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ABSTRACT 
	
 

As the list of drugs becoming perceived as neurotoxic is growing, its chronic use has been 

raising increased concern. The anti-human immunodeficiency virus (HIV)-infection drug 

efavirenz (EFV) clearly illustrates these circumstances, being a drug chronically used by both 

adults and children, for which neurotoxic effects have been consistently recognized. In order to 

develop preventive/management strategies, the understanding of the mechanisms underlying 

EFV-induced neurotoxicity is crucial towards the mechanistic-oriented discovery of suitable 

biomarkers for their evaluation. Theses biomarkers will be ethically obtained and ideally will 

be easily accessed from peripheral biofluids, allowing the evaluation of patient´s risk, the 

identification of risk factors and the evaluation of the success of toxicity minimization 

strategies. 

 

 

A significant number of individuals on the recommended dose of EFV have central nervous 

system (CNS) adverse reactions, which represent the main drawback of EFV. These adverse 

reactions also constitute a major factor for EFV discontinuation, limiting adherence to 

combined antiretroviral therapy and available therapeutic options. The prevention and 

management of these neuro-adverse reactions are hampered by their broad-spectrum nature 

(from sleep disturbances to mood-changes or memory impairment) that might involve distinct 

underlying mechanisms. Clinical trials have consistently described a high inter-patient 

variability for type, time to onset, duration and severity of the CNS complaints. Most of 

EFV-induced CNS-adverse reactions are reversible and tend to occur during the first weeks of 

treatment. However, EFV discontinuation continues to occur late in the course of treatment, 

due to the persistence of CNS toxicity which may negatively impact the health and quality of 

life of patients on a long-term basis. While short-term effects are usually transient, or if not 

they are normally a factor for drug switch, the long-term effects are much more difficult to 

predict and to manage.  

 

 

Patient´s individual metabolic capability is considered a factor on these neuro-adverse 

reactions, taking into consideration the high inter-patient variability in EFV concentrations and 

pharmacogenomic data. In particular, strong non-clinical evidence supports that EFV major 

Phase I metabolite, 8-hydroxy-efavirenz (8-OH-EFV) is a more potent neurotoxin than EFV 

itself. Nonetheless, the relevance of these findings to a clinically useful neuro-safety evaluation 
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has yet to be demonstrated. Mostly, due to difficulties on the quantification of 8-OH-EFV levels 

or of its reactive metabolites and/or adducts in brain, given the inaccessibility of the target 

tissue.  

 

 

Due to these premises, the overall goals of the present translational research project were to 

study the mechanism underlying EFV-induced long-term CNS adverse reactions and to identify 

peripheral markers for the risk assessment of EFV-induced neurotoxicity and for the evaluation 

of strategies for prevention and management of these toxic events. 

 

 

Towards these goals, firstly we have performed a clinical study aimed at investigating the 

CYP2B6 activity and 8-OH-EFV generation as an upstream event of mood changes in patients 

on long-term EFV exposure. A case-control study was performed, with two age-matched 

groups of HIV-infected male patients: a group without adverse CNS complaints and a group 

presenting mood changes. A high-performance liquid chromatography method was developed 

and validated to quantify the plasmatic concentrations of EFV, 8-OH-EFV and 8-hydroxy-

efavirenz-glucuronide. Secondly, aiming at disclosing the role of EFV biotransformation and 

Cyp2b auto-induction in the mechanism underlying EFV short- and long-term toxicity, we used 

an animal model to study tissue- and time-dependency of biotransformation, auto-induction and 

oxidative stress-related thiolomic signature. This evaluation was performed in brain (prefrontal 

cortex and hippocampus) and liver from Wistar male rats on short (10 days) and long-term (36 

days) EFV exposure. Third, in the same animal model we have evaluated the neurological, 

histopathological and molecular phenotype representative of long-term exposure to EFV. With 

this methodological approach the main findings arising from this project were:  

 

1. The metabolism into 8-OH-EFV is associated with EFV-related mood changes upon 

long-term EFV exposure, which suggests that the concentration of this metabolite is a 

suitable parameter to perform therapeutic drug monitoring aimed at 

preventing/controlling these manifestations; 

 

2. The time-course of Cyp2b mediated-EFV biotransformation justifies different 

mechanisms for its short- and long-term neurotoxicity. Upon long-term EFV exposure, 

a decrease in the neuronal function occurs in hippocampus, which is associated with 

learning and memory impairment. This is coincident with an accumulation of 8-OH-

EFV in plasma overtime, higher expression of Cyp2b in liver and a decrease in 

hippocampus; 
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3. Cyp2b auto-induction effects and oxidative stress-related thiolomic signature upon 

EFV exposure is tissue- and time-dependent and helps to explain why this antiretroviral 

is mainly biotransformed at the liver but it is barely hepatotoxic. 

 

 

If translated to clinical practice, these evidences will have important implications in 

EFV-prescription as well as short- and long-term neurotoxicity prevention and management.  

 

 

Keywords: 8-hydroxy-efavirenz, neurotoxicity, CYP2B6 drug biotransformation, thiolomic 

signature, therapeutic drug monitoring, memory impairment, mood changes. 
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RESUMO 
 

Como o número de fármacos com potencial neurotóxico tem vindo a aumentar, existe uma 

preocupação crescente com a sua utilização, principalmente de forma crónica.  

O fármaco antirretroviral efavirenz (EFV) ilustra bem estas circunstâncias. Trata-se de um 

fármaco destinado a uso crónico, pela população adulta e pediátrica, e cujos efeitos 

neurotóxicos têm sido amplamente descritos. Com o objetivo de desenvolver estratégias 

dirigidas à prevenção e minimização destes efeitos, torna-se crucial a clarificação dos 

mecanismos subjacentes à sua neurotoxicidade. De facto, é imperativo encontrar 

biomarcadores apropriados para avaliar a neurotoxicidade associada à administração do EFV. 

Idealmente, a obtenção destes biomarcadores deve ser realizada de forma eticamente aceitável 

e através da recolha de fluidos biológicos periféricos, assegurando a avaliação de estratégias 

implementadas com vista a minimização da toxicidade relacionada com o fármaco.   

	
	
O número de indivíduos medicados com a dose recomendada de EFV que desenvolvem reações 

adversas no Sistema Nervoso Central (SNC) é bastante significativo, sendo estas a principal 

desvantagem inerente ao uso deste fármaco. Estes eventos constituem também um fator 

limitante da adesão à terapêutica antirretroviral combinada por parte dos doentes e das opções 

terapêuticas disponíveis. O controlo e a prevenção do aparecimento destas reações de 

neurotoxicidade são dificultadas pela panóplia de efeitos que podem estar associados à 

administração deste fármaco (e.g. distúrbios do sono, alterações de humor, perda de memória) 

e, pela forte plausibilidade dos mecanismos que lhes são subjacentes serem distintos. Os 

estudos clínicos têm descrito de forma consistente a existência de uma elevada variabilidade 

inter-individual para o tipo, início, duração e gravidade das reações adversas. Estas são, na sua 

maioria, reversíveis e tendem a ocorrer durante as primeiras semanas de tratamento. Ainda 

assim, a descontinuação do fármaco, motivada pelo aparecimento destas manifestações, 

continua a observar-se em tratamentos de longa duração, condicionando um impacto negativo 

na saúde e qualidade de vida dos doentes. Se, por um lado, os efeitos a curto prazo são 

geralmente transitórios ou motivadores da interrupção da terapêutica com este fármaco, por 

outro, os efeitos a longo prazo são muito menos previsíveis e de difícil controlo. 

	
	
Tendo em consideração a elevada variabilidade inter-individual das concentrações de EFV e 

aos dados farmacogenéticos que têm vindo a ser descritos, a capacidade metabólica inerente a 

cada doente constitui um fator preponderante para o desenvolvimento das reações adversas. Em 

concreto, dados obtidos de estudos não-clínicos indicam que o principal metabolito de fase I 
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do EFV, o 8-hidroxi-efavirenz (8-OH-EFV), é uma neurotoxina mais potente que o próprio 

EFV. No entanto, até ao momento, não foi elucidada a relevância destes resultados numa 

avaliação clínica da sua segurança neurológica. Este facto deve-se principalmente à dificuldade 

em quantificar os metabolitos reativos do 8-OH-EFV e/ou os níveis de adutos formados por 

estes no cérebro, dada a inacessibilidade a este tecido alvo. 

 

 

Tendo em consideração as premissas descritas, os objetivos gerais delineados para o presente 

projeto translacional foram o estudo dos mecanismos subjacentes às reações adversas induzidas 

pelo uso prolongado do EFV e a identificação de possíveis marcadores periféricos que 

permitam a avaliação do risco de desenvolvimento de neurotoxicidade, bem como de 

estratégias destinadas à sua prevenção e controlo.  

 

 

Para a concretização destes objetivos foi primeiramente realizado um estudo clínico, com o 

intuito de investigar a atividade do CYP2B6 e a formação do 8-OH-EFV no desenvolvimento 

de alterações de humor, em indivíduos medicados com EFV de modo crónico. Em concreto, 

foi implementado um estudo caso-controlo, que envolveu dois grupos de doentes do sexo 

masculino, infetados pelo VIH e com idades comparáveis: um grupo sem queixas a nível do 

SNC e um outro com alterações de humor. Foi também desenvolvido e validado um método de 

cromatografia líquida de alta eficiência para quantificar as concentrações plasmáticas de EFV, 

de 8-OH-EFV e do seu metabolito glucurono-conjugado. Posteriormente, com o intuito de 

elucidar o papel da biotransformação do EFV e da sua auto-indução no mecanismo subjacente 

à sua toxicidade, foi usado um modelo animal. Avaliaram-se a biotransformação, a 

auto-indução e o perfil “tiolómico” relacionado com o stress oxidativo em diferentes tecidos e 

em animais expostos ao EFV por diferentes períodos. Em concreto, esta avaliação centrou-se 

no cérebro (córtex pré-frontal e hipocampo) e no fígado de ratos machos Wistar expostos ao 

EFV por um período curto (10 dias) e por um período longo (36 dias). Por último, foi realizado 

um estudo comportamental e uma avaliação histopatológica e molecular das duas áreas do 

cérebro de ratos expostos a EFV por 36 dias. Através desta abordagem metodológica foi 

possível obter as seguintes conclusões principais: 

 

1.   A formação de 8-OH-EFV está associada a alterações de humor induzidas pela exposição 

ao EFV por um longo período de tempo. Este facto sugere que a concentração deste 

metabolito é um parâmetro adequado para a prática da monitorização da terapêutica, tendo 

em vista a prevenção e o controlo do aparecimento destas manifestações; 
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2.  A biotransformação do EFV mediada pelo Cyp2b, ao longo do tempo, justifica a 

existência de mecanismos diferentes responsáveis pela sua neurotoxicidade a curto e longo 

prazo. A exposição continuada ao EFV por um longo período de tempo está associada a um 

decréscimo da função neuronal no hipocampo e diminuição da capacidade de aprendizagem 

e memória. Estes factos são coincidentes com uma acumulação de 8-OH-EFV no plasma e 

expressão de Cyp2b aumentada no fígado e diminuída no hipocampo; 

 

3.   A auto-indução do Cyp2b e o perfil tiolómico relacionado com o stress oxidativo são 

dependentes do tecido e do tempo de exposição ao EFV. Esta observação pode ajudar a 

explicar o porquê do EFV, apesar de ser maioritariamente metabolizado no fígado, não 

evidenciar um perfil hepatotóxico clinicamente relevante; 

 

 

A translação destas observações para a prática clínica poderá ter implicações importantes na 

prescrição do EFV, bem como na prevenção e controlo da neurotoxicidade associada a este 

fármaco a curto e longo prazo. 

 

	
Palavras-chave: 8-hidroxi-efavirenz, neurotoxicidade, CYP2B6, biotransformação de 

fármacos, perfil tiolómico, monitorização terapêutica de fármacos, perda de memória, 

alterações de humor. 
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INTRODUCTION 
 

1. Human immunodeficiency virus (HIV)-infection in brief 
 

At 35 years ago, the scientific community has known the human immunodeficiency virus (HIV) 

infection, unaware of the social and economic impact that it would have worldwide as well as 

it severity and transversely to sex, age and transmission route. The history of HIV-infection 

started in the early 80´s with a description of pneumonia and Kaposi’s sarcoma in five 

homosexual patients with compromised immune response (Gottlieb et al., 1981). Once 

classified as gay-related immune deficiency, the occurrence of this cluster of signs and 

symptomatology rapidly spread independently of sexual orientation, sex, age or race and was 

thereafter defined as acquired immune deficiency syndrome (AIDS) (Herek and Glunt, 1988).  

Two years were gone from those observations, when HIV was identified as the cause of AIDS 

(Barré-Sinoussi et al., 1983; Gallo et al., 1983) and several studies have presented the first 

cases of HIV-infected individuals among those that received blood transfusions, as 

hemophiliacs (CDC, 1982c); inmates, mostly drug addicts (Wormser et al., 1983); healthcare 

workers  (CDC, 1982b); woman (Harris et al., 1983) and children (CDC, 1982a). At the 

beginning of the epidemic, without available therapy, the survival rate after diagnosis was 

measured in weeks or months and healthcare delivery was only based in HIV diagnosis and on 

control and treatment of AIDS-related opportunistic infections or malignancies. During the next 

years this epidemic was considered an acute disease with serious implications in the patient’s 

life expectancy, which declined considerably. Since then, HIV was responsible for about 78 

million infections and more than 35 million deaths (UNAIDS, 2016). 

 

In short, the course of non-controlled HIV-infection starts with a clinical latent period, 

asymptomatic, with active viral replication associated with a progressive destruction of the 

cluster of differentiation 4 (CD4+) cells (AETC, 2014). This stage can last an average of 8-11 

years, depending on several factors including the person´s health status and life style.  In this 

latency period, there are enough immune cells to afford a response against the infection. But, a 

significant number of T cells are eventually destroyed and the rate of its production cannot 

follow the rate of its destruction, triggering the patient to the symptomatic stage. After this, an 

AIDS-defining condition can be defined (AETC, 2014). 
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2. The combined antiretroviral therapy and HIV-infection conversion into 

a chronic disease   
 

The urgency of achieving a treatment to stop this pandemic, triggered a wave of research 

combining laboratory and clinical sciences that allowed the discovery of HIV replication cycle 

(Fig. 1). This was the starting point for the massive pharmacological research and ultimately 

opened a new era for drug development. The Food and Drug Administration (FDA) approved 

the first antiretroviral drug (ARV), zidovudine, in 1987 (Brook, 1987). Only two years were 

passed between the in vitro tests of zidovudine anti-HIV efficacy and its approval (Mitsuya et 

al., 1985), showing the urgent need of a weapon to fight this pandemic. However, it was soon 

realized that its use in monotherapy would fail due to viral drug resistance (Larder and Kemp, 

1989). In the 90's, to surpass drug resistance, the association of three or more drugs acting on 

different steps of HIV cycle, the combined antiretroviral therapy (cART), was preconized and 

radically changed the natural history of HIV-infection (Palella et al., 2006). Nowadays, there 

are more than 20 available ARVs and it is estimated that an individual diagnosed with HIV-

infection at 20 years of age that starts cART will live 50 or more years after diagnosis 

(Dieffenbach and Fauci, 2011). The cART is an example of how the research and investment 

in drug development can change the natural course of a disease, with an unprecedented 

availability of several drugs in a short period of time, allowing the HIV-infection to be currently 

perceived as a chronic disease (Fauci, 2003; Mehellou and De Clercq, 2010). 

 

The cART comprises different alternatives of ARVs combinations, which clinicians try to be 

the most adapted to each patient. ARVs do not cure HIV-infection, but reduce significantly the 

amount of virus (viral load) in the patients’ body as well as the deleterious AIDS-related 

consequences. Nowadays, the European and American guidelines for HIV therapy recommend 

cART use at any CD4+ cell count or HIV stage (AIDSinfo, 2016; EACS, 2016). 

 

ARVs are distributed in six classes according to their mechanism of action in the different steps 

of HIV life cycle (Fig. 1). Efavirenz (EFV) (Fig. 2) belongs to the non-nucleoside reverse 

transcriptase inhibitors (NNRTIs) that inhibit reverse transcriptase in a non-competitive manner 

(De Clercq, 2004). The first-line cART is composed by three drugs, two of which are 

nucleos(t)ide reverse transcriptase inhibitors (NRTIs) plus one of the following options: a 

protease inhibitor (PI) boosted with ritonavir; a integrase strand transfer inhibitors (INSTI); or 

a NNRTI (AIDSinfo, 2016; EACS, 2016).  
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Figure 1. Schematic overview of the main steps of the human immunodeficiency virus (HIV)-life 

cycle and the targets for antiretroviral drugs.  The CCR5 antagonist (1), block the binding the viral 

glycoprotein 120 to the chemokine receptor 5 of the host cell; FI (2), fusion inhibitors bind to the viral 

glycoprotein 41 preventing the fusion of HIV with the host cell membrane; NNRTIs (4), non-nucleoside 

reverse transcriptase inhibitors, inhibit reverse transcriptase in a non-competitive manner; NRTIs (4), 

nucleoside/nucleotide reverse transcriptase inhibitors are analogues of the naturally occurring 

deoxynucleotides that first must be phosphorylated to their pharmacologically triphosphate derivate, to 

later competitively inhibit the virus reverse transcriptase; INSTIs (6), integrase strand transfer inhibitors 

target the integrase activity, which is the viral enzyme responsible for the integration of the viral DNA 

into the host cell genome; PI (13), protease inhibitors, block HIV protease, which is the responsible for 

cleavage precursor polyproteins to structural proteins (eg. p24) and functional proteins (eg. reverse 

transcriptase). In: Engelman and Cherepanov (2016). 

 

Occasionally, the cART regimens need to be altered - for example in case of virological failure, 

adverse reactions, pregnancy, co-infections or drug interactions - and alternative cART need to 

be adopted. The levels of HIV RNA (viral load) are the preferred method for monitoring the 

response to cART. There should be at least 1 log reduction in the viral load, preferably to less 

than 10,000 copies/ml, within 2-4 weeks after the beginning of cART (AIDSinfo, 2016; EACS, 

2016). If a lower reduction in viral load is observed or if it stays above 100,000 copies/mL the 

treatment should then be adjusted, by either adding or switching drugs. After six months, viral 

load should be maintained lower than 20 copies/mL (bellow quantification level). If it returns 

to 0.3-0.5 log of pre-treatment levels or there are two consecutive failures in attaining 
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undetectable value, the efficacy of cART is compromised and it should be changed. Viral load 

measurement should be repeated every 4-6 months in patients clinically stables (AIDSinfo, 

2016; EACS, 2016).  CD4+ count is also used for monitoring cART efficacy (importantly before 

starting therapy). When CD4+ drops to baseline or below 50% of increase from pre-treatment 

(approximately 30 cells.mm-3) then the cART should also be changed. CD4+ counts should be 

obtained every 3-6 months during periods of clinical stability and more frequently when 

symptomatic disease occurs (AIDSinfo, 2016; EACS, 2016). 

 

 

3. HIV-infection panorama in combined antiretroviral therapy era: a 

matter of antiretroviral toxicity 
 

At the end of 2015, the cART was available for 17 million people worldwide (UNAIDS, 2015). 

Chronic treatment with cART is presently unavoidable. Since the cART implementation, the 

causes of death of HIV-infected patients considerably changed from AIDS-related to 

non-AIDS-related diseases (Palella et al., 2006). This might be explained by the fact that 

patients live longer and several complications related with the normal aging process emerge at 

an earlier age, including cancer, cardiovascular, neurocognitive, liver and renal diseases (ATC, 

2008; Deeks and Phillips, 2009). Furthermore, treated patients have persistent 

infection/inflammation, residual viremia, compromised immune system that together with life 

style risk factors (e.g. smoke and alcohol), co-infections (e.g. hepatitis and tuberculosis), 

drug-drug interactions, and importantly, the chronic exposure to antiretroviral toxicity, put 

HIV-infected population at higher risk of premature aging (Deeks and Phillips, 2009). Thus, 

nowadays there is an increasing concern about the toxic effects induced by ARVs, in particular 

those arising from long-term use. The adverse reactions of ARVs have a negative impact on 

clinical outcomes, ultimately affecting the life quality and expectancy of the patients. The 

management of toxicity outcomes also requires additional hospital visits and admissions, 

increasing the economic burden on already strained medical care systems (Núñez et al., 2006).  

 

 

4. The antiretroviral Efavirenz  
 

4.1 Pros and cons 
 

EFV (Fig. 2) was approved by FDA in 1998 (Vazquez, 1998) and is currently one of the most 

widely used NNRTIs, by both adults and children (Vazquez, 1998).  
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This antiretroviral is prescribed in combination with abacavir/lamivudine (Kivexa®) with 

tenofovir/emtricitabine (Truvada®) or in one-pill fixed-dose combination with 

tenofovir/emtricitabine (Atripla®). The availability of one pill combination significantly 

improved cART adherence, a major predictor of cART success, due to the simplicity and the 

lower quantity of pills that patients have to take daily (Maggiolo, 2009; Airoldi et al., 2010). 

Additionally, EFV is an option during treatment with rifampicin for tuberculosis (AIDSinfo, 

2016). These facts together with the availability of a generic EFV and its consequent lower 

price justify the high prescription of this drug.  

Despite its benefits, EFV is associated to toxic effects that limit its use. For instance, based on 

animal studies and retrospective case-reports, FDA classified EFV as a pregnancy category D 

medication. In pregnancy this drug might be associated with neural tube and/or central nervous 

system (CNS) abnormalities (Ford et al., 2011). Thus, special care should be given to women 

on EFV in reproductive age. These women may conceive while on EFV-based cART and 

continue EFV therapy during the high risk first trimester, before their pregnancy is diagnosed. 

Nevertheless, women diagnosed in the second or third trimester of pregnancy needing cART 

can receive EFV without a malformation concern (Bristol-Myers Squibb, 2015). 

While liver and skin toxicity are less common (Phillips et al., 2002; Rivero et al., 2007), a 

significant number of individuals on the recommended EFV dose display CNS adverse 

reactions (Fumaz et al., 2005; Kenedi and Goforth, 2011; Apostolova et al., 2015b). These 

effects represent the main drawback of EFV and are a major factor for its discontinuation 

(Leutscher et al., 2013), limiting adherence and available cART options. EFV-CNS adverse 

reactions are of broad spectrum and consist mainly of sleep disturbances and other neurological 

symptoms (Kenedi and Goforth, 2011; Apostolova et al., 2015b). Notably, up to 35% of 

patients on EFV-containing cART manifest mood-changes symptomatology (Fumaz et al., 

2005; Tashima et al., 2008) and 40-50% present cognitive disorders, whereas 23-29% are 

related to memory (Lochet et al., 2003; Ma et al., 2016). In the few data available about EFV 

tolerability in children, the same CNS adverse reactions observed in adults were reported 

(Teglas et al., 2001; Tukei et al., 2012). 

Most of EFV-neuro adverse reactions occur at a snapshot in time, during the first weeks of 

treatment and soon they fade away (short-term toxicity) (Fumaz et al., 2005). However, they 

can persist for long-term in a significant proportion of patients, which may impact negatively 

patient’s quality of life and lead to later EFV discontinuation (Leutscher et al., 2013). In 

consequence of these adverse reactions, in the current year actualization, both European and 

American antiretroviral guidelines no longer recommend this NNRTI as first-line therapy as it 

has been since its availably in the market (AIDSinfo, 2016; EACS, 2016). 
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4.2 EFV pharmacology 
 

The recommended dose of EFV is the oral daily intake of 600 mg for adults and adolescents 

(AIDSinfo, 2016). For children up to 3 years old and with more than 10 kg, EFV dose should 

be adjusted to their weight (AIDSinfo, 2016). Steady state maximal concentration (Cmax) and 

area under the curve (AUC) are 4.07 mg/L (achieved in 3 to 5 h, Tmax) and 58.1 mg/L.h, 

respectively (Adkins and Noble, 1998). The half-life (t1/2) of EFV is 19 h after long-term 

prescription of EFV containing cART in HIV-population (Csajka et al., 2003), much shorter 

from what was described in non-HIV volunteers (40 – 55 h) (Adkins and Noble, 1998).  

