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Abstract

In the last decade we witnessed an immense evolution of the computing infrastructures

in terms of processing, storage and communication. On one hand, developments in hard-

ware architectures have made it possible to run multiple virtual machines on a single

physical machine. On the other hand, the increase of the available network communica-

tion bandwidth has enabled the widespread use of distributed computing infrastructures,

for example based on clusters, grids and clouds. The above factors enabled different scien-

tific communities to aim for the development and implementation of complex scientific

applications possibly involving large amounts of data. However, due to their structural

complexity, these applications require decomposition models to allow multiple tasks

running in parallel and distributed environments.

The scientific workflow concept arises naturally as a way to model applications com-

posed of multiple activities. In fact, in the past decades many initiatives have been

undertaken to model application development using the workflow paradigm, both in

the business and in scientific domains. However, despite such intensive efforts, current

scientific workflow systems and tools still have limitations, which pose difficulties to the

development of emerging large-scale, distributed and dynamic applications.

This dissertation proposes the AWARD model for scientific workflows with parallel

and distributed computing. AWARD is an acronym for Autonomic Workflow Activities

Reconfigurable and Dynamic.

The AWARD model has the following main characteristics.

It is based on a decentralized execution control model where multiple autonomic

workflow activities interact by exchanging tokens through input and output ports. The

activities can be executed separately in diverse computing environments, such as in a

single computer or on multiple virtual machines running on distributed infrastructures,

such as clusters and clouds.

It provides basic workflow patterns for parallel and distributed application decom-

position and other useful patterns supporting feedback loops and load balancing. The

model is suitable to express applications based on a finite or infinite number of itera-

tions, thus allowing to model long-running workflows, which are typical in scientific

experimention.
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A distintive contribution of the AWARD model is the support for dynamic reconfig-

uration of long-running workflows. A dynamic reconfiguration allows to modify the

structure of the workflow, for example, to introduce new activities, modify the connec-

tions between activity input and output ports. The activity behavior can also be modified,

for example, by dynamically replacing the activity algorithm.

In addition to the proposal of a new workflow model, this dissertation presents the

implementation of a fully functional software architecture that supports the AWARD

model. The implemented prototype was used to validate and refine the model across

multiple workflow scenarios whose usefulness has been demonstrated in practice clearly,

through experimental results, demonstrating the advantages of the major characteristics

and contributions of the AWARD model. The implemented prototype was also used

to develop application cases, such as a workflow to support the implementation of the

MapReduce model and a workflow to support a text mining application developed by an

external user.

The extensive experimental work confirmed the adequacy of the AWARD model and

its implementation for developing applications that exploit parallelism and distribution

using the scientific workflows paradigm.

Keywords: Scientific workflows, Parallel and distributed computing, Dynamic reconfig-

uration.
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Resumo

Assistimos na última década a uma imensa evolução das infraestruturas computacio-

nais, tanto a nível de processamento, armazenamento e comunicação. Por um lado, os

desenvolvimentos ao nível das arquiteturas hardware tornaram possível que se executem

múltiplas máquinas virtuais sobre uma mesma máquina física. Por outro lado, o aumento

da largura de banda disponível para comunicação em rede tornou possível a generalização

do uso de infraestruturas computacionais distribuídas, por exemplo em clusters, grids e

clouds. Estes fatores contribuíram decisivamente para que comunidades das mais variadas

áreas da ciência pudessem almejar o desenvolvimento e execução de aplicações científicas

complexas e com capacidade de processar grandes quantidades de dados. No entanto,

pela sua complexidade estrutural, estas aplicações requerem modelos de decomposição

em múltiplas tarefas executadas em paralelo e em ambientes distribuídos.

O conceito de workflow científico surge naturalmente como forma de modelar apli-

cações, por composição de múltiplas atividades. De fato nas últimas décadas múltiplas

iniciativas foram empreendidas para usar o paradigma de workflow como forma de mo-

delar o desenvolvimento de aplicações, tanto no mundo empresarial como em múltiplos

domínios da ciência. No entanto, apesar do esforço intenso de múltiplas iniciativas, atu-

almente os sistemas e ferramentas associados aos workflows científicos ainda apresentam

dificuldades no desenvolvimento das emergentes aplicações distribuídas dinâmicas e de

larga escala.

Esta dissertação propõe o modelo AWARD, um acrónimo de Autonomic Workflow Ac-
tivities Reconfigurable and Dynamic, para a área dos workflows científicos com computação

paralela e distribuída.

