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Resumo 

Os animais adaptam o seu comportamento integrando informação sensorial externa e as 

necessidades metabólicas internas. Em conformidade, muitos organismos conseguem detetar 

desequilíbrios metabólicos e ajustam as suas escolhas nutricionais para restabelecer a homeostasia. 

Uma questão essencial em neurobiologia é de que forma os circuitos neuronais integram a 

informação sobre o estado interno do individuo e coordenam os comportamentos adequados para 

ultrapassar dificuldades metabólicas. É necessário desenvolver métodos que permitam uma análise 

quantitativa detalhada de como os animais se comportam quando tomam determinadas decisões 

nutricionais. No decorrer deste projeto, desenvolvemos um setup de captura de imagens que permite 

filmar os movimentos da mosca da fruta, Drosophila melanogaster, enquanto esta toma determinadas 

escolhas nutricionais. Este setup permitiu-nos estudar de que forma o estado metabólico e 

reprodutivo da mosca influenciam na sua decisão de explorar o ambiente ou utilizar os recursos 

alimentares de forma a manter a homeostasia nutricional. Descobrimos que o balanço entre estes 

comportamentos é definido pelo estado nutricional interno: moscas privadas de aminoácidos focam-

se em pontos de comida ricos em proteína enquanto que as moscas não-privadas preferem explorar 

o ambiente mais globalmente. Demonstramos ainda que este setup e análise podem ser utilizados 

para dissecar os circuitos neurais e genéticos que comandam as decisões nutricionais: primeiro, 

mostramos que os recetores olfativos da mosca são necessários para que ela reconheça 

eficientemente a levadura como sendo um alimento; segundo, demostramos que a octopamina é 

necessária para mediar as alterações de comportamento devido à copulação mas não para detetar os 

níveis internos de nutrientes; terceiro, mostramos que os recetores gustativos são fundamentais para 

manter o interesse nas fontes ricas em proteína após a privação de aminoácidos. Os nossos 

resultados fornecem uma descrição quantitativa das mudanças comportamentais necessárias para 

atingir o equilíbrio nutricional, fornecendo um modelo para o estudo dos mecanismos responsáveis 

por estes comportamentos. 

Palavras chave: Análise computacional do comportamento, estado metabólico, nutrição, 

homeostasia, neurogenética. 
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Summary 

Animals integrate external sensory information and current metabolic needs to adapt their behavior in 

order to survive. Accordingly, many organisms can detect an internal nutritional imbalance and adjust 

their nutritional choices to restore homeostasis. Detailed quantitative analyses of nutrient-choice 

behaviors are needed to deepen our understanding of how neural circuits integrate internal state 

information and drive compensatory behavior when facing metabolic challenges. During this project, 

we developed an automated video tracking setup to characterize how metabolic and reproductive 

states interact to shape exploitation and exploration decisions taken by the adult fruit fly Drosophila 

melanogaster, to achieve nutritional homeostasis. We find that these two states have specific effects 

on the decisions to stop on and leave proteinaceous food patches. Furthermore, the internal nutrient 

state defines the exploration-exploitation trade-off: nutrient deprived flies focus on specific patches 

while satiated flies explore more globally. We provide few examples of how our paradigm could be 

used in the dissection of the genetic and neuronal pathways underlying nutrient decisions: First, we 

show that olfaction is not required for the compensatory high yeast feeding after amino acid 

deprivation, but that it mediates the efficient recognition of yeast as an appropriate food source in 

mated females. Second, we show that octopamine is required to mediate homeostatic postmating 

responses without affecting internal nutrient sensing. Third, we show how gustation is required to 

sustain interest for protein-rich resources upon amino acid deprivation. Our results provide a 

quantitative description of how the fly changes behavioral decisions to achieve homeostatic nutrient 

balancing and provide a framework for future detailed mechanistic dissection of such decisions. 

 Keywords: computational analysis of behavior, internal states, nutrition, neurogenetics, homeostasis. 
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Overview 

The first chapter is a brief literature review of important topics relevant to this thesis, including general 

and recent research in advanced methods to quantify and study animal behavior and a brief overview 

of recent findings in the area of nutrition. Chapter 2 is the manuscript submitted for publication to the 

eLife journal, the central and most important chapter of this dissertation as it comprises the most 

relevant findings of my research. Chapter 3 describes in detail the design and manufacturing of 

foraging setup and some algorithms that were developed to pre-process the data before its analysis. 

Chapter 4 describes analyses and experiments that were not included in the submitted manuscript but 

from which we gained partial but important insight on the locomotor patterns of flies in the presence 

and absence of food patches in a foraging arena, the application of multiple tools for the analysis of 

behavior, nutritional geometry and the role of olfaction, gustation and octopamine in yeast-related 

decisions that can set the stage for future work in uncovering the molecular mechanisms underlying 

foraging decisions in Drosophila. All these findings are discussed in Chapter 5. Finally, in the appendix 

I include detailed steps on how to use the tracking setup described in Chapter 3 and the exact 

configuration of the cameras I used for all the recordings performed during this project.  
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  General introduction 

The main function of the brain is to process incoming information from the environment and 

coordinate, in accordance with the internal state, a series of responses oriented to achieve a certain 

objective. The collection of these responses constitutes the behavior of the animal. How is behavior 

encoded in the genome? In other words how do neuronal circuits and the molecular machineries in 

them control and shape behavior? What are the general principles that govern behavior? Tackling 

these questions is challenging and requires the combination of advanced computational analysis 

techniques and powerful genetic tools, like those developed for model organisms such as the fruit fly 

Drosophila melanogaster and the nematode Caenorhabditis elegans. 

In the first half of this review, I describe some properties observed in the organization of behavior and 

some of the latest methods used in its quantification and analysis. In the second half, I give a short 

overview of what is known about nutrition in Drosophila and some of the complex features of behavior 

that are observed in fruit flies and that allow researchers to use Drosophila as a model system to 

explore the neural circuits and molecular mechanisms underlying behavioral outputs. 

1.1 Behavior organization and modulation 

Although a short and simple definition of behavior was given in the very first sentences of this 

introduction, having a complete and exact definition for this term is not trivial. There is debate about 

what does and what does not constitute behavior, if non-animals or those lacking a nervous system 

can behave or if intentional lack of movement is also behavior (Levitis, Lidicker, and Freund 2009). In 

this review, we refer to behavior as “the macroscopic expression of neural activity, implemented by 

muscular and glandular contractions acting on the body, and resulting in egocentric and allocentric 

changes in an organized temporal sequence” (Gomez-Marin et al. 2014). 

Some behaviors can be subdivided in smaller behaviors, or sub-behaviors (Sokolowski 2001). For 

example, during foraging, an animal explores the environment in search for food, once encountered, it 

proceeds to capture it and then to consume it. In this way, behaviors can span on multiple time scales 

that can vary by several orders of magnitude (Egnor and Branson 2016). The transition between 

behaviors can be sharp (Seeds et al. 2014) or unfold in a continuous gradient (Gomez-Marin et al. 

2016). Behaviour can be innate or learned, and it can be spontaneous or triggered by external or 

internal signals (Tinbergen 1951).  

In this section, I describe in more detail some of the properties of behavior organization and give some 

examples of how context (internal or external factors) can modulate different behaviors. 



4  General introduction 

1.1.1 Variability 

Many behaviors such as scape responses (Domenici et al. 2008) or direction of turning during flight 

(Maye et al. 2007) are variable and unpredictable. The same animal will not show exactly the same 

behavioral output when exposed to exactly the same stimuli if tested multiple times (Briggman and 

Abarbanel 2005). In fact, even in the absence of external stimuli, an organism will still show some 

behavioral variability (Maye et al. 2007), a challenge that has been graciously captured by the Harvard 

Law of Animal Behavior: “Under carefully controlled experimental circumstances, an animal will 

behave as it damned well pleases”.  

From an evolutionary point of view, it is clear why animals must behave in a variable manner. By 

behaving in an unpredictable way they can evade predators, surprise preys. It is exploring their 

environment that they increase the chance of finding mates or better sources of food. It is exploring 

their own actions that they can find solutions to unseen problems (Brembs 2011; Renart and Machens 

2014). 

The sources of this variability are usually attributed to neural noise (de Ruyter van Steveninck et al. 

1997; Faisal, Selen, and Wolpert 2008). Introducing random fluctuations, or noise, on simulations of 

neural network activity and behavioral output successfully recreates the behavioral variability observed 

in the laboratory (Maesani et al. 2015; Jin and Kozhevnikov 2011). However, animals seem to 

intentionally increase their behavioral variability when faced with challenging tasks (Tervo et al. 2014) 

or novel situations (Roberts and Gharib 2006). Animals can also decrease the variability in their 

behavioral output during learning to avoid a punishing stimulus (Wolf and Heisenberg 1991) or to earn 

a reward (Santos et al. 2015). A detailed and quantitative analysis of the courtship song pattern in 

Drosophila, demonstrated that the variation in song structure previously believed to come from neural 

noise was actually tightly regulated according to the dynamic sensory experience of the courting male 

(Coen et al. 2014). Behavioral variability can therefore originate from different sources: intrinsic noise 

coming from the biochemical limitations of interacting molecules in ion channels and synapses; the 

deterministic but suboptimal probabilistic computations of the brain when, for example, integrating 

distinct sensory cues (Beck et al. 2012; Renart and Machens 2014), this “intentional” modulation of 

variability by other brain areas can in turn can be modulated by internal state or external factors (J. 

Martin, Faure, and Ernst 2001; Tervo et al. 2014; London et al. 2010); and external noise coming from 

the stochasticity of the environment and therefore variable sensory input. Many of these external and 

internal factors are not fully observable by the experimenter due to technical limitations in the 

measuring equipment, which makes the pinning down of the specific causes of neural and therefore 

behavioral variability a challenge that is still under intense study (Renart and Machens 2014). 

1.1.2 Behavioral building blocks 

Despite all the variability observed in behavior, stereotyped patterns still arise. During courtship, most 

Drosophila males chase the female and generate a “courtship song” by vibrating one of their extended 

wings. Other behaviors commonly observed during this ritual are licking, tapping and mounting the 

female (Sokolowski 2001). Although these sub-behaviors inside the broader courtship bout vary in 
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duration, frequency and order of presentation, an observer can easily recognize that a courtship bout 

is taking place by observing the display of one or more of these sub-behaviors.  

Given that behaviors can in turn brake down into even smaller behaviors such as grasp, step, reorient, 

biologists have asked whether behavior can be decomposed in individual and stereotyped basic units, 

defined either by the control of dedicated neural circuits, biophysics, or both. Because what a human 

defines as a unit might not be what is relevant for the animal or its nervous system, unsupervised 

methods for the analysis of behavioral structure are taking the lead on approaching the challenge of 

finding such units. 

An elegant study in that direction using the model organism Caenorhabditis elegans has extracted four 

basic shapes that account for 95% of the variance in the shape space of the worm’s locomotion 

(Stephens et al. 2008). The usefulness of this low-dimensional description in uncovering the link 

between the molecular mechanisms and behavior was demonstrated by Brown and colleagues when 

they found that the same four eigenworms could capture 92% of the variance observed in a set of 307 

mutant strains (Brown et al. 2013). Using this basis, they created a dictionary of behavioral motifs that 

was used to cluster gene mutations leading to similar motor phenotypes. An analogous dimensionality 

reduction approach was used to extract 50 postural modes of D. melanogaster from which an 

unsupervised behavioral space can be derived and where widely recognized behaviors such as gaits 

and wing movements have dedicated regions and could therefore be used to organize and classify 

other unsupervised behaviors (Berman et al. 2014). In mice, modules extracted from 3D body motion 

have also been identified (Wiltschko et al. 2015). 

Although it is not yet clear if there is a unit of behavior, the discovery of neurons that can could switch 

on and off specific motor programs (Wiersma and Ikeda 1964) suggested the existence of behavioral 

modules defined by neural control. Today, there are many examples in Drosophila in which the 

activation of a specific subset of neurons causes the execution of a sub-behavior such as abdominal 

bending and courtship song (von Philipsborn et al. 2011), backward walking (Bidaye et al. 2014) or the 

discrete grooming of a specific body part (Seeds et al. 2014). In fact, by being able to activate distinct 

cleaning modules, Seeds and colleagues not only proved that grooming behavior is modular but also 

proposed a model of how the brain would coordinate the sequential activation of such modules. They 

called it “suppression hierarchy”: discrete cleaning modules were activated in parallel but with a 

different level of activation (due to either more dust or different sensory gain in that part of the body) 

and the winner module would be selected based on a winner-take-all mechanism inhibiting all other 

modules. The consequent cleaning of the winner body part would decrease the level of activation of 

that module causing another module to win the next round and therefore generating a sequential 

activation of behaviors that matched the structure of the grooming observed in the laboratory (Seeds 

et al. 2014). 

In a beautiful study of sequential behavior in C. elegans, Kato and colleagues used brain-wide calcium 

imaging to show how the direction of neural population dynamic state corresponds to the order of 

presentation of specific behavioral sequences, providing insight in our understanding of how the brain 

coordinates long-lasting sequences of sub-behaviors (Kato et al. 2015). 



6  General introduction 

1.1.3 Hierarchy 

The notion of a hierarchical organization in the neural control of behavior dates from more than 50 

years ago, when Tinbergen proposed his hierarchical model of behavioral decisions (Tinbergen 1951). 

From his observations in the wild, he proposed that an animal first takes the decision to enter into a 

broader behavioral category, such as mating or fighting, and only then decides which sub-behavior to 

implement, such as biting, chasing or threatening. He also proposed a corresponding hierarchical 

organization of the neural circuits, where the activation of higher nodes or “centers” would lead to the 

implementation of a specific behavioral program. Nodes at the same level would mutually inhibit each 

other and would have feedforward connections with nodes at lower levels, driving the sub-behaviors. 

Interestingly, a recent study in the Anderson laboratory, showed that a cluster of P1 neurons in 

Drosophila promoted both courtship or aggression depending on the level of activation (Hoopfer et al. 

2015). Suggesting that there could be indeed higher circuit nodes in charge of deciding what 

behavioral program to activate in a lower level of the hierarchy. 

While Tinbergen’s hierarchy of circuit nodes refers to how different elements are controlled or 

connected with each other, there is another type of hierarchy that can be observed in the organization 

of behavior, the one that refers to classification or embedment where bigger elements are composed 

of smaller elements (Hogan 2015; Dawkins 1976). Gomez-Marin and colleagues investigated if this 

type of hierarchy could reveal the structure of the crawling behavior of C. elegans by testing data 

compression algorithms to find “patterns and patterns of patterns” of behavioral sequences (Gomez-

Marin, Stephens, and Brown 2016). They found that the resulting motifs were infrequent but provided 

a new way of comparing behaviours across different strains. They also propose to use the level of 

compressibility as measure of a behavioral complexity. In another study, Berman and colleagues 

applied methods from information theory to show that a hierarchical organization of the behavioral 

repertoire of single flies walking on a shallow arena (2 mm high) could predict the future actions of the 

fly (Berman, Bialek, and Shaevitz 2016). These results add evidence to the long ago predicted 

hierarchical organization of animal’s actions, using unsupervised techniques to define behavioral 

modules or motifs. 

1.1.4 Burstiness 

The onset of spontaneous behaviors might seem to be randomly distributed in time to a human 

observer, however, once quantified, many of these behaviors have been reported as following a 

power-law or a heavy tail distribution. Reports of fractality (the pattern of events is self-similar across 

different scales of measurement) exist for fly’s feeding (Shimada, Kawazoe, and Hara 1993), foraging 

(Koganezawa et al. 2009), flight maneuvers (Maye et al. 2007) and locomotor behavior (J.-R. Martin 

2004). In general, a “bursty” dynamics, characterized as many frequent events separated by long 

periods of inactivity,  has been described for a wide range of behaviors going from foraging in mice 

(Jung et al. 2014) to human dynamics (Barabási 2005). Observations of Lévy-like patterns across 

multiple species suggest that there must be non-linear endogenous mechanisms underlying 

spontaneous behavior (Maye et al. 2007). In Drosophila, two important structures in the central brain, 
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the mushroom body and the ellipsoid body, have been shown to affect or modulate the degree of 

burstiness observed in the pattern of locomotor activity of walking fruit flies (J. Martin, Faure, and 

Ernst 2001; Sorribes et al. 2011). Barabási had proposed a model in which the heavy-tailed 

distribution observed in human dynamics originates from a decision process in which individuals 

performed tasks following a self-defined priority causing most tasks to happen in a short period of time 

while few others would only happen after long periods of time (Barabási 2005). Interestingly, the fact 

that the mushroom body affects burstiness provides experimental evidence for Barabási’s model, as 

this brain structure has also been shown to be required for decision-making tasks in Drosophila (Tang 

and Guo 2001), suggesting a link between decision-making and behavioral bursts. 

1.1.5 Homology 

As the wings of bats and the arms of primates, despite their external differences, share a similar 

structure that led zoologists to conclude they derived from a common ancestor, a long-standing aim of 

ethology has been to look for behavioral primitives that allow ethologists to investigate the evolution of 

behavior (Lorenz 1958). Until now, only few studies have quantified the similarity between behavioral 

programs across species. One of them found surprising similarities in the stepping patterns of human 

toddlers with those shown by cats, rats, macaques and guineafowls, suggesting the existence of 

common motor primitives that might derive from a common ancestral neural network (Dominici et al. 

2011). Another study described a “mobility gradient” across several vertebrate species including 

rodents and carnivores. Examining the orientation of the trunk with respect to the base of the body, 

Golani observed that the transition out of immobility unfolded gradually during which the types of 

movements performed by the animal went from stereotyped to variable and complex, starting usually 

by movement in the horizontal plane, then forward displacement and ending in the vertical plane. This 

structure appeared during locomotor development, aggressive and exploratory behavior (Golani 

1992). Notably, a similar mobility gradient was also found in fruit flies under the influence of cocaine, 

where a gradual increase of degrees of freedom was observed in the transition out of immobility and 

back (Gomez-Marin et al. 2016), opening the possibility to explore behavioral homology using this 

genetically tractable organism. 

1.1.6 Modulation of behavior by external and internal factors 

Behavior can be modulated by multiple factors (reviewed in (Palmer and Kristan 2011)). External 

factors include visual, auditory and chemosensory cues or punishing cues coming from the 

surrounding environment, social context, availability of food and environmental conditions. Internal 

factors include genetic background, past experiences (learning), the current behavioral state (for 

example, if the animal is walking or inactive), arousal state, fear, mating status and metabolic state 

(hungry or deprived of a particular nutrient). Few detailed examples are shown below: 

External sensory cues: A beautiful example of how the integration of multiple sensory cues can 

shape the behavior of an animal, is that of the female mosquito when it searches for hosts (Gibson 

and Torr 1999). CO2 is used as a long-range cue that gates the responses to other sensory stimuli 
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(McMeniman et al. 2014). After the detection of CO2 the mosquitos follow the odor plume to approach 

the hosts and become strongly attracted to visual features and once close enough to a host, the 

decision to land is made based on heat, humidity and host-specific odors (van Breugel et al. 2015). 

Genetic background: Using isogenic lines of Drosophila (individuals with the same genotype), 

Ayroles and colleagues found that different genetic backgrounds have different degrees of behavioral 

variability, that phenotypic variability, as a trait, is heritable and the loci affecting for such variability 

can be mapped (Ayroles et al. 2015). 

Current behavioral state: The execution of a present behavioral program might inhibit the execution 

of other behaviors. For example, feeding renders the leech largely insensitive to mechano-sensory 

stimuli and inhibits the execution of other behaviors such as swimming, crawling and bending (Gaudry 

and Kristan 2009). Other behavioral states alter subsequent behavioral choice through the modulation 

of the sensitivity of sensory neurons. Flying in locusts and flies (Maimon, Straw, and Dickinson 2010; 

Rind, Santer, and Wright 2008) and walking in flies (Chiappe et al. 2010) increase the responsiveness 

in neurons of the visual system. 

Learned contingencies: A very elegant study that brought important insight into our understanding of 

how different contextual information is integrated in the brain to elicit a specific behavioral response 

was performed by the Ruta laboratory using Drosophila (Cohn, Morantte, and Ruta 2015). They found 

out that the mushroom body, known to bias odor responses based on a learned contingency (Keene 

and Waddell 2007), does so by having discrete anatomic compartments, each of these innervated by 

sub-sets of dopaminergic neurons and sending information to output neurons thought to then drive 

behavioral responses. Different appetitive or punishing stimuli, as well as different behavioral states, 

would cause different patterns of synaptic activity with dopaminergic neurons on each of these 

compartments, which happen to be functionally connected. These patterns of dopaminergic activity 

are also shaped by the feedback from the output neurons, revealing a dynamic and highly 

interconnected network that integrates both behavioral state and learned associations with 

environmental cues to drive behavior accordingly. 

Internal states: Recent mating has been shown to decrease attraction to other potential mates in 

several species, ranging from flies (Kubli 2003) and moths (Barrozo, Gadenne, and Anton 2010), to 

frogs (Miranda and Wilczynski 2009) and mice (Serguera et al. 2008).  

1.2 Advanced tools for the quantification of Drosophila behavior 

Despite the highly dynamic nature of behavioral processes most behavioral readouts used to be static 

and scored manually in very labor intense steps. Among the draw-backs of this approach were the 

subjective bias introduced by the scoring scientist, the lack of access to patterns happening at 

timescales that the naked-eye could not uncover and the low throughput that made it difficult to take 

advantage of the neurogenetic tools available in Drosophila which are most powerful if applied in a 

high throughput manner.  
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In the last few years, there has been an outbreak of automated technologies to quantify and analyze 

behavior (Anderson and Perona 2014; Egnor and Branson 2016; Dell et al. 2014). Image-based 

tracking in combination with a detailed and careful computational analysis has been used to discover 

several interesting behavioral strategies implemented by Drosophila, among which we have the 

discovery that these animals are capable of visual place learning (Ofstad, Zuker, and Reiser 2011), 

that collective odor avoidance is mediated by mechanosensory sensilla in their legs (Ramdya et al. 

2014), that larvae approach appetitive odors by combining stereo-olfaction with active sampling 

(Gomez-Marin, Stephens, and Louis 2011) and that the presence of an attractive odor gates the 

interest to high contrast visual features (van Breugel and Dickinson 2014), which led to a similar 

finding in female mosquitos when searching to blood-feed from a human host (van Breugel et al. 

2015). 

With the advent of new technologies will come the era of big behavioral data which poses big 

promises as well as challenges for both behaviorists and neuroscientists. As Gomez-Marin and 

colleagues mention in their review, behavior should not be seen as the mere output of the nervous 

system but as the very foundation of neuroscience (Gomez-Marin et al. 2014). Big and rich behavioral 

datasets will hopefully come coupled with the corresponding neurological recordings or manipulations, 

allowing scientists to build causal links between neural circuits and very detailed features of behavior. 

On the other hand, big data comes with big responsibility. To give meaning to large amounts of data 

we need good theoretical frameworks, carefully planned experimental designs and a universal 

language that allow us to extract the principles governing behavior. Some other technical challenges 

such as data sharing, storage and management, data segmentation and control of environmental 

richness to explore the full behavioral repertoire of the animal, will also have to be addressed. 

1.2.1 Data acquisition 

Sophisticated equipment to acquire the behavior in different species of animals is becoming more and 

more available. The miniaturization and cost reduction of data acquisition equipment such as 

cameras, accelerometers, global position systems and sensors in general are allowing scientists to 

study migration patterns, foraging, pollination strategies and group dynamics in most animals 

irrespective of their size (Wilmers et al. 2015). Just to have an idea of the tool accessibility: with a 

cheap webcam and a low resolution video with lossy but good-enough compression, it is now possible 

to record the full lifespan (~24 months) of a rodent (Gomez-Marin et al. 2014). All these technological 

advances open an exciting new era for the analysis of behavior.  

In the laboratory, a great variety of techniques to quantify the behavior of Drosophila melanogaster are 

being continuously developed and improved. Due to their general-purpose and high spatiotemporal 

resolution, video cameras are the most widely used tools to record the behavior of single or multiple 

animals. Features of the desired behavior can be extracted online or offline using machine-vision 

techniques. See Dell et al. 2014 (Table S1) for a detailed description of the strengths and limitations of 

the main tracking systems available. Worth highlighting is the tracking system called idTracker, freely 

available at http://www.idtracker.es/. This system uses a fingerprinting technique to recognize the 

http://www.idtracker.es/
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identity of each individual in a group and maintains such identity even after several unmarked 

individuals have overlapped. It has proved successful when tracking groups of flies, fishes, mice and 

ants (Pérez-Escudero et al. 2014). Another useful tracking system is CTRAX (Branson et al. 2009), 

also freely available at http://ctrax.sourceforge.net, although not as successful at maintaining the 

identity of multiple individuals, it offers an extensive set of post-analysis tools focused on extracting 

multiple features of the individual and social behavior of Drosophila (Kabra et al. 2013). Some 

specialized tracking systems focus on extracting the pose and orientation of particular body parts. 

CADABRA (Dankert et al. 2009), for example, was designed to capture the wing orientation with 

respect to the body and the body orientation of one individual with respect a conspecific, aiming at a 

detailed quantitative description of courtship and aggression in Drosophila. Mendes et al. and J. Kain 

et al. (2013) used light reflection techniques or dyes, respectively, to track the leg movements and 

quantify gait parameters of the fruit fly. For a review of the current difficulties in extracting relevant 

behavioral features from video and the state of the art techniques to do so, see Egnor and Branson 

(2016) and Dell et al. 2014. Some of those challenges are: the limitation of fingerprinting to relatively 

low (< 20) number of individuals and very specific background settings, the trade-off between 

spatiotemporal resolution and the detailed knowledge of the position and orientation of different body 

parts, and the difficulty of differentiating individuals from a complex and natural background. There 

have been reports of online tracking of multiple freely flying flies with multiple cameras (Straw et al. 

2011), but taking these systems into the field remains a challenge. 

Besides the use of cameras, multiple sensors have been used to quantify specific behavioral variables 

such as infrared detectors to monitor sleep and locomotor activity (Pfeiffenberger et al. 2010); 

microphones to detect courtship song patterning (Coen et al. 2014); the movements of an air-floating 

ball in a head-fixed preparation to couple fly’s movements to neural activity (Seelig et al. 2010); torque 

meters to measure turns during tethered flight (Wolf and Heisenberg 1991); frustrated Total Internal 

Reflection to measure the footprints and gate parameters of the fly walking on a flat surface (Mendes 

et al. 2013); capacitance and electronic sensors to measure the contact of the fly with the food (Ro, 

Harvanek, and Pletcher 2014; Itskov et al. 2014) and photodiodes to measure the amount of liquid 

ingested (Yapici et al. 2016), all allowing for the monitoring of the feeding motor program.  

