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Abstract

The exponential growth of hardware requirements coupled with online services develop-

ment costs have brought the need to create dynamic and resilient systems with networks

able to handle high-density traffic.

One of the emerging paradigms to achieve this is called Cloud Computing it pro-

poses the creation of an elastic and modular computing architecture that allows dynamic

allocation of hardware and network resources in order to meet the needs of applications.

The creation of a Private Cloud based on the OpenStack platform implements this

idea. This solution decentralizes the institution resources making it possible to aggre-

gate resources that are physically spread across several areas of the globe and allows an

optimization of computing and network resources.

With this in mind, in this thesis a private cloud system was implemented that is

capable of elastically leasing and releasing computing resources, allows the creation of

public and private networks that connect computation instances and the launch of virtual

machines that instantiate servers and services, and also isolate projects within the same

system.

The system expansion should start with the addition of extra nodes and the modern-

ization of the existing ones, this expansion will also lead to the emergence of network

problems which can be surpassed with the integration of Software Defined Network

controllers.

Keywords: cloud computing; private cloud; hardware; elastic resources; Software De-

fined Networks; OpenStack;
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Resumo

O crescimento exponencial dos requisitos de hardware aliado aos custos de desen-

volvimento de serviços online trouxeram a necessidade de criar sistemas dinâmicos e

resilientes dotados de redes capazes de lidar com alta densidade de tráfego.

Um dos paradigmas emergentes denomina-se Cloud Computing, permite a implemen-

tação de um sistema elástico e modular de computação permitindo a alocação de recursos

de hardware e rede dinamicamente, de maneira a responder às necessidades das aplica-

ções web.

A implementação de uma Cloud privada com base na plataforma OpenStack imple-

menta esta ideia. Esta solução descentraliza os recursos da instituição na medida em que

é possivel agregar hardware que está distribuido geograficamente e permite também uma

otimização dos recursos computacionais e de rede.

Com isto em mente, a presente tese implementa um sistema de cloud privada capaz de

elasticamente reservar e libertar recursos de computação, criar redes públicas e privadas

que permite a comunicação entre instancias de computação, lançar máquinas virtuais

que instanciam servidores e serviços e também isolar projetos dentro do mesmo sistema.

A expansão do sistema deve começar com a adição de nós e com a modernização dos

nós já implementados, com esta expansão é esperado o surgimento de problemas de rede

que podem ser superados com a integração de controladores Software Defined Network.

Palavras-chave: cloud computing; cloud privada; hardware; recursos elásticos; Software

Defined Networks; OpenStack;
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1
Introduction

1.1 Background & Motivation

Computing as we know has evolved into a new paradigm, "Cloud Computing". In cloud

computing data and computation tasks are fulfilled remotely in a "cloud" providing the

delivery of hardware, system software and applications as a service over the Internet.

Cloud Computing is a fast-growing technology, that supplies the Information Tech-

nology (IT) industry demands for stable software and dynamic hardware. It enables large

scale data processing and also allows universal access, ease of management and a lower

starting investment since this solution can be deployed on a pay-per-use base.

In a conventional processing environment there is a need to scale up the resources

(e.g. adding more RAM, disk space or CPU power) to satisfy demand but in a cloud

environment the resources are scaled out, due to its elastic nature. This allows virtual

instances to share workload between them, it is possible to replicate instances on demand.

With the increase of the cloud complexity new problems such as network complexity can

rise. To solve this dilemmas new network technology and tools are used. One of the most

popular approaches is Software-Defined Networking (SDN), a model which enables a

better control over the network layout, resulting in a better overall performance of the

system.

In the academic IT environment there is a need for large data processing, simulation

and service providing. These tasks can take weeks to run or be very hardware intensive.

But when given access to a larger pool of computing resources it can be done in a few

hours or days. While it is not conceivable to build a super computer the cloud enables

the possibility of grouping several computers and combine their resources.

The cloud also enables the development of software or services without the concern

for underlying hardware requisites or compatibilities, since it runs on a virtual layer the

1



CHAPTER 1. INTRODUCTION

resources can be allocated and released on demand thus removing the need for provision-

ing in early stages of a project.

Cloud Computing can also allow teachers and students alike to use its resources in

the lab or in lectures, for instance professors can create virtual environments with the

needed software for a project and every time a student needs to work on such project it is

possible to access that instance and work on it, retrieving the results later.

A cloud platform can really greatly impact an educational institution by supplying on-

line learning applications and environments, it supports mobile learning, scalability also

reduces the costs of hardware and proprietary software making it a all around solution as

a educational platform. The network access control and management has a huge impact

not only on the users experience but also on the cloud performance so, network services

should also be taken into consideration.

My motivation for this thesis was to be able to create a a private cloud by integrating

the existing hardware in order to attain all the benefits of a cloud computing infrastruc-

ture in the department.

1.2 Challenges

The implementation of a cloud in an educational environment provides some interesting

challenges, such as:

• Limited resources, what are the minimum resources to implement a private cloud

into a scholar environment?

• Flexibility to change the underlying network, is it possible to build a private cloud

and run a SDN Controller in this scenario, what would be the advantages of doing

so?

• Use of open-source software. What are the best open-source solution available in

the market and how would this approach affect the standard architecture?

For the first challenge, we discovered that when it comes to cloud computing services

the hardware requirements are minor, so it is possible to build a simple cloud that can

manage simple mundane tasks. The hardware requirements only have to scale to accom-

modate the workload requirements, so in a scholar environment it is possible to build

a prototype cloud that can host a limited amount of instances, and then increase the

hardware further to accommodate higher workloads.

Concerning the second problem, it is possible to run a cloud on top of a software

defined network and it is also possible to assign all the network management to a SDN

Controller, the later option is usually the best approach since it optimizes the network

management and control.

2



1.3. THESIS OUTLINE

As for the last challenge, a comparative analysis was made to outline the available

open-source solutions and how these solutions would affect the implemented architec-

ture.

This thesis goal is to build a cloud system using open-source software and the hard-

ware available in the department. The primary objective is to use the hardware resources

available and prepare the system for expansion, so it can deal with higher workloads

and be more suitable to be used as a research and development tool of the teaching and

student core.

Using OpenStack it was possible to implement a cloud architecture that had as an

underlying hardware three HP Proliant servers that power the cloud one of the server

is running as a cloud controller and the other two run as cloud compute nodes. The

controller node is responsible for the synchronization of the services and communica-

tion between them and the compute node is responsible for the life cycle of the virtual

instances that they are running. The open source software also allows the control and

management of users/projects, network and orchestration.

The implemented model should be able to manage users, user access to projects,

virtual networks and instances. It is also capable of creating and deleting private virtual

networks on top of the physical network, deploy instances onto the virtual network, create

virtual routers that establish connections between private and public virtual networks

and also private to private virtual networks. Finally it is capable of running several

Operative System (OS) desktop and server instances that can communicate in between

them and the Internet, the architecture should also be able to load balance instances

amongst similar computing nodes.

With large expansion in mind it is expected that network complexity and congestion

problems arise, so a set of SDN solutions were outlined and taken into consideration

how these solutions would affect the implemented architecture, and what would be the

changes to be made in hardware and software configuration.

After the architecture was implemented several workload and access tests were made

to validate the implemented system although only in a closed environment as it was

impossible to test in a true production environment due to the lack of capable hardware.

1.3 Thesis Outline

The first chapter of this thesis explains the core concepts of the technology used, the mo-

tivation behind the development of the system, the challenges faced, and goals reached.

Chapter 2 depicts all technology integrated in this work as well as a comparative

analysis between several open source solutions still present in today’s market.

Chapter 3 approaches the physical implementation of the project, how the different

modules interact and how they work independently from each other.

In Chapter 4 are included the results of the study regarding the integration of the

SDN technology with the implemented system.

3



CHAPTER 1. INTRODUCTION

Chapter 5 aims to validate the overall performance of the system, the optimization of

the hardware resources and a discussion of the results.

In the last Chapter are included all the conclusions reached and the work to be per-

formed in the future of the project.
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2
State-of-the-Art

Cloud computing is the latest trend in IT and it has reached the point where it is no

longer an auxiliary utility as they are a cornerstone to our routine. Users are able to

access these services from anywhere without any perception of where the service is or

how it is delivered making it possible for software to be used by thousands of people at

the same time [1].

2.1 Cloud Computing

The industry struggled several years with a true definition of cloud computation. The

term appears for the first time in computer network diagrams and uses the cloud symbol

to represent the Internet, the final definition appeared by the hand of the National Insti-

tute of Standards and Technology (NIST) that defined cloud computing [2] “a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and released with minimal management
effort or service provider interaction.”.

The cloud should be composed by five characteristics: On-demand self-service, users

can allocate server resources and network storage automatically without the provider

interaction; Broad network access, the services are accessed over the network with all

sorts of client platforms thus promoting heterogeneity; Resource pooling, the resources

are pooled dynamically using a multi-tenant model with the resources location being

shadowed by a layer of abstraction; Rapid elasticity, the physical system resources can be

scaled inwards or outwards on demand giving the user a sense of unlimited provisioning;

Measured service, the system itself optimizes the use of resources this way resource

usage can be controlled and reported giving the provider and the consumer transparency.

Google, which is one of the pioneers in cloud computing, defines six keystone markers

5



CHAPTER 2. STATE-OF-THE-ART

to this reality: it must be user-centric, once you are connected to the cloud everything

you create from documents to images and applications belongs to you; it is powerful,

the agglomeration of thousands of CPUs creates an unimaginable amount of computing

power unable to be reached with a single Personal Computer (PC) and since all the data

is stored in the cloud users can retrieve it from several machines this way not creating

bottlenecks; it is intelligent, due to a high amount of data the access to it has to be done

in an effective way; it’s programmable, data must be replicated to protect its integrity

so that if one computer goes offline the data it contains has to exist as a copy on another

computer in the cloud [3].

2.1.1 Service Models

Every deployment of a cloud has three service models in them, these provide different

levels of abstraction:

Software as a Service (SaaS): this is the highest layer of abstraction the user has no control

over the network, operating system or hardware he is leasing, the application is

accessible by the client device (ie. Smartphone, computer or tablet) or a program

interface allowing the user to control only specific application settings [2, 4].

Platform as a Service (PaaS): the PaaS allows users to develop applications with tools

supported by the provider without worrying about the underlying infrastructure

and just like in the SaaS model there is no control or access to the lower layers of

complexity henceforth the user has no control the network, physical layers or the

architecture [5].

Infrastructure as a Service (IaaS): this is where consumer gain access to computer re-

sources such as processing power, memory and storage so they can set up and

run their applications, this model contrasts with the others since it is the lowest

layer of abstraction giving this way access to the hidden infrastructure [2].

Cloud computing suplies a simplified software installation, maintenance and central-

ized control over the software that is running, so that this way the end-users can access

the cloud services “anytime” and from “anywhere” just as long as they have a reasonably

amount of bandwidth [6].

2.1.2 Deployment Models

The NIST also refers four possible deployment models with different characteristics to

serve a different group of users, the models are the following [2]:

Public Cloud: This infrastructure is available to the general public, the resources are

leased as services with a pay-per-usage model. The users can have their resource

pool expand outwards or inwards on demand removing the hardware requirements

6



2.1. CLOUD COMPUTING

out of the equation. These clouds are managed by a third party organization that

guarantees the Quality of Service (QoS) as long as the users have enough bandwidth

to cope with the cloud traffic. Some of the biggest advantages of this model are

continuous uptime, on-demand scalability and the inexpensive setup but, since

it is a public cloud, it has drawbacks in data security and privacy. This is due to

the fact that the location of where the data is stored or backed is unknown so there

is a possibility of being accessed by unauthorized users. The biggest beneficiaries of

this deployment model are smaller organizations that outgrew their infrastructures

and use a public cloud to store information and services while upgrading their

infrastructures or simply just migrate into a public cloud infrastructure [7].