 

EFV is highly bounded to plasma proteins (> 99%), mainly albumin. This NNRTI is widely 

distributed, and it has been reported to accumulate in cells, reaching intracellular concentrations 

above its 90% inhibitory concentration (Almond et al., 2005).   EFV is able to cross the blood-

brain barrier and reach the cerebrospinal fluid (CSF) with concentrations between 0.5 to 1.2% 

of its corresponding plasma concentrations. These concentrations represent the therapeutic 

concentration in brain, once these values are enough to inhibit HIV replication in CSF (Tashima 

et al., 1999; Best et al., 2011; Ene, 2011). The fact that EFV has a good penetration in brain is 

an advantage; since brain is an HIV reservoir, i.e., a compartment where HIV can persist for 

long periods of time in a quiescent state contributing to virus persistence.  

EFV is predominantly biotransformed at the liver by cytochrome P450 (CYP) 2B6, with 

CYP3A4, CYP3A5, CYP1A2 and CYP2A6 being minor contributors (Ward et al., 2003; 

Bélanger et al., 2009; di Iulio et al., 2009; Ogburn et al., 2010). CYP2B6 is mostly responsible 

for the hydroxylation of EFV into 8-hydroxy-efavirenz (8-OH-EFV) (Fig. 2) (Ward et al., 

2003). Subsequent metabolic pathways of this metabolite include phase II conjugations, 

primarily glucuronidation (major) by multiple UDP-glucuronosyltransferases (UGTs) (Bae et 

al., 2011) and sulfonation (minor) (Aouri et al., 2016). Further oxidation into 8,14-dihydroxy-

efavirenz (8,14-diOH-EFV, Fig. 2) is also possible by CYP2B6 isoform; however, this 

metabolite has been barely detected in man and no correlation with EFV-induced toxic events 

was identified to date (Belanger et al., 2009; Bae et al., 2011; Cho et al., 2011; Avery et al., 

2013a). The formation of 8,14-di-OH-EFV is somehow not consensual. In vitro studies have 

shown that this metabolite was not produced when the 8-OH-EFV was incubated in human 

liver microsomes (Ogburn et al., 2010). Accordingly, 8,14-di-OH-EFV is barely detected 

plasma. While the phase II 8,14-di-OH-EFV was found in urine, suggesting that 8-OH-EFV 

may first undergo a phase II conjugation step prior to the second hydroxylation at position 14 

(Aouri et al., 2016). Phase I aromatic hydroxylation of EFV, mostly by CYP2A6 (Ogburn et 
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al., 2010), can also yield 7-hydroxy-efavirenz (7-OH-EFV, Fig. 2), which is a minor non-toxic 

metabolite (Tovar-y-Romo et al., 2012). Phase I metabolites are present at low levels in plasma 

(Cho et al., 2011; Avery et al., 2013, Aouri et al, 2016) whereas the phase II metabolites 

(8-OH-EFV-glucuronide (8-OH-EFV-Glc), 7-OH-EFV-Glc and 7-OH-EFV-sulfate) are found 

at comparable or even higher levels than EFV itself (Aouri et al., 2016). In fact, 8-OH-EFV 

and 8-OH-EFV-Glc are the major phase I and phase II metabolites, respectively, and both have 

been quantified in plasma, urine and CSF (Aouri et al., 2016). The predominant mode of EFV 

elimination is through glucuronide metabolites in urine, with less than 1% of EFV eliminated 

in the unchanged form (U.S. Food and Drug Administration, 2015). 

	
EFV is an inducer of its own metabolism through CYP2B6 (Ngaimisi et al., 2010). This auto 

induction is dose-, duration of treatment- and genetically-dependent, resulting in lower EFV 

plasma concentrations (Ngaimisi et al., 2010; Habtewold et al., 2011). The induction period 

persists for long-term and is characterized by a growing 8-OH-EFV formation (Ngaimisi et al., 

2010). This induction period is also highly variable among patients in extension and magnitude 

(Ngaimisi et al., 2010). 

 

Being a substrate (Ward et al., 2003), inhibitor (Xu and Desta, 2013) or inducer (Robertson et 

al., 2008) of CYP450 and other enzymes and drug transporters, EFV has high potential for drug 

interactions. Some of these interactions and their management are well defined. An example is 

the co-administration of EFV and the tuberculostatic rifampicin, where a dose adjustment of 

EFV to 800 mg per day is recommended (Bristol-Myers Squibb, 2015).  

 

While the drug transporters influencing the pharmacokinetics (PK) of EFV and its metabolites 

still to be properly identified, it is known that EFV inhibits several members of multidrug 

resistance-associated protein from ATP-binding cassette (ABC) type C subfamily (Weiss et al., 

2007).  
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Figure 2. Efavirenz main biotransformation routes.  

7-OH-EFV, 7-hydroxy-efavirenz; 7-OH-EFV-Glc, 7-hydroxy-efavirenz-glucuronide; 7-OH-EFV-sulf, 

7-hydroxy-efavirenz-sulfate; 8-OH-EFV, 8-hydroxy-efavirenz; 8-OH-EFV-Glc, 

8-hydroxy-efavirenz-glucuronide; 8-OH-EFV-sulf, 8-hydroxy-efavirenz-sulfate; 8,14-diOH-EFV, 

8,14-dihydroxy-efavirenz; EFV, efavirenz; SULT, sulfotransferases; UGT, 

UDP-glucuronosyltransferases. 

 

This NNRTI has a narrow therapeutic window (Marzolini et al., 2001; Gutiérrez et al., 2005; 

Pereira et al., 2008) and exhibits considerable inter-individual variability in clinical response 

(Stahle et al., 2004), which might be related to adherence issues, PK variability and drug 

interactions. In the beginning of the twenty-century, almost in parallel with the implementation 

of cART, the utility of therapeutic drug monitoring (TDM) was proposed as a mean to optimize 

response to ARV therapy (Aarnoutse et al., 2003). TDM is a strategy based on repeated 

quantifications of drugs (drugs with a narrow therapeutic range) in patients’ blood, with the 

aim of optimize drug response and give to the clinician the rational for an individualized 

treatment (Back et al., 2002; Ivanovic et al., 2008). The application of TDM to EFV was based 

on the following criteria: efficacy/toxicity relationship, high inter-patient variability, low 

intra-individual variability, high potential to drug interactions and a narrow therapeutic window 

(Ghiculescu, 2008). Marzolini and colleagues (2001) have defined the therapeutic window of 

EFV between 1-4 mg/L. In concentrations below 1 mg/L patients are exposed to 

sub-therapeutic EFV concentrations and are at higher risk of developing HIV resistance, while 

concentrations above 4 mg/L are related to CNS adverse reactions toxicity (Marzolini et al., 

2001). This study has led to a definition of a minimal toxic concentration of 4 mg/L. However, 

there are conflicting data regarding the relationship between higher plasma concentrations and 
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EFV-induced neurotoxicity. While several studies support this relationship (Marzolini et al., 

2001; Gutiérrez et al., 2005; Rotger et al., 2005) others did not establish an increased risk of 

neurotoxicity for that concentration (Fumaz et al., 2005; Kappelhoff et al., 2005; van Luin et 

al., 2009a). 

 

 

5. Mechanisms of EFV-neurotoxicity – what is known? 
 

In the last years, several in vitro and in vivo studies have addressed plausible mechanism and 

key players on EFV neurotoxicity. Hereinafter, the major discoveries related to this topic are 

summarized. They are majorly based on in vitro and rodent approaches and related to EFV 

itself. Only recently, the role of EFV biotransformation into 8-OH-EFV has been focus of 

research.  

To date, the existing in vivo studies on EFV neurotoxicity were performed in different rodent 

strains and only three of them performed behavior evaluation. The first, in 2005, by O´Mahony 

and co-authors have showed that Wistar rats orally exposed to EFV (10 mg/kg) during 34 days 

displayed spatial memory deficits (using Morris Water Maze, MWM) and higher susceptibility 

to stress (evaluated in the open-field test, OF) (O'Mahony et al., 2005). In another study, using 

CF-1 mice, EFV exposure (10 mg/kg during 36 days by oral intake) was associated to an 

anxiogenic-like effect (evaluated by elevated plus maze, EPM), without affecting the 

spontaneous locomotion (OF test). A substantial impairment of aversive memory, assessed by 

the inhibitory avoidance test, was also reported by these authors (Romao et al., 2011). The most 

recent study described that EFV (range 10–30 mg/kg administrated intraperitoneally) induced 

a dose-dependent decrease in the open-field locomotor activity of male ND4 Swiss Webster 

mice and activated a significant head-twitch response in wild-type mice but not in 5-HT2A-KO 

mice (Gatch et al., 2013).   

There are different and probably non-exclusive mechanisms that have been related to these 

observations, such as increase of pro-inflammatory cytokines and serotonin modulation. The 

first was described in Wistar rats orally exposed to EFV (10 mg/kg) during 34 days.  The 

increased pro-inflammatory cytokines, interleukin 1β and tumor necrosis factor-α were 

partially reduced by administration of paroxetine, a selective serotonin reuptake inhibitor 

(O'Mahony et al., 2005). Also, in Sprague-Dawley rats exposed to a concentration of EFV three 

times higher than the therapeutic (30 mg/kg, intraperitoneally), was observed that EFV has a 

similar response as lysergic acid diethylamine (LSD) in drug discriminative procedure, that was 

completely blocked by a selective antagonist of serotonin 2A (5-HT2A) receptor (Gatch et al., 
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2013). Additionally, EFV induced head-twitch response in wild-type mice but not in 

5-HT2A-knockout mice (Gatch et al., 2013). Consubstantiated by radioligand binding assays, 

these authors suggested that EFV has an LSD-like effect in the manner that it can be a partial 

agonist of the 5-HT2A receptor (Gatch et al., 2013). The anomalous activity of 5-HT2A receptor 

have been associated with several psychiatric conditions, including memory and learning 

impairment, mood changes, schizophrenia, and drug addiction (Zhang and Stackman, 2015). 

 

EFV-induced neurotoxicity has also been associated to impairment in mitochondrial function 

and neural bioenergetics. In male CF-1 mice exposed to EFV (10 mg/kg) during 36 days, 

creatine kinase (CK) was diminished in cerebellum, hippocampus, striatum and cortex (Streck 

et al., 2008).  CK is important for energy homeostasis (Wallimann et al., 1992) and a decrease 

in CK activity is associated with neuronal loss following brain ischemia (Tomimoto et al., 

1993), neurodegenerative diseases (Aksenov et al., 2000). Regarding mitochondrial 

impairment EFV affects cortex, striatum and hippocampus, at the level of complex IV activity 

(Streck et al., 2008). In neural stem cells (NSC), EFV reduces cell proliferation, intracellular 

adenosine triphosphate (ATP), mitochondrial membrane potential as well as it increases lactate 

dehydrogenase (LDH) release, p38 MAPK (protein kinases that participate in the response to 

cell stress) activation and Bax expression (pro-apoptotic gene) (Jin et al., 2016). The authors 

replicated the reduction in proliferating NSCs in the subventricular zone of C57BL/6 mice (Jin 

et al., 2016). Other in vitro studies using SH-SY5Y (neurons) and U-251MG (glial cells) cell 

cultures, described a decrease in mitochondrial respiratory function, in a concentration-

dependent manner upon acute EFV exposure (10 µM and 25 µM) (Funes et al., 2015). EFV 

induced a drop in ATP production, which coincided with an increase in autophagy, 

mitochondrial fragmentation and depolarization (Funes et al., 2015). Cell viability/proliferation 

was only reduced in SH-SY5Y. The authors also reproduce these results in primary cultures of 

rat neurons and astrocytes, confirming mitochondrial dysfunction and a higher impairment in 

neurons than astrocytes, which were only slightly affected at a higher concentration of EFV 

(Funes et al., 2014). On opposite, no alterations in mitochondrial respiration were observed 

when rat primary astrocytes culture were exposed to 10 µM of EFV (Brandmann et al., 2013). 

EFV only compromised cell viability at 10-times higher concentration (100 µM) (Brandmann 

et al., 2013). Increasing evidence have been showing the role of mitochondrial dysfunction in 

CNS diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), dementia, 

multiple sclerosis, ataxia, encephalomyopathies, and depression (Maes et al., 1990; Witte et 

al., 2010; Moran et al., 2012; Chaturvedi and Flint Beal, 2013). 

 



Introduction 

13	
	

 EFV also promotes inducible nitric oxide synthase (iNOS) expression in cultured glial cells 

and generates nitric oxide (NO) (Apostolova et al., 2015a), which might affect mitochondrial 

function and enhance reactive oxygen species (ROS) generation in a concentration-dependent 

manner and in both neurons and glia (Funes et al., 2014). Neuroinflammation and oxidative 

stress are also common features in neurodegenerative diseases. In both AD and PD, oxidative 

stress activates inflammatory signaling pathways through several mechanisms, including 

exacerbating the production of ROS, mitochondrial dysfunction, activating microglia and 

astrocytes to release pro-inflammatory mediators (Whitton, 2007; Schapira, 2010; von 

Bernhardi and Eugenin, 2012).   

EFV increases soluble amyloid beta (Aβ) and β-secretase-1 (BACE-1) expression, that is a key 

enzyme with an important role in Aß formation (Cole and Vassar, 2007). The role of Aß plaques 

formation in AD development is well known (Golde et al., 2000; Sambamurti et al., 2002) as 

these peptides have recognized neurotoxic, oxidative and inflammatory potential (Bradt et al., 

1998; Murakami et al., 2005). By using a murine N2a cells transfected with the human 

“Swedish” mutant form of amyloid precursor protein (SweAPP N2a cells) and Tg2576 mice 

exposed to EFV (15 mg/kg in chow for a period of 10 days) it was shown that this drug is 

capable of promote BACE-1 activity and impair microglial clearance mechanisms, ultimately 

increasing Aß plaques production and leading to the disease profile of Alzheimer (Brown et 

al., 2014).  

More recently, in vitro studies have link neurotoxicity with EFV main metabolite, 8-OH-EFV. 

Using incubated rat hippocampal neuronal cultures with EFV or 8-OH-EFV or 7-OH-EFV it 

was shown that 8-OH-EFV was one order of magnitude more potent in inducing neurotoxicity 

than the others. Also, the minimal neurotoxic 8-OH-EFV concentration was three times lower 

than what is found in the CSF of HIV-infected patients (Tovar-y-Romo et al., 2012). The 

exposure to 8-OH-EFV, in dose-dependent manner (0.01 µM – 10 µM), caused significant 

dendritic spines damage and induced rapid calcium influx in neurons, mediated by L-type 

voltage-operated calcium channels. Neurons appeared to undergo a dramatic loss of membrane 

integrity and release of the calcium probe. Other study showed that 8-OH-EFV stimulates the 

glycolytic flux in rat primary astrocytes culture in a time- and concentration-dependent manner, 

with maximal effects at 10 µM, and enhanced both lactate release and glucose consumption 

(Brandmann et al., 2013). However, on contrary to what was expected no effects were observed 

regarding mitochondrial respiration at10 µM (Brandmann et al., 2013). Another mechanism to 

8-OH-EFV neurotoxicity was proposed by Harjivan and coauthors (2014), that reported the 

generation of toxic quinoid derivatives upon in vitro oxidation of 8-OH-EFV (Harjivan et al., 

2014).  
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6. An overlook on cytochrome P450 2B6 and efavirenz biotransformation 
 

CYPs isoenzymes are heme-containing mixed function oxidases, which are involved in the 

metabolism of several endogenous and exogenous substrates. This superfamily of isoenzymes 

is localized in the endoplasmic reticulum of cells. Currently, there are 17 mammalian CYP gene 

families described that translates into approximately 60 distinct CYP forms (Nelson, 1999),  

displaying species-, sex-, tissue- and age-specific expression patterns, which will influence 

differently drug metabolism, activation, and detoxification. CYP450 enzymes are well 

conserved throughout species and are derived from ~1.36 billion years old ancestral gene (Lin, 

1995). Members of the CYP2B subfamily have been identified among many mammalian 

species including man, monkeys, dogs, rabbits, and rodents (Martignoni et al., 2006). The 

family member CYP2B6 was firstly described in 1989 and it is located on the long-arm of 

chromosome 19 (Yamano et al., 1989). While primarily expressed at the liver, representing 2% 

to 10% of the total hepatic CYP450 content (Wang and Tompkins, 2008), CYP2B6 has also 

been detected in several extrahepatic tissues including brain, kidney, intestine, endometrium, 

peripheral blood lymphocytes and skin (Gervot et al., 1999; Janmohamed et al., 2001; Ding 

and Kaminsky, 2003).  

 

Studies using human liver microsomes have revealed that the formation rate of 8-OH-EFV 

displays considerable variability between samples (Ward et al., 2003), anticipating that EFV 

systemic exposure is likely to rely on inter-individual variability in CYP2B6 activity and with 

drug interactions involving this isoform. This has subsequently been corroborated by several 

pharmacogenetics studies focusing CY2B6 polymorphisms in HIV-infected patients on EFV 

(Nolan et al., 2006). Importantly, EFV hydroxylation into 8-OH-EFV was elected as 

phenotyping tool for the evaluation of CYP2B6-mediated metabolism for in vitro a clinical 

studies by Food and Drug Administration (U. S. Food and Drug Administration, 2016). 

 

Several factors contribute to CYP2B6 activity and might impact EFV biotransformation, such 

as genetics, sex, age, smoking and drug interactions (Zanger and Klein, 2013). Lamba and 

coauthors (2003), by using liver donors (from 80 ethnically mixed samples), showed higher 

amounts of CYP2B6 mRNA (3.9-fold), protein (1.7-fold) and enzyme activity (1.6-fold) among 

females compared to male subjects (Lamba et al., 2003). In another study including 235 

Caucasian individuals, female liver samples had 1.6-fold higher CYP2B6 expression levels 

than man, but this difference did not translate into higher protein or activity levels (Hofmann 

et al., 2008). Contrariwise, higher plasma concentrations were found in female on 

EFV-containing cART compared to male individuals, highlighting the contribution of other 
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factors as race (these results were observed in non-Caucasians), age or body fat into EFV 

concentrations  (Burger et al., 2006; Nyakutira et al., 2008; Mukonzo et al., 2009).  In fact, 

CYP2B6 phamacogenetics may have a higher contribution to EFV biotransformation than sex 

differences (Burger et al., 2006).  

 

 

6.1. Efavirenz pharmacogenetics 

	
The impact of CYP2B6 genetic variability on EFV response has been one of the most studied 

examples on pharmacogenetic utility in therapeutic response optimization. Most of the 

available data relate genetic variants with EFV concentrations. However, its relation with each 

type of CNS adverse reaction, with the treatment time-point that they occur (shortly after 

beginning or at long-term) and with PK of 8-OH-EFV still very poorly documented. 

 

The variant CYP2B6 516G>T (*6) has been associated to a reduction in enzyme activity and 

elevated EFV plasma concentrations (Arab-Alameddine et al., 2009; Mukonzo et al., 2009; 

Yimer et al., 2012). The studied populations are from different ethnic groups, among which 

CYP2B6*6 occurs at frequencies of 15% to over 60% (Zanger and Klein, 2013). As CYP2B6*6 

is most frequent in the African American and African populations, this has been raising concern 

about EFV dose adjustments in these populations (Zanger and Klein, 2013). CYP2B6*6 

(516G>T) was the genetic variant with the strongest association with EFV neurotoxicity 

(without discriminating the CNS adverse reaction). Also, it was associated to higher plasma 

concentrations at short-term treatment (Gounden et al., 2010) and after one year on EFV 

(Sanchez Martin et al., 2013). In other cohort, CYP2B6*6 was only associated with CNS 

adverse reactions at the first week of treatment but not at week 24 (Haas et al., 2004), when the 

auto-induction of biotransformation period is already near equilibrium (Ngaimisi et al., 2010).  

CYP2B6*6 was associated with a lower magnitude of the auto-induction of EFV 

biotransformation and to a lower 8-OH-EFV formation (Ngaimisi et al., 2010).  

 

Other functionally alleles of CYP2B6 have been studied, for example *18, which is also 

responsible for a reduced expression and activity of the enzyme and its associated with higher 

EFV concentrations (Zanger and Klein, 2013). On the contrary, CYP2B6*22 is responsible for 

a gain of function (higher expression and activity) (Rotger et al., 2007), but until now no 

relation with EFV, 8-OH-EFV or neurotoxicity was investigated.  
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In a limited number of studies, CYP3A4 and CYP2A6 allelic diversity were also shown to 

influence EFV PK variability, especially in CYP2B6 poor metabolizers (Arab-Alameddine et 

al., 2009). The CYP2A6 polymorphisms are rare among Caucasians and more frequent in 

African populations. The variants CYP2A6*10, *17 and *9 are responsible for a decrease in 

protein activity and increased plasma concentrations of EFV (Nakajima et al., 2006; Kwara et 

al., 2009b).  

 

Most of the pharmacogenetic studies have so far been focused on genetic variations of CYP450 

enzymes, but genetic variations in nuclear receptors, drug transporters or conjugation enzymes 

can also contribute to the observed variability in EFV disposition. Genetic variants in 

constitutive androstane receptor (CAR) (540C>T) contribute to early treatment discontinuation 

of EFV-based regimens (Wyen et al., 2011) and to lower EFV plasma concentrations (Cortes 

et al., 2013). In fact, the induction of CYP2B6 by EFV is promoted by the upregulation of this 

receptor (Meyer Zu Schwabedissen et al., 2012). The UGT2B7 enzyme genetic variants might 

also contribute to variations in EFV plasma concentrations, particularly UGT2B7*1 (low 

enzyme activity), which is responsible for an increase in EFV plasma concentration (Kwara et 

al., 2009a). The 4036A>G and 4036G>G genotypes of ABCB1 were significantly associated 

with lower EFV plasma concentrations, while the ABCB1 1236C>T and 1236T>T genotypes 

were associated with higher EFV concentrations (Swart et al., 2012a).  

 

	
6.2. CYP2B6 substrates, inhibitors and inducers 
 

The number of drugs recognized to be metabolized by CYP2B6 has been continuously 

increasing. This isoenzyme is responsible for the biotransformation of several therapeutic drugs 

that include antiepileptic (e.g. phenytoin (H. Wang et al., 2004)); anticancer (e.g. prodrug of 

cyclophosphamide (Roy et al., 1999)). Bupropion has been considered the probe substrate for 

CYP2B6 activity (Faucette et al., 2000; Hesse et al., 2001). CYP2B6 also metabolizes drugs 

of abuse as nicotine (Yamazaki et al., 1999) and 

3,4-methylenedioxy-methamphetamine (MDMA/ecstasy) (Kreth et al., 2000)); pesticides (e.g. 

chlorpyrifos), pollutants (e.g. benzene) and neurotoxic contaminants (e.g. 

1-methyl--4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)) (D. Lewis, 1996). Anandamide, 

testosterone and serotonin (Rosenbrock et al., 1999; Fradette et al., 2004; Sridar et al., 2011) 

are endogenous substrates of this enzyme.  

 

Among CYP2B6 inhibitors, triethylenethiophosphoramide (thioTEPA) is a strong inhibitor 

(Rae et al., 2002) and clopidogrel, ticlopidine and prasugrel are weak inhibitors (Nishiya et al., 
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2009).  The antiretroviral tenofovir, which might be combined with EFV in cART (AIDSinfo, 

2016) and the antifungal voriconazole are also weak inhibitors (weak) of CYP2B6 (U.S Food 

and Drug Administration, 2016). 