1.2.2 Data Analysis 

After acquiring the videos and tracking data it is often useful to classify the behaviors performed by the 

animal. The researcher might be interested in understanding how a given neuronal or genetic 

manipulation affects the performance of a specific behavior. In these cases, supervised methods, in 

which the user defines the behavior of interest, come handy. In other cases, in which the researcher 

does not want to define the behavior but rather explore the type of clusters that arise from the raw 

data, unsupervised machine learning methods should be used. 

1.2.2.1 Supervised methods 

A given behavior can be classified by manually defining a set of rules on different measured 

parameters. For example, setting a threshold on the linear speed can help us distinguish between 

http://ctrax.sourceforge.net/
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walking and staying in place (Robie, Straw, and Dickinson 2010; J.-R. Martin 2004). After the animal 

has stopped, the amount of pixel change or the micromovements of the centroid, can determine if the 

animal is completely still or actively performing an action such as grooming or feeding.  Although 

manually set, these set of rules are often inspired on the shape of the distributions of the kinematic 

parameters: the distribution of speed is often binomial (Benjamini et al. 2010), and therefore, a 

threshold can be manually set between the two peaks of the distribution. The shape or slope of the 

distribution can change at a given point, which can also be used to define the threshold (Gomez-

Marin, Stephens, and Louis 2011). The main limitation of this implementation is that in many cases it 

is not clear what should be the rule that defines the behavior and the rules might change across 

different groups of individuals. 

These problems can be overcome using machine learning techniques to train a classifier based on a 

relatively small user-labeled instances of the behavior of interest. A very useful open-source tool that 

does exactly this is called JAABA (http://jaaba.sourceforge.net/). JAABA provides an interactive and 

relatively easy-to-use interface in which non-experts in machine learning can still apply it to automate 

the classification of the behaviors they study (Kabra et al. 2013). 

The combination of manually defined rules and machine learning classification has already proved 

useful in finding correlations between neuronal circuits and male-specific aggression (Asahina et al. 

2014; Dankert et al. 2009). 

1.2.2.2 Unsupervised methods 

Dimensionality reduction techniques can be used to reduce the space of postures of an animal to few 

basic shapes or modes that can then be used to look for systematic phenotypic differences or 

similarities across diverse genetic backgrounds and therefore contribute to the mapping of molecular 

mechanisms (and potentially neural circuits) to behavior (Vogelstein et al. 2014; Brown et al. 2013). 

Berman et al. (2014) extracted clusters that correspond to discrete behavioral states from basic 

postures obtained directly from the images using PCA. The dynamics of postural changes are then 

captured in wavelet spectrograms that are then mapped to a two-dimensional representation using a 

visualization technique called t-SNE (t-distributed stochastic neighbor embedding) (Van Der Maaten 

and Hinton 2008). 

Although unsupervised methods to map behavior structure are just gaining strength, they promise to 

offer important insight on the real behavioral repertoire and variability present in animals (Todd, Kain, 

and de Bivort 2016). 

1.3 Impact of nutrients on dietary balancing in Drosophila 

Recent advances in molecular, genetic and imaging technologies in model organisms have led to an 

appreciation that the moment has come in which we might get the opportunity to mechanistically 

understand how the brain perceives and processes information to guide behaviors (Vosshall 2007). 

Model organisms have played a pivotal role in allowing us to gain a mechanistic understanding of how 

http://jaaba.sourceforge.net/
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the nervous system controls behavior, including feeding behavior. The fruit fly, Drosophila 

melanogaster, represents an ideal model organism to dissect the molecular and cellular basis of 

behavior (Vosshall 2007). In fact, the tiny fruit fly brain is currently being used to understand the 

building blocks of cognition (Haberkern and Jayaraman 2016). For example, abstract internal 

representation of self-motion and spatial orientation in this small insect were found to be similar to that 

of mammals (Seelig and Jayaraman 2015). This finding provides a simpler system in which to test 

computational models that were otherwise very challenging at the complex scale of the vertebrate 

brain. Research using Drosophila has made seminal contributions to our understanding of the genetic 

basis of behavior due to the availability of sophisticated genetic tools (Luo, Callaway, and Svoboda 

2008; Olsen and Wilson 2008), a numerically simple nervous system, and the advent of methods to 

quantitatively characterize behavior. 

1.3.1 Nutrient sensing 

1.3.1.1 Smell and taste 

All olfactory sensory neurons (OSNs) in the fly are located in the antennae and the maxillary palps. 

One to four OSNs are housed in each sensory hair called sensilla. Each OSN expresses one of three 

known types of chemosensory receptor genes: odorant receptor (OR) genes, gustatory receptor (GR) 

genes and ionotropic receptor (IR) genes (Vosshall and Stocker 2007; Rytz, Croset, and Benton 

2013). OSNs that express the same receptor type project to the same glomerulus in the antennae 

lobe, the functional homologue of the olfactory bulb in rodents. OR and GR receptors have seven 

transmembrane domains, but are distantly related (Clyne et al. 1999; Scott et al. 2001). Most GRs are 

known as taste receptors and are found in gustatory organs except for a number of them that are 

found in the antennae and might have the function of odorant receptors, such as GR21a and GR63a, 

which together confer CO2 sensitivity to the fly (Jones et al. 2007). The great majority of IR agonists 

are amines and carboxylic acids (Silbering et al. 2011). 

Most of the gustatory receptor neurons (GRNs) are located in taste bristles present in the labellum, 

legs, wings and female ovipositor (Vosshall and Stocker 2007). Few other gustatory receptor neurons 

are not associated to taste bristles and are located in the taste pegs in the labial palps and in the 

internal sense organs in the pharynx (Thorne et al. 2004). Sensory neurons in the labellum and in the 

pharynx project their axons to the subesophageal zone (SEZ) (Ito et al. 2014), the taste center in the 

fly brain (Marella et al. 2006). Similar to olfactory sensilla, each taste bristle in the labellum houses 

between two and four GRNs, while the taste pegs house one GRN each (Vosshall and Stocker 2007). 

While the taste neurons situated in the labellum and legs mediate the proboscis extension reflex and 

initiation of feeding, the gustatory neurons at the pharynx mediate the sustained consumption of 

sugars (LeDue et al. 2015; Yapici et al. 2016; Thoma et al. 2016). 

1.3.1.2 Smelling yeast 

Yeast is a complex food source composed by multiple metabolites. In nature, yeast also generates 

multiple fermentation sub-products when growing on fruit. Drosophila is strongly attracted to mixtures 
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of fermentation-associated volatiles (Becher et al. 2012; Scheidler et al. 2015), which are primarily 

detected through olfactory receptors (ORs) (Stökl et al. 2010). Some examples are: OR9a and OR92a 

detect acetoin, OR42b detects ethyl acetate, OrR67a detects phenyl ethanol and OR85d detects 

phenyl-ethyl acetate (Dweck, Knaden, and Hansson 2015). In fact, some plants emit a mixture of 

some of these odors as a deceptive pollination strategy to attract drosophilids (Stökl et al. 2010) and 

yeast itself uses some of these volatile acetate esters to promote dispersal of its cells (Christiaens et 

al. 2014). In some cases, Drosophila even uses the smell of yeast-derived metabolites that are 

generated only in the presence of certain antioxidants, to detect the presence of such antioxidants on 

the food given that it cannot smell them directly (Dweck et al. 2015). 

Several ionotropic receptors have recently been associated to the recognition of fermentation-related 

odours. A recent study found that virgin flies use both the smell of acetic acid, mediated by the 

ionotropic receptor IR75a, and the presence of amino acids in the food, to increase their receptivity to 

courting males (Gorter et al. 2016). Other ionotropic receptors, IR76b and IR41a, are known to 

mediate Drosophila attraction to polyamines, which are also present in fermenting fruit and promote 

reproductive output (Hussain, Zhang, et al. 2016). 

1.3.2 Nutrient decisions 

How is value-based decision making implemented in the brain? More specifically, how nutritional 

needs lead animals to take specific feeding decisions? Previous studies have described that in 

different decision making situations Drosophila melanogaster is able to asses and compare several 

factors before taking a decision. Examples of studied Drosophila decision making paradigms are egg-

laying site selection (C.-H. Yang et al. 2008; Miller et al. 2011; Joseph et al. 2009), chemotaxis 

(Gomez-Marin, Stephens, and Louis 2011) and avoidance of danger, based on olfactory and visual 

memories (Yin et al. 2009; Zhang et al. 2007). 

Value based decision making is a more complex type of behavior which requires the animal to decide 

between alternative actions according to their current needs, and hence the value they assign to each 

of the competing options (Gold and Shadlen 2007). Ribeiro and Dickson developed a simple two-

choice feeding preference assay where flies are allowed to decide between sucrose, as a 

carbohydrate source, and yeast, as a protein source (Ribeiro and Dickson 2010). The food sources 

are mixed with either a red or blue dye which after ingestion remains visible through their abdomen, 

affording an easy identification of their choice. Animals fed ad libitum prefer the carbohydrate rich 

food. Appropriately protein-deprived flies switch their preference from sucrose to yeast. These feeding 

decisions are modulated by their mating status, relying on the action of the sex peptide receptor (SPR) 

in internal ppk+ sensory neurons and the neuronal nutrient sensing TOR/S6K pathway as a possible 

internal sensor of the current nutritional state. This internal information in combination with the external 

sensory information from the food sources is used to instruct a value-based decision in order to 

achieve metabolic homeostasis. 

A recent study found that flies’ nutritional decisions do not necessarily match their egg laying decisions 

(Lihoreau et al. 2016), suggesting an extra level of complexity in Drosophila’s nutrient decisions. 
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A great body of work led by Stephen Simpson and co-workers, using a nutritional geometry 

framework, has shed light in our understanding of the rules of compromise that animals follow when a 

particular intake target cannot be reached (Simpson and Raubenheimer 2012). They demonstrated in 

their protein leverage theory that animals prefer to prioritize protein at the expense of overconsuming 

fat and carbohydrates; a decision that might lead to obesity (Simpson and Raubenheimer 2005). 

It has been demonstrated that when given the choice, flies select to consume 1-to-4 Protein-to-

Carbohydrate ratio, which maximizes lifetime egg production, a measure close to fitness (Lee et al. 

2008). As demonstrated by studies in many other species besides Drosophila, there seems to be a 

trade-off between reproductive output and lifespan, where a high-protein ratio promotes the former, 

while a low protein ratio promotes the later (Fontana and Partridge 2015; Grandison, Piper, and 

Partridge 2009; Skorupa et al. 2008; Solon-Biet et al. 2014; Solon-Biet et al. 2015; Levine et al. 2014). 

The mechanisms by which the brain shapes behavioral output during dietary balancing to solve this 

ethologically relevant trade-off are still largely unknown. 
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  Internal states drive nutrient homeostasis by 

modulating exploration-exploitation trade-off 

2.1 Abstract 

Internal states can deeply alter the behavior of animals. Which aspects of behavior change upon 

metabolic challenges and how these allow the animal to achieve nutrient homeostasis is poorly 

understood. We used an automated video tracking setup to characterize how amino acid and 

reproductive states interact to shape exploitation and exploration decisions taken by adult Drosophila 

melanogaster, to achieve nutritional homeostasis. We find that these two states have specific effects 

on the decisions to engage and leave proteinaceous food patches. Furthermore, the internal nutrient 

state defines the exploration-exploitation trade-off: nutrient deprived flies focus on specific patches 

while satiated flies explore more globally. Finally, we show that olfaction mediates the efficient 

recognition of yeast as an appropriate protein source and that octopamine is specifically required to 

mediate homeostatic postmating responses without affecting internal nutrient sensing. Internal states 

therefore modulate specific aspects of exploitation and exploration to change nutrient selection. 

2.2 Introduction 

Nutrition is key for optimizing the evolutionary fitness of animals. Accordingly, many organisms are 

able to select the nutrients that fulfill their current needs. Recent work has highlighted the importance 

of the balance of dietary carbohydrates and proteins/amino acids (AAs) for overall mortality, fecundity 

and lifespan in most species (Fontana and Partridge 2015) ranging from Drosophila (Grandison, Piper, 

and Partridge 2009; Lee et al. 2008; Skorupa et al. 2008) to rodents (Solon-Biet et al. 2014; Solon-Biet 

et al. 2015) and humans (Levine et al. 2014). The emerging picture is that there is a trade-off between 

reproduction and longevity driven by the protein-to-carbohydrate ratio in the diet: a low ratio extends 

lifespan but reduces reproductive output, while a high ratio reduces lifespan but promotes offspring 

production (Simpson, Le Couteur, and Raubenheimer 2015). The mechanisms by which the brain 

shapes behavioral output during dietary balancing to solve this ethologically relevant trade-off are still 

largely unknown. 

Significant advances have been made in our understanding of the neural circuitry underlying decision-

making (Barron et al. 2015; Lisman 2015). But we are only beginning to understand how the internal 

state of an animal dictates the selection of specific actions (Krashes et al. 2009; Sternson 2013; 

Mahler et al. 2014; Cohn, Morantte, and Ruta 2015). This question becomes particularly relevant in 

value-based decision making, such as nutrient balancing, where the value of the available options is 

dependent on the current needs of the animal (Vargas et al. 2010; Ribeiro and Dickson 2010; Itskov 

and Ribeiro 2013; Simpson and Raubenheimer 2012). Thus, the behavioral strategies animals use to 

http://dx.doi.org/10.7554/eLife.19920
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adapt nutrient decisions to their internal states provide an ethologically relevant framework to 

understand how internal states change behavior to mediate value-based decisions. 

The fly has emerged as an important model to study complex computational tasks due to the 

availability of sophisticated genetic tools (Luo, Callaway, and Svoboda 2008; Olsen and Wilson 2008), 

a numerically simple nervous system, and the advent of methods to quantitatively characterize 

behavior. Advanced computational tools have been applied successfully in Drosophila to study for 

example chemotaxis (Gomez-Marin, Stephens, and Louis 2011; van Breugel and Dickinson 2014), 

action mapping (Berman et al. 2014), aggression and courtship (Dankert et al. 2009; Coen et al. 

2016), fly-fly interactions (Branson et al. 2009; Schneider, Dickinson, and Levine 2012; Ramdya et al. 

2014), and predator avoidance (Muijres et al. 2014). This recent quantitative approach to behavioral 

analysis has given rise to the field of computational ethology: the use of computerized tools to 

measure behavior automatically, to characterize and describe it quantitatively, and to explore patterns 

which can explain the principles governing it (Anderson and Perona 2014). When combined with 

powerful genetic approaches (Bath et al. 2014; Ohyama et al. 2015) the fine description of behavior 

afforded by these methods will allow us to make significant steps forward in our understanding of the 

neuronal circuits and molecular pathways  that mediate behavior.  

Flies can detect and behaviorally compensate for the lack or imbalance of proteins and amino acids in 

the food (Vargas et al. 2010; Ribeiro and Dickson 2010; Bjordal et al. 2014) and adapt their salt and 

protein intake to their current mating state (Walker, Corrales-Carvajal, and Ribeiro 2015). The current 

nutrient state is thought to be read out directly by the nervous system through the action of nutrient-

sensitive mechanisms such as the TOR and GCN2 pathways (Bjordal et al. 2014; Chantranupong, 

Wolfson, and Sabatini 2015; Ribeiro and Dickson 2010). Mating acts on salt and yeast appetite via the 

action of male-derived Sex Peptide acting on the Sex Peptide Receptor in female reproductive tract 

neurons, and the resultant silencing of downstream SAG neurons (Feng et al. 2014; Walker, Corrales-

Carvajal, and Ribeiro 2015; Ribeiro and Dickson 2010). SAG neurons have been proposed to then 

change chemosensory processing to modify nutrient intake (Walker, Corrales-Carvajal, and Ribeiro 

2015). The recent development of technologies that can measure the flies’ feeding behavior 

quantitatively (Itskov et al. 2014; Ro, Harvanek, and Pletcher 2014; Yapici et al. 2016) gives access to 

the fine structure of the feeding program, and how flies homeostatically modulate this program 

according to their internal state. However, the further structure of foraging decisions, such as arriving 

at or leaving a specific food patch, and how flies balance the trade-off between exploiting a needed 

nutrient resource and exploring the surrounding environment to discover new resources, is still poorly 

understood. Understanding how internal states change the behavioral strategies of an animal should 

allow us to understand how the animal manages to maintain nutrient homeostasis. 

Here, we developed a quantitative value-based decision making paradigm to study the foraging 

strategies implemented by adult Drosophila melanogaster to reach protein homeostasis. We use a 

semi-automated video tracking setup to characterize the exploitation and exploration of sucrose and 

yeast patches by flies in different dietary amino acid and mating states. We found that metabolic state 

and mating modulate the decisions to engage and leave a yeast patch. Furthermore, we describe how  
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the lack of dietary amino acids increases patch exploitation and restricts global exploration and how 

these behaviors dynamically shift towards increasing exploration as the fly reaches satiation. 

Importantly, we found that olfaction is not required to reach protein homeostasis, but that it mediates 

the efficient recognition of yeast as an appropriate food source. Finally, we show that octopamine 

mediates homeostatic postmating responses, but not the effects of internal sensing of amino acid 

deprivation state. Our results provide a quantitative and mechanistic description of how the fly 

changes behavioral decisions to achieve homeostatic nutrient balancing. 

2.3 Results 

2.3.1 Automated monitoring of nutrient choices using image-based tracking 

Animals are able to adapt their feeding preference towards a particular food in response to their 

current needs (Sørensen et al. 2008; Ribeiro and Dickson 2010; Vargas et al. 2010; Simpson and 

Raubenheimer 2012; Griffioen-Roose et al. 2012; Dethier 1976). However, the behavioral strategies 

used by animals to make feeding decisions according to their internal state are currently largely 

unknown. To capture how flies decide what food to eat, we built an automated image-based tracking 

setup (Figure 2.1A) that captures the position of a single Drosophila melanogaster in a foraging arena 

(Figure 2.1B) containing 9 yeast patches (amino acid source) and 9 sucrose patches (carbohydrate 

source). The distribution of the food patches was designed to promote frequent encounters with food 

sources, such that nutritional decisions, rather than food detection, determine the fly’s food 

exploitation strategies.  

We recorded the behavior of the fly over two hours during these nutritional decisions, and developed 

custom software to track the position of the fly’s body and head centroids. We then extracted multiple 

kinematic parameters (see Materials and Methods for detailed list) and computed the locomotor 

activity and the distance of the fly from each food patch during the whole duration of the assay (Figure 

2.1C and D and Video 1). Upon a detailed analysis of the distribution of head speeds when the flies 

were inside or outside food patches (Figure 2.11A) we decided to use two speed thresholds to split the 

locomotor activity of the flies into three types: resting (speed ≤ 0.2 mm/s), micromovement (0.2 mm/s 

< speed ≤ 2 mm/s) and walking (speed > 2 mm/s). Furthermore, slow walking bouts (2 mm/s < speed 

< 4 mm/s) that were coupled with a rapid change in angular speed were defined as sharp turns (2 

mm/s < speed < 4 mm/s and |angular speed| ≥ 125º/s) (Figure 2.1C and D). To characterize the 

behaviors that occur during these defined locomotor activity types, we manually annotated resting, 

feeding, grooming and walking events and assigned them to the corresponding speed profiles. In 

agreement with previous studies (J.-R. Martin 2004; Robie, Straw, and Dickinson 2010; Zou et al. 

2011), we found that more than 80% of the speeds displayed during manually annotated resting or 

walking periods were below 0.2 mm/s or above 2 mm/s, respectively (Figure 2.11B). Furthermore, we 

reasoned that micromovements could correspond to either grooming or feeding. Indeed, 70% of 

grooming fell in the micromovement category; while for manually-annotated feeding bouts, half of 

these periods were categorized as micromovements, and the other half occurred at low speeds and 
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Figure 2.1 – Automated monitoring of nutrient choices using image-based tracking 

(A) Schematic of the image-based tracking setup. (B) Schematic of the foraging arena, containing an inner flat 
circular area with 9 sucrose (carbohydrate source) and 9 yeast (amino acid source) patches. Each food patch has 
an approximate diameter of 3 mm which is approximately the body length of the experimental flies. (C) Example 
of the kinematic parameters and behavior classification associated to the representative trajectory shown in (D). 
Dashed gray horizontal lines indicate the thresholds used for behavior classification, definition of yeast and 
sucrose micromovements and food patch visits (see materials and methods). Dashed orange rectangle marks the 
beginning and end of the yeast visit (see inset in D). The different colors in the ethogram correspond to the 
behaviors labeled with the same color in (D). (D) Representative trajectory of a fly walking in the arena. Filled 
circles represent food patches. Gray and colored trajectories correspond to head and body centroid position, 
respectively. Small arrows in between both trajectories indicate body orientation. The color code for the different 
behaviors is indicated by the colored labels. Inset: a yeast visit is defined as a group of consecutive yeast 
micromovements, in which the head distance to the center of the food patch was never >5 mm (gray dashed line 
in the main trajectory). (E, G) Total duration of yeast and sucrose micromovements for virgin, n = 15 (E) and 
mated, n = 26 (G) female flies fed with the AA+ rich diet. (F, H) Distribution of yeast and sucrose micromovement 
durations for virgin (F) and mated (H) female flies fed with the rich diet. Bin size: 2.2 seconds. *p < 0.05, ***p < 
0.001, significance was tested by Wilcoxon rank-sum test. In panels E and G and in the following figures in which 
boxplots are used, the black line represents the median, colored boxes represent inter-quartile range (IQR) and 
gray dots represent the value of the y-axis parameter for single flies. 
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were thus classified as resting. However, flies showed a very low rate of proboscis extension during 

feeding bouts at < 0.2 mm/s (data not shown) and we therefore reasoned that these slow bouts had 

little contribution to the amount of food ingested. For this reason, we decided to use the time the fly 

was performing micromovements when its head was in contact with the food patch as a proxy for the 

time the fly spent feeding (henceforth termed yeast micromovements or sucrose micromovements). To 

strengthen the argument that these micromovement periods within a food patch represented mostly 

feeding bouts and not grooming, we used the annotated video segments to quantify the percentage of 

feeding and grooming during a food micromovement bout. Indeed, we observed that 92.2% of the 

yeast micromovements and 70.6% of the sucrose micromovements corresponded to feeding bouts 

(Figure 2.11C). Hence sucrose and yeast micromovements are a good way to capture the periods the 

fly spends feeding on a food patch. 

 To start exploring how flies with different internal 

states react to the different foods, we used this 

metric to characterize the behavior of virgin and 

mated females that were previously fed a rich diet. 

Virgin flies displayed a preference for sucrose over 

yeast over the total time of the assay, while the 

opposite was observed in mated females (E and 

G). A closer look at the duration of 

micromovements on the two food sources, 

revealed very similar duration profiles between 

yeast and sucrose for virgin females, while a 

higher prevalence of long events (≥ 20 s) on yeast 

when compared to sucrose was observed in mated 

flies (Figure 2.1F and H). These results suggest 

that for mated females, yeast has a higher 

salience as food source, even in fully-fed conditions. These observations are in accord with previous 

reports showing that mating leads to a switch in yeast preference in flies (Ribeiro and Dickson 2010; 

Vargas et al. 2010; Walker, Corrales-Carvajal, and Ribeiro 2015). Thus, the analysis of food 

micromovements allows us to capture previously-described changes in food preference elicited by 

mating. Furthermore, these results demonstrate that one way in which mating increases yeast 

preference is by inducing long feeding bouts, allowing us to make first conclusions about the 

mechanisms behind changes in food choice.  

2.3.2 Flies increase yeast feeding and micromovements in response to amino acid 

challenges and mating 

A key question in nutritional neuroscience is how animals homeostatically compensate for the lack of 

specific nutrients (Simpson and Raubenheimer 2012; Itskov and Ribeiro 2013; Morrison and Laeger 

2015; Dethier 1976). A concrete example of this homeostatic regulation of feeding behavior is the 

 

Video 1. Behavior classification during nutrient 
decisions. 

A 20-second-segment of the trajectory depicted in 
Figure 2.1C-D, starting on second 40 and following 
the same color code. During the first 7 seconds of 
this segment, the video is slowed-down 0.5x and 
from there on, it is shown in real life speed, as 
indicated by the white label at the top right corner of 
the video frame with the fly. 

https://drive.google.com/file/d/0B9uBdSNYtubpa1Bfdl9LS1hIOFE/view?usp=sharing
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robust increase in preference for yeast when flies are deprived of proteinaceous food (Ribeiro and 

Dickson 2010; Vargas et al. 2010). To study the behavioral strategies underlying nutritional 

homeostasis, we decided to use a chemically defined (holidic) medium (Piper et al. 2014) to 

specifically manipulate amino acids (AA) in the diet, leaving the other macronutrients and 

micronutrients intact. Previous work has identified three different AA compositions having different 

impacts on reproduction in mated females: AA+ rich (supporting a high rate of egg laying), AA+ 

suboptimal (supporting a lower rate of egg laying) and AA- (leading to a dramatic reduction in egg 

laying) (Piper et al. 2014) (Figure 2.2A). Furthermore, to better understand how internal metabolic 

state and mating state interact at the behavioral level we also analyzed virgin females pre-fed these 

different diets.  

To precisely measure the feeding behavior of flies with different internal states, we used the flyPAD 

technology (Figure 2.12A), which allowed us to decompose the feeding motor pattern into “sips” 

(Itskov et al. 2014). As the number of sips correlates strongly with food intake, this method enabled us 

to precisely measure the impact of internal states on feeding decisions. Consistent with previous 

observations  (Walker, Corrales-Carvajal, and Ribeiro 2015; Ribeiro and Dickson 2010; Vargas et al. 

2010) (Figure 2.1E), virgin flies showed very little interest in yeast during the whole assay, as 

measured by the total number of yeast sips (Figure 2.2Bi). Yeast feeding increased with AA 

deprivation (Figure 2.2Bii), and mating (Figure 2.2Biii). Notably, AA-challenged mated females showed 

a strong increase in the number of yeast sips (Figure 2.2Biv and v) with the highest rate of yeast 

feeding in mated flies completely deprived of AAs (Figure 2.2Bv). We next asked whether these 

differences in feeding behavior could be captured using the yeast and sucrose micromovements 

measured using the tracking setup. Indeed, we observed that the yeast micromovements increased in 

the same way as the yeast sips after AA challenges in virgin and mated females (Figure 2.2C). 

Importantly none of these internal state changes led to an increase in the total number of sucrose sips 

(Figure 2.12B) or in the total duration of sucrose micromovements (Figure 2.13), highlighting the 

dietary specificity of the manipulation and allowing us to focus our subsequent analysis on the fly’s 

behavior towards yeast patches. Flies are therefore capable of sensing deficits in AAs and of 

compensating by specifically increasing feeding and micromovements on yeast, an AA-rich substrate. 