O modelo AWARD tem as seguintes características principais.

O modelo é caracterizado por um modelo de controlo de execução descentralizado,

em que as múltiplas atividades de um workflow são autónomas e comunicam entre si

através de portas de entrada e saída. As atividades podem executar-se separadamente

em ambientes computacionais diversificados, tais como num simples computador ou em

múltiplas máquinas virtuais executadas em infraestruturas distribuídas, por exemplo em

clusters e clouds.

Para a decomposição paralela e distribuída das aplicações, o modelo oferece os pa-

drões básicos de workflow e outros padrões úteis, tais como, um padrão que suporta ciclos
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de realimentação entre atividades (feedback loops) e um padrão de replicação de ativida-

des para efeitos de equilíbrio de carga. O modelo também permite expressar aplicações

baseadas num número finito ou infinito de iterações, o que suporta modelar e executar

workflows de longa duração que são típicos na experimentação científica.

Uma contribuição distintiva do modelo AWARD é suportar a reconfiguração dinâmica

durante a execução de workflows de longa duração. Uma reconfiguração dinâmica permite

modificar a estrutura do workflow, por exemplo, introduzir novas atividades ou alterar as

ligações entre as portas de entrada e saída. O comportamento das atividades de workflow
pode também ser modificado, por exemplo, por substituição dinâmica dos algoritmos

associados.

Para além de apresentar um novo modelo de workflow, esta dissertação apresenta a

concretização de uma arquitetura de software totalmente funcional, que implementa

o modelo proposto. O protótipo implementado serviu para validar e refinar o modelo

através de múltiplos cenários de workflow cuja utilidade foi demonstrada na prática de

forma clara, através de resultados experimentais, evidenciando as vantagens das princi-

pais características e contribuições do modelo AWARD. O protótipo implementado foi

também usado para desenvolver casos de aplicação, tais como, um workflow que suporta

a execução do modelo MapReduce e um workflow que suporta uma aplicação de análise

de textos de língua natural, desenvolvida por um programador externo.

O extensivo trabalho de experimentação confirma a adequação do modelo AWARD e a

operacionalidade da sua implementação para ser usado no desenvolvimento de aplicações

que exploram o paralelismo e a distribuição baseando-se no paradigma de workflows
científicos.

Palavras-chave: Workflows científicos, Computação paralela e distribuída, Reconfigura-

ção dinâmica.
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1
Introduction

Dissertation overview and the contributions achieved.

Diverse e-Science initiatives [FK03; Hin06; NeS12] have been requiring improved soft-

ware tools in order to support more productive application modeling and experimenta-

tion in diverse application domains. This involves complex computational processes for

simulation, visualization, access to large data sets, and increasing degrees of interaction

with multiple users possibly located in different regions.

The workflow paradigm, early adopted in the business context [Hol95], is also useful

for modeling scientific applications and allowing flexible mappings between the applica-

tion abstractions and the underlying computing infrastructures namely large distributed

infrastructures such as clusters, grids and clouds.

Workflows have been used for developing scientific applications in many domains

[Chi+11; Dee+05; Tay+07; YB05]. Such efforts have been supported by multiple work-

flow tools [Laz11], as Triana [Tri11], Taverna [Tav11] and Kepler [Kep14]. However,

currently, most of the existing scientific workflows tools do not offer adequate support

to facilitate the development of several challenging scenarios that are becoming more

important for emerging large-scale, distributed, and dynamic applications. As examples

of currently open issues, existing workflow approaches still exhibit critical dependencies

on a centralized enactment engine, and they lack flexibility in supporting the execution

of long-running workflows with multiple iterations and in allowing their structural and

behavioral dynamic reconfiguration.

This dissertation proposes the Autonomic Workflow Activities Reconfigurable and

Dynamic (AWARD) model, describes its underlying support architecture as well as an im-

plementation supported by a working prototype that has been used for executing concrete
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workflow applications. The dissertation discusses how this approach provides feasible so-

lutions to currently open issues as the ones mentioned above, and how this was achieved

in practice by enabling a set of practical application scenarios. The experimentation that

was conducted for validating the model and its implementation is also described.

