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Abstract 
 

In the light of global warming, large-scale transition to renewable power sources is a worldwide 

challenge, playing wind power a significant role. Sea wave energy is being increasingly regarded 

in many countries as a major and promising resource but, like all forms of energy conversion, it 

will inevitably have an impact on the marine environment. 

WaveRoller, a Wave Energy Conversion Device, is installed in front of Almagreira beach, on the 

west coast of Portugal. The purpose of this thesis is to study and quantify the underwater radiated 

noise from this device using an underwater acoustic model in order to estimate potential effects 

it may have in the marine environment. The model used to run the data will be MIKE Zero – 

Underwater Acoustic Simulator by DHI . 

In the study site only cetacean species are expected to occur. Results showed that behavioural 

responses might be expected for low and mid-frequency cetaceans if they swim close to the 

device. Also, the device shouldn’t be installed in an area in which a population of cetaceans exists 

in a 28m ray. For these individuals, injury can be assumed if SEL (Sound Exposure Level) is 

higher than 215 dB re 1μPa2.s, for non-pulse sounds. Results showed the calculated maximum 

SEL of the Waveroller sound is 150 dB re 1μPa2.s and therefore no injury is expected.  

MIKE Zero – Underwater Acoustic Simulator is a powerful tool to test any device that produces 

underwater noise and offers the possibility to create Surface Sound maps of results by using 

MIKEXYZ Converter tool.  

 

Keywords: WaveRoller, Noise, MIKE, SEL, Cetaceans. 
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1. Introduction 

1.1. General aspects of acoustics 
 

Sound consists of a regular motion of the molecules of an elastic substance. Because the material 

is elastic, a motion of the particles of the material, such as the motion initiated by a sound 

projector, communicates to adjacent particles creating a sound wave outward from the source at 

a velocity equals to velocity of sound (Urick, 1983). Sound propagation is not the same as in the 

air when the propagation channel is the ocean. The main importance of sound within the ocean 

resides in the fact that the ocean is transparent to acoustic waves, while practically opaque to 

electromagnetic radiations (Erbe and Farmer, 2000). It seems to be the only radiation that can be 

propagated through long distances within the sea, especially at lower frequencies. Because of it, 

and adding the fact that the bandwidth available for communication is extremely limited, 

underwater acoustic channels are generally recognized as one of the most difficult communication 

media in use today (Stojanovic and Preisig, 2009).  

The main variable affecting sound propagation in the ocean is sound speed, and is a function of 

three main parameterseters: depth, salinity and temperature. Sound speed increases both with 

temperature and pressure, then it also varies with season, diurnal changes, geographical location, 

and time, as these parameters affect the oceanographic conditions of the water column (affecting 

indirectly the three parameters mentioned before). A typical value of 1500 m/s is normally given, 

even though it is not homogeneously presented within the ocean (Barrio, 2009). 

In terms of water column, there is a decrease on the sound profile from surface to depth due to 

decreasing temperature (higher in surface because of sun heating, decreasing because of cooling 

with depth). When temperature becomes mainly constant, pressure is the main factor affecting 

sound speed, and as it increases linearly with depth, sound speed also increases linearly. Salinity 

does not have a great impact in Open Ocean, where no significant changes occur, while it can be 

important in shallow waters, estuaries, or closed areas, in other words, in those parts of the ocean 

where an important halocline is occurring (Barrio, 2004). As a consequence of the spatial 

variability of sound speed, sound refraction takes place. Figure 1 illustrates the relationship 

between sound speed profiles. 
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Figure.1: Relationship between temperature and sound speed in Deep Ocean. (Source: Etter, 

2013) 

 

The sea surface is both a reflector and a scatterer of sound (Urick, 1983). At calm seas the acoustic 

impedance at the water surface is very high. Hence, the surface would be almost totally reflecting. 

However, under normal conditions the rough sea surface caused by wind-driven waves induces 

random scattering of the reflected sound (Bolin et al., 2009). When the surface is in motion, as is 

always true on the surface of the sea, it produces upper and lower sidebands in the spectrum of 

the reflected sound that are the duplicates of the spectrum of the surface motion. Thus, a 

frequency-smearing effect is produced on a constant-frequency signal, having significance for 

narrow-band underwater acoustic communications (Urick, 1983).  

The sea bottom is also a reflector and a scatterer. However, the reflection of sound from the seabed 

is more complex than from the sea surface due to variations on acoustics properties (because of 

the composition that can vary from hard rock to soft mud) (Urick, 1983). Also, the seabed is often 

layered with a density and a sound velocity that change gradually or abruptly with depth (Farcas 

et al., 2015).  

 

In travelling through the sea, an underwater sound signal becomes delayed, distorted and 

weakened (Urick, 1983). Transmission Loss, TL, is a standard measure for underwater acoustics 

of the change in signal strength with range defined as the ratio in decibels between the acoustic 

intensity at a field point and the intensity I0 at 1m distance from the source (Jensen et al., 1994). 

The Intensity of the wave can be explained as a certain amount of energy per second across a unit 

area oriented normal to the direction of propagation (Urick, 1983). Equation 1 shows the relation 

between Transmission Loss and the Intensity of the wave.  

𝑇𝐿 = 10 𝑙𝑜𝑔 (I0/I1)    [dB]  (Eq.1) 

Transmission Loss is due to the sum of two major processes:  Spreading and Attenuation (which 

includes Absortion and Scattering losses).  