Private Cloud: On a private cloud the access is restricted to an organization or a third

party that has been given access. The main objective of this model is not to supply

cloud services to the general public but to have the organization data spread around

several points of interest. This cloud is hosted by the same company that uses it

therefore, it provides more security than a public cloud. A private cloud enables

the use of data center unused resources. These can be sold as services or computing

resources. This way a private cloud allows companies to have a greater control

and generate profit with their computational resources. The power of this power

comes from the fact that it can maximize the hardware power using virtualization,

reducing costs and complexity. Since the most important asset a company is its

information, trusting this to an outside entity that can be vulnerable to cyber attacks

is a major problem that led todays industry to shift to private clouds [2, 7].

Community Cloud: A community cloud aggregates the sustainability from Green Com-

puting, the distributed resource provision from Grid Computing, the control from

Digital Ecosystems and the self-management from Autonomic Computing. It com-

petes with vendor clouds and makes use of its user resources to form a cloud with

the nodes taking the roles of consumer, producer and coordinator. This concept

removes the dependence of cloud suppliers. This cloud is a social structure due to

the community taking ownership over the cloud. As the nodes act in self-interest

having one control center would be unpractical, so it is nuclear to reward the nodes

in order to redirect their computing power to the cloud and not themselves. In a

cloud community each user would have an identity that supplies a service or web-

site to the community. Since this cloud model isn’t owned by a company it is not

attached to that company lifespan, therefore it ends up being more resilient and

robust to failures and immune to system cascading failures. The biggest challenge

faced by this model is the QoS since it is a heterogeneous system the nodes will most

likely need to reach critical mass to satisfy all the QoS requirement from different

systems [8].

Hybrid Cloud: A hybrid cloud is the consolidation of a private and public cloud, it is an
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intermediate stage of a company lifecycle. When a corporation tries to supply its

services to the public, it can expand their data center and host a public cloud, bring-

ing several benefits such has: Optimal utilization, since the data centers can be at

times in an idle state and have only a small fraction of their resources being used,

hybrid clouds increase the servers utility by making some of their resources public;

Data center consolidation: since the cloud has expanded to a hybrid model the

servers will consolidate their instances, reducing the operation costs; Risk transfer:

with a hybrid cloud model the network workload management shifts from the oper-

ator to the vendor which is prepared to deal with higher workloads; Availability: a

data center needs redundancy, backups and geographic dissemination this can be a

very expensive to maintain so in a hybrid cloud environment the public counterpart

can scale up and take the private cloud side if the company cloud goes down due to

a failure or an attack [9].

2.2 Available Platforms

There are several open-source cloud platforms that enable the customization of the cloud

and provide flexibility. These have features that enhance scalability, portability, flexibility

and on-demand services. The three most used cloud platforms are Eucaliptus, OpenNeb-

ula and OpenStack so the following section will discuss the advantages and drawbacks

of these three platforms [10, 11, 12].

2.2.1 Eucalyptus

Eucalyptus [10, 12] is an acronym for Elastic Utility Computing Architecture for Linking

Your Program To an Useful System. It is used to deploy private and hybrid cloud solutions

and it is developed by the company Eucalyptus Systems. This cloud platform implements

an IaaS model and it became the first open source software compatible with Amazon Web

Service Aplication Programming Interface (API). This platform has a sizable collection

of virtualization technologies this enables the cloud to incorporate resources without

modifying the base configuration. The Eucaliptus cloud is armed with five components:

Cloud Controller (CLC), the entry point for the administrators, project managers and

users, this module also helps with the management of the virtual resources; Cluster Con-

troller (CC), this controller runs on a machine and is responsible for the management

of the VM network so the controller must be in the same subnet has the nodes; Storage

Controller (SC), this controller provides the block-level network storage; and Node Con-

troller (NC), the NC is installed in all the computers and is used to monitor VM activities,

like execution and termination of instances.

The main benefit of this platform is its efficiency, organization and agility but it also

has some drawbacks for instance its scalability is lackluster when compared to other

clouds and also some of its modules code are closed [11].
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2.2.2 OpenNebula

OpenNebula [11, 13] was designed to help companies build a simple, cost-effective, reli-

able and open enterprise cloud on the existing IT infrastructure. It provides flexible tools

that orchestrate storage, network, and virtualization technologies. It has a flexible design

and it is modular to allow integration with different storage and network infrastructure

and hypervisor technologies. This platform is mainly used as a virtualization tool, but it

also has support to hybrid cloud besides private cloud, thus combining local infrastruc-

ture with public cloud-based structures enabling highly scalable hosting environments.

The platform orchestrates storage, manages network, enables virtualization, resource

monitoring and cloud security as it also deploys multi-tier services, namely computing

clusters that work as VMs on distributed structures, combining resources of the data

centers with the remote cloud.

OpenNebula [13] has three main layers: the driver layer, this is responsible for start-

ing and shutting down VM, allocating storage for VMs and monitoring the operational

status of the physical resources by communicating directly with the underlying operat-

ing system, thus it works as an abstract service to shadow the underlying infrastructure;

the core layer, manages the VMs full life cycle, including setting up the virtual network

dynamically so that allocated dynamic Internet Protocol (IP) address for the VMs do not

overlap and managing VMs storage allocation; the tool layer, enables the communication

with users and provides a control point to manage VM through. A scheduler manages the

functionality provided by the core layer.

OpenNebula toolkit main features for integration are management, scalability, secu-

rity and account. OpenNebula also claims to have interoperability and portability giving

the providers a choice of several cloud interfaces [12].

2.2.3 OpenStack

OpenStack [12] is the quickest evolving open source platform for cloud computing, emerg-

ing in 2010 by the hand of NASA and Rackspace with the merging of Rackspace "Cloud

Files" platform and NASA "Nebula" platform. This platform has been deployed by global

enterprise customers whose processes and data stores are measured in petabytes the data

therefore cannot be store the traditional way, it is stored in a distributed storage static

data systems such as images of virtual machines, files, backups and archives in addi-

tion. OpenStack provides greater scalability, redundancy and durability, objects and files

are stored on multiple disks scattered in the data center, providing replication and data

integrity.

OpenStack [14] has an IaaS model where the services are modules and consists of

many components working together that have open APIs and it is also possible to manage

resources from the dashboard. The platform enables flexible network models for various

applications or groups of users. It has the ability to manage network addressing, it allows

the attribution of static and dynamic IP addresses and also allows the users to dynamically
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redirect traffic to another compute nodes, which can be useful during maintenance or in

case of failure. Users can create their own networks, control traffic and connect machines

to one or more virtual networks.

2.2.4 Comparative Analysis

The comparative analysis of the aforementioned platforms will be based on several factors

such as: released date, community support, the underlying architecture, cloud implemen-

tation, source code language, compatible hypervisors, Virtual Machine (VM) migration

possibility, etc. [10, 15].

The Eucalyptus and OpenNebula were established in 2008 with the first being the re-

sult of a research project of the university of California computer science department and

OpenNebula was funded by an European grant and the help of the companies Research In

Motion, Telefonia and China Mobile. OpenStack only appeared in the summer of 2010 by

the joint project of NASA and RackSpace. As of today the OpenStack platform is the one

who gathers more support since it is backed by the giants of IT (around 850 companies)

of which we can find names like HP, Dell, IBM, RackSpace, NASA, Cisco, AT&T which

take part in the project. OpenStack community integrates around 7000 contributors over

87 countries [10, 11].

Eucaplytus architecture is hierarchically built with the Cloud Controller being on top

and the Node Controller on the bottom of the hierarchy this way requiring at least two

servers, the OpenNebula has a centralized architecture with three modules in its core

while the OpenStack setup is based in four modules Nova, Neutron, Glance and Swift

displayed in a classical node architecture having a front end and group of compute nodes

running VMs in the back, all the nodes are required to have a physical network to connect

them to the front end [10, 15].

All the three platforms are open source but while Eucalyptus and OpenNebula only

deploy the private and hybrid cloud models and OpenStack also implements the public

cloud model [15].

Based on the source code languages OpenStack is more restricted as it only supports

Phyton while Eucalyptus also supports Java and C and OpenNebula supports Java, Ruby

and C++ [15].

The three platforms support Linux and several of its distributions while Eucalyptus

is the only one that is strictly Windows based [11, 15].

OpenNebula uses as a database management system MySQL, while Eucalyptus uses

PostgreSQL to store metadata and user information and the OpenStack Nova module

supports any database that is supported by SQL-Alquemy [10].

Eucalyptus uses Euca2ools to bundle, unbundle, register, deregister, describe, down-

load and upload images while Glance provides OpenStack the ability to discover, register

and retrieving VM images. OpenNebula uses image repositories or datastores to allow

users to setup images [11].
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Eucalyptus does not allow virtual machine migration while OpenNebula and Open-

Stack have that capability [10].

2.2.5 Final Verdict

Based on the analysis done in the previous subsection and on the following literature [10,

11, 12, 15], there is no need to use proprietary cloud platforms when the open source

platforms have so much support and capabilities, mainly due to the large communities

to back them up. At first sight the platforms stand all at the same level and only differ

in purpose or in community support, with OpenStack development focus being, the

creation of an open source software that allows researchers and administrators to deploy

IaaS and to manage virtual machines on top of the available computing resources, it

seems this platform provides the best support for this thesis final objective which is the

implementation of a private cloud, this coupled with the enormous community backing

it up and an astonishing development rhythm makes it the perfect tool to implement the

cloud.

2.3 OpenStack

The OpenStack [16] project enables the implementation of massively scalable and fea-

tured rich public, private and hybrid clouds using a set of interrelated services to provide

an IaaS solution with each service offering an API to enable an easier integration.

The first release of OpenStack was on October 21, 2010 [17] and almost six years and

twelve versions later the OpenStack Foundation is getting ready to release on October 6,

2016 the Newton version.

A standard deployment of an OpenStack [16] cloud integrate core modules which

supply a wide range of services, these core modules are: OpenStack Compute Nova,

OpenStack Networking Neutron, OpenStack Image Service Glance, OpenStack Identity

Keystone and OpenStack Dashboard Horizon. On top of the previously mentioned mod-

ules, a cloud implementation may also include the OpenStack Object Storage Swift or

OpenStack Block Storage Cinder, Openstack Telemetry Ceilometer and Openstack Or-

chrestration Heat.

2.3.1 OpenStack Compute Nova

The OpenStack Nova [18] has a modular architecture composed of six components: nova-

api, queue, nova-db, nova-conductor, nova-scheduler and nova-compute these compo-

nents interact with each other to manage virtual machines.

The nova-api is the endpoint for user interaction, it supports OpenStack Compute

API. Queue is the communication point for the nova components, it is a message passing

mechanism among the components. Nova-db is the SQL database for state instances and

also maintains information about the infrastructure. Nova-conductor works as a mediator
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and facilitator for interactions between nova-compute and the database, it eliminates the

direct access of nova-compute to the cloud database thus eliminating security problems.

The nova-scheduler is responsible for VM handling, it accepts requests for virtual ma-

chine instances from the queue and using the scheduling algorithms assigns that VM to a

compute server host to run it. Nova-compute is a daemon responsible for the life-cycle of

virtual machine instances by using the hypervisors APIs supported by the virtualization

technology [18].

Nova-compute receives user requests with instructions to performed from the queue,

it executes system commands according to the received request and also updates the

database if needed by communicating with it via the nova-conductor service. In a more

in depth scenario we can say that the compute infrastructure in Nova works on top of

the physical layer managing the resources available for virtualization, this infrastructure

is elastic and can scale with the variation of resources. The compute infrastructure is

divided in zones for the purpose of providing physical isolation granting therefore fault

tolerance, within each zone exists several physical nodes that have the nova-compute

service running, based on scheduling algorithms defined in nova-scheduler VMs are

provisioned to these hosts. Within each host there is also a hypervisor and middleware

that are used when a VM is assigned [18].