The AWARD model is based on the Process Networks (PN) model of computation

[Kah74] and it further defines the workflow activities (called Autonomic Workflow Ac-

tivity (AWA)) as autonomic processes, which are logically distributed, have independent

execution control, and can run in parallel on distributed infrastructures, such as clus-

ters and clouds. Each AWA activity executes a software component, called T ask, and

developed as a Java class that implements a generic interface allowing programmers to

code their applications without concerns for low-level details. In the AWARD model, the

data-driven coordination of the interaction links between the AWA activities relies on

a concept named AWARD Space, based on the Linda model [CG89]. The links between

input and output ports of the AWA activities are abstractions supported by the AWARD

Space as an unbounded and reliable global shared space.

In addition to supporting basic workflow patterns [Aal+00b] the AWARD model also

supports non-basic patterns, such as feedback loops and load balancing contributing

to more flexibility for developing scientific applications using workflows. Furthermore,

the AWARD model supports dynamic workflow reconfigurations. During the execu-

tion of long-running workflows with multiple, possibly infinite, number of iterations the

AWARD model supports the submission of reconfiguration plans as sequences of dynamic

operator invocations, for structural and behavioral changes of one or more workflow ac-

tivities. This characteristic of the AWARD model is a distinctive contribution of this

dissertation towards increasing the flexibility to develop scientific workflow applications.

In fact, many scientific experimental scenarios require continuous improvements without

having to restart a new experiment each time some modification should be made to a

workflow. In addition, by using dynamic reconfiguration plans, it is possibly to recover

from failures and to steer workflows by multiple users. The coordination of the actions

required by dynamic workflow reconfigurations uses the AWARD Space as an interme-

diary. The underlying AWARD architecture also uses the AWARD Space to support the

monitoring of the execution of workflows, for instance, to detect failures.

This dissertation is not focused on workflow performance evaluation in the sense of

program/application execution speed. However, the dissertation aims at contributing to

increase the flexibility and efficiency in the process of solving real problems, by taking

advantage of a user-friendly workflow model which addresses the main requirements for

developing scientific applications. In addition, this dissertation provides a flexible and

transparent implementation of an AWARD support framework decoupled from disparate

technologies, thus promoting its reusability in multiple computing environments, for

instance, for exploiting the parallelism and distribution currently available on computa-

tional infrastructures, namely clusters and clouds.
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1.1. MOTIVATION

1.1 Motivation

The workflow paradigm offers a well established approach to deal with application com-

plexity by supporting application decomposition into multiple activities. The workflow

approach allows encapsulating parts of a problem within each activity, which can then be

reused in different workflows for modeling different application scenarios. Furthermore,

different forms of composition may easily be expressed in a workflow, namely specifying

the sequential or the concurrent composition of activities, which opens the way to exploit

parallelism and distribution in the workflow execution.

In addition, workflows facilitate large scientific experiments where different users

with different expertise on scientific domains may develop specific tasks that can be

combined to execute complex applications in parallel and distributed computing envi-

ronments, possibly for processing large volumes of data.

Despite the multiple initiatives in scientific workflows, the scientific community has

early realized that there were many open issues, as stated by multiple authors, for ex-

ample, [Dee07; Dee+08]. However, many of these issues have remained open [Chi+11].

Also, in our early work in the context of the GeoInfo project at Faculdade de Ciências e

Tecnologia da Universidade Nova de Lisboa (FCT-UNL) [Kaj+09] aiming at enabling large

scale experimentation in Earth, Sea, and Space sciences, we found a need for improving

the support provided by existing workflow tools in order to find solutions to many open

issues [AGC09].

As a first issue, our preliminary work showed that many workflow approaches had

little flexibility by requiring the scientific workflow developers to deal with low-level

details of the execution engine. For example most existing workflow systems only sup-

port token data types compromised with the execution engine and have limitations for

supporting new data types as application-dependent tokens. This can divert the devel-

oper’s efforts from the application problem in many real-world scenarios. In fact, many

scientific workflow developers come from diverse science domains without having a deep

knowledge about computer science and technology.

As a result of our work and the survey conducted on a diversity of scientific publica-

tions on workflow systems, we have identified several open issues concerning both the

high-level workflow abstractions and the workflow execution mechanisms, as summa-

rized in the following:

• Lack of a decentralized execution control, leading to limitations on the workflow

scale and on the benefits of using currently available parallel and distributed infras-

tructures;

• Lack of expressiveness for specifying the dependencies between the workflow activ-

ities, based on control-flow, data-flow, and their combinations;

• Lack of expressiveness for executing long-running workflows with multiple or in-

finite number of iterations as well as difficulties in expressing loops and feedback
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dependencies among the workflow activities;

• Limitations to execute a workflow multiple times, as workflow instances, with pa-

rameter sweep;

• Lack of location transparency and dynamic binding for specifying the activity task.

