect of sonication frequency (35 kHz, 40 kHz and 130 

kHz), sonication amplitude, and sonication time on the polymer’s number-average 

molecular weight (Mn) and weight-average molecular weight (Mw) were investigated. The 

effect of those variables in the molecular mass distribution of three polymer standards, 

poly(styrene) 2000 Da and 10,000 Da and poly(ethylene glycol) 1000 Da, was evaluated. 

In addition, the influence of ultrasonic energy on the sample treatment as a function of the 

MALDI matrix was also studied through two common standard matrices, dithranol and 

2,5-dihydroxybenzoic acid. The results obtained show that the ultrasonic bath at 35 kHz is 

the best option for the purpose of fast sample treatment for polymer characterization. The 

Mn and Mw values obtained for this ultrasonic device and for the three polymers tested 

using Dithranol as MALDI matrix, were not statistically different from the ones acquired 

with vortex mixing and also were in concordance with the values recommended by the 

polymer manufacturers. 

Keywords: Polymers, Ultrasound, Molecular mass distribution, MALDI-TOF-MS 
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III.2 Introduction 

Synthetic polymers today find application in nearly every industry and area of life. 

They are used as adhesives, lubricants, structural components for many different 

materials, from computers to satellites. The most recent applications are found in the 

bioscience area, from artificial components for the human body to drug delivery. 

The way in which monomers are distributed to form the structure of the polymer 

will dictate the polymer’s properties, such as solubility, durability, resistibility, 

crystallinity or tensile strength. 

The characterization of a polymer is mandatory to define its properties, since the 

monomers are distributed statistically in chains of variable lengths which originate 

differences in terms of polymer’s physical and chemical characteristic. 

Different analytical techniques can be used to define a polymer, including wide 

Fourier transform infrared spectroscopy, angle X-ray scattering, scattering, small angle 

neutron scattering, gel permeation chromatography (GPC), Raman, small angle X-ray, 

nuclear magnetic resonance, polydispersity and mass spectrometry-based techniques. 

Furthermore, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, 

MALDI-TOF-MS, referred in this manuscript as MALDI, is a well-established rapid 

instrumental technique for polymer characterization [1], [2]. 

Polymer characteristics that can readily be determined by MALDI include the 

following: (i) the number-average molecular weight, Mn, which provides an average 

weight of a given polymer; (ii) the weight-average molecular weight, Mw, is another form 

of to give the molecular weight of a polymer and is calculated as the arithmetic mean or 

average on the molecular weights of a certain number of molecules; (iii) the mass of 

repeat units; (iv) the polydispersity, PDI, which is the ratio Mw to Mn; and (v) the end-

group mass structure [3], [4]. Polymer distributions are typically characterized by Mn and 

Mw, which are calculated as follows [5]: 

Mn = ∑[(MiIi)/Ii]             

Mw = ∑[(Mi
2Ii)/MiIi] 

PDI = Mw/Mn 



Chapter III. Ultrasonic energy as a tool for sample treatment for polymer characterization through matrix-
assisted laser desorption ionization time-of-flight mass spectrometry 

	
  
	
  

55	
  

Where Mi and Ii are the molecular weights of the oligomeric components and their 

signal intensities, respectively. It is assumed a linear relationship between number of ions 

and signal intensity [5]. 

The following features can be considered the major advantages of polymer 

analysis by MALDI [2], [6], [7]:  

(i) Absolute molecular weights of narrowly distributed polymers (polydispersity 

< 1.2) can be determined as opposed to relative molecular weights obtained by 

chromatographic techniques.  

(ii) Analysis does not require polymer standards to assign molecular weights to 

oligomers.  

(iii) Using submilligram amounts of sample material, the actual analysis can be 

accomplished in few minutes.  

(iv) In addition, MALDI can determine the molecular weight independently of the 

polymer structure. 

 

Therefore, the speed and information obtained by MALDI are significantly greater 

than with other conventional molecular-weight-determination techniques, such as gel 

permeation chromatography (GPC) [2], [6]. The following drawbacks, that can also be 

extended to other type of analysis by MALDI, limit widespread application of MALDI 

for polymer analysis [3], [4], [7]-[9]: 

(i) The availability of proper matrices for specific polymers. 

(ii) The availability of proper cationization reagents. 

(iii) The availability of common solvents for both analyte and matrix. 

(iv) The polymer distribution is affected by (1) matrix type; and (2) polymer 

and matrix salt concentrations used to prepare the sample. 

(v) The following MALDI instrumental parameters affect polymer 

distribution: (1) detector voltage; (2) laser energy; (3) delay time; (4) 

extraction voltage; and (5) lens voltage.  

 

In addition to the above mentioned drawbacks, it must be emphasized that the Mn 

and Mw of polymers determined by MALDI often differ from those moments determined 

by other methods of polymer characterization such as GPC, overall for polymers with 
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high polydispersity (PDI >1.2). As an example, when data obtained through MALDI are 

compared with data obtained by GPC, larger discrepancies in the values for Mn and Mw 

are observed for polymers of high polydispersity. On the other hand, when polymers of 

narrow polydispersities (PDI < 1.2) are compared, the GPC and MALDI values for Mn 

ans Mw tend to have better agreement [4]. 

MALDI analysis consists of three steps: sample preparation, sample deposition on 

the MALDI sample plate and mass spectral analysis. Regarding sample preparation, one 

of the keys to a successful MALDI analysis depends primarily on uniformly mixing the 

matrix and the analyte. Samples are typically prepared in an analyte/matrix concentration 

ratio comprised between 1:103 to 1:105 in a suitable solvent such as water, acetone, or 

tetrahydrofuran. However, for high molecular weight samples much higher ratios 

(1:8x106) have been used [10]. Matrices used for polymer analysis by MALDI include 

dithranol, 2,5-dihydroxybenzoic acid (DHB), trans-3-indoleacrylic acid (IAA), and 2-(4-

hydroxyphenylazo) benzoic acid (HABA). These matrices are often used in conjunction 

with alkali metal salts (LiCl, NaCl, KCl) or silver salts such as silver trifluoroacetate 

(AgTFA) to form matrix-cationization agent mixtures in order to promote polymer 

ionization [3], [4], [6]-[8]. 

Concerning sample deposition on the MALDI sample plate, hand-spotting and 

electrospray are the techniques of choice. The aforementioned deposition methods can 

lead to different results as a function of the matrix used in the sample preparation process 

[6], [7]. 

As far as MALDI analysis concerns, as written above, the instrumental parameters 

must be carefully chosen and controlled since variations can arise from those sources [4], 

[7], [8]. 

Ultrasonication has been used for sample treatment for analytical chemistry for 

decades [9], [11]. Ultrasonication has also become a tool in polymer research with two 

main aims. On the one hand, ultrasonication has been used for long in the synthesis of 

polymers, as a initiator or to obtain a homogeneous distribution of the monomers. On the 

other hand, it has been also used to study polymer degradation mechanisms. However, 

one of its multiple applications, the mixing of different matrices to form more 

homogeneous samples, has not been systematically studied for sample preparation of 
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polymers for MALDI characterization yet, despite of the advantages of high throughput 

and simplicity allowed by ultrasonication. 

In this work an ultrasonic bath with dual frequency, a sonoreactor, and an 

ultrasonic probe, were used to study the influence frequency of sonication, amplitude of 

sonication and time of sonication on the Mn and Mw values, when the aforementioned 

devices are used in the sample treatment for mixing polymers and matrices previous to 

MALDI analysis. Vortex mixing was used for comparative purposes and it was 

considered the reference procedure for polymer/matrix homogeneization. Poly(styrene) 

(PS) and poly(ethylene glycol) (PEG) polymers were used as target analytes because both 

have been systematically studied by MALDI by numerous authors and there is a huge 

amount of information available in literature regarding these polymers [4], [10], [12], 

[13].  

 

III.3 Experimental  

III.3.1 Chemicals, solvents, disposables and apparatus 

MALDI-TOF-MS analysis was performed on the following synthetic polymers 

purchased from Fluka (Buchs, Switzerland): (1) a 2000 Da poly(styrene) sample (Mn = 

2140, Mw = 2250 and PDI = 1.05); (2) a 10000 Da poly(styrene) sample (Mn = 8650, Mw 

= 8900 and PDI = 1.03); and (3) a 1000 Da poly(ethylene glycol) sample (Mn = 970, Mw = 

940 and PDI = 1.05). All of them were standards for GPC certified according to DIN, the 

German Institute for Standardization [14]. Matrices used in this work were dithranol and 

2,5-dihydroxybenzoic acid (DHB), both with quality for MALDI-MS (> 98.5 %) 

purchased from Fluka and used as received. Silver trifluoroacetate (AgTFA) (> 98 %) 

from Fluka was used to increase the polymer ionization and to minimize the formation of 

adducts with Na+ and K+. Acetone Pestanal® grade from Fluka was used as solvent for 

MALDI matrices and samples. 

Polymer-matrix solutions were prepared in safe-lock tubes of 0.5 ml from 

Eppendorf (Hamburg, Germany) and were homogenized with a vortex, model Sky Line, 

from ELMI (Riga, Latvia) or using the following ultrasonic devices: an ultrasonic bath 
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with dual frequency (35 and 130 kHz), model Transsonic TI-H-5, from Elma (Singen, 

Germany); a sonoreactor model UTR200, from dr. Hielsher (Teltow, Switzerland); and an 

ultrasonic probe, model UP 200S (dr. Hielscher).  

III.3.2 Sample preparation 

Stock solutions of PS and PEG were prepared by dissolving the polymer samples 

in acetone to a final concentration of c.a. 2 x 10-4 M. MALDI matrices (dithranol and 

DHB) were also dissolved in acetone to a final concentration of 10 mg/ml, and AgTFA 

was added to the matrix solution to enhance polymer ionization. An aliquot of 20 µl of the 

polymer stock solution was mixed with 20 µl of the MALDI matrix solution. Polymer-

matrix mixing and homogenization was done through one of the following processes: 

(i) homogeneization in vortex for 30 s. 

(ii) homogeneization in an ultrasonic bath: 100 % sonication amplitude, continuous 

mode, 130 kHz sonication frequency, 120 s  sonication time. 

(iii) homogeneization in an ultrasonic bath: 100 % sonication amplitude, continuous 

mode, 35 kHz sonication frequency, 30 s sonication time.  

(iv) homogeneization in a sonoreactor: 20 % sonication amplitude, continuous mode, 

10 s sonication time.  

(v) homogeneization in a sonoreactor: 20 % sonication amplitude, continuous mode, 

30 s sonication time. 

(vi) homogeneization with an ultrasonic probe: 20 % sonication amplitude, 

continuous mode, 10 s sonication time.  

(vii) homogeneization with an ultrasonic probe: 20 % sonication amplitude, 

continuous mode, 30 s sonication time.  

 

Finally, the samples were hand-spotted onto the MALDI sample plate. Three 

replicates were done for each sample preparation mode (n=3).  

 The sonication amplitudes and the sonication times were selected based on our 

expertise with ultrasonication for sample treatment [9], [11]. Briefly, to avoid polymer 

degradation due to ultrasonication, short sonication times were generally used. For the 

same reason, for the sonoreactor and ultrasonic probe, both having high sonication 

intensity, the lower amplitude of sonication was selected.  
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III.3.3 MALDI analysis 

A MALDI-TOF-MS system, model Voyager DE-PRO Biospectrometry 

Workstation, equipped with a nitrogen laser radiating at 337 nm and 3 ns pulse from 

Applied Biosystems (Foster City, USA) was used to obtain the polymer mass spectra 

following the instructions of the manufacturer. The polymers with molecular weight of 

1000 and 2000 Da were analysed in the ion reflector mode in order to enhance peak 

resolution. Analysis of the 10000 Da PS sample was done in the linear mode, due to the 

low sensitivity obtained in the reflector mode for high molecular weight polymers. 

Measurements were done in the positive ion mode, with the following parameter settings: 

an accelerating voltage of 20 kV, a grid voltage of 77 %, a guide wire of 0.01 % and a 

mirror voltage ratio of 1.12.  Delayed extraction was optimized for signal-to-noise for the 

necessary mass range. Matrix type has a large influence on the laser energy required to 

obtain a MALDI mass spectrum. As recommended by Wetzel et al. [7], for each matrix 

data were obtained at randomized laser energy intervals within that range, not in order of 

increasing or decreasing laser energy. The polymer mass spectra were collected at laser 

energies of 5.9-6.3 µJ/cm2 for dithranol; and 6.9-7.1 µJ/cm2 for DHB. The resolution of 

the peaks near the molecular mass, for 500 laser shots, was 6500 in the reflector mode 

and 600 in the linear mode. 

MALDI mass spectra were obtained in a manner designed to minimize bias due to 

sample preparation and application. Each mass spectrum represents the accumulated data 

from 500 laser shots as the laser spot was moved over a sample site on a stainless steel 

MALDI sample plate. The mass spectra were obtained from different sites on the 100-site 

MALDI sample plate to reduce the possibility of bias.  
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III.3.4 Data analysis methods 

Mn and Mw values were calculated from each polymer mass spectrum obtained by 

MALDI-MS. Polymerix (Sierra Analytics, Modesto, CA, USA) analysis software was 

used to integrate the Mn and Mw, and to obtain the moments and separate the different 

peak series. When necessary, the secondary and tertiary peaks series were used to obtain 

an estimate of extent of fragmentation through the polymerix program. Analysis of 

variance (ANOVA) was used to determine whether the measured polymer Mn and Mw 

were influenced by the sample treatment applied or not. The significance level of the 

ANOVA was chosen to be 0.05. ANOVA compares the variance at a given parameter 

value with the variance among parameter values to determine if there is a significant 

influence of the parameter on the polymer distribution. A parameter has a significant 

variation when the variance between parameter values is greater than a multiple 

(depending of the significant level) of the variance within parameter values. When 

significant variations were detected a Multiple Range test was done to determine which 

means were significantly different from which others. This test uses the Fisher's least 

significant difference (LSD) procedure to discriminate among the means. With this 

method, there is a 5.0 % risk of calling each pair of means significantly different when the 

actual difference equals zero [15]. 

III.4 Results and discussion 

III.4.1 Poly(styrene), PS, 2000Da 

III.4.1.1 MALDI spectra 

Poly(styrene), PS, (2000 Da) was analyzed in dithranol and DHB matrices using 

AgTFA to enhance polymer ionization during MALDI analysis [1]. Figure III.1(A) shows 

the MALDI mass spectrum obtained for the 2000 Da PS sample, for the 35 kHz ultrasonic 

bath, UB, in dithranol, where peaks can be seen with mass differences of 104 Da, 

corresponding to the PS monomer mass (C8H8).  

Regarding PS in dithranol (Figure III.1(A)) the mass spectra showed good 

repeatability regardless of the polymer/matrix mixing process used. A matrix made of  
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dithranol (10 mg/ml) and AgTFA (1 mg/ml) was used. The average PS MALDI mass 

spectrum (500 laser shots) showed in Figure III.1(A) was easily obtained thought the 

accumulation of 5 spectra with a total of 100 laser shots/spectrum. In addition, no 

fragmentation was observed during the ionization process. Therefore, no fragmentation 

due to ultrasonication sample pretreatment neither to MALDI ionization was observed. 

These results are in agreement with previous data described in literature [7], and can be 

related to the thermal stability of PS, which has a high ceiling temperature, and as such, 

no fragmentation is expected during a typical MALDI analysis. 

 
 
 
(A) 

 
 
 

 

 
 
(B) 

 
 
 
 
 
 
(C) 

Figure III.1 MALDI mass spectra in dithranol matrix with sample treatment done with the 

ultrasonic bath at 35 kHz sonication frequency of poly(styrene) standard 2000 Da (A); 

poly(styrene) standard 10,000 Da (B) and poly(ethylene glycol) standard 1000 Da (C). 

 
Concerning PS in DHB matrix, a higher amount of AgTFA (6 mg/ml) was 

necessary to obtain good polymer ionization, thus confirming that the choice of the 

MALDI matrix is critical when performing polymer analysis by MALDI, as previously 

reported by different authors [3], [4]. The MALDI mass spectra acquisition was more 

difficult than with dithranol. In fact, to achieve similar results in terms of intensity to 

those obtained with PS in dithranol, we needed to reduce the laser shots/spectrum ratio to 

50 and also we needed to impact the laser twice in the same point of the sample spot, so 

the first 50 shots were discarded and the following 50 shots were accumulated. Sample  

PS 2000 Da 

PS 10000 Da 

PEG 1000 Da 
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preparations containing high salts concentrations often yield increased signal intensity 

after an initial period of low intensity at the top layer of sample spot, suggesting the 

formation of a layer of salt over the polymer during the sample drying in the MALDI 

sample plate [16]. The poor performance of the DHB as matrix for PS is directly linked 

with its chemical properties: the DHB is recommended for polar polymers and PS is an 

aromatic one. The different ultrasonic conditions tested for sample treatment did not help 

to improve results when DHB matrix was used. 