 

Besides EFV, several drugs can induce CYP2B6, being phenobarbital the most recognized 

(Gervot et al., 1999). Others examples include rifampicin (Faucette et al., 2004), phenytoin 

(Wang et al., 2004) and carbamazepine (Oscarson et al., 2006). The ARVs nevirapine, which 

is never co-administrated with EFV (AIDSinfo, 2016) and ritonavir (only administrated in baby 

doses to HIV-infected patients) are also CYP2B6 inducers (Faucette et al., 2007). 

CYP2B6 expression is regulated by both CAR (Sueyoshi et al., 1999) and pregnane X (PXR) 

(Goodwin et al., 2001) receptor. When activated by inducers, these nuclear receptors are 

transported from cytoplasm to the nucleus, bind to DNA and increase CYP2B6 transcription 

(Meyer zu Schwabedissen et al., 2012). The target genes of CAR and PXR broadly overlap and 

both receptors interact with the same response elements in target gene promoters (Smirlis et 

al., 2001). It is also known that together with EFV, nevirapine, carbamazepine, phenytoin 

preferentially and directly interacts with CAR. CAR-mediated EFV auto-induction is 

compartment-specific, occurring at liver and peripheral blood monocular cells (PBMC) but not 

at intestine (Meyer zu Schwabedissen et al., 2012).  

 

 

6.3. Brain CYP2B6   

	
CYP2B6 in the human brain are expressed in a cell- and region-specific manner and possibly 

have different putative roles within the brain (Miksys et al., 2003; Dutheil et al., 2009). 

CYP2B6-expressing brain cells include neurons and astrocytes (Miksys et al., 2003). Together 

with the blood brain barrier (BBB), they create microenvironments in which CYP2B6 play a 

significant role in the local metabolism of substrates (Miksys and Tyndale, 2002) and may 

induce different responses to drugs and their metabolites. For example, most of CYP2B6 

inducers have been studied at the hepatic microsomes (Faucette et al., 2004), while scarce 

information exists about induction in the brain. In human brain CYP2B6 is inducible by 

nicotine and alcohol (Miksys et al., 2003).  
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6.4. Rat CYP2B  
 

Whereas tissue availability makes difficult to study CYP2B6 regulation in man, several 

similarities make the rat a suitable animal model in drug metabolism studies. CYP2B family is 

similar between humans (CYP2B6) and rodents (Cyp2b1 and Cyp2b2), with high homology 

and sharing substrates (Miksys et al., 2000). Similarly, to human brain, Cyp2b1/2 is also present 

in rat brain in a tissue- and cell- dependent manner (Miksys et al., 2000). Its expression is 

mainly regulated by CAR in man (Sueyoshi et al., 1999) and rat Cyp2b has also been described 

to be regulated by the orthologous CAR (Muangmoonchai et al., 2001). The prototypal 

CYP2B6 inducer phenobarbital has been proved as a Cyp2b inducer in rat (Ganem et al., 1999) 

as well as there is Cyp2b induction in brain by nicotine (Miksys et al., 2000), phenobarbital 

(Schilter et al., 2000)  and phenytoin (Rosenbrock et al., 1999). 

 

 

7. Bioactivation of 8-hydroxy-efavirenz – a plausible mechanism for EFV 

neurotoxicity 

	
In vitro studies have recently supported the plausibility of 8-OH-EFV to be bioactivated. When 

exposed to oxidative conditions (by the oxidative agent Frémy’s salt, which is frequently used 

to obtain quinones from phenolic compounds), the 8-OH-EFV was considerably more prone to 

oxidative degradation than 7-OH-EFV, yielding a quinone-imine derivative (Fig. 3) (Wanke et 

al., 2012; Harjivan et al., 2014). Despite the possibility of a catechol intermediate to be formed 

upon 7-OH-EFV oxidation, no quinoid derivative was obtained, under similar oxidative 

conditions. In contrast, a stable metabolite was obtained. These contrasting behaviors under 

oxidative conditions may explain the distinct toxicities of the two phenolic EFV metabolites 

observed in primary rat neuron cultures (Tovar-y-Romo et al., 2012). In fact, quinoid species 

(quinone and quinone-imines) are reactive electrophiles (as Michael acceptors) and can easily 

react with nucleophiles from macromolecules (e.g., proteins and DNA) and generate covalent 

adducts (Bolton et al., 2000; Monks and Jones, 2002). Additionally, due to their pro-oxidant 

activity and redox cycling, these quinoid intermediates are involved in the formation of reactive 

oxygen species. Therefore, the role of quinoid derivatives to electrophilic/oxidative stress, is 

frequently involved in the onset of toxic events. Many electrophilic quinoid species can disrupt 

brain function (Lopachin and Decaprio, 2005). One example is the oxidation of dopamine or 

L-dihydroxyphenylalanine-(L-DOPA) to a quinone metabolite, that is neurotoxic via formation 

of covalent adducts with proteins (Asanuma et al., 2003).Notably, EFV has been associated 

with selective genotoxicity in brain, but not in heart, liver or PBMCs, supporting the hypothesis 
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of DNA-adducts formation in CNS compartments (de Oliveira et al., 2014). This observation 

was true for mice exposed to EFV (orally treated with 10 mg/kg EFV) during 36 days (chronic 

administration), but not to those exposed only to a single-dose (acute administration).  

 

 

Figure 3. Distinct behaviors of EFV Phase I metabolites, 7-OH-EFV and 8-OH-EFV, under 

oxidative conditions in vitro. Contrasting with 7-OH-EFV, the main EFV metabolite, 8-OH-EFV, 

affords reactive quinoide metabolite under oxidative conditions. The capacity of these reactive 

metabolites to form covalent adducts with proteins and of promoting oxidative/electrophilic stress may 

explain the role of 8-OH-EFV bioactivation in the onset of EFV-induced neurotoxic events. 7-OH-EFV, 

7-hydroxy-efavirenz; 8-OH-EFV, 8-hydroxy-efavirenz; 8,14-diOH-EFV, 8,14-dihydroxy-efavirenz; 

EFV, efavirenz;  

	
	
It is well known that covalent modifications negatively impact structure and/or function of 

proteins and thereby interfere with energy metabolism, axonal transport or presynaptic 

neurotransmitter release. Therefore, protein adducts are involved in primary pathophysiological 

brain processes (Asanuma et al., 2003; Lopachin and Decaprio, 2005). Moreover, the main 

targets of these reactive metabolites are cysteine residues within proteins, which have a 
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sulfhydryl/thiol group (-SH) (Dickinson and Forman, 2002), and the redox status of brain thiols 

is determinant for neurotransmission (LoPachin and Barber, 2006).  

 

Thiols with high nucleophilic reactivity are found in diverse synaptic proteins (Fig. 4). Briefly, 

during a synapse, the action potential in the presynaptic nerve depolarizes the presynaptic 

membrane, opening the voltage-gated Ca2+ channels. The rise of Ca2+ causes the fusion of the 

plasma membrane with the transmitter-filled synaptic vesicle, followed by the release of 

neurotransmitter into the synaptic cleft by exocytosis. The transmitter molecules diffuse across 

the synaptic cleft, bind to the receptor in the postsynaptic membrane and thus modulate the 

excitability of the cell. On the presynaptic membrane occurs the retrieval of the synaptic vesicle 

by endocytosis and the refill of the vesicle with neurotransmitters (Siegel et al., 2006). In this 

process many critical steps exist (e.g., ligand-gated ion flux, receptor binding, membrane 

fusion, presynaptic release of neurotransmitter) that are influenced by the redox state of the 

sulfhydryl groups (Barber and LoPachin, 2004). In the case of presynaptic release of 

neurotransmitters, the neural soluble N-ethylmaleimide-sensitive factor attachment protein 

receptor (SNARE) complex (involved in the vesicle-membrane fusion (Sudhof and Rizo, 

2011)) and the N-ethylmaleimide-sensitive fusion (NSF, involved in the dissociation of 

SNARE after vesicle fusion (Whiteheart et al., 2001)) are cysteine rich. In fact, through mass 

spectrometry analysis, the formation of acrylamide adducts with NSF was observed, which 

might be responsible for reduced NSF activity and synaptosomal neurotransmitter release, and 

increased SNARE complex in acrylamide exposed synaptosomes (Barber and LoPachin, 2004). 

The vulnerability of synapses to toxicants action is also related to a higher rate of NO 

modulation and relatively slow turnover of NO in neuronal tissue (Esplugues, 2002). 

Additionally, the nerve terminal lacks the ability to initiate transcription based cytoprotective 

responses (LoPachin and Barber, 2006).  

 

 
Figure 4. Cysteine sulfhydryl groups of synaptic proteins and synaptic activity regulation.  

NO, nitric oxide; CYS, cysteine; -SH, sulfhydryl group. 
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Thiols have important roles in metabolism and homeostasis of the biological systems, as the 

maintenance of the antioxidant system and in the detoxification of several molecules and 

xenobiotics (Bald et al., 2004; Prakash et al., 2009). Also, most protein thiols have 

non-catalytic functions, such as regulation of protein activity or protein folding (Jacob et al., 

2003). Both redox signaling and sulfhydryl homeostasis are important features in the context 

of brain diseases (Sabens Liedhegner et al., 2012). 

The –SH group exist in low molecular weight thiols (LMWT), e.g., as glutathione, and in 

cysteine residues of proteins (Dickinson and Forman, 2002). LMWT can be found in their free 

reduced form (RSH) (e.g., glutathione (GSH), its precursor cysteine (CysSH), and its product 

of degradation cysteinylglicine (CysGlySH)) and as disulfides (RSSR). This latter form include 

homodisulfides, formed between two identical thiols (e.g., cystine (CysSSCys), glutathione 

disulfide (GSSG)) and heterodisulfides/mixed disulfides, formed between two different thiols  

(Rossi et al., 2009). GSH is the major non-protein thiol involved in antioxidant defenses and 

its redox status is critical for a variety of biological process including cell regulation, 

inflammation, and apoptosis (Bojes et al., 1999; Rahman and MacNee, 2000; Guoyao Wu et 

al., 2004).  

Protein thiols include the sulfhydryl groups of cysteine and protein mixed disulfides with thiols 

as cysteinylglycine (protein cysteineglicinylation, PSSCysGly), cysteine (protein 

cysteinylation, CysSSP) and glutathione (protein glutathionylation GSSP), referred as protein 

S-thiolation (RSSP) (Eaton, 2006). The largest pool of LMWT in human plasma is the 

CysSH)/CysSSCys redox couple while in cells is GSH, mainly in its reduced form (Rossi et 

al., 2009). Therefore, S-glutathionylation occurs mainly in intracellular proteins whereas S-

cysteinylation is predominantly in the extracellular compartments (Rossi et al., 2009). In human 

plasma, the concentration of protein sulfhydryl groups is much higher (mM range) than LMWT 

(µM range) (Mansoor et al., 1992; Giustarini et al., 2006).  Protein S-thiolation can be 

reversible or irreversible; both cases are associated with important biological functions and 

brain pathological states (Cooper et al., 2011). Several factors can influence this linkage; from 

the enzymes involved e.g. glutaredoxin enzymes (Dalle-Donne et al., 2009) or glutathione S-

transferases (GST) ( which can also be glutathionylated) (Townsend et al., 2009) to the 

accessibility of cysteine residues (Newman et al., 2007). It is not completely understood if this 

modification serves for the activation of oxidative sensitive signaling pathways (Dalle-Donne 

et al., 2003; Baty et al., 2005) and/or as an adaptive protection response from irreversible 

oxidation of thiol groups of cysteine residues (Seres et al., 1996; Grant et al., 1999; Dalle-

Donne et al., 2005a; Dalle-Donne et al., 2005b; Dalle-Donne et al., 2006). 
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Thesis outline 
 

The results of this thesis and their discussion are divided in three chapters. Chapter 1 comprises 

the results from the clinical study performed in HIV-infected individuals. This chapter is an 

original article published in Toxicology Letters. In Chapter 2 are presented the results 

regarding the study of time- and tissue-dependence of EFV biotransformation, performed in an 

animal model. This chapter is submitted for publication. Chapter 3 contains the results 

regarding neurological, histological and molecular evaluation performed in an animal model 

long-term exposed to EFV. This last chapter is being prepared for publication. Lastly, it is 

presented the final considerations regarding all the work here discussed. 
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GENERAL AND SPECIFIC AIMS  
	
 

Which were the main five facts that represented the starting points for our study design? 

1. Despite the correlation between EFV and CNS adverse reactions was consolidated for 

a long time, the mechanisms underlying these events were yet to be elucidated;  

2. These neuro-adverse reactions are variable among patients in type, severity, time of 

onset and persistence.   

3. EFV clearance is highly variable among patients and higher EFV concentrations were 

related with EFV neuro-adverse reactions. Nonetheless, the benefit of therapeutic drug 

monitoring and dose adjustment for the minimization of neuro-adverse reactions was 

not consensual. 

4. CYP2B6 polymorphisms are associated to high inter-patient variability in EFV 

clearance. The 8-OH-EFV is the main Phase I metabolite generated through CYP2B6 

activity. 

5. There was a demand for a suitable animal model that could allow to understand the 

mechanisms underlying EFV-CNS adverse reactions.  

 

 
Facing these facts, the general aim of this thesis was to study EFV biotransformation as an 

upstream event of the mechanisms underlying EFV-induced CNS adverse reactions. 

Additionally, it was aimed to identify mechanistically oriented markers of EFV-CNS adverse 

reactions that allow neurotoxicity risk assessment as well as the evaluation of strategies for the 

optimization of EFV use. 

To achieve these aims a translational approach was carried out by performing a clinical study 

with HIV-infected patients on EFV and an in vivo animal model of Wistar rats exposed to EFV. 

 

The specific aims of the present work are the following: 

 

1. Develop and validate a method for the quantification of EFV and its main metabolite;  

2. Measure 8-OH-EFV plasma concentrations and phenotype CYP2B6 activity in a case-

control study of HIV-infected patients on long-term combined antiretroviral therapy-

containing EFV with or without mood changes; 

3. Investigate the time-dependency of EFV biotransformation via CYP2B6 activity in 

Wistar rats with short (10 days) and long (36 days)-term EFV exposure;  

4. Explore the tissue-dependency of EFV biotransformation via CYP2B6 activity, 

comparing two brain areas (prefrontal cortex and hippocampus) with the liver; 
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5. Determine EFV-induced short- and long-term oxidative stress-related thiolomic 

signature and its tissue-dependence; 

6. Investigate the behavioral phenotype of Wistar rats exposed to long-term EFV; 

7. Compare prefrontal cortex and hippocampus histological changes, synaptic and 

neuronal function induced by long-term EFV exposure. 
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CHAPTER 1 
Efavirenz biotransformation as an up-stream event of mood changes in HIV-

infected patients 
 

 

1.1 SUMMARY 

	
EFV is a drug of choice for adults and children infected with the human immunodeficiency 

virus. Notably, up to 35% of patients on EFV suffer from mood changes.  

This work aimed to investigate EFV biotransformation into 8-OH-EFV as an up-stream event 

of mood changes and to evaluate the suitability of 8-OH-EFV biomonitoring for the 

minimization of these manifestations. A case-control study with two age-matched groups of 

HIV-infected male patients was performed in a group without adverse central nervous system 

complaints (28 patients) and a group presenting mood changes (14 patients). The plasma 

concentration of non-conjugated 8-OH-EFV was higher in patients with mood changes 

(p=0.020). An association between EFV and 8-OH-EFV-Glc was found (Spearman r=0.414, 

p<0.010), only within therapeutic EFV concentrations. This correlation was not observed in 

patients with toxic (> 4 mg/L) plasma concentrations of the parent drug. We conclude that 

metabolism to 8-OH-EFV is associated with EFV-related mood changes, which suggests that 

the concentration of this metabolite is a suitable parameter for therapeutic drug monitoring 

aimed at controlling these manifestations. Moreover, our data suggest that 8-OH-EFV is able 

to cross the blood-brain barrier and that the peripheral detoxification of 8-OH-EFV by 

glucuronidation may be inhibited by toxic EFV concentrations. 

 

 

1.2 MATERIALS AND METHODS  

 

1.2.1 Patients  
	
The study protocol received prior approval from the Ethics Committee of Centro Hospitalar de 

Lisboa Central, EPE (115/2013). Patients gave their written informed consent in accordance 

with the Declaration of Helsinki (attachment #1).  Compliance was controlled by the clinician.  

All patients were male adults, with documented HIV-infection, on EFV-containing cART 

(600 mg once daily) for at least one month prior to the study and regardless of past therapeutic 

history. Patients that fulfilled the inclusion criteria were sequentially included during 12 

months. Whenever present, the psychiatric effects including mood changes (anxiety, agitation, 
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euphoria, mental confusion, paranoia, hallucinations, and/or depression) were recorded 

according to the evaluation by the clinician in charge and the self-reported complaints made by 

the patients. For each EFV-treated patient with mood changes (study group, 14 patients) two 

age-matched EFV-treated patients without any CNS complaints were selected (control group, 

28 patients). Exclusion criteria were having AIDS-defining conditions and compliance issues. 

The following data were also gathered for each patient: age, time on EFV-containing cART, 

antiretroviral co-medication, time between blood sampling and last EFV dose intake, viral load, 

CD4+ T-cell count (attachment #2). 

Blood samples (2 mL) were collected into ethylenediaminetetraacetic acid (EDTA)-containing 

tubes. Plasma was obtained by centrifugation at 3000 g for 10 min, at 4 ºC.  Samples were 

stored at -80 ºC until further analysis. 

 

 

1.2.2 High performance liquid chromatography method: development 

and validation  

	
1.2.2.1 Materials 
 

EFV was kindly provided by Dr. Frederick A. Beland (National Center for Toxicological 

Research, Arkansas, USA). The 8-OH-EFV and 7-OH-EFV metabolites were synthesized as 

described previously (Harjivan et al., 2014). The 8,14-diOH-EFV metabolite was obtained 

from Toronto Research Chemicals Inc. (Canada). The pure compounds used for method 

interference screening were obtained from the NIH AIDS Reagent Program (Protocol 

PT090513.01). Rifampicin was kindly supplied by Aventis Pharma (Mem Martins, Portugal). 

β-Glucuronidase (Type VII-A from E.coli, E.C. 3.2.1.31, 1000 U/mL) was purchased from 

Sigma-Aldrich (St. Louis, MO, USA). n-Hexane, acetonitrile, methanol, tert-butyl methyl ether 

and  sodium acetate were supplied by VWR (Belgium). Formic acid was purchased from Carlo 

Erba (Milano, Italy). Calibrants and quality control samples were prepared using a pool of 

plasma from healthy volunteers provided by Instituto Português do Sangue, Lisbon, Portugal, 

under protocol FCM/IPS-P-0207/CD/3HT/sr.  

 

 

1.2.2.2 Stock solutions, standard solutions and sample pre-treatment 
	
Calibration standards (CSs) were prepared by successive dilutions to obtain eight different 

concentrations in plasma, 0.1 to 10 mg/L for EFV and 0.25 to 10 mg/L for 8-OH-EFV.  
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Quality control (QC) samples were prepared from a distinct stock solution by successive 

dilutions to obtain final concentrations in plasma of 5, 1.5, and 0.25 mg/L (QC1, QC2, QC3, 

respectively) for EFV and 5, 2.5, and 1.5 mg/L (QC1, QC2, QC3) for 8-OH-EFV.  

Aliquots of plasma samples from patients, CSs and QCs (600 µL) were heated at 60 oC for 60 

min, for virus inactivation, before handling at room temperature and then 2 mL sodium acetate 

(0.2 M, pH 6.8) was added. One aliquot was treated with β-glucuronidase (60 µL, 1000 U/mL) 

and the other without the enzyme (60 µL of deionized ultrapure water) and both were incubated 

at 37 oC, for 60 min. Analytes were extracted with 7.5 mL of tert-butyl methyl ether and the 

organic phase was isolated and dried under vacuum (-80 kPa, at 60 ⁰C). The dried residue was 

reconstituted in 200 µL of acetonitrile: 0.1% formic acid buffer (1:1) plus 2 mL n-hexane and 

the mixture was homogenized and centrifuged. The aqueous phase was analyzed by high 

performance liquid chromatography (HPLC).   

	
	
1.2.2.3 High-performance liquid chromatography  
	
The separation of the analytes by HPLC was performed on an Agilent 1100 Series equipment 

(Agilent Technologies, Santa Clara, CA, USA), using a reversed-phase Luna C18 column (250 

mm ×4.6 mm; 5 µm; 100 Å; Phenomenex, Torrance, CA, USA). The mobile phase consisted 

of 0.1% formic acid buffer (pH 2.65) (A, 65%) and acetonitrile (B; 35%), delivered at a flow 

rate of 1.2 mL/min for the first 5 minutes. Then the percentage of solution A was gradually 

decreased to 55% for 10 min and maintained at this value for a period of 16 minutes. Finally, 

this percentage was gradually diminished to 49% during 5 minutes and maintained for the 

subsequent 7 minutes.  The column temperature was set to 30 °C, the injection volume was 100 

µL, and ultraviolet (UV) absorbance was monitored at 246 nm. 

 

 

1.2.2.4 Method validation 
	
The linearity, lower limit of quantification (LLOQ), carry-over effect, accuracy, intra- and 

inter-assay precision, and recovery of the method, as well as the stability of samples after two 

sequential freezing cycles at -80 ºC, were evaluated.  The validation criteria followed standard 

procedures for bioanalytical methods (European Medicines Agency, 2011; Services, 2013).  

The interference of plasma compounds, 7-OH-EFV and 8,14-diOH-EFV, and other 

antiretroviral drugs (abacavir, atazanavir, darunavir, emtricitabine, lamivudine, lopinavir, 

raltegravir, ritonavir, saquinavir, tenofovir and zidovudine) with EFV and 8-OH-EFV was also 
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evaluated. Due to the common co-administration with antiretrovirals, the interference of the 

anti-tuberculosis drug rifampicin was also assessed.  

 

	
1.2.3 Data analysis 
 

Systemic exposure to EFV and 8-OH-EFV was assessed in terms of absolute concentrations 

and metabolite ratios. The concentrations of 8-OH-EFV-Glc (expressed in mg/mL) were 

calculated as the difference between the analyte concentrations obtained with and without 

β-glucuronidase treatment, corrected for the molecular weight change upon conjugation.  

Statistical analysis was performed using Graph Prism® 5.0 (GraphPad Software Inc., San 

Diego, CA, USA). Data were expressed as the mean ± standard error of the mean (SEM), 

median (interquartile range; IQR), percentage or coefficient of variation (CV), whenever 

applicable. To test normality among groups, the Shapiro-Wilk test was used. The comparisons 

between the groups were performed using the Mann Whitney test. The F-test was used to 

explore differences between the slopes of the calibration curves in the method validation.  

 

	
1.3 RESULTS 

 

1.3.1 Method Validation 
 

Under our HPLC conditions, 8-OH-EFV (eluting at 30 minutes) and EFV (eluting at 

41 minutes) were well separated (not shown). With the exception of lopinavir, which co-eluted 

with EFV, no interference from the other tested drugs was observed at the retention times of 

EFV or any of its metabolites. This did not affect our measurements, since none of the patients 

included in the study were on lopinavir-containing cART. 