Furthermore, this homeostatic response is modulated by the mating state of the fly. Our tracking 

approach is therefore now a validated strategy to uncover the changes in behavioral strategies elicited 

by different internal states and how these changes allow the animal to reach homeostasis. 

2.3.3 Flies show high inter-individual variability in the response to yeast  

We investigated the dynamics of yeast micromovements by comparing the ethogram of each 

individual fly along the two hours of the assay and across all the internal state conditions tested 

(Figure 2.2D, yeast micromovements are shown in yellow). This type of visualization revealed that the 

behavior towards yeast was highly variable. The observed increase in the total duration of yeast 

micromovements across the different internal state conditions seems to come from the combination of 

two factors: on one hand, the proportion of flies that showed any interest in yeast at all (Figure 2.14A) 

and on the other hand, the strength of the interest displayed by these flies, measured by the total
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duration of yeast micromovements. The behavior towards yeast was also highly variable across 

individuals of the same condition, increasing as a function of deprivation (Figure 2.14B). For example, 

the total duration of yeast micromovements displayed by AA-deprived flies ranged from 5 to 59 

minutes. Still, the initial steep increase in yeast micromovements during the first 30 minutes of the 

assay was very consistent (Figure 2.2Ev and Figure 2.12C). The reaction to internal state changes is 

 

Figure 2.2 – Flies increase yeast feeding and micromovements in response to amino acid challenges and 
mating 

(A) Graphical representation of the five internal states tested and the resulting reproductive output as reported by 
(Piper et al. 2014), all flies were pre-fed during 3 days with the holidic medium indicated in parenthesis: i) Virgin 
AA+ rich, ii) Virgin AA-, iii) Mated AA+ rich, iv) Mated AA+ suboptimal, v) Mated AA-. (B) Effect of internal states 
on the total number of yeast sips obtained using flyPAD assay (n = 32-43). (C) Effect of internal states on the total 
duration of yeast micromovements obtained from the video tracking assay (n = 15-35). (D) Behaviors displayed by 
single flies in the five internal states indicated in (A), during the video tracking assay. Each row represents the 
ethogram a single fly, following the same color code shown in Figure 2.1D. Yellow: yeast micromovements. Black: 
sucrose micromovements. Pink: micromovements outside the food patches. Blue: walking bouts. Gray: resting 
bouts. Green: sharp turns. (E) Dynamics of yeast micromovements quantified as the cumulative duration of yeast 
micromovements. Gray lines correspond to single flies. Thick colored lines indicate median. *p < 0.05, **p < 0.01, 
***p < 0.001, significance was tested by Wilcoxon rank-sum test with Bonferroni correction. 
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therefore highly variable across individuals. However, full AA deprivation in mated females leads to a 

robust population-wide effect, highlighting the importance of AAs for the animal. 

2.3.4 Metabolic state and mating modulate the probability of engaging and leaving a yeast 

patch 

To feed, flies need to stay on food patches. We decided to call these events visits (Figure 2.1C and 

inset in Figure 2.1D). A visit is defined as all consecutive bouts of micromovements on the same 

patch, for as long as the fly stayed in close proximity to the patch. As we observed in the total duration 

of yeast micromovements, the total duration of yeast visits increased as a result of mating and AA 

deprivation (Figure 2.3A). Therefore, we hypothesized that the fly increases yeast intake by changing 

different aspects of its foraging decisions, such as approaching a patch more often, engaging it more 

and/or leaving it less often. We measured approaching, engaging and leaving decisions by quantifying 

the number of encounters, the fraction of encounters in which the fly stops on a spot (visits) and the 

duration of visits, respectively. One easy way to increase the duration of yeast visits would be to 

approach yeast patches more often. However, none of the internal state modifications leading to an 

increase in yeast intake caused an increase in the total number of yeast encounters (Figure 2.15A). 

Furthermore, the rate of encounters remains constant across internal states, with the exception of the 

mated fully AA-deprived females, which had a low absolute number of encounters (Figure 2.3B). To 

explain the behavioral changes underlying homeostasis, we focused on the decision to engage 

(Figure 2.3C) and leave (Figure 2.3D and Figure 2.15B) a yeast patch. 

We found that in virgins, AA deprivation had a specific effect as it only modulated the decision to leave 

a patch, with deprived virgins showing longer visits (Figure 2.3D and Figure 2.15B). Mating also 

modulated the decision to leave, as fully-fed mated females took longer to leave a yeast patch than 

virgins (Figure 2.3D and Figure 2.15B), and, to a smaller degree, had a higher probability of engaging 

a proteinaceous food patch upon encounter (Figure 2.3C). Surprisingly, pre-feeding mated flies with 

the suboptimal diet caused a dramatic increase in the probability of engagement (Figure 2.3C). The 

strong effect on the decision to engage shows that flies are able to homeostatically modify their 

behavior in response to even subtle dietary differences that have a negative impact on their fitness 

(Piper et al. 2014). This is even more striking considering that the removal of all AAs does not lead to 

further changes in the engagement and leaving decisions, despite its drastic impact on egg production 

and yeast feeding (Figure 2.2). 

We showed above that there is considerable variability across individuals in their behavioral response 

towards yeast. Interestingly, this was also the case for the strategies each mated fly chose to 

compensate for both AA challenges. We observed that these flies reached the same total times on 

yeast by mixing strategies in different ways: some flies had fewer but longer visits, while others had a 

higher number of visits, but each visit was shorter (Figure 2.3E). Taken together, these data show that 

both metabolic and mating states significantly change the decisions to engage and leave a yeast 

patch. Furthermore, the strongest effect is observed when both states act together, as seen in AA 
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challenged mated females. The specific behavioral strategy each fly employs to reach homeostasis, 

however, varies widely. 

 

Figure 2.3 – Metabolic state and mating modulate the probability of engaging and leaving a yeast patch 

(A) Effect of internal states on the total duration of yeast visits. Experimental groups are the ones shown in Figure 
2.2: Mated (filled circles) and virgin (open circles) females pre-fed 3 types of holidic media: AA+ rich, AA+ 
suboptimal and AA-. (B) Effect of internal state on the decision to approach a yeast patch quantified as the 
number of yeast encounters per minute of walking outside the food patches (rate of yeast encounters). (C) Effect 
of internal state on the decision to engage a yeast patch quantified as the fraction of yeast encounters in which 
the fly engaged (stopped) during a yeast visit. (D) Effect of internal state in the decision to leave a yeast patch 
quantified as the average duration of yeast visits. (E) Combination of foraging strategies (total number of visits in 
x-axis and average duration of those visits in y-axis) to reach different total durations of yeast visits (green and 
blue lines), for individual AA-challenged mated flies: pre-fed either a suboptimal diet (yellow circles) or an AA- diet 
(red circles). ns, not significant (p ≥ 0.05), *p < 0.05, **p < 0.01, ***p < 0.001, significance was tested by Wilcoxon 

rank-sum test with Bonferroni correction. 

2.3.5 The lack of dietary AAs increases exploitation and local exploration of yeast patches 

We have shown that AA deprivation leads to a 1.6-fold increase in yeast feeding when compared to 

the suboptimal diet treatment (Figure 2.2B). Surprisingly, however, a change of this order of 

magnitude is not visible in the total duration of the yeast visits (Figure 2.3A), nor is this homeostatic 

effect recapitulated in changes in specific foraging decisions (Figure 2.3). We therefore speculated 
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that instead of modulating exploratory decisions, a lack of AAs could increase the eagerness of the 

flies to exploit the yeast spot. Indeed, the time course of yeast visits (Figure 2.4A and Figure 2.16A) 

shows that AA-deprived flies displayed a sharp increase in the total duration of yeast visits during the 

first minutes, while flies pre-fed a suboptimal AA diet displayed a much more delayed and shallower 

increase in this parameter. As these early visits were also longer (Figure 2.16B), we measured the 

time it took each fly to engage in its first “long” (≥ 30s) visit (Figure 2.16C and D), and found that AA-

deprived flies indeed attained their first long yeast visit much sooner than flies fed a suboptimal diet 

(Figure 2.4B): the median latency for AA-deprived flies was just 4.38 min (IQR = 2.08 – 7.7), which 

was three times shorter than the 12.37 min (IQR = 19.87 – 9.86) observed in flies fed with the 

suboptimal diet. These results therefore suggest that AA-deprived flies are indeed more motivated to 

exploit yeast spots. 

We next asked if AA deprivation could also induce differences in the way flies behaved on the yeast 

patches. When we plotted the distribution of the positions of the flies on the proteinaceous food 

patches, we observed that AA-deprived flies covered the patches more homogeneously than flies kept 

on a suboptimal diet, which preferred to stay at the edge of the patch Figure 2.4C). In fact, deprived 

flies ventured much more into the food patch as quantified by the fact that during a visit, their average 

minimum distance from the patch center was much smaller (Figure 2.4D) and that they covered a 

larger area of the resource (Figure 2.4E). These data suggest that AA-deprived flies are not only more 

motivated to start exploiting a yeast patch but are also more active while on the food patch. This was 

further supported when we quantified locomotor activity during each visit to yeast. As visible in the two 

example trajectories displayed in Figure 2.4F, we observed that deprived flies were more active, 

displaying higher linear (Figure 2.4G and H) and angular speeds (Figure 2.4I). Accordingly, these flies 

had fewer resting bouts and more sharp turns (Figure 2.4J). These changes in behavior observed on 

the food patch were only induced by a complete lack of AAs, as there was no difference in these 

parameters between mated females pre-fed the rich diet versus those pre-fed the suboptimal diet 

(Figure 2.17). All these data are in agreement with an increase in yeast exploitation upon full AA 

deprivation. Flies lacking AAs would be more “eager” to exploit and therefore ingest yeast, leading to a 

strong increase in yeast feeding as observed using the flyPAD (Figure 2.2B). 

Animals homeostatically increase food intake upon food deprivation, by changing the micro-structure 

of their feeding motor pattern (Itskov et al. 2014; Davis and Smith 1992) (Figure 2.18A). As video 

tracking does not give us access to the fine structure of the proboscis motor program, we used the 

flyPAD technology to characterize the changes in the microstructure of feeding upon AA deprivation. 

Pre-feeding flies a suboptimal diet led to a decrease only in the inter-burst-interval (IBI) when 

compared to flies kept on a rich diet (Figure 2.18B) while the number of sips in each feeding burst did 

not change (Figure 2.18C). Full AA deprivation, however, led to a strong increase in the number of 

sips per burst with only a mild further decrease in the IBI. It is interesting to note that these effects are 

very similar to those observed upon mating in yeast-deprived females, which leads to both a decrease 

in the inter-burst interval and an increase in the number of yeast sips per burst (Walker, Corrales-

Carvajal, and Ribeiro 2015). Taken together, while AA deprivation has minimal effects on the decision 

to engage and leave a proteinaceous food patch, this metabolic manipulation leads to drastic changes 



Internal states drive nutrient homeostasis by modulating exploration-exploitation trade-off 25 

in its exploitation. The described changes in activity are likely to support an increased use of the yeast 

resource, which is further promoted by a change in the feeding motor pattern of the fly. The increase 

 

Figure 2.4 – The lack of dietary AAs increases exploitation and local exploration of yeast patches 

(A) Rolling median of the total duration of yeast visits using a 5 minute window and a step of 4 minutes for flies 
pre-fed a suboptimal diet (yellow) and AA- diet (red). (B) Effect of AA deprivation on the time elapsed until the fly 
engages in the first “long” (≥ 30 s) yeast visit. (C) Histogram of the x-y relative position of all mated flies pre-fed a 
suboptimal diet (left) or a AA- diet (right) with respect to the center of the yeast patch (0,0). The pixel color 
indicates the fraction of time that flies in the indicated condition spent in the corresponding location bin. (D) Effect 
of AA deprivation on the average minimum distance to the center of the yeast patch, during a yeast visit. (E) 
Effect of AA deprivation in the average area covered during a yeast visit. (F) Example trajectories of head position 
during a yeast visit for a fly of the indicated condition. Hot colors indicate higher head speeds. (G-J) Effect of AA 
deprivation on the locomotor activity of mated flies during yeast visits: (G) average histogram of head speeds, (H) 
body centroid speed, (I) angular speed and (J) proportion of the indicted behaviors during yeast visits. ns, not 
significant (p ≥ 0.05), **p < 0.01, ***p < 0.001, significance was tested by Wilcoxon rank-sum test with Bonferroni 
correction.  Panels B, D, E, H-J compare the indicated parameters between mated flies pre-fed a suboptimal diet 
(yellow) and mated flies pre-fed an AA- diet (red). 
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In exploitation can also be interpreted as an increase in local, resource-directed exploration which 

could aid the micro-optimization of food intake within non-homogenous natural food patches. 

2.3.6 Amino acid challenges reduce global exploration and increase revisits to the same 

yeast patch 

The data presented above clearly demonstrate that different internal states interact to modulate food 

exploitation. But what could be the effects of internal states on the exploratory behaviors of flies? In 

order to capture how far the fly would forage to reach the next yeast patch, we calculated three types 

of transition probabilities: transitions to the same yeast patch, transitions to adjacent yeast patches, 

and transitions to distant yeast patches. We found that mated flies fed the rich diet had a high 

probability of transitioning to distant yeast patches (75%) (Figure 2.5A and D), and a lower probability 

of transitioning to adjacent food patches (25%) (Figure 2.5A and E). Strikingly, these flies almost never 

returned to the yeast patch they had just visited (Figure 2.5A and F). Fully-fed flies therefore display a 

high rate of global exploratory activity, traveling larger distances during their transitions (Figure 2.5G) 

and mainly choosing to visit distant food patches (as in the example trace). Challenging flies with a 

suboptimal diet (Figure 2.5B) or one lacking all AAs (Figure 2.5C) significantly altered their exploratory 

behavior: they strongly reduced their probability of transitioning to distant yeast patches (Figure 2.5D) 

and increased the probability of transitioning to adjacent yeast patches (Figure 2.5E). Further, in 

contrast to the fully-fed flies, AA-challenged flies showed a strong increase in their probability of 

returning to the same yeast patch (Figure 2.5F and Figure 2.19). As one would expect, these changes 

in behavior are also seen as a decrease in the average distance traveled by animals during transitions 

to yeast (Figure 2.5G). Dietary AA challenges therefore lead to a switch from global to local 

exploration (see example traces in Figure 2.5A-C). One of the most striking changes is the strong 

increase in returns to the same yeast patch upon AA deprivation. This change in exploratory strategy 

leads to an effective additional increase in the time on the same yeast patch without requiring a 

change in the decision to leave it (Figure 2.3D and Figure 2.15B). Taken together, these changes in 

exploratory strategy should enable the fly to efficiently increase the intake of yeast while minimizing 

the distance traveled to the next spot. It also allows the fly to focus on a resource whose quality she 

knows while avoiding testing food patches of unknown qualities, thereby reducing exploratory risk. 

2.3.7 Flies dynamically adapt their exploitatory and exploratory behavior to their internal AA 

state 

If yeast exploitation and exploration are indeed regulated by the internal AA state of the fly, we 

hypothesized that flies should dynamically adapt their behavior as their internal state changes over the 

course of the assay due to satiation. To capture this effect independently from the varying yeast intake 

dynamics displayed by each fly, we divided the total duration of yeast micromovements of each fly into 

four periods, which we called “yeast quartiles” (Figure 2.6A). Each yeast quartile consists of 25% of 

the time that the fly spent in yeast micromovements, but covers a different amount of absolute time in 

the assay for each fly. 
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As hypothesized, the flies displayed clear differences in their foraging behavior across the four 

analyzed quartiles. The effect on exploration was clearly visible in the raw tracking traces for the four 

quartiles (Figure 2.6B). As the time spent on yeast increased, the average distance traveled to the 

next yeast patch (Figure 2.6C) and the probability of visiting a distant yeast patch increased (Figure 

2.6D), while the probability of revisiting the same yeast patch decreased (Figure 2.6E). Accordingly, 

parameters related to patch exploitation such as the average minimum distance from the center of the 

spot (Figure 2.6F), the angular speed on the yeast patch (Figure 2.6G), and the average duration of 

the yeast visit (Figure 2.6H) reverted to the values observed in fully-fed females (Figure 2.20A-C). 

 

Figure 2.5 – Amino acid challenges reduce global exploration and increases revisits to same yeast patch 

(A-C) Effect of internal states on exploratory behavior of mated females pre-fed with an AA rich diet (A), an AA 
suboptimal diet (B) or an AA- diet (C). Example trajectories show head position during a yeast-yeast transition. 
Arrows and pie charts indicate the transition probabilities to visit three types of yeast patches: the same (orange), 
an adjacent one (blue) or a distant one (black). (D-F) Comparison of the transition probabilities described in (A-C) 
across the different diet treatments in mated females. (G) Average distance covered during transitions to yeast 
visits. ns, not significant (p ≥ 0.05), *p < 0.05, **p < 0.01, ***p < 0.001, significance was tested by Wilcoxon rank-
sum test with Bonferroni correction. 
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 These results show that flies are capable of dynamically adapting their behavioral strategies 

according to their current internal state and strengthen the notion that foraging strategies are modified 

by the AA state of the animal to homeostatically balance the intake of AA-rich foods. 

 

Figure 2.6 – Flies dynamically adapt their exploitatory and exploratory behavior as their internal AA 
satiation changes 

(A) Definition of yeast quartiles based on the total duration of yeast micromovements along the two hours of the 
video tracking assay for an example fly. Arrows indicate start and end points of each yeast quartile. Each yeast 
quartile consists of 25% of the time that the fly spent in yeast micromovements, but covers a different amount of 
absolute time in the assay for each fly, as shown in (B). (B) Example trajectories of head positions during each 
yeast quartile defined in (A). Red indicates the occurrence of a yeast micromovement. (C-H) Effect of yeast 
satiation on exploration (C-E) and exploitation (F-H) parameters, for mated AA-deprived flies, quantified during 
the four yeast quartiles of each fly. As the flies spend more time on yeast, the values of these parameters change 
towards the values of flies fed with a rich diet. *p < 0.05, ***p <0.001, significance was tested by Wilcoxon rank-

sum test. 
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2.3.8 ORs mediate efficient recognition of yeast as an appropriate food source 

Starvation changes olfactory representations of food odors and these changes are thought to be 

required to find food efficiently (Root et al. 2011; Beshel and Zhong 2013). To begin to uncover the 

neuronal mechanisms underlying foraging decisions, we decided to analyze the role of olfaction in 

nutrient homeostasis. The OR type of olfactory receptors have been shown to significantly contribute 

to the olfactory detection of yeast over large distances (Becher et al. 2010; Christiaens et al. 2014; 

Dweck et al. 2015) and are known to mediate physiological responses to yeast odors (Libert et al. 

2007). We therefore focused on the function of these receptors in homeostatic yeast feeding by 

tracking the foraging behavior of flies lacking Orco, a co-receptor essential for OR function (Larsson et 

al. 2004). Unexpectedly, we observed that in general upon AA deprivation, Orco mutants showed a 

similar total duration of yeast visits as controls (Figure 2.7A). However, upon closer inspection of the 

time course of yeast visits, we observed that flies with impaired olfaction had a very long latency to 

engage in a long yeast visit when compared to the genetic controls (Figure 2.7B-D, see also Figure 

2.4A and Figure 2.21). While Orco mutants needed around 25 minutes to enter into a high yeast 

exploitation “mode” (median = 25.58 min, IQR = 15.05 – 30.06) the genetic controls required only 5-8 

minutes to do so (Figure 2.7C).  

Olfaction has been proposed to be important for the fly to locate food sources (Root et al. 2011). Orco 

mutants, however, have plenty of encounters with yeast during the latency period. This is clearly 

visible in the example trace (Figure 2.7E) where pink dots mark encounters with yeast patches. In fact, 

the number of encounters of Orco mutant flies with yeast patches was similar to, or even higher than, 

that of controls (Figure 2.7F). The increased latency also seems not to be due to an impairment in 

locomotion, as mutant flies walked as fast when outside the food patches as genetic controls (Figure 

2.7G). These data indicate that in our assay, Orco mutant flies easily find yeast spots but fail to 

efficiently engage into long yeast visits. 

If Orco mutant flies are inefficient in engaging yeast spots, how do they manage to homeostatically 

compensate for the AA challenge? We observed that the duration of the first long visit (Figure 2.7H) 

and the probability of revisiting the same yeast patch (Figure 2.7I) were greater for the Orco mutants 

than for the controls. These results indicate that mutant flies were either more AA deprived than 

controls or compensated for their sensory deficit by displaying a generally higher exploitatory 

motivation. Taken together these results show that OR-mediated olfaction is necessary for efficient 

recognition of yeast as an appropriate resource but is not required to locate food patches at a short 

range or to achieve nutritional homeostasis. 

2.3.9 Octopamine mediates homeostatic postmating responses but not internal sensing of 

AA deprivation state 

Neuromodulators are thought to be important in translating internal states into behavioral output 

(Taghert and Nitabach 2012). While octopamine has been shown to mediate the postmating increase 

in yeast feeding (Walker, Corrales-Carvajal, and Ribeiro 2015), it has been proposed that octopamine 

does not contribute to homeostatic changes in feeding behavior (Z. Yang et al. 2015). We therefore
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Figure 2.7 – ORs mediate efficient recognition of yeast as an appropriate food source 

(A) Orco1/1 AA-deprived flies spend as much total time visiting yeast as AA-deprived control flies (n = 10-14). (B) 
Rolling median of the total duration of yeast visits using a 5 minute window and a step of 4 minutes. (C) Effect of 
Orco mutation on the latency to engage in the first “long” (≥ 30s) yeast visit. (D) Behaviors displayed by Orco and 
control flies, along the 120 minutes of the assay. Each row represents the ethogram a single fly, following the 
same color code shown in Figure 2.1D. Yellow: yeast micromovements. Black: sucrose micromovements. Pink: 
micromovements outside the food patches. Blue: walking bouts. Gray: resting bouts. Green: sharp turns. Blue 
circles indicate the latency (see C) of each fly. Arrows indicate example flies shown in (E). (E) Top: Example 
trajectory of head positions of an Orco1/1 AA-deprived fly during the 23-minute-long latency period (first three 
panels on the left) and during 45 minutes after the latency period (fourth panel). Bottom: Example trajectory of 
head positions of a Canton S AA-deprived fly during the 4-minute-long latency period (first panel on the left) and 
from the latency point up to minute 68 (three panels on the right). Highlighted trajectory segments represent yeast 
encounters (pink) and yeast visits (blue). (F-G) Exploration and locomotor activity during latency period is not 
affected in Orco1/1 flies as indicated by the number of yeast encounters (F) and the body centroid speed outside 
food patches (G). (H) The first long yeast visit is longer in Orco1/1 flies than in control flies. (I) Probability of 
transition to same yeast patch is higher in Orco1/1 flies than in control flies. ns, not significant (p ≥ 0.05), *p < 0.05, 
**p < 0.01, significance was tested by Wilcoxon rank-sum test with Bonferroni correction. 
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decided to test possible neuromodulatory effects of octopamine on yeast foraging, using mutants for 

the gene encoding Tyramine β-hydroxylase (TβH), an enzyme required for the biosynthesis of 

octopamine. As expected, we observed that in AA-deprived females, the drastic increase in the total 

duration of yeast visits after mating was greatly reduced in TβHnM18 flies (Figure 2.8A and Figure 

2.22A). Likewise, octopamine also seems to be required to elicit the full increase in the probability of 

engagement on yeast (Figure 2.8B and Figure 2.22B) and the full increase in the duration of yeast 

visits (Figure 2.8C and Figure 2.22C), reiterating our previous observation that these two parameters 

are modulated by mating (Figure 2.3). To test whether octopamine was also required for mediating 

changes in yeast feeding behavior upon AA deprivation, we used the flyPAD technology. TβHnM18 

virgin flies were able to increase the number of sips after AA deprivation to a similar extent as control 

flies (Figure 2.8D and Figure 2.22D) showing that octopamine is not involved in translating the internal 

state of AA deprivation into increased yeast intake. Overall, these results confirm that the decisions to 

engage and leave a yeast spot are strongly modulated by mating. They also show that octopamine 

mediates these postmating responses towards yeast, but is not required to sense the internal AA 

deprivation state. 

2.4 Discussion 

In order to maintain nutrient homeostasis animals need to be able to adapt their nutrient preferences 

to their current state. But which behavioral alterations underlie such changes in preference? Here we 

use an automated video tracking setup to quantitatively capture the behavioral adaptations to AA and 

mating state changes that allow the animal to maintain nutrient homeostasis. We started by separating 

the behaviors flies display towards food into discrete decisions: the decision to approach a food patch, 

the decision to engage it, and the decision to leave it (Figure 2.9). Strikingly, mating and AA 

challenges induced compensatory behaviors towards yeast patches but not sucrose patches, 

 

Figure 2.8 – Octopamine mediates postmating response towards yeast but not internal sensing of AA 
deprivation state 

(A-C) Effect of TH mutation on the postmating change in foraging parameters, obtained from the video tracking 

assay after 1 hour: total duration of yeast visits (A), probability of engaging a yeast patch (B) and average 

duration of yeast visits (C) for Canton S and ThnM18 females, both AA-deprived. Bars depict difference between 
median value of mated minus virgin groups for the correspondent parameter. Error bars show 5% and 95% 

bootstrap confidence intervals (n = 25-33). (D) Effect of TH mutation on the increase of yeast sips after AA 

deprivation in virgin females, quantified using the flyPAD setup. Bars depict difference between median values of 
AA+ (suboptimal) minus AA-deprived groups. Error bars show 5% and 95% bootstrap confidence intervals (n = 

26-34). ns, not significant. (A-C) Show statistically significant differences between Canton S and ThnM18 females, 

as the confidence intervals do not overlap. 
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indicating that the fly changes its exploitation decisions in a resource specific way. Furthermore, 

internal state modifications impact specific decisions to a different extent. While mating had a major 

effect on the probability of a fly leaving a yeast spot, AA challenges strongly increased the probability 

of engaging a food patch. Nevertheless, the effect of AA deprivation on the decision to engage a food 

patch was strongly dependent on mating suggesting that both internal states act synergistically to 

increase yeast intake. Furthermore, while full AA deprivation leads to a strong increase in yeast 

feeding when compared to flies kept on a suboptimal diet, the described decisions were not altered by 

this drastic nutritional manipulation. There was, however, a considerable decrease in the latency to 

engage yeast spots for a long time and a general increase in parameters related to the "eagerness" of 

the fly to exploit the resource (latency to engage, locomotor activity on the patch and area of patch 

covered). Internal states, therefore, alter feeding in specific ways, allowing the fly either to spend more 

time on the food through the modulation of patch decisions, or to increase resource exploitation 

through the modulation of motivation without changing patch decisions. These discrete changes allow 

the animal to dose its exploitatory behavior and hence the intake of nutrients over a large range (~17 

fold) to match its current needs.  