 

III.4.1.2 Polymer characterization 

As far as Mn and Mw values concerns, data regarding PS in dithranol and DHB for the 

seven sample treatments tested are shown in Table III.1. As it can be seen, results 

obtained for both matrices were different. On the one hand, Mn values obtained in 

dithranol (ranging from 2156 to 2250 Da) were similar to the theoretical Mn value for this 

polymer recommended by the manufacturer (2140 Da). Results closest to the theoretical 

value were obtained with the sonoreactor for either 10 s or 30 s of sonication time. In the 

same way, equivalent conclusions were drawn for the Mw values. ANOVA analysis of the 

Mn and Mw values obtained using dithranol revealed no significant variation among the 

Table III.1 Mn and Mw values ± standard deviations of the three polymers in dithranol and DHB matrices 

for each one of the seven sample treatments tested. 

Sample 

treatment 

Polymer 

PS 2000 PS 10000 PEG 1000 

Dithranol DHB Dithranol Dithranol DHB 

Mn Mw Mn Mw Mn Mw Mn Mw Mn Mw 

US bath  

130 KHz, 120s 
2246±24 2382±29 1755±71 1855±75 8711±47 8828±41 1009±8 1037±8 1028±1 1058±1 

US bath  

35 KHz, 30s 
2250±42 2371±57 1826±22 1930±25 8681±38 8795±28 1001±11 1033±10 1003±20 1033±21 

US Probe 10s 2234±26 2378±23 1922±70 2028±66 8524±146 8638±145 1024±7 1054±9 997±5 1031±3 

US Probe 30s 2245±70 2392±71 1876±10 1993±11 8625±72 8743±70 1024±6 1053±4 1010±14 1045±14 

Sonoreactor 10s 2156±81 2312±98 1921±25 2029±31 8726±63 8837±64 1014±11 1043±8 1029±8 1058±9 

Sonoreactor 30s 2176±35 2313±20 1954±60 2059±52 8646±95 8757±94 1029±12 1056±11 1039±2 1069±1 

Vortex 2198±39 2352±56 1888±95 2004±92 8615±72 8727±67 1003±7 1035±5 1014±4 1044±6 

Theorical value 2140 2250 2140 2250 8650 8900 900 940 900 940 

Mn and Mw values are averages of the data obtained for three samples (n=3). 
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different sample treatments studied. In addition, sample sonication time, in the range 

studied in this work, was also found non significant. On the other hand, as it can be seen 

in Table III.1, Mn and Mw values obtained in DHB were ca. 200-500 Da lower than those 

obtained with dithranol. 

This finding has been previously reported in literature and can be related to 

analyte-matrix interactions rather than to the mixing procedure [4]. In addition, Mn and 

Mw values for PS 2000 Da in DHB were also lower than its recommended mass values. 

ANOVA analysis of the Mn and Mw values for DHB showed statistically significant 

differences at 95 % confidence level (P = 0.05). To determine which means were 

significantly different, a multiple range test was done. In Figure III.2, a plot of the 

ANOVA analysis of means at 95 % confidence level for the Mn and Mw values obtained 

for PS 2000 Da in DHB is showed. As it can be seen in this figure, statistical differences 

were found between the vortex mixing and the sample/matrix homogenization using the 

ultrasonic bath at 130 kHz for 120 s. This sample treatment displayed the lowest Mn and 

Mw values (1755 and 1855, respectively).  

 
 

Figure III.2 Statistical analysis of means at 95% confidence level for the Mn and Mw values 

obtained for the poly(styrene) standard 2000 Da in DHB. LSD intervals display the least 

significant difference intervals for the two-factor interactions. 
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III.4.2 Poly(styrene), 10,000Da 

III.4.2.1 MALDI spectra 

As descrived above for the PS 2000, good MALDI spectra were obtained using 

dithranol (10 mg/ml) and AgTFA (1 mg/ml) as matrix for the PS 10000 Da. It must be 

pointed out that it was impossible to analyze this polymer with DHB even after increasing 

the amount of silver to 6 mg/ml. The mass spectrum of PS 10000 in dithranol is shown in 

Figure III.1(B), where it can be seen peaks with mass differences of 104 Da, 

corresponding to the PS monomer mass (C8H8). No fragmentation peaks were noted. 

III.4.2.2. Polymer characterization 

Mn and Mw values for PS 10000 Da in dithranol are shown in Table III.1. As it can 

be seen in this table, Mn and Mw values were very similar to the recommended values 

certified by the manufacturer for this polymer (8650 Da and 8900 Da, respectively). In 

addition, ANOVA analysis of the Mn and Mw values revealed no significant variations as 

a result of the sample treatments done with the different apparatus tested (vortex, 

ultrasonic bath, ultrasonic cell disruptor and sonoreactor), regardless of the sonication 

times applied. Differences observed in the Mn values for the different sample treatments 

are comprised between ± 1.5 % of the theoretical value. 

III.4.3 Poly(ethylene glycol), PEG, 1000Da 

III.4.3.1 MALDI spectra 

Polyethylene glycol, PEG, was analyzed in dithranol and DHB using AgTFA 

(1mg/ml). The mass spectra of PEG obtained in dithranol is shown in Figure III.1(C), 

where it can be seen main peaks with mass differences of 44 Da, corresponding to the 

PEG monomer mass (C2H4O). 

Regarding analysis done in dithranol, either for ultrasonication or vortex, a 

secondary peak series shifted about 16 Da to lower masses from the main series was 

observed (see Fig III.1(C)). The peak series shifted by about 16 Da to lower masses from 

the main series can be attributed to the fragmentation at the carbon-oxygen bond as 
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referred in literature [7], [13]. This fragmentation series was obtained independently of 

the mixing process used, thus indicating that ultrasonication was not the cause of the 

fragmentation. The percentage of the peak area represented by the secondary peak series 

was comprised between 15% and 25%. It must be stressed that there was not a link 

between the areas of the secondary fragmentation and the sample treatment used, thus 

showing that no extra fragmentation due to ultrasonication was observed. 

Concerning DHB matrix, a secondary and tertiary peak series were observed 

shifted by about 4 and 16 Da, respectively, to lower masses from the main series (data not 

shown). Those series indicate fragmentation. The terciary peak series shifted 16 Da can 

be attributed to the fragmentation at the carbon-oxygen bond as commented above. To the 

best of our knowledge, the secondary peak series shifted 4 Da has not been cited in 

literature previously. In any case, for the purposes of this study, it is unnecessary to fully 

characterize the fragments, since the apparent molecular mass distribution was close to 

the theoretical one given as reference for PEG by the manufacturer of the polymer. The 

pattern of fragmentation is not linked to ultrasonication since the same series of peaks 

were obtained after mixing the PEG and matrix with vortex. For DHB matrix the 

secondary peak series represented the principal contribution to the polymer distribution 

with an area percentage of about 50-65 %, being the contribution of the main series of 

about 35-50 % and the percentage of the tertiary series lower than 9 %. Those data 

suggest that for DHB matrix the polymer fragmentation during the MALDI ionization 

process is higher than for dithranol matrix. 

The best resolution with the highest intensity was obtained for the PEG/dithranol 

mixture in the clear zone, situated in the outer zones of the sample spot. In this position 

the matrix peaks are less intense and have no influence in the mass spectra. On the other 

hand, when DHB was used, the best MALDI mass spectra were obtained in the dark 

region of the sample spot because in the clear region more interferences of the matrix 

were found. This can be explained because hand-spotting usually causes large matrix 

crystals to form, the polymer sample being not homogeneously distributed throughout the 

matrix. Hand-spotted samples can have large signal variations across the sample plate; in 

some regions, it can be obtained large polymer signals (‘sweet spots’), whilst in other 

regions no polymer signal is obtained [7]. 
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III.4.3.2. Polymer characterization 

Mn and Mw values obtained for PEG in dithranol and DHB, for all sample 

treatments studied are summarized in Table III.1. As it can be seen in this table, results 

for both matrices were similar, for the same sample treatment. In addition, similar 

standard deviations were observed. Finally, depending on the sample treatment, a slight 

increment comprised between 3 % and 7 % for the Mn value and between 10 % and 14 % 

for the Mw value was obtained when comparing it with the recommended value given for 

the manufacturer.  

The ANOVA analysis of Mn and Mw values obtained for PEG in dithranol and 

DHB revealed statistically significant differences, at 95 % confidence level (P = 0.05), 

among the different sample treatments used. As consequence, a multiple range test was 

performed to find out which treatments were significantly different. Results are given in 

Figure III.3, where it can be seen that:  

(i) for dithranol, the Mn value obtained with the vortex sample/matrix mixing was 

statistically different from the Mn values obtained after sample/matrix mixing with the 

sonoreactor with a sonication time of 30 seconds and the ultrasonic probe, with a 

sonication time of 10 s or 30 s (Figure III.3(A)). Similar conclusions can be obtained for 

the Mw values (Figure III.3(B)). Consequently, for this polymer and dithranol, vortex 

homogenization can not be substituted for the sonoreactor or the ultrasonic probe. 

(ii) for DHB, Mn and Mw values obtained for vortex and sonoreactor with a 

sonication time of 30 s were statistically different (Figures III.3(C) and III.3(D)). 

Accordingly, for this polymer and DHB, vortex homogenization can not be substituted for 

the sonoreactor. 
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Figure III.3 Statistical analysis of means at 95% confidence level for the Mn and Mw values 

obtained for the poly(ethylene glycol) standard 1000 Da in dithranol (A and B) and DHB (C and 

D). 
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III.5 Conclusions 

The most promising device for sample treatment for polymer characterization by 

MALDI seems to be the ultrasonic bath. With this system it was assayed two different 

frequencies of sonication 35 and 130 kHz. The homogenization process with the last 

frequency for the PS 2000 Da in DHB matrix during 120s, led to low wM  and nM  

values, that were found statistically different from the values obtained for the sample 

homogenization using vortex and from the values giving by the polymer manufacturer. 

Despite of this results, when UB at a sonication frequency of 35 kHz was used, the values 

for wM  and nM  obtained for PS and PEG in dithranol matrix were not statistically 

different from the ones acquired with vortex mixing or from the values recommended by 

the manufacturers. 

As a general role, the sonoreactor and the ultrasonic probe can be also used, but 

firstly needs to be clearly established by comparison with a regular mixing procedure, 

such as vortex, that they can be used without troubles in the sample preparation of a given 

polymer, since in this work the applicability of such devices was shown to be dependant 

of a series of factors such as the type of matrix used and the sonication time employed. 

For PS analysis by MALDI the DHB matrix should not be used. This matrix needs 

six times more Ag as cationic reagent than dithranol, for the analysis of PS 2000 Da, 

making necessary to discard the spectrum of the first 50 shots due to the high saline 

content of the mixture. In addition, it was found a high dependence on the analyte/matrix 

mixing procedure for this matrix. For instance, PS 2000 in DHB can not be mixed with 

the ultrasonic bath at 130 kHz with a sonication time of 120 s. Moreover, when the mass 

of the poly(styrene) was increased from 2000 Da to 10000 Da, analysis with DHB matrix 

was not possible for any of the sample mixing procedures studied, even increasing the 

cationic agent 6 times more than the amount needed for the analysis of PS 10000 Da in 

dithranol. 

For PEG analysis in dithranol, significant differences were found for Mn and Mw 

values, between vortex mixing and the sonoreactor (30 s of sonication time) and the 

sonication probe (10 s or 30 s of sonication time), the most intense sonication devices. 

When the matrix for PEG was DHB, Mn and Mw values obtained with vortex mixing were 

statistically different than those obtained with the sonoreactor (30 s of sonication time). 
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 This pioneer work thus suggests that the UB with a sonication frequency of 35 

kHz could be used for fast and high throughput sample treatment of polymers for their 

characterization. Nevertheless, this methodology needs of further confirmation and to be 

extended to more polymers, and for this reason more works dealing with this subject are 

anticipated.  
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IV.1 Abstract 

A new emissive molecular probe derived from 1,7-bis(2’-formylphenyl)-1,4,7-

trioxaheptane and 2-hydroxy-1-naphthaldehyde has been synthesized by a Schiff-base 

condensation method. Its sensor capability towards cations such as Cu2+, Zn2+, Cd2+ and 

Hg2+, and anions such as halides (F-, Cl-, Br- and I-) and CN- was explored in DMSO 

solution. The geometry was optimized using Density Functional Theory (DFT). The 

probe showed remarkable selectivity for Cu2+ and interaction with the more basic anions 

CN- and F-. 

 

Keywords:  Molecular Probe; β-naphthol Emission; Anion; Density Functional Theory; 

DFT; Schiff-base 

 

 

 

 

 

 

My contribution to this work was the optimization of sample treatment preparation for 

MALDI-TOF MS analysis, data acquisition and characterization, MALDI titrations and 

interpretation. 
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IV.2 Introduction and discussion 

The development of new molecules whose properties can be modulated by 

interaction with anions [1] and cations [2] has received considerable attention in recent 

years. A fluorescence chemosensor or molecular probe is a system that exhibits changes 

in its properties upon interaction with an analyte. A fluorescence chemosensor is 

composed of receptor, chromophore and spacers. The receptor acts as a recognition unit 

for the target analyte. The chromophore exhibits changes in its optical signal 

(fluorescence or color) when the sensing takes place. The spacer links chemically receptor 

and chromophore units [3].  

Schiff-base compounds incorporating a phenol or β-naphthol units have been 

reported as successful sensors due to their strong ability to detect metal ions and/or anions 

[4]. The presence of a hydroxyl group, potentially proton donor, can be used to modulate 

the fluorescence emission or colorimetric properties upon deprotonation, using PPT 

(Photoinduced Proton Transfer) or ESIPT (Excited State Intramolecular Proton Transfer) 

mechanisms [4].  Some of these compounds have been reported as selective sensors for 

Hg2+ or Cu2+; these sensing effects can be determined using fluorescent (Hg2+) or 

electrochemical (Cu2+) measurements [4c], [5].  

The synthesis of selective fluorescence chemosensors for soft-transition and post-

transition metal ions with toxic effects in the environment (e.g. Cu2+, Hg2+, Cd2+ and Pb2+ 

has attracted considerable attention, due to the need of finding new methods for the rapid 

determination of these metals in environmental analysis and industrial wastewater 

treatment [6]. It is also important to detect anions such as cyanide, hydroxide, phosphate 

or halides, due to their extensive use in areas such as metallurgy, the plastic industry, 

photography and lithography processes, as well as medicine [7]. These anions have 

important negative impacts in the environment: cyanide, for example, is extremely toxic 

even in very low concentrations, being lethal to humans. Efforts are now focused on the 

synthesis of multifunctional molecular probes capable of recognizing both metal ions and 

anions.  

As a part of our ongoing research in the design and synthesis of new fluorescence 

chemosensors [8] and matrix assisted laser desorption/ionization time-of-flight mass 
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spectrometry (MALDI-TOF MS) active probes, we present a new fluorescence ligand L, 

containing two emissive β-naphthol units as chromophores. Compound L, whose 

absorption and emission spectra are in the visible region, has been synthesized following 

a one-pot method using a Schiff-base condensation reaction. The presence of a complex 

chelating unit formed by two hydroxyl groups, two imine nitrogens, and the three oxygen 

atoms of a poly-oxa chain, gives the molecule strong recognition capability towards metal 

ions through formation of coordination compounds. Moreover, when the receptor has the 

hydroxyl groups protonated, it also allows the recognition of anions through the formation 

of hydrogen bonds. 

The effect of cations such as Cu2+, Zn2+, Cd2+ and Hg2+, and anions such as Cl-, F-, 

Br-, I- and CN-, on the absorption, fluorescence and MALDI-TOF MS spectra has been 

studied. To conduct the analyses, the ligand was dissolved in DMSO or acetone and 

titrated with the analytes. A remarkable selectivity towards Cu2+, and strong interaction 

with F- and CN- was observed. Moreover, metal complexes with Cu2+, Zn2+ and Cd2+ 

were synthesized, in order to confirm the stoichiometry observed in solution by 

absorption and fluorescence spectroscopy.  