The evaluation of linearity was performed using CSs ranging from 0.25 to 10 mg/L for 

8-OH-EFV and from 0.1 to 10 to mg/L for EFV. The linear regression model showed to be the 

most suitable for fitting a function to the experimental data (Run Test p > 0.05). The 

concentration of the standard samples significantly influenced the chromatographic signal area 

(F tests p < 0.001) for the two analytes. The correlation coefficient was > 0.99 for both 8-OH-

EFV and EFV. For the calibration curves of both analytes, the 95% confidence interval for the 

intercept contained zero. The average back-calculated concentrations were close to the 
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expected theoretical values at each tested concentration and presented differences lower than 

12% for both analytes.  

The intra- and interassays of multiple measures of each standard showed a CV lower than 11% 

for both EFV and 8-OH-EFV.  

The LLOQ of the method was 0.1 mg/L for EFV and 0.25 mg/L for 8-OH-EFV and no carry-

over effect or significant deviation from the nominal concentration after two freezing cycles 

were observed. 

For both analytes, the accuracy ranged between 89-101%, the intra- and interassay precision 

between 2-11%, and recovery was higher than 90%. 

 

 

1.3.2 Patients 

	
A total of 42 male patients (14 with mood changes) were included in the study. The most 

prevalent mood change was anxiety, in 71% of the patients.  

Anthropometric and clinical data of the patients are presented in Table 1. There were no 

differences between groups regarding race, age, time on EFV and time between sampling and 

last EFV intake.  The patients had no detectable viral load and their immunologic (CD4+ T cell 

counts) and hepatic condition (alanine aminotransferase) did not differ between groups. 

Hepatitis C co-infection occurred in three patients from the control group. Smoking and 

alcohol intake habits were self-reported, but the distribution was similar in the control and study 

groups. 
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Table 1. Anthropometric and clinical data. 

 

Control group: HIV-treated patients without any CNS complaint; Study group: HIV-treated patients presenting 

mood changes. Data are presented as median (IQR) or number (%). a χ2 test. b Mann–Whitney-U-test. ALT, alanine 

aminotransferase; EFV, efavirenz; ns, not significant. 

 

 

The plasma concentrations of EFV, 8-OH-EFV, and 8-OH-EFV-Glc are presented in Table 2. 

No differences between groups were found in EFV levels. Two patients from the control group 

and one from the study group had EFV concentrations higher than 4 mg/L, the proposed 

minimal toxic concentration (Marzolini et al., 2001).  

 

Patients with mood changes had higher plasma concentrations of 8-OH-EFV than those in the 

control group and this represented the only significant difference in analyte levels found 

between groups. The 8-OH-EFV/EFV ratio tended to be higher in the study group, although 

the difference did not reach statistical significance.  

The major metabolite found in circulation was 8-OH-EFV-Glc in both groups. Its concentration 

was 11-fold higher than that of 8-OH-EFV in the control group and 8-fold higher in the study 

group.  

 

	
	
	

Parameter Control Group Study Group p 
value 

Number of patients 28 14  
Non-Caucasians (%) 14 7 ns a 

Age (years) 44 (36 - 52) 42 (36 - 51) ns b 
 

Alcohol intake 
(%) 

No 46 69 ns a 
Social 32 23 ns a 

Chronic 21 8 ns a 
Smokers (%) 50 31 ns a 

Time on EFV (years) 4 (2 - 7) 5 (2 - 10) ns b 
CD4+ T-cell count (cells/mm3) 626 (494 - 798) 610 (464 - 778) ns b 

ALT (U/L) 29 (20 - 39) 27 (19 - 38) ns b 
Time between sampling and last EFV 

intake (h) 
17 (16 - 19) 17 (15 - 19) ns b 
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Table 2. Plasma concentrations of efavirenz, 8-hydroxy-efavirenz and 
8-hydroxy-efavirenz-glucuronide. 

Analyte Control Group 
28 patients 

       Study Group 
            14 patients 

p 
value 

EFV (mg/L)         1.55 (1.38 - 2.11) 1.88 (1.50 - 3.11) ns 

8-OH-EFV (mg/L)         1.04 (0.80 - 1.69) 1.69 (1.03 - 3.19) 0.020 

8-OH-EFV-Glc (mg/L)         11.74 (6.15 - 14.05) 13.85 (9.17 - 27) ns 

8-OH-EFV/EFV         0.68 (0.40 - 0.92) 0.81 (0.31 - 1.84) ns 

 

Control group: HIV-treated patients without any CNS complain; Study group: HIV-treated patients 

presenting mood changes. Data are presented as median (IQR). Mann–Whitney U-test. EFV, efavirenz; 

8-OH-EFV, 8-hydroxy-efavirenz; 8-OH-EFV-Glc, 8-hydroxy-efavirenz-glucuronide; ns, not 

significant.   

 

We found that the 8-OH-EFV and EFV concentrations were not related. Conversely, within the 

therapeutic range of EFV concentrations (1 - 4 mg/L) (Marzolini et al., 2001) the present data 

indicate a positive association between the concentrations of 8-OH-EFV-Glc and EFV 

(Spearman r = 0.414, p < 0.010) (Fig. 5). This correlation was not observed at toxic (> 4 mg/L) 

concentrations of EFV (Fig. 5). 

 

	
Figure 5. Correlation between EFV and 8-OH-EFV-Glc. EFV plasma concentration is associated with 

8-OH-EFV-Glc plasma concentration (Spearman r = 0.414, p = 0.010, n=39) at non-toxic EFV levels. 

This association was not observed for patients with EFV concentrations higher than minimal toxic EFV 

concentration (4 mg/L). EFV, efavirenz; 8-OH-EFV-Glc, 8-hydroxy-efavirenz-glucuronide. Open 

circles: patients with therapeutic EFV concentrations; Full circles: patients with toxic (> 4 mg/L) EFV 

concentrations.    
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1.4 DISCUSSION 

	
This work was aimed at evaluating the plasma concentrations of EFV and its metabolites, 

8-OH-EFV and 8-OH-EFV-Glc, in a case-control study comparing HIV-infected male patients 

with or without mood changes complaints. Herein we have demonstrated the feasibility of using 

this straightforward methodology, rather than more expensive and elaborate liquid-

chromatography-mass spectrometry approaches, to monitor EFV and 8-OH-EFV at clinically 

relevant levels. 

Literature data reporting the dependence of CNS adverse reactions on EFV concentration are 

contradictory (Ngaimisi et al., 2010; Cho et al., 2011; Habtewold et al., 2011; Tovar-y-Romo 

et al., 2012; Aouri et al., 2016). This is probably due to the high inter-individual PK variability 

of EFV (Pereira et al., 2008), which is largely attributed to its biotransformation (Marzolini et 

al., 2001; Fumaz et al., 2005; Pereira et al., 2008;Tashima et al., 2008; van Luin et al., 2009b; 

Kenedi and Goforth, 2011; Pereira et al., 2012; Apostolova et al., 2015b; Winston et al., 2015; 

Aouri et al., 2016). The discrepant data reported might also reflect the broad type of symptoms 

considered. Moreover, literature data on relationships between EFV metabolites and a 

particular group of CNS manifestations have yet to be provided (Winston et al., 2015; Aouri et 

al., 2016). These uncertainties prompted us to investigate EFV-induced mood changes. 

The most frequent mood change recorded in our study group was anxiety, which is in agreement 

with previously reported clinical studies (Fumaz et al., 2002; Fumaz et al., 2005; Rihs et al., 

2006). This is also in line with data reporting an anxiogenic effect in male CF-1 mice upon 

chronic exposure to EFV (Romao et al., 2011). Additionally, our results suggest that mood 

changes are related with plasmatic concentrations of 8-OH-EFV. This contrasts with the lack 

of consistent correlations reported in the literature, which might be a reflection of our effort to 

eliminate potential variability factors from the current study (e.g., type of CNS effect, the time 

on EFV, PK parameter and sex). 

EFV is a moderate inducer of CYP2B6 (U.S. Food and Drug Administration, 2012), the major 

isoform responsible for the formation of 8-OH-EFV. The drug has a long-term auto-induction 

effect that is dose-, duration of treatment- and genetically-dependent, resulting in lower EFV 

plasma concentrations after multiple dosing (Ngaimisi et al., 2010; Habtewold et al., 2011). 

Previous studies have shown that the proportion of patients with EFV concentrations higher 

than 4 mg/mL, which is considered a neurotoxic concentration (Marzolini et al., 2001), 

decreased by 44% from week 4 to week 16 of therapy, due to auto-induction of EFV 

metabolism (Ngaimisi et al., 2010). Accordingly, the concentration of 8-OH-EFV was much 

higher in week 16 than week 4, showing an accumulation of 8-OH-EFV in the first months of 

therapy (Ngaimisi et al., 2010). Interestingly, this might indicate that the contribution of 8-OH-
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EFV differs between EFV-induced short- and long-term effects. While short-term effects would 

probably be more dependent on EFV concentration, long-term adverse reactions will probably 

be more related to 8-OH-EFV accumulation. This is in accordance with the fact that the 

majority of EFV-induced adverse CNS reactions is reversible and tends to occur during the first 

weeks of treatment (Fumaz et al., 2005), when the auto-induction period of EFV 

biotransformation is starting (Ngaimisi et al., 2010). After this period, the plasmatic 

concentrations of EFV are considerably lower (Ngaimisi et al., 2010) and have low intra-

individual variability (Pereira et al., 2008). One major difference between our study and others 

is the time on EFV.  In fact, in the few studies mentioning the time on EFV, metabolites were 

quantified during the first 16 weeks (Ngaimisi et al., 2010; Cho et al., 2011; Habtewold et al., 

2011). As this corresponds to the auto-induction period, the maximum levels of metabolites 

were not attained and adverse reactions are likely to have been mainly EFV-dependent. By 

contrast, all patients in our study were users of EFV-containing cART beyond the 

auto-induction stage and time on EFV did not differ between control and study groups. 

Accordingly, the EFV concentration was similar in the two groups but differences were 

observed in the levels of 8-OH-EFV. Taken together, these data demonstrate the need to include 

time of exposure to EFV in neuro-safety evaluation studies. In fact, Leutscher et al. (2013) 

suggested that EFV discontinuation occurs late in the course of treatment due to the persistence 

of CNS toxicity, which may impact quality of life negatively on a long-term basis. Herein, we 

present convincing data that patients on EFV for a long period show anxiety. Actually, our data 

emphasize the relevance of the 8-OH-EFV metabolite, rather than EFV, when a persistent CNS 

effect is considered. While the EFV concentration remains stable after the first year, the 

documented variability during the auto-induction period supports the need for therapeutic drug 

monitoring based on quarterly sampling in the first year of therapy (Pereira et al., 2008). It 

remains to be established if this is also applicable to 8-OH-EFV.  

Induction-driven changes in the levels of EFV and its metabolites differ between women and 

men (Habtewold et al., 2011) and this might explain conflicting literature results, depending on 

the number of women included in the studies. To reduce sex-related confounding factors, all 

patients in our study were men, which differs greatly from other studies in which the percentage 

of males varied from 20 to 80% (Ngaimisi et al., 2010; Cho et al., 2011; Habtewold et al., 

2011; Tovar-y-Romo et al., 2012). 

Our data support a role for 8-OH-EFV in the genesis of mood changes in patients on long-term 

EFV exposure. This suggests that the plasma concentration of 8-OH-EFV may be more 

appropriate than EFV levels for therapeutic drug monitoring towards the minimization of these 

CNS effects. Nonetheless, this raises an interesting question: if mood changes are dependent 

on EFV biotransformation and EFV predominantly undergoes hepatic clearance, why is the 
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CNS compartment a vulnerable milieu for EFV toxicity? Several factors can be invoked to 

explain this apparently conflicting scenario, namely the fact that EFV tends to accumulate in 

the CNS compartment (Decloedt et al., 2015). Indeed, although EFV is highly protein-bound, 

the CSF penetration of unbound EFV is high (Yilmaz et al., 2012; Avery et al., 2013a; 

Thompson et al., 2015) and the drug is not actively cleared from the CNS (Decloedt et al., 

2015). One additional potential key player is the fact that EFV is a substrate for CYP2B6 (U.S. 

Food and Drug Administration, 2012), the major isoform responsible for its metabolic 

conversion into 8-OH-EFV. Whereas CYP2B6 is abundant in the liver, it is also expressed in 

the brain, albeit at much lower levels (Miksys and Tyndale, 2013), and its expression can vary 

by more than two-fold across brain areas (Miksys et al., 2003). The concentration of this 

isoform in specific regions and cell types may originate particular biotransformation 

environments (Miksys et al., 2000; Miksys et al., 2003), plausibly predisposed to local 

accumulation of 8-OH-EFV. The non-CYP2B6-mediated metabolic pathways of EFV are 

diminished in the brain, namely the minor phase I formation of 7-OH-EFV via CYP2A6 

(Dutheil et al., 2009) as well as phase II metabolism (Ouzzine et al., 2014) (Fig. 4), which can 

also contribute to 8-OH-EFV accumulation. Once in the brain, the formation of electrophilic 

quinone and quinone-imine species upon oxidation of 8-OH-EFV is a conceivable event 

(Harjivan et al., 2014), similarly to what happens with endogenous neurotoxins (Baumgarten 

and Lachenmayer, 2004; Kato et al., 2012; Kato et al., 2014). Quinone and quinone-imine 

metabolites have a recognized toxicological relevance, not only due to their ability to generate 

reactive oxygen species but also to their capacity to yield covalent adducts with proteins (Bolton 

et al., 2000; Monks and Jones, 2002). In fact, the formation of these reactive metabolites may 

be at the genesis of CNS effects by distinct but not mutually exclusive mechanisms. For 

instance, adduct formation could negatively impact the function of proteins and thereby 

interfere with energy metabolism, axonal transport or pre-synaptic neurotransmitter release 

(Asanuma et al., 2003; Lopachin and Decaprio, 2005). Moreover, electrophilic species have 

the ability to reduce glutathione (GSH) content (Rabinovic and Hastings, 1998), which has been 

described in several psychiatric conditions (Eskiocak et al., 2005; Gawryluk et al., 2011). The 

brain is highly susceptible to oxidation, due to its high oxygen consumption rate, and has low 

levels of GSH, when compared to other tissues (Ballatori et al., 2009). Thus, depletion of brain 

GSH levels may be critical since this molecule is not only an antioxidant but also plays key 

roles as neuromodulator, neurotransmitter, and enabler of brain cells’ survival (Ballatori et al., 

2009; G. Morris et al., 2014).  

Our observation of higher plasma concentrations of 8-OH-EFV in the study group suggests that 

peripheral 8-OH-EFV contributes to the brain pool of this toxic metabolite. Although the ability 

of 8-OH-EFV to cross the blood-brain barrier has yet to be demonstrated, our results appear 

consistent with this capacity. 
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One additional important observation was the trend for a higher 8-OH-EFV/EFV ratio in the 

study group compared to the control group, albeit not reaching statistical significance. This 

observation, together with the higher concentrations of 8-OH-EFV in the study group, suggests 

that this group of patients had a higher CYP2B6 activity than the control group. In fact, the 8-

OH-EFV/EFV ratio has been considered a metabolic phenotype for CYP2B6 activity (U. S. 

Food and Drug Administration, 2014). This is an important finding since the metabolic 

phenotype is central to clinical implementation and monitoring in pharmacovigilance 

throughout the study of PK drug-drug interactions and individualization of drug dosages 

(Llerena and Penas-Lledo, 2015). In this regard, it is noteworthy that brain CYP2B6 will not 

only metabolize EFV to 8-OH-EFV but also influence the levels of endogenous metabolites 

such as mood-related steroids and neurotransmitters (e.g., testosterone (Imaoka et al., 1996; 

Fink et al., 1999), and serotonin (Fradette et al., 2004).  

It is also noteworthy that the plasma concentrations of 8-OH-EFV-Glc were similar in both 

groups and much higher than the levels of 8-OH-EFV. Taking into consideration that, as 

opposed to 8-OH-EFV, the glucuronide cannot be metabolized to toxic electrophiles, this 

observation suggests that phase II glucuronidation is the main route of 8-OH-EFV 

detoxification. Thus, controversies regarding PK-neurosafety relationships between studies on 

EFV may result from the fact that these studies typically considered the total 8-OH-EFV 

concentrations (i.e., 8-OH-EFV plus 8-OH-EFV-Glc) and no correlations were established with 

the non-conjugated metabolite per se. Toxic EFV concentrations (> 4 mg/L) (Marzolini et al., 

2001) were herein associated with lower 8-OH-EFV-Glc concentrations. This suggests that 

higher EFV concentrations are able to inhibit UGT enzymes, which is in line with in vitro data 

(Belanger et al., 2009; Ji et al., 2012). In fact, EFV is reported as a non-competitive inhibitor 

of UGT1A1 and a competitive inhibitor of UGT1A9 (Ji et al., 2012) and both isoforms 

participate in 8-OH-EFV-Glc formation (Bae et al., 2011). This inhibition may represent a new 

toxicity mechanism at high EFV concentrations. Indeed, the diminished peripheral 

detoxification of 8-OH-EFV under these conditions suggests a synergistic effect of EFV on the 

toxic events induced by its major metabolite. Figure 6 illustrates the different mechanistic 

hypotheses described for EFV-neurotoxicity (O'Mahony et al., 2005; Streck et al., 2008; 

Apostolova et al., 2010; Tovar-y-Romo et al., 2012; Brandmann et al., 2013; Blas-Garcia et 

al., 2014; Brown et al., 2014; de Oliveira et al., 2014; Funes et al., 2014; Apostolova et al., 

2015a), which are plausibly not exclusive and will dictate the patients’ susceptibility to mood 

changes. 
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Figure 6. Schematic representation of the events preceding mood changes upon EFV exposure. Upstream events: in the liver, EFV is mainly metabolized via CYP2B6 to 

8-OH-EFV, to a slighter degree to 7-OH-EFV via CYP2A6 and barely conjugated by UGT2B7 to EFV-Glc. The hydroxylated metabolites undergo phase II conjugation through 

glucuronidation (major) and sulfonation (minor). Formation of 8-OH-EFV may occur to a lesser extent in the brain and further oxidation can generate a reactive quinoid 

metabolite, ultimately leading to detrimental ROS generation, GSH depletion and protein modification that may result in downstream neurotoxicity. EFV, efavirenz; 8-OH-

EFV, 8-hydroxy-efavirenz; 7-OH-EFV, 7-hydroxy-efavirenz; EFV-Glc , efavirenz- glucuronide; 8-OH-EFV-Glc, 8-hydroxy-efavirenz-glucuronide; 7-OH-EFV- Glc, 7-

hydroxy-efavirenz-glucuronide; 8-OH-EFV-sulf, 8-hydroxy-efavirenz-sulfate; 7-OH-EFV-sulf, 7-hydroxy-efavirenz-sulfate. UGT, UDP-glucuronosyltransferase; SULT, 

sulfotransferase. 
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CHAPTER 2 
Time-course of efavirenz biotransformation: a cause for its short- and long-

term neurotoxicity 
 

	
2.1 SUMMARY 

	
EFV is an anti-HIV drug that presents relevant short- and long-term central nervous system 

adverse reactions. Its main metabolite (8-OH-EFV) was demonstrated to be a more potent 

neurotoxin than EFV itself. This work was aimed to understand how EFV biotransformation to 

8-OH-EFV is related to its short- and long-term neuro-adverse reactions. To access those 

mechanisms, the expression and activity of Cyp2b enzymes as well as the thiolomic signature 

(low molecular weight thiols plus S-thiolated proteins) were longitudinally evaluated in the 

hepatic and brain tissues of rats exposed to EFV during 10 and 36 days. EFV and 8-OH-EFV 

plasma concentrations were monitored at the same time points. Cyp2b induction had a delayed 

onset in liver (p<0.001), translating into increases in Cyp2b activity in liver and 8-hydroxy-

efavirenz plasma concentration (p<0.001). Moreover, an increase in S-cysteinylglycinylated 

proteins (p<0.001) and in free low molecular weight thiols was also observed in liver. A distinct 

scenario was observed in hippocampus, which showed an underexpression of Cyp2b as well as 

a decrease in S-cysteinylated and S-glutathionylated proteins. Additionally, the observed 

changes in tissues were associated with a marked increase of S-glutathionylation in plasma. 

Our data suggest that the time course of EFV biotransformation results from different 

mechanisms for its short- and long-term neurotoxicity. The difference in the redox profile 

between liver and hippocampus might explain why, despite being mostly metabolized by the 

liver, this drug is neurotoxic. If translated to clinical practice, this evidence will have important 

implications in EFV short- and long-term neurotoxicity prevention and management. 

 

 

2.2 MATERIALS AND METHODS  
 

2.2.1 Drugs and Chemicals  

	
EFV was kindly provided by Dr. Frederick A. Beland (National Center for Toxicological 

Research, Arkansas, USA). HPLC-grade solvents were purchased from VWR (Belgium). β-

Glucuronidase (Type VII-A from E.coli, E.C. 3.2.1.31, 1000 U/mL), Arylsulfatase (Type H-1, 

from E. coli, E.C. 3.1.6.1., 1000 U/mL) and reagents used for thiolomic profile determination 

were purchased from Sigma-Aldrich (USA), with the exception of trichloroacetic acid (TCA), 
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which was purchased from Roth (Germany). A kit from NZYTech (Portugal) was used for the 

cDNA synthesis. Primers and PowerUp™ SYBR® Green Master Mix used for quantitative real 

time PCR (qPCR) were purchased from Applied Biosystems, Thermo Fisher Scientific (USA).  

 

 

2.2.2 Animals 

	
Experiments were performed with male Wistar rats (Rattus norvegicus L.), aged 13 weeks, with 

a mean body weight of 293 ± 60 g, obtained from the NOVA Medical School animal facility. 

Animals were housed two per cage in polycarbonate cages with wire lids (Tecniplast, Italy), 

under 12 h light/dark cycles (8 am - 8 pm), at room temperature (22 ± 2.0 °C) and a relative 

humidity of 60 ± 10%. Rats were maintained on a standard laboratory diet (SDS RM1, Special 

Diets Services, UK) and ad libitum reverse osmosis water. 

Rats were randomly assigned into four groups: 10-day control (CTL), 10-day EFV-exposed, 

36-day CTL, and 36-day EFV-exposed. In order to reduce the number of animals used in the 

experiments (3Rs approach), the same rat was used for at least two experiments (i.e., one 

hippocampus was used to determine ethoxycoumarin O-deethylase (ECOD) activity and the 

other for Cyp2b expression). A number of 8 animals per group was used for thiolomic profile 

(RSSP+LMWT) analysis. For Cyp2b expression and activity analysis a number of 6 animals 

per group were used.  

NIH Principles of Laboratory Animal Care (NIH Publication 85-23, revised 1985), the 

European guidelines for the protection of animals used for scientific purposes (European Union 

Directive 2010/63/EU) and the Portuguese Law nº 113/2013 concerning ethical use of animals 

were followed. The experimental procedures (protocol nº 14/2016/CEFCM) received prior 

approval by the Institutional Ethics Committee of the NOVA Medical School for animal care 

and use in research. 

 

 

2.2.3 Experimental protocol 

	
Animals from the EFV groups were administered 9 mg/kg/day of EFV by oral gavage, 

suspended in 2 mL of reverse osmosis water, and CTL groups were administered the same 

volume of reverse osmosis water. The administrations were performed using a sterile 

polypropylene feeding tube (15 gauge; tip diameter: 3 mm; length: 78 mm; Instech 

Laboratories, Inc., USA) to reduce the risk of trauma, perforation and cross contamination 

(Morton et al., 2001). All animals underwent a 7-day period of acclimatization, handled daily 
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by the same individual for a period of 2 minutes each, and accustomed to the gavage position, 

in a different animal facility room. 

The animals were weighed at baseline and twice a week during the entire study. The amounts 

of EFV were adjusted accordingly, in order to ensure a constant daily dose. EFV or vehicle 

were administered daily in the morning, at approximately the same schedule.  