2.3.2 OpenStack Networking Neutron

OpenStack Networking or namely Neutron [19] is an API driven service that is used to de-

fine, manage networking and addressing it in the cloud itself, enabling the control of the

network configuration. With Neutron it is possible to define, separate or merge networks

on demand. Neutron is an abstraction layer as it does not implement any networking

functions, this module only provides methods, agents and plugins, that can be used. The

Neutron project provides a plugin mechanism that enables different networking imple-

mentation and consistent high-level API for abstraction, there are also API extensions

that enable control over security, compliance, monitoring and troubleshooting functions.

Neutron mimics the physical implementation using virtualized subnets and ports for

abstraction, it works similarly to the layer two segment, ports and subnets are assigned to

network objects. The subnet abstraction layer consists a block of IP addresses, a gateway, a

list of Domain Name Systems (DNS) and a list of host routes. This generates a large subnet

address pool that Neutron works on top by assigning IPs to VMs. The port abstraction is

a virtual point for each VM as the port receives an IP and Media Access Control (MAC)

address from the pool of subnets, if needed users can request specific addresses from the

subnet pool via an API call [19].

There are several types of agents in the Neutron API such as the plugin agent which is

on the compute or network nodes and handles communication with the implementation,

Dynamic Host Configuration Protocol (DHCP) agent which is used to assign IPs to VM

instances via the API, Layer 3 agent (L3 agent) implements Layer Three (L3) functions

12



2.3. OPENSTACK

via Linux IP stack and ip tables allowing users to create routers that connect the Layer

Two (L2) networks and Modular Layer 2 (ML2) agent that establishes a framework for

Neutron plugins this agent will eventually replace the monolithic plugins associated with

all the L2 agents [19].

OpenStack networking [19] uses three additional tools in its implementation which

are network namespaces, Floating IP addresses and network security groups, the names-

paces prevents the overlapping of subnets on the physical layer and tenants, this is im-

plemented using Linux namespaces preventing duplicate IP addresses in the logical and

physical networks used by the virtual machines. Floating IPs are public IPs that can be

dynamically given to VM instances, these can also have a private IP addresses. In Neu-

tron the L3 agent provides the Network Address Translator (NAT) functionality assigning

floating IP addressed to the VM instances. Neutron implements the network security via

Security Groups which allows users to specify the type of traffic and direction it can flow

therefore in Neutron each port is associated to a security group and IP tables are used to

implement the security groups.

2.3.3 OpenStack Image Service Glance

The Glance service[16] is central to IaaS. It receives requests for disk or server images

and metadata definitions from users or Nova components. It also supports the storage

of server and disk images in several repository including Cinder. OpenStack Image runs

periodic processes supporting caching, also information consistency and availability are

ensured through the replication services.

The OpenStack image service is composed by the following components: glance-api

which is responsible for accepting image API calls for discovery and, retrieval and storage

of images; glance-registry stores, processes and retrieves metadata about images, this

metadata includes items information such as size and type of image, this registry is a

private service as it is only meant to be used by the OpenStack Image service it should not

be exposed to other users or services; the database is used to store image metadata, the

database most used deployments are the MySQL and SQLite databases; Storage repository

for image files there are several repository types available such has Object Storage, RA-

DOS block devices, HyperText Transfer Protocol (HTTP) and Amazon S3 must be taken

into consideration that some repositories are read-only usage; Metadata definition service

it is a common API used by administrators, services and user to define custom made meta-

data, it can be used on different types of resources like images, artifacts, volumes, flavors

and aggregates, the definitions include new property keys, description, constraints and

types to be associated with [16].
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2.3.4 OpenStack Identity Keystone

Keystone[16] is the central authentication, authorization and identity service mecha-

nism for all OpenStack services components and users, it supports various forms of au-

thentication this includes username and password credentials, token-based systems and

public/private key pairs-style logins it also includes integration with existing directory

services such has Lightweight Directory Access Protocol (LDAP).

Although keystone supports several authentication and authorization forms, it relies

mainly on tokens so when an user interacts with a service he is required to possess a

token as an instance of his identity and roles, the user can have an unscoped token

however it will not be usable in a typical daily operation like creating a virtual machine

or uploading one machine image. When the user requests a scoped token keystone checks

for his assignments to see if he is allowed to access that domain or project. Tokens are

structured as JavaScript Object Notation (JSON) objects and include parameter like: user

identification (id,name), authentication method, expiration date, service catalog and

project or domain to which the token is scoped [20].

The identity service is also a major actor in the authentication and authorization of

workflow due to its catalog lists of all the services deployed by the cloud, it handles the

authentication through endpoints, an endpoint is a network address where a service is lis-

tening for requests so each service, for instance Nova or Glance, has at least one assigned

endpoint. OpenStack Identity uses tenants to group or isolate resources it then issues

tokens to authenticated users after that the endpoints can validate the token before al-

lowing user access, additionally the Keystone service responds to service requests, places

messages in queue, grants access tokens and update the state database [19].

2.3.5 OpenStack Dashboard Horizon

Managing the OpenStack environment through a command-line interface gives the ad-

ministrator complete control over the cloud environment, but having an usable Graphic

User Interface (GUI) to manage the environments and instances makes the process easier.

OpenStack Dashboard known as Horizon [21] provides this GUI, a web service that runs

from an Apache installation, using Python’s Web Service Gateway Interface and Django

for a quick development web framework.

2.3.6 OpenStack Telemetry Ceilometer

The Ceilometer[22] project is responsible for monitoring and meter the OpenStack cloud

for billing, benchmarking, scalability and statistical purposes. In its first builds Ceilome-

ter would only meter basic parameters such as CPU, ram and storage usage and some

events like image upload but the later builds of Ceilometer introduced triggering mecha-

nisms and network monitoring algorithm which are more complex and time sensitive. As
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the list of meters continuously grows within the project it is possible to use the data col-

lected by Telemetry to more than billing, for instance it is possible to trigger the auto-scale

feature in the Orchrestration service [16]. The Telemetry Data Collection [16] service pro-

vides several functions such has: efficiently pools metering data related to OpenStack

services; collection of events and metering data by monitoring notifications sent from

services; publication of collect data to various targets including data stores and message

queues.

2.3.7 OpenStack Object Storage Swift

OpenStack Swift[23] is a highly available, distributed and consistent object storage that

can operate in standalone mode or integrated with the rest of the OpenStack cloud com-

puting platform. It is used to store a great amount of data efficiently, safely and cheaply

using a scalable redundant storage system. Swift manages data as objects opposed to

the conventional file systems that manage data using file hierarchy and block storage,

each object includes the data itself, a variable amount of metadata and a globally unique

identifier. With its well defined RESTful API, users can upload or download objects to

and from the Swift storage.

Inside Swift, objects are organized into containers similarly to directories in a file

system except that the Swift containers cannot be nested. An user is associated with a

Swift account and can have multiple containers associated with that account, in order

to manage user accounts, user containers and objects inside a container, Swift uses an

Account Server, a Container Server and Object Servers correspondingly if an user account

requests for an object inside a container (either for uploading or downloading), the Ac-

count Server looks for the account first in its database and finds associated containers

with the account it then checks for the container database to find whether the requested

object exists in the specified container and finally the Object Server looks into the object

databases to find retrieval information about the object, in order to retrieve an object the

Proxy Server needs to know which of the Object Servers are storing the object, and what

is the path of the object in the local file system of that server [23].

Once an object is stored in Swift, the access control is determined by Swift Access

Control List (ACL). Swift has different levels of ACL, Account level ACL allows users to

grant account-level access to other users and Container level ACL which is associated with

containers, allows read actions, write actions or listing actions, if an user is authorized to

do read actions on a container through read ACL, he or she can read or download objects

from the container similarly, write ACL enables uploading an object into a container and

listing ACL enables the listing of operations on the container. Swift ACL is limited in the

following ways: once an object is set accessible to someone, he or she gets the full content

of the object but there can be some sensitive information that the publisher wants to hide

out; Swift ACL allows sharing an object with others, but it does not allow to share objects

selectively at the content level [23].
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2.3.8 OpenStack Block Storage Cinder

The Block Storage [24] service enables the management of virtualized block storage de-

vices on several storage back-end systems, the cinder-scheduler deamon is reponsible for

scheduling virtual volumes to physical storage hosts.

The default scheduling algorithm in Cinder is called Available Capacity and it is based

on a filtering/weighting procedure the scheduler works in three steps at first when a new

volume request comes in the scheduler first filters out the hosts which have insufficient

resources like capacity or too much workload to meet the needs of the request then the

scheduler calculates a weight for each of the remaining hosts based on the available

capacity and sorts them based on this weight in an increasing order, the lightest will be

on top, the host which has the least weight is chosen as the best candidate to serve the

new request [24].

2.4 Software Defined Networks

Computer networks as they are known are divided in three layers: data, control and

management layers. The first one (data layer) consists of routers, switches, bridges, etc.

these are responsible for the forwarding of data, the second dimension (control layer)

represents the protocols that service the forwarding tables of the data plane elements

and for the management layer, it includes the software services that are used to audit and

configure the control functionality. The aforementioned structure is highly decentralized

which was considered a very important characteristic of the Internet since it guaranteed

network resilience, a crucial design goal, however this led to a very complex and static

architecture and is the main reason why traditional computer networks are stern and

complicated to manage and control this lead to a vertically-integrated industry where is

hard to innovate [25].

SDN came to be at the hands of the Open Network Foundation (ONF) which works

to develop, standardize and commercialize SDN. The ONF defines SDN as it follows:

"Software-Defined Networking is an emerging network architecture where network control is
decoupled from forwarding and is directly programmable"[26]. In this context SDN unique-

ness resides in its ability to provide programmability by decoupling the control and data

planes since it supplies simpler network devices in the case of active networking. As

such, network intelligence can be removed from the switching devices and placed on the

network controllers making the switching devices externally controlled by software thus

having no on-board intelligence. This decoupling of the control and data layers offers a

greater freedom for external software, it enables the control and help define the behavior

of the network [27].

The SDN abstraction layer allows the user to create multiple Virtual Tenant Network

(VTN) on top of the physical infrastructure which are independent of the network proto-

cols, each VTN has its own control plane instance enabling a specific Quality of Service
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agreement[28, 29]. Virtualization simplifies the deployment of systems since there is no

cabling or setting up of the Network Interface Controller (NIC), neither the need to place

the system in a rack, the only thing needed to spawn a virtual system is to launch an

instance from an image and to allocate the hardware resources, traditional networking

has a “closed architecture which is proprietary and vertical integrated”[30], this lack of

flexibility disables the ability to define high level network policies to the entire network

and addi this to the frequent changes in the network conditions, it makes the control of

networking traffic in data centers one of the most challenging tasks due to the enormous

amount of servers, applications and networking devices which is what SDN excels at.

Amongst the available open-source projects available that are integrated with cloud

networks we can find OpenDaylight (ODL), Open Network Operating System (ONOS)

and Floodlight (FL) which will be described and studied in depth in the following subsec-

tion [19, 30].

2.4.1 OpenDaylight

OpenDaylight (ODL) is an open source software SDN controller coded in Java, embed

with a modular, pluggable and flexible controller architecture. The ODL project was

established under Linux Foundation with the objective to help the dissemination and

adoption of SDN thus creating an underlying foundation for NFV. The software sup-

ports a bidirectional northbound REST-based API that originated from the Open Service

Gateway Initiative (OSGi) Model, which provides a framework for the modularization

of applications into small bundles for the northbound API. The southbound interface

supports multiple control and data plane protocols, also plugins, these modules are dy-

namically linked into a Service Abstraction Layer (SAL) so the SAL is a representation

of all the modules that are written northbound. These layers are responsible to fulfill

the requests from services independently of the underlying protocol used between the

controller and the devices[31, 32].