Spreading is a geometrical effect representing the regular weakening of a sound signal as it 

spreads outward the source. It varies with range and can be expressed as a certain number of 

decibels per distance doubled (Urick, 1983). There are two kinds: Spherical spreading and 

Cylindrical spreading. The first one, in which the power generated by a sound source is radiated 
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equally in all directions so as to be equally distributed over the surface of a sphere surrounding 

the source, it’s applied nearfield, and being r1 and r2 two different ranges (r2 > r1), Transmission 

Loss is given by 

𝑇𝐿 =  10 𝑙𝑜𝑔 (I1/I2) = 20 𝑙𝑜𝑔 r2    [dB]  (Eq.2) 

When the medium has plane-parallel upper and lower bounds and sound cannot cross them, 

Cylindrical spreading take place. It happens at moderate and long ranges whenever sound is 

trapped by a sound channel in the sea (Urick, 19839). This regions of low sound speed are known 

as the Deep Sound Channel, whose axis is at the sound speed minimum (Jensen et al., 1994). In 

this case, and having once again two different ranges, r1 and r2, Transmission Loss is given by 

𝑇𝐿 =  10 𝑙𝑜𝑔 r2 [db]  (Eq.3) 

On the other hand, Attenuation loss varies linearly with range and it’s expressed by a certain 

number of decibels per unit of distance (Urick, 1983). An important property is the fact that it 

increases with signal frequency due to the transfer of acoustic energy into heat (Absortion).  

The effects of sound reflection at the surface, bottom and any objects, and sound refraction in the 

water leads to a Multipath Propagation phenomenon. When a source launches a beam or rays, 

each one will follow a different path, and a receiver placed at some distances will observe multiple 

signal arrivals. Propagation paths and their strengths and delays are determined by the geometry 

of the channels and its reflection and refraction properties, so a ray travelling over a longer path 

may do so at a higher speed, thus reaching the receiver before a direct stronger ray (Stojanovic 

and Preisig, 2009). These phenomena cause fluctuations in phase and amplitude at a signal 

receiver, signal distortion, decorrelation of signal between separated receivers, and frequency 

broadening (Urick, 1983). Time variability is also an important factor. Channel’s time variability 

can be caused by inherent changes in the propagation medium or changes that occur because of 

the transmitter/receiver motion. The first case can occur in very long timescales such as monthly 

changes on water’s temperature and does not affect the instantaneous communication level, or in 

short timescales and affect the signal. An example of this happens when surface waves cause the 

displacement of the reflection point and, as a result, the signal suffers scattering and there’s a 

spread of the Doppler Effect (Stojanovic and Preisig, 2009).  

By so, sound propagation in the water column is characterized by three major factors: Attenuation, 

Time-varying Multipath Propagation, and low speed of sound (Farcas et al., 2015). 

 

1.2. Underwater noise and its effects on marine mammals 
 

In the light of global warming, large-scale transition to renewable power sources is a worldwide 

challenge, playing wind power a significant role (Bolin et al., 2009). This demand for renewable 

energy has led to construction of offshore wind farms with high-power turbines, and many more 

wind farms are being planned for the shallow waters of the world’s marine habitats (Madsen et 

al., 2006) and have raised concerns over impacts of underwater noise on marine species (Bailey 

et al., 2010). On the other hand, sea wave energy is also being increasingly regarded in many 

countries as a major and promising resource.  

 

Noise is unwanted signal in water. The sources of noise in the ocean are classified as ambient or 

localized (Stojanovic and Preisig, 2009). Ambient noise is caused by shrimps, fishes, turbulence 
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and various mammals, which always exist in the background of the sea. Localized noise is only 

present in certain areas (Huang, 2015).  Noise is known to affect marine mammals in a variety of 

ways and under certain circumstances can be damaging (Erbe and Farmer, 2000). Vibration 

produced by offshore wind turbines during their normal operation transmits through the tower 

into the foundation where it interacts with the surrounding water and is released as noise (Marmot, 

et al., 2013). 

Noise from wind turbines comes in two forms: the first is aerodynamic noise from the blades 

slicing through the air leading to the characteristic swish-swish noise; the second is mechanical 

noise associated with machinery housed in the nacelle of the turbine. Aerodynamic noise travels 

through the surrounding air to the interface between the air and water where it’s almost entirely 

reflected due to the large impedance contrast between air and water. Little aerodynamic noise 

enters the marine environment. Conversely, the mechanical noise has a strong structural pathway 

between the drive train (where the vibration is created), through the nacelle support frame, tower, 

into the foundation and finally from the foundation into the surrounding water where it is released 

as noise. The great majority of noise in the marine environment due to wind turbines is therefore 

related to mechanical vibration in the drive train. These vibrations are created by imbalances of 

the rotating components, the teeth in the gearbox coming into contact with each other (referred to 

as gear meshing), and electro-magnetic interaction between the spinning poles and stationary 

stators in the generator. Each of these vibration sources occurs in discrete frequency bands related 

to the rotation speed of each component: the vibrations therefore tend to be tonal (as opposed to 

broad band). Rotational imbalances tend to occur at very low frequencies (< 50 Hz), while gear 

meshing and electro-magnetic interactions tend to occur at low to moderate frequencies (50 Hz 

to 2 kHz). 

The amplitude of the vibration of a wind turbine and related noise emitted by the foundation is 

controlled by the size of the excitation force, the frequency of structural resonances and the level 

of damping in the structure. The magnitude of the excitation of the drive train is related to the 

torque acting on the rotor, which is dependent on the wind speed. The amplitude of vibration of 

the turbine increases with the square of wind speed at the hub height. It is likely, therefore, that 

the noise emitted by the foundation will also rise with wind speed. 

Mechanical noise can also be amplified by structural resonances within the wind turbine. 

Structural resonances are the harmonic frequencies at which a structure vibrates when excited by 

a discrete event, such as the frequency a bell rings when struck. Yet, all structures contain some 

level of internal damping. Damping is the dissipation of vibration energy via processes like heat 

loss and has the effect of reducing the amplitude of vibration. In general, steel structures such as 

jackets have less damping than structures built from granular materials such as concrete 

foundations. The level of internal damping will therefore affect the noise emitted by different 

types of foundations.  