In most workflow systems the task development is critically coupled to the execu-

tion engine details or to the access to external services. For instance, Web services

are statically defined not allowing dynamic bindings;

• Lack of support for exception and fault handling;

• Lack of an effective support for dynamic workflow reconfigurations during the

execution of the multiple iterations of long-running workflows.

In the presence of the above issues and limitations we found motivation to propose

the AWARD workflow model for overcoming the above difficulties and to implement a

working prototype for supporting the practical development of scientific workflows.

1.2 Problem Statement

This dissertation addresses and proposes solutions to the following research question:

æ How can a workflow model be designed and implemented in order to:

(A) Allow the development of scientific applications using the workflow paradigm, by

requiring the programmer/developer to have only a minimum knowledge and con-

cern about the low-level operational and implementation details of the underlying

workflow enactment engine and execution environment;

(B) Support adequate and easy to use workflow abstractions, for expressing the applica-

tion decomposition and coordination, and still allowing a transparent exploitation

of parallel and distributed computing solutions, based on a model of decentralized

control and distributed execution of the workflow activities;

(C) Enable the practical development of long-running experiments, by supporting the

design and execution of workflows with multiple iterations, namely allowing work-

flows with a finite or infinite number of iterations, for example, to support data

streaming;

(D) Support a flexible model for the structural and behavioral dynamic reconfiguration

of workflows, by conciliating both its expressiveness (through a supported set of

reconfiguration operators) and its feasible and effective practical implementation,

in order to demonstrate its practical benefits, namely for dynamic reconfiguration

of long-running workflows.
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1.3. REQUIREMENTS

1.3 Requirements

Addressing all the above mentioned open issues would be a hard and complex task, and it

would be impossible in a single dissertation. According to the (A), (B), (C), and (D) points

of the above research question to guide the design of the AWARD model we identified

the following main requirements that should be supported:

(A) a) Implementation of a workflow abstract machine for evaluating the feasibility

of using the AWARD framework to develop concrete workflow application

cases;

b) Transparency for specifying the application requirements without knowledge

about low-level details of the execution engine. For instance, the control-flow

or data-flow tokens between workflow activities should be only dependent on

the application and not obscure data types tied to the execution engine details;

c) Decoupling the workflow specification and its mapping to the execution en-

vironments, for instance, the same workflow specification with minimal map-

pings should be: i) Executable on multiple standalone computers on a local

network; or ii) Executed on multiple nodes of a cluster or on clouds using

multiple virtual machines;

(B) a) Specification of workflows with expressiveness and flexibility for supporting

multiple structural layouts including basic workflows patterns [Aal+00b] and

non-basic workflow patterns, such as feedback loops between the workflow

activities and activity replication for load balancing;

b) Autonomic behavior of each workflow activity for running without dependen-

cies on a centralized execution engine in order to decentralize the control of

parallel and distributed execution of workflows;

(C) a) Specification of long-running workflows with multiple iterations or even in-

finite number of iterations, where different activities can separately run in

parallel by proceeding at their own pace in different iterations;

(D) a) Workflow reconfiguration by using a supported set of operators to dynamically

change the structure and behavior of long-running workflows characterized

by executing a large number of iterations;

b) The support of interactive workflows with user steering, where different users

can execute, monitor and reconfigure the workflow activities;

Although we recognize their importance and the need for future research, the follow-

ing issues are not addressed by this dissertation:

1. Description languages for specifying workflows;
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2. Methods and tools for verification of correctness of the workflows. We assume

that the correctness of dynamic workflow reconfiguration should be ensured by

the workflow developer or by external tools according to the specific application

scenario;

3. Development of user-friendly interfaces supporting the graphical design of the

workflow specification mainly when the workflow has a great number of activities

or even when multiple users are involved in the workflow development;

4. Tools for searching and dynamic binding of Web services for composing and orches-

trating scientific workflows;

5. Scheduling the multiple workflow activities to multiple computational nodes;

6. Techniques for storing, accessing, sharing or moving large amounts of data;

7. Strategies for producing, storing and mining workflow provenance data.

1.4 Research Methodology

The methodology that guided this work encompassed the following steps:

1. Analyzing widely used workflow systems and tools, in order to characterize their

advantages and identify open issues.