The ODL software depicts five logical architectural layers (Figure 2.1): the first is the

app or user interface layer, it consists of the user interactions and any applications that

are consumed via the northbound API of the controller, and as such the user interface

is also implemented as an application which is available to other applications; as for the

second layer we can find a REST-based northbound API based in the OSGi framework

(as mentioned before); SAL is the third layer and also the core of the modular controller

design, it supports multiple protocols on the southbound interface and also provides

consistent services for northbound applications such as, the device discovery service

which is used in the topology manager and to discover devices characteristics; the forth

layer consists of the plugins that deal with the southbound protocols and services, SAL

constructs the networks services using the features that these plugins enable which in-

turn are based on the capabilities of a network device so based on the services running

SAL chooses the appropriate Southbound protocol to interact with each network device,
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the supported southbound plugins and protocols are: OpenFlow, OVSDB, Netconf, LISP,

BGP, PCEP and SNMP; as for the fifth and last layer it is the physical and virtual network

devices layer, it interacts with the plugins and southbound protocols, it can be plug-in

enabled (OpenFlow-enabled) or can be supported via a southbound protocol in addition

to the logical architecture, ODL also supports multi-tenancy which allows the networks

to be split for tenants and have dedicated controllers and module functions [19].

Figure 2.1: OpenDaylight Architecture [32].

2.4.2 FloodLight

Floodlight (FL) is more than an OpenFlow controller is also a collection of applications

as we can see in Figure 2.2 that are built on top of the controller. This controller is able

to manage and control an OpenFlow network, while the applications that run embed

on top of the controller are able to solve the needs over the network. The Java module

applications run from origin on the controller and each app is mapped in the REST

API enabling application calls, information retrieving and service invocation despite the

languages or protocols inherent to the calling application [33].

As the majority of the SDN controllers FL was designed as an extremely concurrent

system, that can achieve high throughput since it has a multi-threaded design that ex-

plores the parallelism of multi-core computer architectures, it also has its own north-

bound API that abstracts the inner details and behavior of the control and data planes

[25].

In a data center context a FL controller provides a comprehensive view of the VM

activities, it is capable of listening to OpenFlow-based Transmission Control Protocol

(TCP) connections from each of its switches and then it is able to manage the traffic so

it can flow through it. When the devices communicate across the network the controller
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software can estimate the best possible route and according to the a load factor and

network traffic it can create a flow that leads the packets from the source to the destination,

so in this way FL offers a high level of granularity in network management and also a

central view of the network traffic. These features enable the network to be flexible thus

enhance its performance [30].

Figure 2.2: FloodLight Architecture [33].

2.4.3 Open Network Operating System (ONOS)

Open Network Operating System is an open source SDN network operating system (Fig-

ure 2.3) that features the high availability, scale-out and performance networks demand.

ONOS uses northbound abstraction and APIs that enable the user to develop applications

and a southbound abstraction and interfaces to allow the control of OpenFlow-ready and

legacy devices, so in short ONOS enables: carrier grade features to the control plane;

Web style agility; the migration of existing networks to white boxes; and the lowering of

service provider CapEx and OpEx [34].

ONOS is more than a SDN Controller since SDN controllers fundamentally relay

OpenFlow messages directly to apps and vice versa, this way it is safe to say that they

act more like device drivers this way they are not designed to have critical scalability,
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availability and performance features that complete the SDN control platform. ONOS

differs from a SDN controller because it is responsible for the following features: it is

able to manage a finite amount of resources on behalf of the consumer, and doing so, it

ensures that none of the consumers aren’t starved and are handled fairly; ONOS isolates

and protects network operating system users from each other since each user only has

access to a set of resources, it also multiplexes between multiple apps and devices, ONOS

also virtualizes some or all the resources in order to allow consumers to have their own

virtual instantiation of the OS; it provides useful abstraction to enable users to consume

services and resources that are managed by the OS without having to understand all of

the underlying complexity; the system provides security from the external world to the

users OS; and finally it supplies useful services that remove the need for rebuilding the

same services. In short controllers are too limited in scope as they may not provide the

necessary services or protection when compared with ONOS [34].

The ONO System architecture[34] foundations are High Availabilty, Scale-out Capa-

bilities and Performance and this is achieved with the following features:

• Distributed Core it provides scalability, high availability and performance thus,

bringing carrier grade features to the SDN control plane. ONOS can run as a cluster

which brings a huge amount of agility to the SDN control plane;

• Northbound abstraction/APIs that include network graph and application intents

to ease the development of control, management and configuration services, adding

once again agility to the control plane;

• Southbound abstraction/APIs that enable pluggable southbound protocols that

enable the control of both OpenFlow and Legacy devices, it isolates ONOS core

from the total of different devices and protocols. This feature is the main enabler

of the migration from legacy devices to OpenFlow-based white boxes;

• Software Modularity makes it easy to develop, debug, maintain and upgrade

ONOS as a software system, by the community and providers.
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Figure 2.3: ONOS Architecture [35].

2.5 SDN Integration with OpenStack

Openstack Neutron is the focal point of this integration, due to its pluggable architecture

and to the controller nodes receiving the REST API requests via the networking plug-

ins. The Core Neutron plugins more specifically the ML2 plugin has a set of mechanism

drivers that are compatible with most the SDN controllers enabling this way the integra-

tion into this components, also most SDN controllers and systems have Northbound APIs

that map directly into the Neutron API thus allowing the ML2 plugins to communicate

with SDN Controller-Neutron services this way the plugin acts like a proxy and sends

all the requests to the SDN controller. This way it is possible to orchestrate virtual and

physical networks and allow multiple implementations of Neutron services communicate

with the controller, it is then obviously simplifies the network and reduces the load on

the networking service since it moves the orchestration intelligence and complexity to

the controller functions [19, 36].
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3
Architecture

As previously discussed in Chapter 2, the cloud computing concept has been evolving

over the years, mainly fueled by the IT industry necessities for a better network access

to a shared pool of computing resources, with the capacity to be rapidly allocated and

leased with minimal management.

With this in mind, the cloud computing system (OpenStack) described in this chapter

aims to provide the core features of a cloud computing architecture, On-demand self-

service that allows the user to lease computing resources automatically, broad network

access which enables the access of services over the Internet independently of the client

platform, rapid elasticity that enables the physical resources to scale inwards or outwards

on demand, these are just some of the prime characteristics of this system.

This architecture was implemented using the OpenStack software which is one of the

quickest evolving open source platform that implements the cloud computing paradigm,

being deployed globally it has been tried and tested amongst all the giants of the telecom-

munication world. This platform provides the necessary scalability, redundancy and

durability required in our environment.

OpenStack, as the name suggests, is an open source (hence Open) cloud system (Stack)

that controls computing resources such as compute, storage and network assets with the

help of a dashboard which enables the user to provision resources through a web interface,

this software aims to implement a simple modular system that provides mass scalability.

3.1 OpenStack Logical Architecture Overview

Figure 3.1 depicts an overview of the services and relations they construct in the logical

architecture.

In the project foundations we can find six core modules plus the GUI module so, in a
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Figure 3.1: OpenStack Logical Architecture Overview [16].

way, each service plays its role in the coordination of the whole system, in order to provide

the capabilities specified above (Figure 3.1). As for the services themselves - Object Stor-

age (Swift), Identity (Keystone), Compute (Nova), Networking (Neutron), Block Storage

(Cinder) and the Image Service (Glance) -, they are the core services implemented with

the addition of the Dashboard (Horizon) service. There is also a total of twelve optional

services that complement an array of tools to the architecture, such as the Telemetry

service (Ceilometer) or the Orchestration service (Heat), where the first enables the me-

tering of the system for benchmarking and scalability and the second makes it possible

to orchestrate multiple cloud applications using the native HOT templates or Amazon

Web Services (AWS) CloudFormation templates.

The current architecture runs only the six services as they were mandatory, plus the

dashboard service as it is a quality of life service, since it enables an easier understanding

and operability of the system.

As mentioned and illustrated in 3.1, the seven services and descriptions are the fol-

lowing:
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Table 3.1: OpenStack Services.

Service Project Name Description

General Purpose
Dashboard Horizon Provides a web-based interface that enables the in-

teraction in between the user and the OpenStack
services.

Compute Nova It is responsible for spawning and decommission
of virtual machines, henceforth it controls the life-
cycle of VMs.

Networking Neutron This service manages the network and enable con-
nectivity for other OpenStack services. It also sup-
ports a symbiosis with other network technologies.

Storage
Object Storage Swift Stores and retrieves arbitrary unstructured, it is

highly fault tolerant due to data replication across
several drivers.

Block Storage Cinder Enables persistent block storage for instances, has
a pluggable driver architecture for creation and
management of storage devices.

Shared Services
Identity Service Keystone Responsible for the authentication and authoriza-

tion of the other OpenStack Services.
Image Service Glance It manages the VM disk images, this service is used

by compute during instance provisioning.

To further the understanding of the logical architecture, the following sections will

explain the core functionalities and workflow of the service modules described above.

3.1.1 OpenStack Compute Overview

As OpenStack itself the Compute service is also modular. Therefore, it is divided in

several services and daemons that cause OpenStack Compute to play a major role in an

IaaS system. This module consists of the components in Table 3.2.

Table 3.2: Compute Service Component Overview.

Component Name Description

Services
nova-api The service consists of the OpenStack Compute API, the

Amazon EC2 API and the admin API. These enable the
management of the cloud. Its main role is to accept requests
from instances, to enforce policies and deal with orchestra-
tion activities.
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nova-compute It’s a worker daemon that is responsible for the creation
and termination of instances using the hypervisor APIs. (ie.
libvirt for KVM and QEMU).

nova-scheduler Responsible for taking instance requests from the queue
and assigning them to compute server hosts.

Modules
nova-conductor Responsible for the mediation of the interactions between

the nova-compute service and the database.
nova-cert It is a server daemon that is used to generate certificates for

the EC2 API.

Daemons
nova-console Worker daemon responsible for the creation and termina-

tion of VM.
nova-novncproxy Enables proxy access to running instances via Virtual Net-

work Computing (VNC) connection. Supports browser-
based novnc clients.

nova-spicehtml5proxy Enables proxy access to running instance via Simulated Pro-
gram with Integrated Circuits Emphasis (SPICE) connec-
tion. Supports browser-based HTML5 client.

nova-xvpvncproxy Enables proxy access to running instance via a VNC connec-
tion. Supports the OpenStack-specific java client.

Backend
Message Queue The central exchange point of messages between daemons

and services.
Database Responsible for the storage of build-time and run-time

states of the cloud such as, Available instance types, In-
stances in use, Available networks and Projects.

The aforementioned components fall into four categories that fully describe the ser-

vice architecture.

The API Server is the heart of the cloud framework this API enables storage, network

control, management of the hypervisors. The API endpoints of the server are HTTP web

services responsible for authentication, authorization and control functions using the API

interfaces models. It is compatible with multiple existing tool sets which prevent vendor

lock in.

Message Queue is responsible for managing the interactions between the control

nodes, network nodes, API endpoints, schedulers and other similar components, these

communication is done by HTTP requests in between the API endpoints. The messaging

events begin with the API server receiving a request from an user, and after it has been

authenticated and certified, if the object is available the message is sent to the queuing

engine so it can be picked up by the worker services (Daemons). This types of services

constantly listen to the queue for messages for their type. The worker then takes the

message from the queue and executes it. When the task is finished it sends a reply to the

queue, being then received by the API server and finally relayed to the user. During this
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process information is added, removed and searched for into the database as necessary.

Compute Workers are responsible for the lifecycle of the computing instances on the

host machines - they can run, delete and reboot instances; they can also attach or detach

storage volumes to an instance and show the console output of that instance.

Finally, there is the Network Controller which is responsible for the management of

network resources. It receives commands through the message queue from the API server

and it is able to allocate IP addresses, configure Virtual Local Area Network (VLAN) for

projects and configure networks for compute nodes.

Figure 3.2: OpenStack Compute Architecture.