At the interface between the foundation and water, the vibration of the foundation oscillates water 

molecules to produce a pressure wave which radiates away from the foundation as sound (Marmo 

et al., 2013). As the sound propagates away from the foundation its intensity is reduced with 

distance due to geometric spreading and absorption. Water absorbs high frequency sound more 

quickly than low frequencies; low frequency sound therefore propagates further (Stojanovic and 

Preisig, 2009). 

Summing up, noise related to off-shore wind turbines have common features; specifically, the 

sound intensity is dominated by pure tones likely to originate from rotating machinery in the 

nacelle with frequencies mostly below 700 Hz. The range of water depths for previous 

measurements is from as little as 2 m up to depths of 15 m. The shallower measurements have a 
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lower frequency cut off as sound can only propagate if the wavelength is less than or equal to 4 

times the water depth (Urick, 1983).  

Regarding wave power, the main disadvantage, as with the wind from which is originates, is its 

(largely random) variability in several time-scales: from wave to wave, with sea state, and from 

month to month (although patterns of seasonal variation can be recognized). The wave energy 

absorption is a hydrodynamic process of considerable theoretical difficulty, in which relatively 

complex diffraction and radiation wave phenomena take place (Falcão, 2010).  

The wave energy level is usually expressed as power per unit length (along the wave crest or 

along the shoreline direction); typical values for ‘‘good’’ offshore locations (annual average) 

range between 20 and 70 kW/m and occur mostly in moderate to high latitudes. Seasonal 

variations are in general considerably larger in the northern than in the southern hemisphere (Cruz, 

2008, quoted by Falcão, 2010) which makes the southern coasts of South America, Africa and 

Australia particularly attractive for wave energy exploitation (Falcão, 2010). The conversion of 

wave energy into electrical energy has the potential to become a clean and sustainable form of 

renewable energy conversion. However, like all forms of energy conversion it will inevitably have 

an impact on the marine environment, although not in the form of emissions of hazardous 

substances (gases, oils or chemicals associated with anticorrosion). Possible environmental issues 

associated with wave energy conversion include electromagnetic fields, alteration of 

sedimentation and hydrologic regimes and underwater radiated noise (Haikonen, 2014). 

 

There are different types of wave energy conversion devices: Point Absorbers, Attenuators, 

Terminators (or Oscillating Water Collumn), Oscillating Wave Surge Converters and 

Overtopping Devices. 

Point Absorbers use a mechanism consisting in one immobile component and another that follows 

the wave motion. The potential noise associated with the operation of this device would likely be 

continuous and may contain tonal features with most of the sound energy at frequencies less than 

a few kilohertz; Attenuators consist of long multi-segmented floating structures oriented parallel 

to the wave travel direction; Terminators are positioned perpendicular to the wave motion and are 

typically installed on near shore. The noise associated to their operation is the noise from the air 

expelled through the turbine that is generated in air but can couple also into the water. Oscillating 

Wave Surge Converters work as a pendulum responding to wave surges. The back and forth 

movement of water driven by wave surge puts the composite panel into motion; finally, 

Overtopping Devices consist of elevated reservoirs that are filled by waves spilling over a ramp 

and empty back into the ocean below through a drain creating a head pressure across the outlet 

that forces water through hydro turbines (JASCO, 2009). 

Depending on the distance between source and receiver, four zones of noise influences can be 

defined (Richardson et al., 1995). The zone of audibility is defined as the area within which the 

animal is able to detect the sound. It is limited by two factors: by the critical band levels falling 

below the animal’s audiogram, and by the critical band levels falling below ambient noise levels 

(Erbe and Farmer, 2000). The zone of responsiveness is the region in which the animal reacts 

behaviourally or physiologically. This zone is usually smaller than the zone of audibility. The 

zone of masking is highly variable, usually somewhere between audibility and responsiveness 

and defines the region within which noise is strong enough to interfere with detection of other 

sounds, such as communication signals or echolocation clicks. The masking of acoustic signals 

can have effects not only for the individual but also for the entire population, causing interference 

with social cohesion, mating, group activities, warning or individual identification (Erbe and 

Farmer, 2000). The zone of hearing loss is the area near the noise source where the received sound 
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level is high enough to cause tissue damage resulting in either temporary threshold shift (TTS) or 

permanent threshold shift (PTS) or even more severe damage (Richardson et al., 1995; Erbe and 

Farmer, 2000). Threshold shift depends on factors such as the spectral characteristics of the noise 

(frequency and amplitude), the amount of energy per time for impulsive noise, the hearing 

sensitivity of the subject, the duration of noise exposure and the duty cycle, or recovery time 

between exposures (Erbe and Farmer, 2000). 

Marine mammals are also indirectly affected by noise in the case that noise reduces the 

availability of prey. For example, noise-induced effects in fish include swim bladder resonance, 

blast injury of fish, larvae and eggs, a decrease in reproductivity, and possible habitat avoidance 

(Erbe and Farmer, 2000). Hence, noise disturbance can have a role in causing long-term 

displacement or abandonment of a part of the range due to changes on food abundance 

(Richardson et al., 1995). 

Regarding long-term effects, there is most evidence that most types of disturbance do not cause 

mortality (Richardson et al., 1995).  

 

1.3. Basic Principles of Modeling 
 

As said previously, many organisms depend on sound for communication, predator/prey detection 

and navigation. The acoustic environment can therefore play an important role in ecosystem 

dynamics and evolution. A growing number of studies are documenting acoustic habitats and their 

influences on animal development, behaviour, physiology and spatial ecology, which has led to 

increasing demand for passive acoustic monitoring expertise in the life sciences (Merchant et al., 

2015).  

Modeling acoustic propagation conditions is an important issue in underwater acoustics and there 

exist several mathematical/numerical models based on different approaches. Some of the most 

used approaches are based on Ray Theory (by solving the wave equation), modal expansion and 

wave number integration techniques (Hovem, 2013). 