 The specific changes observed in the behavior upon alterations of internal state are in agreement with 

 

Figure 2.9 – Model of behavioral strategies modulated by internal AA state 

We propose a model in which virgin flies with high internal levels of AAs display low intake mostly ignore yeast 
patches upon encounter and have a high probability of leaving the yeast patch upon engagement. Internal AA 
levels decrease as a consequence of poor diets which induce a change in the leaving decision, inducing 
increased yeast intake. Octopamine mediates the postmating changes in the foraging decisions of engaging and 
leaving the yeast patch upon encounter. As the internal AA levels decrease in mated females, their exploration 
patterns switch from global exploration to local exploration and multiple returns to the same yeast patch. 
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a modular organization of behavioral control. Such modularity has been previously described in the 

organization of motor output, such as locomotion (Kiehn 2016), swimming (Huang et al. 2013), 

grooming (Seeds et al. 2014), and feeding (Itskov et al. 2014; Walker, Corrales-Carvajal, and Ribeiro 

2015). This suggests that the brain uses different mechanisms and hence circuits to change specific 

aspects of behavioral outcomes or decisions and that these changes add up to reach a specific goal. 

In agreement with this model, it has been shown that the impact of different starvation times on 

gustatory input relies on different mechanisms (Inagaki, Panse, and Anderson 2014). Similarly, our 

data show that octopamine is specifically required for mediating the changes in yeast decisions 

observed upon mating but not upon AA deprivation (Figure 2.9). Nevertheless, some decisions, such 

as the decision to engage a yeast spot, seem to be synergistically gated by both the mating and the 

AA state of the fly. It will be interesting to dissect how different internal states act at the circuit level to 

change behavioral decisions: do they act differentially on specific neuronal populations, or is the 

observed synergism a reflection of the different internal states acting on the same set of neurons? 

While at the population level the effect of internal state manipulations led to stereotypical changes in 

behavior, the effect of internal state on the decisions implemented varied greatly at the individual level. 

This effect is reminiscent of the large individual differences observed in human physiology in response 

to identical diets (Zeevi et al. 2015). While such behavioral differences can stem from different 

metabolic states prior to the experiment, transgenerational effects in metabolism (Öst et al. 2014), or 

differences in the microbiota of the flies (Broderick and Lemaitre 2012), there is a real possibility that 

they also reflect idiosyncrasies in behavior and metabolic susceptibilities to internal state changes at 

the individual level. Indeed, upon AA challenges, we observed that some flies increased their total 

time on yeast by having many short yeast visits, while some flies had fewer but longer visits. It will be 

interesting to investigate if these differences reflect behavioral idiosyncrasies, as observed before in 

many animals including Drosophila (Dingemanse et al. 2010; J. S. Kain, Stokes, and de Bivort 2012; 

Buchanan et al. 2015). Differentiating between these two possibilities and identifying the physiological 

and circuit mechanisms leading to idiosyncrasies will be key to a better understanding of behavior. 

This is especially relevant for understanding metabolic conditions related to nutrition such as obesity. 

In order to balance the intake of specific nutrients the animal should be able to specifically change its 

decisions towards the food source which contains the nutrient it needs. Our data show that this is 

indeed the case, pointing to a possible important contribution of chemosensory systems to nutrient 

decisions. Indeed, taste processing has been shown to be changed by the mating state of the animal 

and to contribute to the adaptation of behavioral decisions such as food choice (Walker, Corrales-

Carvajal, and Ribeiro 2015) and egg laying site selection (Hussain, Üçpunar, et al. 2016). The 

contribution of olfaction to nutrient selection is less well understood. The sense of smell is thought to 

be mostly important for food search behavior (Semmelhack and Wang 2009; Becher et al. 2010), with 

starvation changing olfactory sensitivity to improve the finding of a food source (Root et al. 2011). Our 

data suggest that while olfactory-impaired flies are able to homeostatically increase yeast intake upon 

AA deprivation, OR-mediated olfaction still plays an important role in their capacity to do so. 

Interestingly, olfaction does not seem to be important for locating the food but for identifying yeast as 

an appropriate food source. These data suggest that flies use multimodal integration to decide which 
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food to ingest. In humans, flavor, the integration of different sensory modalities such as taste and 

smell, is key to the perception of food (Verhagen and Engelen 2006). Similarly, in mosquitoes olfaction 

acts together with other sensory cues to initiate a meal (McMeniman et al. 2014). Identifying the 

chemosensory basis for yeast feeding decisions might therefore be a powerful way to investigate the 

neuronal basis of flavor perception. 

While one would expect that internal states increase food intake by changing exploitation decisions, 

their effects on exploratory behaviors in our paradigm are not trivial. Exploration is key for animals to 

find the resources they require and to acquire information about their surrounding environment 

(Calhoun, Chalasani, and Sharpee 2014; Hassell and Shouthwood 1978; Hills et al. 2015). In our 

paradigm, however, animals do not need to search for resources as they are readily available. A key 

question then becomes why animals leave a food patch at all, especially when they are deprived of 

AAs. The fact that they still do so means that there is a value in leaving the current food patch, even if 

that one provides the urgently required nutrients to produce offspring and has not been depleted yet. 

We can only speculate that there must be an advantage in taking the “risk” of exploring unknown 

options and maybe identifying a better resource. Animals might often require other resources and 

leaving the current food patch might allow them to also explore the availability of these. Flies seem to 

nevertheless manage their exposure to uncertainty by tuning the spatial properties of their exploration. 

Their internal states not only define the probability to leave a food patch, they also define if they will 

explore locally or more globally. The more deprived they are, the more local their exploratory pattern 

will be (Figure 2.9). Remarkably, while the leaving probability of flies pre-exposed to a suboptimal AA 

diet and a diet lacking AAs looks identical, their exploratory patterns are very different. For example, 

AA-deprived flies display a higher rate of returns to the same patch right after leaving it. Therefore, 

while the neuronal processes determining staying decisions seem not to be altered between both AA-

challenged states, full AA deprivation must act on the circuits controlling explorations to strongly 

increases the probability of revisiting the spot the fly just left. This allows the fly to de facto stay longer 

on the same food patch without changing its leaving decisions. We would like to propose that the 

apparent separate regulation of these two aspects of the fly behavior suggests that there are two 

separate internal state sensing processes regulating exploitation and exploration decisions. The 

combination of both behavioral and circuit modules would allow the fly to trade off the requirement to 

exploit specific resources and the “risk” of exposing itself to resources of unknown or lower quality. 

Furthermore, it is interesting to note the similarity between the revisits to the same food patch we 

observed upon strong AA deprivation and the “dances” observed by Vincent Dethier in the blowfly 

(Dethier 1976). Both phenomena are examples of how animals regulate their search behavior and 

exposure to uncertainty by modulating the local dynamics of their exploratory behavior, in a state-

dependent manner. While the budget theory is a classic aspect of foraging theory, it has recently 

started to be reassessed. It is mainly controversial if energy-deprived animals, including humans, are 

more or less risk-prone (Kacelnik and El Mouden 2013). Our data suggest that the exploratory 

behavior of AA-deprived animals minimizes their exposure to uncertainty. The description of how 

different aspects of risk management are implemented at the behavioral level opens up the 



Internal states drive nutrient homeostasis by modulating exploration-exploitation trade-off 35 

opportunity to identify the circuit mechanisms by which internal states control exploration-exploitation 

trade-offs and therefore how animals decide how much to expose themselves to the unknown. 

The success of neurogenetics has relied to a large extent on the use of simple binary end-point 

behavioral assays to perform large-scale unbiased screens (Leitão-gonçalves and Ribeiro 2014; 

Vosshall 2007; Ugur, Chen, and Bellen 2016). This approach has allowed the field to make important 

contributions to the molecular and circuit basis of innumerable phenomena, including learning and 

memory (Heisenberg 2015), chronobiology (Konopka and Benzer 1971), innate behaviors (Yapici et 

al. 2008; Demir and Dickson 2005), and sensory physiology (Larsson et al. 2004). While identifying 

these cornerstones of neuroscience was crucial, we are now in a position to start understanding how 

these mechanisms act at the circuit level to perform more complex computations such as the ones 

used during decision-making and exploration. This endeavor requires the use of a richer and dynamic 

description and analysis of behavior (Gomez-Marin et al. 2014). We used a combination of computer 

vision (Anderson and Perona 2014) and other quantitative, automated systems such as capacitance-

based behavioral assays (Itskov et al. 2014) with internal state and genetic manipulations to 

characterize and identify the behavioral changes allowing the animal to achieve homeostasis. It is 

interesting to consider that while we identify an important role of OR-mediated olfaction in nutrient 

decision-making, this would not have been possible using end-point analyses, as the animal manages 

to compensate for its sensory challenge using alternative means. The use of dynamic, quantitative 

descriptions of complex behavior therefore enables neuroscientists to decompose these into discrete 

processes, opening up the possibility to go beyond assigning circuits and molecules to general 

behaviors to start explaining how they act to control the generation of complex cognitive processes. 

2.5 Materials and Methods 

2.5.1 Drosophila stocks, genetics and rearing conditions 

Unless stated otherwise all experiments were performed with Canton S female flies. Canton S flies 

were obtained from the Bloomington stock center. Orco1/1 flies were a kind gift of Sofia Lavista-Llanos 

from the Hansson laboratory (Larsson et al. 2004). Orco1/+ flies were obtained by crossing Canton S 

virgins with Orco1/1 males. ThnM18 flies were a kind gift of Scott Waddell (M Monastirioti, Linn, and 

White 1996). Fly rearing, maintenance, and behavioral testing were performed at 25°C in climate-

controlled chambers at 70% relative humidity in a 12-hr-light-dark cycle. All experimental and control 

groups were matched for age and husbandry conditions.  

2.5.2 Media compositions 

The standard yeast-based medium (YBM) contained, per liter, 80 g cane molasses, 22 g sugar beet 

syrup, 8 g agar, 80 g corn flour, 10 g soya flour, 18 g yeast extract, 8 ml propionic acid, and 12 ml 

nipagin (15% in ethanol) supplemented with instant yeast granules on surface. To ensure a 

homogenous density of offspring among experiments, fly cultures were always set with 5 females and 
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3 males per vial and left to lay eggs for 3 days. Flies were reared in YBM until adulthood. Three 

different types of holidic medium were used as described previously (Piper et al. 2014) using the 

following formulations: 50S200NYaa (AA+ rich), 50S200NHUNTaa (AA+ suboptimal) and 50S0N   

(AA-). Composition of the media are as described in table 1 and supplementary table 1 of (Piper et al. 

2014), without food preservatives and only differ in amino acids composition. The proportion of amino 

acids in 50S200NYaa diet is adjusted to match that in yeast and was considered a rich diet 

maximizing egg laying (Piper et al. 2014). The detailed holidic media compositions can be found in 

Table 2.1. 

Table 2.1 - Composition of holidic medium 

 Ingredient Stock 

Amount 
per liter 

Gelling agent Agar  20 g 

Sugar Sucrose  17.12 g 

Amino acids for 
50S200NHUNTaa* 

L-isoleucine  1.82 g  

L-leucine  1.21 g  

L-tyrosine  0.42 g  

Amino acids for 50S200NYaa* L-isoleucine  1.16 g  

L-leucine  1.64 g 

L-tyrosine  0.84 g 

Metal ions CaCl2.6H2O 1000x: 250 g/l 1 ml 

CuSO4.5H2O 1000x: 2.5 g/l 1 ml 

FeSO4.7H2O 1000x: 25 g/l 1 ml 

MgSO4 (anhydrous) 1000x: 250 g/l 1 ml 

MnCl2.4H2O 1000x:1 g/l 1 ml 

ZnSO4.7H2O 1000x: 25 g/l 1 ml 

Cholesterol Cholesterol 20 mg/ml in EtOH 15 ml 

Water Water (milliQ) 1 liter minus combined volume to 
be added after autoclaving 

 

Autoclave 15 min at 120ºC. All additions below should be performed using sterile technique 

Amino acids for 
50S200NHUNTaa* 

Essential amino acid 
stock solution 

8 g/l L-arginine 
monohydrochloride 
10 g/l L-histidine 
19 g/l L-lysine monohydrochloride 
8 g/l L-methionine 
13 g/l L-phenylalanine 
20 g/l L-threonine 
5 g/l L-tryptophan 
28 g/l L-valine 

60.51 ml 

Non-essential amino acid 
stock solution 

35 g/l L-alanine 
17 g/l L-asparagine 
17 g/l L-aspartic acid sodium salt 
monohydrate 
0.5 g/l L-cysteine hydrochloride 
25 g/l L-glutamine 
32 g/l glycine 
15 g/l L-proline 
19 g/l L-serine 

60.51 ml 

Sodium glutamate stock 
solution 

100 g/l L-glutamic acid 
monosodium salt hydrate 

15.13 ml 

Amino acids for 50S200NYaa* Essential amino acid 
stock solution 

23.51 g/l L-arginine 
monohydrochloride 
11.21 g/l L-histidine 
28.70 g/l L-lysine 
monohydrochloride 
5.62 g/l L-methionine 
15.14 g/l L-phenylalanine 

60.51 ml 
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21.39 g/l L-threonine 
7.27 g/l L-tryptophan 
22.12 g/l L-valine 

Non-essential amino acid 
stock solution 

26.25 g/l L-alanine 
13.89 g/l L-asparagine 
13.89 g/l L-aspartic acid sodium 
salt monohydrate 
30.09 g/l L-glutamine 
17.89 g/l glycine 
9.32 g/l L-proline 
12.56 g/l L-serine 

60.51 ml 

Sodium glutamate stock 
solution 

100 g/l L-glutamic acid 
monosodium salt hydrate 

18.21 ml 

Cysteine stock solution 50 g/l L-cysteine hydrochloride 5.28 ml 

Base Buffer 10x: 
30 ml/l glacial acetic acid 
30 g/l KH2PO4 

10 g/l NaHCO3 

100 ml 

Vitamins Vitamin solution 125x: 
0.1 g/l thiamine hydrochloride 
0.05 g/l riboflavin 
0.6 g/l nicotinic acid 
0.775 g/l Ca pantothenate 
0.125 g/l pyridoxine hydrochloride 
0.01 g/l biotin 

14 ml 

 Sodium folate 1000x: 0.5 g/l 1 ml 

Other nutrients  125x: 
6.25 g/l choline chloride 
0.63 g/l myo-inositol 
8.13 g/l inosine 
7.5 g/l uridine 

8 ml 

* To prepare the 50S200NHUNTaa diet, use the values shaded in blue. To prepare the 50S200NYaa diet, use 
the values shaded in orange. 

2.5.3 Behavioral assays 

 Groups of 9 to 11 newly hatched (0 – 6 hours old) female flies of the indicated genotypes were 

transferred to vials containing fresh standard medium (Figure 2.10). Three days after, all vials were 

transferred to fresh standard medium and 4 males were added to half of the vials to obtain mated 

female flies. After two more days, all vials were transferred once again to fresh standard YBM. On the 

sixth day, all vials were transferred to fresh holidic media. Flies were left to feed ad-libitum for three 

days on the holidic media and then tested in the video tracking or flyPAD setups. Single flies were 

tested in individual arenas that contained two food sources: 18% yeast and 18% sucrose, each in 

0.75% (tracking) or 1% (flyPAD) agarose. Flies were individually transferred to the arenas by mouth 

aspiration and allowed to feed for 1 (flyPAD) or 2 (tracking) hours, except for the tracking experiment 

with ThnM18 flies, which lasted 1 hour. flyPAD data were 

acquired using the Bonsai framework (Lopes et al. 2015) 

and analyzed in MATLAB (MathWorks) using custom-

written software, as described (Itskov et al. 2014). To 

avoid patch exhaustion before the end of the tracking 

assays, each circular patch contained 5 L of food with a 

diameter of approximately 3 mm. After each assay, the 

tracking arenas were washed with soap, rinsed with 70% ethanol, and finally with distilled water. 

 

Figure 2.10 – Pre-feeding protocol 
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Videos that had more than 10% of lost frames (due to technical problems during acquisition) were 

excluded from the analysis. No further data was excluded. The experiment that compares the 

conditions AA+ suboptimal and AA- (results shown in Figures 1-6) was performed 3 times 

independently, which means that an independent set of individuals (n=15-35, shown in the 

corresponding figure legend) was reared and tested under the corresponding conditions. The 

experiment comparing AA+ rich vs AA- was performed 2 times independently. The experiments 

comparing ThnM18 or Orco mutant flies with their corresponding controls were performed once with 

the sample size indicated in the corresponding figure legend. We confirmed that the claims made in 

this manuscript held for every experimental replicate. We never tested the same individual more than 

once. 

2.5.4 Behavioral box and arena design 

The behavioral arenas for the video tracking (Figure 2.1B) were designed and manufactured in-house 

using a laser-cutter and a milling machine. Material used for the base was acrylic and glass for the lid. 

The outer diameter of the arena was 73 mm. The inner area containing food patches was flat and had 

a diameter of 50 mm and a distance to the lid of 2.1 mm. To allow a top-view of the fly throughout the 

whole experiment, the outer area of the arena had 10º of inclination (Simon and Dickinson 2010) and 

the glass lid was coated 10 L of SigmaCote® the night before the assays. Food patches were 

distributed in two concentric circles equidistantly from the edge. Furthermore, sucrose and yeast 

patches were alternated such that from a given food patch, there was at least one adjacent yeast and 

one adjacent sucrose patch. The radius of each food patch was approximately 1.5 mm. The minimum 

distance between the centers of two adjacent food patches is 10 mm. White LEDs 12V DC (4.8 

watt/meter), were used for illumination of the arenas. They were placed under the arenas, as backlight 

illumination and on the walls of the behavioral box, surrounding the arenas, as shown in Figure 2.1A. 

A white cardboard arch was used to improve illumination to reflect light towards the arenas (Figure 

2.1A). Three fly arenas were recorded simultaneously from the top using a video camera (Genie 

HM1400 camera, Teledyne DALSA; frame acquisition rate: 50 fps) connected to a desktop computer 

using a Gigabit Ethernet connection. 

2.5.5 Tracking algorithm 

Body centroid positions and major axis of the fly body in each frame were extracted using custom off-

line tracking algorithms written in Bonsai (Lopes et al. 2015) and Matlab (Mathworks). The arena 

diameter in the video was measured to find the correspondence between pixels in the video and mm 

in the real world (1 pixel = 0.155 mm). The typical length of the major axis of the fly body in a video 

was 19 pixels (~3mm). Video acquisition was made with slight overexposure to obtain a strong 

contrast between the fly and the arena. Since the fly body was the darkest object in the arena, a pixel 

intensity threshold was used to obtain the centroid and orientation of the fly blob. The head position 

was extracted using custom MATLAB (Mathworks) software. Head position in the first frame was 

manually selected. From there on, the head position is automatically propagated to the consecutive 
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frames using a proximity rule (Gomez-Marin, Stephens, and Louis 2011). This rule, however, does not 

hold during a jump of the fly. Therefore, in addition to the proximity rule, for the intervals in-between 

jumps, the head position was automatically corrected using the fact that flies walk forward most of the 

time. Manual annotation of 510 inter-jump-intervals revealed that 98% were correctly classified.  

2.5.6 Behavioral classification 

Raw trajectories of head and body centroids were smoothed using a Gaussian filter of 16 frames (0.32 

s) width. The width was chosen empirically by comparing the raw and smoothed tracks. The speed 

was measured from the smoothed coordinates by calculating the distance covered from the current 

frame and the next frame, divided by the time between them (0.02 s). Similarly, the angular speed was 

measured by calculating the difference between the heading angle from the current frame and the 

next frame, divided by the time between them. The heading angle for this calculation was obtained 

from the head and tail smoothed centroids. Walking and non-walking instances were classified 

applying a 2 mm/s threshold in the head speed, based on the distribution of head speed for AA-

deprived flies in Figure 2.11A and previous studies (J.-R. Martin 2004; Robie, Straw, and Dickinson 

2010). The head speed used was also smoothed using a Gaussian filter of 60 frames (1.2 s) to avoid 

rapid changes in classification around the thresholds. Sharp turns were classified when a local 

maximum in the angular speed exceeded a 125º/s threshold, as long as the body centroid speed was 

below 4 mm/s.  A wider Gaussian filter (width of 2.4 s) was applied to the head speed to classify 

resting bouts, using a threshold of 0.2 mm/s. The remaining events during the non-walking segments 

that were not classified as resting were classified as micromovements.  

2.5.7 Food encounters, micromovements, and visits  

Manual annotation of 107 feeding events showed that when the head position was at 3 mm or less 

from the center of the food patch, flies were already close enough to have leg contact. Initially, 

encounters with a food patch were defined as the moments in which the fly crossed this 3 mm 

distance threshold. To avoid misclassifying the transient head movement associated with grooming or 

feeding around this threshold as new encounters, consecutive encounters were merged when the total 

displacement of the head in any direction was lower or equal than to 2 pixels (0.31 mm) during the 

time elapsed in-between the encounters. From each feeding event, the distance from the head of the 

fly to the center of the patch was also captured. Since 95% of the first proboscis extensions happened 

below 2.5 mm, this was the selected distance threshold to define yeast and sucrose micromovements 

(Figure 2.11D). In this way, food micromovements were defined as the time in which flies were 

classified in a micromovement (see definition in previous section) and their head was simultaneously 

inside a circle of 2.5 mm around the food patch (see gray dashed line in Figure 2.1D inset). The 2 

pixels displacement rule used in the definition of encounters was also applied here to avoid definitions 

of false new micromovements. A visit was defined as a series of consecutive food micromovements 

(already corrected for small displacements) in which the head distance to the center of the food patch 

was never larger than 5 mm during the time elapsed in-between the food micromovements (Figure 
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2.1D inset). 5 mm is the maximum radius of non-overlapping circles around the food patches (see 

gray dashed line in main trajectory of Figure 2.1D). This 5 mm threshold was also used to merge 

consecutive encounters (consecutive encounters were merged if the head distance to the center of the 

food patch was never larger than 5 mm during the time in-between encounters). In this way, for every 

visit there is an encounter, but there can be an encounter and no visit if the fly does not stop at the 

food patch (food micromovement). 

2.5.8 Exploitation, exploration and locomotor activity parameters 

All of these parameters, unless specified otherwise, were calculated for each fly and for the whole 

duration of the assay.  

1. Yeast (or sucrose) micromovements: Events in which the fly was micromoving (0.2 mm/s < 

head speed < 2 mm/s, see Behavioral classification section for details) on the food patch 

(head position ≤ 2.5 mm). 

2. Total duration of yeast (or sucrose) micromovements (min): Sum of the durations of all 

yeast (or sucrose) micromovements. Initially calculated in frames and converted to minutes by 

dividing by the frame rate (50 frames per second) and dividing by 60. 

3. Fraction of yeast non-eaters: Number of flies with a total duration of yeast visits lower than 1 

minute divided by the total number of flies in that internal state condition. 

4. Coefficient of variation: Standard deviation divided by the mean of the total duration of yeast 

micromovements for each internal state condition.  

5. Cumulative time of yeast micromovements (min): Cumulative sum of frames in which the 

fly was in a yeast micromovement, converted to minutes as described for parameter 2. 

6. Yeast (or sucrose) visits: Series of consecutive food micromovements in which the head 

distance to the center of the food patch was never larger than 5 mm during the time elapsed 

in-between the food micromovements. 

7. Total duration of yeast visits (min): Sum of the durations of all yeast visits. Durations of 

visits were calculated similarly to parameter 2. 

8. Number of yeast encounters: Sum of all yeast encounters. 

9. Rate of yeast encounters: Sum of all yeast encounters divided by the time spent walking 

outside the food patches. 

10. Probability to engage a yeast patch: Number of encounters with yeast that contained at 

least one yeast micromovement, divided by the total number of yeast encounters. 

11. Average duration of yeast visits (min): Sum of all the durations of yeast visits divided by the 

total number of yeast visits. 

12. Number of yeast visits: Sum of all yeast visits. 

13. Rolling median of total duration of yeast visits (min): Sum of the duration of all yeast visits 

that occurred within a 5 minute sliding window with a step of 4 minutes. 

14. Latency to long yeast visit (min): Time elapsed from the beginning of the assay until the fly 

engages in a visit which is at least 30 seconds long. 
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15. Average minimum distance from yeast (mm): Average of the minimum head distance to the 

center of the yeast patch for each visit, across all yeast visits.  

16. Average area covered during yeast visits (pixels): Average across all yeast visits of the 

number of different pixels covered by the head of the fly during each yeast visit. 

17. Speedbody during yeast visits (mm/s): Average of body centroid speed across all frames in 

which the fly was inside a yeast visit. Calculation of speed was as described in the behavioral 

classification section and then smoothed using a Gaussian filter of 60 frames (1.2 s). 

18. Angular speed during yeast visits (º/s): Average of angular speed across all frames in 

which the fly was inside a yeast visit. Calculation of angular speed was as described in the 

behavioral classification section. 

19. Transition probability to a distant yeast patch: Number of visits to a distant yeast patch 

divided by the total number of yeast visits. Visits to distant yeast patches were of two kinds: 

either the distance between the previous and current patch centers was > 16 mm or the 

distance from the fly head to the center of the previous patch was > 16 mm at any point during 

the inter-visit-interval. Only transitions between visited yeast patches were considered. 

20. Transition probability to an adjacent yeast patch: Number of visits to an adjacent yeast 

patch divided by the total number of yeast visits. Two patches were defined as adjacent if the 

distance between their centers was ≤ 16 mm. Only transitions in which the distance from the 

fly head to the center of the previous patch was ≤ 16 mm during the whole inter-visit-interval 

were considered. Otherwise, the transition was classified as to a distant yeast patch (see 

parameter 19). Only transitions between visited yeast patches were considered. 

21. Transition probability to the same yeast patch: Number of visits to the same yeast patch 

divided by the total number of yeast visits. Visits to the same yeast patch were those in which 

the previous visit happened in the same patch as the current visit. Only transitions in which the 

distance from the fly head to the center of the previous patch was ≤ 16 mm during the whole 

inter-visit-interval were considered. Otherwise, the transition was classified as to a distant 

yeast patch (see parameter 19). Only transitions between visited yeast patches were 

considered. The values of the transition probabilities depicted as pie charts in Figure 2.5A-C 

are the medians shown in panels D-F scaled so they sum to 100%. 

22. Distance traveled to next yeast visit (mm): Average distance covered from the end of a visit 

to any food patch (yeast or sucrose) to the beginning of the next visit to a yeast patch.  

23. Yeast quartiles: The sum of the durations of all the yeast micromovements from the latency 

point (see parameter 14) onwards, was considered as 100% of yeast time, for a given fly. First 

yeast quartile (Q1) was the time elapsed between the latency point and the 25% of yeast time 

for that fly. Q2 was the time elapsed between 25% and 50% of yeast time for that fly. In the 

same way, Q3 went from 50% to 75% and Q4 from 75% to 100% of yeast time for that fly.  