As we can see in Figure 3.2 and from the explanation made above, the Compute

service makes use of the nova-scheduler service to choose the best fitting host to deploy

an instance, this service (nova-scheduler) interacts with other components through the

message queue or the database repository to schedule the tasks. A total of two services

can process tasks from the queue, nova-compute and nova-conductor, and after they have

terminated the task they proceed to send a message into the queue that is picked up by

the scheduler and sent to the nova-api.

3.1.2 OpenStack Network Overview

This networking service is another modular component of the architecture, as it is com-

posed by several components depicted in the following Table 3.3.

27



CHAPTER 3. ARCHITECTURE

Table 3.3: Network Service Component Overview.

Component Name Description

Services
neutron-api Responsible for accepting and routing API requests to the

appropriate OpenStack Networking plug-ins for action.
SDN server Provides additional networking services to tenant networks.

Agents
plug-in agent It runs on the hypervisor and is resposible for the configu-

rations of the vSwitches.
dhcp agent Enables DHCP services for the tenant networks.
l3 agent Provides L3/NAT forwarding to external network access of

VMs on tenant networks.
metering agent Observes the L3 traffic of the tenant networks.

Backend
Message Queue Used to route information in between the neutron-server

and the various agents also acting as a database to store
networking states.

OpenStack networking is responsible for the Virtual Network Interface (VNI) and the

access layer of the Physical Network Interface (PNI). This service makes it possible for

tenants to create virtual networks topologies with embedded services like firewalls, load

balancers and virtual private networks. It works as an abstraction layer for networks this

way enabling sub networking and router creation thus mimicking all the functionalities

of the physical counterpart.

The network service always creates an external network which is not just a virtual

network but a slice of a physical external network; this way the services can be accessed

by external users. In addition to external networks, neutron also has one or more internal

networks; these are software defined networks that connect directly to the VMs.

In order for VMs to access outside networks and vice versa, routers have to be placed

in between the networks and each router needs to have one gateway connected to the

“Internet” and at least one interface connected to the internal network.

It is also possible to allocate IP addresses of external networks to a port on the internal

network. These are called public IPs, and associate the external IP to a VMs port. This

allows external entities to access the VMs.

Figure 3.3 depicts how the Neutron components communicate with each other. This

communication is mainly done using remote process calls in between the native agents

of the system, it uses REST communication when using the SDN service and SQL for all

the accesses to the database.

As it is possible to observe, the neutron-server receives requests and passes them to

the message queue which is being constantly pooled by the L3, Plugin and DHCP agents

for tasks to be completed; when these tasks are finished, the agents send a result message
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Figure 3.3: OpenStack Network Arquitecture.

into the message queue that is then picked up by the neutron-server and relayed to the

requester, this usually being the compute service or the GUI.

Both the SDN service and the plugin agent work as a proxy for other SDN controllers

that the user might want to implement in order to enhance the control and management

of the network. This integration will be approached in Chapter 4.

3.1.3 OpenStack Identity Overview

OpenStack Keystone is the single point of integration for authentication, authorization

and service cataloging, it is used by other services as a common unified API, so due to

this, Keystone is the only service that interacts with all the other services.

When a OpenStack service receives a request from an user the service checks with

Keystone if this user has a valid token in case of a positive result the service then proceeds

to fulfill the request.

In the core of this service we find three types of components:

• Server, a centralized server that as the ability to authenticate and provide authoriza-

tion using a RESTful interface;

• Drivers or service backend - which are integrated with the centralized server - en-

able the access to information that is stored in repositories external to OpenStack

such as SQL databses or LDAP servers;

• Modules, whose main function is to intercept service requests, extract user creden-

tials and transmit them to the centralized server for authorization.

In order to help understanding the functionality of Keystone, the following Table 3.4

describes the meaning of the most used concepts in this service.
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Table 3.4: Keystone Service Concepts.

Concept Description

Authentication The process of confirming the identity of an user.
Credentials Data that confirms the identity of an user. Can be the name

and password or an authentication token.
Domain It is a collection of projects and users that define adminis-

trative boundaries for managing entities.
Groups Collection of users that are owned by a domain.
Project A container that groups or isolates resources and identity

objects.
Role Personality with a defined set of user rights and privileges

enabling them to perform a specific set of operations.
Token An alpha-numeric string that enables access to the Open-

Stack API and resources.
User Digital representation of a person, system or service that

needs validation by the identity service.

The highest separation entity is the Domain. In each domain there are Roles, Groups

and Projects and inside each group we can find one or several users which can have a

different role in the same group and also have access to the same or different projects.

Associated with each user there are credentials that can be a Token or an username and

password of that user. These relations are described in the following figure (Figure 3.4).

Figure 3.4: OpenStack Identity Concept Relation.

As it was seen, keystone cornerstone concepts for authentication and authorization

are based from the common credential system, they present the credentials to the server

which enables them to access the information of a specific group/groups.

In order for an user to authenticate itself the service needs to validate its credentials,
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the first time the user makes a request its credentials consist of their username and

password, the credentials are validated and henceforth it is possible to issue a token.

From this point on the user can present the token whenever authentication is necessary.

It is important to underline that this token has a finite duration and can be revoked at

any time.

To contextualize how Keystone controls access we can take the cloud administrator

role as an example, this user is able to list all the instances running in the cloud, also

change any instance characteristics and resources allocated to them whereas a normal

user can only check the instances in their current group, the resource quotas, cores being

used, disk space and all other resources associated with the project it belongs to.

3.1.4 OpenStack Object Storage Overview

Object Storage makes it possible for users and applications to store and retrieve objects

through a REST API. These objects, which are agglomerates of data, are stored hierarchi-

cally and offer three types of access: anonymous read-only , ACL defined and temporary.

Swift is composed of components in the Table 3.5 and its organization is as displayed

in Figure 3.5.

Table 3.5: Object Storage Service Component Overview.

Component Name Description

Servers
swift-proxy-server It is responsible for dealing with HTTP requests such as file

upload, metadata modification and container creation.
swift-account-server Controls the accounts used in Object Storage.
swift-container-server Maps the containers or folder that the storage nodes hold.
swift-object-server Manages files in the storage nodes.

Services
swift client Enables the use of the REST API via command-line client

as long as the user is authenticated.
swift-recon A client tool that retrieves metric and telemetry informa-

tions about the cluster being used.

Backend
Account Database Stores accounts information.
Container Database Stores containers information.
Object Database Stores object information.

The robustness of Swift comes from the simple principle that all hardware fails at

some point or level, so in order to avoid data loss it is important to understand that the

major factor that influences data availability and durability is its placement and not the

hardware’s reliability. This service takes three as the baseline value of replicas. This

means that an object is only marked as written when at least two other copies exist. As

increasing this number would lead to an augment in the robustness of the file system the
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Figure 3.5: OpenStack Object Storage Architecture.

available space would diminish and verbosity in the network would scale exponentially

as trade back.

The main characteristics of the Swift Service sums up to:

• All objects stored have a respective URL;

• All the files are replicated three times in separated areas these can be drives, nodes,

racks, etc;

• Each object has its own metadata;

• The interactions with the object storage are via the RESTful HTTP API (Get / Put /

Delete);

• Objects are scattered anywhere in the cluster;

• The cluster grows by adding more nodes without sacrificing performance thus al-

lowing a cost-effective storage expansion;

• Data and nodes can be added to a cluster without downtime;

• Failed nodes can be replaced without downtime.

One drawback that is also a virtue of this service is its verbosity. Since the amount of

replicas must always be three, the service easily floods the network with sync messages.

Due to this, the main points of network congestion are: amongst object, container and

account servers; between the aforementioned servers and the proxy server; and between

the proxy server and the users.

Taking the total failure of a large data server (around 50Tb of data) as an example, all

the information needs to be transfered to another server in order to keep the three replica
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rule alive. This will be a huge strain on the network alone not taking into consideration

that there is also traffic from other services flowing through the network.

Another scenario of high congestion is when a file is being uploaded into the Object

Storage. It must be taken into consideration that the proxy server is obliged to allocate

bandwidth accordingly to the amount of replicas, so a 10 Gbps stream actually translates

into a 30 Gbps stream of data in the network.

3.1.5 OpenStack Block Storage Overview

Block Storage (or Volume Storage) allows the user to attach block-storage to virtual ma-

chines; these volumes are persistent as they can be removed from one instance and at-

tached to another while keeping the data in them intact - just like a pen drive or an

external disk.

Cinder enables several solutions to hardware fault such as: if an instance needs to be

relaunched or crashes it can be without the loss of information since the user can simply

detach the volume and re-attach it once the instance comes online; also, a cinder volume

can be used as a boot disk for an instance this way removing the need for an ephemeral

storage disk.

As all other services, Cinder has a set of components which are depicted in Table 3.6.

The overall architecture can be seen in Figure 3.6.

Table 3.6: Block Storage Service Component Overview.

Component Name Description

Services
cinder-api Manages the API requests and routes them to cinder-

volume to be dealt with.
cinder-volume Main liaison in between the cinder daemons, it is respon-

sible for read and write requests.
Daemons

cinder-scheduler daemon Chooses the best storage node on which to create the vol-
ume.

cinder-backup daemon It creates backups of volumes on the backup storage nodes.
Backend

Message Queue Routes information between Block Storage processes.
Database Used to store block information.
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Figure 3.6: OpenStack Volume Storage Architecture.

3.1.6 OpenStack Image Overview

The Image service is responsible for managing the requests for server images and meta-

data definitions by users or the Compute components. This service has two core parts:

the glance-api and glance-registry, where the first is responsible for providing images

and the latter maintains the metadata information associated with the VMs images, this

component requires a database.

The overall architecture layout of this service can be seen in the following figure

(Figure 3.7).

Figure 3.7: OpenStack Image Architecture.
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3.2 Openstack Physical Architecture Overview

The OpenStack Dev guide [16] suggests the layout displayed in Figure 3.9 as the basic

node deployment. It’s a simple architecture built upon for compute and it has a single

cloud controller along with several compute nodes. Since this is the deployment used in

standard data centers it is clear that implementing such an architecture is inconceivable

due to network and hardware constraints. The architecture implemented features its

layout in Figure 3.8. This implementation tries to follow the guidelines while supporting

our hardware and network layout. The following table (3.7) shows the components that

are part of the architecture.

Table 3.7: OpenStack Components [16].

Component Details

Openstack release Neuton
Host operating system Ubuntu 16.06
OpenStack package repository Ubuntu Cloud Archive
Hypervisor KVM or QEMU
Database MySQL
Message queue RabbitMQ
Networking service Nova
Network manager FlatDHCP
Image Service backend file
Identity Service driver SQL
Block Storage Service backend LVM or iCSI
Object Storage OpenStack Object Storage

Figure 3.8: Implemented basic node deployment.
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Figure 3.9: OpenStack suggested basic node deployment. [16]

As it is possible to see, the cloud controller runs the following services: dashboard, API

services for Neutron and Nova, the database (MySQL), the message queue (RabbitMQ),

the scheduler that selects the free compute resources (nova-scheduler), identity services

(Keystone and nova-consoleauth), Image services (Glance API and glance-registry) and

the Block Storage services (Cinder API and cinder-scheduler). As for the compute node

this holds the computing resources so it runs the hypervisor, libvirt which is the driver

for the hypervisor that enables live migration from node to node, nova-compute and

Nova API that are used for multi-host mode as it retrieves instance-specific metadata,

nova-network and nova-vncproxy.

The network consists of two switches: one for the management network that deals

with block storage due to high amount of traffic (being a private one) and the public one

that covers the public access, so in the suggested architecture the nodes have two network

interface controllers , but since in the implemented architecture the dedicated storage
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nodes were removed there is no need for this network to exist.