Ray Theory is restricted to high frequencies or short wavelengths and the results and conclusions 

therefrom are called ray acoustics (Urick, 1983). Ray acoustics is based on the assumption that 

sound propagates along rays that are normal to wave fronts, the surfaces of constant phase of the 

acoustic waves. When generated from a point source in a medium with constant sound speed, the 

wave fronts form surfaces that are concentric circles, and the sound follows straight line paths 

that radiate out from the sound source. If the speed of sound is not constant, the rays follow curved 

paths rather than straight ones. The computational technique known as ray tracing is a method 

used to calculate the trajectories of the ray paths of sound from the source. (Hovem, 2013). 

Another theory is Normal-Mode Theory, in which the propagation is described in terms of 

characteristic functions called normal modes. Although it’s suitable for a sound propagation in 

shallow water, comparing to ray theory, it gives little insight on the distribution of the energy of 

the source in space and time (Urick, 1983).  

As this said, for a given scenario, a particular model may be limited by the validity of the model 

assumptions, by the number of computations required, or by instabilities in the model algorithm. 

There so, no single model is applicable to all acoustic frequencies and environments (Farcas et 

al., 2015).  
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Most of the propagation models made until the present have been considering sound propagation 

in 2D. This means a limitation in shallow waters, where obliquely incident rays are reflected from 

the bottom into a different vertical plane. That is called “horizontal refraction”, and requires a 3D 

modelling, where the sound field is given in depth and range, but also in azimuth (Range 

Dependent Models) (Barrio, 2009). Five principal deterministic models can be mentioned for 

describing sound propagation within the sea (deterministic because they neglect the effect of 

fluctuations in the sound speed profile by small scale turbulences, internal waves, among others):  

 Ray tracing. A primary advantage of these methods is their simplicity. They depend only 

on ray-surface intersection calculations, which are relatively easy to implement and have 

computational complexity that grows sub linearly with the number of surfaces in the 

model. Another advantage is generality. As each ray-surface intersection is found, paths 

of specular reflection, diffuse reflection, diffraction, and refraction can be sampled, 

thereby modeling arbitrary types of indirect reverberation, even for models with curved 

surfaces. The primary disadvantages of path tracing methods stem from the fact that the 

continuous 5D space of rays is sampled by a discrete set of paths, leading to aliasing and 

errors in predicted room responses. Wave effects, such as diffraction and caustics, cannot 

be handled satisfactorily which can be a limitation for bottom interactions and low 

frequency propagation (Barrio, 2009). In order to minimize the likelihood of large errors, 

path tracing systems often generate a large number of samples, which requires a large 

amount of computation. Another disadvantage of path tracing is that the results are 

dependent on a particular receiver position, and thus these methods are not directly 

applicable in virtual environment applications where either the source or receiver is 

moving continuously (Funkhouser et al., 1998); 

 

 Normal-Mode techniques; A normal mode of an oscillating system is a pattern of motion 

in which all parts of the system move sinusoidally with the same frequency and with a 

fixed phase relation. The free motion described by the normal modes takes place at the 

fixed frequencies. These fixed frequencies are known as its natural frequencies or 

resonant frequencies. It shows advantages such as the fact that functions do not have to 

be calculated at all intermediate ranges between source and receiver (mode functions in 

deep, stable part of the water column are calculated and stored in advance, saving 

computation time). On the other hand, most of them do not include branch line 

contribution, not handling shear in the bottom (Barrio, 2009); 

 

 Multipath expansion – doesn’t have solutions for range dependence, so it won’t be 

considered; 

 

 Wave number Integration techniques, a method for an axisymmetric atmosphere, with 

the effective sound speed accounting for wind where the ground surface is characterized 

by the ground impedance and the atmosphere is represented by vertical profiles of the 

wind velocity and the temperature. The sound field in each layer is computed in the 

horizontal wave domain, taking into account the appropriate continuity equations at the 

interfaces between the layers. This method is also called “Fast Field Program”; 

 

 Finite element methods, that consists of using a simple approximation of unknown 

variables to transform partial differential equations into algebraic equations. It can be 

applied to solve steady or transient problems in linear or nonlinear regions for one-, two-

, or three-dimensional domains (Dhatt, 2012). Disadvantages comprise the extreme 
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demand of computer time and memory (limited to relative low frequencies and 

unrealistically short ranges; and 

 

 Parabolic equation models. This model assumes that the speeds of energy propagation 

are similar to a reference speed. Unlike the ray model, the PE model handles all the 

diffraction effects in the acoustic channel. Therefore, it is more suitable to lower 

frequencies than the ray model (Huang, 2015). In underwater acoustics, the primary 

motivation for these equations has been the need to predict sound propagation in ocean 

environments with significant horizontal variation (e.g., continental slopes, ocean fronts, 

and eddies). These equations can treat such complicated environments in a relatively 

simple way because it neglects backscattered waves and uses a "marching" algorithm to 

propagate waves outward from the source. Given a starting solution at the source, the PE 

advances the solution in range, taking into account horizontal changes in the environment 

as the solution is stepped out (Gilbert et al., 1989). Despite this, there’s a lack of precision 

in this method and it’s impractical in high frequency regimes, as run time increases 

rapidly with higher frequency (Barrio, 2009). 

 

 

1.4. Examples of models  
 

In order to compare different models, examples for each type of model regarding the development 

of the wave equation are presented: 

 

 Ray Theory 

There have been a number of efforts to modify conventional ray theory in order to develop 

improved methods that provide more accurate results but retain computational efficiency.   One 

such method is Gaussian beam tracing. With this technique, a fan of rays is traced from a point 

source with trajectories governed by the standard ray equations.   The Gaussian beam method 

associates with each ray a beam with a Gaussian intensity profile normal to the ray.  An additional 

set of equations which govern beam width and curvature are integrated along with the standard 

ray equations.   The Gaussian beam tracing method has been adapted to the typical ocean acoustics 

waveguide and has been implemented as a tool called BELLHOP. This model has rigorously been 

tested and results show excellent agreement with certain full wave models at high frequencies.  