At day 10 or 36, approximately 1-2 hours after EFV administration, rats were anesthetized by 

intraperitoneal injection with medetomidine (0.5 mg/kg body weight; Domitor®, Pfizer Animal 

Health) and ketamine (75 mg/kg body weight; Imalgene 1000®, Mérial, Lyon, France). 

Cardiac puncture was performed for blood sampling and the plasma samples were stored at -

80 °C until use. The animals were then decapitated under deep anesthesia, brains were 

removed from skull, and hippocampus and prefrontal cortex were dissected. The liver was 

also rapidly removed.  

 

 

2.2.4 Cyp2b1 and Cyp2b2 gene expression 

	
Liver, hippocampus and prefrontal cortex were collected and homogenized in Trizol® (Life 

Technologies) using a tissue homogenizer (Heidolph DIAX 900). Total RNA extraction was 

performed according to the Trizol® manufacturer’s instructions. The RNA concentration was 

determined prior to cDNA synthesis by measuring the absorbance at 260 nm on a 

SPECTROstar Omega spectrometer (BMG Labtech, Ortengerg, Germany) operating in the 

LVis Plate mode. cDNA was synthesized from 1 µg RNA according to the manufacturer’s 

instructions. qPCR was carried out in a final volume of 15 µL with 2× PowerUp™ SYBR® 

Green Master Mix and 0.3 µM of each primer, plus 2 µL of cDNA was added as template.  

Rat specific primers were used for the housekeeping gene ß-actin (Forward 5’-

AAGTCCCTCACCCTCCCAAAAG-3’; Reverse 5’-AAGCAATGCTGTCACCTTCCC-3’) 

(Peinnequin et al., 2004) and for the target genes Cyp2b1 (Forward 5’-

GCTCAAGTACCCCCATGTCG-3’; Reverse 5’-ATCAGTGTATGGCATTTTACTGCGG-

3’) and Cyp2b2 (Forward 5’-CTTTGCTGGCACTGAGACCG-3’; Reverse 5’- 

ATCAGTGTATGGCATTTTGGTACGA-3’) (Schilter et al., 2000). The efficiency of each 

reaction was estimated with a calibration curve built using serial cDNA dilutions (1, 10-1, and 

10-2) in order to construct a standard curve for each gene and tissue. The reaction was performed 

on an Applied Biosystems 7300 Real Time PCR System, consisting of a denaturation step at 95 

°C for 10 min followed by 40 cycles of denaturation at 95 °C for 15 seconds, annealing at 60 

°C for 1 min and extension at 72 °C for 30 seconds. A dissociation stage was added to determine 

the melting temperature (Tm) of a single nucleic acid target sequence as a quality and specificity 
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measure. The comparative Ct method (2-ΔΔCt) was used to quantify the target genes, which were 

normalized to the reference ß-actin gene, and fold change was calculated in EFV-treated rats 

relative to the respective CTL group. 

 

 

2.2.5 Determination of ethoxycoumarin-O-deethylase (ECOD) activity  

	
ECOD activity measures rat Cypla1/2, Cyp2a1, Cyp2b1/2, Cyp2c6/7, Cyp2c11, Cyp2c13, and 

Cyp2el, among which the 1a and 2b subfamilies are the most effective forms (Kern et al., 1997). 

The procedure was performed as previously described (Cipriano et al., 2016; Pinheiro et al., 

2016). Briefly, liver, hippocampus and prefrontal cortex slices were incubated for 90 min with 

7-ethoxycoumarin (0.8 mM) in Dulbecco's Modified Eagle Medium (DMEM).  The 7-

hydroxycoumarin concentrations were determined after 2 h of enzymatic digestion with a β-

glucuronidase/arylsulfatase solution (pH 4.5 in 0.1 M acetate buffer) followed by a liquid-liquid 

extraction with chloroform. The 7-hydroxycoumarin fluorescence was measured using the 

SPECTROstar Omega spectrometer (lexc 340 nm; lem 460 nm). The results are presented as the 

EFV/CTL fluorescence ratio for each tissue and exposure time. Total protein concentration was 

determined by absorbance at 280 nm using the same spectrometer in the LVis Plate mode.   

  

 

2.2.6 Determination of efavirenz and 8-hydroxy-efavirenz plasma 

concentrations 
	
EFV and 8-OH-EFV were quantified as previously described (Grilo et al, 2016). Briefly, the 

plasma samples were incubated with β-glucuronidase, at 37 ºC, for 1 h. Analytes were extracted 

with tert-butyl methyl ether and the organic phase was isolated and dried under vacuum (-80 

kPa, at 60 ºC). The dried residue was reconstituted in acetonitrile: 0.1% formic acid plus n-

hexane (50/50 v/v) and the mixture was homogenized and centrifuged. The samples were 

analyzed by HPLC on an Agilent 1100 Series equipment (Agilent Technologies, Santa Clara, 

CA, USA), using a reversed-phase Luna C18 column (250 mm ×4.6 mm; 5 µm; 100 Å; 

Phenomenex, USA). The mobile phase consisted of 0.1 % formic acid (pH 2.65) (solvent A, 

65%) and acetonitrile (solvent B, 35%) for the first 5 min, at a flow rate of 1.2 mL/min. The 

percentage of solution A was linearly decreased to 55% for 10 min and maintained at this value 

for 16 minutes. For the next 5 min the percentage of A was linearly diminished to 49% and 
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maintained for the following 7 min.  The column temperature was set at 30 °C, the injection 

volume was 100 µL, and UV absorbance was monitored at 246 nm. 

 

   

2.2.7 Determination of the thiolomic profile  

	
GSH, its precursor CysSH and its catabolism product CysGlySH were quantified. These three 

moieties were analyzed in their RSSP forms (GSSP, CysSSP and PSSCysGly) and in their 

LMWT forms. The latter were composed by the RSH fractions, including GSH, CysSH and 

CysGlySH, and the respective disulfides.  

Liver (approximately 50 mg), hippocampus (one) and prefrontal cortex (one) were collected, 

kept on ice, and immediately homogenized in 400 µL of iced phosphate-buffered saline (1x), 

using a tissue homogenizer (Heidolph DIAX 900). An initial volume of 50 µL from the tissue 

homogenate and plasma were used to assess thiol fractions. 

The total ‘thiol’ fraction (RSSP+RSH+RSSR) was obtained by reducing the sulfhydryl groups 

with tris (2-carboxyethyl)phosphine hydrochloride (TCEP; 100g/L, 5 µL). After a 30 min 

incubation at room temperature, the samples were treated with TCA (100 g/L) containing 1 

mM EDTA (45 µL) for protein precipitation. Each mixture was then centrifuged (13000 g, 10 

min, 4°C) and the supernatant collected to a new tube containing 1.55 M NaOH (5 µL), 125 

mM sodium tetraborate buffer (Na2B4O7, pH 9.5) with 4 mM EDTA (62.5 µL) and 7-

fluorobenzo-2-oxa-1,3-diazole-4-sulfonic acid ammonium (SBD-F) 1 g/L) in Na2B4O7 buffer 

(125 mM with 4 mM EDTA) (25 µL). The final mixture was vortexed and incubated in the 

dark, at 60 ºC for 1 h, to complete the derivatization of the free sulfhydryl groups. Finally, a 

volume of 10 µL was analyzed by HLPC.  

The LMWT (RSSR+ RSH) and the reduced (RSH) fractions were also analyzed. Two aliquots 

from the same sample were submitted to protein precipitation with TCA, with subsequent 

centrifugation (13000 g, 10 min, at 4ºC), as described (Przemyslaw et al., 2011). Then, while 

one aliquot was reduced with the TCEP reagent for total non-bound fraction quantification, the 

other was incubated with reverse osmosis water in order to obtain the naturally reduced RSH 

fraction. After incubation at room temperature, for 30 min, the protocol described above was 

followed. The RSSP contribution for each particular thiol was obtained by subtracting the 

LMWT (RSH+RSSR) from the total thiol concentration.	
The quantifications were performed by HPLC-FD analysis on a Shimadzu LC-10AD VP 

(Shimadzu Scientific Instruments Inc) system using a reversed-phase C18 LiChroCART 250-
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4 column (LiChrospher 100 RP-18, 5µm, VWR, USA), at 29 ºC with an adapted from the 

methodology reported by Nolin and co-authors (Nolin et al., 2007). The detector was set at 

excitation and emission wavelengths of 385 and 515 nm, respectively. The mobile phase 

consisted of 100 mM acetate buffer (pH 4.5) and methanol [99:1 (v/v)]. The analytes were 

separated in an isocratic elution mode for 20 min, at a flow rate of 0.8 mL/min. 

 

 

2.2.8 Data analysis 

 
Statistical analysis was performed using Graph Prism® 5.0 (GraphPad Software Inc., San 

Diego, CA, USA). The comparisons between groups were performed using the Unpaired t-test 

or ANOVA, whenever applicable.  

 

 

2.3 RESULTS 
 

2.3.1 Animals 

	
At the beginning of the experiments, the animals were age-matched and no differences were 

found regarding animal body weights. However, at the end of the 36-day period, the EFV-

exposed rats weighed significantly less than the age-matched controls (102 ± 5 g versus 87 ± 3 

g, p<0.05). 

 

 

2.3.2 Cyp2b expression 
 
Regardless of treatment time, liver was the tissue that presented higher expression of Cyp2b1 

upon EFV exposure (Fig. 7A). Long-term (36 days) exposure to EFV resulted in a 4-fold 

increase in liver Cyp2b1 expression compared to short-term exposure (10 days) (p<0.001). A 

similar pattern was observed for the prefrontal cortex (13-fold increase; p<0.001) while the 

hippocampus presented a decrease in Cyp2b1 expression with time (p<0.001). Expression of 

Cyp2b2 was also lower in the hippocampus, while liver and prefrontal cortex had comparable 

levels upon short-term EFV exposure (Fig. 7B). However, while time increased Cyp2b2 

expression in the prefrontal cortex (p<0.001), the level in the liver remained unaffected.  
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Figure 7. Cyp2b1 (A) and Cyp2b2 (B) expression in liver, hippocampus and prefrontal cortex of 

rats exposed to efavirenz during 10 and 36 days. n = 6 animals per group. The data are expressed in 

fold change compared to non-treated controls. * represents time-dependent differences (Unpaired t-test, 

***p<0.001) and # represents differences among tissues using liver as control (Two-way ANOVA with 

Bonferroni post-test, ##p<0.01, ###p<0.001). 

 

	
2.3.3 Quantification of ECOD activity 

 
The tissue and time dependence of Cyp2b expression were not reflected in ECOD activity (Fig. 

6), for which an increase with the duration of EFV-exposure was only observed in the liver 

(p<0.001).  

 

Figure 8. ECOD activity in liver, hippocampus and prefrontal cortex of rats exposed to efavirenz 

during 10 and 36 days. n = 6 animals per group. Data are expressed in fold change compared to non-

treated controls. * represents time-dependent differences (Unpaired t-test, ***p<0.001) and # represents 

differences among tissues using liver expression as control (Two-way ANOVA with Bonferroni post-test, 
#p<0.05, ##p<0.01, ###p<0.001). 
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2.3.4 Determination of efavirenz and 8-hydroxy-efavirenz plasma 

concentrations 

	
While no differences were found for EFV plasma concentration between 10 and 36 days (Fig. 

9), the 8-OH-EFV concentrations raised over time (p=0.02) (Figure 3).   

 

10 days 36 days
0

1

2

3

4
EFV
8-OH-EFV

*

An
al

yt
e 

(m
g/

L)

 
Figure 9. Efavirenz and 8-hydroxy-efavirenz quantification in rat plasma at 10 and 36 days of 

efavirenz exposure. n = 8 animals per group. Data are expressed as mean ± standard error of the mean 

in mg/L.* represents time-dependent differences (unpaired t-test, *p=0.02). 

 

 

2.3.5 Thiolomic signature  
 

No differences over time were found for any of the analytes in control animals (Table 3). With 

the exception of LMWCys, the liver presented higher levels of the analytes, when compared to 

prefrontal cortex and hippocampus at both time points. Additionally, while in the liver the 

predominant LMWT fraction was the reduced form, the oxidized form accounted for 

approximately 40% in the brain.  

 

Regarding differences in EFV-treated animals, the liver had a general increase in all analytes 

over time (Table 4). Exceptions were the GSSP and CysSSP levels. In hippocampus, a marked 

decrease in GSSP (p<0.01) and CysSSP (p<0.001) was observed, in parallel with an increase 

in GSH concentration (p<0.001). In prefrontal cortex, both decreased CysSSP (p<0.01) and 

increased GSH synthesis (p<0.001) were observed. These variations were more modest than 

those found for hippocampus. The higher variation found in plasma was for GSSP (p<0.001), 

which increased over time in contrast to what was found for hippocampus. This increase was 

accompanied by a decrease in GSH (p<0.001). 
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Table 3: Evaluation of the thiolomic profile of control animals at 10 and 36 days.  
 
 
	
	
	
	
	
	
 

 

 

 

 

 

 

 

 
 

Data are presented as mean ± standard error of the mean in µM/mg tissue. n = 8 animals per group. a Time-dependent differences for each tissue (unpaired t-test); bComparison 

between liver, prefrontal cortex and hippocampus for the 10-day EFV exposure data point (one-way ANOVA ***p<0.001). LMWGSH: total non-protein bound glutathione; 

GSH: reduced glutathione; GSSP: S-glutationylated proteins; LMWCys: total non-protein bound cysteine; CysSH: reduced cysteine; CysSSP: S-cysteinylated proteins; 

LMWCysGly: total non-protein bound cysteinylglycine; CysGlySH: reduced cysteinylglycine; PSSCysGly: S-cysteinyl-glycinylated proteins. ns: not significant.  

  

µM/mg tissue 

Liver 
 

Prefrontal cortex 
 

Hippocampus 
  

10 days 36 days pa 10 days 36 days pa 10 days 36 days pa pb 

GSH 8.80±1.48 10.19±1.80 ns 1.04±0.18 1.14±0.40 ns 1.05±0.22 1.03±0.30 ns *** 

LMWGSH 10.80±1.41 11.36±1.26 ns 1.83±0.27 1.91±0.47 ns 1.79±0.25 1.86±0.49 ns *** 

GSSP 2.26±1.58 2.01±0.89 ns 0.50±0.32 0.38±0.18 ns 0.43±0.22 0.46±0.15 ns *** 

CysSH 0.17±0.04 0.17±0.05 ns 0.08±0.02 0.08±0.03 ns 0.10±0.03 0.08±0.01 ns *** 

LMWCys 0.25±0.05 0.26±0.04 ns 0.20±0.05 0.18±0.04 ns 0.23±0.04 0.20±0.03 ns ns 

CysSSP 0.22±0.09 0.21±0.05 ns 0.08±0.04 0.08±0.02 ns 0.09±0.03 0.09±0.02 ns *** 

CysGlySH 0.03±0.002 0.03±0.005 ns 0.005±0.001 0.006±0.001 ns 0.004±0.001 0.005±0.001 ns *** 

LMWCysGly 0.03±0.01 0.04±0.01 ns 0.01±0.003 0.01±0.004 ns 0.01±0.001 0.01±0.003 ns *** 

PSSCysGly 0.06±0.01 0.06±0.01 ns 0.01±0.003 0.004±0.003 ns 0.01±0.002 0.01±0.002 ns *** 
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Table 4: Evaluation of the thiolomic profile in liver, prefrontal cortex, hippocampus, and plasma of efavirenz-exposed animals at 10 and 36-days  
 

 

Data are presented as the EFV/CTL ratio (unpaired t-test, ap<0.001; bp<0.01; cp<0.05); Δ: variation in percentage of the EFV/CTL ratio between 10 and 36 days. n = 8 animals 

per group. LMWGSH: total non-protein bound glutathione; GSH: reduced glutathione; GSSP: S-glutationylated proteins; LMWCys: total non-protein bound cysteine; CysSH: 

reduced cysteine; CysSSP: S-cysteinylated proteins; LMWCysGly: total non-protein bound cysteinylglycine; CysGlySH: reduced cysteinylglycine; PSSCysGly: S-cysteinyl-

glycinylated proteins. ns: not significant. 

EFV/CTL 
 Ratio 

Liver Prefrontal cortex Hippocampus Plasma 

10 days 36 days Δ (%) 10 days 36 days Δ (%) 10 days 36 days Δ (%) 10 days 36 days Δ (%) 

GSH 0.96±0.02 1.14±0.02 18a 1.13±0.04 1.31±0.07 18a 1.21±0.04 1.58±0.10 37a 1.11±0.05 0.96±0.02 -15a 

LMWGSH  1.01±0.02 1.22±0.02 21a 1.06±0.03 1.22±0.04 16a 1.04±0.02 1.17±0.05 13a 1.02±0.02 1.00±0.03 -2 

GSSP 1.16±0.48 1.26±0.35 10 1.10±0.23 0.97±0.21 -13 1.23±0.27 0.89±0.11 -34b 0.82±0.06 1.16±0.07 34a 

CysSH 0.83±0.06 0.93±0.04 10b 0.90±0.06 0.86±0.04 -4 0.92±0.05 0.93±0.03 1 1.05±0.05 0.95±0.03 -10a 

LMWCys 0.89±0.04 1.09±0.06 21a 0.88±0.07 0.92±0.03 4 0.83±0.05 0.99±0.02 16a 1.00±0.01 1.05±0.01 5a 

CysSSP 1.42±0.20 1.48±0.15 6 0.96±0.14 0.72±0.13 -24b 1.12±0.19 0.67±0.04 -45a 1.15±0.03 1.08±0.04 -7b 

CysGlySH 0.90±0.03 1.12±0.03 22a 0.87±0.04 1.14±0.04 27a 0.95±0.02 0.91±0.05 -4 1.13±0.04 0.97±0.10 -16a 

LMWCysGly 1.00±0.02 1.22±0.02 23a 1.07±0.10 0.95±0.08 -12c 1.04±0.04 0.96±0.05 -8b 0.91±0.05 1.03±0.03 12a 

PSSCysGly 0.98±0.01 1.17±0.01 19a 0.91±0.15 0.85±0.34 -6 0.87±0.14 0.86±0.19 1 1.03±0.05 1.08±0.01 5b 



	

53	
	

2.4 DISCUSSION 
 

Our data suggest that EFV short- and long-term effects have different underlying mechanisms, 

which are related to the time-course of the drug’s biotransformation and are also 

tissue-dependent. In particular, they show that the hippocampus responds differently to the 

electrophilic/oxidative stress generated upon long-term EFV exposure than the other tissues 

investigated in this study. The herein reported findings are consistent with our previous report 

that long-term neurotoxic effects are related with increased plasma levels of 8-OH-EFV (Grilo 

et al., 2016).  

The formation of 8-OH-EFV is related with individual CYP metabolic capacity and with 

EFV-promoted auto-induction. We found major differences among tissues in the Cyp2b 

expression after EFV exposure. According to the higher mRNA levels, ECOD activity, and 

8-OH-EFV plasma concentrations, the Cyp2b induction by EFV in the liver had a delayed onset 

and reached high levels after long-term exposure. Two non-mutually exclusive reasons may 

account for these results: i) a delay period is necessary to reach the steady-state plasma 

concentrations of EFV and of Cyp2b induction; and ii) the products of EFV metabolism may 

have the same pharmacological effect in Cyp2b expression as the parent drug. 

The time required for a drug to maximally induce an enzyme is highly related with the half-life 

of the inducer, and the degradation half-life of the enzyme, which may be estimated from the 

clearance of the substrate after removal of the inducer (deinduction). In the case of inducers of 

their own metabolism, it is more difficult to predict this time course. EFV has a long half-life 

of 40-55 hours in healthy individuals (Vrouenraets et al., 2007) and 19 hours in HIV-infected 

patients (Csajka et al., 2003). After discontinuation, EFV can persist in plasma for 36-100 hours 

(Taylor et al., 2004), which anticipates a late onset of EFV effects on Cyp2b expression and a 

long time to attain maximum enzyme induction. In man, it takes at least 4 months to reach 

steady-state EFV-CYP2B6 induction and this period is characterized by a progressive increase 

of 8-OH-EFV plasma concentrations (Ngaimisi et al., 2010). The extent of auto-induction is 

not dependent on baseline EFV concentration (Zhu et al., 2009). However, it is dependent on 

baseline EFV clearance and the intrinsic capacity of CYP2B6 (Zhu et al., 2009; Ngaimisi et 

al., 2010). In fact, the 8-OH-EFV/EFV ratio has been considered a metabolic phenotype for 

CYP2B6 activity (U.S. Food and Drug Administration, 2014). This could in turn implicate 

8-OH-EFV or a metabolite generated from it (Bae et al., 2011; Aouri et al., 2016) as a 

maintainer of the induction period. Moreover, these observations suggest that the baseline 

8-OH-EFV/EFV ratio may be relevant to predict the extension of the induction and deinduction 

periods. Our data support the hypothesis that there is a differential contribution of EFV and 
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8-OH-EFV to short- and long-term neurotoxic effects and that the Cyp2b induction period 

contributes to these differences.  

Based on this last assumption, it is expectable that low CYP2B6 metabolizers or patients taking 

CYP2B6 inhibitors will have higher plasma EFV concentrations and lower baseline clearance, 

as well as shorter and lower induction, resulting in EFV accumulation that may induce direct 

toxicity. These patients are at higher risk of experiencing earlier neurologic adverse reactions 

than high metabolizers. This is in line with the earlier EFV discontinuation reported for low 

CYP2B6 metabolizers (Wyen et al., 2011) and it is noteworthy that in vitro studies have 

associated EFV with mitochondrial dysfunction in hepatocytes, neurons and glia cells 

(Apostolova et al., 2015b). By contrast with slow metabolizers, ultra-rapid CYP2B6 

metabolizers present an increased plasma accumulation of 8-OH-EFV, along with a higher 

clearance of EFV.   

While tissue availability restricts the study of CYP2B6 regulation in man, there are several 

similarities that make the rat a suitable model for the study of drug metabolism. For instance, 

the CYP2B family is similar between humans (CYP2B6) and rodents (Cyp2b1 and Cyp2b2), 

with high homology and sharing of substrates (Miksys et al., 2000). This is also true for enzyme 

induction, as shown by studies involving phenobarbital (Ganem et al., 1999). Moreover, 

CYP2B6 expression is regulated by the constitutive androstane receptor (CAR) (Sueyoshi et 

al., 1999) and rat Cyp2b has also been reported to be regulated by the orthologous CAR 

(Muangmoonchai et al., 2001). Nonetheless, our animal model does not mimic low 

metabolizers as rats have high metabolic capacity (Mutlib et al., 2000). In fact, a high Cyp2b 

induction in liver was observed in the present study.  

EFV is able to modulate 8-OH-EFV clearance by two mechanisms: i) inhibition of 

8-OH-EFV-Glc formation (Ji et al., 2012; Grilo et al., 2016); and ii) CAR-dependent increase 

of phase II metabolism (Maglich et al., 2003). The latter is more conceivable to happen in the 

liver than in brain tissues, which have lower activity of phase II enzymes (Ouzzine et al., 2014).  