The implemented system follows the structure displayed in Figure 3.10, the cloud

has three HP servers of which one is the controller and the other two are running as

compute nodes. The cloud is integrated in the laboratory network 172.16.4.0/23, the

availabre IPs are from 172.16.4.1 to 172.16.7.255. The physical machines are allocated to

172.16.4.50, 172.16.4.51 and 172.16.4.203 and our virtual instances are being deployed

on the 172.16.7.0/24 subnet with the first IP 172.16.7.1 being the IP and 172.16.7.255

the broadcast.

Figure 3.10: Cloud Network Layout.

In Figure 3.11 we can see how the instances comunicate with the outside and with

each other, there is a virtual bridge (in this case br100) that connects each instance to the

compute node network interface all the traffic made by the instance will be forwarded

there and then to the outside world. Although the packets are leaving via the eth0 if they

are coming from an instance they will have the instance MAC address. The same happens

when instances try to communicate with other instances. In the case of the instances

being inside the same controller the traffic doesn’t reach the eth0 network card as the

communication is done via the br100 interface. When the instances try to communicate

with other instances outside that compute node the process is the same as communicating

with the outside world.
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Figure 3.11: Network Traffic [20].

3.2.1 Common Structures / Services

3.2.1.1 Database

As most of the OpenStack Services need a database to store and retrieve information,

states and configurations, this architecture uses several SQL databases. Some are shared

amongst all the services; as for the others, those are specific to that service alone. The

database technology used is MySQL as it is the most tested database for use with Open-

Stack and its heavily documented.

3.2.1.2 Message Queue

Most services need to communicate amongst them and also have components inside them

that communicate with each other and so all the communication is done via the message

queue. The message queue used was RabbitMQ as it is extremely easy to use and test,

also it can be natively clustered in order to avoid the message queue to grind to a halt

which would make it enter a read-only state and this would leave the information stuck.

3.2.1.3 Networking Manager

Although there are several options for managing the network FlatDHCP was chosen in

Multi-Host networking mode in order to provide high availability, there is a nova-network

daemon running per Compute node this provides a robust mechanism that ensures that

the network interruptions are isolated to each compute host.

3.2.1.4 Identity Service backend

A SQL backend was chosen for the Identity Service since this backend is simple to install

and robust also, there is the need for many installations to bind with existing directory
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services and this backend provides options to do so.

3.2.1.5 Image Service backend

Since this deployment only uses the Object Storage to store virtual machines images as it

can be easily added as a backend due to being native to OpenStack.

3.2.2 Hardware Specifications

When it comes to the hardware necessary, as it was mentioned before, the specifications

scale with the amount of the load the system has to deal with. As for the suggested

hardware the OpenStack Dev guide has the following specifications (Table 3.8).

Table 3.8: OpenStack Hardware Specifications. [16]

Node Type Hardware Example

Controller Model: Dell R620
CPU: 2 x Intel Xeon CPU E5-2660 0 @ 2.00GHz
Memory: 32 GB
Disk: 2 x 300 GB 10000 RPM SAS Disks
Network: 2 x 10G network ports

Compute Model: Dell R620
CPU: 2 x Intel Xeon CPU E5-2650 0 @ 2.00GHz
Memory: 128 GB
Disk: 4 x 300 GB 10000 RPM SAS Disks
Network: 2 x 10G network ports

Storage Model: Dell R720xd
CPU: 2 x Intel Xeon CPU E5-2620 0 @ 2.00GHz
Memory: 64 GB
Disk: 2 x 500 GB 7200 RPM SAS Disks + 24 x 600 GB 10000 RPM SAS
Disks
Raid Controller: PERC H710P integrated RAID controller, 1 GB NV
Cache
Network: 2 x 10G network ports

Network Model: Dell R620
CPU: 1 x Intel Xeon CPU E5-2620 0 @ 2.00GHz
Memory: 32 GB
Disk: 2 x 300 GB 10000 RPM SAS Disks
Network: 5 x 10G network ports
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The hardware specifications of the implemeted hardware is described in Table 3.9.

Table 3.9: Used Hardware Specifications.

Node Type Hardware

Controller Model:HP Proliant DL160 Gen 9
CPU: Intel Xeon E5-2609 v3
Memory: 32 GB
Disk: 2x 300Gb HP H240
Network: 2x 1Gb network cards

Compute 1 Model: HP ProLiant DL260p Gen 8
CPU: 2 x Intel Xeon CPU E5-2620 v2 @ 2.10GHz
Memory: 16 GB
Disk: 500 GB 5000 RPM SATA Disk
Network: 4x 1Gb network cards

Compute 2 Model:HP Proliant DL160 Gen 9
CPU:Intel Xeon E5-2609 v3
Memory: 32 GB
Disk: 2x 300Gb HP H240
Network: 2x 1Gb network cards
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4
SDN Architecture

With continuous expansion in mind, the cloud development will reach a breakpoint where

network problems such as network congestion and resource fragmentation as well higher

response times will surface, the integration of SDN into the established architecture is a

solution that can bridge the gaps formed by these problems [37, 38]. In chapter 2 three

platforms were approached FloodLight, ONOS and OpenDaylight all three are state of

the art platforms that can integrate OpenStack networking services in order the enhance

them, so with this in mind in this chapter it will be shown how these platforms integrate

the architecture described in the aforementioned chapter 3 as well as a comparative

analysis of the three, in order to choose the one performing better in our environment.

4.1 Logical SDN Architecture

The integration of a SDN controller in the Logical Architecture has little to no impact in

its core design, in addition to all the services displayed in Figure 3.1 the integration of a

network controller leads to a cooperation in between this element, the SDN controller, and

the Neutron service so instead of only one service providing the networking capabilities

to compute nodes we have now two elements that do so, as we can see in Figure 4.1.
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Figure 4.1: OpenStack Logical SDN Architecture.

In this scenario Neutron is responsible for passing the network management oper-

ations onto the controller using the controller Northbound API 4.2, which processes

the information and enables a more accurate management of the data plane layer, the

controller also manages the hardware via the Southbound API using OpenFlow. The

controller integration is done by using plug-ins that enable a centralized network man-

agement, some of these plug-ins are native to OpenStack Neutron such as the Linux

Bridge and Modular Layer 2 agent other are SDN plug-ins like OpenVSwitch. The use of

the integration bridge (br-int) that connect the VMs in between them using L2 tunneling

while the External Bridge (ext-br) is responsible for the external network, this bridge will

connects to the Southbound API to manage the physical network.[30, 39]

Figure 4.2: SDN Controller Integration into OpenStack [39].
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Although all the three platforms have the same objective and stand at the same logical

place in the architecture they communicate using different tools and protocols. [19, 37]

OpenDaylight controller (Figure 4.3) communicates with OpenStack Neutron via

the modular layer-2 plug-in, the ODL project has a Neutron API service, which makes

its Northbound API map directly into Neutron API this, allows the ODL plug-in to

communicate with ODL Neutron services making the modular layer-2 plug-in act like a

proxy that forwards the requests to ODL. This way ODL can manage virtual and physical

networks and also moves several implementations of the network services in ODL. This

integration simplifies the network service as it removes the complexity of the service onto

the SDN controller [19, 32, 38].

Figure 4.3: OpenDaylight to OpenStack communication.

The FloodLight controller (Figure 4.4) has two main components the VirtualNetwork-

Filter which maps the Neutron API, since Neutron exposes a network-as-a-Service model

which implements a REST API, and the Neutron RestProxy plug-in. The first module

(VirtualNetworkFilter) implements a MAC-based layer 2 network isolation in OpenFlow

that is exposed via the REST API, as for the RestProxy plug-in it was designed to run as

part of the Neutron Service so this plug-in replaces the ml2 plug-in. [33, 39]
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Figure 4.4: FloodLight to OpenStack communication.

SONA which stands for Simplified Overlay Networking Architecture (Figure 4.5)

is the project that integrates ONOS into the OpenStack cloud system, it implements

OpenStack neutron ML2 drivers and L3 Services for the ONOS controller, so it is needed

to replace the aforementioned drivers by ONOS OpenStackSwitching plug-in,that is re-

sponsible for layer 2 communication in between VMs thus creating VxLan networks and

OpenStackRouting resposible for L3 communication creating virtual logical networks in

between nodes, all the communication is done via REST for both plug-ins.[40]

Figure 4.5: ONOS to OpenStack communication [41].
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4.2 Physical SDN Architecture

For the physical architecture layout small changes had to be changed, only the hardware

setup needs to change and the service placement in these machines. Regarding the ma-

chine setup it would be optimal to have a dedicated node for the SDN controller in order

to not clutter the node with unnecessary services (Figure 4.6), it is suggested also that

all the nodes have two NICs this way it is possible to create another physical network

and thus isolating the SDN traffic. In other to host the necessary controller specific plug-

ins it would be necessary to adjust the controller node Neutron services and make the

according changes to the drivers and plug-ins this node is using.

Figure 4.6: OpenStack Physical SDN Architecture.

4.3 SDN Controller Comparative Analysis

SDN Controllers work as the brain of the system when it comes to networking, they are

responsible for traffic shaping and routing so, in large data centers its normal that these
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controllers create choke points with this in mind there are some solutions that can help

bypass if not completely avoid these problems.

The study made in [42], suggests that an away to alleviate the the controllers bot-

tlenecks is to reduce the activity control functions, simply putted, have the controller

execute fewer operations, in a linear way it can actually increase the controller perfor-

mance but it can also make it work ineffectively if too many functions are pruned so, it is

fundamental to find a balance which leads to a trade-off between reducing computational

overhead and maintaining flow efficiency of the control execution. In order to achieve

this balance a fine tunning of the operating parameters such as the pooling of network

statistics rate of the Monitoring modules or an optimization of the routing algorithms in

the Routing module.

In order to avoid the inevitable congestion problems inherent to large data center

networks, it is possible to develop a Congestion detection module, like the one presented

in [43], it aims to query, consolidate and store statistics from OpenFlow switches that

would help to evaluate the load on each path and try to reroute packets onto lighter

paths. The module would need to pool the switches on a fixed interval and when these

switches reports heavy flow of packets the congestion conditions would be met leading

to a rerouting of the packets by the controller.

When the time comes to choose a SDN controller from the three aforementioned

options it all comes down to purpose, as several studies reveal [31, 44, 45, 46, 47], a

comparative analysis in between the FloodLight controller and OpenDaylight [31] reveal

that in small network FloodLight achieves better results in latency tests and throughput

tests as a grand part of the problem with ODL being the malfunctioning of the OpenFlow

plug-in.

When comparing ODL and ONOS in a small networking environment, as in [46], it is

possible to conclude that ONOS leads with a lower converge time and in TCP bandwidth

between hosts closely followed by ODL, as ONOS main characteristics are being a high

availability controller with emphasis on scale out and performance it is obvious that on

quality of service aspects it would perform better.

It is shown in [47] that ODL really shines when in a clustered environment as it has

various programmable network services such as the topology service and forwarding

service, it as a model driven-service abstraction layer (MD-SAL) as we saw before that

when clustered it enables multiple controllers to run an identical set of network services

also ODL makes it possible for a device to connect to multiple ODL controllers thus

providing load balancing using a master slave connection management. Finally [44]

concludes, that OpenDaylight is the a great all around controller that supports a large

array of applications and excels in the integration of the emergent paradigm the Internet

of Things.

As closing argument there is no clear pick on which is the best controller as, each

has its perks, as for FloodLight is great for closely monitor small systems and to retrieve

traffic information of the network, while ONOS deploys the best QoS as it is a carrier
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grade controller that shines when it has to deal with traffic control over large networks,

as for ODL its main characteristic is its distributed architecture that allows connectivity

and control over several devices independently of the hardware.

47





C
h
a
p
t
e
r

5
Results and Validation

The following chapterl describes the tests made to the infrastructure presented in Chapter

3 in order to validate it as working industry project. The main focus of this chapter

will be the optimization capabilities of the architecture, the flexibility of the hardware

allocation and finally to showcase an use case in which this platform can be used and

impact the actual institution. The chapter is divided in three main sections that validates

the aforementioned topics.