Ligand L was synthesized following a one-pot method, by direct condensation of 

1,7-bis(2’-formylphenyl)-1,4,7-trioxaheptane (1) [9] and the commercial carbonyl 

precursor and 2-hydroxy-1-naphthaldehyde. The reaction pathway is shown in Figure 

IV.1; details of the synthesis are given in note 10 (Reference section). L was isolated as 

an air-stable yellow solid, ca. 70% yield.  

Elemental analysis data confirm that the Schiff-base L was isolated pure. The 

infrared spectrum (in KBr) shows a band at 1620 cm-1 corresponding to the imine bond, 

and no peaks attributable to unreacted amine or carbonyl groups were present. The 

absorption bands corresponding to the ν(C=C) vibrations of the phenyl groups appear at 

1456 cm-1. A band attributable to the C-O-C chain can be observed at 1158 cm-1. The 

MALDI-TOF MS spectrum of L shows a parent peak at 597.2 m/z, corresponding to the 

protonated form of the ligand [LH]+. The 1H NMR spectrum shows a peak at ca. 9.68 

ppm, corresponding to the imine protons, and no signals corresponding to the amine 

protons are present. All the experimental data are summarized as a note [10]. 
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Figure IV.1 ChemDraw reaction-pathway of compound L and its complexes. 
 

Density Functional Theory (DFT) calculations have been used to evaluate the 

stability of the proposed copper (II) complexes and provide structural information [11]. 

Several conformations have been considered for each compound, with special 

consideration to the sampling of both extended and coiled structures. The extended 

conformations for the free ligand, in which the tether between the chelating groups adopt 

an antiperiplanar conformation at every bond, are stable in solution; L_a, in which the 

most polarized regions are accessible by the solvent, is the lowest in energy. However, 

this trend is inverted if we consider the gas phase structures: a structure in which the ether 

oxygen atoms are in gauche is then the preferred conformation. 

In this framework, copper (II) coordinates to a doubly deprotonated L to yield a 

neutral, covalently bonded 1:1 complex (L : Cu), with square planar geometry. The 

calculated Cu-O and Cu-N distances are very similar to those observed in the crystal 

structures of copper (II) complexes of the hydroxynaphtalenic Schiff bases published by 

Fernández-G. [12]. Our values of 1.94 Å for copper-oxygen bonds and 2.03 Å for copper-

nitrogen bonds match the 1.9 and 2.0 Å reported by Fernández-G. Moreover, as in the 

case of their non-tethered ligands, both the two copper-nitrogen and the two copper-

oxygen bonds are collinear in our complex. Other possible geometries for the 

coordination site that we have studied either converged to the structure of L : Cu, or led to 

structures considerably higher in energy. 
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Figure IV.2 Spectrophometric (A) and spectrofluorimetric (B) titrations of ligand L in DMSO 

as a function of increasing amounts of Cu(CF3SO3)2. The insets show the absorption at 445 and 

472 nm, and the normalized fluorescence intensity at 506 nm.  [L] = 1.00E-5M ; λexc= 445nm. 

 

When considering the structure of L, it is reasonable to expect that the polyether 

chain might play a role in the ligand's coordination to copper (II). Thus, several of the 

starting structures considered a helical conformation of L in which all its heteroatoms 

were at bonding distance from the central metal cation (about the actual bond distance for 

the naphtol oxygens and imine nitrogens and 2.5 Å for the ether oxygens). During the 

corresponding geometry optimizations the polyether chain relaxed away from the copper 

(II) ion, and the structures converged to L_a. We have also considered the possibility of 

copper (II) coordination to the non-deprotonated naphtol oxygens: this resulted in a 

structure not dissimilar to the neutral complex, with slightly shortened Cu-N bonds (2.0 

Å) and elongated Cu-O bonds (2.0-2.1Å). In this case, the metal site is slightly less 

planar; this loss of planarity is more evident on the ligand, in which the extended 

conjugation seems to be broken at the nitrogen sites. 
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Figure IV.3 Spectrophometric (A) and (C) and spectrofluorimetric (B) and (D) titrations of 

ligand L in DMSO as a function of added (Bu4N)F and (Bu4N)CN respectively. The insets show 

the absorption at 275 and 377 nm for fluoride and at 470 and 520 nm for cyanide additions; and 

the normalized fluorescence intensity at 504 nm (F-) and  at 506 nm (CN-) [L] = 1.00E-5M ;λexc= 

445nm. 
 

To confirm the results obtained in solution by absorption and emission 

spectroscopy when studying the interaction of the ligand with the metal ions studied, 

some solid metal complexes were prepared by direct reaction between L and 
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Cu(CF3SO3)2, Zn(CF3SO3)2, and Cd(ClO4)2.6H2O, by addition of the metal salt dissolved 

in absolute ethanol to a hot stirred solution of L in DMSO. In all cases, pure mononuclear 

complexes have been characterized [13]. The synthesis was also attempted using 

Hg(CF3SO3)2; however, no analytical pure product was recovered on this case. The 

number of metal ions in each complex has been determined by atomic absorption 

spectrometry following methods reported previously [14]; all compounds were 

characterized by the usual techniques [15]. 

Ligands with absorption and emission spectral bands located in the visible region 

open up multiple possibilities in a variety of fields, from environmental analysis to 

biomedical research. The absorption spectrum of ligand L in DMSO (neutral pH) exhibits 

three bands at 328, 450 and 472 nm. The band at 328 nm corresponds to the π-π* 

transitions of the benzyl rings, and the last two bands to the π-π* transitions associated 

with the naphthol groups. The ligand exhibits a broad emission band centered at 508 nm 

(also in DMSO) with a relative fluorescence quantum yield of φ = 0.025, when excited at 

445 nm. The fluorescence quantum yielded was determined using as the reference a 

solution of Ru(bpy)3
2+ with φf = 0.06 in acetonitrile [16]. 

Upon addition of Cu(CF3SO3)2 dissolved in absolute ethanol, the bands at 450 and 

472 nm disappear. (see Figure IV.2A). The presence of a well-defined isosbestic point at 

414 nm indicates that only two species are in equilibrium, the free ligand and the metal 

complex. The association constant of the Cu2+-L complex, calculated with the program 

SPECFIT-32, is log K = 5.81 ± 0.10 [17]. This value was obtained from the absorption 

and fluorescence emission titrations, and it is slightly higher than the value previously 

reported by Duan and co-workers for a similar 2-hydroxyl-naphthalene derivative [4c]. 

Upon addition of one equivalent of Cu2+, the fluorescence emission was quenched in ca. 

80% (See Figure IV.2B). The molar ratio obtained was 1:1 M:L. This quenching of the 

emission upon complexation reflects the dissociation of the hydroxyl group of the 

naphthol moiety, which leads to the formation of the less emissive naphtholate anion. 

[4a].  

The behavior of L in the presence of increasing amounts of Zn2+, Cd2+ and Hg2+ 

was studied by absorption and emission spectroscopy. Even after addition of up to 30 

equivalents of each metal ion, no significant changes in absorption or emission were 

observed. Competitive experiments were also carried out: only when Cu2+ was added to 
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the solution a remarkable interaction was observed. There is a strong interaction with the 

copper ion through coordination between the metal and the hydroxyl groups of the β-

naphthol units. Zn2+, Cd2+ and Hg2+, cannot remove the protons by coordination and thus 

do not affect the native fluorescence emission. 

The solid metal complexes were synthesized (see note 13) in order to check the 

ligand-metal molar ratio. Only for the Cu2+ complex the analytical data fit well with what 

would be expected for a neutral complex, suggesting coordination through the 

deprotonated hydroxyl groups. However, solid Zn2+ and Cd2+ complexes have been 

isolated with two counter ions. This could explain why these two metals, as well as Hg2+, 

do not affect the fluorescence emission of the β-naphthyl groups; it is likely that the 

coordination takes place through the imine bonds and the poly-oxa chain, too far from the 

emissive chromophore units. In the solid state all complexes show a very low 

fluorescence emission centered at ca. 524 nm, ten nm blue-shifted from the free ligand. 

We have also studied the interaction of L in DMSO with the anions F-, Cl-, Br-, I- 

and CN-. Compounds containing OH or NH binding groups can be used to study anionic 

interactions: it is the formation of X-…H-O hydrogen interactions which leads to the 

recognition event. Excess of these anions can also cause deprotonation, resulting in a 

classical Bronsted acid-base reaction [2d,18]. The deprotonation usually results in a 

dramatic change in the color of the solution, or an intense modification of the 

fluorescence spectra. Addition of negative charged anions can deprotonate both hydroxyl 

groups of the β-naphthyl units. 

In our case, these interactions were observed only for CN- and F-. Absorption and 

emission titrations are represented in Figures IV.3A-D. In the absorption spectrum, the 

bands at 450 and 472 nm disappear; this decrease is more intense for the case of cyanide. 

At the same time, a small band centered at 521 (CN-) or 535 nm (F-) can be observed. The 

association constants obtained from the absorption spectra, calculated with the SPECFIT-

32 program [17], point towards the formation of one molecular species with stoichiometry 

of 1:1 (CN:L) in the case of cyanide, and two species for fluoride, with 1:1 and 2:1 

stoichiometry (F:L). The values for the constants are log K = 3.70 ± 0.05 (CN-), log K = 

4.51 ± 0.20 (1:1 F-) and log K = 7.31 ± 0.23 (2:1 F-) respectively. Figures IV.3B and 

IV.3D shows the fluorescence emission titration upon addition of (Bu4N)F and (Bu4N)CN 

respectively. A strong quenching effect was observed for both anions, with the interaction 
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constant for fluoride being larger than for cyanide. The association constants obtained 

from the fluorescence spectra agree with those obtained from the absorption ones, which 

again confirms the formation of the less emissive naphtholate species. 

In order to discard an acid-base reaction between L and the basic anions, instead 

of a supramolecular interaction, several DFT studies were performed. In contrast with its 

coordination to metal cations, the complexation of L with the anionic ligands CN- and F- 

takes place through non-covalent interactions, making use of the polar naphtol groups to 

stabilize the negative charge in the anions with hydrogen bonds. We have optimized the 

geometry of the 1:1 complexes with CN- and F-: in both cases, the most stable structure is 

that in which two hydrogen bonds are formed with the anion. In the case of CN-, the 

interaction gave a linear structure, as expected from the available orbitals, with a N-H 

bond of 1.6 Å N-H bond and a C-H bond of 1.7 Å. For F-, the most stable structure 

displays a 90º H-F-H angle (the F-H-O angles are still linear), with F-H distances of 1.4 

Å, even if another linear minimum is found to be only 2.9 kcal/mol less stable. Somewhat 

higher in energy for both anions (about 14 kcal/mol), however, lie the other complexes 

where the anion has abstracted one of the protons (which then forms a hydrogen bond 

with the resultant naphtolate) and interacts with the other through a hydrogen bond. 

TDDFT has been used to simulate the UV-visible spectra of all the computed structures, 

and the results, together with further thermodynamic and structural information can be 

found in the Supporting Information. 

Several MALDI-TOF MS mass spectra were obtained, using the free ligand L 

dissolved in acetone without any matrix, and upon titration with Cu2+ and cyanide. The 

ligand peak in the MALDI-TOF MS positive mode appears at 597.1 m/z; this peak can be 

attributed to the protonated species [LH]+. In negative mode the peak appears at 595.1 

m/z, corresponding to the species [L]. (See Figure IV.4, panels A and B). 
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Figure IV.4 MALDI-TOF mass spectra of ligand L in positive (A) and negative (B) modes in 

acetone. Panel C shows the spectrum (positive mode) after titration with Cu(CF3SO3)2 (one 

equivalent of metal). Panel D shows the spectrum (negative mode) after the addition of ten 

equivalents of (Bu4N)CN solution. 

 

In positive mode, upon addition of one equivalent of Cu2+, the peak attributable to 

the ligand disappears, and a new peak with 100% of intensity appears at 660.09; this peak 

corresponds to the mononuclear species [LCu]+. A second small peak at 722.0 m/z, 

attributable to the dinuclear species also was formed. (See also Figure IV.4, panel C). The 

pattern of the mononuclear peak observed at 660.09 m/z fits well with a complex isotopic 

model obtained using the program from the DATA EXPLORER instrument (see Figure 

IV.5). This model takes into account several species with formula C38H32CuN2O5 [LCu]+, 

C38H31CuN2O5 [LCu-H]+, C38H30CuN2O5 [LCu-2H]+ and C38H29CuN2O5 [LCu-3H]+. This 

suggests the formation in gas phase of several protonated complexes, by losing one 

hydroxyl protons, two and tree protons in the ligand. The most intense signals 

corresponded to isotope model 2, attributable to the species [LCu]+. As it can be seen in 

Figure IV.5, the sum of the four isotopic models suggested fits well with the experimental 
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peak obtained. The same model can be applied for the dinuclear peak at 722.0 m/z , 

formed only in the gas phase. 

 

Figure IV.5 ISOTOP model for the peak at 660.09 m/z observed in the MALDI-TOF mass 

spectrum of ligand L upon addition of one equivalent of Cu(II); the peak can be attributed to the 

[LCu]+ complex. 

 

In the negative MALDI-TOF MS mode, addition of ten equivalents of CN- 

induced the formation of two peaks at 680.15 m/z and 834.86 m/z, attributable to the 

formation of the species [LCN(CH3COCH3)]- and [L(CN)2(C12NH28)]- respectively (See 

figure IV.4, panel D). Unfortunately, no peak was observed when the ligand was titrated 

with a stoichiometrical quantity of fluoride anion; for higher concentrations of fluoride 

(ten equivalents) the peak corresponding with the [LF]- species was observed. The results 

from these experiments suggest that L can be used to sense Cu2+ in positive MALDI-TOF 

MS mode, and cyanide by MALDI-TOF MS negative mode.  
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In conclusion a new fluorescence β-naphtol derivative L, containing an N2O5 

donor set has been synthesised in excellent yield by a simple Schiff-base condensation 

reaction, and its photophysical properties have been evaluated in solution by absorption 

and fluorescence emission spectroscopy and by MALDI-TOF MS spectrometry. Its 

capacity to act as a potential sensor for Cu2+, Zn2+, Cd2+ and Hg2+,  and the basic anions 

such as F-, Cl-, Br-, I- and CN-, was carried out in DMSO solution. Among the cations and 

anions studied, the probe has shown a remarkable selectivity for Cu2+, CN- and F-. This 

selectivity means that the new ligand could find an application as the building block to 

design a more complex chemosensor for these three ions. 

 

Figure IV.6 Ball-and-stick representation of the structure of the free ligand (L) and its copper(II) 

complex optimized at the B3LYP/6-31G(d), LANL2DZ level. 

 

Figure IV.7 Ball-and-stick representation of the most stable CN- and F- complexes of L 

optimized at the B3LYP/6-31G(d), LANL2DZ level. 
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The interaction of L with Cu (II), CN- and F- was also studied using MALDI-TOF 

mass spectrometry (both in positive and negative mode). No peak was observed when the 

ligand was titrated with fluoride anion in stoichiometry concentrations appearing a peak 

assigned to [LF]- when the concentration of F- was increased. In the other hand, 

noteworthy changes in the mass spectrum of the ligand (either in the positive or negative 

mode) were observed upon titration with Cu2+ and CN-. The results from the MALDI-

TOF MS studies suggest that L can be used to sense Cu2+ in positive mode, and cyanide 

in negative mode. DFT studies showed that the Copper (II) complex is formed by the 

unprotonated L2- species as was predicted experimentally. However, the anionic 

complexes with fluoride and cyanide take places via supramolecular interactions with the 

diprotonated L form. This clearly demonstrated that L is not deprotonated upon anion 

interaction.  
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V.1 Abstract 

Four emissive macrocyclic ligands mono-substituted with an 8-hydroxyquinoline 

pendant-arm are presented. The new compounds have been used for metal ion detection, 

which results from the competition between PET (photo-induced electron transfer) and 

PPT (photo-induced proton transfer) mechanisms. Solid metal complexes with divalent 

Cu(II), Zn(II) and Cd(II), and trivalent metal ions Al(III) and Cr(III) have been also 

synthesized and characterized. The compounds have been isolated as mononuclear or 

dinuclear (Cu(II)) complexes, confirming the stoichiometry observed in solution.  

 

Keywords: Chemosensor; Fluorescence; 8H-Quinoline; Aluminum(III); Chromium(III); 

Zinc(II). 