It is still to be demonstrated if 8-OH-EFV is able to cross the BBB. Nonetheless, the recently 

observed correlation between plasma 8-OH-EFV concentrations and mood changes in 

HIV-positive patients points in this direction (Grilo et al., 2016). The likelihood of low 

8-OH-EFV formation in the prefrontal cortex and hippocampus also suggests a contribution of 

the peripheral pool of the metabolite to the neurological effects of EFV. Moreover, the 

down-regulation of the Cyp2b expression and activity (ECOD) in hippocampus herein observed 

suggests a protective response of the tissue from exposure to in situ generated 8-OH-EFV by 

decreasing EFV conversion into 8-OH-EFV. It also suggests that 8-OH-EFV or its metabolites 

may behave as CAR inverse agonist in hippocampus.  It is interesting to note that Cyp2b1 was 

mainly induced in the liver, while Cyp2b2 induction was predominant in the prefrontal cortex, 

which suggests a differential regulation of gene expression in these tissues. Cyp2b1 and 
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Cyp2b2 are known to be differentially regulated by several compounds. For instance, Cyp2b1 

is more inducible by phenobarbital than Cyp2b2 (Christou et al., 1987); on the other hand, 

4-n-alkyl-methylenedioxybenzene-type derivatives induce Cyp2b2 to a larger extent than 

Cyp2b1 (Marcus et al., 1990). We found the prefrontal cortex to exhibit higher expression of 

Cyp2b2, but this was not translated into higher Cyp2b activity, which may indicate that the 

contribution of this isoform to ECOD formation is minimal. The specificities of each 

compartment regarding the expression of enzymes and drug transporters (Miksys and Tyndale, 

2002), along with  EFV and 8-OH-EFV penetration and accumulation (Avery et al., 2013b) 

will ultimately determine the exact concentrations of 8-OH-EFV in loco.  

Once in the brain, the formation of electrophilic species upon oxidation of 8-OH-EFV is a 

plausible event for EFV toxicity (Harjivan et al., 2014), similarly to what happens with 

endogenous neurotoxins (Baumgarten and Lachenmayer, 2004). The brain is highly susceptible 

to oxidation, due to its high oxygen consumption rate and its poor antioxidant defenses, when 

compared to other tissues (Dringen et al., 2005; Ballatori et al., 2009). Additionally, the 

oxidation of 8-OH-EFV might be confined to a few compartments since it depends on the 

availability of oxidases (Meyer zu Schwabedissen et al., 2012). Thus, 8-OH-EFV oxidation is 

likely related to a change in the subtle balance among redox forms of thiols. In fact, the 

time-dependent thiol redox changes that we found do not seem to be linked to the initiation of 

the toxicity pathway or the formation of a toxic metabolite. They may rather be associated with 

a response to a toxic insult triggered by increased 8-OH-EFV concentrations. In the same way, 

the changes observed in the tissue-dependent thiolomic redox code suggest a tissue-specific 

response to the electrophilic/oxidative stress generated by 8-OH-EFV oxidation.  

There is increasing awareness of the ubiquitous role of oxidative stress in neurotoxicity (Sayre 

et al., 2008). The oxidation of thiol groups is one of the first events during oxidative 

stress-mediated damage (Grant et al., 1999), LMWGSH is the most abundant thiol/disulfide in 

cells, being present mainly in its reduced form (Rossi et al., 2009. Upon exposure to oxidative 

stress, a tissue response involving GSH increase is expected. This may happen in four different 

ways: increase of LMWGSH synthesis, decrease of LMWGSH degradation, regeneration of GSSR, 

or displacement from S-thiolated proteins.   

The RSH and RSSP profile of the liver was completely distinct from that of brain tissues. The 

increase in PSSCysGly and all RSH analytes observed in the liver may represent an adaptive 

response to 8-OH-EFV insult, which was not observed in prefrontal cortex or hippocampus. 

Recently, GSSP formation was proposed as a mechanism of resistance to paracetamol-induced 

hepatotoxicity (McGarry et al., 2015), by conferring protection against electrophilic stress in 

vivo. A reasonable explanation is that S-thiolation protects the protein thiol groups from acting 
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as nucleophiles, thereby preventing covalent protein modification by electrophilic metabolites. 

Moreover, S-thiolation has a key role in regulation of macromolecular interactions, directional 

trafficking proteasomal degradation, folding and activity of proteins (McGarry et al., 2015). 

This helps to explain why, despite mostly metabolized by the liver, EFV has rarely been 

associated with hepatotoxicity (Rivero et al., 2007). Additionally, it also highlights that the 

evaluation of genetic variability of crucial thiol redox enzymes (Hayes et al., 2005; Townsend 

et al., 2009; Lok et al., 2012) might be useful to identify patients at higher risk for EFV-induced 

toxicity.  

While intracellular proteins are predominantly S-glutathionylated, plasma is poor in LMWGSH 

content; as such, plasma proteins are mainly S-cysteinylated (Rossi et al. 2009). In plasma, 

GSSP and PSSCysGly vary inversely with CysSSP (Rossi et al. 2009). In the current study, the 

major variation observed in plasma was an increase in GSSP. This is consistent with increased 

S-glutathionylation at higher 8-OH-EFV concentrations, to replace the displacement of CysSH 

from CysSSP. The released CysSH can then be oxidized to CysSSCys. CysSSCys can penetrate 

the CNS, being the main source of CysSH, and consequently of GSH, in the brain (Wang and 

Cynader, 2000). Similarly, small dipeptides such as CysGly can also penetrate the CNS and 

contribute to the CysSH pool (Dringen et al., 1997; Dringen et al., 1998). Thus, our data point 

towards a higher efflux of cystine and CysGly from plasma into brain tissues, to increase the 

pool of intra-tissue reduced thiols. However, this peripheral contribution may not be sufficient, 

requiring intracellular displacement of CysSH and GSH from the CysSSP and GSSP brain pool. 

This was particularly evident for hippocampus compared to prefrontal cortex, suggesting that 

hippocampus is more vulnerable to oxidative/electrophilic stress at higher 8-OH-EFV 

concentrations. This might explain the down-regulation of Cyp2b in this tissue, in order to 

decrease 8-OH-EFV formation.  

It is noteworthy that the majority of RSSP in plasma are formed with albumin (Di Simplicio et 

al., 2005) and that EFV is highly bound to this protein (Wanke et al., 2013). However, it is not 

known to what extent these changes in plasma RSSP modify the fraction of EFV available to 

cross the BBB, or its intra-tissue accumulation. Moreover, the information available on 

8-OH-EFV affinity for plasma proteins is scarce. 

Interestingly, the EFV-exposed animals presented a significant slowing of body growth, 

similarly to what was described before (Aïssi et al., 2015). This might be related to an increase 

in the metabolism through hepatic CAR activation. It is known that CAR activation markedly 

improves fatty liver, by inhibition of hepatic lipogenesis and induction of β-oxidation (Dong et 

al., 2009). Also, in an in vitro study performed by El Hadri and collaborators, EFV prevented 

pre-adipocytes from accumulating lipids during the differentiation process and altered 
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adipocyte differentiation (El Hadri et al., 2004). In accordance with these reports, EFV use is 

associated to fat loss in HIV-infected patients (Perez-Molina et al., 2008). 
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CHAPTER 3 

Long-term exposure to efavirenz impairs hippocampus-dependent learning 

memory 

	
	
3.1 SUMMARY 

	
EFV is an anti-HIV drug which is chronically used and prescribed to both adults and children. 

Long-term exposure to EFV has been associated with higher concentration of its main 

metabolite 8-OH-EFV and to increased electrophilic/oxidative stress in brain. Nonetheless, 

whether this translates into neurological impairments is still unknown. The aim of the present 

work was to evaluate the neurological phenotype and brain molecular changes in rats long-term 

exposed to EFV.  

Male Wistar rats were orally exposed to EFV during 36 days and their memory and emotional 

performance were evaluated. Brain tissues were histologically evaluated and markers of brain 

function were assessed by immunofluorescence. The EFV group displayed a slower learning 

curve during the acquisition phase of the MWM test (p=0.004) and a normal behavior during 

the probe test, suggesting an impairment in memory acquisition without memory retrieval 

disturbance. The short-spatial memory was also compromised in the EFV -treated group, as 

assessed by the Y Maze test (p=0.02). Additionally, the EFV group spent more time in the open 

arms in the Elevated Plus Maze test (p = 0.003), thus revealing lower anxiety levels. Finally, 

no differences were identified between groups either in depressive-like or locomotion behavior, 

as assessed by Forced Swim and Open Field tests, respectively. Histopathological analysis of 

the brains showed any evidence of neuronal cell death. However, a decrease in neuronal 

dendrites and in markers of neuronal function, were found in the hippocampus of EFV group. 

These data suggest that EFV impairs hippocampus-dependent learning memory, mimicking 

EFV chronic neurotoxic effects in man. This is seemingly a suitable model for the assessment 

of EFV pharmacokinetic/neurotoxicity and the evaluation of strategies aimed to its 

prevention/management. 
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3.2 MATERIALS AND METHODS  

	
	
3.2.1 Drugs and Chemicals  
 

EFV was kindly provided by Dr. Frederick A. Beland (National Center for Toxicological 

Research, Arkansas, USA). The primary antibodies used were the following: 

microtubule-associated protein 2 (MAP2) and synaptosomal-associated protein 25 (SNAP-25) 

from Sigma-Aldrich (M4403 and S9684, respectively); FosB from Santa Cruz Biotechnologies 

(SC-515210) and glial fibrillary acidic protein (GFAP) from Millipore (MAB3402). The 

secondary antibodies were Alexa Fluor® 488 goat anti-rabbit (A-11034) and Alexa Fluor® 594 

goat anti-mouse (A-11005) and were from Invitrogen. The VECTASHIELD media with 

4'-6-diamidino-2-phenylindole (DAPI) was purchased from Vector Labs. 

 

 

3.2.2 Animals 
 

Sixteen male Wistar rats (6 weeks old, with mean body weight 230 ± 21 g) were obtained from 

the NOVA Medical School animal facility and were housed two per cage in polycarbonate cages 

with wire lids (Tecniplast, Italy), and maintained under controlled environmental conditions 

(12-h light/dark schedule [8 am-8 pm] at 22 ± 2.0 °C, 60 ± 10% humidity, with food (SDS 

RM1, Special Diets Services, UK)) and reverse osmosis water supplied ad libitum. Animals 

were Specific Pathogen Free (SPF) according to FELASA recommendations (Nicklas et al., 

2010).  

Applicable institutional and governmental regulations concerning ethical use of animals were 

followed, according to the NIH Principles of Laboratory Animal Care (NIH Publication 85-23, 

revised 1985), the European guidelines for the protection of animals used for scientific purposes 

(European Union Directive 2010/63/EU) and the Portuguese Law nº 113/2013. Experimental 

procedures were previously approved by the Institutional Ethics Committee of the NOVA 

Medical School for animal care and use in research. 
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3.2.3 Experimental Protocol 
 

Rats were randomly assigned into two groups of 8 animals each: EFV group (administered with 

EFV 9 mg/Kg/day suspended in reverse osmosis water – 1.5 mL) and CTL group (administered 

only with vehicle – 1.5 mL).  

EFV or vehicle gavage administration was performed using a sterile polypropylene feeding 

tube (15 gauge; tip diameter: 3 mm; length: 78 mm; Instech Laboratories, Inc., USA) to reduce 

the risk of trauma, perforation and cross contamination and lasted 36 days. All animals 

underwent a 7 days’ period of handling acclimatization. Rats were handled daily for a period 

of 2 minutes each, by the same individual and accustomed to the gavage position, in a different 

animal facility procedures room. 

Animals were weighted at baseline and twice a week throughout the entire study. The amount 

of EFV was adjusted accordingly in order to ensure a daily dose of 9 mg/Kg. EFV was weighed 

immediately before administration, suspended in the vehicle and labeled individually for each 

rat on a daily basis. EFV or vehicle was administered daily to the animals at approximately the 

same schedule (9:00 to 9:30 am).  

After 36 days of EFV administration, five consolidated behavioral tests were performed during 

one week. EFV administration was continued throughout this period.  

At the end of the behavioral tests, approximately 2 hours after EFV delivery, rats were 

anesthetized by intraperitoneal injection with medetomidine (0.5mg/kg body weight; 

Domitor®, Pfizer Animal Health) and ketamine (75mg/kg body weight; Imalgene 1000®, 

Merial). Four animals from each group were perfused transcardially with phosphate buffered 

saline followed by 10% neutral buffered formalin (NBF), under deep anaesthesia, for 

histological and immunohistochemical analysis. Thereafter, the head of the animal was 

immersed and fixed for 24 hours in 10% NBF before brain removal. 

  

 

3.2.4 Behavioural tests  
 

The animals were routinely tested during the first half of the light phase of their light/dark cycle, 

in a quiet room intended only for this purpose. The following behavioural tests were used: 
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3.2.4.1 Elevated Plus Maze (EPM) test 
 

EPM test is one of the most commonly used in animal models for the evaluation of anxiety 

(Pellow et al., 1985). This test consists in two ‘open’ (no walls; 5 x 29 cm) and two ‘closed’ 

arms with 29 cm high walls, arranged perpendicularly, and elevated 50 cm above the floor 

(Pellow et al., 1985).  

Each animal was placed at the center of the apparatus, facing one of the open arms. Each test 

lasted 5 minutes and all testing sessions were performed between 10:00 am and 12:00 pm in a 

sound-attenuated room. The maze was cleaned with a 70% ethanol solution and rinsed with 

water after each test to avoid odor cues. The total time spent in the open arms and the total arms 

entries (number of entries in open and closed arms) were used as anxiety and locomotor 

measures (Pellow S., 1985).  All experiments were conducted by the same individual blinded 

to experimental groups. 

 

 

3.2.4.2 Open Field (OF) test 
 

The OF test allows a simple and rapid measurement of animal locomotor activity and anxiety 

(Seibenhener and Wooten, 2015). A square arena (66 × 66 x 66 cm) that was surrounded by 

vertical walls was used herein. Three different zones were defined for analysis (Choleris et al., 

2001): (1) the area adjacent to the wall (1896 cm2; “arena periphery”); (2) the central area of 

the arena (552 cm2; “arena center”); (3) the intermediary area between the two previous ones 

(1908 cm2). The percentage of time spent in each zone, the total distance travelled (cm) and the 

average speed (cm/s) were recorded. Rearings (episodes of animals standing on their hind legs) 

and the number of fecal boluses were also manually monitored. The animal was placed at the 

arena center and was allowed to explore the maze for 5 minutes. At the end of the 5 minutes 

test, the rat was placed into its home cage, and the maze was cleaned with a 70% ethanol 

solution and rinsed with water after every test, to prevent avoid odor cues. All experiments 

were conducted by the same individual blinded to experimental groups. Rat’s movements were 

recorded and analysed using the video-tracking software – SMART® 2.5 (PanLab, Barcelona, 

Spain). The reference point used by the software to determine the position of the animal was 

the center of the rat’s dorsum. 
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3.2.4.2 Y–Maze (YM) test 
 

YM test is aimed to evaluate the short-term spatial memory of the rodent, and is based on its 

disposition to explore new environments (Conrad et al., 1996). The apparatus consisted in a Y 

shape maze, as described by (Salamone et al., 1994). The animal was placed at the end of the 

‘start’ arm and allowed to explore the ‘start’ arm and the ‘other’ arm for 10 minutes (beginning 

from the time that the rat first left the start arm). An opaque door blocked the access to the third 

arm of the maze (‘novel’ arm). The rat was then removed from the maze and returned to its 

home cage for 1 hour. In the test phase the rat was placed again in the ‘start’ arm of the maze, 

the door of the ‘novel’ arm was removed and the rat was allowed to explore the maze for 5 

minutes (from the time that the rat first left the start arm). The number of entries and amount 

of time (s) the animal spent in each arm of the Y-maze was recorded to assess short-term 

memory.  

Between each rat, the maze was cleaned with a 70% ethanol solution and rinsed with water to 

avoid odor cues. All experiments were conducted by the same individual blinded to 

experimental groups. Rat movements were recorded and analysed using the video-tracking 

software – SMART® 2.5 (PanLab, Barcelona, Spain). The reference point used by the software 

to determine the position of the animal was the centre of the rat’s dorsum. 

 

	
3.2.4.3 Morris Water Maze test 
 

To evaluate the existence of long-term spatial memory deficits in EFV vs. control animals, the 

animals were submitted to spatial reference memory test described by Morris and co-authors 

(1982).  The maze consisted of a large circular tank (1.8 m in diameter, 0.6 m in height) of 

water (23 ± 1 oC) that was made opaque with the addition of non-toxic water-based black paint. 

An escape platform (10 cm in diameter) was submerged 1 cm below the water. Visual cues 

were placed on the walls of the testing room, to be used as spatial references by the rats. An 

automated tracking system (Smart 2.5, PanLab, Barcelona, Spain) monitored the following 

parameters: escape latency (s); swim path length (cm); average speed (cm/s); and time spent in 

each quadrant (%).  

Rats were given spatial (acquisition) training consisting of four trials per day for 4 days, in 

which the platform was placed at a fixed position in the center of one of the four quadrants of 

the tank (platform Q, left, right and across). The starting position, at which subjects were placed 

in the tank facing the wall, was randomly chosen across trials. Inter-trial interval period was 15 

minutes, during which animals were towel-dried and placed in a heated incubator (25 oC) to 
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prevent hypothermia. The maximum trial duration was 60 s, after which animals were manually 

guided to the platform if they failed to locate it. Once animals reached the platform, they were 

allowed to remain there for 20 s. On the 5th day, animals were subjected to a probe test in which 

the platform was removed and animals were allowed to swim freely for 60 seconds, while 

recording the percentage of time spent on each quadrant. All experiments were carried out by 

the same individual blinded to experimental groups. Rat movements were recorded and 

analysed using the video-tracking software – SMART® 2.5 (PanLab, Barcelona, Spain). The 

reference point used by the software to determine the position of the animal was the center of 

the rat’s dorsum. 

 

 

3.2.4.5 Forced Swim (FS) test 
 

The FS test is used to infer depressive-like behavior in rats, by evaluating their latency to 

immobility (or to despair; LTD) and the time spent swimming versus the time spent floating 

(percentage of time spent immobile) (Porsolt et al., 1978a). The test involves two exposures to 

a vertical Plexiglas cylinder (height: 45 cm, diameter: 19 cm) filled with water (23 oC) at a 

depth that makes it impossible to reach the bottom with hind paws (28 – 30 cm).  

On the first day of the two test days, all animals were gently placed individually in the cylinder 

during 10 minutes. Before animals return to their home cages, they were dried and exposed to 

infrared light, in order to prevent hypothermia. On the second day, the animals were placed in 

the same cylinders for 5 minutes. The water was changed after each session. The rat was judged 

to be immobile when it floated passively, making only small movements to keep its nose above 

the surface. All experiments were carried out by the same individual blinded to experimental 

groups. 

 

 

3.2.5 Histological and Immunofluorescence assays 
 

 For histological analysis, animals were deeply anesthetized for transcardial perfusion with 

PBS, followed with 10% NBF; and after perfusion, the head was further immersed into neutral 

buffered formalin for 72h. Brain was then removed from the skull, trimmed (10-level trimming, 

according to (Bolon et al., 2013), and routinely processed for paraffin embedding and 

sectioning. Hematoxylin and eosin-stained and cresyl violet-stained 4 µm sections were 

screened by a pathologist blinded to experimental groups, in a Leica DM2500 microscope 

coupled to a Leica MC170 HD microscope camera.  
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The following procedure was applied for immunofluorescence analysis of the frontal cortex 

and hippocampus: 4 µm sections, which were previously subjected to heat-induced epitope-

retrieval (HIER) using DAKO PT Link (Dako, Glostrup, Denmark) and to quenching of 

endogenous peroxidase activity with 3% hydrogen peroxide, were blocked with goat serum 

diluted in glycine 0.3M (1:50), for 30 minutes at room temperature.  There was an ensuing 

incubation with the following primary antibodies [diluted in 0.1% (w/v) BSA in PBS 1X] for 

6o minutes at room temperature:   anti-MAP2 (1:1500), anti-GFAP (1:1500), anti-FosB (1:200) 

and anti-SNAP-25 (1:1500). Slides were then rinsed with PBS 1X and incubated with 

secondary antibody [diluted in 0.1% (w/v) BSA in PBS 1X, 1:1000] for 120 minutes, at room 

temperature Sections were mounted in VECTASHIELD media with DAPI and examined by 

standard fluorescence microscopy using a Nikon Instruments Eclipse Ti-S Inverted Microscope 

(Hamamatsu digital camera C10600 ORCA-R2). Images were acquired with NIS-Elements AR-

3.2 and analyzed with ImageJ software. Images were taken on the same areas of the prefrontal 

cortex or hippocampus from each brain section, using identical microscopy parameters, 

including exposure time. 

 

 

3.2.6 Statistical Analysis 

 

Two-way ANOVA with Bonferroni post-test was used to compare CTL and EFV groups in the 

MWM acquisition curve. The Unpaired Student t test was used for EPM, OP, YM and FS tests. 

Data are expressed as mean ± SEM. One-way ANOVA was used for immunofluorescence. 

Data are presented as EFV/CTL ratio. Statistical analysis was performed using GraphPad Prism 

(GraphPad Software Inc., version 5.01, San Diego, CA). Statistical significance for all tests was 

set at the level of p<0.05. 

 

 

3.3 RESULTS 
 

3.3.1 Animal data 
 

While daily food intake was similar for both animal groups (26 ± 1 g for both), the EFV-

exposed rats (34 ± 1 mL) consumed significantly less (p=0.022) water	per	day than the CTL 

group (39 ± 1 mL). EFV-exposed rats showed a lower (p=0.049) body weight gain (130 ± 8 g) 

than control animals (157 ± 9 g). 
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3.3.2 Behavioural tests 
  

On the MWM, EFV-exposed animals showed an impaired learning ability to swim to the scape 

platform when compared to CTL animals (Figure 10A). The onset of this impairment in the 

EFV group was on day 2 (p=0.004). On the other hand, the retention ability of EFV animals 

was not compromised, once in the probe test there was no difference in the time spent in the 

platform quadrant between EFV and the CTL groups (Figure 10B). The average speed (cm/s) 

and total swimming distance (cm) on probe test were similar between groups (data not shown). 

 

The YM test revealed short-term spatial memory deficits in EFV-treated rats as indicated by a 

significant reduction of the percentage of time and entries in the ‘novel arm in comparison to 

CTL group (Fig. 10C: 24 ± 2 versus 18 ± 1%; p=0.038; Fig. 10D: 46 ± 1 versus 51 ± 3%; 

p<0.001). No differences were found to the total number of entries between EFV and CTL rats 

(Fig. 10E). The reduced novelty-seeking of EFV-treated rats indicates that these animals had 

significant short-term spatial memory impairment.   

    

In the EPM test, EFV group presented a lower anxious-related behavior since these rats had 

more percentage of entries in the open arms and spent more time (%) in these arms than the 

control group (Figure 10F: 53 ± 1% versus 49 ± 1%; p=0.02; Figure 10G: 26 ± 1.4% versus 19 

± 1.3%; p=0.003). Additionally, EFV did not alter the locomotor performance, since there was 

no difference in the total number of arms entries between groups (data not shown).   
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Figure 10. Behavior evaluation of long-term efavirenz-exposed Wistar rats. (A) Morris Water Maze (MWM) protocol (n=7 for each group): Learning curve of escape 

latencies over 4 days of acquisition. Two-way ANOVA, **p=0.004. (B) Probe Test: Time spent in each quadrant in hidden platform test. ns, ANOVA. Y Maze (YM) protocol 

(n=6 for each group): (C) Time (%) spent in the start, other and novel arm of the maze.  (D) entries (%) in the other and novel arms; (E) total number of entries. Unpaired 

student´s t- test, *p=0.04, ***p<0.001. Elevated Plus Maze protocol (n=7 for each group): (F) Time (%) spent in open arms; entries (%) into the open arms over 5 minutes. 

Unpaired student´s t- test, ** p= 0.003, * p= 0.015.   Data from all tests are expressed as the mean ± SEM. 	
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Likewise, it was also performed the OF arena test to further analyze rodent anxiety-like 

behavior and their locomotor activity. No differences between the time spent in periphery or in 

the center were found (Fig.11), further confirming that EFV-treated rats do not show an anxiety-

like behavior. Also, the EFV treatment did not induce changes in the locomotor activity of the 

animals. This is in line with the data obtained from MWM test.  