24. Speed outside food patches (mm/s): Similar to parameter 17, but for all frames in which the 

fly was not engaged in a food visit. In Figure 2.7G, this parameter was calculated only for the 

latency period (parameter 14). 
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2.8 Supplementary figures 

 

Figure 2.11 – Ground truthing of behavior 

(A) Normalized histogram of head speed of amino acid-deprived mated females (AA- diet)  from two independent 
video tracking experiments: orange lines represent data obtained from an assay in which the arena contained 9 
yeast and 9 sucrose patches; black lines represent data obtained from an assay in which the arena contained 18 
agarose patches (no food). For each experiment, the speed was calculated for periods inside and outside food 
patches. Vertical dashed gray lines in main panel and insets indicate the speed thresholds used to classify resting 
(0-0.2 mm/s), micromovement (0.2 - 2 mm/s) and walking (> 2mm/s). Insets are a zoom-in of the indicated 
regions of the main histogram. Black and orange lines indicate mean and shaded area s.e.m. (B) Normalized 
histogram of the head speed displayed during manually annotated behaviors. (C) Proportion of manually 
annotated behaviors observed during yeast (left) or sucrose (right) micromovements. (D) Cumulative histogram of 
head positions during the first annotated proboscis extension in a yeast patch. 
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Figure 2.12 – flyPAD setup, sucrose sips and yeast sips dynamics 

(A) Schematic of flyPAD arena, adapted from (Itskov et al. 2014). (B) Effect of internal states on the number of 
sucrose sips. Experimental groups are: Mated (filled circles) and virgin (open circles) females pre-fed 3 types of 
holidic media: AA+ rich, AA+ suboptimal and AA-. The concentration of yeast and sucrose in the food patches 
was the same used in the video tracking assay. (C) Cumulative number of yeast sips of flies in the five internal 
state conditions indicated. Line represents the mean and the shading the s.e.m. 

 

 

Figure 2.13 – Sucrose 
micromovements 

Effect of internal state on the total 
duration of sucrose micromovements 
obtained from the video tracking assay. 

 

 

Figure 2.14 – Fraction of yeast non-eaters and coefficient of 
variation for yeast micromovements 

(A) Effect of internal states on the proportion of yeast non-eaters. A 
yeast non-eater is a fly for which the total duration of yeast visits was 
lower than 1 minute. Significance was tested by a 2 x 2 Fischer’s 
exact test using the modified Wald method (Agresti and Coull 1998) 
with Bonferroni correction. (B) Effect of internal states on the 
coefficient of variation for yeast micromovements (CV = SD/mean).  

 

Figure 2.15 – Yeast encounters and probability of leaving 

(A) Effect of internal state on the absolute number of yeast encounters. (B) Complementary cumulative 
distribution function for yeast visit duration. Single dots represent one yeast visit. All yeast visits belonging to all 
animals of the same internal state condition were pooled, ranked and plotted in the same color as indicated in 
(Clauset, Shalizi, and Newman 2009). 
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Figure 2.16 – Yeast visits dynamics and latency  

(A, B) Rolling median of the total duration of yeast visits (A) and average duration of yeast visits (B) using a 5 
minute window and a step of 4 minutes for flies fed a rich diet (purple), suboptimal diet (yellow), and AA-deprived 
flies (red). (C, D) Ethograms from Figure 2.2D showing the latency to engage in the first “long” (≥ 30s) yeast visit 
for each fly of the indicated condition as a blue dot. 

 

 

Figure 2.17 – No effect on local exploration of yeast patches for flies pre-fed a suboptimal diet 

(A) Effect of AA challenges on the average minimum distance to the center of yeast patches, during a yeast visit. 
(B) Effect of AA challenges on the body centroid speed, during a yeast visit. (C) Effect of AA challenges on the 
angular speed, during a yeast visit. 
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Figure 2.18 – Modulation of yeast feeding program microstructure by AA challenges 

 (A) Schematic of feeding program microstructure. Two components of the feeding microstructure can be 
modulated to reach protein homeostasis:  the number of sips inside each feeding burst (blue shading) and the 
inter-burst interval (IBI). (B) Mean inter-burst-interval duration. (C) Mean number of yeast sips inside a feeding 
burst. 

 

Figure 2.19 – Dynamics of yeast-yeast transitions in single flies  

Ethograms showing the yeast visits for each fly (each row is a single fly) along the 120 min of the video tracking 
assay, for the indicated condition. Colors indicate if the food patch previous to every yeast visit was the same 
(orange), an adjacent (blue) or a distant one (black). Pie charts indicate the accumulated median transition 
probabilities by the end of the assay, for the indicated condition (same as Figure 2.5A-C). 

 

Figure 2.20 – Exploitation parameters in AA-deprived flies revert back to fully-fed values 

(A-C) Exploitation parameters from first yeast quartile (Q1) and fourth yeast quartile (Q4) of AA-deprived mated 
females compared to the values observed in flies pre-fed a rich and a suboptimal diet along the 2 hours of the 
video tracking assay. (A) Average minimum distance of the head to the center of the yeast patch, (B) angular 
speed, during yeast visits. (C) Average duration of yeast visits. ns, not significant (p ≥ 0.05), ***p < 0.001, 
significance was tested by Wilcoxon rank-sum test with Bonferroni correction. 
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Figure 2.21 – Yeast dynamics of Orco mutant flies  

Cumulative duration of yeast micromovements. Gray lines correspond to single flies. Thick colored lines indicate 
median. 

 

 

Figure 2.22 – Octopamine mediates postmating response to yeast 

(A-C) Effect of TH mutation on the postmating change in foraging parameters, obtained using the video tracking 

setup: (A) total duration of yeast visits, (B) probability of engaging a yeast patch and (C) average duration of yeast 

visits for AA-deprived Canton S and ThnM18 females. (D) Effect of TH mutation on the increase of yeast sips 
after AA deprivation in virgin females, using the flyPAD assay. ns, not significant (p ≥ 0.05), *p < 0.05, **p <0.01, 
***p <0.001, significance was tested by Wilcoxon rank-sum test with Bonferroni correction. 
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 Behavioral setup and pre-analysis 

algorithms 

In this chapter, I describe in further detail the design and characteristics of the tracking setup and the 

behavioral arenas; I also describe the logic behind the algorithms used to acquire the information 

about the fly’s position and orientation, as well as other important algorithms for the automatic 

detection of food patches in the arena and for handling the information about the different 

experimental conditions of each individual fly such that data retrieval during the data analysis phase 

was easy and practical. 

3.1 Behavioral setup 

Four independent tracking setups containing 3 behavioral arenas each were built using the tools 

provided in the workshop of the Champalimaud Center for the Unknown and the prototyping machines 

in FABLAB EDP (http://fablabedp.edp.pt). For the box, I used 2 mm x 2 mm aluminum rails (Figure 

3.1A). The video cameras used were Genie HM1400 series, resolution: 1400 x 1024, maximum 

framerate at full resolution: 75 fps, pixel size: 7.4 m x 7.4 m, CMOS sensor with size 10.40 mm x 

7.60 mm (12.88 mm diag.), output: gigabit Ethernet. Lens: Óptica Cinegon 1.9/10 mm 1", Serie 

compact 400-1000nm. The videos captured the behavior of the flies at a frame rate of 50 Hz with a 

resolution of 1400 x 478. 

The arenas were designed in Google SketchUp (Figure 3.1B) and had a modular design, such that the 

inner area could easily be removed and replaced with different designs of the food patch distribution 

(Figure 3.1B and Figure 3.1C inset). The outer area was designed with a slope of 10º to prevent the 

flies from walking on the ceiling and thus to allow for a top-view of the fly throughout the whole 

experiment (Simon and Dickinson 2010). In order to keep the arenas in a fixed position with respect to 

the cameras and to facilitate the insertion of the flies at the beginning of the experiment, I designed a 

support where all the arenas and the glass lid could slide in (Figure 3.1C, piece in gray). However, 

bringing this design to real life proved to be difficult and expensive, so instead, I used the FABLAB 

EDP facility to create 3D-printed corners that fulfilled the same purpose and were both cheap and 

easy to manufacture (Figure 3.1D). The outer piece or base of the arenas was created in the milling 

machine, also in FABLAB EDP (Figure 3.1E). After this, it was necessary to polish them carefully 

using a file and sandpaper. The final product is shown in Figure 3.1F and the final assembly in Figure 

3.1G. The details of the food patch distribution used in the experiments are shown in Figure 3.2. 

To provide illumination I added two sets of white LEDs: one below the arenas, covered by a white 

acrylic sheet (backlight illumination) and one on all four walls of the box (Figure 3.1A). A white 

cardboard arch was used to improve illumination to reflect light towards the arenas. 

http://fablabedp.edp.pt/
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The videos were acquired with high overexposure to reduce the size of the video file and facilitate the 

detection of the fly as the blob with highest contrast against the white background. 

 

Figure 3.1 – Foraging setup and arenas manufacturing 

(A) Schematic of the image-based tracking setup. A video camera is placed on top of three foraging arenas that 
contain a single fly each. (B) Foraging arena with 9 sucrose and 9 yeast food patches (top). Side view and 
dimensions of the foraging arenas (bottom). (C) Three arenas fit in one support to maintain a fix position with 
respect to the camera. Each arena is composed by two pieces: a base and an inner dish that can have different 
distribution of locations for the food patches. All arenas are covered with glass lids. (D) 3D-printed corners that act 
as support instead of the one depicted in C (gray). (E) Arenas as they come out of the milling machine. (F) Arenas 
after polishing. (G) Final arena assembled into the support and covered with the glass lid. 

 



Behavioral setup and pre-analysis algorithms 51 

 

 

 

Figure 3.2 – Food patch geometry 

3.2 Automatic detection of food patch positions 

Monitoring the activity of the fly with respect to the food requires that the position of each one of the 18 

spots is determined accurately. Therefore, I developed a food patch detection algorithm that uses the 

information of a predefined geometry template and built-in machine-vision algorithms to obtain the 

position of the spots in the arena in an automated way. 

 

Figure 3.3 – Automatic detection of food patch position 

(A) From left to right: Raw image from the arena with the food patches and the fly; automatic detection of yeast 
spots based on contrast and circular shape using circular Hough transform (blue circles); predefined spot 
positions template is a function of the center of the arena [Xc,Yc], the distance from the center to the outer 

patches r, and the rotation angle ; superposition of the predefined template (in yellow circles) over the detected 

yeast spots (blue circles). (B) Close up to detected yeast spots. Hot colors indicate low pixel intensity. In this 
particular example, the fly erroneously detected as a food patch, but both its median intensity and its ellipsoid 
shape are outliers and are used to distinguish it from the yeast patches. 
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Figure 3.3A displays the main sequence of steps in this algorithm: first, high-contrast circular shapes 

are automatically detected using the circular Hough transform (built-in MATLAB function imfindcircles), 

then, the geometry template is superimposed to the detected circles and the parameters and 3 

parameters are iterated to reach the smallest distance between corresponding patch centers: the 

center of the arena, the outer radius and the rotation angle. In some occasions, the fly was detected 

as a high-contrast circular shape as well, or the fly was on top of one of the spots. These cases were 

identified by detecting a simultaneous outlier in both the median intensity of the objects detected and 

the major-to-minor axis ratio, as shown in Figure 3.3B.  

3.3 Tracking algorithm 

We developed a simple tracking algorithm in MATLAB (Mathworks) that generated as output the body 

centroid, the major axis length and the orientation of the fly blob (Figure 3.4). To focus the analysis on 

the region of interest, we applied a mask to the raw image; then, a simple threshold was enough to 

isolate the fly as the blob of interest since there was only one fly per arena. Once isolated, a set of 

features characterizing that blob such as centroid, orientation, area, major and minor axis length were 

obtained using MATLAB’s built-in function regionprops.  

 

Figure 3.4 – Main steps of tracking algorithm 

The main steps of the tracking algorithm are: 1) a mask is applied to the raw image of the arena and the fly to limit 
the analysis on the region of interest. 2) A pixel intensity threshold isolates the fly as the darkest object on the 
arena. 3) A blob analysis using the MATLAB’s built-in function regionprops provides the centroid, orientation and 
major axis length of the identified blob.  

To avoid confusing small dirt as flies, we also set a minimum threshold on the blob area of 20 pixels 

and selected the largest blob after the threshold was applied. Since the most time-consuming step of 

the tracking algorithm was the frame reading step, we added a line of code to load 500 frames 

simultaneously into memory, such that the subsequent processing of those frames was much faster. 
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3.3.1 Implementation of tracking algorithm in MATLAB 

Table 3.1 shows the tracking code written in MATLAB for the left arena. 

Table 3.1 – Tracking algorithm in MATLAB (example for left arena) 

% ------------------------------------------------------------------------ 

% Code to track a single fly (in multiple arenas) body position to have 

% kinematic quantification of 2D-translation  

% in the 2-choice multiple-spot feeding assay of Veronica (Ribeiro lab) 

% by Veronica Corrales-Carvajal, Teresa Montez, José Cruz and  

% Alex Gomez-Marin, Nov 2013 

% ------------------------------------------------------------------------ 

  

clear 

close all 

format compact 

  

videoPath = 'C:\Users\Public\Videos\Recordings Fly Tracker Prject\Exp 3\'; 

param.arenaThreshold=130; 

  

Filenames={... 

'0003A03R05Cam03P0WT-CantonS.avi';... 

'0003A03R05Cam04P0WT-CantonS.avi';... 

}; 

  

for lfilename=1:length(Filenames) 

    filename = Filenames{lfilename}; 

    param.filename=filename; 

     

    % data file (directly from video) 

    VideoRaw=VideoReader([videoPath filename], 'Tag', 'My reader object'); 

    load('mask.mat'); 

     

    fps=VideoRaw.FrameRate; 

    maxFrame=VideoRaw.NumberOfFrames; 

     

    % select initial and final frames (and time coarsening, if necessary) 

    iniFrame=1; % 

    finalFrame=maxFrame; 

    cgTime=1; % we do not skip frames 

    param.Finalframe=finalFrame; 

    param.cgTime=cgTime; 

     

    param.frameH=VideoRaw.Height-15; 

    param.frameWL=floor(VideoRaw.Width/3)-10;%Width of left arena 

         

    % and where I will save all the position data 

    frames2analyse=iniFrame:cgTime:finalFrame; 

    FlytracksL=nan(length(frames2analyse),6); 

          

    % JAC's code 

    MAX_FRAME = 500; 

    count = MAX_FRAME; 

    % ---- 

    frameCount=0; 

    for lframe=frames2analyse 

        frameCount=frameCount+1; 

        %% Reading frame %% --> JAC's code. 

        if( count == MAX_FRAME ) 

            if (lframe+count-1)<finalFrame 

                flymoviedataBatch = read(VideoRaw,... 

                    [lframe lframe+count-1]); 

                count = 1; 

            else 

                flymoviedataBatch=read(VideoRaw,[lframe finalFrame]); 

                count=1; 

            end 

             

        end 

        i500 = flymoviedataBatch(:,:,1,count); 

        count = count + 1; 

         

        %% Thresholding Fly %% 

        clear flyData flyshape 



54  Behavioral setup and pre-analysis algorithms 

        flyData = not(im2bw(i500, param.arenaThreshold/255)) * 255; 

        flyshape=uint8(flyData).*mask; 

         

        for arena=1%:3 

            if arena==1 

               yCrop=1; yCrop2=param.frameH; xCrop=1;xCrop2=param.frameWL; 

            % write here the cropping values for the other arenas 

            end 

            %% crop it to the arena-of-interest reference frame 

            i=flyshape(yCrop:yCrop2,xCrop:xCrop2); 

 

            %% Extracting Blob properties 

            % count objects and properties necessary 

            [L,numobj] = bwlabel(i,8); 

            regprops=regionprops(L,'Centroid','Area','Orientation',... 

                'MajorAxisLength','MinorAxisLength'); 

            % and keep the largest dark-enough object,  

            % hoping in this case it is the fly 

            bigobject1=find([regprops.Area]==max([regprops.Area])); 

            Arees0=[regprops.Area]; 

             

            % and set a threshold in case the animal disappears,  

            % not to track a small dirt 

            Athr=20; % NOTE: HEURISTIC VALUE  

            % (we do not need it if the fly does not ever leave the arena) 

            if Arees0(bigobject1)>Athr 

                bigobject=bigobject1(1); 

                centr=regprops(bigobject).Centroid; 

                % the lovely centroid locations 

                xc=centr(1); 

                yc=centr(2); 

                or=regprops(bigobject).Orientation; 

                MajAx=regprops(bigobject).MajorAxisLength; 

                MinAx=regprops(bigobject).MinorAxisLength; 

                A=regprops(bigobject).Area; 

            else % we could skip if there is always a large enough fly 

                xc=NaN; yc=NaN; xrh=NaN; yrh=NaN; xrt=NaN; yrt=NaN; 

            end 

             

            %% Saving all parameters in separate for each arena %% 

            if arena==1 

                FlytracksL(frameCount,:)=[xc yc or MajAx MinAx A]; 

            end 

        end 

    end 

    save FlytracksL.mat FlytracksL param filename 

end 

% ------------------------------------------------------------------------ 

% final comments: note that the units of positions are in pixels 

% ------------------------------------------------------------------------ 

%% To plot the fly shown in Figure 3.4 for a desired frame: 

% Acquire the surrounding polygon in the desired frame using the following 

% line when extracting centroid, area and other properties: 

% Spolygon=regprops(bigobject).ConvexHull; 

% And assuming that xc, yc, or and MajAx are the x and y positions, 

% orientation and major axis length, respectively, for the desired frame: 

nicebluecolor=[86 180 233]/255; 

niceorangecolor=[230 159 0]/255; 

flymoviedata=VideoRaw.read(desired_frame); 

imshow(flymoviedata) 

hold on 

plot(Spolygon(:,1),Spolygon(:,2),'-','LineWidth',3,'Color',nicebluecolor) 

Majoraxisbody(1,1)=xc-MajAx/2.3*cosd(or); 

Majoraxisbody(2,1)=xc+MajAx/2.3*cosd(or); 

Majoraxisbody(1,2)=yc+MajAx/2.3*sind(or); 

Majoraxisbody(2,2)=yc-MajAx/2.3*sind(or); 

plot(Majoraxisbody(:,1),Majoraxisbody(:,2),'-m','LineWidth',3,... 

    'Color',niceorangecolor) 

plot(Majoraxisbody(:,1),Majoraxisbody(:,2),'om','LineWidth',3,... 

    'MarkerSize',7,... 

    'MarkerFaceColor',niceorangecolor,'MarkerEdgeColor',niceorangecolor) 

plot(xc,yc,'og','LineWidth',3,'MarkerSize',7,... 

    'MarkerFaceColor',nicebluecolor,'MarkerEdgeColor',nicebluecolor) 
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3.3.2 Implementation of tracking algorithm in Bonsai 

In order to track more videos in less time, we also implemented the described tracking algorithm in 

Bonsai, a visual programming framework developed by colleagues at the Champalimaud Center for 

the Unknown (Lopes et al. 2015). The Bonsai workflow of the tracking algorithm is shown in (Figure 

3.5). This new implementation successfully yielded the same outputs as the MATLAB algorithm but 

much faster: while the processing of a 2-hour-long video (360x103 frames, 3 arenas) in MATLAB took 

4 hours, Bonsai took only 30 minutes to yield the same output.  

 

Figure 3.5 – Tracking algorithm implemented in Bonsai 

The bonsai programming framework is used to extract centroid, orientation and major axis length of the fly blob 
(Lopes et al. 2015). Each circle is a data-processing node: the filecapture node loads the video (if double-clicked, 
Bonsai will display the video as shown under the “File Capture” label. The output of the Threshold node is also 
shown. The crop node divides the frame into the left, center and right arena and then the blob analysis is 
executed for arena independently and in parallel (output shown under the label “binary region analysis”). The zip 
node combines the output data into a single table that is then printed as a csv file using the csvwriter node. 

Figure 3.5 also makes evident the usefulness of Bonsai in data processing: an algorithm that is written 

in more than 100 lines in MATLAB, can be created in Bonsai in just 1 minute by using its node 

structure and user-friendly visual interface that makes every step of the algorithm easy to follow and 

understand. 
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3.3.3 Head detection algorithm 

We then developed a second algorithm, this time only in MATLAB, to extract the head position. This 

algorithm combined two strategies: First, we manually set the position of the head of the fly in the first 

video frame and used it to classify the end points of the major axis (see Figure 3.4, “candidates for 

head centroid”) into head or tail based on a proximity rule (Gomez-Marin, Stephens, and Louis 2011): 

given that we have a high enough framerate (50 fps), the distance D1 between the head position of 

the fly in the current frame (time t) and the head position in the previous frame (time t-1) will be smaller 

than D2, the distance to the tail position in the previous frame (Figure 3.6A), therefore, as long as 

there are no jumps, it is possible to propagate the assignation of head and tails from the first frame 

using this rule.   

 

Figure 3.6 – Parameters used in the head detection algorithm 

(A) Distance rule. The head position assignation is propagated as long as the fly does not jump using the 
distance rule: First, we manually define the head in the first frame (time t-1), then, given that D1 < D2, it is 
possible to assign the head at t and continue to do so on the following frames. (B) Speed threshold used to 
detect jumps (horizontal magenta line) applied to the smoothed speed (red). The heading (blue) and the raw 
speed (black) are also shown. (C) To determine the forward/not-forward walking bouts, a threshold was applied 

on , the angle between the walking direction vector (vector joining body centroid in time t with body centroid in 

time t-1, blue arrow) and the heading vector (vector joining the head and the body centroid at time t, orange 
arrow). (D) In some exceptional occasions, flies walk backwards/sideways (not forward) for more than 2 body-
lengths. 

However, this proximity rule becomes invalid when the fly jumps. To detect the jumps, the raw speed 

was smoothed using a sliding average with a very short window of 60 ms (Figure 3.6B). Then, the 

threshold for a jump was set at 4*average walking speed, where the average walking speed was 

defined as speed > 4 mm/s. To correct the head position in the intervals between jumps, we scanned 

for periods in which the fly covered a distance of at least 2 body-lengths (~40 px) in which the angle 

between the heading and the walking direction vectors (, Figure 3.6C) was between [-80º, 80º] for at 

least 75% of that time. When these criteria were met, we assumed the fly was walking forward and 
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therefore, the head assignment was correct. If on the contrary, 75% of the time the fly appeared to be 

walking backwards during that distance, then the head assignment was inverted. Finally, if none of 

these criteria were met (see Figure 3.6D for an example), the parameters to defined forward direction 

were loosened to  between [-90º, 90º] for more than 50% of the time on any distance segment. Since 

this last criteria was much more lose and prone to error, 510 of these problematic segments (found 

across 136 flies) were manually annotated and only 2% of them had an incorrect classification of head 

and tail positions. Therefore, combining the proximity rule with the forward walking rule produces a 

robust algorithm that can correctly track the head position of the fly across time. 

3.4 Structure array with information about each individual fly 

An important step before the analysis of the acquired data is organizing the information about each 

individual fly such that comparison across different type of experimental conditions is easy and fast. 

For this an excel table was created with all the information of the experimental conditions of the flies 

recorded in each video, such as genotype, metabolic state, mating state, concentration and 

distribution of food patches, the video filename, among others  (Figure 3.7A). Since the values in this 

table were numerical (to facilitate posterior analysis in MATLAB), the label corresponding to each 

number is explained in a different tab (Figure 3.7B). The information on the first table (Figure 3.7A), 

was then saved in a structure array called “FlyDB” in MATLAB (Figure 3.7C), while the information 

about the labels that correspond to each number (Figure 3.7B) was saved in another structure array 

called “LabelsDB”. 

The filename of each recorded video was also designed to store information about the genotype, 

experiment Nº, the run of the day in which it was acquired, among others. The details about the 

specific structure of the video filenames are described in Table 3.2.   

Table 3.2 – Video filename structure 

Filename 
segment 

Description 
Nº of 
digits 

Examples 

1 Experiment Nº 4 “0003” 

2 
Experiment 
subdivision 

1 “C” 

3 Run Nº 2 
“01”, “02” or “03” for the corresponding run number during the 

day 

4 Repetition day 3 
“R01” (for the first day), “R02” (for the second day in which the 

same experiment was performed) 

5 Camera Nº 7 “Cam01P0”, “Cam02P0”, “Cam03P0”, or “Cam04P0” 

6 
Genotype 

Abbreviation 
10 “WT-CantonS” 

In this way, to select the data that was collected only on day 3, for example, one could use the video 

filename stored in the FlyDB.Filename field to create a logical vector:  

Logical_vector=cell2mat(cellfun(@(x)~isempty(strfind(x,'R03')),... 

{FlyDB.Filename},'uniformoutput',false)); 
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Figure 3.7 – Database with experiment information 

(A) All the information about the experimental conditions of the flies recorded in a given video is introduced 
initially in excel using numerical values for each type of experimental treatment. (B) The labels that 
correspond to each numerical value stored in (A) are shown in a different tab “Number Code”. (C) The 
information in (A) is then transformed in MATLAB and saved as a structure array. Each field (row) contains 
the information for one single fly.  
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Or to select all flies of one particular condition stored in FlyDB, for example ‘virgin’, simply use: 

Logical_vector=[FlyDB.Mating]==Number_Index 

Where the Number_Index is the row number in LabelsDB.(DesiredTreatmentType) where the 

number corresponding to the treatment is stored. For example, for virgin flies, the Number_Index 

would be: 

Number_Index=find(cell2mat(cellfun(@(x)~isempty(strfind(x,'Virgin')),... 

    LabelsDB.Mating{2},'uniformoutput',false))); 

Finally, a very useful application of these numbers is the creation of a condition index. Since each type 

of experimental treatment has a corresponding number, it is easy to create a simple mathematical 

formula that generates a different condition number for all possible combinations of treatments. For 

example, if we have 2 types of mating state and 3 types of metabolic states, one can have 6 possible 

combinations (Table 3.3) and the formula to obtain the condition index in function of a given mating 

and metabolic state is: 

Condition_Index = Total_Metabolic*(MatingState-1) + MetabolicState 

Where Total_Metabolic is the total number of metabolic states, MatingState is the number of 

the corresponding mating state and MetabolicState is the number of the corresponding metabolic 

state. 