 

 

 

 

 

 

 

 

 

 

 

My contribution to this work was the optimization of sample treatment preparation for 

MALDI-TOF MS analysis, data acquisition and characterization, MALDI titrations and 

interpretation. 
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V.2 Introduction 

 

The development of compounds that selectively respond to specific metal ions and 

thus can be used as ion sensors is an area of growing interest [1]. Emphasis has been 

placed on the development of compounds that can detect the presence of specific metal 

ions through guest-modulated effects, e.g., changes in redox potentials [2], UV-vis 

absorption spectra [3], or fluorescence spectra [1] as a result of the interaction between 

the sensor and the target ion. Particular attention has been paid to fluorescence 

chemosensors, since fluorescence modulation allows the detection of the target ions at 

very low concentrations [1b]; moreover, fluorescent sensors offer several distinct 

advantages such as selectivity, time response and spatial resolution. 

8-Hydroxyquinoline (8-HQ) and derived compounds are known to be the best 

chelating agents after EDTA and its derivatives, due to their guest-modulated 

chromogenic and fluorescent behaviour. Accordingly, they have been used in 

chromatography [4] for the detection of metal ions [5], in the preparation of organic light 

emitting diode devices [6], in electrochemiluminiscence [7], etc. 8-HQ forms stable five-

membered chelate rings with metal centres, and very stable complexes of the type 

M(HQ)+, M(HQ)2 or M(HQ)3 with divalent transition and post-transition metal ions [8]. 

Macrocycles containing quinoline side arms have been employed as analytical reagents in 

absorption spectrometry, fluorometry, solvent extraction, and chromatography. [9] The 

potential use of some of these compounds as pesticides has also been explored [10]. 

A number of azacrown ethers containing 8-hydroxyquinoline (I [11], II [5c], III 

[12]), 5-chloro-8-hydroxyquinoline (IV [5c]), and 8-hydroxy-5-N,N-

dimethylaminosulfonylquinoline (V [12]) have been reported (see Figure V.1). Prodi [5a], 

and co-workers reported systems VI.a and VI.b for the recognition of Mg(II) and Hg(II) 

respectively. In these complexes, the pKa values for the hydroxyl groups of the 8-HQ 

moieties were low enough to become fluorescent in slightly acidic solutions [5c], [10], 

[13]. Addition of Mg(II) to VI.a or Hg(II) to VI.b in neutral MeOH-H2O (1:1) solutions 

results in the strong enhancement of the luminescence bands at 520 nm and 476 nm, 

respectively. All these ligands have been designed to detect transition and post-transition 

metal ions through guest associated modulation of the absorption and fluorescence spectra 

of the ligands [14].  Less attention has been paid to macrocycles containing a pyridine 

head. R. Delgado and co-workers have published a small tetraaza donor macrocyclic 



Chapter V. Synthesis, characterization and fluorescence behavior of four novel macrocyclic emissive 
ligands containing a flexible 8-hydroxy-quinoline unit 

 97 

system (VII) substituted with two 5-chloro-8-hydroxyquinoline units; its interaction with 

Cu(II), Zn(II), Cd(II) and Pb(II) was studied, but no fluorescence data were reported [15]. 

 

The biological and biomedical significance of Cu(II), Zn(II), Cd(II), Al(III) or 

Cr(III) makes the detection these metal ions crucial [16]. The design and synthesis of  
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Figure V.1 Macrocyclic ligands with quinoline pendeant arms reported for Pb2+ (I, II, II, VII), 

Co2+(I), Ni2+(I), Cu2+(I, II), Zn2+(I, II, III, V, VII), Cd2+(I, II, III,VII), Hg2+(VI), K+(IV.b), 

Mg2+(VI.a), and Ba2+(IV). 
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fluorescence chemosensors for Cu(II) has become a very active research area, due to the 

adverse effects of this metal ion when present in large concentration [17]-[19]. Elements 

from group 12 (Zn(II), Cd(II) and Hg(II)) are also attracting considerable attention, due to 

the biological importance of Zn(II) and the toxicological effects of Cd(II) and Hg(II) [20]. 

Zn(II) acts as a catalytic or co-catalytic factor in the active sites of more than 300 

enzymes and, due to their chemical similarities, Zn(II) can be easily substituted by Cd(II). 

Their d [10] electron configurations make Zn(II) Cd(II) and Hg(II) spectroscopically 

silent; thus, research is now focused on the design of fluorescence chemosensors capable 

of determining their concentration in solution, especially in living cells [21]. 

Al(III) is widely used in water treatment, as food additive and in medicine; Cr(III) 

is used in harden and stainless steel, in alloys to prevent corrosion, and as inorganic 

catalyst. Many analytical (sample destructive) methods are used for the analysis of both 

metal ions; however, fewer examples of the use of fluorescence chemosensors (a non-

destructive technique) have been reported. Most of the research has focused on 

chemosensors for aluminium [22], but less attention has been paid to the detection of 

chromium [23].  

As an extension of our work on the synthesis of macrocyclic receptors possessing 

pyridine units [24] for metal-ion chelation, herein we report the synthesis and 

characterization of four new emissive macrocycles, L1-L4 (see Figure V.2). The starting 

material for L1 and L2 was the N5O2-donor ligand L, containing a free amine pendant-arm 

[25]. The precursor to L3 and L4 (L’) was obtained via Schiff-base condensation of 2,2-

(1,3-phenylenebis(methyleneoxy))dibenzaldehyde, and tris(2-aminoethyl)amine (tren-

amine), followed by an in situ reductive demetallation reaction with NaBH4. 

Condensation of an 8-hydroxyquinoline unit with the free amine pendant-arm yielded 

the macrocycles L1-L4. The new ligands have been fully characterized by the usual 

techniques.  
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The protonation behaviour and sensing capability towards divalent Cu(II), Zn(II), 

Cd(II), and trivalent Al(III) and Cr(III) metal ions have been studied by UV-vis and 

fluorescent emission spectroscopy, and by MALDI-TOF-MS spectrometry. In order to 

compare with the results obtained in solution, some solid metal complexes with the same 

metal-ions were synthesized and characterized; these results are also discussed. 
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Figure V.2 Schematic synthetic route for ligands L1-L4 in absolute ethanol. 
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V.3 Results and discussion 

V.3.1 Synthesis and characterization of the free ligands L1-L4 and metal 

complexes 

V.3.1.1 Schiff-base macrocycles L1 and L3 

We have previously reported the synthesis of the macrocycle L [25] obtained by a 

template cyclocondensation of tren-amine with 2,6-bis(2-formylphenoxymethyl)pyridine 

(P) [26]. Macrocyclic ligand L’ was synthesized by the same template method, via 

cyclocondensation of tren-amine with 2,2-(1,3-phenylenebis(methyleneoxy)) 

dibenzaldehyde (P’) in the presence of Ba(ClO4)2.2H2O, followed by an in situ 

demetallation reaction with NaBH4. 

Subsequent condensation of L and L’ with 8-hydroxyquinoline-2-carbaldehyde 

using a one step procedure, yielded L1 and L3; both ligands were isolated as air-stable 

orange solids, ca. 73.3% and 62.3% yield, respectively. The infrared spectra (KBr 

discs) show bands at 1642 (L1) and 1641 (L3) cm-1, corresponding to the imine bond, 

and no peaks attributable to unreacted amine or carbonyl groups were present. The 

absorption bands corresponding to the ν(C=C) and ν(C=N) vibrations of the 

pyridine groups appear in the expected positions, 1597, 1453 cm-1, and 1600, 

1453 cm-1 respectively. The MALDI-TOF MS spectrum of L1, shows a parent 

peak at 617 m/z, corresponding to the protonated form of the ligand [L1H]+. For 

L3, the base peak in the FAB mass spectrum and in the MALDI-TOF MS was at 

616 m/z, attributable to the protonated form [L3H]+. Elemental analysis data 

confirms that both Schiff-base ligands have been isolated. L1 and L3 were studied 

by 1H NMR in CDCl3; the spectra confirm the integrity of the ligands in solution 

(Table V.1). Both 1H NMR spectra show a peak at ca. 8.2 ppm, corresponding to the 

imine protons, and no signals corresponding to the primary amine or aldehyde 

protons are present. 



Chapter V. Synthesis, characterization and fluorescence behavior of four novel macrocyclic emissive 
ligands containing a flexible 8-hydroxy-quinoline unit 

 101 

V.3.1.2 Synthesis and characterization of the amine macrocycles L2 and 

L4 

Following a one step procedure involving the reduction of L1 and L3 with NaBH4, 

macrocyclic ligands L2 and L4 were isolated as air-stable yellow solids, ca. 45.3 and 59.4 

% yield respectively. The absence of a band at ca. 1640 cm-1 in the infrared spectra 

(KBr disc) confirms the reduction of the imine group. The absorption bands 

corresponding to ν(C=C) and ν(C=N) vibrations of the pyridine groups appear at 

1597, 1451 cm-1, and 1600, 1453 cm-1, respectively.  

Table V.1 1H NMR shifts (ppm) for L1, L2, L3, and L4 in CD3Cl solutions (see Figure V.3 for 

labeling) 

 L1 L2 L3 L4 

H1,2; H4-7; H16-20 7.9-6.7 (m),16H 7.8-6.8 (m), 16H 8.1-6.7 (m), 17H 8.0-6.5 (m), 17H 

H3 4.9 (s), 4H 5.3 (s), 4H 5.1 (s), 4H 5.0 (s), 4H 

H8 3.7 (m), 4H 3.7-3.6 (m), 4H 3.8 (s), 4H 3.7 (s), 4H 

H10,13 3.4 (m), 6H 3.6-3.5 (m), 6H 2.9-2.1 (m), 6H 2.6-2.1 (m), 6H 

H11,12 2.5 (m), 6H 2.8-2.3 (m), 6H 2.9-2.1 (m), 6H 2.6-2.1 (m), 6H 

H15 8.2 (s), 1H 4.0 (s), 2H 8.4 (s), 1H 3.4 (s), 2H 

H21 5.6 (s), 1H 5.9 (s), 1H 4.5 (s), 1H 4.0 (s), 1H 

 

The ESI mass spectrum of L2 shows a peak at 619 amu attributable to 

[L2H]+. For L4, the highest peak in the FAB mass spectrum is at 618 amu, 

attributable to [L4H]+. Both peaks were observed also in the MALDI-TOF-MS 

spectra. Ligands L2 and L4 were studied by 1H NMR in CDCl3; the NMR spectra 

confirm the integrity of the ligands in solution. The absence of a peak at ca. 8.2 ppm 

in the 1H NMR spectra confirms the reduction of the imine protons (see Table V.1).  
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V.3.1.3 Synthesis and characterization of the metal complexes 

The coordination ability of ligands L1 to L4 towards hydrated transition and post 

transition metal salts were studied in solution and in solid state. Reaction of L1 and L3 

with Al(III) chloride in a 1:1 metal-ligand ratio in ethanol led to two compounds of 

formula [AlL1](Cl)3.5H2O and [AlL3](Cl)3.6H2O in good yields, 55.3 and 59.2% 

respectively. The complexes were characterized by elemental analysis, IR, and ESI-MS or 

FAB-MS spectra. The reaction was attempted also with the Zn(II) and Cr(III) salts, but 

only the aluminium products gave satisfactory microanalytical results. The ESI mass 

spectrum of [AlL1](Cl)3.5H2O displays peaks corresponding to the [M2L1]+, [M2L1Xz]+ 

(z= 3 and 5) fragments, and the FAB mass spectrum of [AlL3](Cl)3.6H2O displays a peak 

corresponding to the fragment [M3L3X2]+, confirming the formation of both complexes; 

the higher nuclearity suggests some complex formation in the gas phase. The IR spectra 

of the complexes were recorded as KBr discs. In both cases, the band due to the imine 

bond is shifted to lower wave numbers when compared to its position in the spectrum of 

the free ligand, and the ν(C=C) and ν(C=N) stretching modes of the pyridine rings appear 

.at higher wave numbers than those on the spectrum of the free ligand. Both effects 

suggest that the Npy atom of the quinoline pendant group could be involved in the 

coordination to the metal ion [27]. The broad absorption band in the region 3450-3380 

cm-1 present is probably due to the existence of lattice and/or co-ordinated water in the 

molecule, and make it difficult to see the bands due to the ν(O-H) and ν(N-H) stretching 

vibrations which would appear in this region. 

 

 

Figure V.3 Ligands L1-L4 with numbered atoms. 
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Ligands L2 and L4 reacted easily with transition and post-transition ions producing 

air-stable solid complexes, which were characterized by elemental analysis, IR, ESI MS 

(L2 complexes), and FAB MS (L4 complexes). The elemental analysis data indicate the 

formation of mononuclear complexes with empirical formulas CdL2(ClO4)2·xC2H6O, 

ZnL2(NO3)2·xH2O, CrL2(NO3)3·xH2O, ML4(NO3)2·xH2O (M=Zn, Cd), 

CrL4(NO3)3·xH2O, AlL2(Cl)3·xH2O, AlL4(Cl)3·xH2O and the dinuclear complexes 

Cu2L2(NO3)4·xC2H6O and Cu2L4(NO3)4·xH2O. The ESI mass spectra for L2 complexes 

display peaks corresponding to the [ML2]+, [ML2X]+, [ML2X2]+, [M2L2X]+, [M2L2X2]+ 

fragments, and the FAB mass spectra for L4 complexes display a peak attributable to the 

[ML4]+ fragment, confirming the formation of the complexes in both cases. The IR 

spectra of all the complexes were recorded as KBr discs and all show similar features. As 

in the free ligands there are split bands associated with ν(C=C) and ν(C=N) vibrations of 

the pyridine rings, which have undergone a shift towards higher wave numbers on 

complexation [27]. As in the complexes with L1 and L3, the presence of an intense broad 

band at ca. 3400 cm-1 make it difficult to see the bands corresponding to the ν(O-H) and 

ν(N-H) which would appear in this region. The spectra of the nitrate complexes show a 

band at 1384 cm-1 associated with the presence of ionic nitrate. For CdL2(ClO4)2.2C2H6O, 

bands attributable to the asymmetric Cl-O stretching mode at ca. 1088 cm-1 (ν3) and the 

asymmetric Cl-O bending mode (ν4) at ca. 627 cm-1 can be observed. The highest energy 

band shows considerable splitting, with three maxima at ca. 1050, 1088 and 1121 cm-1, 

suggesting some interaction of at least one of the ClO4
- anions with the metal [28]. 

V.3.2 Spectrophotometric and spectrometric studies 

V.3.2.1 Spectrophotometric studies: UV-vis and Fluorescence emission 

spectroscopy 

Ligands L1-L4 have a low solubility in water. In addition in water-absolute ethanol 

solution (50:50, v/v) those ligands precipitated. For the aforementioned reasons all the 

spectroscopic studies have been done in absolute ethanol. 

The absorption spectra of ligands L1, L2, L3 and L4 in absolute ethanol solution 

show one band centered at 248-250 nm, attributable to the π-π* transitions in the ligand. 

The band presents a long tail, up to 400 nm. The spectrum is independent on the acidic 

conditions, and addition of up to five equivalents of HBF4 does not affect the absorption 
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band; this result is in agreement with other polyamine macrocyclic ligands containing 

aromatic units. The spectra for L1 and L2 show an emission band centered at 524 nm. The 

intensity of this band increases with the addition of protons, achieving a plateau when 

four equivalents of HBF4 are added. The spectra for L3 and L4 (without the pyridine head) 

show the emission band centered at 514 nm; addition of acid results in an increase of this 

band, also achieving a plateau with the addition of four equivalents. These results suggest 

that the pyridine ring present in the macrocyclic skeleton of L1 and L2 may not be 

protonated on these conditions. Addition of a tetrabuthylamonium hydroxide solution to 

an ethanolic solution of ligands L1 and L3 reduced the intensity of the emission in ca. 

50%. 2 equivalents of base are enough to achieve a plateau. A generic spectrophotometric 

characterization is shown in Figure V.4.  

 

The photophysical properties of compounds including 8-HQ as chromophore have 

been studied in detail [29]. In their fluorescence spectra, a non-structured band centered 

between 360 and 460 nm, strongly dependent on the solvent, was observed [29]. In our 

case, the emission band is red-shifted in at least 60 nm, which could facilitate their 

potential applications in biological systems. The emissive compounds could be irradiated 

in the presence of bio-molecules without any damage to the chromophores present in 

aminoacids, peptides, proteins, DNA, etc. 

 

Figure V.4 Absorption, emission, and excitation spectra of ligand L2 in absolute ethanol 

solution ([L2]=1.0×10-5 M, λexc=400nm,  λem=530nm). 
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The relative fluorescence quantum yields of ligands L1 to L4 were determined 

using a 0.1 M solution of quinine sulphate in H2SO4 0.5M as standard (φ=0.546); the 

values obtained were always below 1×10-3 [30], [29c]. The fluorescence of chemosensors 

with 8-HQ units is weak due to the competition between the intermolecular photo-

induced proton transfer (PPT) from the hydroxyl group of the molecule, and the photo-

induced electron transfer (PET) from the amines [5a].  Moreover, in proton-donor 

solvents, a PPT process involving solvent molecules opens another way to further 

deactivate fluorescence. Consequently, both PPT and PET processes can quench the 

fluorescence emission in substituted quinolines. The quenching effect observed after the 

addition of tetrabuthylamonium hydroxide is consistent with this explanation; in this case, 

the PET mechanism is stronger than the PPT.  