 

Finally, latency-to-despair (LTD) was evaluated by FS test. No differences were found between 

CTL and EFV-treated groups regarding depression evaluation (Fig.12).  

 

	
Figure 11. Open Field test. Time spent in the arena center and in arena periphery by control (n=8) and 

EFV-exposed animals (n=8), Unpaired student´s t- test.  Data are expressed as the mean ± SEM. 

 

	
Figure 12. Forced swim test. The latency to despair (time before immobility) over 5 minutes for control 

(n = 8) and EFV-exposed animals (n = 7), Unpaired student´s t- test. Data are expressed as mean ± SEM. 
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3.3.3 Histological and immunofluorescence analysis 

	
An in-depth histopathological analysis of the brains from EFV animals is provided herein. In 

particular, the frontal, parietal, temporal and occipital lobes of the cerebral cortex and cingulate 

gyrus, the caudate putamen, amygdala and thalamus, piriform cortex, cerebellar Purkinje cell 

layer and hippocampus showed no changes, including no evidence for neuronal cell death (Fig. 

13). White matter tracts in the cortex were also unaltered.  

Concerning the immunofluorescence analysis, major differences were found in hippocampus 

and prefrontal cortex, between CTL and EFV-treated rats. Rats exposed to EFV had a 

significant decrease in Map2 expression in the gyrus dentate and in CA1 region of the 

hippocampus, in comparison with the prefrontal cortex (p<0.001) (Fig. 14A and B); and the 

same pattern was found for FosB, as this protein was markedly decrease in the gyrus dentate of 

EFV group, followed by CA1 region, resulting in a bigger difference for prefrontal cortex 

(p<0.001) (Fig. 14A and C). No differences were found for GFAP expression (Fig. 16). For 

SNAP-25, differences were only found in the gyrus dentate of the hippocampus, which showed 

a slight decrease in expression when compared with the CA1 region (p<0.05) and prefrontal 

cortex (p<0.05) (Fig. 15). However, when comparing SNAP-25 between control and EFV 

groups no differences were found.  
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Figure 13. Representative microphotographs of prefrontal cortex (A), frontal cortex (B and C), 

hippocampus (D) and cerebellum (E) from control and efavirenz-exposed rats. No changes or 

evidence of neuronal cell death were seen in any of the areas analyzed. Hematoxylin and eosin staining. 
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Figure 14. (A) Representative immunofluorescence analysis of hippocampus stained for Map2 (red) and FosB (green). (B) Quantification of Map2 and (C) FosB 

immunofluorescence intensity in prefrontal cortex, gyrus dentate and hippocampus CA1. One-way ANOVA, ***p<0.001. Data are presented as EFV/CTL ratio.   
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Figure 15. (A) Representative immunofluorescence analysis of hippocampus stained for SNAP-25. (B) Quantification of SNAP-25 immunofluorescence intensity in 

prefrontal cortex, gyrus dentate and hippocampus CA1. One-way ANOVA, **p=0.001. Data are presented as EFV/CTL ratio. 
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Figure 16. (A) Representative immunofluorescence analysis of hippocampus stained for GFAP. (B) Quantification of GFAP immunofluorescence intensity in 

prefrontal cortex, gyrus dentate and hippocampus CA1. One-way ANOVA, **p=0.001. Data are presented as EFV/CTL ratio. 
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3.4 DISCUSSION 

	
As most CNS adverse reactions of EFV occur in the first weeks of treatment, the knowledge 

about the mechanisms underlying them, even if it is very limited, is related to short-term EFV 

exposure. We have previously reported that long-term EFV exposure of Wistar rats lead to 

significant changes in biotransformation of EFV via Cyp2b in liver, prefrontal cortex and 

hippocampus, that differs from short-term exposition. These changes were accompanied by an 

accumulation of 8-OH-EFV in plasma and with major tissue differences in 

electrophilic/oxidative stress induced upon EFV exposure as evaluated by thiol redox code, 

with marked decrease of glutathionylation of proteins in hippocampus, a decrease of lower 

magnitude in pre-frontal cortex and no variation in the liver. Herein, we have evaluated the 

molecular alterations in neurons, astrocytes and synaptic function of prefrontal cortex and 

hippocampus induced by long-term exposure to EFV and their relation to a behavior profile of 

anxiety, depression and cognitive impairment. 

 

Our results show for the first time that long-term EFV exposure in rats triggers short- and long-

term spatial memory deficits observed in YM and MWM tasks, respectively, that go along with 

a decrease in neuronal activity.  In both tests, the animals need to make associations among the 

spatial environment clues to perform a cognitive map that helps them to find out the platform 

localization (Morris et al., 1982) or to recognize the unvisited arm (Dellu et al., 1997). EFV 

exposure led to a slower learning curve during the acquisition of MWM, without affecting 

memory retrieval. Also, the reduced novelty-seeking of EFV-treated rats found in the YM 

indicates that these animals had significant spatial memory impairment. Usually, animals prefer 

to investigate a new arm (novel arm) of the maze than returning to one that was previously 

visited. These results mean that EFV-exposed rats have memory impairment, particularly 

linked to the hippocampus (Morris, 1984). Notably, this test non-aversive as it does not require 

food deprivation as the radial maze or electric foot-shook as inhibitory avoidance test. 

Therefore, this test is less prone to modify the motivational and emotional status of the animals 

(Bekker et al., 2006), avoiding confounding factors in the spatial memory parameters 

evaluated. 

There are only three studies with behavior evaluation upon EFV exposure (O'Mahony et al., 

2005; Romao et al., 2011; Gatch et al., 2013). These studies differ strongly in study aims, in 

EFV exposure time (1-36 days) and EFV administration route (intravenous or oral gavage). 

Our study is the first associating EFV with learning memory impairment by using MWN and 

YM, suggesting that our model is the one that best fits for studies on this purpose. Moreover, 

the Wistar rat is a suitable model for the study of EFV biotransformation into 8-OH-EFV as an 

up-stream event of its neurotoxicity as the Cyp2b family is similar between humans (CYP2B6) 
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and rat (Cyp2b1 and Cyp2b2) and as they share inducible mechanisms (Ganem et al., 1999; 

Sueyoshi et al., 1999; Miksys et al., 2000; Muangmoonchai et al., 2001).   

 

In our model, EFV did not induce anxiety. The animals spent more time in the open arms, 

presenting lower anxious-related behavior. In accordance with the results from the EPM, the 

locomotion from both groups was not affected in the Open Filed test, neither was it found an 

anxiety-like behavior. Our data differs from what was observed in mice exposed to the same 

EFV dose, which presented an elevated anxious behavior (Romao et al., 2011). In that study, 

similar results were found for another anti-HIV drug, the nevirapine (NVP). NVP and EFV 

share more than the mechanism of action. Both are inducers of their metabolism via CYP2B6 

through CAR activation (Faucette et al., 2007). Also, their toxicity is associated with reactive 

metabolites generated by bioactivation of phase I metabolites (Caixas et al., 2012; Harjivan et 

al., 2014). In man, NVP is not associated to neurotoxicity but to hepatotoxicity (Sanne et al., 

2005). Plausible contributors to explain this difference are, the selective accumulation of the 

phase I metabolites in tissues, the capacity of each tissue to respond to electrophilic/oxidative 

stress as well as the availability of the enzymes that generate electrophile metabolites, the 

sulfotransferase in the case of NVP (Antunes et al., 2013) and the oxidases in the case of EFV 

(Harjivan et al., 2014). Despite sulfotransferases are present in brain, their activity is 300-fold 

lower than in liver (Rajkowski et al., 1997), which might mean that brain is not so capable of 

producing NVP toxic metabolite (12-sulfoxy-nevirapine). Thus, the effect found by Romão and 

collaborators (2011) might be related to the capability of NVP to be a CAR ligand, rather than 

the formation of toxic metabolites. Interestingly, EFV was shown to be genotoxic at the brain, 

but not at the liver (de Oliveira et al., 2014). Our previous data showed lower Cy2b mRNA 

levels in hippocampus are lower upon long-term EFV exposure, differently to what happens at 

the liver or prefrontal cortex. It is difficult to compare our results as these authors used mice 

and there are species-related differences on Cyp2b induction (Pustylnyak et al., 2007). and 

behavior tests can induce different fear/stress in the species, resulting in a potentially different 

neurotransmitter and brain area stimulation (Porsolt et al., 1978b).  

 

We have not explored if this low-anxiety behavior was related to an absence of fear or to a 

hallucinogenic effect. Patients on EFV complain of hallucinations, vivid dreaming and 

psychosis (Gutierrez et al., 2005; Cespedes and Aberg, 2006). There are reports on the use of 

EFV by non-infected teens who crush the pills and smoke the powder for its psychoactive 

effects (Marwaha, 2008; Sciutto, 2009). EFV has been describe as having an LSD-like effect, 

in the manner that it can be a partial agonist of the 5-HT2A receptor an it can block dopamine 

and serotonine uptake (Gatch et al., 2013), similar to other recreational drugs like cocaine, 
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methamphetamine and MDMA (Han and Gu, 2006). EFV might also have effects on serotonin 

as they compete for CYP2B6 metabolism (Fradette et al., 2004) and EFV is an inducer of this 

CYP450 isoform.  

 

Data obtained in the Forced swim test suggested no depression upon EFV exposure. Depression 

has been reported in a few clinical studies with EFV-treated patients, but the relation between 

EFV use and higher risk of depression is not easy defensible (O'Mahony et al., 2005; Journot, 

2006). 

 

EFV and 8-OH-EFV were shown to induce cell death in primary hippocampus cell cultures 

(Tovar-y-Romo et al., 2012). To evaluate the effect of EFV in our model, histopathological 

analysis of the brain was performed and no significant changes or signs of neuronal cell death 

were seen in any of experimental groups or areas of the brain analysed. Also, considering that 

MWM test has been introduced as an instrument with particular sensitivity to the effects of 

hippocampal lesions in rats (Morris et al., 1982), we have explored if any alterations regarding 

neuronal dendrites (Map2) (Lewis et al., 1989) and neuronal activity (FosB) (Flavell and 

Greenberg, 2008) were present in our animal model. Levels of Map2 and FosB were 

significantly decreased in hippocampus, both gyrus dentate and CA1 region, and no alterations 

were found in prefrontal cortex. At the dentate gyrus, neurogenesis has an important role in 

hippocampus-dependent learning and memory (Eriksson et al., 1998; Shors et al., 2002; Snyder 

et al., 2005). Accordantly with our data, a decrease in the proliferation of neural stem cells 

induced by EFV was observed in vitro and in the subventricular zone of C57BL/6 mice (Jin et 

al., 2016). The decrease found in Map2 indicates a loss of dendritic spines (Bernhardt and 

Matus, 1984). This suggests that this effect is mediated by the accumulation of 8-OH-EFV 

associated with long-term EFV exposure. This corroborates with the previous in vitro studies 

of Tovar-y-Romo showing that the metabolite 8-OH-EFV is one order of magnitude more 

potent in inducing dendritic spines injury than EFV itself (Tovar-y-Romo et al., 2012). In 

rodent models of aging and AD, decreased Map2 levels has been shown to be coincident with 

an increase of Aβ peptides in CA1 dendrites (Takahashi et al., 2013), early dendritic 

degeneration and reduction in total dendritic area (Moolman et al., 2004). Also, an in vitro 

study has revealed an association between EFV exposure and an increased production of Aß 

plaques due to increased oxidative stress conditions (Brown et al., 2014). Soluble Aβ oligomers 

represent the most toxic form of Aβ peptide, which are mediators of inflammation (Bradt et al., 

1998; Murakami et al., 2005) and oxidative stress (Murakami et al., 2005), and are critical in 

inducing cognitive impairment and synaptic dysfunction (Lue et al., 1999). Corroborating the 

results found for Map2, a lower FosB levels within the hippocampus revealed a decrease in 
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neuronal activity. FosB has been associated with impairment in spatial memory (Solecki et al., 

2008).  

 

SNAP-25 was analysed as a surrogate of synaptic activity. Our data showed a slight decrease 

at the dentate gyrus. This protein is a component of SNARE complexes that mediate the release 

of neurotransmitters (Sollner et al., 1993; Tafoya et al., 2006) and has been associated to 

cognitive deficit (Braida et al., 2015).  

 

Recent evidence support that 8-OH-EFV can be bioactivated (Harjivan et al., 2014). Several 

authors have been shown that electrophiles and free radicals generation could negatively impact 

the function of proteins and thereby interfere with axonal transport or pre-synaptic 

neurotransmitter release (Asanuma et al., 2003; Lopachin and Decaprio, 2005). This has been 

described for several toxins as acrolein or acrylamide (Lopachin and Decaprio, 2005), to 

L-DOPA and dopamine (Asanuma et al., 2003). The 8-OH-EFV has also been shown to induce 

an alteration in the astrocytes glucose metabolism (Brandmann et al., 2013), which lead us to 

evaluate astrocytes population in hippocampus and prefrontal cortex. As no changes in GFAP 

expression were seen, we can speculate that astrocytes may be more protected or not so 

vulnerable to EFV-toxicity, compared to neurons.   

 

A slower weight gain was observed for EFV-exposed animals when compared with CTL rats, 

which is in accordance to ours and others (Aïssi et al., 2015) previous observations. This was 

not associated with reduced food consumption, since no differences were found between the 

two groups. A possible explanation could be related with a decrease in growth hormone 

production within the hippocampus, where this hormone responds to several factors including 

exposure to environmental stimuli (Vander Weele et al., 2013). A slower weight gain was also 

demonstrated in other exposure conditions associated with hippocampus injury and oxidative 

stress as chronic intermittent hypoxia (Diogo et al., 2015) or methotrexate (Seigers et al., 2008).  

 

The data herein presented suggest that EFV significantly impairs neurological performance in 

animals, mimicking long-term neurotoxic effects observed in HIV-patients. This effect was 

particularly evident for hippocampus-dependent learning and memory. In clinical setting, 

approximately 40 - 50% of patients receiving EFV suffered from cognitive disorders, whereas 

23 - 29% are related to memory (Lochet et al., 2003; Ma et al., 2016). Evidently some important 

aspects of human pathology will probably never be accessible in animal models, but these 

treatment conditions in Wistar rats represent a suitable model that replicates human 

phenotypical (behavioural) features. We believe that this will permit to get further insights into 
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the molecular mechanism of EFV-induced neurotoxicity and explore the effect of electrophile 

species, CYP2B6 activity and CAR activation in hippocampus-dependent learning and memory 

(Fig. 17). 

 

 
Figure 17. Schematic representation of the toxic outcomes induced by long-term efavirenz 

exposure.  8-OH-EFV, 8-hydroxy-efavirenz.	
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FINAL CONSIDERATIONS 
 
The starting premise for this research work was the contradictory data in literature regarding 

the dependency of CNS adverse reactions on EFV concentrations (Ngaimisi et al., 2010; Cho 

et al., 2011; Habtewold et al., 2011; Aouri et al., 2016).  

Data (unpublished) from our lab TDM unit (Fig. 18) and from others (Kwara et al., 2010), show 

that among patients on the recommended dose of EFV, 600 mg/day, there are a great percentage 

of patients that manifest CNS adverse reactions within therapeutic concentrations (1 – 4 mg/L, 

Marzolini et al., 2001). Additionally, there are patients on 800 mg daily dose that had lower 

EFV concentrations than patients on 600 mg daily (Manosuthi et al., 2006). 
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Figure 18. Data from the Therapeutic Drug Monitoring Unit of CEDOC-NMS (Unpublished data). 

Concentrations of efavirenz (Cthough) were measured in 43 patients on 600 mg of EFV and central nervous 

system adverse reactions were reported by the clinician. Therapeutic (1-4 mg/L) and toxic concentrations 

(above 4 mg/L) were defined according to Marzolini and co-authors (2001). *p=0.015, Chi-square. 

 
 

Data reflects the high inter-individual variability of EFV concentrations (Marzolini et al., 2001; 

Pereira et al., 2008), which is mainly attributed to its biotransformation.  Additionally, as many 

neuro-adverse reactions have a delayed onset, we hypothesized the role of EFV metabolite(s) 

accumulation in the genesis of neurotoxic effects. Therefore, the work herein presented was 

aimed at unraveling the role of EFV biotransformation in EFV-induced CNS adverse reactions 

in order to find mechanistically-oriented tools for its monitoring and for evaluating strategies 

with the ultimate goal of optimizing EFV use.   
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The top five studies that strongly supported our findings and influenced our choices in the 

progression of this thesis are herein enounced.  

One published in 2012 by Tovar-y-Romo and collaborators in Sprague-Dawley hippocampal 

neuronal culture, showing that 8-OH-EFV was a more potent neurotoxin than EFV itself 

(Tovar-y-Romo et al., 2012). The minimal toxic concentration used was three times lower than 

what is found in the CSF of HIV-infected patients (Tovar-y-Romo et al., 2012). This study 

placed 8-OH-EFV in the roadmap of EFV neurotoxicity mechanisms. However, this is an in 

vitro study and there was a need for the translation of this finding.  

  

The second, from 2011 by Khokhar and collaborators, showed that by inhibiting Cyp2b 

specifically in brain, the pharmacological effect of the anesthetic propofol is changed (Khokhar 

and Tyndale, 2011). The authors observed an increase in the sleep time that was related with 

propofol concentration in brain, but not with the concentration in plasma. Additionally, seven 

days of nicotine treatment can induce the expression of brain Cyp2b but not hepatic isoform, 

and this induction reduced propofol sleep time by 2.5-fold. This work elegantly showed the 

importance of studying CYP activity and regulation in brain and the need to find peripheral 

markers that reflect this brain activity.  

 

The third was published by Harjivan and colleagues in 2014, and showed that upon in vitro 

oxidation of 8-OH-EFV, this metabolite was prone to yield a toxic quinoid derivative (Harjivan 

et al., 2014), paving the way for a new and unexplored mechanism of EFV neurotoxicity. This 

was later corroborated by Oliveira et al (2014) that found a selective genotoxicity in brain but 

not in liver of mice exposed to EFV (de Oliveira et al., 2014).  

 

Finally, Ngaimisi and collaborators showed in 2010 that the metabolites profile changed over 

at least 16 weeks since EFV beginning and it is characterized by a decrease in EFV and increase 

in 8-OH-EFV concentrations (Ngaimisi et al., 2010). This long-term auto-induction effect is 

dose-, duration of treatment- and genetically-dependent. These data lead us to hypothesize that 

8-OH-EFV contributes differently to long- and short-term toxicity mechanisms. 

 

Herein are presented our final considerations, divided into four components. The first one 

summarizes the relevant findings of both clinical and animal studies. Then, it is described the 

added value of this work to the field. The next sections outline the main limitations of our work 

and explore some future perspectives concerning the management of EFV-CNS toxicity. It is 
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therefore unavoidable that there is some content overlap between these sections and the 

discussion section of each chapter. 

 

 

1. Summary of relevant findings 
  

In our opinion, to justify the discrepant data reported in literature about the correlation between 

EFV concentration and the occurrence of neuro-adverse drug reactions, we should not only 

considerer the inter-individual PK variability of EFV, but also the broad type of symptoms and 

the time for their onset. It is highly plausible that the panoply of described EFV-adverse 

reactions have different underlying mechanisms. For this reason, in the clinical study of the 

present work, we focused on mood changes. We choose to start with this adverse effect because 

it was the most observed in patients on long-term EFV exposure in our cohort. In short-term 

EFV use, sleep disorders are the major complaint. Our study showed that patients on long-term 

EFV exposure with mood changes complaints have higher plasmatic concentrations of 

8-OH-EFV than those without CNS complaints. To minimize confounding factors, we have 

limited the study to male patients with normal hepatic function and controlled viremia. One 

additional factor for this choice was the fact that the number of woman included on EFV is 

much lower than man, as EFV was classified as Pregnancy Category D by FDA clinicians avoid 

its prescription in woman in childbearing age. Differently to previous studies, we took in 

consideration the type of CNS adverse reaction, the time on EFV, the PK parameter and the 

concentration of non-conjugated 8-OH-EFV and 8-OH-EFV-Glc, which we consider a plus in 

our study design.  

 

In conclusion, with the results obtained in the first part of the present study, is possible to 

suggest the plasmatic concentration of 8-OH-EFV as a suitable parameter for TDM, particularly 

aimed at controlling mood changes.  

 

In the animal studies, we evaluated the time-course of EFV biotransformation and profiled 

Cyp2b induction by EFV in brain and liver as well as tissue thiolomic signatures. We observed 

that changes in these endpoints were particularly evident in brain at 36 days of EFV exposure 

and we ascertained that these molecular changes are related to an animal neurologic phenotype 

(memory impairment), similar to what is observed in patients.  

Long-term EFV exposure was associated to induction of Cyp2b at the liver, higher 8-OH-EFV 

plasma concentrations, memory and learning impairment, neuronal dysfunction in 

hippocampus, a brain area with unquestionable roles in cognition and emotional experiences 
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(Sigurdsson and Duvarci, 2016). Similarly to man, the Cyp2b induction by EFV had a delayed 

onset and persisted after long-term exposure, occurring a progressive increase in 8-OH-EFV 

formation. This effect is opposed in the hippocampus, showing a different regulation of Cyp2b 

in brain and liver upon long-term EFV exposure. According to our data interpretation, 

8-OH-EFV should be barely formed in the hippocampus, suggesting a contribution of a 

peripheral pool of this metabolite, which is in accordance with our previous result in man and 

with the possibility of 8-OH-EFV to be able to cross the BBB. Other observation was that 

hippocampus is the tissue more susceptible to 8-OH-EFV toxicity (where a decrease in GSSP 

and CysSSP was observed) and this was coincident with a decrease in GSH and an increase of 

GSSP in plasma, suggesting the suitability of plasma thiolomic profile, together with 

8-OH-EFV concentrations in evaluating what happens in brain. New data from our group 

aiming at the translation of this data showed a similar thiolation plasma profile in patients on 

EFV (Correia et al. 2016). Moreover, patients with higher plasmatic GSSP had higher 

8-OH-EFV. This profile was not related to viral load or CD4+ T-cell count of the patients and 

it was independent on viral subtype (subtype B vs non-B). 

 

 

2. What is the added value and the impact of the present work to the field? 
 

Contribution to the knowledge of the mechanisms of EFV neurotoxicity  

We propose that short-term neurotoxic effects would probably be more dependent on EFV 

concentration, while those at long-term will most likely be related to 8-OH-EFV accumulation. 

This issue is pertinent for further evaluation as CNS-adverse reactions occurring in the first 

weeks of treatment (short-term) are normally transient, or if not the patient usually switches to 

other cART options. Thus the long-term effects of EFV exposition in brain are a main concern 

and much more difficult to predict and to manage. This is particularly worrying in children, 

which start EFV at 3 years of age, ideally through their entire life.  

 

Identification of peripheral markers to monitor the risk of long-term mood changes and memory 

impairment and to evaluate strategies for its management 

Our findings suggest for the first time the importance of monitoring 8-OH-EFV, besides EFV, 

to predict and manage EFV-CNS toxicity. Together with evaluation of thiolomic signature as a 

measure of electrophilic stress they can be components of a better index for the risk of long-term 

EFV associated mood changes and memory impairment. 