Table 3.3 – Condition index example 

  

Metabolic State 

1: AA+ rich 
2: AA+ 

suboptimal 
3: AA- 

Mating 
State 

1: Mated Cond 1 Cond 2 Cond 3 

2: Virgin Cond 4 Cond 5 Cond 6 

To add a third experimental treatment type, one can imagine Table 3.3 with different layers, in which 

each layer is a different genotype, for example. In that case, the formula to obtain the condition index 

would be: 

Condition_Index = Total_Metabolic*(MatingState-1) + MetabolicState +... 
    (Total_Metabolic*Total_Mating)*(Genotype-1) 

3.5 Conclusion 

In this chapter I’ve described the algorithms that were used to extract the body and head centroids of 

the flies, the position of the food patches in the arenas and the way in which the different experimental 

condition information was stored in MATLAB for further use in the data analysis. 
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 Analysis of behaviors associated with 

nutrient decisions 

This chapter is dedicated to tell the story behind the story told in Chapter 2. I have divided this chapter 

in four sections. Section 4.1 shows the characterization of the locomotor activity of the flies in an arena 

with and without food patches. I also explore the orientation and movement patterns of the fly with 

respect to the food in an attempt to gain insight in how flies approach the food that can later be used 

to dissect the contribution of olfaction, gustation and sight in the finding and recognition of yeast at 

short range.  

In section 4.2 I show how different analysis tools can be used to study the behavior associated with 

nutrient decisions. First, I describe a method that could be used to classify behaviors based on the 

distributions of relevant kinematic parameters for those behaviors. Then, I show how one could use a 

Bayesian classifier to predict the internal state of a fly based on its behavior. Next, principal 

component analysis was used to pinpoint the biggest behavioral differences between two close 

metabolic states. Bioinformatic tools were also used to create a tree of similarity between the 

behavioral sequences. The behavior of the flies belonging to different clusters was studied for each 

internal state condition.  

Section 4.3 briefly shows the dynamics of yeast and sucrose decisions for each fly in belonging to 4 

different internal state conditions. Then, I briefly discuss how AA-deprived flies at the end of the 2 

hour-assay do not yet display the exploratory behaviors of fully fed flies. 

In the last section of this chapter, I discuss some preliminary results on the modulation of olfaction by 

AA deprivation and on the role of taste in sustaining the interest on yeast in AA-deprived flies. I finalize 

by presenting results that suggest the involvement of octopamine in mediating the postmating 

increase of yeast feeding; findings that were published in Walker et al. 2015. 

4.1 Characterization of locomotor activity and exploration patterns in 

the foraging arena 

4.1.1 The effect of internal state on locomotor activity 

In addition to the quantification of the behavior of the flies on the food patches (described in detail in 

Chapter 2), image-based tracking allow us to look into the behavior of the fly around and far from the 

food. We used 2-dimensional histograms to characterize the positional preference and locomotor 

activity of the flies across different internal states (Figure 4.1). 
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Since the arena contains 3 symmetrical segments of 120º (Figure 4.1A), we pooled the positions of 

the flies of the 3 segments into 1 to improve the resolution of the histogram. We observed that mated 

flies prefer to spend more time in the outer yeast patches than in the inner ones (Figure 4.1B), while 

virgins prefer to spend more time in the edge ( > 25 mm) than in any kind of food patch. We then 

looked at the walking behavior of mated and virgin flies by quantifying how often a given combination 

of speed and moving direction was observed (Figure 4.1C). Virgin flies displayed higher walking 

speeds than mated flies (Figure 4.1D and E). AA-challenged flies (pre-fed a suboptimal diet or a diet 

without AA (section 2.5.2)) display lower speeds than flies pre-fed a rich diet (Figure 4.1F). 

Importantly, these differences in speed were not due to the increased feeding time of mated and AA-

challenged flies because we are only quantifying the speed outside the food patches. We evaluated if 

these differences in activity across internal states were specific to the presence of food by measuring 

the speed of flies in an arena containing only agarose patches (without nutritive food). Interestingly, 

 

Figure 4.1 – Characterization of positional preference and locomotor activity 

(A) Graphical representation of the tracking arena showing the value of the blue dot in polar coordinates. (B) 
Histogram of the position of all mated flies (left) and all virgin flies (right) in polar coordinates. The pixel color 
indicates the fraction of time that flies in the indicated condition spent in the corresponding location bin. Since the 
arena has three symmetric segments of 120º (as shown in A). (C) Graphical representation of the velocity and 
turning angle. (D) Histogram of velocity and turning angle displayed in the edge of the arena (see A) for all mated 
(left) and all virgin (right) flies. The pixel color indicates the fraction of time that the particular combination of 
speed and turning angle in that bin was observed. (E) The difference between the histograms in (D). (F) Effect of 
internal state on the locomotor activity of the flies measured by body centroid speed, in the presence of food. (G) 
Effect of internal state on body centroid speed in the absence of food (tested in an arena with agarose spots). 
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flies from all internal state conditions displayed very similar speeds in the absence of food (Figure 

4.1G). To investigate if there were other aspects of locomotor activity modulated by internal state in 

the absence of food, we measured other parameters such as distance covered (Figure 4.2A), 

percentage of time walking (Figure 4.2B), percentage of time in the edge of the arena (Figure 4.2C), 

edge activity (number of visits to the edge per second of walking) (Figure 4.2D), angular speed (Figure 

4.2E) and MSDR (a measure of stop and go motion) (Figure 4.2F). We found no significant differences 

across the internal states except in the edge activity, but that difference might be due to a technical 

issue with the arenas (data not shown).  

We must mention the fact that we did not test flies pre-fed a rich diet in the arena without food, which 

means that we still do not know if challenging flies with a suboptimal AA diet has an effect on overall 

locomotion. We can state that AA deprived flies show similar locomotor activity than flies pre-fed a 

suboptimal diet, however, as we concluded in section 2.3.5, the main difference between these two 

conditions is the eagerness of the flies to eat yeast, while the global foraging strategies were already 

very similar. Therefore, as the global effects of amino acid deprivation in foraging strategies are 

already observed when flies are pre-fed a suboptimal diet (compared to a rich diet), there is a strong 

possibility that we might be missing any existing effects of this deprivation in locomotor activity by not 

comparing to the flies pre-fed the rich diet. 

 

Figure 4.2 – Locomotor activity in the absence of food across different internal states 

Effect of internal state on a set of locomotor activity parameters. (A) Distance covered. (B) Percentage of time 
walking (walking bouts were defined in section 2.5.6). (C) Percentage of time in the edge of the arena (edge bouts 
happened when the fly was more than 25 mm away from the center of the arena). (D) Edge activity (number of 
visits to the edge per second of walking. (E) Angular speed outside the agarose patches. (F) Maximum speed to 
duration ration, calculated as the average of maximum speed during a walking bout divided by the duration of that 
bout as long as the bout was longer than 1 second. 
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4.1.2 Characterization of fly orientation towards food patches 

We then focused on characterizing the flies’ movement inside and around the food patches and its 

modulation by internal state by quantifying the angle of the moving direction vector with respect to the 

food patch (Figure 4.3A). Mated females tended to spend more time inside yeast patches rather than 

in their vicinity (distance from body centroid to patch center < 5 mm) (Figure 4.3B) and displayed 

angles that were mostly distributed around 0º and 180º, which means moving towards and away of the 

patch (either facing or giving the back to the patch), while virgins spent more time further away and 

moving in a tangential manner (angles around 90º). Both virgins and mated flies had a similar 

distribution towards sucrose: both further away and moving tangentially (Figure 4.3C). These 

distributions are exactly what was expected given what we learned in Chapter 2: mated flies that are 

AA-challenged prefer to feed on yeast, and when they feed they display a micromovement, a back and 

forth displacement of the body centroid which results in higher occurrences of angles around 0º and 

180º. On the other hand, virgins do not pay too much attention to the food patches at all, so they 

spend more time walking in between patches displaying a wider range of angles centered on 90º 

(tangential direction). 

We then focused on what happened around the food patches (and not inside) by excluding instances 

where the fly was within the feeding radius and expanding the radius around the patch (distance of 

body centroid > 3 mm and < 10 mm, see shaded areas in Figure 4.3D,E left schemes). Since we were 

looking at a larger radius, we focused on the edge area around the outer patches to avoid overlapping 

with the feeding radius of the neighboring patches. Surprisingly, the distributions for yeast (Figure 

4.3D) and for sucrose (Figure 4.3E) looked very similar, both for mated and virgin flies, with angles in 

the tangential direction prevailing over all others. This result might suggest that flies approach yeast 

and sucrose patches in a similar way and therefore that yeast olfactory cues do not play an important 

role in the preference flies display towards yeast.  

However, one of the setbacks of this analysis is that it was performed with body centroids and moving 

directions rather than with head centroids and actual orientation of the fly body towards the food patch. 

Therefore, we further apply the same analysis but now looking at the body orientation of the fly 

towards the food patch (Figure 4.4A). This time we also looked at the different metabolic states in 

addition to the mating states. As expected, as mated flies get more deprived from AAs they spend 

more time inside the yeast spots and the occurrences around 180º within the patch disappeared 

corroborating the supposition that those occurrences were due to the back and forth micromovements 

of the body centroid as the fly fed (Figure 4.4B, top panels).  
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Figure 4.3 – Characterization of flies’ moving direction with respect to food patches 

(A) Graphical representation of parameter β, the angle between the moving direction of the body centroid (black 

arrow) and the vector that joins the body centroid with the center of the food patch (blue dashed line). (B and D) 
Histograms of β and distance from yeast patches on the blue shaded area (left panel) for mated (center panel) 
and virgin (right panel) flies. (C and E) Histograms of β and distance from sucrose patches on the red shaded 

area (left panel) for mated (center panel) and virgin (right panel) flies. The pixel color indicates the fraction of time 

that the particular combination of β and distance to food was observed in that bin. 
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Figure 4.4 – Characterization of flies’ orientation with respect to food patches 

(A) Graphical representation of parameter α, the angle between the body orientation of the fly (black arrow) and 

the vector that joins the head centroid with the center of the food patch (green dashed line). (B and C) Histograms 
of α and distance from yeast patches on the blue shaded area (left panels) for the indicated internal state 

condition. (D) Histograms of α and distance from sucrose patches on the red shaded area (left panel) for the 

indicated internal state condition. The pixel color indicates the fraction of time that the particular combination of α 

and distance to food was observed in that bin. 
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The distributions of body orientation displayed by virgins are, however, very different from the ones 

observed in Figure 4.3B, with most of the orientations having a 

value around 140º with respect to the food patch. In a similar 

manner, the distributions of the orientation in the vicinity of 

outer yeast and sucrose patches show higher occurrences of 

140º angles. These results indicate that we are simply looking 

at the distributions of the flies’ walking pattern in the edge of the 

arena, rather than the distribution of the approach to food: when 

flies walk on the edge area, they maintain their body facing 

outside the arena, but they move sideways (Figure 4.5), which 

explains the observed differences between the moving direction 

and the body orientation with respect to the food patches.  

There are several setbacks with this approach: it does not take 

into account the dynamics, there is no discrimination between 

an approach that ends into a feeding event and one where the 

fly just passes by and the occurrences are based on time, not 

on number of approaches, so a fly that grooms for a long time next to a spot bias the whole 

distribution.  

There is a hypothesis we wanted to test but a good method to test it remained elusive to me: Flies 

decide to approach and engage (odorous) yeast patches at a distance based on olfactory and/or 

visual cues, while the approach to (odorless) sucrose patches could be random and the decision to 

engage could be taken only after leg contact (tarsal taste stimulation). There are a couple of 

snapshots, completely anecdotal that speak in favor of that hypothesis (Figure 4.6). To test the 

sucrose approach leg-contact-then-sip hypothesis, we would need to combine the flyPAD (Itskov et al. 

2014) with the tracking setup to be able to distinguish between a leg contact and a sip to the spot, but 

quantifying the decision point at which the turn towards yeast occurs at a distance requires more 

thinking about it. 

 

Figure 4.6 – Hypothesis about sucrose and yeast approach 

Hypothesis about yeast and sucrose approach and engage decisions: Flies could decide to approach and engage 
yeast patches at a distance based on olfactory and/or visual cues, but the approach to sucrose patches could be 
random and the decision to engage is taken only after leg contact (tarsal taste stimulation). 

 

Figure 4.5 – Fly walking in the edge 

Representative trajectory of a fly 
walking in the edge of the arena. Body 
centroid is shown by the blue line, 
head centroid by the gray line and blue 
arrows indicate body orientation.  
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4.1.3 Flies seem to be able to “mark the spot”  

In an attempt to know if flies remembered a given food patch, I quantified all the returns of a fly to 

every patch in the arena, independently of the stops she made in between (Figure 4.7A-C). The 

distributions of durations and distances covered during those returns were very similar for all the 

 

Figure 4.7 – Returns to patches 

(A-C) Example trajectories of the returns observed in yeast (A), sucrose (B) and agarose (C) patches. (D-F) Left 
panels: Distribution of the durations (left panels) and the distance covered (right panels) during the returns to 
yeast (D), sucrose (E) and agarose (F) for the indicated internal state conditions. 
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substrates: yeast (Figure 4.7D), sucrose (Figure 4.7E) and agarose (no food) (Figure 4.7F), 

suggesting that the observed returns might not be elicited by any food-related component. In fact, 

there is a common peak in the distance distribution (Figure 4.7D-F right panel, black arrow) around 

170 mm that falls between 157 mm and 188 mm, which are the values of the inner and outer 

perimeter of the edge ring (Perimeter of inner edge circle: π x 50 mm = 157 mm; perimeter of outer 

edge circle: π x 60 mm = 188.5 mm) which might be explained by flies recognizing the place where 

they last left the inner area and after a lap on the edge, they would return to the inner area in the same 

place where they left it. This is an interesting finding that inspires a set of interesting questions: How 

are flies able to recognize that they have given one turn on the arena’s edge? Are they marking the 

patch to which they are returning using a pheromone or are they remembering its position and 

integrating their way back? This seems to be independent of the path quality as they also do it for 

agarose patches.  

The high peak on very short distances covered during the yeast returns in the mated AA-deprived flies 

(Figure 4.7D right panel) is consistent with the previously described increased locomotor activity in the 

yeast patches (Figure 2.4F and J) and revisits (Figure 2.5F). As a matter of fact, the revisits we 

describe are actually defined as the fly staying in the vicinity (see section 2.5.8, parameter 21: 

transition probability to same yeast patch) and we know that if we remove this distance threshold (16 

mm), the results do not change, so staying in the vicinity is the main reason for an increased revisit 

probability and not an increase number of returns where the fly leaves far away from the spot. 

Therefore, the observed revisits do not support the hypothesis of memory or path integration in flies. 

However, at the time I did this analysis the concept of food micromovements did not existed. Also, the 

current foraging arena was designed without any visual landmarks. Therefore, further analyses in an 

arena with visual landmarks and even obstacles hiding the yeast spots or experiments in the dark are 

necessary to prove or disprove the conclusions here stated. 

4.2 Useful tools in the analysis of behavior 

One of the first steps in exploring new behavioral data sets is to simply calculate a set of parameters 

that help answering concrete questions about the behavior under study. In our case, we wanted to 

know how flies modulated their foraging and feeding behavior to satisfy their nutritional needs. In 

particular, we were interested in knowing the microstructure of yeast and sucrose visits: how often did 

they happen, for how long, the rate of approaches and returns. We were also interested in their 

exploratory patterns: were they focusing the exploration to a certain area of the arena or were they 

exploring the whole arena? Most of these questions were answered and discussed in Chapter 2 based 

on 24 parameters that have been described in detail in section 2.5.8. We also investigated the effects 

of internal state on the locomotor activity (Figure 4.1 and Figure 4.2) and on the walking patterns of 

the flies (Figure 4.3 Figure 4.4). In this section I describe further insight obtained from these 

parameters. 
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4.2.1 Defining a continuous metric to classify a specific behavior based on parameter 

distributions: a case example 

Studying the behavior associated to nutrient decisions requires the reliable identification of the 

moments in which the fly interacts with the food. Our first intuition was to simply set a threshold around 

each food patch and define contact or interaction every time the head of the fly crossed such threshold 

(Figure 4.8Ai). The speed at which the fly crosses this threshold is also important as it indicates the 

degree of interest towards the approached resource. We examined the joint probability distribution of 

these two parameters (speed and distance from patch center) for different substrates: agarose (Figure 

4.8Aii), yeast (Figure 4.8Aiii) and sucrose (Figure 4.8Aiv). We observed that flies prefer to remain in 

the edge of sucrose spots when compared to the yeast spots where they prefer to walk all the way to 

the center.  

We considered we could extract more information about the degree of engagement with the food if we 

used a probabilistic function on these parameters (speed and distance from the patch), rather than a 

simple threshold on them. By defining engagement with the food in terms of continuous functions of 

these parameters, we would have a continuous reporter of the degree of interest of the flies with the 

food from any position of the arena as opposed to just a binary indication of interaction. We call it 

“engagement” and not “feeding”, because we cannot tell apart grooming from feeding on the spot at 

the current video resolution. We therefore defined a new parameter Engagement Index as 

𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 =  𝑔(𝑑) ∗ ℎ(𝑠), where 𝑑 is distance from the head to the center of the spot in mm, 

𝑠 is speed of the body centroid in mm/s and 𝑔(𝑑) and ℎ(𝑠) are functions of 𝑑 and 𝑠 respectively, 

defined as follows: 

 1                      𝑖𝑓    𝑑 ≤ 1.9           1                      𝑖𝑓    𝑠 ≤ 1 

𝑔(𝑑) =           𝑁(1.9,0.4)    𝑖𝑓    1.9 < 𝑑 ≤ 4  ℎ(𝑠) =            𝑁(0.8,0.3)    𝑖𝑓    1 < 𝑠 ≤ 4  

 0                     𝑖𝑓     𝑑 > 4  0                     𝑖𝑓     𝑠 > 4 

 

The values used to define these functions were extracted from the observed distribution of the data 

(Figure 4.8B).  

The engagement index was quantified during manually annotated yeast feeding events (Figure 4.8C) 

and we observed that it indeed increased rapidly and reached its maximum value as the flies fed. 

However, one disadvantage of the current definition of engagement is that it penalized small speed 

bursts during a feeding event (Figure 4.8Cii lower panel), which later realized were good reporters of 

the eagerness to eat from the spot (Figure 2.4H). In fact, a characteristic profile of speeds over 0.5 

mm/s seems to be specific to the presence of food, since it is absent around agarose-only spots 

(Figure 4.8Aii-iv). 
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Figure 4.8 – Quantifying the activity of the flies with respect to the food patches. 

(A) Distribution of two kinematic parameters around the food patches: distance of the fly head to the center of the 
spot and speed of the fly. (Ai) Graphical representation of a fly close to a food patch. White circle represents 
head position and dotted orange line marks the edge of the food patches at 1.5 mm. (Aii) – (Aiv) Joint probability 
distribution of distance to the spot and speed for different spot composition: (Aii) Agarose, (Aiii) Agarose + Yeast, 
(Aiv) Agarose + Sucrose. Hot colors indicate higher probability of finding a particular pair of these parameters 
within the specified ranges (axes limits). (B) Functions of distance g(d), and speed h(s) that define the 

engagement index. Engagement index = g(d) * h(s). (Bi) The g(d) function, in red, reaches a maximum value of 1 

when the fly is very close or inside the spot (d ≤ 1.9 mm) and decays progressively as the fly gets further away 

from the spot, reaching 0 when the fly is no longer closer to that spot, but to the neighbor spot (d ≥ 4.8 mm). 
Some of the key values for this function were obtained from a fit to the observed distribution of distances of the 
head from the yeast spots, in green. (Bii) Similar to g(d), the h(s) function reaches a maximum value of 1 when 

the fly displays a low speed and decays progressively as the fly increases her speed. (C) Validation of the 
engagement index with manually annotated yeast feeding events. (Ci) Head trajectory during a representative 
yeast feeding event. Green dots mark the start and the end of the visit. Yellow circle represents the yeast spot. 
(Cii) Distance from spot, speed and engagement index during the yeast feeding event depicted in (Ci). Green 
dotted lines mark position in time of the start and the end of the visit. 
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The calculation of this parameter could allow 

the study the fly’s approach to the food 

patches as it assumed interesting shapes as 

the flies left the patch but remained in its 

vicinity (Figure 4.9). However, we still had to 

set thresholds to the start and end of every 

engagement bout to minimize the error in the 

calculation of the duration of a given feeding 

event. 

At this point, the reader might be wondering 

why we use thresholds at all, if the initial 

idea was to avoid their use. In practice, it is much easier to have a binary description of an event to be 

able to characterize it: When does it happen? How often? How long does it last? A binary description 

of an engagement event allowed us to characterize the interaction of the fly with the spot. To do so we 

needed to apply a threshold on the engagement function, and I decided to apply this threshold directly 

to the two initial kinematic parameters that were relevant to describe the interaction of the fly with the 

patch:  speed (the fly must be active but not displacing: 0.2 mm/s < speed < 2 mm/s) and distance 

from the food patch center (distance < 2.5 mm). In this way, the new parameter food micromovement 

was the definition used in the paper to describe engagement events and its definition is described in 

detail in sections 2.3.1 and 2.5.7. 

The engagement probability function could still be useful 

if we had similar probability functions describing 

competing behaviors, such as grooming or walking. In 

this way, the winning probability would allow a machine to 

classify the most likely behavior at any time point. 

Although this would have been an interesting method to 

classify multiple behaviors, I decided to focus only on the different levels of locomotor activity of the 

fly, by segmenting the linear and angular speed of the flies (Figure 4.10). The details of this 

classification are described in sections 2.3.1 and 2.5.6. 

4.2.2 A Bayesian classifier of internal state based on behavioral parameters 

The Bayes’ rule is a widely used method to make inferences based on previous evidence (Stone 

2013): 

𝑃(ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑖𝑠|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎|ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) × 𝑃(ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)

𝑃(𝑑𝑎𝑡𝑎)
 

In this equation 𝑃(𝑑𝑎𝑡𝑎|ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) is called likelihood and corresponds to the likelihood of observing 

the data given that the hypothesis is true. 𝑃(ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) is called the prior probability and corresponds 

to the probability that the hypothesis is true before observing the current evidence. 𝑃(𝑑𝑎𝑡𝑎) is called 

 

Figure 4.9 – Engagement signal of a fly in the proximity 
of a yeast spot 

 

Figure 4.10 – Speed segmentation 
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the marginal likelihood and corresponds to the probability of observing the data under all possible 

hypotheses and its calculated as the sum of likelihoods times priors. Finally, 𝑃(ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑖𝑠|𝑑𝑎𝑡𝑎) is 

called the posterior probability and it corresponds to our updated belief that the hypothesis is true 

given the new evidence or data. 

We can take advantage of this simple but powerful rule to predict the internal state of an individual 

based on its behavior. As an example, the distributions of positional preference shown in Figure 4.1B 

can be used as the likelihood distributions to predict the internal state of a given fly based on a 

random piece of its trajectory in the arena. In that case, the likelihood would be 𝑃(𝜃, 𝜌|𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖) and 

it would represent how probable it is to observe a set of positions in the arena given a certain internal 

state. The prior probability, 𝑃(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖), could simply be 1/(number of internal states being studied). 

And the posterior probability, 𝑃(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖|𝜃, 𝜌), is the probability that a test fly has a certain internal 

state condition given the observed trajectory. In summary: 

𝑃(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖|𝜃, 𝜌) =
𝑃(𝜃, 𝜌|𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖) × 𝑃(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖)

∑ 𝑃(𝜃, 𝜌|𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖) × 𝑃(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖)𝑖

 

Previous studies have shown that the Sex Peptide (SP), a peptide transferred from the male’s seminal 

fluid to the female during copulation, is responsible in mediating most of the female’s postmating 

behaviors including yeast preference and appetite (Liu and Kubli 2003; Chen et al. 1988; Ribeiro and 

Dickson 2010; Walker, Corrales-Carvajal, and Ribeiro 2015). In other words, females mated to SP 

deficient males will exhibit low yeast appetite, while females mated to SP control males will exhibit a 

higher yeast appetite. Therefore, these females constitute a good testbed for our Bayesian classifier. 

We took trajectory segments (20 min) of the flies for classification and extracted the posterior 

probability for each data point in the trajectory (Figure 4.11A). For simplicity, we assumed 

independency and multiplied all the posterior probabilities of each point in the trajectory to obtain the 

final posterior probability for the whole trajectory. We calculated one posterior probability for each 

possible internal state condition, in this case for mated and virgin state and the fly was classified 

according to the internal state that presented the highest posterior probability given the trajectory 

observed. We used mated and virgin Canton S flies to generate the posterior probabilities for all 

possible arena locations using the Bayes’ rule above (training data set) (Figure 4.11B). Virgin females 

mated to SP males were “correctly” classified as having a virgin phenotype in 65% of the cases 

already with very short input trajectories (< 2 min) (Figure 4.11C). Slightly longer trajectories (~ 8 min) 

were necessary to reach the same 65% of correct classifications for virgin flies mated to the SP 

control males.  

There are many variables that can be modified to improve the classification: the binning of the 

posterior histogram, the number of trials, the step of the trajectory input, the time point of the assay at 

which the trajectory is selected, selecting consecutive trajectory points or simply random points of the 

trajectory. Instead of using histograms of certain parameters as the likelihoods in the Bayes’ rule, one 

could fit a mixture of Gaussians on the distribution of the desired parameter and therefore have a 

likelihood function that depends on fewer variables. In this example we based our classification only in 

the position of the fly in the arena (θ and ) but the posterior probabilities can be modified to be 
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functions of many other parameters such as speed, time on food, number of visits to the food, 

transitions between food patches and so on. 

 

Figure 4.11 – Bayesian classifier of internal state condition based on positional preference 

(A) Steps of the classification algorithm. First, we select a trajectory in the test flies and calculate the posterior 
probability of each point in the trajectory using the density map of posterior probabilities for each arena location. 
This density map was calculated using the Bayes’ rule in which the likelihoods were the polar coordinate 
histograms of mated and virgin Canton S flies. Second, the posterior probabilities of each point in the trajectory 

are multiplied to obtain the posterior probability of that condition given the complete trajectory. The fly is 
classified according to the winning posterior probability. (B) Density maps of the posterior probabilities for mated 
and virgin flies. Colors indicate the posterior probability of the indicated condition for each location bin. 150 bins 
were used for each dimension. (C) Classification results for different trajectory lengths for virgins mated with SP 
mutant males (expected to behave like virgins) or SP control males (expected to behave like mated). Points in 
the input trajectories were spaced 100 ms between them. 10 trajectories of 20 min were selected for each fly at 
random starting points within the 120 min assay. The % of “correct” classification is the average across flies of 
the average of those 10 trials per fly. 

Once optimized the posterior probabilities could act as descriptors of the behavioral elements that 

distinguish one internal state condition from another and therefore serve as a powerful phenotyping 

tool that would be very useful when combined with high-throughput genetic or neuronal screens. 