Table V.2 Optical data for the metal complexes of L1, L2, L3 and L4 in absolute solutions 

(λexc=400nm; 25ºC) 

METAL COMPLEX λmax(nm); log ε  λem (nm) 
AlL1(Cl)3.5H2O 269;4.46 546 
AlL2(Cl)3.2H2O 261; 4.20 543 
AlL3(Cl)3.6H2O 260; 4.19 545 
AlL4(Cl)3.5H2O 262; 4.77 545 
   
CrL2(NO3)3.6H2O 255; 4.61 535 
CrL4(NO3)3.2H2O 251; 4.61 536 
   
Cu2L2(NO3)4.3C2H6O 266; 4.80 - 
Cu2L4(NO3)4.3H2O 275; 4.35 - 
   
ZnL2(NO3)2.6H2O 265; 4.41 573 
ZnL4(NO3)2.3H2O 273; 4.21 565 
   
CdL2(ClO4)2.2C2H6O 260; 4.56 508 
CdL4(NO3)2.3H2O 248; 4.17 

269; 4.18 
300; 3.76 

505 

 

The sensing behavior of the compound towards Zn(II), Cd(II), Cu(II), Al(III) and 

Cr(III) has been studied in solution, using absolute ethanol as the solvent. For comparison 

purposes, all the synthesized metal complexes have been also optically characterized and 

the data is given in table V.2. 
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Addition of increasing amounts of anhydrous zinc and cadmium triflates to a 

ethanolic solution of L2 or L4 (1.00E-5 M), at 298 K, led to a decrease on the absorption 

band centered at 249 nm, and the appearance of a new band centered at ca. 270 nm. This 

spectrum has a long tail up to 400 nm. In this region, the absorption increases with the 

addition of metal ions, suggesting the involvement of the quinoline ring in the metal 

complexation. An isosbestic point at 260 nm was observed for all the metal titrations, 

confirming the presence of two species in solution, the free ligand and the metal complex. 

As an example, Figure V.5 depicts the absorption and emission metal titration of L2 with 

Zn(II) and Cd(II). 

Excitation at 400 nm (quinoline tail), gave emission spectra centered at 555 nm. 

The band is red-shifted upon complexation, as it can be seen on figures V.5B and V.5D 

for Zn(II) and Cd(II) respectively. The same behaviour was observed when the metal ion 

used was Al(III). A Chelation Enhanced Fluorescence (CHEF) effect was observed in all 

cases. This well known phenomenon is consistent with the involvement of the amines and 

the quinoline ring in complexation. The lone pairs of the nitrogen atom are bound to the 

metal ion preventing the PET processes, while the 8-HQ is coordinated to the metal 

preventing the PPT process; thus, complexation results in an enhancement of the 

fluorescence signal.  

As it can be seen in Figure V.5A and V.5B, a plateau is reached after addition of 

one metal equivalent, suggesting that the macrocyclic unit is coordinated to one metal ion. 

This result confirms the stoichiometry observed for the solid metal complexes 

synthesized. Copper(II) ions are well know to quench excited states [31]. Addition of 

increasing amounts of all dn metals studied leads to the formation of non emissive 

complexes. These results are in agreement with the fluorescence behaviour observed for 

the analytically pure complexes isolated (See experimental section). 



Chapter V. Synthesis, characterization and fluorescence behavior of four novel macrocyclic emissive 
ligands containing a flexible 8-hydroxy-quinoline unit 

 107 

 

 Figure V.6 shows the absorption and emission spectra of L2 in the presence of 

increasing amounts of Cu(II); the inset shows the normalized fluorescence intensity at 

555 nm. Upon addition of two equivalents of metal ion, the emission disappears, 

achieving a plateau; this suggests the formation of a dinuclear complex. A similar CHEQ 

effect was observed in the presence of Cr(III), but the plateau was achieved for one metal 

ion, suggesting the formation of a mononuclear complex. Both results agree with the 

stoichiometry found in the solid metal complexes synthesized. 

 

Figure V.5 Absorption (A and C) and fluorescence emission (B and D) titration of absolute 

ethanol solution of L2 as a function of increasing amounts of Zn2+ (A and B) or Cd2+ (C and D) 

ions. The inset shows the absorption at 248 and 270 nm, and the normalized fluorescence 

intensity at 555 nm ([L2]=1.00×10-5 M, λexc=400nm). 
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Protonation and/or complexation of a pyridine ring lead to a quenching effect for 

molecules that incorporate both a pyridine and an emissive chromophore unit in their 

structure [32]. The presence of the pyridine head in L1 and L2 creates another inverse PET 

mechanism for quenching the emission. The analogous ligands L3 and L4, without the 

pyridine unit, were synthesized for comparative purposes. Unfortunately, the results 

observed with L3 and L4 are similar to those ligands L1 and L2, due to the strong PPT and 

PET processes mentioned previously. 

The fluorescence quantum yields for all the complexes have been calculated using 

a solution of quinine sulphate as pattern. In all cases, and in accordance with the results 

obtained for the free ligands, the values are very small, always below 10-3. This 

quenching can be attributed to the high number of donor atoms present in the ligands; 

some of them may not be coordinated to the metal centres, specially the nitrogens that 

activate the quenching through the PET phenomena. As it can be observed in table V.2, 

the maximum of the emission for each metal complex is slightly different, opening up the 

possibility of using these ligands to recognize these metals in solution. 

 

Figure V.6 Absorption (A) and fluorescence emission (B) titrations of absolute  ethanol solution of 

L2 as a function of increasing amounts of Cu2+ ions. The inset shows the absorption at 249 and 257 

nm, and the normalized fluorescence intensity at 555 nm. ([L2] = 1.00xE-5 M, λexc = 400 nm ) 
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V.3.2.2 Spectrometric studies by MALDI-TOF-MS spectrometry 

Taking into account the biological importance of Zn(II) ions, and the 

environmental problems by Al(III) excess, these two metal ions were selected for the gas 

phase studies by MALDI-TOF MS using ligands L2 and L4 as molecular probe. To 

perform the metal titrations, both ligands were dissolved in chloroform and the metal salts 

in absolute ethanol. Two different strategies were explored. First, three solutions 

containing the ligand (1µL), the MALDI matrix (dithranol) and the metal salt (1µL) were 

mixed and then applied in the MALDI-TOF sample holder. The second method consisted 

of a layer by layer addition: a solution of L2 or L4 mixed with the matrix (dithranol) was 

spotted in the MALDI-TOF plate and then dried; subsequently, 1µL of the solution 

containing the metal salt was placed on the sample holder, which was then inserted in the 

ion source. For the second case, the chemical reaction between the ligand and the metal 

salts occurred in the holder, and the complex species were produced in gas phase. 

The results were the same in both cases. Addition of one metal equivalent led to 

the formation of the mononuclear complex. Addition of increasing amounts of metal ion 

did not produce any peaks attributable to the formation of dinuclear complexes. The 

results with Al(III) and Zn(II) confirm both the stoichiometry observed in the synthesized 

solid metal complexes, and the data obtained in solution by absorption and fluorescence 

emission spectroscopy. 
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Figure V.7 summarizes the MALDI-TOF MS spectra for ligand L2. In the 

presence of one and two equivalent of Zn(II), peaks at m/z 619.3, attributable to the 

protonated ligand [L2H]+, and m/z 462.2, attributed to the loss of the methyl-8-HQ group 

were observed. Small peaks at higher mass values, attributable to species with two, three 

and four pendant-arms, can be observed; these are indicative of the interaction of the 

quinoline group with the ligand in the gas phase (see Figure V.8). After addition of the 

metal salt, the peak corresponding to the protonated ligand disappears, and new peaks at 

m/z 681.3, 524.2 and 441.2, attributable to the [L2Zn-H]+, [L2Zn-MeQuinoline]+ and 

[L2Na-Pendant]+ species respectively, were observed.  

 

Figure V.7 (A) MALDI-TOF-MS spectra of L2 using dithranol as MALDI matrix, (B) in the 

presence of 1 equiv of Zn(II), and (C) in the presence of 2 equiv. of Zn(II). 
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Figure V.8 MALDI-TOF-MS fragmentation peak observed for L2 and L2Zn(II) complex. 



Chapter V. Synthesis, characterization and fluorescence behavior of four novel macrocyclic emissive 
ligands containing a flexible 8-hydroxy-quinoline unit 

 112 

V.4 Conclusions 

Four macrocyclic ligands containing a 8-HQ pendant arm have been synthesized 

and fully characterized. The protonation behaviour and sensing capability of these ligands 

towards divalent, Cu(II), Zn(II), Cd(II), and trivalent, Al(III) and Cr(III) metal ions have 

been studied by UV-vis and fluorescent emission spectroscopy. Several metal complexes 

have also been synthesized and characterized, confirming the stoichiometry and all the 

data obtained in solution. 

The photophysical characterization of the ligands shows two quenching 

mechanisms active, PPT and PET. Coordination with Zn(II), Cd(II) and Al(III) partially 

prevents this quenching trough a CHEF effect. Cu(II) and Cr(III) gave non emissive 

complexes due to the quenching, via a CHEQ effect, of the low emission observed for the 

free macrocycles. Both phenomena could be used for sensing purposes, opening up the 

possibility of using these ligands in solution for metal ion recognition. 

Titrations of L2 and L4 with Zn(II) and Al(III) solutions were followed by MALDI-

TOF-MS spectrometry. In all cases, the formation of the complex peak was observed. 

These results confirm the formation of the metal complexes also in the gas phase. 
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V.5 Experimental 

V.5.1 General 

The chemical analysis of the dialdehyde precursor, 2,2-(1,3-

phenylenebis(methyleneoxy))dibenzaldehyde, was carried out on a Carlo Erba 1106 CHN 

analyser. Elemental analyses of the ligands were performed on a Fisons 

Instruments EA1108 micro analyser by the Universidade de Santiago de Compostela. 

The IR spectra of the precursors were recorded on a Pye Umicam SP3-100 

infrared spectrometer. Infra-red spectra of free ligands were recorded as KBr 

discs on a BIO-RAD FTS 175-C spectrometer. FAB mass spectra were recorded 

using a KRATOS MS50TC spectrometer with 3-nitrobenzyl alcohol as the 

matrix. The 1H NMR spectrum of the dialdehyde precursor was recorded on a JEOL 

GSX 270 FT NMR spectrometer. The 1H, 13C NMR, COSY, DEPT and HMQC 

spectra were recorded on a Bruker 500 MHz spectrometer, using CD3Cl as the 

solvent. 

MALDI-TOF-MS spectra have been performed in a MALDI-TOF-MS model 

Voyager DE-PRO Biospectrometry Workstation equipped with a nitrogen laser radiating 

at 337 nm from Applied Biosystems (Foster City, United States) from the MALDI-TOF-

MS Service of the REQUIMTE, Chemistry Department, Universidade Nova de Lisboa. 

The acceleration voltage was 2.0×104 kV with a delayed extraction (DE) time of 200 ns. 

The spectra represent accumulations of 5×100 laser shots. The reflection mode was used. 

The ion source and flight tube pressures were less than 1.80×10-7 and 5.60×10-8 Torr, 

respectively. The MALDI mass spectra of the soluble samples (1 or 2 µg/µL) such as the 

ligand and metal complexes were recorded using the conventional sample preparation 

method for MALDI-MS. In the metal titrations by MALDI 1µL of the metal sample were 

put on the sample holder on which the chelating ligand had been previously spotted with 

the matrix (dithranol). The sample holder was inserted in the ion source. Chemical 

reaction between the ligand and metal salts occurred in the holder and complex species 

were produced. 

Absorption spectra were recorded on a Shimadzu UV-2501PC or in a Perkin 

Elmer lambda 35 spectrophotometers. Fluorescence emission spectra were recorded on a 

Horiba-Jobin-Yvon SPEX Fluorolog 3.22 or a Perkin Elmer LS45 espectrofluorimeters. 
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The linearity of the fluorescence emission vs. concentration was checked in the 

concentration range used (10-4 to 10-6 M). A correction for the absorbed light was 

performed when necessary. All spectrofluorimetric titrations were performed as follows: 

the stock solutions of the ligand (ca. 1×10-3 M) were prepared by dissolving an 

appropriate amount of the ligand in a 50 mL volumetric flask and diluting to the mark 

with absolute ethanol UVA-sol. All measurements were performed at 298 K. The titration 

solutions (ca. [L]=1.0×10-5M) were prepared by appropriate dilution of the stock 

solutions. Titrations of the ligand were carried out by addition of microliter amounts of 

standard solutions of the ions in absolute ethanol. HBF4 and tetrabuthylamonium 

hydroxide were used to change the acidity conditions of the ethanolic solutions. 

Luminescence quantum yields were measured using a solution of quinine sulphate in 

H2SO4 (0.1M) as a standard [φF]=0.546] [30]. 

 

V.5.2 Chemicals and starting material 

Salicylaldehyde, 1,3-bis(bromomethyl)benzene, tris(2-aminoethyl)amine,  8-

hydroxyquinoline-2-carbaldehyde and hydrated chloride, nitrate and perchlorate salts 

were commercial products from Alfa and Aldrich. Solvents used were of reagent grade 

and purified by the usual methods. CD3Cl (99.8%) was obtained from Aldrich. All 

triflates metallic salts were purchased from Strem, chemicals for research. The starting 

materials, 2,6-(bis(2-formylphenoxymethyl)pyridine [26] and the macrocyclic ligand L 

[25] were synthesized as previously published. 

V.5.3 Synthesis 

V.5.3.1 Synthesis of 2,2-(1,3-phenylenebis(methyleneoxy))-

dibenzaldehyde 

A solution of NaOH (1.512 g, 37.8 mmol) in 50 mL of distilled water was added 

dropwise to a solution of salicylaldehyde (4.710 g, 37.8 mmol) in 10 mL in absolute 

ethanol. After heating gently for approximately 10 minutes, 1,3-

bis(bromomethyl)benzene (4.741 g, 18.9 mmol) was added dropwise. Absolute ethanol 

(80 mL) was slowly added, and the resulting solution refluxed gently for 4 h while 

maintaining magnetic stirring. The solution was then allowed to cool, and a white solid 
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appeared. The solid was filtered off and dried. The compound is air stable, soluble in 

chloroform and dichloromethane, moderately soluble in hexane, absolute ethanol, diethyl 

ether, and methanol and insoluble in distilled water.  

C22H18O4.0.5H2O. Mp(ºC): 80-85 ºC; Anal. Calcd for C22H19O4,5: C, 74.36; H, 

5.07. Found: C, 74.30; H, 5.04 %. Yield: 78%. IR (NaCl windows, cm-1): 1690 

[ν(C=O)]; 1600 [ν(C=C)]. MS (FAB+, m/z): 347 [L’H]+. 

1H-NMR (CDCl3), δ (ppm): 10.5 (s), 2H (COH); 7.9-7.0 (m), 12H (aromatics); 5.2 

(s), 4H (aromatic-CH2-O).  

 

V.5.3.2 Template synthesis of the macrocyclic ligand L` 

A solution of tris(2-aminoethyl)amine (0.512 g, 1 mmol) in methanol (25 mL) 

was added dropwise to a refluxing solution of 2,2-(1,3-

phenylenebis(methyleneoxy))dibenzaldehyde (0.346 g, 1 mmol) and barium 

perchlorate (0.336 g, 1 mmol) in methanol (75 mL). The resulting solution was 

gently refluxed with magnetic stirring for ca. 4h. The solution was allowed to 

cool and NaBH4 (0.378 g, 10 mmol) was added; magnetic stirring was maintained for a 

further 2h period. The mixture was filtered off and evaporated to dryness. The 

residue was then extracted with water-chloroform. The organic layer was dried 

over anhydrous Na2SO4 and evaporated to yield a yellow oil that was dried under 

vacuum. 

C28N4O2H36.4H2O (L’). Anal. Calcd for C28N4O6H44: C, 63.15; H, 8.30; N, 10.53. 

Found: C, 62.90; H, 8.63; N, 10.85 %. Yield: 70.3%. IR (KBr, cm-1): 1601 [ν(C=C)]. 

MS (FAB, m/z): 461 [L’H]+.  