The method is free of numerical artifacts affecting standard ray models and still retains the 

computational efficiency of a ray based approach (Heitsenrether and Badiey, 2004). BELLHOP 

is a range-dependent ray theory model that can produce ray trace, transmission loss or arrival 

structure results (Calnan, 2006). Also, computational complexity of BELLHOP is independent of 

the frequency (Ping et al., 2013). 

Various files must be provided to describe the environment and the geometry of sources and 

receivers, such as altimetry (providing a top reflection coefficient and a top shape), bathymetry, 

top and bottom reflection coefficients 

Additional input files allow the specification of directional sources as well as geoacoustic 

properties for the bounding media). Usually one assumes the acoustic source is omni-directional; 

however, if there is a source beampattern, then one must provide a source beam pattern file with 

angle-amplitude pairs defining it. BELLHOP reads these files depending on options selected 
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within the main environmental file. Plot programs (plotssp, plotbty, plotbrc, etc.) are provided to 

display each of the input files (Porter, 2011). 

Regarding outputs, BELLHOP can produce a variety of files depending on the options selected 

within the main environmental file. These include transmission loss, eigenrays, arrivals, and 

received time-series. It allows for range-dependence in the top and bottom boundaries (altimetry 

and bathymetry), as well as in the sound speed profile. BELLHOP is implemented in Fortran, 

Matlab, and Python and used on multiple platforms (Mac, Windows, and Linux) being suitable 

for ideal sea conditions and short ranges (Error < 10 dB).  

Another model based on ray theory is SAM. Since the sound rays do not propagate in straight 

lines, the amplitudes, phases and arrival times of rays will vary in different ocean environments. 

Moreover, the actual length of the sound trajectory between a pair of transceivers is not equal to 

the Euclidean distance. Empirical computation does not take this into account but SAM will 

incorporate this stratification effect on predicting the transmission loss. Its develop is based on 

three steps: Initial geometrical ray tracing using a discrete set of rays to map out the sound field; 

Determining the eigenrays, which are defined as rays connecting the source node and the 

destination node, and calculating the amplitude and phase for each eigenray taking the bounces 

on the boundaries into consideration; and Computing the transmission loss (Ping et al., 2013). 

SAM uses geometrical ray tracing and makes use of the small scale fading (here, the small scale 

fading is the rapid fluctuations of the amplitude and phase of a micro-path acoustic signal when 

interacted with the sea medium’s boundaries (either the sea surface or the sea bottom) over a short 

period of time) to predict the large-scale transmission loss. In addition, like with BELLHOP, the 

computational complexity of SAM is independent of the frequency while the computational 

complexity of other acoustic models increases quickly with the carrier frequency (ONR Ocean 

Acoustics Library). 

Summing up, SAM program holds includes input parameters as sound speed profile, depth of the 

sea, locations of the source and destination, average wind speed, sea floor characteristics (density 

of the sea bottom sediment and bathymetry). The output is to calculate Transmission Loss of the 

underwater channel. SAM has a good accuracy with an error of less than 5 dB). 

 

 Normal mode techniques 

One model based on normal mode techniques is KRAKEN. It provides a large number of 

extensions and options whose presence is an advantage to a sophisticated user and a disadvantage 

to the uninitiated, making it more suitable for experienced modelers and for those requiring 3D 

capability (Porter, 2011). KRAKEN actually consists of three different models KRAKEN, 

KRAKENC and KRAKEL. KRAKENC and KRAKEL are for more sophisticated users with 

special requirements (Porter, 1992). 

KRAKEN program solves for the modes and writes them to disk. Elastic media are allowed but 

material attenuation in an elastic medium is ignored. The inputs include the type of top boundary 

condition, attenuation, reflection coefficient, roughness of the interface, sound speed profile, the 

number of source and receiver depths, and source and receiver locations (Porter, 1992). 

Another program is Program MOATL. This program, regarding a range-dependent environment 

case, runs a 3-layersolid basement and speed profile depends on depth. 

The input data includes parameters like maximum range desired, sediment layer plane-wave 

absorption coefficient, number of source and receiver depths, source frequency, density and 

thickness of the sediment, compressional velocity in the basement, sound speed profile, ratio of 
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the density of the sediment layer to that of water and ration of the density of the basement to that 

of water (Miller and Wolf, 1980). 

 

 Finite element methods 

There are few models based on finite element methods. Actually, most of them are updates of 

previous models. One of them is RDOAST – OASES Range-dependent Transmission Loss 

Module and comes from the OASES model. It uses a Virtual Source Approach for coupling the 

field between range-independent sectors, basically using a vertical source/receiver array, and a 

single-scatter, local plane wave handling of vertical discontinuities (Schmidt, 2011). 

Input parameters cover number of frequencies, density, roughness, compressional attenuation and 

depth of the layers, number or sources, source depths and number of receivers and their depth. 

 

 Parabolic equations 

At last, based on the parabolic equation method we have HAMMER. This method is often applied 

to predict the range-dependent sound levels over a single transect in two-dimensions away from 

the sound source and HAMMER extends this methodology to apply the parabolic equation 

method over a number of radials, giving three dimensional coverage over the model area. 

HAMMER was designed to predict the response of marine species to underwater sound and 

combines a 3-dimensional range-dependent sound propagation model with data from a 

hydrodynamic model which in turns supplies data to an ecological response for target species. 

(Rossington et al., 2013). The model takes into account bathymetry and sound attenuation, as well 

as changes in the sound speed with depth. All simulated species are then studied in terms of their 

noise avoidance (with parameters as direction and speed). 

Another model that has been developed and enhanced in recent years to become a fully modern 

underwater acoustic propagation modelling tool capable of computing acoustic predictions in 

realistic oceanic environments is PECan (Canadian Parabolic Equation model). In PECan, it’s 

assumed that all environmental parameters (sound speed, density, absorption) vary linearly with 

depth between points on a given coarse profile. Moreover, between coarse profiles, each 

parameters varies linearly between depth points that have the same depth index which implies 

that common features between coarse profiles share the same depth index (Book et al., 2000).  