The first section will depict how the virtualization of the hardware allied with the cus-

tomization of the instance images can lead to an optimized use of the allocated resources.

This information can be collected from the OpenStack Dashboard.

The second topic will show us the versatility of the platform, it will be shown what

are Operative Systems it can run, how many instance it is possible to run at the same time

and how they are available in the network and can be made reachable to any user inside

the network.

The last subsection will showcase an use case of how and where the cloud can impact

the laboratory classes of the telecommunication section or even with enough resources

the most of the department classes.

5.1 Resource Optimization

The cloud environment’s major strong point is its virtualization capabilities, these enable

the virtualization of physical resources of the system supplying a larger pool of resources,

leading to a superior optimization of the system. From the Horizon OpenStack project is

possible to retrieve statistics about the global system, such as compute nodes and network

resources available, so with this in mind we can easily verify our available resources how

their virtualized counter-parts.
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Figure 5.1: Resource usage with two instances running.

Table 5.1: Resource usage with two instances running.

Hostname vCPUs (used/total) RAM (used/total) Storage (used/total)

Compute1 1 / 6 640Mb / 31.2Gb 2Gb / 517Gb
Compute2 1 / 24 512Mb / 31.4Gb 2Gb / 518Gb

So from Figure 5.1 and Table 5.1, it is possible to see that overall we have 30 CPUs,

around 62 GBytes of RAM and more than 1 Terabyte of Storage spread across our two

compute nodes.

When the system reaches a point were these resources aren’t enough to support the

workload, it is possible to overcommit the resource pool and this way enlarge it. By

using the overcommiting ratios provided by Openstack we will achieve the total amount

depicted in Table 5.2.

Table 5.2: Available resources after overcommit.

Hostname vCPUs (used/total) RAM (used/total) Storage (used/total)

Compute1 1 / 96 640Mb / 46.8Gb 2Gb / 517Gb
Compute2 1 / 384 512Mb / 47.1Gb 2Gb / 518Gb

The virtualized resources are allocated to instances at the launch of the same. The

amount of resources to be allocated can be customized based on the OS image character-

istics and its objective, the same image can be deployed with different resources due the

OpenStack Glance flavor selection (Figure 5.2), so by creating specific flavors for each

image it is possible to spare hardware this way optimizing the remaining resources.

Even though this virtualization technology is very flexible it has its limits, as it is

impossible to overcommit one instance above the available physical resources of the

highest resourced computing node. This serves as failsafe feature to avoid hardware

burnout.

5.2 Instance Deployment and Access

The instances are deployed on the public sub network created by OpenStack. At the

launch of an instance, and unless it has specific characteristics, it will be launched on
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Figure 5.2: Image launch configuration.

the highest scoring compute node with the lowest load. It will be assigned an IP via the

DHCP agent and after the deployment is done it can be accessed via Secure Shell (SSH)

or VNC. In addition, post-deployment access VNC also allows the user to access the

instances deployment in real time as it can be seen in Figure 5.3.

Figure 5.3: VCN access to an Ubuntu Server instance deployment.

Since OpenStack assigns an IP to an instance, the access via SSH can be done with

keypair authentication and via PuTTY as we can see in Figure 5.4 is possible to work on
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this instance that is running in our cloud.

Figure 5.4: SSH access to an Ubuntu Server instance running.

Once inside the instance, the user can work as if it was on its own machine. It can

have access to sudo commands, deploy apps and run programs; these instances also have

access to the Internet but at this time it is impossible to access them from the Internet

since there are no public IPs available. Once these become available, to make the instances

accessible from the outside network, they need to have a floating IP (Public IP) assigned

to them.

Based on the resources the user wishes to allocate to each instance it is possible to run

several at the same time, for instance in Figure 5.5 we can see up to 10 instances running.

Since cirrOS is a minimal OS, it only requires only 1 vCPU, 1 Gb root disk and 512 vRam,

we would be able to run up to 20 instances since we are only limited by the amount of

virtual cores we can emulate.

For a more realistic example lets use an Ubuntu Server image: it has higher resources

requirements but even allocating instance with 1 vCPU, 20Gb root disk and 2Gb of Ram

we would reach the same constraint of 20 vCPUs before the instances would be limited

by other resources.

So it is possible to run several instances in our cloud depending on the performance

we want it to have. By allocating more resources, the trade-off is a lower amount of

instances running. As of now the quotas established for each project are at ten in order

to be able to prevent one user of starving the others.
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Figure 5.5: 10 cirrOS instances running.

5.3 Use Cases

In order to offer some purpose to the implemented cloud, an use case was designed.

It revolves around laboratory classes as the majority of the work done in experimental

classes is done via virtual machines. These machines are often large and demand some

setup which usually means one or more classes lost with the setting up.

So in order to avoid this situation, the virtual machines that are usually provided to

students can be uploaded into the cloud and have the students work remotely from their

machines.

Even though as of now students wouldn’t be able to work from home - which isn’t

necessarily a bad thing since it would enforce students to work at class and not skip it -

the teacher could monitor the students’ progress more closely. Another advantage of this

scenario is that there are no hardware constraints for virtual machines, so students would

be able to work on heavier VMs from their computers or even lab computers that usually

have lower specs. One downside of this use case is that the network where the cloud is

deployed needs to expanded and made available to the lab rooms so that students can

access instances.

It is important to underline that students don’t need to have access to the cloud, only

the instances. Ergo, no account and privilege setup is needed in order for them to use the

platform.

53



CHAPTER 5. RESULTS AND VALIDATION

5.4 Discussion of Results

It is safe to assume that the cloud is fully functional and ready to be deployed in the aca-

demical environment. Although the hardware available is lackluster and cannot muster

the required resources for load heavy tasks required in an investigation and development

environment, it can be used as a support for lab classes and student tasks and tests. Some

problems related with the hardware are possible to surface, since the cloud is not de-

ployed on actual servers but desktops instead. It would be a good practice to migrate the

platform into newer and more potent machines.

The cloud has Fedora, Ubuntu and CirrOS images ready to be launched. These in-

stances are accessible via SSH, and a lot more images such as Windows server or Ubuntu

desktop can be uploaded if required. The system as of now only has these three, since it

wasn’t necessary to add more instances to test the cloud infrastructure.

Some problems that can arise like it was mentioned before are network related. Since

there isn’t a management network dedicated for instance communication, it is possible

that when several instances are launched the network quickly reaches a disruption point

and crash. In order to avoid this the study made in Chapter 4 will help further develop-

ment of the cloud when these problems surface.
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6
Conclusion and Future Work

6.1 Conclusion

It is possible to conclude from the work developed and described in this document that

is possible to implement a cloud infrastructure with the available hardware, the overall

characteristics of the cloud were preserved, modularity and flexibility are cornerstone to

the architecture.

Furthermore, the instances deployment tests were successful, as it was possible to

launch up to twenty OSs instances as long as only one vCPU is allocated to each instance.

The cloud instances can be accessed via SSH or VNC protocols, the architecture is also

able to support image upload, subnet management and access control.

The aforementioned characteristics validate the cloud structure and applicability as a

real industrial cloud that in a small scale research and development scenario can be used

as a testbed also the cloud is ready to support lab classes within the department.

The results presented on Chapter 5 suggest that although the hardware and network

resources available aren’t tailored to support a cloud system it is safe to admit that a

robust cloud was created that can successfully deploy the virtualization environment.

6.2 Future Work

Future efforts should focus on augmenting the cloud infrastructure, it should be migrated

to hardware designed for its purpose, add more computing and storage nodes in order to

enable the processing of the more complex tasks and allow volume storage allocation to

instances. The creation of a dedicated network would also enhance the platform, adding

a management network in order to avoid node congestion due to instance verbosity and

move the network management features from Neutron to a SDN Controller.

55





Bibliography

[1] R. Buyya, R. Buyya, C. S. Yeo, C. S. Yeo, S. Venugopal, S. Venugopal, J. Broberg, J.

Broberg, I. Brandic, and I. Brandic. “Cloud computing and emerging IT platforms:

Vision, hype, and reality for delivering computing as the 5th utility”. In: Futur.
Gener. Comput. Syst. 25.JUNE (2009), p. 17. issn: 0167-739. doi: 10.1016/j.

future.2008.12.001.

[2] P. Mell and T. Grance. “The NIST Definition of Cloud Computing Recommenda-

tions of the National Institute of Standards and Technology”. In: Natl. Inst. Stand.
Technol. Inf. Technol. Lab. 145 (2011), p. 7. issn: 1472-0213. doi: 10.1136/emj.

2010.096966. arXiv: 2305-0543.

[3] S. P. Mirashe and N. V. Kalyankar. “Cloud Computing”. In: 51.7 (2010), p. 9. doi:

10.1145/358438.349303.

[4] Q. Zhang, L. Cheng, and R. Boutaba. “Cloud computing: State-of-the-art and re-

search challenges”. In: J. Internet Serv. Appl. 1.1 (2010), pp. 7–18. issn: 18674828.

doi: 10.1007/s13174-010-0007-6. arXiv: S0167739X10002554.

[5] I. Sriram and A. Khajeh-Hosseini. “Research Agenda in Cloud Technologies”. In:

1st ACM Symp. Cloud Comput. SOCC cs.DC (2010), pp. 1–11. arXiv: 1001.3259.

[6] N. Antonopoulos and L. Gillam, eds. Cloud Computing: Principles, Systems and
Applications. Vol. 1. Springer, 2015. isbn: 9788578110796. doi: 10 . 1017 /

CBO9781107415324.004. arXiv: arXiv:1011.1669v3.

[7] S. Goyal. “Public vs Private vs Hybrid vs Community - Cloud Computing: A

Critical Review”. In: Int. J. Comput. Netw. Inf. Secur. 6.3 (2014), pp. 20–29. issn:

20749090. doi: 10.5815/ijcnis.2014.03.03.

[8] A. Marinos and G. Briscoe. “Community cloud computing”. In: Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 5931 LNCS

(2009), pp. 472–484. issn: 03029743. doi: 10.1007/978-3-642-10665-1_43.

arXiv: 0907.2485.

[9] R. Palwe, G. Kulkarni, and A. Dongare. “A New Approach to Hybrid Cloud”. In:

Int. J. Comput. Sci. Eng. Res. Dev. (2011), pp. 35–42.

57

http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1136/emj.2010.096966
http://dx.doi.org/10.1136/emj.2010.096966
http://arxiv.org/abs/2305-0543
http://dx.doi.org/10.1145/358438.349303
http://dx.doi.org/10.1007/s13174-010-0007-6
http://arxiv.org/abs/S0167739X10002554
http://arxiv.org/abs/1001.3259
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1017/CBO9781107415324.004
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.5815/ijcnis.2014.03.03
http://dx.doi.org/10.1007/978-3-642-10665-1_43
http://arxiv.org/abs/0907.2485


BIBLIOGRAPHY

[10] S. Yadav. “Comparative Study on Open Source Software for Cloud Computing

Platform : Eucalyptus , Openstack and Opennebula”. In: Int. J. Eng. Sci. 3.10

(2013), pp. 51–54.

[11] C. Paper, R. Kumar, and J. Foundation. “Open Source Solution for Cloud Comput-

ing”. In: Int. J. Comput. Sci. Mob. Comput. MAY (2014). doi: 10.13140/2.1.1695.

9043.

[12] J. S. Manjaly and S Jisha. “A Comparative Study on Open Source Cloud Computing

Frameworks”. In: An Int. J. Eng. Technol. 2.6 (2013), pp. 2026–2029.

[13] S. Ismaeel, A. Miri, D. Chourishi, and S. M. R. Dibaj. “Open Source Cloud Man-

agement Platforms: A Review”. In: 2015 IEEE 2nd Int. Conf. Cyber Secur. Cloud
Comput. (2015), pp. 470–475. doi: 10.1109/CSCloud.2015.84.