2. Outlining the requirements and designing the AWARD model to execute scientific

workflows in order to achieve feasible and practical answers to the research question

described in the above problem statement (Section 1.2);

3. Implementing the AWARD model, leading to a working prototype to allow real

experiments on distributed infrastructures, such as networks of standalone comput-

ers, clusters and clouds;

4. Evaluating and refining the AWARD model and its implementation. Assessing the

model expressiveness based on useful experimental scenarios and concrete applica-

tion cases.

1.5 Dissertation Overview

During our preliminary work in the context of the GeoInfo project [Kaj+09] at FCT-UNL,

which aimed at enabling large-scale experimentation in Earth, Sea, and Space sciences,

we studied the development of workflows for composing scientific applications and we

found a need for improving the support provided by existing workflow tools in order

to find solutions to several open issues [AGC09]. Also, the survey conducted on related

publications on workflow systems reinforced the need for investigating new directions in
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order to improve the characteristics of scientific workflows including the possibility of

applying dynamic reconfigurations to long-running workflows.

Furthermore, in the last decade many commercial initiatives and efforts by non-profit

scientific communities contributed to easing the use of large-scale computing resources

available on distributed infrastructures, such as clusters and clouds. Thus we found

the need for decentralizing the control of the workflow execution in order to enable the

opportunities for parallelism and distribution of the workflow activities.

The work carried out throughout this dissertation aimed at improving the functional-

ity, flexibility and feasibility of the abstractions and mechanisms for specifying and exe-

cuting long-running workflows, supporting their dynamic reconfiguration, and mappings

to a diversity of computing infrastructures, from standalone computers to distributed

clusters and clouds.

An overview of the main concerns addressed by this dissertation is presented in Figure

1.1.

AWARD
Model

AWARD
Workflow

Specification
(XML schema)

AWARD
Abstract
Machine

Autonomic 
Controller

Application 
Scenarios

AWARD
Machine

Implementation

Tools

AWARD Space
server

Dynamic
Library

Computing 
Infrastructures

Implementation
view

Workflow
Execution

Workflow
application
(XML file)

Workflow
Reconfiguration

(Dynamic 
Operators)

Mappings configuration

AWARD 
Space

Workflow
Development

Reconfiguration
Scripts

Figure 1.1: The dissertation concerns

A new scientific workflow model called AWARD, as an acronym for Autonomic Work-
flow Activities Reconfigurable and Dynamic, is proposed according to the requirements

identified in the above Section 1.3.

The AWARD model is based on the Kahn Process Networks (PN) model of computa-

tion [Kah74] where processes communicate through unbounded First-In, First-Out (FIFO)

channels by reading and writing atomic data elements called tokens. In the AWARD
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model, a PN process is an Autonomic Workflow Activity (AWA) executed within an in-

dependent operating system process so it is possible that individual workflow activities

or groups of activities are launched and executed on distributed computing nodes. In

the AWARD model, the interaction between workflow activities is done through com-

munication links, which are abstractions supported by the AWARD Space for carrying

application-dependent tokens and connecting activity output ports to other activity input

ports. Each autonomic workflow activity is enabled for executing its T ask according to

the tokens that have reached its input ports. In the AWARD model, the activity interac-

tion is completely neutral with respect to the token data contents, which are application

dependent and only interpreted by the activity Tasks.
The AWARD model is based on a decentralized control of the parallel and distributed

execution of the workflow activities. The AWARD model supports basic workflow pat-

terns [AHR11; Aal+00b], and non-basic workflow patterns, such as the feedback loop and

the load balancing patterns.

The AWARD model supports structural and behavioral dynamic workflow reconfig-

urations to be applied to long-running workflows characterized by executing a large

number of iterations. This important characteristic allows, for instance, recovering from

faulty cloud services invoked by workflow activities [AC13]. Furthermore by combining

the autonomic characteristics of the workflow activities and the support for dynamic re-

configurations, AWARD enables interactive workflows for user steering, where different

users can execute, monitor and reconfigure the workflow activities [AC14].

As illustrated in Figure 1.1, the AWARD model is discussed according to three views

described in the following:

1. The Declarative view represents the programmer’s perspective used by developers to

specify AWARD workflows for modeling their application scenarios, and preparing

reconfiguration scripts in order to submit dynamic reconfiguration plans during

the execution of the long-running workflows;

2. The Operational view describes the mechanisms of the AWARD abstract machine for

executing AWARD workflows, and handling the requests for dynamic reconfigura-

tion;

3. The Implementation view describes the implementation and architecture of the

AWARD abstract machine as a framework composed of artifacts, such as tools, the

AWARD Space server, and a software library (DynamicLibrary.jar) for supporting

the mappings to computing infrastructures in order to execute and dynamically

reconfigure the AWARD workflows.