1H-NMR of L’ (CDCl3), δ (ppm): 7.7-6.7 (m), 12H (Ph); 5.0 (s), 4H (Ph-CH2-O); 

3.6 (s), 4H (Ph-CH2-NH); 2.6-2.0 (m), 12H (-CH2CH2); 1.7 (s) (-NH).  

13C-NMR (CDCl3), δ (ppm): 156.9-111.9, 18C (aromatics); 70.2, 2C (aromatic-

CH2-O); 49.1, 2C (aromatic-CH2-NH); 57.5-53.8, 6C (-CH2CH2). 
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V.5.3.3 Synthesis of the imine macrocyclic ligands L1 and L3: general 

method 

A solution of 8-hydroxyquinoline-2-carbaldehyde (0.069 g, 0.4 mmol) for L1 and 

(0.034 g, 0.2 mmol) for L3 in absolute ethanol (10 mL) was added dropwise to a refluxing 

solution of L (0.184 g, 0.4 mmol) and L’ (0.092 g, 0.2 mmol) in the same solvent (70 mL 

for L1 and 35 mL for L3). The resulting solution was gently refluxed with magnetic 

stirring for ca. 4h. The colour changed from yellow to orange in both cases. The solution 

was allowed to cool, filtered off to eliminate the solid precipitate, and then concentrated 

in the rotary evaporator. The resulting orange oil was stirred with acetonitrile (to 

eliminate possible excess of L or L’) and then with cold diethyl ether. The orange 

powder precipitates, later characterized as L1 or L3, were separated by centrifugation 

and dried under vacuum. 

C37N6O3H40.2H2O (L1) . Mp(ºC): 170-175; Anal. Calcd for C37N6O5H44: C, 

68.10; H, 6.74; N, 12.88. Found: C, 68.59; H, 6.10; N, 12.98 %. Yield: 73.3%. IR 

(KBr, cm-1): 1642 [ν(C=N)imine]; 1597, 1453 [ν(C=C) and ν(C=N)py]. MS (ESI, m/z): 617 

[L1H]+; MS (MALDI-TOF-MS, m/z): 616 [L1H]+. 

1H-NMR of L1 (CDCl3), δ (ppm): 8.2 (s), 1H, (HC=N)imine; 7.9-6.7 (m), 16H 

(aromatics); 5.6 (s), 1H (OH); 4.9(s), 4H (Py-CH2-O); 3.7 (m), 4H (Ph-CH2-NH); 2.0 (s) 

(-NH); 3.4-2.5 (m), 12H (-CH2CH2).  

C38N5O3H41.3H2O (L3). Mp(ºC): 165-170; Anal. Calcd for C38N5O6H47: C, 

68.15; H, 7.02; N, 10.45. Found: C, 68.20; H, 7.53; N, 10.08 %. Yield: 62.3%. IR 

(KBr, cm-1): 1641 [ν(C=N)imine]; 1600, 1453 [ν(C=C) and ν(C=N)py]. MS (FAB+, m/z): 

616 [L3H]+. MS (MALDI-TOF-MS, m/z): 616 [L3H]+.  

1H-NMR of L3 (CDCl3), δ (ppm): 8.4 (s), 1H (C=N)imine; 8.1-6.7 (m), 17H 

(aromatics); 4.5 (s), 1H (OH); 5.1 (s) 4H (Py-CH2-O); 3.8 (s), 4H (Ph-CH2-NH); 2.9-2.1 

(m), 12H (-CH2CH2). 
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V.5.3.4 Synthesis of the amine macrocyclic ligands L2 and L4: general 

method 

NaBH4
 was added in excess (20%) to a solution of L1 (0.123 g, 0.2 mmol) and 

L3 (0.062 g, 0.1 mmol) in methanol at room temperature. The resulting solutions were 

gently refluxed with magnetic stirring for 4h; within that time, the colour changed slowly 

from orange to pale yellow. The mixtures were filtered off and evaporated to 

dryness. The residues were then extracted with water-chloroform. The organic 

layer was dried over anhydrous Na2SO4 and evaporated to yield a yellow oil that 

was stirred with diethyl ether. The yellow powder formed was separated by 

centrifugation and dried under vacuum. These compounds were characterized as L2 

and L4. 

C37N6O3H42.2H2O (L2). Mp(ºC): 175-180; Anal. Calcd for C37N6O5H46: C, 

66.07; H, 7.14; N, 12.50. Found: C, 66.70; H, 6.90; N, 12.20 %. Yield: 45.3 %. IR 

(KBr, cm-1): 1597, 1451 [ν(C=C) and ν(C=N)py]. MS (ESI, m/z): 619 [L2H]+. MS 

(MALDI-TOF-MS, m/z): 619 [L2H]+.  

1H-NMR of L2(CDCl3), δ (ppm): 7.8-6.8 (m), 16H (aromatics); 5.9 (s), 1H (OH); 

5.3 (s) 4H (Py-CH2-O); 3.7-3.6 (m ), 4H (Ph-CH2-NH); 3.6-2.3 (m), 12H (-CH2CH2); 4.0 

(s), 2H (8-HQ-CH2NH). 

C38N5O3H43.8H2O (L4). Anal. Calcd for C38N5O11H59: C, 59.90; H. 7.75; N, 

9.20. Found: C, 60.57; H, 7.45; N, 8.85 %. Yield: 59.4 %. IR (KBr, cm-1): 1600, 

1453 [ν(C=C) and ν(C=N)py]. MS (FAB+, m/z): 618 [L4+H]+. MS (MALDI-TOF-

MS, m/z): 618 [L4H]+. 

1H-NMR of L4(CDCl3), δ (ppm): 8.0-6.5 (m), 17H (Ph); 4.0 (s) 1H, (OH); 5.0 (s) 

4H (Py-CH2-O); 3.7 (s), 4H (Ph-CH2-NH); 2,6-2,1 (m), 12H (-CH2CH2); 3.4 (s), 2H (8-

HQ-CH2NH). 
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V.5.3.5 General procedure for metal complexes with ligands L1 and L3 

Hydrate aluminum chloride (0.02 mmol) in ethanol (5 mL) was added drop 

wise to a stirred solution of L1 or L3 (0.02 mmol) in the same solvent (15 mL). The 

resulting mixture was gently heated and magnetically stirred for 4h. The solution was 

then concentrated in a rotary evaporator to ca. 5 mL. A small volume of diethyl ether (ca. 

3 mL) was slowly infused into the solution producing powdery precipitates. The products 

were separated by centrifugation and dried under vacuum. The compounds are air stable, 

soluble en absolute ethanol, methanol and dimethyl sulfoxide and insoluble in 

acetonitrile, ether and water. Attempts to grow single crystals of the complexes were 

unsuccessful.  

AlL1Cl3.5H2O (1). Colour: yellow; Anal. Calcd for C37N6O3H40Cl3Al.5H2O: C, 

52.88; H, 5.95; N, 10.00. Found: C, 52.33; H, 6.31; N, 9.45 %. Yield: 55.3 %. IR (KBr, 

cm-1): 1599, 1456 [ν(C=C) and ν(C=N)py]. MS (ESI, m/z): 619 [L1]+, 670 [Al2L1]+, 

775 [Al2L1Cl3]+, 847 [Al2L1Cl5]+. 

AlL3Cl3.6H2O (2). Colour: yellow; Anal. Calcd for C38N5O9H53Cl3Al: C, 53.24; H, 

6.18; N, 8.17. Found: C, 53.51; H, 5.90; N, 8.24 %. Yield: 59.2 %. IR (KBr, cm-1): 

1629 [ν(C=N)imin]; 1602, 1457 [ν(C=C) and ν(C=N)py]. MS (FAB, m/z): 765 

[Al3L3Cl2]+. 	
  

V.5.3.6 General procedure for complexes with the amine macrocycles L2 

and L4 

The appropriate metal salt (0.02 mmol) in absolute ethanol (5 mL) was 

added dropwise to a stirred solution of the ligand L2 or L4 (0.02 mmol) in the same 

solvent (15 mL). The resulting mixture was gently heated and magnetically stirred for 4h. 

The solution was then concentrated in a rotary evaporator to ca. 5 mL. A small volume of 

diethyl ether (ca. 3 mL) was slowly infused into the solution producing powdery 

precipitates. The products were separated by centrifugation and dried under vacuum. The 

compounds were air stable, soluble en ethanol, methanol and dimethyl sulfoxide and 

insoluble in acetonitrile, ether and water. Attempts to grow single crystals of the 

complexes were unsuccessful.  
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AlL2(Cl)3.2H2O (3). Colour: yellow; Anal. Calcd for C37N6O5H46Cl3Al: C, 56,25; 

H, 5,84; N, 10,66. Found: C, 56,83; H, 4,96; N, 11,32 %. Yield: 62,3 %. IR (KBr, cm-1): 

1604, 1457 [ν(C=C) and ν(C=N)py]. MS (ESI, m/z): 713 [AlL2Cl2]+. 

AlL4(Cl)3.5H2O (4). Colour: yellow; Anal. Calcd for C38N5O8H53AlCl3: C, 54,26; 

H, 6,30; N, 8,33. Found: C, 54,35; H, 5,74; N, 8,15 %. Yield: 52,8 %. IR (KBr, cm-1): 

1603, 1456 [ν(C=C) and ν(C=N)py]. MS (FAB, m/z): 618 [L4]+, 683 [AlL4Cl]+. 

CrL2(NO3)3.6H2O (5). Colour: yellow; Anal. Calcd for C37N9O18H54Cr: C, 46.05; 

H, 5.60; N, 13.07. Found: C, 46.28; H, 5.79; N, 13.45 %. Yield: 54.4 %. IR (KBr, cm-1): 

1601, 1457 [ν(C=N)py and ν(C=C)]; 839, 1384 [ν(NO3
-)].  MS (ESI, m/z): 619 [L2]+, 

696 [CrL2Na]+, 754 [CrL2Na(NO3)]+, 790 [CrL2 (NO3)2]+. 

CrL4(NO3)3.2H2O (6). Colour: yellow; Anal. Calcd for C38N8O14H47Cr: C, 51.17; 

H, 5.27; N, 12.57. Found: C, 51.23; H, 5.12; N, 12.87 %. Yield: 49.8 %. IR (KBr, cm-1): 

1601, 1459 [ν(C=C) and ν(C=N)py]; 840, 1383 [ν(NO3
-)]. 

Cu2L2(NO3)4.3C2H6O (7). Colour: green; Anal. Calcd for C43N10O18H60Cu2: C, 

45.62; H, 5.30; N, 12.37. Found: C, 45.56; H, 5.28; N, 11.90 %. Yield: 63.8 %. IR (KBr, 

cm-1): 1599, 1454 [ν(C=C) and ν(C=N)py]; 839, 1384 [ν(NO3
-)]. MS (ESI, m/z): 619 

[L2]+, 680 [CuL2]+, 766 [Cu2L2(H2O)]+, 806 [Cu L2(NO3)2]+, 822 [CuL2(NO3)2(H2O)]+, 

867 [Cu2L2(NO3)2]+. 

Cu2L4(NO3)4.3H2O (8). Colour: green; Anal. Calcd for C38N9O18H49Cu2: C, 43.60; 

H, 4.68; N, 12.04. Found: C, 43.25; H, 4.20; N, 12.04 %. Yield: 41.5 %. IR (KBr, cm-1): 

1602, 1458 [ν(C=C) and ν(C=N)py]; 840, 1383 [ν(NO3
-)].  MS (FAB, m/z):  679 

[CuL4]+.  

ZnL2(NO3)2.6H2O (9). Colour: yellow; Anal. Calcd for C37N8O15H54Zn: C, 48.50; 

H, 5.89; N, 12.23. Found: C, 48.50; H, 4.86; N, 12.44 %. Yield: 59.0 %. IR (KBr, cm-1): 

1600, 1454 [ν(C=C) and ν(C=N)py]; 839, 1384 [ν(NO3
-)]. (ESI, m/z): 619 [L2]+, 681 

[ZnL2]+.  

ZnL4(NO3)2.3H2O (10). Colour: yellow; Anal. Calcd for C38N7O12H49Zn: C, 

53.00; H, 5.69; N, 11.39. Found: C, 53.51; H, 5.32; N, 11.15 %. Yield: 68.3 %. IR (KBr, 

cm-1): 1606, 1458 [ν(C=C) and ν(C=N)py]; 838, 1383 [ν(NO3
-)].  MS (FAB, m/z): 639 

[L4Na]+, 680 [ZnL4]+, 701 [ZnL4H2O]+. 
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CdL2(ClO4)2.2C2H6O (11). Colour: brown; Anal. Calcd for C41N6O13H54Cl2Cd: C, 

48.16; H, 5.28; N, 8.22. Found: C, 48.11; H, 5.34; N, 8.51 %. Yield: 71.4 %. IR (KBr, 

cm-1): 1599, 1454 [ν(C=C) and ν(C=N)py]; 624, 636, 1087, 1109, 1121 [ν(ClO4
-)]. MS 

(ESI, m/z): 619 [L2]+, 731 [Cd L2]+, 929 [CdL2 (ClO4)]+, 942 [Cd2L2(ClO4)]+. 

CdL4(NO3)2.3H2O (12). Colour: brown; Anal. Calcd for C38N7O12H49Cd: C, 

50.25; H, 5.40; N, 10.80. Found: C, 50.70; H, 5.87; N, 10.07 %. Yield: 58.3 %. IR (KBr, 

cm-1): 1600, 1454 [ν(C=C) and ν(C=N)py]; 838, 1384 [ν(NO3
-)].  MS (FAB, m/z): 728 

[CdL4]+, 790 [CdL4(NO3
-)]+. 	
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VI.1 Abstract 

A 96-well plate-based platform in conjunction with an ultrasonic multiprobe of 

four tips was assessed to develop various fast proteomics workflows for gel-based 

proteomics. The use of such protocols reduce sample time and handling, allowing rapid 

processing whilst reducing the risk of contamination. The procedure reduces the time to 

indentify proteins separated by gel electrophoresis to just 8 min/each. In addition, the 

ultrasonic multiprobe was compared with the single probe as a tool to obtain high sample 

throughput in proteomics workflows entailing identification and/or quantification of 

proteins using mass-spectrometry based approaches. The 18-O labeling-based method 

was used to study the type of peptides extracted from the gels when the extraction was 

done with the aid of ultrasonic energy. The assessment was done in ten standard proteins 

separated by gel elecrophoresis. Two proteins obtained from D. desulfuricans, and from 

Cyprinus carpio, Split-Soret cytochrome c, and Vitellogenin respectively, were also 

indentified as a further proof-of-the concept.	
  

 

Keywords: ultrasonic, MALDI, vitellogenin, 18O, inverse labeling. 

 

 

 

 

My contribution to this work was the optimization of all experimental variables, MALDI-

TOF MS analysis and interpretation. 
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VI.2 Introduction 

Ultrasonication has been recently appointed as a powerful tool in mass 

spectrometry-based proteomics workflows for protein identification [1]-[7].  Ultrasonic 

energy can be used to enhance from hours to minutes protein denaturation, protein 

reduction, protein alkylation and protein digestion, the four mais steps of any common 

procedure nowadays used for protein identification relaying on mass spectrometry. 

Furthermore, ultrasonic energy can also be used to speed protocols relaying on 18O 

isotopic labeling, which is a widely used method to tracking changes in protein level 

expression as well as in sequencing of peptides by mass spectrometry-based techniques 

[6],[7]. As a matter of fact ultrasonic energy has been recently integrated in rapid sample 

processing for 18O-LC-MS-based quantitative proteomics [8]. 

Ultrasonic-based high throughput sample treatment for proteomics was recently 

reported for the treatment of liquid samples by joining a 96-well plate and an ultrasonic 

multiprobe.  The present work shows a step forward of this protocol by applying it to 

proteins separated by gel-based approaches and also using it to study in an 18O labeling-

based method the type of peptides extracted from the gels when the extraction is done 

with the aid of ultrasonic energy. The study was done through the identification of 10 

standard proteins and two proteins obtained from D. desulfuricans, and from Cyprinus 

carpio, Split-Soret cytochrome c, and Vitellogenin respectively. 

 

VI.3 Material and methods 

VI.3.1 Apparatus 

Protein digestion was done in a 96-well plate (Digilab-Genomic Solutions, USA). 