[14] D. Grzonka. “Short Analysis of Implementation and Resource Utilization for the

Openstack Cloud Computing Platform SHORT ANALYSIS OF IMPLEMENTATION

AND RESOURCE”. In: MAY (2015). doi: 10.13140/RG.2.1.3328.9444.

[15] T. G. Lynn, P. Healy, and J. P. Morrison. “A Comparative Study of Current Open-

Source Infrastructure as a Service Frameworks A Comparative Study of Current

Open-Source Infrastructure as a”. In: MAY (2015).

[16] OpenStack Docs: OpenStack Architecture Design Guide. url: http://docs.openstack.

org/arch-design/ (visited on 02/20/2016).

[17] OpenStack Docs: OpenStack Releases. url: http://releases.openstack.org/

(visited on 02/20/2016).

[18] A. Datt, A. Goel, and S. C. Gupta. “Analysis of Infrastructure Monitoring Require-

ments for OpenStack Nova”. In: Procedia Comput. Sci. 54 (2015), pp. 127–136.

issn: 18770509. doi: 10.1016/j.procs.2015.06.015. url: http://dx.doi.

org/10.1016/j.procs.2015.06.015.

[19] K. Bakshi. “Network considerations for open source based clouds”. In: IEEE Aerosp.
Conf. Proc. 2015-June (2015), pp. 1–9. issn: 1095323X. doi: 10.1109/AERO.2015.

7118997.

[20] K. Pepple. Deploying OpenStack. Ed. by M. Loukides and M. Blanchette. First

Edit. Vol. 1. Sebastopol: O’Reilly, 2015. isbn: 9788578110796. doi: 10.1017/

CBO9781107415324.004. arXiv: arXiv:1011.1669v3.

[21] F. Breu, S Guggenbichler, and J. Wollmann. OpenStack Cloud Computing Cookbook.

2008. isbn: 9781782167587. url: http://medcontent.metapress.com/index/

A65RM03P4874243N.pdf.

[22] B. Dongmyoung and L. Bumchul. “Analysis of Telemetering Service in OpenStack”.

In: (2015), pp. 272–274.

58

http://dx.doi.org/10.13140/2.1.1695.9043
http://dx.doi.org/10.13140/2.1.1695.9043
http://dx.doi.org/10.1109/CSCloud.2015.84
http://dx.doi.org/10.13140/RG.2.1.3328.9444
http://docs.openstack.org/arch-design/
http://docs.openstack.org/arch-design/
http://releases.openstack.org/
http://dx.doi.org/10.1016/j.procs.2015.06.015
http://dx.doi.org/10.1016/j.procs.2015.06.015
http://dx.doi.org/10.1016/j.procs.2015.06.015
http://dx.doi.org/10.1109/AERO.2015.7118997
http://dx.doi.org/10.1109/AERO.2015.7118997
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1017/CBO9781107415324.004
http://arxiv.org/abs/arXiv:1011.1669v3
http://medcontent.metapress.com/index/A65RM03P4874243N.pdf
http://medcontent.metapress.com/index/A65RM03P4874243N.pdf


BIBLIOGRAPHY

[23] P. Biswas, F. Patwa, and R. S. Sandhu. “Content Level Access Control for OpenStack

Swift Storage”. In: Proc. 5th {ACM} Conf. Data Appl. Secur. Privacy, {CODASPY}
2015, San Antonio, TX, USA, March 2-4, 2015 (2015), pp. 123–126. doi: 10.1145/

2699026.2699124.

[24] Z. Yao, I. Papapanagiotou, and R. Griffith. “Serifos: Workload Consolidation and

Load Balancing for SSD Based Cloud Storage Systems”. In: (2015). arXiv: 1512.

06432.

[25] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, S.

Member, and S. Uhlig. “Software-Defined Networking : A Comprehensive Survey”.

In: Proc. IEEE 103.1 (2015), pp. 14 –76. issn: 0018-9219. doi: 10.1109/JPROC.

2014.2371999. arXiv: arXiv:1406.0440v3.

[26] Open Networking Foundation. “Software-Defined Networking: The New Norm for

Networks [white paper]”. In: ONF White Pap. (2012), pp. 1–12.

[27] J. Chen, X. Zheng, and C. Rong. “Survey on software-defined networking”. In:

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics) 9106.1 (2015), pp. 115–124. issn: 16113349. doi: 10.1007/978-

3-319-28430-9_9.

[28] R. Munoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec, A. Autenrieth, V.

Lopez, and D. Lopez. “Integrated SDN/NFV Management and Orchestration Ar-

chitecture for Dynamic Deployment of Virtual SDN Control Instances for Virtual

Tenant Networks [Invited]”. In: J. Opt. Commun. Netw. 7.11 (2015), B62. issn:

1943-0620. doi: 10.1364/JOCN.7.000B62.

[29] V Shamugam and I Murray. “Software Defined Networking challenges and future

direction: A case study of implementing SDN features on OpenStack private cloud”.

In: 012003 (2016), pp. 0–8. issn: 1757899X. doi: 10.1088/1757-899X/121/1/

012003.

[30] A. Mann, W. Wei, R. Badana, T. Zhang, and T. A. Yang. “Use Cases and Devel-

opment of Software Defined Networks in OpenStack”. In: 2015 IEEE Int. Conf.
Comput. Inf. Technol. Ubiquitous Comput. Commun. Dependable, Auton. Secur.
Comput. Pervasive Intell. Comput. (2015), pp. 947–953. doi: 10.1109/CIT/IUCC/

DASC/PICOM.2015.142.

[31] Z. K. Khattak, M. Awais, and A. Iqbal. “Performance evaluation of OpenDaylight

SDN controller”. In: Proc. Int. Conf. Parallel Distrib. Syst. - ICPADS 2015-April

(2015), pp. 671–676. issn: 15219097. doi: 10.1109/PADSW.2014.7097868.

[32] ODL Beryllium (Be) - The Fourth Release of OpenDaylight | OpenDaylight. url:

https://www.opendaylight.org/odlbe.

[33] Floodlight OpenFlow Controller -Project Floodlight. url: http://www.projectfloodlight.

org/floodlight/.

59

http://dx.doi.org/10.1145/2699026.2699124
http://dx.doi.org/10.1145/2699026.2699124
http://arxiv.org/abs/1512.06432
http://arxiv.org/abs/1512.06432
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://arxiv.org/abs/arXiv:1406.0440v3
http://dx.doi.org/10.1007/978-3-319-28430-9_9
http://dx.doi.org/10.1007/978-3-319-28430-9_9
http://dx.doi.org/10.1364/JOCN.7.000B62
http://dx.doi.org/10.1088/1757-899X/121/1/012003
http://dx.doi.org/10.1088/1757-899X/121/1/012003
http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.142
http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.142
http://dx.doi.org/10.1109/PADSW.2014.7097868
https://www.opendaylight.org/odlbe
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/


BIBLIOGRAPHY

[34] T. O.N. L. (ON.Lab). “Introducing ONOS - a SDN network operating system for

Service Providers !” In: (2014).

[35] ONOS - A new carrier-grade SDN network operating system designed for high availabil-
ity, performance, scale-out. url: http://onosproject.org/.

[36] P. R. Srivastava and S. Saurav. “Networking agent for overlay L2 routing and overlay

to underlay external networks L3 routing using OpenFlow and Open vSwitch”. In:

17th Asia-Pacific Netw. Oper. Manag. Symp. Manag. a Very Connect. World, APNOMS
2015 (2015), pp. 291–296. doi: 10.1109/APNOMS.2015.7275442.

[37] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea. “Performance of Network

Virtualization in cloud computing infrastructures: The OpenStack case”. In: 2014
IEEE 3rd Int. Conf. Cloud Networking, CloudNet 2014 (2014), pp. 132–137. doi:

10.1109/CloudNet.2014.6968981.

[38] A Mayoral, R Vilalta, R Munoz, R Casellas, R Martinez, and J Vilchez. “Integrated

IT and Network Orchestration Using OpenStack , OpenDaylight and Active Stateful

PCE for Intra and Inter Data Center Connectivity”. In: 1 (), pp. 1–3.

[39] O. Tkachova, Mohammed Jamal Salim, and Abdulghafoor Raed Yahya. “An Analy-

sis of SDN-Openstack Integration”. In: 0 (2011), pp. 42–43.

[40] SONA: DC Network Virtualization - ONOS - Wiki. url: https://wiki.onosproject.

org/display/ONOS/SONA/3A+DC+Network+Virtualization.

[41] SONA Architecture - ONOS 1.5 - Wiki. url: https://wiki.onosproject.org/

display/ONOS15/SONA+Architecture.

[42] C. Caba and J. Soler. “Mitigating SDN controller performance bottlenecks”. In:

Proc. - Int. Conf. Comput. Commun. Networks, ICCCN 2015-Octob (2015). issn:

10952055. doi: 10.1109/ICCCN.2015.7288429.

[43] M. Gholami and B. Akbari. “Congestion Control in Software Defined Data Center

Networks Through Flor Rerouting”. In: (2015), pp. 654–657.

[44] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab. “SDN Controllers : A Compara-

tive Study”. In: 978 (2016), pp. 18–20.

[45] S. Scott-hayward. “Design and deployment of secure , robust , and resilient SDN

Controllers”. In: NetSoft (2015), pp. 1–5. doi: 10.1109/NETSOFT.2015.7258233.

[46] A. L. Stancu, S. Halunga, A. Vulpe, G. Suciu, O. Fratu, and E. C. Popovici. “A

comparison between several Software Defined Networking controllers”. In: 2015
12th Int. Conf. Telecommun. Mod. Satell. Cable Broadcast. Serv. (2015), pp. 223–226.

doi: 10.1109/TELSKS.2015.7357774. url: http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=7357774.

[47] D. Suh, S. Jang, S. Han, and S. Pack. “On Performance of OpenDaylight Clustering”.

In: (), pp. 407–410.

60

http://onosproject.org/
http://dx.doi.org/10.1109/APNOMS.2015.7275442
http://dx.doi.org/10.1109/CloudNet.2014.6968981
https://wiki.onosproject.org/display/ONOS/SONA/3A+DC+Network+Virtualization
https://wiki.onosproject.org/display/ONOS/SONA/3A+DC+Network+Virtualization
https://wiki.onosproject.org/display/ONOS15/SONA+Architecture
https://wiki.onosproject.org/display/ONOS15/SONA+Architecture
http://dx.doi.org/10.1109/ICCCN.2015.7288429
http://dx.doi.org/10.1109/NETSOFT.2015.7258233
http://dx.doi.org/10.1109/TELSKS.2015.7357774
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7357774
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7357774

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background & Motivation
	Challenges
	Thesis Outline

	State-of-the-Art
	Cloud Computing
	Service Models
	Deployment Models

	Available Platforms
	Eucalyptus
	OpenNebula
	OpenStack
	Comparative Analysis
	Final Verdict

	OpenStack
	OpenStack Compute Nova
	OpenStack Networking Neutron
	OpenStack Image Service Glance
	OpenStack Identity Keystone
	OpenStack Dashboard Horizon
	OpenStack Telemetry Ceilometer
	OpenStack Object Storage Swift
	OpenStack Block Storage Cinder

	Software Defined Networks
	OpenDaylight
	FloodLight
	Open Network Operating System (ONOS)

	SDN Integration with OpenStack

	Architecture
	OpenStack Logical Architecture Overview
	OpenStack Compute Overview
	OpenStack Network Overview
	OpenStack Identity Overview
	OpenStack Object Storage Overview
	OpenStack Block Storage Overview
	OpenStack Image Overview

	Openstack Physical Architecture Overview
	Common Structures / Services
	Hardware Specifications


	SDN Architecture
	Logical SDN Architecture
	Physical SDN Architecture
	SDN Controller Comparative Analysis

	Results and Validation
	Resource Optimization
	Instance Deployment and Access
	Use Cases
	Discussion of Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