 

 

 

 

 

 

After this analysis, the advantages and disadvantages of each model can be entered into a table 

for comparison (Figure 2). 
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Figure 2: Table showing different models and its advantages and disadvantages (Source: Urick, 

1983) 

 

Lastly there’s MIKE Zero – Underwater Acoustic Simulator (UAS), an underwater acoustic 

model focused on the noise propagation in the far-field with the aim of conducting a risk 

assessment of environmental noise impacts, developed by DHI - Danish Hydrological Institute. 

It belongs to a range of software products to analyze, model and simulate any type of challenge 

in water environments (MIKE by DHI, 2016) and it’s based on the parabolic equation method.  

The core of the UAS is a 2D (vertical) range-dependent acoustic model simulating transmission 

losses (TL) in a vertical transect (r-z plane) for a given omnidirectional sound source located at 

the start of the transect and ambient conditions. UAS allows for simulating the effect of a noise 

source with broad band signature. The model is capable of handling both shallow and deep water 

model domains with frequencies of up to 40 Hz. However, computational time increases rapidly 

above 1 kHz (DHI, 2016). On the other hand, it’s not suitable for situations where echoes may 

have significant impact on the result. 
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The output is given by plots of transmission loss. These results can either create plots of the 2D 

transect (grid plot) or 1D profiles (profile plot). Transmission loss should increase throughout the 

domain. The 2D transect file may include transmission loss, sound exposure level (SEL) for each 

frequency and for the whole spectrum, and values in the seabed. The 1D transect file may include 

minimum TL over depth for each frequency and overall, maximum SEL is over depth for each 

frequency and over all, and the depth of the minimum TL over depth and overall (DHI, 2016). 

It is important to mention that effects of underwater ambient noise and masking are not addressed 

in UAS. For the most energetic part of the noise source frequencies of concern in most 

Environmental Impact Assessment, the ambient level is approximately 100 dB lower, hence it’s 

judged to have insignificantly small impact on the calculated results. 

That said, this model was chosen to be tested in this case study since it is relatively new and gives 

the entire data for the whole water column. 

 

1.5. Aim of the thesis 
 

The purpose of this thesis is to study and quantify the underwater radiated noise from an operating 

Wave Energy Converter using an underwater acoustic model in order to estimate potential effects 

it may have in the marine environment. The model used to run the data was MIKE Zero – 

Underwater Acoustic Simulator.  
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2. Case Study 

The case study concerns noise emitted by WaveRoller, a Wave Energy Conversion Device 

installed in front of Almagreira beach, on the west coast of Portugal, in the municipality of 

Peniche. The project consists of occupying an area of 860 m², of which 756 m² are part of the 

maritime public water domain (CCDR-LVT, 2011). 

WaveRoller is an Oscillating wave surge device. It operates in near-shore areas (approximately 

0.3-2 km from the shore) at depths of between 8 and 20 m. Figure 3 shows WaveRoller in 

operation during high tide. Depending on tidal conditions it is mostly or fully submerged and 

anchored to the seabed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: WaveRoller in operation (Source: AW-Energy) 

 

As the WaveRoller panel moves and absorbs the energy from ocean waves, the hydraulic piston 

pumps attached to the panel pump the hydraulic fluids inside a closed hydraulic circuit. All the 

elements of the hydraulic circuit are enclosed inside a hermetic structure inside the device and are 

not exposed to the marine environment. Consequently, there is no risk of leakage into the ocean. 

The high-pressure fluids are fed into a hydraulic motor that drives an electricity generator. The 

electrical output from this renewable wave energy power plant is then connected to the electric 

grid via a subsea cable.  

The back and forth movement of water driven by wave surge puts the composite panel into 

motion. This phenomenon is a universal physical event that occurs when waves approach the 

shore line. Figure 4 illustrates the so-called surge phenomenon. 
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Figure 4: Surge Phenomenon (Source: AW-Energy) 

 

As the waves approach the shore, they start "shoaling" as some of the water particles moving in 

a circular motion come into contact with the sea bed. This interaction with the sea bed elongates 

the circular motion into a horizontally elliptic shape as the particles flatten and stretch. This in 

turn amplifies the horizontal movement of the water particles in the near-shore area, creating a 

strong surge zone which is the optimal location for WaveRoller.  

A single WaveRoller unit (one panel) is rated at between 500 kW and 1000 kW, with a capacity 

factor of 25-50% depending on wave conditions at the project site (AW-Energy, 2016). 
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3. Methodology 

3.1. Data  
 

The underwater noise measurements took place during the 3rd (start at 11am) and 4th of September 

2014 (ended at 3pm), near the WaveRoller device. 

The process consisted in scheduled measurements to characterize the source of noise 

(WaveRoller) and measurements along transects to assess the noise propagation. The underwater 

noise was recorded by using two autonomous hydrophones. Information about wave height and 

period was provided by the AW Energy and indicative information on wind speed was obtained 

from archived data available in the Windguru website. Current, water temperature and depth data 

were collected through CTD casts using a Valeport Limited© miniCTD to measure water 

temperature and salinity profile variation during the campaign. A GPS (model Garmin GPS map 

60 GPCSx) was used to mark the position where measurements were carried out (Cruz and Simas, 

2014).  

In order to define the area, a georeferenced military map was used along with a bathymetry grid 

given by Instituto Hidrográfico, an organ of the Portuguese Navy, using QGIS software. The area 

is limited by the following coordinates: North: along the shoreline or 38,491174; South: 

38,407258; East:  -8,912415; and West: -9,244717. The projection used was UTM29. Figure 5 

shows the workspace using QGIS. 