A vacuum concentrator centrifuge from UniEquip (Martinsried, Germany) model 

UNIVAPO 100H with a refrigerated aspirator vacuum pump model Unijet II was used for 

(i) sample drying and (ii) sample pre-concentration. A minicentrifuge, model 

Spectrafuge-mini, from Labnet (Madrid, Spain), and a minicentrifuge-vortex, model Sky 

Line, from ELMI (Riga, Latvia) were used throughout the sample treatment, when 

necessary. A SimplicityTM 185 from Millipore (Milan, Italy) was used to obtain Milli-Q 

water throughout the experiments.  
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VI.3.2 Ultrasonic devices 

(i) Ultrasonic probe, model UP 100H (dr. Hielscher, Teltow, Switzerland, 200 W, 

30 kHz ultrasonic frequency, 0.5 mm of diameter probe). 

(ii) Ultrasonic multi-probe from Branson Ultrasonics Corporation (USA), model 

SLPe (150 W, 40 kHz ultrasonic frequency, 1 mm diameter probe). The ultrasonic 

generator SLPe is equipped with a multi-probe detachable horn (model 4c15), with four 

tips for simultaneous ultrasonication of four samples and it was used in conjunction with 

a 96-well plate. 

VI.3.3 Standards and reagents 

The following protein standards were used: α-lactalbumin from bovine milk 

(≥85%), BSA (>97%) and carbonic anhydrase (>93%) from Sigma (Steinheim, 

Germany), albumin from hen white (>95%) from Fluka (Buchs, Switzerland). 

Chymotrypsinogen A, catalase bovine and aldolase from rabbit were standards for gel 

filtration calibration kit high molecular weight from Amersham Biosciences (Piscataway, 

USA).  

Low molecular weight standard protein mixture of glycogen phosphorylase b, 

bovine serum albumin, BSA, ovalbumin, carbonic anhydrase, trypsin inhibitor and α-

lactalbumin were purchased from Amersham Biosciences (Piscataway, USA). 

Thyroglobulin and Lactate dehydrogenase were purchased from Amersham Biosciences 

(Piscataway, USA) 

Carp vitellogenin standard was purchased from Biosense Laboratories (Bergen, 

Norway). 

Trypsin enzyme, sequencing grade was purchased from Sigma. All materials were 

used without further purification. α-cyano-4-hydroxycinnamic acid (α-CHCA) puriss for 

MALDI–MS from Fluka was used as MALDI matrix. ProteoMass™ Peptide MALDI-MS 

Calibration Kit (MSCAL2) from Sigma was used as mass calibration standard for 

MALDI-TOF MS.  

The following reagents were used for protein depletion: sodium chloride puriss. 

p.a. and magnesium chloride hexahydrate puriss. p.a. were purchased from Fluka; 
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ethylenediaminetetraacetic acid disodium salt dehydrate puriss. p.a. was from Riedle-de 

Haën (Seelze, Germany).  

The following reagents were used for protein digestion: acetonitrile, 

iodoacetamide (IAA) and DL-dithiothreitol (DTT) (99%) were purchased from Sigma; 

formic acid and ammonium bicarbonate (>99.5%) were from Fluka; trifluoroacetic acid 

(TFA, 99%) were from Riedel-de-Haën (Seelze, Germany); and urea (99%) was from 

Panreac (Barcelona, Spain). 

 

VI.3.4 Sample treatment 

VI.3.4.1 Protein separation by 1D-SDS-PAGE 

Amounts of protein ranging from 0.5 to 3.7 µg were dissolved in 5 µL of water 

plus 5 µL of sample buffer (5 mL of 0.5 M Tris-Base + 8 mL of 10 % SDS + 1 mL of β-

mercaptoethanol + 2 mL of glycerol + 4 mg of bromophenol blue in a final volume of 20 

mL in water) for analysis by sodium dodecyl sulphate polyacrilamide gel electrophoresis 

(SDS-PAGE) (10% 0.5 mm thickness). After gel electrophoresis (65 min, 120 V, 400 

mA), the gel was stained with Coomassie blue R-250 and destained in order to visualize 

the proteins bands. 

VI.3.4.2 In-gel sample treatments 

(i) Overnight method. For in-gel digestion optimization, 2.1 µg of BSA and 2.9 

µg of α-lactalbumin were loaded onto 10% SDS-PAGE gels. Coomassie Blue-stained 

protein bands were excised from the gels, cut into pieces and subjected to digestion. 

Excised gel bands were then washed with water (3 times with agitation/centrifugation, 

10min each), and dehydrated with acetonitrile (2 times, 3 min each + 1 time, 20 min with 

agitation/centrifugation) and dried in a vacuum centrifuge. Gel pieces were further 

rehydrated with 10 mM of DTT in 25 mM ammonium bicarbonate buffer and incubated 

10 min at 60 ºC for protein reduction. Then DTT solution was replaced by IAA 55 mM in 

25 mM ammonium bicarbonate buffer and incubated in the dark and room temperature by 

35 min. After protein reduction and alkylation gel pieces were dried and rehydrated in ice 
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bath in a 0.025 µg/µL solution of trypsin in 12.5 mM ammonium bicarbonate buffer, to a 

final volume of 25 µL, during 1 h. 

After the rehydration step, samples were digested overnight at 37 °C. Next, trypsin 

activity was stopped by the addition of 20 µL of 5% formic acid. The supernatant was 

withdrawn and retained, and the peptides were extracted from the gel pieces by adding 

50-100 µL of a mixture of acetonitrile/TFA (500 µL H2O+500 µL AC+1 µL TFA) and 

incubating them for 15 min at 37 ºC in a shaker. This extraction was done twice. Then, all 

supernatants were combined and evaporated to dryness in a vacuum concentrator 

centrifuge and finally the dried peptides obtained were reconstituted with 10 µL of 0.3% 

v/v formic acid. 

 (ii) Accelerated method.  this method, the protocol described above and referred 

as “overnight method” was followed but (i) washing steps (ii) alkylation, (iii) reduction, 

(iv) digestion of gel bands and (v) extraction peptides were done in 8 min (2 min each 

washing step, 30% ultrasonic amplitude, total of 3), 5 min (30% ultrasonic amplitude), 5 

min (30% ultrasonic amplitude), 4 min (25% ultrasonic amplitude) and 8 min (two 

extraction steps, 2 min each) respectively, using ultrasonication at 30 kHz, with a single 

probe or 40 kHz with the four tip multiprobe. 

	
  

VI.3.5 Case studies 

VI.3.5.1. Desulfovibrio desulfuricans ATCC27774 

Desulfovibrio desulfuricans ATCC27774 cells were cultured in sulfate-lactate 

medium. Cells were collected by centrifugation (8000 × g during 15 min at 4 ºC), 

resuspended in 10 mM Tris-HCl buffer and ruptured in a French press at 9000 psi. After 

centrifugation (10000 × g, 45 min) and ultracentrifugation (180000 × g, 60 min) the 

supernatant was dialyzed against 10 mM Tris-HCl buffer. Both proteins were isolated 

from the soluble extract using chromatographic columns (anionic exchange, 

Hydroxyapatite column and molecular exclusion chromatography). The purity of the 

proteins was evaluated by SDS-PAGE and UV-visible spectroscopy. All purification 

procedures were performed under aerobic conditions at 4 ºC and pH 7.6. Split-soret 

cytochrome c from Desulfovibrio desulfuricans ATCC27774 was in gel digested 
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according to the accelerated method described in VI.3.4.2. Protein identification was done 

using the PMF procedure by MALDI-TOF MS. 

VI.3.5.2. Plasmatic vitellogenin from Cyprinus carpio 

80 µL of plasma from Cyprinus carpio was diluted to 100 µL with cold PBS 

(Phosphate Buffer Solution). 300 µL of -20 ºC cold acetone were added into the diluted 

plasma solution and kept overnight on ice. The sample was centrifuged at 10000 g, 4 ºC 

for 30 min. The supernatant was removed and the pellet was suspended in 100 µL of 

buffer (10 mM Tris-HCl pH 7.4; 2% of SDS; 1% of β-mercaptoethanol). Amounts of 

delipidated plasma (5 µL) were mixed with 5 µL of sample buffer (5 mL of 0.5 M Tris-

Base + 8 mL of 10 % SDS + 1 mL of β-mercaptoethanol + 2 mL of glycerol + 4 mg of 

bromophenol blue in a final volume of 20 mL in water) for analysis by sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) (7.5% 0.5 mm thickness). 

After gel electrophoresis (65 min, 120 V, 400 mA), the gel was stained with Coomassie 

blue R-250 and destained in order to visualize the proteins bands. Vitellogenin was in gel 

digested according to the accelerated method described in VI.3.4.2. Protein identification 

was done using the PMF procedure by MALDI-TOF MS. 

VI.3.6 Inverse 18O labeling of peptides 

Protein BSA was used to study the effect of ultrasonication in the release of 

peptides from gels. BSA was separated by 1D-PAGE, and then submitted to the protocol 

described in section VI.3.4.2  (ii). Once the protein was digested, gel pieces were 

removed and the solutions containing the peptides were dried in a speed vacuum. Then, 

peptides obtained were recomposed in (i) normal water or (ii) 18O water and then both 

methods were compared following the inverse 18O labeling protocol as described by 

Wang et al [10]. 
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VI.3.7 MALDI-TOF MS analysis 

A MALDI-TOF MS model Voyager DE-PRO Biospectrometry Workstation 

equipped with a nitrogen laser radiating at 337 nm from Applied Biosystems (Foster City, 

USA), was used to obtain the PMF. MALDI mass spectra were acquired as recommended 

by the manufacturer and treated with the Data Explorer™ software version 4 series. Prior 

to MALDI-TOF MS analysis, the sample was mixed with the matrix solution. α-CHCA 

matrix was used throughout this work and was prepared as follows: 10 mg of α-CHCA 

was dissolved in 1 mL of Milli-Q water/acetonitrile/TFA (1mL+1mL+2µL). Then, 2 µL 

of the aforementioned matrix solution was mixed with 2 µL of sample and the mixture 

was shaken in a vortex for 30 s. Finally, 1 µl of the sample/matrix mixture was spotted on 

a well of a MALDI-TOF MS sample plate and was allowed to dry. 

Measurements were done in the reflector positive ion mode, with a 20 kV 

accelerating voltage, 75.1 % grid voltage, 0.002 % guide wire and a delay time of 100 ns. 

Two close external calibrations were performed with the monoisotopic peaks of the 

Bradykinin, Angiotensin II, P14R and ACTH peptide fragments (m/z: 757.3997, 

1046.5423, 1533.8582 and 2465.1989, respectively). Monoisotopic peaks were manually 

selected from each of the spectra obtained. Mass spectral analysis for each sample was 

based on the average of 500 laser shots. Peptide mass fingerprints were searched with the 

MASCOT [http://www.matrixscience.com/search_form_select.htmL] search engine with 

the following parameters: (i) SwissProt. 2006 Database; (ii) molecular weight (MW) of 

protein: all; (iii) one missed cleavage; (iv) fixed modifications: carbamidomethylation 

(C); (v) variable modifications: oxidation (M); (vi) peptide tolerance up to 150 ppm. A 

match was considered successful when the protein identification score is located out of 

the random region and the protein analysed scores first. 
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VI.4 Results and discussion 

VI.4.1 96 well plate method for proteins separated by gel electrophoresis 

The protein concentration loaded onto the gel was 2.1 µg/µL for BSA and 2.9 

µg/µL for α-lactalbumin. Results, including the values setting for each variable, are 

presented in Fig. VI.1. As may be seen, ultrasonic amplitude was found a critical 

parameter. For BSA protein, when the lower amplitude was used in the digestion step 

(10%), longer treatment times were required to obtain good results, whilst the highest 

amplitude used (50%) degrades the gel in such a way that protein identification by 

MALDI was not possible. In the case of the α-lactalbumin this problem was even worst 

since using the lower amplitude in the digestion step no identification was possible at all 

in the range time assessed (60s-240s), whilst for the highest amplitude the identification 

was only possible in times comprised between 120 and 240 s. These results could be 

explained on the basis of recent research in ultrasonic applications in medicine and drug 

delivery that has estimated the pressure at the tip of the jet generated by bubble collapse 

(cavitation phenomena) around 60 MPa [11]. This is high enough to penetrate small 

pores, such as the ones present in the gels in which proteins are separated. Hence, liquid 

jets may act as microsyringes, delivering the enzyme to a region of interest. However, the 

ultrasonic energy needed to do such delivering must be reached, and we hypothesized that 

this is the reason why the lower amplitude studied did not perform well, because it is not 

powerful enough to deliver the enzyme inside the gel, as it was the case for α-

lactalbumin. As the amplitude and time is increased, the enzymatic cleavage performs 

better for both proteins, until a maximum is reached. Then, the gel is degraded and the 

protein identification becomes difficult or impossible, as it was the case for both proteins 

for the highest amplitude and time studied. Gel degradation can be explained on basis on 

the fact that when a cavitation bubble collapses near the surface of a solid sample particle, 

micro-jets of solvent propagate toward the surface at velocities greater than 100 m s-1, 

causing pitting and mechanical erosion of the solid surface, thus leading to particle 

rupture (i.e., disruption) [12]. Although this process could be favorably used to enhance 

peptide release from the gel, at some point it becomes a problem interfering the 

subsequent analysis by mass spectrometry or even blocking HPLC columns. However, it 

is noteworthy that the multi-probe and the 96-well plate performed well for gel-based 

protein separations, once the process has been optimized. In addition, it was not found 
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differences between the two frequencies studied. Furthermore, the best results obtained 

with the multi-probe were not different from the ones obtained using the overnight 

protocol.  

 
Figure VI.1 Number of peptides matched and sequence coverage for BSA and α-lactalbumin as a 

function of time, amplitude and frequency of sonication. Proteins were separated by Gel 

electrophoresis. Peptides matched and sequence coverage for the overnight method was 42±6 and 

70±4 respectively for BSA and 11±2 and 51±1 for α-lactalbumin. 

 

To complete the study a set of 8 further proteins was mixed and separated using 

gel electrophoresis to proceed to protein identification through the ultrasonic method. 

Results showed in Table VI.1 demonstrate the successful accomplishment between the 

96-well plate and the multi-probe since all proteins were identified with similar protein 

coverage and number of peptides matched than using the overnight protocol. 
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Table VI.1 Number of peptides matched and protein sequence coverage for in gel-protein digestion 
by the overnight method and accelerated method. 

Protein 
theor. 

Mr 
(kDa) 

overnight method (n = 2)  accelerated method (n = 2)  

mascot 
score 

sequence 
coverage 

(%) 

no. of 
peptides 
matched 

mascot score 
sequence 

coverage (%) 

no. of 
peptides 
matched 

30 kHz 40 kHz 30 
kHz 

40 
kHz 

30 
kHz 

40 
kHz 

α-Lactalbumin 16.7 130±5 51±1 11±2 110±2 104±5 50±2 51±0 9±1 10±0 
Trypsin inhibitor 24.3 87±3 51±1 18±0 69±3 64±5 28±2 27±1 7±1 7±0 
Carbonic anhydrase 29.1 115±3 69±0 20±0 240±2 238±3 71±2 64±0 19±0 18±1 
Ovalbumin 43.2 100±2 49±6 20±1 82±2 84±5 50±2 44±4 16±2 15±0 
BSA 71.2 152±4 70±4 42±6 220±1 222±3 64±2 66±5 40±3 37±1 
Aldolase rabit 39.8 152±6 72±6 21±2 109±3 103±4 68±1 68±0 20±1 19±0 
Catalase bovine 60.1 98±4 43±2 26±2 218±2 220±0 37±4 43±0 22±1 24±0 
Phosphorylase b 97.7 92±5 66±1 64±1 298±1 305±3 48±3 52±2 40±2 38±1 
Thyroglobulin subunit*  310.0 194±8 28±1 76±6 188±2 194±6 28±1 25±7 80±2 81±1 
Lactate dehydrogenase 
subunit* 36.9 79±2 46±4 21±1 83±1 182±4 46±2 49±0 20±1 21±0 

Split-Soret cytochrome c D. 
desulfuricans 27.8 128±4 51±4 11±1 100±4 96±6 40±5 37±0 10±2 10±1 

Vitellogenin Cyprinus carpio 148.8 176±6 42±4 49±1 150±3 141±6 42±1 41±1 50±2 51±1 

* HMW-Native standard under denaturant conditions.   

 

A comparison of the total time and number of steps involved in the handling of the 

five sample treatments reported in this manuscript is presented in Table VI.2. As may be 

seen, the ultrasonic method with multiprobe allows for the treatment of 4 samples in 30 

minutes. This number can be exponentially increased using the new generation of 

multiprobes that allow treating 96 samples at once [11]. Hence, this method has a great 

potential for clinical purposes, where a high number of samples are generally handled 

daily. 

Table VI.2 Comparison of handling and time consumed for the five methods studied with the 96 
well plate ultrasonic method. 