4.2.3 Principal component analysis 

The principal component analysis is a dimensionality reduction technique. Since many of the extracted 

parameters may be strongly correlated and therefore will not be telling us any new information about 

the behavior, we applied PCA to extract the principal components of variation that are linearly 

uncorrelated. The first principal component has the largest possible variance and from there on, each 

subsequent component captures as much variability as possible as long as it is orthogonal to all 
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previous components. A nice and clear example of the implementation of PCA using MATLAB built-in 

functions can be found here: http://www.mathworks.com/help/stats/quality-of-life-in-u-s-cities.html 

The list of parameters we used in the PCA is shown in Table 4.1. We separated the parameters in 4 

groups or classes: 1) exploitation: those parameters directly related with the time spent on yeast or 

sucrose and therefore increasing the probability to feed/exploit the resource; 2) global exploration: 

parameters related to the way the fly explore the food patches in the whole arena; 3) patch 

exploration: parameters related to the local exploration of the food patch; 4) locomotor activity. 

We used the PCA to compare the behavior of 

flies pre-fed AA+ suboptimal diet and AA- diet. 

The correlation matrices of these two conditions 

(Figure 4.12) show that the decision to engage 

(Engagement Y), rather than the decision to 

stay (Visit duration) or approach (Nº of Y 

encounters), has a stronger role in determining 

the total time spent on yeast (Total Y). In fact, 

the number of yeast encounters is negatively 

correlated with total time on yeast and 

positively correlated with locomotor activity 

parameters such as speed and percentage of 

time walking outside the patches. Interestingly, 

although the first two principal components 

account for 50% of the variance (Figure 4.13A), 

they do a very poor job separating the two 

internal state conditions (Figure 4.13B). As 

expected, the parameters with higher negative 

weight in the PC1 are the ones strongly 

correlated with the total time on yeast (Figure 

4.13D); while the parameters with higher positive weight are those related to locomotor activity. This 

means that the difference between AA-deprived flies and suboptimally-fed flies does not lie in the 

global strategies that lead to higher times on yeast. Interestingly, the third principal component does a 

better job discriminating between these two internal state conditions (Figure 4.13C) and the 

parameters that have more weight in this component are those related to patch exploration, such as 

the speed inside the yeast patches and the global exploration parameters that directly relate to the 

eagerness of exploiting the yeast  resource, such as the latency period (or lag phase) and the  

probability of returning to the same yeast patch (transition to same Y). 

These results were already described and discussed in Chapter 2, but I wanted to highlight how this 

alternative analysis led us to the same conclusions, which is particularly important in cases where 

analyzing each parameter one by one is unfeasible or not practical. We also learned that multiple 

Table 4.1 – List of behavioral parameters and their 
class 

Parameter Class 

Total Y or S Exploitation 

Nº visits Y or S Exploitation 

Visit duration Y or S Exploitation 

Engagement Y or S Exploitation 

Nº encounters Y or S Global exploration 

YPI encounters Global exploration 

Y inter-visit distance Global exploration 

Transition to same, close 

or far yeast 
Global exploration 

Lag phase/Latency Global exploration 

Distance from Y or S Patch exploration 

Linear speed (in Y visits) Patch exploration 

Angular speed (in Y visits) Patch exploration 

Speed (outside visits) Locomotor activity 

% active/walking (outside 
visits) 

Locomotor activity 

% Time on edge Locomotor activity 

Edge activity Locomotor activity 
 

http://www.mathworks.com/help/stats/quality-of-life-in-u-s-cities.html
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parameters are necessary to describe, since we require 9 principal components to explain 90% of the 

variance in this data (Figure 4.13A). 

4.2.4 Hierarchical clustering reveals clusters of locomotor activity 

The negative correlation between the total duration of yeast micromovements (Total Y) and locomotor 

activity (speed outside visits) observed in the correlation matrix of AA-deprived flies (Figure 4.12A) is 

statistically significant and it seems to get weaker for the other internal state conditions as the flies 

spend less time on yeast (Figure 4.14). This negative correlation reminds me of an after-meal nap. It 

could be that the more they eat, the slower they get. However, from this experiment we cannot 

conclude if locomotor activity is a consequence or a predictor of time spent on yeast because due to 

the very short latency period of AA-deprived flies we do not have enough time to determine clearly the 

locomotor activity of these flies before they engage in the high yeast period. 

It is known that flies display different levels of locomotor activity throughout the day (Gilestro 2012) 

and given the observed correlation between locomotor activity and time on yeast, it could be possible 

that the large variability observed in yeast times was partially due to the time of the day at which these 

experiments were performed. However, when we compared the total duration of yeast 

micromovements of each fly with the time of the day at which it was tested, we found no correlation 

(Figure 4.15). 

 

 

Figure 4.12 – Correlation matrix of behavioral parameters 

Correlation matrix of the parameters showed in Table 4.1 for two internal state conditions: mated AA deprived 
flies and mated flies pre-fed suboptimal diet 
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Figure 4.13 – PCA of behavioral parameters 

(A) Cumulative percentage of the variance explained by the principal components. (B and C) Individual fly data 
points in the new parameter space defined by the PC2 vs PC1 (B) or PC3 vs PC1 (C). (D) Weight of each input 
parameter in the first three principal components. The colors indicate the group or class to which each parameter 
belongs. 
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Figure 4.14 – Correlation between time on yeast and speed 

Effect of internal state on the correlation between the total duration of yeast micromovements and the speed 
outside food patches. Each circle represents one fly. Open circles represent the flies that belonged to the “fast” 
cluster using the hierarchical clustering algorithm. 

 

Figure 4.15 – No effect of time of day on total duration of yeast micromovements 
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The great variability in yeast total times and its inverse correlation with speed was also obvious in the 

ethograms (behavioral sequences), especially for the mated flies pre-fed suboptimal diet and for AA-

deprived flies (Figure 4.16 right panels).  

 

Figure 4.16 – Ethograms and “phylogenetic” tree for behaviors in the presence of food 

Phylogenetic trees (left) of pairwise distances between sequences of behavior (right) in an arena with yeast and 
sucrose patches. Sequences were input as amino acid sequences in which each behavior was attributed one 
amino acid. Blue corresponds to walking, purple to micromovements outside the food, orange to yeast 
micromovements, black to sucrose micromovements and gray to resting. 
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We used bioinformatic tools to measure the distance between these behavioral sequences as if they 

were protein sequences: we attributed one amino acid to each behavior type e.g. walking, resting, 

micromovent on yeast. To measure the pairwise distance, we used MATLAB’s built-in function 

 

Figure 4.17 – Ethograms and “phylogenetic” tree for behaviors in the absence of food 

Phylogenetic trees (left) of pairwise distances between sequences of behavior (right) in an arena with agarose 
patches (no food). Sequences were input as amino acid sequences in which each behavior was attributed one 
amino acid. Blue corresponds to walking, purple to micromovements outside the food, orange to yeast 
micromovements, black to sucrose micromovements and gray to resting. 
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seqpdist and to generate the “phylogenetic” tree or in other words, the hierarchy of similarity between 

the aligned sequences we used the function seqlinkage with the average distance (Figure 4.16 left 

panels). 

The main two clusters observed in the mated flies (Figure 4.16) corresponded mainly to flies that ate 

more and moved slower on one hand, and to flies that ate less and moved faster on the other hand. 

The same clusters shown in Figure 4.16 are shown in Figure 4.14 as open circles for the faster flies 

and filled circles for the slower flies. Similar fast and slow clusters are observed in the absence of food 

(flies tested in an arena with agarose spots) (Figure 4.17). It would be interesting to test if flies that 

display lower levels of locomotor activity in the absence of food correspond to those flies that present 

higher yeast times in the presence of food. To test how the clusters within the same internal state 

condition differ in their behavior along the course of the assay, we divided the 2 hours of the assay 

into 7 time segments and plotted the speed, the distance between visited yeast spots and the yeast 

 

Figure 4.18 – Dynamics of exploitation and exploration parameters for each cluster 

Locomotor activity, yeast exploration and yeast preference with respect to yeast exploitation for the different 
clusters within each internal state condition along the 2 hours of the tracking assay. Each data point shows the 
median value of the indicated parameters for the faster flies’ cluster (open symbols) and the slower cluster (filled 
symbols). The number inside the symbol indicates one of seven time segments along the two-hour-long assay as 
follows: 1) 0 – 5 min; 2) 5 – 15 min; 3) 15 – 35 min; 4) 35 – 55 min; 5) 55 – 75 min; 6) 75 – 95 min; 7) 95 – 115 
min. 
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preference index against the time on food, and analyzed how the different clusters moved inside these 

two-dimensional spaces designed to report locomotor activity, exploration and preference with respect 

to yeast exploitation (Figure 4.18). 

 

Figure 4.19 – Hierarchical clustering of ethograms of all 4 internal state conditions 

Hierarchical clustering on aligned behavioral sequences of all flies belonging to 4 internal state conditions: Mated 
and virgin pre-fed suboptimal diet or a diet lacking AAs. (A) Left: “Phylogenetic” tree shows the distances 
between the behavioral sequences on the right panel. In the ethograms the color code is as indicated in Figure 
4.16. The vertical bar on the right side of the ethograms indicates the internal state condition of the fly in that line. 
The color code for the internal states conditions is shown in B. (B) Proportion of internal state conditions in each 
of the clusters. 
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We observed that AA-challenged (AA+ suboptimal and AA-) mated flies start in the same position in 

the activity vs exploitation (Figure 4.18Ai and Aiii), but then move in opposite directions in the following 

time segments. We can also observe how the yeast preference decreases over time, in a similar way 

for both clusters of the AA-deprived mated flies (Figure 4.18Ciii). 

Although this approach allows us to compare the behaviors of the different clusters within each 

internal state condition, we cannot compare across conditions, as the clusters were defined using the 

information for the flies of a single condition at a time. Therefore, we applied the same clustering 

algorithm to the pooled sequences of all 4 internal state conditions and observed 3 main clusters 

(Figure 4.19A): 1) High time on yeast and low speed, 2) Low time on yeast and high speed and 3) Low 

time on yeast and low speed. The first cluster was composed mainly by AA-challenged mated females 

(Figure 4.19B), while the second cluster was composed mainly by virgin females. The last cluster 

contained flies from all 4 internal states in similar proportions. 

The fact that some of these behavioral sequences are closer across conditions than within conditions 

reveals another level of complexity in the analysis of behavior. How should we analyze them? Should 

we evaluate the effect of internal state on behavior only within clusters? In my opinion, one should do 

so if the clusters were clearly different from one another; however, in this case the transition across 

clusters is continuous. It is possible that aligning behavioral sequences on an absolute time scale is 

not the best input for a clustering algorithm: some flies start exploiting yeast earlier than others and 

they do so for very variable periods of times. We therefore decided not to use this clustering technique 

and simply compare all flies belonging to one internal state to all flies belonging to another internal 

state as we did in Chapter 2. 

4.2.5 Visualizing the dynamics of a given parameter: example using the decision to stay in 

a yeast patch 

One of the main advantages of using image-based tracking to capture the fly’s behavior is the access 

we gain to the dynamics of any quantified parameter throughout the assay. To facilitate the 

visualization of the parameters we calculated (Table 4.1), I developed a flexible algorithm that plots 

any selected parameter during any defined set of time segments and compares it across any set of 

selected conditions. The output can be shown as boxplots during discrete time segments with the 

results of the statistical comparison across internal states (Figure 4.20A), as rolling medians to 

observe a more continuous behavior of the parameter (Figure 4.20B) or as distributions of two types: 

histograms (Figure 4.20G top panels) or complementary cumulative distributions special depicting 

heavy-tail distributions (Figure 4.20G bottom panels). The algorithm also allows to set different time 

ranges per fly which facilitates different alignments of the fly data (Figure 4.20E and F). 

Interesting additional information can be obtained from analyzing the dynamics of a given parameter: 

a good example was shown for the Orco mutants in Figure 2.7B, where the total time spent on yeast 

was the same for the mutants and wild type control, except that there was a delay that was only 

observable when we plotted the behavior of this parameter over time. In a similar manner, the average 

duration of yeast visits is not significantly different between mated flies pre-fed suboptimal diet and 
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those pre-fed AA- diet when is calculated for the whole duration of the assay (Figure 2.3D). However, 

when we observe the dynamics of this parameter it is possible to see that they differ greatly during the 

first 10 minutes of the assay (Figure 4.20A and B). Nevertheless, when we looked at the ethograms of 

the flies for these two internal state conditions, we saw that most of that difference in the first minutes 

of the assay was due to a difference in the latency flies show to engage in a long (≥ 30s) yeast visit for 

the first time (Figure 4.20C and D). When we aligned the absolute assay time to set x = 0 when the 

 

Figure 4.20 – Yeast visit duration dynamics for AA-challenged flies 

(A) Average yeast visit duration for the indicated time segments of the 2-hour-long assay for flies pre-fed a 
suboptimal diet (yellow) and AA- diet (red). (B) Rolling median of the average duration of yeast visits using a 5 
minute window and a step of 4 minutes. (C, D) Behaviors displayed by single flies pre-fed suboptimal diet (C) or 
AA- diet (D). Each row represents the ethogram a single fly aligned to the latency to engage in the first “long” (≥ 
30s) yeast visit. Yellow: yeast micromovements. Black: sucrose micromovements. Pink: micromovements 
outside the food patches. Blue: walking bouts. Gray: resting bouts. Green: sharp turns. (E) Average duration of 
yeast visits for the indicated time segments counting from the latency onwards. (F) Rolling median of the average 
duration of yeast visits using a 5 minute window and a step of 4 minutes. All flies were aligned to the latency 
period as x = 0. (G) Average distribution (top panels) and Complementary cumulative distribution function 
(bottom) for yeast visit durations. Single dots represent one yeast visit. Arrows indicate median of average visit 
duration for flies pre-fed a suboptimal diet (yellow) and AA- diet (red). 
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latency period is over as shown in Figure 4.20C and D, we observed that the durations during the first 

10 min after the latency period were not as different as they were in the first 10 min of the assay 

(Figure 4.20E and F). Although Figure 4.20E shows the median and the IQR for the average yeast 

visit duration, this parameter has a heavy-tailed distribution (Figure 4.20G) and therefore the “average” 

or the median of the average is not the most probable outcome for this parameter (see the arrows 

indicating the median on top of the distribution in Figure 4.20G). Even in this case, the distributions 

during the first ten minutes after the latency period do look different and we therefore pinpoint another 

subtle difference between flies pre-fed suboptimal diet vs those pre-fed AA- diet.  

The definition of latency was inspired in the work of (Root et al. 2011), where they measure the time 

elapsed until flies spend more than 5 seconds inside the food-odor area and use this metric to quantify 

the modulation of olfactory perception by starvation. We selected a 30-second threshold based on the 

distribution of yeast visit durations (Figure 4.21): for all conditions 70% of the visits durations were 

below 30s (vertical lines). We also based our decision on the alignment of the ethogram plots based 

on the defined “long” visit threshold (Figure 4.20C and D). 

 

Figure 4.21 – Distribution of yeast visit durations 

Distribution of yeast visit durations. The vertical dotted lines indicate the x-bin where the cumulative distribution 
reaches 70% for each internal state condition (shown in different colors). 

4.3 Nutritional geometry 

A great body of work led by Stephen Simpson and co-workers, using a nutritional geometry 

framework, has shed light in our understanding of the rules of compromise that animals follow when a 

particular intake target cannot be reached (Simpson and Raubenheimer 2012). They demonstrated in 

their protein leverage theory that animals prefer to prioritize protein at the expense of overconsuming 

fat and carbohydrates; a decision that might lead to obesity (Simpson and Raubenheimer 2005).  
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This framework was also used to evaluate the effect of diet composition on the flies’ reproductive 

output and lifespan (Skorupa et al. 2008; Lee et al. 2008). Lee and colleagues showed that given a 

choice between sugar and yeast, flies tend to balance the consumption of these two nutrients such 

that they consume a 1:4 Protein:Carbohydrate ratio (P:C), maximizing life time egg production a 

measure related to fitness. The dynamics of the nutrient decisions that lead to reach such ratio at a 

shorter time scale is still poorly understood. Our image-based tracking setup allows us to look at the 

step-by-step decision process and how it is affected by deviations from homeostasis (e.g. AA 

deprivation) or mating status at the individual level. 

 

Figure 4.22 – Nutritional geometry of yeast and sucrose decisions 

Nutritional geometry of yeast and sucrose decisions for (A) Mated AA+ suboptimal, (B) Virgin AA+ suboptimal, 
(C) Mated AA- and (D) Virgin AA-. Single lines correspond to trajectories followed by single flies. Circles at the 
end of the trajectories indicate the accumulated yeast and sucrose time at the end of the 2-hour-long tracking 
assay. Black thick line indicates the population median. The protein:carbohydrate ratios (P:C) calculated for the 
yellow and blue straight lines were based on the protein and carbohydrate composition found in SAF-Instant® 
Yeast Red Label from Lesaffre used for these experiments, per 100g of yeast: 50 g of protein and 33 g of 
carbohydrates. 
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Mated flies showed very high variability in the proportion of yeast and sucrose times, leading to a wide 

range of accumulated P:C ratios at the end of the assay (Figure 4.22A and C). Most AA-challenged 

mated females showed an initial phase where they are mostly spending time on yeast and a later 

phase where they switch their preference towards sucrose. This population tendency is captured in 

the population median to which I have fitted two straight lines, a yellow line that measures the ratio in 

the yeast-oriented phase and a blue line that measures the ratio in the sucrose-oriented phase. 

Interestingly, for both mated AA-challenged females, the yeast-oriented phase has a P:C ratio around 

1:1, while the second sucrose-oriented phase with a P:C ratio around 1:4, which surprisingly matches 

the ratio previously reported by (Lee et al. 2008). Virgins, on the other hand, have a strong 

carbohydrate drive, with P:C ratios around 1:8 that are kept more or less constant throughout the 

assay (Figure 4.22B and D). 

4.3.1 Do flies go back to the fully-fed state after 2 hours of exposure to yeast? 

We showed in section 2.3.7 that flies can dynamically modulate their exploitation and exploration 

patterns as they satiate. We also showed that the parameters related to eagerness revert back to the 

values of fully-fed flies after the 2 hours of the assay (Figure 4.23A-C).  

 

Figure 4.23 – Exploration parameters do not revert to fully fed state after 2 hours 

(A-C) Exploitation parameters from first yeast quartile (Q1) and fourth yeast quartile (Q4) of AA-deprived mated 
females compared to the values observed in flies pre-fed a rich and a suboptimal diet along the 2 hours of the 
video tracking assay. (A) Average minimum distance of the head to the center of the yeast patch, (B) angular 
speed, during yeast visits. (C) Average duration of yeast visits. (D-E) Exploration parameters. (D) Probability of 
returning to the same yeast patch, (E) Probability of transitioning to a far yeast patch (F) Average distance 
covered during transitions to yeast visits. ns, not significant (p ≥ 0.05), ***p < 0.001, significance was tested by 
Wilcoxon rank-sum test with Bonferroni correction. 
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What about the exploration parameters? Parameters such as the probability of transitioning to a far 

yeast patch, the probability of returning to the same yeast patch and the distance traveled between 

yeast visits do not revert back to the values of fully-fed flies (Figure 4.23D-F). If we assume these 

parameters are reporting the internal state of the fly, given that they do change in the direction 

expected of more satiated flies, this result suggests that 2 hours is not enough to reconstitute the full 

physiological state of a fly that has been fed an AA+ rich diet. 

4.4 The role of sensory perception and octopamine in yeast-related 

foraging behavior 

4.4.1 Is olfactory perception modulated by AA deprivation? 

Testing Orco mutant flies in our tracking setup demonstrated that OR-mediated olfaction is key to 

recognize yeast efficiently as an appropriate food source after AA deprivation. Given this important 

role in yeast recognition, one can hypothesize that olfactory perception might be modulated by AA 

deprivation. Indeed, we did observe a decrease in the time elapsed until flies engage in a yeast-

intensive period after AA-deprivation (Figure 4.24A) and we have shown that this latency period is 

severely affected in flies with impaired olfaction (Figure 2.7C).  

We also tested antennectomized flies to evaluate the role of the antennae, the main olfactory organ of 

the fly, in the response to AA deprivation (Figure 4.24B). The results were inconclusive as half of the 

tested flies behaved as the AA deprived controls with a very short latency, while the other half 

behaved like the Orco mutant flies with latency values over 5 min yielding no statistical difference 

between flies lacking both antennae and the handling controls (Figure 4.24C). Still, these results could 

suggest a role of the maxillary palps, the second olfactory organ in mediating the efficiency of yeast 

recognition.  

The decrease in latency observed in Canton S (wild type) flies is not due to increased locomotor 

activity: AA-deprived flies moved as much, moved as fast and encountered yeast at the same rate as 

non-deprived flies during the latency period (Figure 4.24D). Yet, it can be attributed to a higher visual 

saliency of yeast patches as these experiments were performed with white light making the creamy 

yeast patches clearly distinguishable from the transparent sucrose patches. 

The approach to yeast spots, as measured by the rate of yeast encounters, is also greatly increased in 

AA-deprived flies (Figure 4.24E), but this increase might be due to the high rate of returning to the 

same patch that these flies display (Figure 4.24F). Therefore, to correct for this effect, we merged the 

encounters that were due to revisits into the same encounter and looked at the yeast preference index 

(YPI) of the food encounters: 

𝑌𝑃𝐼𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 =  
𝑁º 𝑦𝑒𝑎𝑠𝑡 𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 − 𝑁º 𝑠𝑢𝑐𝑟𝑜𝑠𝑒 𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠

𝑁º 𝑦𝑒𝑎𝑠𝑡 𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 𝑁º 𝑠𝑢𝑐𝑟𝑜𝑠𝑒 𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠
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Figure 4.24 – Olfaction might be modulated by AA deprivation 

(A) Effect of AA deprivation on the time elapsed until the fly engages in the first “long” (≥ 30 s) yeast visit. (B) 
Behaviors displayed by flies with unilateral or bilateral antennectomy, along the 120 minutes of the assay. Each 
row represents the ethogram of a single fly. The third antennal segments were removed 24h before the assay 
using ice as anesthetic. Yellow: yeast micromovements. Black: sucrose micromovements. Pink: 
micromovements outside the food patches. Blue: walking bouts. Gray: resting bouts. Green: sharp turns. Blue 
circles indicate the latency (see C) of each fly. (C) Effect of antenna removal on the time elapsed until the fly 
engages in the first “long” yeast visit. (D) Locomotor activity of mated flies during the latency period. (E) Effect of 
internal state on the decision to approach a yeast patch quantified as the number of yeast encounters per minute 
of walking outside the food patches (rate of yeast encounters). Flies from different internal state conditions were 
compared in different time segments counting from the latency of each fly. (F) Effect of internal state on the 
probability of returning to the same patch for different time segments aligned to the latency of each fly. (G) Effect 
of internal state on the yeast preference index (YPI) based on food encounters, for different time segments 
aligned to the latency of each fly. (H) Effect of internal state on the YPI based on duration of food patch visits, for 
different time segments aligned to the latency of each fly. The box plots in C-F correspond to the same internal 
state conditions labeled in B. 
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This metric quantifies the preference in approach to either yeast or sucrose. Surprisingly, the values 

for this preference index were close to zero for mated flies pre-fed a rich diet during the first 10 

minutes after the latency period (Figure 4.24G, focus on the 0-10 min segment). YPI = 0 means no 

preference to approach either yeast or sucrose, even when in this particular time segment these flies 

prefer to spend, in proportion, more than 90% of the time on yeast rather than on sucrose, as shown 

by an alternative quantification of the YPI based on food visit durations: 

𝑌𝑃𝐼𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑜𝑜𝑑 𝑣𝑖𝑠𝑖𝑡𝑠 =  
𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑦𝑒𝑎𝑠𝑡 𝑣𝑖𝑠𝑖𝑡𝑠 − 𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑐𝑟𝑜𝑠𝑒 𝑣𝑖𝑠𝑖𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑣𝑖𝑠𝑖𝑡𝑖𝑛𝑔 𝑓𝑜𝑜𝑑
 

This YPI based on durations is almost 1 for these flies (Figure 4.24H). The differences between these 

two measurements of yeast preference speak in favor of a modulation of the sensory perception 

(visual or olfactory) of the yeast resource after deprivation, as the high yeast preference observed 

fully-fed flies during this time period is not mediated by an increased yeast approach or attraction at 

distance. In support of this hypothesis, AA-deprived flies show a slightly higher YPI based on 

encounters, which means that these flies are biasing their approach towards yeast patches in a higher 

proportion than full-fed flies during the same time segment (Figure 4.24G). 

These results suggest that although the visual component cannot be ruled out at the moment, the 

slight increase in approach preference towards yeast in AA-deprived mated females could be due to 

an enhanced olfactory response to yeast volatiles. 

4.4.2 Gustatory stimuli is necessary to sustain interest for yeast after AA deprivation  

To investigate the role of gustatory stimuli in resource exploration and exploitation we used the Gal4-

UAS system (Brand and Perrimon 1993) to suppress synaptic transmission in neurons that express 

the Pox neuro (Poxn) gene, by expressing tetanus toxin (TNT) under the control of the Poxn promoter. 

TNT is a protease that specifically cleaves synaptobrevin, an integral membrane protein of small 

synaptic vesicles (Schiavo et al. 1992). Poxn is a gene involved in the appropriate development of 

gustatory bristles on wings, legs and labellum and in specifying the connectivity of the corresponding 

chemosensory neurons (Nottebohm, Dambly-Chaudière, and Ghysen 1992).  

The behavior of the Gal4 and UAS controls was clearly different from the previously described Canton 

S mated females. Boll and Noll (2002) developed a Poxn-Gal4 line to gain additional information about 

the spatial and temporal expression patterns of Poxn. The Poxn-Gal4 (herein after Poxn >) control 

flies showed very low interest for yeast when pre-fed a suboptimal diet but showed a robust increase 

in the total duration of yeast micromovements (Figure 4.25 left panels) and visits (Figure 4.26A) after 

AA deprivation. On the other hand, the UAS-TNT (or simply TNT) control flies showed an expected 

high interest on yeast when pre-fed suboptimal diet but failed to show a robust increase in the total 

duration of yeast visits after AA deprivation (Figure 4.26A). Despite these differences, both control flies 

showed a clear decrease in the latency to engage in the first long (> 30s) yeast visit (Figure 4.26I). 

Poxn >TNT flies showed a significant decrease in the total duration of the yeast visits when compared 

to control flies after AA deprivation but not after being pre-fed a suboptimal diet (Figure 4.26A).  
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A look into the dynamics of yeast visits highlights the fact that after AA deprivation the control flies 

sustain yeast visits for a shorter period of time than the corresponding Canton S flies (Figure 4.26B). 

Yet, Poxn>TNT flies have an even shorter high-yeast period. 