 

Figure.5: Georeferenced Case Study Area: Bathymetry data and shoreline using QGIS 
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Once this was done, the mesh could be established. By importing the georeferenced military map, 

the bathymetry grid (shape file) and the shoreline (xyz file) into MIKE Zero, and defining the 

workspace, it is possible to define land boundaries and form a closed domain that can be 

triangulated. The node points and arcs on the open boundaries must be defined by a unique integer 

value and these attributes are used for the model to distinguish between the different boundary 

types in the mesh: attributes equal to 2 and above correspond to open boundaries, attribute equals 

to 1 correspond to land/water boundary This task was made by using the Mesh Boundary 

Definition toolbar.  

The next step is to triangulate the mesh. To do that, a maximum number of nodes is defined as 

100000 and 26 degrees as the smallest allowable angle. Then, scatter data must be imported 

(bathymetry mesh and acoustic data measured in Almagreira beach. The resulting workspace with 

the imported shoreline and bathymetry data is shown in Figure 6, and the result exported into a 

mesh file is shown in Figure 7. 

Figure.6: Workspace after triangulation, using MIKE Zero UAS 
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Figure.7: Workspace in Mesh file format using MIKE Zero UAS 

 

3.2. MIKE Zero – Underwater Acoustic Simulator 
 

Before starting, one needs to establish the domain. The domain is defined by the bathymetry and 

the length of the transect, which in this case, is the Mesh file created previously. This file must 

be transformed into a dfs1 file. Once this is done, the model needs information about the sound 

source and the physical environment. The sound source is defined by its sound level (that can 

either be defined as a constant value, spectrum, or scaled spectrum) and the location of the water 

column. In our case study, for the spectral discretization, 1/3 octave band and centre frequencies 

from 20 to 500 Hz were chosen and the sound source is placed at 2 m above the seabed (z = -147 

m). Also, the sound spectrum was scaled to a specific overall SEL of 147 dB. The physical 

environment includes sound speed (described as a constant value or profile), attenuation (as a 

constant value, profile, or calculated from constant salinity, temperature and pH, or calculated 

with their profiles), thickness, density, compressional sound speed and compressional sound 

attenuation of the seabed.  Once these parameters are settled, an artificial absorption layer will be 

added below the defined layers to prevent artificial bottom reflection contaminating the sound 

field (DHI, 2016). The sea surface is treated as a pressure-release (zero pressure) boundary, since 

the density of the air is much smaller than that of the water.  
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4. Results 
 

Due to problems regarding the software, it was not possible to complete the study with 

information from the Almagreira beach in Peniche. That said, the simulation was performed with 

data from a fictitious wind farm installation in the Baltic Sea (which data already exists in the 

software). That is, it was assumed that the WaveRoller device was installed in the Baltic 

Windfarm. 

After starting the simulation, for each output both a 1D and 2D transect output are created. The 

2D transect file is a dfs2 file and includes sound exposure level (SEL) for each frequency and for 

the whole spectrum (overall). Further the 2D transect file may include or exclude values in the 

seabed. The 1D transect file is a dfs1 file and includes maximum SEL over depth for each 

frequency and overall and the depth of the minimum TL over depth overall. Figure 8 shows the 

behavior of SEL along a 500 m transect, Figure 9 shows the overall SEL, and Figure 10 shows 

SEL for a frequency of 200 Hz. 

 

Figure 8: Sound Exposure Level spectrum for WaveRoller along a 500 m transect 
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Figure 9: Sound Exposure Level spectrum for WaveRoller 

 

Figure 10: Sound Exposure Level for WaveRoller at frequency = 200 Hz 
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5. Discussion 
 

Because WaveRoller was assumed to be installed in the Baltic Sea, this paper does not illustrate 

what is happening in Peniche but it can work as a test for MIKE Zero. According to Erbe and 

Farmer (2000) in the case of baleen whales, who are more sensitive at lower frequencies, the ray 

propagation model should be replaced by a model more appropriate at low frequencies such as a 

parabolic equation model which is the case. Also, studies using other models based on parabolic 

equation may be compared. Like MIKE, HAMMER takes into account bathymetry and sound 

attenuation by sediment, as well as changes in sound speed with depth, showing that it is the best 

method to simulate long range effects (Rossington et al., 2013). 

All the information regarding the sound source refer to WaveRoller (as it is shown in Chapter 3 

– Methodology) and MIKE’s operation was carried out in order to create the needed documents 

to simulate it in Peniche (Bathymetry data and transects to establish the domain). Therefore, by 

using the Baltic windfarm data, the domain changed. That said, the domain for Almagreira beach 

is created and ready to be used. For future work and further investigations, MIKE is able to read 

the information and simulate sound propagation for this area. 

The noise emitted by the WaveRoller is much below the noise emitted by other marine activities, 

including pile driving which is one of the nosiest activities that may be carried out during marine 

renewable energy construction, especially offshore wind projects. However, the WaveRoller 
noise range is similar to the noise emitted by fixed offshore wind turbines (Cruz and Simas, 2014).  

 

Taking into account the given output for WaveRoller in the Baltic sea, some considerations can 

be made: By observing Figure 8, it is possible to understand that SEL decreases with range. This 

makes sense since sound in water suffers Spreading and Attenuation (as explained previously). 

Moreover, the scale is not coherent. In the graph it’s not clear that exists SEL values for depths 

from 0 m to 150 m, looking like there’s a grid spacing of 5 m. In fact, the graph shows SEL values 

until a depth of 109,86 m and so the overall impression is that SEL hits its maximum at this depth. 

Figures 8 and 9 show the 2D Output given by the software and it’s notorious how there’s no data 

regarding SEL from 200 Hz to 500 Hz. In fact, as shown in Figure 10, SEL is showed as being 

constant all over the transect, and bellow 20 m of depth the data expires. On the other hand, it’s 

also possible to see that from 200 Hz to 500 Hz, SEL is always between 0,00 and 0,08 dB re 

μPa2.s 

The next Figure (Figure 11) shows the SEL behavior for a frequency equals to 160 Hz. This is 

the last frequency that contains all the data from the sound source to the seabed. 