 Denaturation Reduction Alkylation Digestion  Desalting 
Total 
steps 

Total 
time  

Proteins 
in gel 

Overnight 
5 min heating 

before 
electrophoresis 

10 min  35 min  12 hours no 25*  24 h 

Ultrasonic 
5 min  heating  

before 
electrophoresis 

5 min 5 min 4 min no 20**  30 min 

* Including: electrophoresis, band excision, 12 steps for gel washing, 10×3 min each and 2×20 min each, trypsin 
incubation on ice before digestion, peptides extraction (2 extractions) and evaporated to dryness (3 times). 
** Including: electrophoresis, band excision, 8 steps for gel washing, 2×2 min each, digestion and peptides extraction 
and evaporated to dryness (3 times). With the in gel ultrasonic digestion no incubation of trypsin on ice is needed. 
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VI.4.2 Effect of ultrasonication in the release of peptides from gels 

To investigate the role of ultrasonication in the release of peptides from gels, a set 

of experiments using the 18O isotopic labeling of the protein BSA was done to compare, 

the type of peptides released using the overnight, ON, or the ultrasonic, US, treatments 

[6],[7]. The same amount of BSA was loaded onto a gel, and the protein was in-gel 

digested, using the overnight or the ultrasonic protocol. The supernatants were withdrawn 

from the tubes and dried down in a vacuum centrifuge. Then samples were recomposed in 
16O or in 18O water. Since under conventional conditions, the yield of peptides extracted 

from a gel is protein-dependant and it varies for different peptides that originate from the 

same protein, we decide to use the inverse labeling as described by Wang et al [10] to 

ensure a correct identification of peptides extracted and unambiguous assessment of 

differential peptide extraction. To avoid any biased yields own to the sample treatment, 

all steps were exactly the same for the overnight or ultrasonic protocols, with the 

exception of the protein digestion step. 

 
Figure VI.2 The inverse labeling method for the unambiguous identification of peptides released 
from gels using the overnight or the ultrasonic digestion protocol. 
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Figure VI.2 shows the inverse labeling method for the unambiguous identification 

of peptides used. The result of this set of experiments are shown in Table VI.3, where 

may be seen that a total of 40 peptides were identified as BSA peptides. Interestingly, 

from those 40 peptides, 15 peptides were labeled either in the direct or in the reverse 

process, whilst 21 peptides from the total, were also identified but they were not labeled. 

This put forwards that after sample recomposition not all peptides are labeled. This result 

is in agreement with data published by other authors [13]. From this 21 non labeled 

peptides, 6 were observed in the direct and reverse method, suggesting that they are 

produced regardless of the digestion method used; 9 were found in the mixture US16O / 

ON18O and six were found in the mixture US18O / ON16O.  

 

  

Table VI.3. Results from the BSA 18O-inverse labeling experiments. All peptides were 
manually verified. (n=2) 

	
   No. of 
peptides 

 Peptide fragment 

Direct & reverse Labeled 
peptides 

US16O / ON18O and US18O / 
ON16O 

15±2 

(SEIAHR)H+;  (YLYEIAR)H+; (LVNELTEFAK)H+; 
(HPEYAVSVLLR)H+; (SLHTLFGDELCK)H+; 
(RHPEYAVSVLLR)H+; (YICDNQDTISSK)H+; 

(TCVADESHAGCEK)H+; (LGEYGFQNALIVR) H+; 
(HPEYAVSVLLRLAK)H+; (KVPQVSTPTLVEVSR) H+; 
(MPCTEDYLSLILNR)H+; (RPCFSALTPDETYVPK) H+; 
(LFTFHADICTLPDTEK)H+; (RHPYFYAPELLYYANK)H+ 

Direct & reverse non-labeled 
peptides 

US16O / ON18O and US18O / 
ON16O 

6±1 
(CASIQK)H+; (TPVSEKVTK)H+; (CCTESLVNR)H+; 
(DTHKSEIAHR)H+; (FKDLGEEHFK)H+; (TVMENFVAFVDK)H+ 

Labeled peptides from 
mixture 

US16O / ON18O 
3±1 

(GACLLPK)H+; (LCVLHEKTPVSEK)H+; 
(MPCTEDYLSLILNR)H+ Oxidation (M) 

Non-labeled peptides from 
mixture 

US16O / ON18O 
9±1 

(ALKAWSVAR)H+; (HLVDEPQNLIK)H+; (TVMENFVAFVDK)H+ 
Oxidation (M); (VTKCCTESLVNR)H+; (ETYGDMADCCEK)H+; 
(LKHLVDEPQNLIK)H+; (DDPHACYSTVFDK)H+; 
(AEFVEVTKLVTDLTK)H+; (YNGVFQECCQAEDK)H+; 
(HPYFYAPELLYYANK)H+; 

Labeled peptides from 
mixture 

US18O / ON16O 
3±0 (VLASSAR)H+; (ALKAWSVAR)H+ ; (HLVDEPQNLIK)H+ 

Non-labeled peptides from 
mixture 

US18O / ON16O 
6±1 

(LVTDLTK)H+; (LSQKFPK)H+; (IETMREK)H+; (SEIAHRFK)H+; 
(NECFLSHK)H+; (CCTKPESER)H+; (LKECCDKPLLEK)H+ 
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Therefore it can be concluded that some peptides are preferentially formed as a 

function of the digestion method. Thus, peptides (GACLLPK)H+; 

(LCVLHEKTPVSEK)H+; (MPCTEDYLSLILNR)H+ are formed in the overnight 

digestion, whilst peptides (VLASSAR)H+; (ALKAWSVAR)H+ ; (HLVDEPQNLIK)H+ 

are formed in the ultrasonic method. On the overall, both methods produced the same 

number of total peptides, c.a. 40, confirming that both methodologies work well for 

protein digestion. Another interesting finding is that protein modifications as consequence 

of the heating/cavitation caused by the ultrasonic energy were not found. For instance, no 

extra oxidations or carbamydomethylations were detected. 

These results confirm the utility of 18O labeling in relative proteomics discovering 

and confirms the usefulness of the combination of ultrasonication and a 96-well plate for 

proteomics applications.  

 

VI.5 Future prospects 

The speed, simplicity, high throughput and number of potential proteomics 

applications that can be developed jointing 96-well plate and ultrasonic multiprobes, it 

makes of this combination an ideal tool for robotic platforms. As an example, if a 

multiprobe of 96 tips was acomplisehd with a 96 well plate, the time need to identified a 

protein separated by gel electrophoresis could be reduced to just 20 s. Therefore 

developments in this area of research are anticipated. 

 

VI.6 Conclusions and perspectives 

It has been proven that the combination of a 96-well plate and an ultrasonic multi-

probe is a powerful tool in sample treatment for proteomics, allowing high sample 

throughput and a potentially enormous number of different proteomics applications. The 

huge variety of protocols that can be used with this accomplishment has it been 

demonstrated through different proteomics sample treatments for protein identification 

and 18-O based labelling. Sample preparation steps including destaining, washing, 

reduction & alkylation, digestion, spotting on MALDI targets or transfer to LC/MS input 

plates can be combined on a single automated platform making use of ultrasonication. 
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This allows for rapid processing, minimizes the risk of contamination and therefore 

reduces the chance of application errors and improves the quality of data. The results 

showed that for protein digestion low or high ultrasonic amplitudes must be avoided when 

using a 96 well plate and an ultrasonic multiprobe. We have not found differences in 

performance for protein identification when using ultrasonic amplitudes of 30 (single 

probe) or 40 kHz (multiprobe). 

 We have demonstrated that using the direct and reverse 18O labeling the 

effectiveness of different procedures for in-gel protein digestion can be compared in 

terms of number and type of peptides produced. In fact our findings showed a similar 

number of peptides obtained by either the overnight or the ultrasonic method. However, 

some peptides were preferentially formed for each digestion protocol. 
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VII.1 Conclusions 

 

The work presented in this thesis involves sample preparation adressed for mass 

spectrometry analysis by MALDI-TOF, to, somehow, contribute for the filing of the 

existing gap caused by the lack of standard protocols in some application areas of this 

mass spectrometry in the Laboratory of Analysis of the DQ-FCT-UNL. The results are 

detailed below. 

 

Ultrasonic energy was used as a tool to improve the protocols for the analysis of 

polymers by MALDI. Different ultrasonic devices were tested, namely the ultrasonic 

bath, UB; the sonoreactor and the ultrasonic probe. The device with the best performance 

was proven to be the ultrasonic bath. With this system it was assayed two different 

frequencies of sonication, namely 35 kHz and 130 kHz. The homogenization process with 

the last frequency for the PS 2000 Da in DHB matrix during 120 s, led to low Mw and 

Mn values, that were found statistically different from the values obtained for the sample 

homogenization using the standard method of reference (vortex mixing) and from the 

values giving by the polymer manufacturer. Despite of these results, when the UB at a 

sonication frequency of 35 kHz was used, the values for Mw and Mn obtained for PS and 

PEG in dithranol matrix were not statistically different from the ones acquired with 

vortex mixing or from the values recommended by the manufacturers. As a general role, 

the sonoreactor and the ultrasonic probe can be also used, but firstly needs to be clearly 

established by comparison with a standard mixing procedure, such as vortex, that they 

can be used without troubles in the sample preparation of a given polymer, since in this 

work the applicability of such devices was shown to be dependent of a series of factors, 

such as the type of matrix used and the sonication time employed. For PS analysis by 

MALDI the DHB matrix should not be used. For the analysis of PS 2000 Da, this matrix 

needs six times more Ag as cationic reagent than dithranol matrix, making necessary to 

discard the spectrum of the first 50 shots due to the high saline content of the mixture. In 

addition, it was found a high dependence on the analyte/matrix mixing procedure for 

DHB matrix. For instance, PS 2000 in DHB cannot be mixed with the ultrasonic bath at 

130 kHz with a sonication time of 120 s. Moreover, when the mass of the poly(styrene) 

was increased from 2000 Da to 10,000 Da, analysis with DHB matrix was not possible 

for any of the sample mixing procedures studied, even increasing the cationic agent six 

times more than the amount needed for the analysis of PS 10,000 Da in dithranol. For 
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PEG analysis in dithranol, significant differences were found for Mn and Mw values, 

between vortex mixing and the sonoreactor (30 s of sonication time) and the sonication 

probe (10 s or 30 s of sonication time), the most intense sonication devices. When the 

matrix for PEG was DHB, Mn and Mw values obtained with vortex mixing were 

statistically different than those obtained with the sonoreactor (30 s of sonication time). 

This pioneer work thus suggests that the UB with a sonication frequency of 35 kHz could 

be used for fast and high throughput sample treatment of polymers for their 

characterization. Nevertheless, this methodology needs of further confirmation and to be 

extended to more polymers, and for this reason more works dealing with this subject are 

anticipated. 

 

A new fluorescence β-naphtol derivative L, containing an N2O5 donor set was 

synthesised in excellent yield by a simple Schiff-base condensation reaction, and its 

photophysical properties have been evaluated in solution by absorption and fluorescence 

emission spectroscopy and by MALDI-based mass spectrometry. Its capacity to act as a 

potential sensor for Cu2+, Zn2+, Cd2+ and Hg2+, and the basic anions such as F-, Cl-, Br-, I- 

and CN-, was carried out in DMSO solution. Among the cations and anions studied, the 

probe has shown a remarkable selectivity for Cu2+, CN- and F-. This selectivity means that 

the new ligand could find an application as the building block to design a more complex 

chemosensor for these three ions. The interaction of L with Cu(II), CN- and F- was also 

studied using MALDI-TOF mass spectrometry (both in positive and negative mode). No 

peak was observed when the ligand was titrated with fluoride anion in stoichiometry 

concentrations appearing a peak assigned to [LF]- when the concentration of F- was 

increased. In the other hand, noteworthy changes in the mass spectrum of the ligand 

(either in the positive or negative mode) were observed upon titration with Cu2+ and CN-. 

The results from the MALDI studies suggest that L can be used to sense Cu2+ in positive 

mode, and cyanide in negative mode. DFT studies showed that the copper (II) complex is 

formed by the un-protonated L2- species as it was predicted experimentally. However, the 

anionic complexes with fluoride and cyanide take places via supramolecular interactions 

with the diprotonated L form.  

 

Four macrocyclic ligands containing an 8-HQ pendant arm were synthesized and 

fully characterized. The protonation behaviour and sensing capability of these ligands 

toward divalent, Cu(II), Zn(II), Cd(II), and trivalent, Al(III) and Cr(III) metal ions have 
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been studied by UV–vis and fluorescent emission spectroscopy. MALDI was used to 

characterize titrations of L2 and L4 with Zn(II) and Al(III) solutions. In all cases, the 

formation of the metal complexes was observed by the presence of the expected m/z 

peaks. These results confirm the formation of the metal complexes also in the gas phase. 

The results were the same in both cases. Addition of one metal equivalent led to the 

formation of the mononuclear complex. Addition of increasing amounts of metal ion did 

not produce any peaks attributable to the formation of dinuclear complexes. The results 

with Al(III) and Zn(II) confirm both the stoichiometry observed in the synthesized solid 

metal complexes, and the data obtained in solution by absorption and fluorescence 

emission spectroscopy. For ligand L2, in the presence of 1 and 2 equiv of Zn(II), peaks 

with m/z 619.3 are attributable to the protonated ligand [L2H]+, and with m/z 462.2 are 

attributed to the loss of the methyl-8-HQ group. Small peaks at higher mass values are 

attributable to species with two, three and four pendant arms, and they are indicative of 

the interaction of the quinoline group with the ligand in the gas phase After addition of 

the metal salt, the peak corresponding to the protonated ligand disappears, and new peaks 

at m/z 682.3, 524.2, and 441.2, attributable to the [L2Zn–H]+, [L2Zn–MeQuinoline]+, and 

[L2Na-pendant]+ species, respectively, are observed. Overall the results presented above 

confirms that MALDI can be used to follow titrations of metals and complexes, being an 

excellent complement to other traditional techniques such as UV–vis and fluorescent 

emission spectroscopy. 

 

It has been proven that the combination of a 96-well plate and an ultrasonic multi-

probe is a powerful tool in sample treatment for proteomics, allowing high sample 

throughput and a potentially enormous number of different proteomics applications. The 

huge variety of protocols that can be used with this accomplishment has been 

demonstrated through different proteomics sample treatments for protein identification 

and 18O based labelling. Sample preparation steps including distaining, washing, 

reduction & alkylation, digestion, spotting on MALDI targets or transfer to LC/MS input 

plates can be combined on a single automated platform making use of ultrasonication. 

This allows for rapid processing, minimizes the risk of contamination and therefore 

reduces the chance of application errors and improves the quality of data. The results 

showed that for protein digestion low or high ultrasonic amplitudes must be avoided 

when using a 96 well plate and an ultrasonic multiprobe. We have not found differences 

in performance for protein identification when using ultrasonic amplitudes of 30 (single 
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probe) or 40 kHz (multiprobe). We have demonstrated that using the direct and reverse 
18O labelling the effectiveness of different procedures for in-gel protein digestion can be 

compared in terms of number and type of peptides produced. In fact our findings showed 

a similar number of peptides obtained by either the overnight or the ultrasonic method. 

However, some peptides were preferentially formed for each digestion protocol. 
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VII.2 Future prospects 

The work we have developed along with other ones in the bioscope group related 

to ultrasonic energy and protein cleavage have received more than 600 references since it 

was published the first manuscript dealing with this idea in 2005. Currently our work 

opens the possibility to use the new ultrasonic platforms that allows the treatment of 96 

well plates at once. This device is called cup-horn and it entails all the advantages needed 

for a good work, namely simplicity, reduction of sample handling and time of sample 

treatment, furthermore, cross contamination is avoided. The most remarkable advantage 

is the large amount of samples that can be treated at once, namely 96. If this device 

performs as all the others already tested by our group, sample treatment in proteomics 

will be no more the bottleneck of proteomics pipelines. It must be stressed out the online 

applications, another field that has not yet been fully explored, and that it deserves future 

work. 

 

The promising use of ultrasonic energy as a tool to prepare polymers for their 

characterization by mass spectrometry is certainly a notable area of progress in science 

that was open by this research. The work ahead with this application will pass for its 

large-scale application to a large number of different polymers. 

 

MALDI has also demonstrated to be an excellent technique for characterization of 

small molecules, and therefore we expect to use it further in our facilities for this purpose. 

Furthermore, the possibility to use MALDI as a way to follow metals titrations with 

macrocyclic ligands opens the possibility of using MALDI as a method for the qualitative 

detection of metals in waters. This is something that is currently on-going in the 

laboratories of the Bioscope group. 

 