 

Figure 4.25 – Effect of AA deprivation on the behavior of Poxn > TNT flies and corresponding control 
flies 

Behaviors displayed by single flies in which Poxn-Gal4 (Poxn>) is driving the expression of tetanus toxin (TNT) 
and the respective driver and UAS control flies, for two metabolic conditions: flies pre-fed suboptimal diet and 
AA-deprived flies (n=37-38). In the ethograms each row represents a single fly, with the following color code: 
Yellow: yeast micromovements. Black: sucrose micromovements. Pink: micromovements outside the food 
patches. Blue: walking bouts. Gray: resting bouts. Green: sharp turns. In the cumulative duration of yeast 
micromovements, the gray lines correspond to single flies and the thick colored lines indicate median. 
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Figure 4.26 – Poxn+ neurons are necessary to sustain interest for yeast after AA deprivation 

(A, C-N) Effect of AA deprivation on the indicated parameter for flies in which Poxn-Gal4 (Poxn>) is driving the 
expression of tetanus toxin (UAS-TNT or simply TNT) and for the respective driver and UAS control flies. The 
legend of the metabolic state and genotype is as shown for panel A. (B) Rolling median of the total duration of 
yeast visits using a 5 minute window and a step of 4 minutes for the indicated conditions. 
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The total duration of sucrose visits is reduced in the Poxn>TNT flies after being pre-fed a suboptimal 

diet but not after AA deprivation (Figure 4.26C). 

The observed decrease in the total duration of yeast visits in the Poxn>TNT flies after AA deprivation 

is due to a decrease in both the decision to engage (Figure 4.26D) and the decision to stay in the 

yeast patches (Figure 4.26E). Interestingly, these flies showed higher locomotor activity at the yeast 

patches than the controls (Figure 4.26F and G), typically observed in wild type flies that are eager to 

eat from yeast (Figure 2.4). However, Poxn>TNT AA-deprived flies showed a higher distance to the 

center of the yeast patches (Figure 4.26H) and did not show shorter latency than the control flies 

(Figure 4.26I). These four parameters where shown to be associated to full AA deprivation in Canton 

S flies (Figure 2.4) and these results might indicate that different mechanisms mediate different 

aspects (local exploration on one hand and increased activity on the other hand) of the eagerness-

related phenotypes observed after AA deprivation.  

A closer look into the raw data (Figure 4.25 right panels) shows that most of the Poxn>TNT AA-

deprived flies do not even show a clear high-yeast period and there is a higher proportion of yeast 

non-eaters, which might suggest that external taste stimuli is important for the initiation of yeast-

intense periods. Together with the results obtained with the Orco mutant flies, this results indicate that 

the integration of both taste and olfactory stimuli is necessary for the efficient recognition of the yeast 

patches as appropriate food sources. In terms of global exploration, Poxn>TNT AA-deprived flies 

showed no increased rate of returns to the same yeast patch (Figure 4.26J) but showed increased 

distances when moving from one yeast visit to the next (Figure 4.26K). This last result is consistent 

with the observed increase in activity outside of the food patches when compared to controls (Figure 

4.26L and N). These flies kept a similar speed than that of controls (Figure 4.26M) but showed a 

different walking pattern as reported by a lower maximum-speed-to-duration ration (Figure 4.26N).  

Importantly, although Poxn mutant flies are not completely taste-blind as they have functional internal 

sense organs in the pharynx (LeDue et al. 2015), Poxn>TNT flies might be as the Poxn-Gal4 driver 

was reported to express in neurons innervating the labral sense organ in the pharynx (Boll and Noll 

2002). Internal sense organs play a critical role in the robust consumption of sugar in the absence of 

external gustatory stimuli (LeDue et al. 2015; Yapici et al. 2016). It is possible that Poxn>TNT flies 

cannot sustain longer yeast visits after engagement because the neurons innervating the internal 

sense organs are silenced. Acute manipulations of the different gustatory organs in a Poxn mutant 

background using the flyPAD technology (Itskov et al. 2014) could shed more light into the different 

roles of the external and internal gustatory organs in the initiation of feeding and in the continuation of 

feeding after initiation.  

4.4.3 Octopamine is required for postmating yeast appetite 

Octopamine regulates important aspects of female reproductive physiology such as ovulation, egg 

laying and female receptivity after copulation (M Monastirioti, Linn, and White 1996; Maria Monastirioti 

2003; Cole et al. 2005; Rezával et al. 2014). We tested the effect of depleting octopamine in the 

feeding behavior of mutants for the gene encoding Tyramine β-hydroxylase (TβH), an enzyme 
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required for the biosynthesis of octopamine. We found that AA-deprived mated flies lacking 

octopamine behaved like wild type virgin flies: They showed similar total number of yeast sips (Figure 

4.27A) with the same feeding microstructure with longer inter-burst-intervals (Figure 4.27B) and lower 

sips per burst (Figure 4.27B) than those observed for mated Canton S (wild type) females. These 

results demonstrate that octopamine is required for the postmating increase in yeast feeding. This 

finding was published in (Walker, Corrales-Carvajal, and Ribeiro 2015). 

 

Figure 4.27 – Octopamine is required for postmating yeast appetite 

(A-C) Effect of TH mutation on the postmating yeast appetite and feeding microstructure. (A) Total number of 
yeast sips, (B) Average inter-feeding burst-interval, (C) Number of sips per feeding burst for AA-deprived Canton 

S and ThnM18 females, using the flyPAD assay. ns, not significant (p ≥ 0.05), ***p <0.001, significance was 

tested by Wilcoxon rank-sum test with Bonferroni correction. 
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 General discussion 

During this project we built a machine-vision setup that tracks the position and orientation of single 

flies as they walk in a foraging arena containing several food patches of different quality. We 

performed a detailed characterization of the exploration patterns and nutrient decisions taken by the 

flies and evaluated how internal state and sensory perception modulated the fly’s behavior. We 

demonstrated that our automated system can be used to study the underlying neuronal and molecular 

mechanisms of nutrient choice.  

In this chapter I discuss some insights obtained from this work, I speculate about the implications of 

some of the findings and few proposals for future work. 

5.1 The role of sensory perception in different aspects of nutrient 

choice 

We found that pre-feeding flies a diet that had an imbalanced amino acid (AA) ratio and yet the same 

amount of biologically available nitrogen, was enough to elicit a change in the decisions to stop at and 

leave the yeast patch, as well as a change in the yeast exploration patterns, decreasing the probability 

of transition to far patches and increasing the probability of returning to the same patch. Flies that 

were completely deprived from AAs did not change the decision to stop at and leave the yeast 

patches, but continued to narrow their exploration showing an even higher rate of returns to the same 

patch. They also showed a higher rate of approach to yeast and a higher eagerness to exploit it, 

demonstrated by the reduced latency to engage yeast at the beginning of the assay and a higher 

locomotor activity on the patch, coupled with higher number of yeast sips. 

I would like to propose that there are at least two mechanisms underlying the observed behaviors, and 

that they are executed in parallel and are both dependent on the internal level of limiting AAs in the fly: 

The first mechanism regulates the degree of exploration of the relevant resources, in this case the 

proteinaceous patches. It does so in a continuous/dosage-dependent manner: the more AA-deprived 

the fly is, the more conservative the exploration will be. This mechanism seems to be independent of 

sensory perception, as flies do not need olfaction or gustation to maintain a high rate of returns to the 

same patch when they are AA-deprived (Figure 2.7I and Figure 4.26J). The second mechanism 

controls the way in which the resource is exploited, and it could do so by controlling 3 modules: the 

first module could modulate the decisions to stop at and leave the yeast patch; the second module the 

feeding motor pattern once feeding is initiated and the third module could control approach and 

latency to engage for the first time on yeast.  

Mild AA-deprivation or imbalance could activate the first module, which could act through a modulation 

of gustatory perception, as flies with impaired gustatory perception (Poxn>TNT flies) displayed lower 

probability of engagement and shorter visit durations (Figure 4.26D and E). There is evidence of 
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neuronal mechanisms that promote feeding initiation while inhibiting locomotion, which could be the 

way in which the brain implements the decision to engage/stop at the food patch. A pair of 

interneurons in the ventral nerve cord was identified to control the switch between feeding initiation 

and locomotion (Mann, Gordon, and Scott 2013). Another study also identified two distinct sugar-

sensory neurons in the legs, one type sent projections to the brain and was involved in feeding 

initiation, while the second type sent projections to the thoracic ganglia played a role in sugar-

dependent suppression of locomotion (Thoma et al. 2016).  

The second and third modules could be activated only after severe AA deprivation. The feeding motor 

pattern could be directly regulated by internal AA levels, while the decision to approach could be 

modified via a modulation of the middle-range olfactory perception, based on the observed increase in 

yeast approach rate (Figure 2.3B) and in the increased latency to engage yeast in olfaction-impaired 

flies (Figure 2.7C). 

5.1.1 Future work 

With a combination of the flyPAD and the tracking in the same setup, it could be possible to perform 

an acute neuronal activation or inactivation screen to evaluate which neurons could be responsible for 

a yeast-dependent suppression of locomotion, by comparing the elicited stops outside the food 

patches and the ones happening specifically after a yeast encounter (leg touch). To evaluate if 

olfactory perception is modulated by AA deprivation, experiments in the dark or with obstacles could 

be performed. An assay with a single yeast patch in the middle that measures the latency to find it, in 

the dark, similar to the one used in (Root et al. 2011), would be easy to perform in the current tracking 

setup. A more definite assay, would be to measure if the preference of flies to stay a yeast odorized 

quadrant (Beshel and Zhong 2013) is increased after AA-deprivation. 

5.2 The cost of leaving a food patch 

One of the common questions I was asked when I was presenting my work was: Is there any cost 

associated with leaving a food patch in these assay? Because the food patches are really close to 

each other, it gives the impression that there is no cost associated with leaving the patch. However, 

AA-deprived flies tended to keep a conservative exploration around yeast patches, which was 

gradually expanding as they reached satiation. This might suggest that there is a hard-wired 

mechanism that pushes for the higher exploitation of a resource that satisfies the current needs even 

when there is virtually no cost of leaving it. On the other hand, the highest median value for the 

probability of returning was about 20% in the initial minutes of the assay when flies were most 

deprived (data not shown), which means that even when they had been AA-deprived for 3 days and all 

yeast patches were the same, they still explored continuously all the patches and this exploration only 

increased over time, even when the environment was not changing. This suggests that there must be 

an intrinsic need to explore the environment probably with the goal of finding an even better food 

source, especially in an environment where leaving the patch implied no risks. 
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5.2.1 Future work 

We could easily test what is the role of the patch quality in the decision of return by putting patches 

with different yeast concentrations in the same arena. We could also modify the cost of leaving by 

increasing the distance between the patches.  

An experiment with multiple food concentrations would also give us more information about the factors 

that control the decision to leave or to explore or to tune how “conservative” the exploration around the 

food patch is. 

Varying distances could also be another way to increase costs of leaving. In fact, together with Pawel 

Bujalski, a rotation student in our lab, we designed a new arena intended to introduce some cost in the 

access to a yeast patch by having to follow a “long” access tunnel to get to it (Figure 5.1A). However, 

preliminary results indicated that flies tend to spend more time in that chamber when compared to a 

chamber with easier access containing the same type and quality of resource. This could imply that by 

making this chamber more difficult to access, we also made it more difficult to leave. Another caveat is 

that although this new chamber was bigger, it seemed that there was no cost on covering the whole 

arena several times. Actually, the challenge of increasing cost by increasing distance becomes 

evident when we look at the total distances covered by the flies during 2 hours in the current tracking 

assay (Figure 4.2A): most flies covered more than 20 meters and some of them even covered more 

than 60 meters. I therefore suggest that a better way to increase cost would be to use obstacles or to 

increase agarose concentration, so the food is harder to consume. 

Maybe a more realistic setup would be one with a big open space where the flies could fly and stay as 

long as they prefer and then have a small chamber with food to which the fly enters by crossing a 

small tunnel with a beam that when crossed triggers a camera that can track the movements around 

the food. In this way, we could have a controlled, but more naturalistic environment, in which it would 

 

Figure 5.1 – New arena design 

Prototype of a new foraging arena, manufactured and tested by Pawel Bujalski. (A) The new arena contains 5 
chambers: one intended to have a more difficult access by having a longer access tunnel, 3 symmetrical 
chambers containing different types of food patches, one empty chamber and one small chamber where a male 
would be place to interact with the female being tested. (B) Representative trajectory of an AA-deprived mated fly 
in the arena. 
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be possible to quantify global foraging strategies, such as rate of arrival and return to the food 

chamber, decision to leave the chamber and so on.  

5.3 Individual variability 

The great variability observed in mated females in their response to yeast opens innumerable 

possibilities to study the different mechanisms that control yeast intake.  

5.3.1 Future work 

Because we have access to the information of single individuals that could be genetically identical, we 

could explore correlations between number of eggs laid, amount of food consumed before the assay, 

levels of locomotor activity in the absence of food and time on yeast during the assay. There are a 

number of tests that could also be performed after the assay to each individual such as amount of Sex 

Peptide in the reproductive tract, metabolite levels and even TOR signaling. If non-invasive tests are 

performed after the assay, individuals could be re-tested and after a second test, imaging of sensory 

neurons could be performed so the neural activity responses could be directly associated to the 

behavior of that individual, bypassing the challenge that the huge yeast response variability poses for 

conclusions about neuronal recordings. 

5.4 Hierarchical structure of feeding and foraging behavior 

I like to think that the foraging behaviors I’ve described follow a hierarchical organization in which the 

basic unit is the sip (Figure 5.2). Sips are then grouped into feeding bursts that in turn happen inside 

food micromovements. Several food micromovements constitute food patch visits. Long visits and a 

high rate of returns to the same patch could be seen as an explotatory period while short visits to 

multiple patches would constitute an exploratory period. As I mentioned in section 5.1, AA deprivation 

turns exploration more conservative narrowing the spatial scale at which exploration happens and 

favoring exploitation, therefore, exploration and exploitation do not necessarily have to be seen as 

mutually exclusive: increased exploitation in this case is just exploration changing spatial scale (see 

representative trajectories from 3 to 1 in Figure 5.2).  

5.5 Other proposed experiments 

5.5.1 Multi-sensory integration 

The fact that flies with impaired OR-mediated olfaction had a delayed latency to engage in yeast but 

still managed to spend the same time on yeast as the wildtype controls, raises the question: what 

happens at that moment in which the flies engage actively on yeast for the first time? Maybe 

occasionally tasting yeast with their legs at every encounter has an associated probability of 

spontaneously extending the proboscis, this probability might be enhanced by the presence of the 
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yeast odor at short-range, suggesting, as we had mentioned before, a role of olfaction in increasing 

the efficiency of yeast recognition. Indeed, it has been reported that flies can extend their proboscis in 

response to tarsal stimulation with yeast (Masek and Keene 2013). This assay, therefore, opens the 

opportunity to study how taste and olfactory perception of the yeast substrate are integrated in the fly 

brain to achieve protein homeostasis. 

A future experiment to test if tarsal taste is indeed the first gate to yeast engagement would be to test 

tarsal taste-impaired flies in an Orco1/1 background. It would also be interesting if we could pinpoint the 

chemosensory receptor responsible for the effect observed in the Orco mutants. One way to start that 

search would be to test if the absence of maxillary palps alone has a similar effect to the one observed 

in Orco mutants. A positive result would be interesting as the role of maxillary palps in nutrient choice 

is poorly understood. This experiment would yield even more information if it was performed in a 

flyPAD-Tracking combined setup, to be able to distinguish leg touches on the food from sips using the 

proboscis. 

 

Figure 5.2 – Hierarchical structure of feeding and foraging behavior 
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5.5.2 Is locomotor activity modulated by AA-deprivation and if so, is this effect mediated by 

octopamine? 

It has been reported that octopamine mediates the starvation-induced increase in locomotor activity in 

flies (Z. Yang et al. 2015). A very simple experiment comparing the locomotor activity in the absence 

of food for flies fed in AA+ rich diet versus those AA-deprived would answer the first part of that 

question. If there is AA-deprivation-induced hyperactivity and given the availability of the genetic and 

neuronal manipulation tools in Drosophila, it should be straight forward to test the involvement of 

octopamine in such process. 

5.5.3 Where in the brain (if in the brain) is octopamine acting to modulate the postmating-

induced increase in yeast feeding? 

We showed that octopamine mediates the postmating-induced increase in yeast feeding (Figure 4.27). 

A group of nine Tdc2/dsx+ neurons in the female abdominal ganglion mediate postmating responses 

such as receptivity and egg-laying (Rezával et al. 2014). However, it has been proposed that as these 

neurons innervate the reproductive tract, they might play a role in SP release. SP signal is carried to 

the brain through the SAG neurons (Feng et al. 2014), which have already been shown to mediate 

postmating increase in yeast feeding (Walker, Corrales-Carvajal, and Ribeiro 2015). Therefore, the 

current model suggests that the role of octopamine in postmating yeast feeding responses is played 

upstream of SP signaling, at the reproductive tract, not in the brain. An experiment to test this 

hypothesis would be to directly inject SP in the abdomen of Tβh virgin mutants and see if they 

increase yeast feeding. This experiment was performed by Yapici (2008) and resulted in unreceptive 

females, suggesting that indeed octopamine signaling is upstream of SP signaling, but it remains to be 

tested if yeast feeding responses follow the same mechanism. 

5.5.4 Long-term dynamics of behavioral changes to achieve protein homeostasis 

The current tracking setup and analysis of the different exploration and exploitation parameters, could 

be used in a re-feeding protocol across several days to investigate the long-term dynamics of the 

hungry-to-fed phenotype. Previous re-feeding experiments in the lab showed that flies need 3 days to 

restore the fully-fed low preference for yeast in a two-color assay (data not shown). It would be 

interesting to know, in the long-term, which strategies stop being implemented as the fly gets closer to 

protein homeostasis. During this project we learned, for example, that after two hours in an arena with 

yeast patches, flies display the same behavior at the patch (locomotor activity and distance to the 

center of the patch) than fully-fed flies, but they still have more conservative exploration patterns than 

fully-fed flies (Figure 4.23). 

5.5.5 Testing path integration in flies 

Although all of the returns to the same patch quantified in this project were by definition a 

consequence of the fly constraining its exploration to the vicinity of the patch, it should be rather 
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simple to test if the probability to visit a given patch increases if that patch was visited before. 

Preliminary results showed that the flies tend to return to the same patch after a full lap walking on the 

edge of the arena (Figure 4.7), indicating that they somehow mark or remember the last visited patch, 

independently of its quality (as this behavior was observed in agarose patches as well). I’d say that 

designing an arena with a simple labyrinth hiding the yeast spots in different locations would be a cool 

way to test if flies remember the way back to a nutritious patch. A recent study suggests that 

Drosophila can learn efficient paths to a sugar source (Navawongse et al. 2016). 

5.5.6 Social effects 

This assay could also be used to test how nutrient choice is affected by the choice of other flies 

present in the same arena.  

5.6 Closing remarks 

The present study opens the possibility for many other exciting studies that can help us understanding 

better how animals modulate behavioral choices according to their internal state. 
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  Appendix 

8.1 How to use the tracking setup – step by step 

1) Connect the lights of each chamber. Cam 03 and 04 are connected to the same power 
source. 

2) Check that the computers are working fine: 
a. To switch between computers: Press twice ScrLk and then Enter.  
b. Connect one camera on each computer. 
c. Open the Virtual Dub program. 
d. Confirm that the camera is working: To acquire image click: File  Capture avi… If it 

does not work, try disconnecting the camera and connecting again or restarting the 
computer. If this does not work check section 8.2, step 9 (Configure DALSA Network), 
to check that each camera is being recognized by an independent PCI card. 

e. Connect the second camera on each computer and open the second Virtual Dub 
window. Acquire image: File  Capture avi… if the screen is black, go to Video  
Capture Pin…  Source and select the other camera. 

f. Confirm that the back light illumination is working. 
3) Set the name for the video: File  Set Capture File… following format in Table 3.2: 

For Canton S experiment, the video filename should look as following: 

0003C01R01Cam01P0WT-CantonS  Run 1, Cam 1, Repetition 1 (day 1) 

0003C02R03Cam04P0WT-CantonS  Run 2, Cam 4, Repetition 3 (day 3) 

 
4) Confirm properties of the recording (Figure 8.1), going to Video  Capture Pin…  

 
a. Format tab: Packet Size = 1500 
b. Format tab: Frame Rate = 50  
c. Analog tab is different for each camera. Cam01: 7000, Cam02: 5500, Cam03: 7500, 

Cam04: 7500. 

 

Figure 8.1 – Properties of video acquisition 
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5) Wash and dry the arenas with pressurized air inside the behavior room. 
6) Place yeast and sucrose spots following the geometry depicted in Figure 3.2. 
7) Clean the glass with pressurized air to remove fibers. Distribute flies in the arenas 

according to Table 8.1. Make sure to match the Camera (= box), the arena side (Left, 
Center or Right) and the run. 
 

Table 8.1 – Experiment schedule during the day 

Cam 
Start 
Time 

Food 
Deprivation 

Mating 
Born 
Date 

Deprivation 
Times 
Date: 

Recording 
Times and 

Date: 

1 10h40 
AA+ 

suboptimal 
Mated  

Run 1 
(~ 11h00) 

 

2 10h40 
AA+ 

suboptimal 
Virgin   

3 11h20 AA- Mated   

4 11h20 AA- Virgin   

1 14h00 
AA+ 

suboptimal 
Virgin  

Run 2 
(~ 14h20) 

 

2 14h00 AA- Mated   

3 14h40 AA- Virgin   

4 14h40 
AA+ 

suboptimal 
Mated   

1 16h40 AA- Mated  

Run 3 
(~17h00) 

 

2 16h40 AA- Virgin   

3 17h20 
AA+ 

suboptimal 
Mated   

4 17h20 
AA+ 

suboptimal 
Virgin   

 
8) Check that the flies are in focus. To adjust focus, screw or un-screw the lens of the 

camera, very carefully.  
a. Check that each camera has the right visual field: The corners of the visual field 

should match with the marks. If they do not match, you can adjust the angle of the 
camera buy screwing or un-screwing the screws that are attached directly to the 
camera, not the ones on the top of the box. 

9) Check that the name of the video is correct and start recording: Capture  Capture Video. 
10) Stop the recording when 2h2min have passed. Capture  Stop Capture 
11) Set Calibration file (this is a short video with low exposure to facilitate yeast spot detection 

described in section 3.2.  
a. File  Set Capture File…  Add a space and “Calib” to the name of the video  

Save. 
b. Video  Capture pin  Analog: 4000  OK 
c. Check again that the name of the video is “video Calib” in the top of the window, and 

that no “[FILE EXISTS]” appears. 
d. Capture  Capture video 
e. Let run for 1 second 
f. Capture  Stop Capture. 

12) Set the name of the next video, by changing the run number: 
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a. File  Set Capture File…  Change the run number 
b. Video  Capture pin…  Analog: write the value in step 3 

13) Wash the arenas, put the spots and the flies. The approximate timing of each of these 
steps is shown in Figure 8.2. 
 

 

Figure 8.2 – Timeline of arena preparation for tracking experiments 

The timeline for the preparation of 6 arenas (2 cameras) simultaneously is described. 

 
 

14) Capture the video: Capture  Capture Video 
15) Disconnect the cameras and the lights 
16) Input the information of the experimental conditions used in the excel file described in 

section 3.4. 

8.2 Installing and Starting Genie cameras 

1. From DALSA-Genie CD-ROM, Install: Genie Framework Version 1.70.00.0256 and 
CamExpert version 7.00.00.0912 which includes Sapera LT Run-Time (Free version, not the 
60-days trial). 

2. Connect the camera to the power supply 
3. Connect camera’s Ethernet cable to a Gigabit PCI card (Currently, the cameras are connected 

to the built-in Gigabit PCIs in the MotherBoard). 
4. Update Genie firmware: Start ProgramsDALSAGenie Firmware Update. If update is 

required, click on “automatic” button. Wait until “Device reset complete”. 
5. Download codec ffdshow. Check for k-lite codec pack in Programs(x86). 
6. For MATLAB Acquisition, go to GenIcam downloads website and download: GenICam GenApi 

Reference Implementation v.2.0.1, for 64-bit (application file: 
GenICam_VC80_Win64_x64_v2_0). 

7. For VirtualDub acquisition (maybe also required for MATLAB), Install “ActiveGigE” from a-b 
Software. Then Install GigE Vision Filter from Active GigE package. 

8. Configure PCI Network card (Figure 8.3): 
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Figure 8.3 – Configuration of PCI network card 

 
 

a. Control Panel  Network and Sharing Center  Manage Network Connection  
Right clic in PCI card where Genie is connected  Properties Select: DALSA 
Sapera Network Imaging Driver, GCAM GigE Vision Filter, Internet Protocol version 4. 

b. If GCAM GigE Vision Filter does not appear in the list (go to Active GigE User Guide 
for more details):  

i. Open Local Area Connection Properties dialog for your GigE adapter and 
click the Install... button. The Select Network Component Type dialog will 
appear. Select Service and click Add...  

ii. The Select Network Service dialog will appear. Click Have Disk... and provide 
the path to ActiveDcam Driver folder where GcamFilter.inf is located typically 
C:\Program Files\ActiveGige\Driver).Click OK 

iii. In the Select Network Service dialog highlight GCAM GigE Vision Filter and 
click OK (Ignore several warning messages from Microsoft. Confirm the 
presence of the filter driver in the Local Area Connection Properties list.) 

c. Click in Configure...  Advanced. Set: 
i. Jumbo packet (frames): 9014 Bytes 
ii. Receive descriptors (buffers): 2048 (max) 
iii. Interrupt moderation rate: minimal 

9. Configure DALSA Network (Figure 8.4): Programs DALSA  Sapera Network Imaging 
Package  DALSA Network Configuration TooL   

a. Click in the PCI card  NIC Configuration  Select Enable DALSA DHCP Server on 
this adapter and the Automatic IP (DHCP). If there is a second camera, it should have 
persistent IP mode.  Apply. 
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Figure 8.4 – Network configuration – step 1 

 
 

b. Click in the camera (Figure 8.5): S4405728  Device IP Configuration  Check if 
DHCP/LLA Mode is active. The second camera must not be LLA mode, but Persistent 
IP Mode! 

 

Figure 8.5 – Network configuration – step 2 
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Ana’s note:  Always check if the codec that is install in the Computer that is used to aquire 

the movies is the same in the Computer that is used to run the matlab code 

(ffdshow_beta7_rev3154_20091209). 

10. Download VirtualDub. Open VirtualDub: File  Capture avi... 
11. Configure Video Acquisition Parameters in Virtual Dub (Table 8.2): Video  Capture pin... 

Table 8.2 – Video acquisition parameters 

12. Compression Configuration (Figure 8.6): Video  Compression…  Xvid MPEG-4 Codec  

Configure  Quality (Target quantizer): 1  Other options…  Number of threads: 4 to 8. 

 

Figure 8.6 – Video compression configuration 

 

Width 1400 Height 478 Offset Y 238 

Frame Rate 50 fps Packet Size 1500 Pixel Format Mono8 

Palette grey Zoom 1 Background..frames 8 