By switching between overall SEL and SEL at different frequencies (for example 20 Hz, 40 Hz 

and so on) it’s notorious that low frequency signals are absorbed less rapidly in the ocean than 

high frequency signals and can therefore travel longer distances and still be detected. 

Observing the graph (Figure 9) is also possible to understand that the device shouldn’t be installed 

in an area in which a population of cetaceans exists in a 28 m ray. In terms of water column, 

there’s a potentially dangerous area from z= -60 to z= - 120.  
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Figure 11: Sound Exposure Lever for WaveRoller at frequency = 160 Hz 

 

As said  previously, by the time frequencies of 200 Hz and more are chosen, the information 

disappears. This might be an error caused after the simulation and after running MIKE Zero UAS, 

for there’s no reason for SEL being constant in these areas. On the other hand, it would be 

predictable for the SEL overall graph to show a green area from 200 Hz to 50 Hz and that does 

not happen, the information disappears. That said, the matter regarding Figure 7 and its SEL 

values until 109,86 m may have to do with this lack of SEL information. 

The sound emitted by WaveRoller is dominant in the 125 Hz frequency band (Cruz, E. and Simas, 

T., 2014) and SEL values are higher for that frequency than for any other (Figure 11). 

 

Figure 12: Sound Exposure Lever for WaveRoller at frequency = 125 Hz 

 

 



22 

 

Despite all this, the main issue is that it is not clear how the software shows the SEL for each 

frequency based on a range of frequencies initially stipulated. Indeed, all the data is in a table that 

can be traversed in the software and SEL values are given for each meter of range and depth (1 

m, 2 m, and so on). That is, it is not possible to calculate an exact distance for the actuation of a 

given SEL which would be interesting and more accurate. 

Also, this kind of sound propagation model gives powerful information for describing 

geographical sound behavior and that would be the most important output for this study. Actually, 

there is a tool in the MIKE Zero UAS software that allows the creation of maps that translate 

sound information in a spatial point of view. In this way, the SEL would be visualized in the form 

of rays, propagating along the transect allowing the creation of maps showing potentially 

dangerous locations for marine fauna could be made later. Due to the lack of time this was not 

made for this paper. 

For further work, in terms of noise impacts on marine mammals, it is important to mention that 

the assessment of potential impacts should take into account the auditory sensitivity of the 

animals. However, the fact that the study population is permanently subject to high noise levels 

can cause the hearing threshold to be modified (Richardson and Würsig, 1997 quoted by Cruz, 

2012). 

Regarding the potentially affected species, in the study site only cetacean species are expected to 

occur and these include baleen whales, common dolphins (Delphinus delphis), bottlenose 

dolphins (Tursiops truncatus), sperm whale (Physeter macrocephalus),and harbour porpoises 

(Phocoena phocoena) (Brito et al., 2008 quoted by Cruz, E., and Simas, T., 2014). The cetaceans 

group is subdivided into two sub-groups: mysticetes (big cetaceans) and odontocetes. The main 

difference between the two suborders is that in mysticetes, the teeth are absent, being replaced by 

bristles of a keratinous material, with the function of filtering the water and gather food. These 

have different ways to use and interpret the sound and therefore they can be affected at different 

levels by the same sound (Cruz, E., and Simas, T., 2014). It’s important to mention that mysticetes 

are considered low-frequency cetacean and odontocetes is subdivided in mid and high-frequency 

cetaceans. 

Injury is considered an elevation of the hearing threshold to a specific frequency (can be 

temporary – reversible, or permanent – irreversible) and sound exposure level (SEL) is currently 

accepted as the best metric to measure it. Injury can be assumed if SEL is higher than 215 dB re 

1μPa2.s, for non-pulse sounds. By observing Figure 6, and SEL values for each frequency, the 

calculated maximum SEL of the Waveroller sound is 150 dB re 1μPa2.s and therefore no 

damaging injury is expected. 

For low-frequency cetaceans it is assumed that the avoidance behaviour or other types of 

responses might occur when received levels are 120-160 dB re μPa2.s. For mid-frequency 

cetaceans behavioural responses were already registered for different noise sources when received 

levels are around 90-120 dB re 1μPa2.s in some cases and around 120-150 dB re 1μPa2.s in other 

cases. For high-frequency cetaceans behavioural responses have been already identified when 

received levels are around 140 dB re 1μPa2.s in high frequency ranges (Southall et al., 2007) 

Taking into account Figure 6, behavioural responses might be expected for low and mid-

frequency cetaceans if they swim close to the device. However, it is not expected that low 

frequency individuals come close to the WaveRoller site since they occur in higher depths than 

those where the devices are to be installed. Note that in this case, WaveRoller was installed at a 

very deep area only for results. 
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6.  Conclusions 

 

After finishing this work, it was notorious that Erbe and Farmer (2003) concluded that a parabolic 

equation model is the most appropriate at low frequencies. It’s the case of MIKE Also, 
.Rossington et. al (2013) tested a parabolic equation model (HAMMER) that works with the same 

input as MIKE showing that it is the best method to simulate long range effects. That said, MIKE 

Zero UAS is a powerful tool to test any device that produces underwater noise. 
On the other hand, some weaknesses could be mentioned: It is not clear how the software shows 

the SEL for each frequency based on a range of frequencies initially stipulated and SEL values 

are given for each meter of range and depth (1 m, 2 m, and so on). That is, it is not possible to 
calculate an exact distance for the actuation of a given SEL. Regarding the graphs, the depth axix 

should have its lower value on the maximum depth and not the 0 value, for a better understanding. 

 

Howerver, MIKE Zero – Underwater Acoustic Simulator is a powerful tool to test any device that 
produces underwater noise. In this paper, results were shown in terms of water column however 

it is possible to create Surface Sound maps of results by using MIKEXYZ Converter tool. 
Before working with the software, courses or seminars may help in order to provide the necessary 
tools to work efficiently. 
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