 



Final Considerations 

87	
	

New input in the interpretation of pharmacogenetic data on CYB2B6 and in the identification 

of new targets for pharmacogenetic studies on EFV neurotoxicity 

These data are also relevant for the interpretation of pharmacogenetic data. Most of 

pharmacogenetic studies are related to CYP2B6 and consider EFV itself as the responsible for 

its toxicity. Consequently, low metabolizers are assumed to be at greater risk for adverse 

reactions. However, it has been not evaluated the correlation between polymorphisms with a 

specific type of adverse reaction, with EFV biotransformation into 8-OH-EFV or with time of 

exposure. Due to this lack of information and considering our results, we suggest that low 

metabolizers are at higher risk of short-term toxicity (due to EFV), while ultra-rapid and 

extensive metabolizers are more prone to long-term toxicity (as mood changes and memory 

impairment). It should be also considered other pharmacogenetic targets as, other CYP 

isoforms, UGTs, the nuclear receptors CAR and PXR, which have been related with EFV PK 

alterations (Swart et al., 2012b) and in glutathione-S-transferase (responsible for catalyze the 

conjugation of electrophiles to GSH for their detoxification), which have been associated with 

increase susceptibility to toxic compounds (Wormhoudt et al., 1999).  

 

Identification of drug interactions and their mechanisms that increase long-term EFV 

neurotoxicity risk 

It is important to consider drug interactions in EFV prescription, since EFV has a narrow 

therapeutic window and HIV-infected patients might develop comorbidities and are often 

polymedicated. Possible targets of drug interactions in the EFV neurotoxicity are the enzymes 

involved in EFV metabolism that contribute to 8-OH-EFV increased concentration, e.g., 

CYP3A4 inhibitors (e.g., ritonavir (Eagling et al., 1997)), CYP2B6 inducers (e.g., rifampicin 

(Faucette et al., 2004)) and UGT2B7 inhibitors (e.g., valproic acid (Trapnell et al., 1998)). It 

should be given attention to the prescription of other inducers of CYP2B6, as the antiepileptic 

drugs phenytoin and carbamazepine, which are inducers of CYP2B6 (Faucette et al., 2004) and 

deplete GSH (Raya et al., 1995). Depletion of GSH is involved in toxicity 

outcomes/susceptibility to toxicity and is present in the plasma, PBMCs and brain lysates of 

HIV-infected patients (de Quay et al., 1992; Saing et al., 2016). For these reasons, attention 

should be also given to drugs and pathologic conditions with associated reduction of GSH 

content. One particular case on drug interactions with EFV is rifampicin, used for tuberculosis. 

Rifampicin is a potent inducer of CYP3A4 and a moderate of CYP2B6 (U. S. Food and Drug 

Administration, 2016), which might lead to sub-therapeutic EFV concentrations, particularly 

in patients with bodyweight above 50 kg (Lopez-Cortes et al., 2002). In 2012, FDA 

recommended the increase of EFV dose from 600 to 800 mg/daily when co-administrated with 

rifampicin (AIDSinfo, 2012). However, several studies do not support this recommendation 
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due to the inter-variability of EFV concentrations (Manosuthi et al., 2006) and genetic factors 

(Manosuthi et al., 2014). Nevertheless, the effect of this co-administration in 8-OH-EFV 

concentrations was not assessed yet.  

 

Contribute to the evaluation of drug bioactivation risk and justify the unquestionable need of 

animal studies in neurotoxicity assessments 

The treatment conditions used in Wistar rat represent a suitable model for the assessment of 

EFV PK/neurotoxicity relationships and to ascertain the mechanisms underlying it. Therefore, 

we believe that this model will permit to get further insights into the molecular mechanism of 

EFV-induced neurotoxicity, and explore not only more possible targets but also uncover drug 

metabolism/bioactivation in brain. Also, we consider that the evaluation in different 

compartments is of unquestionable importance to understand the likelihood of a drug to be 

toxic. Our findings in prefrontal cortex and hippocampus highlight the importance of not study 

the complete brain, since as we and others (Miksys et al., 2000) have observed that Cyp2b has 

tissue- and cell-specificities. Hence, it is important to not assume that the regulation of CYPs 

is the same in all compartments. The same rational must be applied for tissue capability to 

bioactivate 8-OH-EFV and tissue response to electrophilic stress. 

 

The use of an animal model was unavoidable for our research approach, mainly since our study 

involved long-term drug exposure, liver-blood-brain tissues analysis and importantly its 

relation to behavior evaluation. Therefore, the use of in vitro alternatives were not found to be 

suitable.  Importantly, during the entire project the 3Rs policy (replacement, reduction and 

refinement) was always followed. The number of animals used was kept to the minimum and, 

whenever possible, the same tissue was used for more than one assay. Also, NIH Principles of 

Laboratory Animal Care (NIH Publication 85-23, revised 1985), the European guidelines for 

the protection of animals used for scientific purposes (European Union Directive 2010/63/EU) 

and the Portuguese Law nº 113/2013 concerning ethical use of animals were followed. 

 

If translated into clinical practice, the evidence herein provided could be helpful on the 

interpretation and clinical understanding of pharmacogenomics and TDM data in both 

short- and long-term EFV neurotoxicity, as well as on the identification of patients prone to 

toxicity. Moreover, it highlights the awareness of not only of drug-drug interactions with 

chronically used enzyme inducers that cross BBB, but also of drugs that are extensively 

metabolized by the liver and whose metabolites penetrate the CNS. 

 

 



Final Considerations 

89	
	

 3. Which were the limitations of the present work? 
 
We are conscious about some limitations of our clinical study. Our sample size should ideally 

be larger; however, in order to avoid bias in our results, we have implemented restricted 

inclusion and exclusion criteria, which decreased significantly our study population. Another 

limitation was the low number for women in our cohort, which did not allow us to evaluate 

sex-differences in the toxicity markers herein explored, despite the reported sex-differences in 

EFV PK (Burger et al., 2006). Additionally, our CNS adverse effects were based on 

self-reported complaints made by the patients. Ideally, these adverse effects would be assessed 

by validated cognitive tests and interviews. 

 

Moreover, we have not quantified 8-OH-EFV-sulfate that was recently identified by Aouri and 

co-authors (2016) as a new phase II metabolite. This metabolite occurs approximately 10 times 

lower than the glucuronide conjugate (Aouri et al., 2016). With this knowledge, not only 

8-OH-EFV-Glc but also 8-OH-EFV-sulfate should have been considered. Currently, it is 

unknown if 8-OH-EFV-Glc and 8-OH-EFV-sulfate pass through BBB. Usually, phase II 

metabolites are unable to cross this barrier; however, there are reported exceptions (D. Wu et 

al., 1997). Particularly in the case of 8-OH-EFV, both phase II metabolites were found in the 

CSF (Aouri et al., 2016) and considering that phase II enzymes content in brain is low (Ouzzine 

et al., 2014), it is possible to postulate that BBB is permeable to EFV phase II metabolites.     

  

In animals, it was only possible to quantify 8-OH-EFV when glucuronidase enzyme was use, 

thus the quantification reflects both the sum of non-conjugated and 8-OH-EFV-Glc fractions. 

Again, 8-OH-EFV-sulfate was not measured despite its identification in rat urine (Mutlib et al., 

1999).  As the rat metabolism is more rapid than man, makes it difficult to quantify the free 

metabolite with the use of HPLC methodology. The identification of the phase II metabolite, 

8-OH-EFV-sulfate in man has implications for the use of EFV as a probe to phenotype the 

CYP2B6 activity. Thus, in the future, sulfatase hydrolysis has also to be performed. Also, other 

limitation arising from the factors mentioned above was the lack of 8-OH-EFV quantification 

in tissues, especially in CNS compartments.  

 

Furthermore, it was not possible to evaluate the formation of covalent adducts between 

8-OH-EFV-derived reactive metabolites and proteins. Despite the oxidative bioactivation 

pathway was demonstrated in vitro (Harjivan et al., 2014; Wanke et al., 2012), to attest the role 

of 8-OH-EFV bioactivation in the onset of EFV-induced neurotoxic events, the identification 

of these protein adducts should have been performed in vivo. Nonetheless, the identification of 
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drug-protein adducts in vivo constitutes still a great analytical challenge, due to the low 

concentration of adducted protein when compared with the concentration of non-modified 

protein. In fact, despite the huge developments in terms of bottom-up mass spectrometry-based 

proteomics approaches towards the identification of covalent drug-protein adducts, this still 

constitutes a time-consuming task. Considerable work is needed, not only for the optimization 

of protein isolation and digestion steps, but also for the optimization of chromatographic and 

mass spectrometry methodologies for the separation and identification of adducted peptide and 

for the subsequent data analysis step. For these reasons, it was not possible to achieve this goal 

within the time-period of this thesis. 

 

Finally, we have not considered the effects of the other drugs of cART regimen, which are not 

exempt of toxicity and of changing EFV PK (Carr and Cooper, 2000).  Moreover, our animal 

model does not explore the contribution of HIV-infection and its associated 

immunosuppression, residual inflammation and viremia to neurotoxicity. Nowadays, it is 

possible to develop humanized mouse models with HIV (Denton and García, 2011). These 

models are generated by transplanting human cells or tissues into genetically modified 

immunodeficient mice. These animals are then susceptible to infection through the natural 

routes by which humans are. With these models, it would be possible to study cART toxicity 

outcomes in parallel with the effects of HIV-infection. Regarding CNS status, this is of 

particular importance, since HIV also generates neurocognitive disorders (Letendre, 2011).  

This association has also been linked to a higher oxidative stress status.  

 

 
4. What is still unknown and should be addressed? 
  
Despite the significant progress in recent years, there are still large gaps in the current 

knowledge of the effects of drug biotransformation in adverse neurological events. Further 

studies must be conducted to elucidate the importance of 8-OH-EFV concentrations towards 

personalized and safer prescription of EFV. We believe that it is necessary to define an 

8-OH-EFV concentration threshold above which the risk of toxicity increases, similar to what 

exists for EFV (> 4 mg/L). Pharmacogenetic results with short- and long-term toxicity appear 

to be of interest too.   

 

The hypothesis of adducts formation in brain, particularly between bioactivated 8-OH-EFV and 

synaptic proteins in these times of exposure to the drug should also be addressed. Another 

interesting question still to be answered: Is the administration of N-acetylcysteine useful? Or if 
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not, would it be useful to perform structural modifications of EFV molecule in order to avoid 

8-OH-EFV formation? The proximity of the OH group at position 8 to the nitrogen group in 

the benzoxazine structure appears to be critical for the generation of neurotoxic metabolites. 

This is demonstrated by the fact that 7-OH-EFV, which possesses a OH group at the carbon-7 

position, is not neurotoxic. Consequently, is it possible to hypothesize that the substitution of 

the carbon at position 8 (e.g. with a fluorine), avoiding EFV hydroxylation at this position, 

should produce a compound with decreased neurotoxicity.  

 

Future work should also explore thiolomic profile monitoring to assess the usefulness of 

intervention strategies against electrophilic stress prior to or early after the onset of clinical 

symptoms upon EFV exposure. For example, it will be interesting to evaluate the contribution 

of polymorphisms in GSH-related genes or thiolation profiles, not only for the evaluation EFV 

neurotoxicity but also to interpret its resistance to hepatotoxicity.  
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ATTACHMENT #1 
 

Informação ao participante voluntário no estudo intitulado Deteção 
de Efavirenz e de adutos de proteínas em indivíduos infetados pelo VIH 
 

É	seguido	nesta	consulta	por	estar	infetado	VIH	e	está	no	momento	a	ser	
tratado	 com	 medicamentos	 para	 controlo	 da	 infeção.	 À	 luz	 dos	 atuais	
conhecimentos,	os	medicamentos	que	utiliza	são	os	mais	indicados	para	si.	Como	
sabe	são	medicamentos	não	isentos	de	efeitos	adversos	que	podem	manifestar-se	
a	curto	ou	longo	prazo	e	para	os	quais	o	seu	médico	está	sempre	atento.			

Numa	 tentativa	 de	 podermos	 identificar	 possíveis	 efeitos	 adversos	 não	
esperados	dos	medicamentos,	agradecemos	a	sua	colaboração	na	colheita	de	uma	
amostra	 do	 seu	 sangue	 para	 realização	 de	 testes	 laboratoriais	 específicos	 que	
detetem	eventuais	toxicidades.	Esta	amostra	de	sangue	será	colhida	em	consulta	
e	serão	apenas	colhidos	3	ml	de	sangue.	A	sua	participação	será	voluntária,	não	
sendo	 paga	 qualquer	 quantia	 pela	 sua	 contribuição	 no	 estudo.	 O	 seu	 médico	
assistente	 também	 não	 receberá	 nenhuma	 remuneração	 pela	 realização	 deste	
estudo.	 Os	 dados	 relativos	 à	 sua	 colheita	 estarão	 protegidos	 pela	 lei	 da	
confidencialidade	e	proteção	de	dados.		

O	presente	estudo	não	 trará	qualquer	benefício	direto	para	 si	ou	para	a	
evolução	 da	 sua	 infeção.	 Com	 este	 estudo	 pretendemos	 saber	 mais	 sobre	 os	
medicamentos	que	utiliza	e	com	os	dados	colhidos	esperamos	chegar	a	conclusões	
que	no	futuro	possam	contribuir	para	o	melhor	conhecimento	dos	medicamentos	
para	 controlo	 da	 infeção	 VIH	 e	 com	 isso,	 eventualmente,	 prevenir	 outras	
patologias	e	melhorar	a	qualidade	de	vida	dos	doentes	infetados.	

	
	
		 	 	 	 	 Obrigado.	
	

	
	
	

Consentimento	informado	
	
	
Li	ou	foi-me	lido	e	explicado	pelo	meu	médico	o	texto	acima	e	consinto	na	

colheita	da	amostra	de	sangue	
	
	

	(o	doente)	 	
	

	
	
(o	médico)	
	
	
Lisboa,	_____/_____/_______	
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ATTACHMENT #2 
 

Patient data notebook 

 

    
 
 
 

Por	favor,	enviar	o	formulário	completo	acompanhado	das	amostras	para:	
Departamento	de	Farmacologia,	Faculdade	de	Ciências	Médicas	
Campo	dos	Mártires	da	Pátria,	130,	1169-056	Lisboa	
Tel.:	218	803	035				Fax:	218	803	083				E-mail:	farmacologia@fcm.unl.pt,	sofia.pereira@fcm.unl.pt	telemóvel	Sofia	Pereira	96	4243174	
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INFORMAÇÃO	DO	HOSPITAL	

Médico		

	

Hospital		

Telefone	

	

E-mail		

 
 

CRITÉRIOS	DE	INCLUSÃO	E	EXCLUSÃO	
	

 Não	 Sim	

≥	18	anos	de	idade	
  

Consentimento	informado		

Suspeita	de	não	adesão		
Adesão	-	cumprir	pelo	menos	95%	da	terapêutica	antiretroviral	

 

INFORMAÇÃO	DO	DOENTE	

Doente	(n)	|___|___|___|___|___|___|___|___| 

Data	de	nascimento |DD|MM|AA|  
                           

Sexo		F	¨		M	¨			

Peso	(Kg)	|___|___|									Altura	(cm)	|___|___|___|			

Etnia:		Caucasiana	¨				Negra	¨			Outra		

Subtipo	HIV:	_________	

Consumo	de	álcool																		N	¨					S	¨          

	

Uso	de	drogas	injectáveis     N		¨    S ¨                                                                 Fumador(a)	 N		¨    Y ¨   

 

Reacções	adversas																	N		¨     S	¨   

 

Patologias	associadas												N		¨          HCV	¨											HBV		¨											Diabetes	¨										Outra	¨		

	

Infecções	oportunistas			       N		¨          Tuberculose	 ¨           Outra	¨	                                                                                              	

                                                            

 

Primeira	terapêutica	antiretroviral				N		¨    S ¨           

Terapêuticas	antiretrovirais	anteriores		

(data	de	início/fármaco)	

	

|___|___| |___|___| |___|___| 

|___|___| |___|___| |___|___| 

|___|___| |___|___| |___|___| 

|___|___| |___|___| |___|___| 

 

 

 

 

 

 

 

 

 

 

 

ESPECIFICAR	
	

VER	ANEXO	I	

ESPECIFICAR	

ESPECIFICAR	
	

ESPECIFICAR	
	

ESPECIFICAR	
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Por	favor,	enviar	o	formulário	completo	acompanhado	das	amostras	para:	
Departamento	de	Farmacologia,	Faculdade	de	Ciências	Médicas	
Campo	dos	Mártires	da	Pátria,	130,	1169-056	Lisboa	
Tel.:	218	803	035				Fax:	218	803	083				E-mail:	farmacologia@fcm.unl.pt,	sofia.pereira@fcm.unl.pt	telemóvel	Sofia	Pereira	96	4243174	
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|___|___| |___|___| |___|___| 

Efavirenz	

	
Data	de	início	(dia/mês/ano)	

|___|___| |___|___| |___|___| 

mg	por	toma	

|___|___|___|___|	

Nº	de	tomas	

|___|	
Co-terapêutica	antiretroviral	

Data	de	início	(dia/mês/ano) mg	por	toma	 Nº	de	tomas	

NOME	DO	FÁRMACO	
|___|___| |___|___| |___|___| |___|___|___|___|	 |___|	

NOME	DO	FÁRMACO	
|___|___| |___|___| |___|___| |___|___|___|___|	 |___|	

NOME	DO	FÁRMACO	
|___|___| |___|___| |___|___| |___|___|___|___|	 |___|	

NOME	DO	FÁRMACO	
|___|___| |___|___| |___|___| |___|___|___|___|	 |___|	

NOME	DO	FÁRMACO	
|___|___| |___|___| |___|___| |___|___|___|___|	 |___|	

Outros	fármacos	Não	c						Sim	c	(incluir	todos	os	que	tomou	no	último	mês)     

 (incluir	fitoterápicos,	medicamentos	de	venda	livre,	etc.) 	
NOME	DO	FÁRMACO	

|___|___| |___|___| |___|___| |___|___|___|___|	 |___|	
NOME	DO	FÁRMACO	

|___|___| |___|___| |___|___| |___|___|___|___|	 |___|	
NOME	DO	FÁRMACO	

|___|___| |___|___| |___|___| |___|___|___|___|	 |___|	
NOME	DO	FÁRMACO	

|___|___| |___|___| |___|___| |___|___|___|___|	 |___|	
 
 

Parâmetro	
Valor	

Unidade		1	 Unidade		2	 Data	

Subpopulações	de	CD4	
|___|___|___|___|___|___| 

¨ cel/mm3	 ¨ ________	 |DD|MM|AA| 

Subpopulações	de	CD8	 |___|___|___|___|___|___| ¨ cel/mm3 ¨ ________	 |DD|MM|AA|	

Carga	viral	  
|___|___|___|___|___|___| ¨ cópias/mL	 ¨ ________ |DD|MM|AA| 

Hemoglobina		
|___|___|___|___|___|___| ¨ g/dL	 ¨ ________ |DD|MM|AA| 

Plaquetas	
|___|___|___|___|___|___| 

¨ cel/mm3 ¨ ________ |DD|MM|AA| 

Leucócitos		
|___|___|___|___|___|___| 

¨ g/L	 ¨ ________ |DD|MM|AA| 

Neutrófilos	
|___|___|___|___|___|___| ¨ cel/mm3	 ¨ ________ |DD|MM|AA| 

Linfócitos		
|___|___|___|___|___|___| ¨ cel/mm3	 ¨ ________ |DD|MM|AA| 

Monócitos		
|___|___|___|___|___|___| ¨ cel/mm3 ¨ ________ |DD|MM|AA| 

Tempo	de	protrombina	(INR)		
|___|___|___|___|___|___| ¨ %	 ¨ ________ |DD|MM|AA| 
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Por	favor,	enviar	o	formulário	completo	acompanhado	das	amostras	para:	
Departamento	de	Farmacologia,	Faculdade	de	Ciências	Médicas	
Campo	dos	Mártires	da	Pátria,	130,	1169-056	Lisboa	
Tel.:	218	803	035				Fax:	218	803	083				E-mail:	farmacologia@fcm.unl.pt,	sofia.pereira@fcm.unl.pt	telemóvel	Sofia	Pereira	96	4243174	
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a1-glicoproteína	ácida	
|___|___|___|___|___|___| ¨ mg/dL	 ¨ ________ |DD|MM|AA| 

Glicémia	
|___|___|___|___|___|___| ¨ mg/dL	 ¨ ________ |DD|MM|AA| 

Creatinina	
|___|___|___|___|___|___| 

¨ mg/dL ¨ ________ |DD|MM|AA| 

Ureia	
|___|___|___|___|___|___| ¨ mg/dL	 ¨ ________ |DD|MM|AA| 

Albumina	
|___|___|___|___|___|___| ¨ g/L	 ¨ ________ |DD|MM|AA| 

AST	
|___|___|___|___|___|___| ¨ U/L	 ¨ ________ |DD|MM|AA| 

ALT	
|___|___|___|___|___|___| ¨ U/L	 ¨ ________ |DD|MM|AA| 

g-GT	
|___|___|___|___|___|___| ¨ U/L ¨ ________ |DD|MM|AA| 

Fosfatase	alcalina	 |___|___|___|___|___|___| ¨ U/L	 ¨ ________ |DD|MM|AA| 

LDH	 |___|___|___|___|___|___|	 ¨ U/L ¨ ________ |DD|MM|AA| 

Bilirrubina	total	 |___|___|___|___|___|___|	 ¨ mg/dL ¨ ________ |DD|MM|AA| 

Bilirrubina	directa	 |___|___|___|___|___|___| ¨ mg/dL	 ¨ ________ |DD|MM|AA| 

PCR	 |___|___|___|___|___|___|	 ¨ mg/dL ¨ ________ |DD|MM|AA| 

Ácido	hialurónico	 |___|___|___|___|___|___|	 ¨ mg/dL ¨ ________ |DD|MM|AA| 

Haptoglobina		
|___|___|___|___|___|___| ¨ µg/dL ¨ ________ |DD|MM|AA| 

Alfa2-macroglobulina	
|___|___|___|___|___|___| ¨ g/dL ¨ ________ |DD|MM|AA| 

Apolipoproteina	A1	
|___|___|___|___|___|___| ¨ mg/dL ¨ ________ |DD|MM|AA| 

Colesterol	total		
|___|___|___|___|___|___| ¨ mg/dL ¨ ________ |DD|MM|AA| 

LDL	–	col	
|___|___|___|___|___|___| ¨ mg/dL ¨ ________ |DD|MM|AA| 

HDL	-	col	
|___|___|___|___|___|___| ¨ mg/dL ¨ ________ |DD|MM|AA| 

Triglicéridos	
|___|___|___|___|___|___| ¨ mg/dL	 ¨ ________ |DD|MM|AA| 

Transferrina	
|___|___|___|___|___|___| ¨ g/L ¨ ________ |DD|MM|AA| 

Ferro	
|___|___|___|___|___|___| ¨ μg/dL ¨ ________ |DD|MM|AA| 

Sódio	
|___|___|___|___|___|___| ¨ mmol/L ¨ ________ |DD|MM|AA| 

Potássio	
|___|___|___|___|___|___| ¨ mmol/L ¨ ________ |DD|MM|AA| 

MPKA	
|___|___|___|___|___|___| ¨  ¨ ________ |DD|MM|AA| 

CPK	
|___|___|___|___|___|___| ¨	U/L ¨ ________ |DD|MM|AA| 
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Por	favor,	enviar	o	formulário	completo	acompanhado	das	amostras	para:	
Departamento	de	Farmacologia,	Faculdade	de	Ciências	Médicas	
Campo	dos	Mártires	da	Pátria,	130,	1169-056	Lisboa	
Tel.:	218	803	035				Fax:	218	803	083				E-mail:	farmacologia@fcm.unl.pt,	sofia.pereira@fcm.unl.pt	telemóvel	Sofia	Pereira	96	4243174	
	

 
 

Página	4	de	4	

História	Familiar	

Não	¨ Sim ¨ 

 
	
Notas	

 
 
 
 
 
Data |DD|MM|YY| 
 
 
 
 
Responsável pela recolha de dados _________________________________________________________________________________ 
 
	

	