The Declarative view encompasses the main concepts and formal definitions related

to the specification of AWARD workflows, such as what is an activity and its input and

output ports, what are links between output ports and input ports, what is a token passed

through links, and what is an activity T ask. This view also includes the definition of an
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intermediate representation of AWARD workflows by relying on the standard eXtensible

Markup Language (XML) schema language. This allows validating the conformance of

the AWARD workflow specification using the XML language. Thus any editor of XML

documents can be used to specify AWARD workflows. Additionally the concept of dy-

namic reconfigurations is described including the structure of any reconfiguration plan

script based on a set of basic operators for supporting the submission of reconfiguration

plans during the execution of the long-running workflows.

The Operational view describes the actions of the AWARD abstract machine for execut-

ing AWARD workflows and handling the dynamic reconfiguration requests. This abstract

machine relies on two components: i) An Autonomic Controller with a State Machine and

a Rules Engine for controlling the execution life-cycle of a workflow activity; and ii) The

AWARD Space as an abstraction for supporting the links and the token passing between

input and output ports of the workflow activities. This view includes the operational

and semantics specification of the Autonomic Controller to be executed separately on any

computing node, and the AWARD Space properties for supporting token passing and

submission of dynamic reconfiguration requests.

The implementation view describes the implementation of the AWARD model through

the AWARD framework as a set of artifacts allowing the workflow development and

concrete mappings for executing scientific workflows on several computing environments,

such as standalone computers, clusters and clouds. The architecture of the AWARD

framework includes the following software components:

• A Java executable (AwaExecutor.jar) used for supporting the execution of an auto-

nomic activity;

• A Java executable (AwardSpace.jar) used for launching a server, which implements

the AWARD Space using the concept of tuple spaces, and also providing basic

functionalities for logging and monitoring the workflow execution;

• A software library (DynamicLibrary.jar) allowing the development of dynamic re-

configuration scripts;

• A set of utility tools for launching one or more workflow activities in multiple com-

puting nodes, namely in clusters and clouds, and for getting execution information

on each workflow activity.

The decentralized control requirement, allowing each activity to have an autonomic

behavior and to run on distributed computing nodes, increases the difficulty for monitor-

ing and debugging the execution of long-running workflows. Our approach provides the

basic mechanisms for logging information produced by all workflow activities to be used

for monitoring and debugging the workflow execution.

Our work does not address the problem of how to assign the multiple workflow ac-

tivities to a set of computational nodes, for instance cluster nodes or virtual machines on
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clouds. This issue is left to the workflow developers. However, the AWARD framework

tools for launching workflow activities can be used to assign the adequate computa-

tional nodes according to the application scenarios. For instance, developers can define

partitions of activities and assign these partitions to the available computational nodes

according to data location and other application requirements.

This dissertation presents an evaluation of the AWARD model and its implementation,

including a comparison with other widely used scientific workflow systems, for instance,

the Kepler workflow system. Three main dimensions are considered:

• Concerning parallel and distributed workflow execution, we evaluate the flexibility

and functionality of the AWARD model to develop several workflow patterns and

map their execution on parallel and distributed infrastructures;

• Concerning dynamic reconfiguration, we evaluate the AWARD model to support

a set of useful scenarios, such as to change the activity tasks for increasing the

performance or to recover from failures, and to change the workflow structure by

introducing new activities, for instance, to introduce feedback loops or activity

replicas for load balancing;

• Concerning the overall functionality provided by the AWARD framework, we eval-

uate its use for developing concrete application cases, such as a workflow for im-

plementing the MapReduce model, a workflow where an activity T ask invokes an

external Web service, a workflow with steering by multiple users using dynamic

reconfigurations, and a text mining application. We also evaluate the feasibility of

the AWARD framework and its implementation in order to promote the transparent

development of AWARD workflows by demonstrating that a user/developer is only

required to know the AWARD declarative view and how to use the AWARD tools,

without requiring a detailed knowledge about the AWARD machine internals.

1.6 Contributions

In the following the main contributions of this dissertation are identified:

Transparency: A workflow developer does not need to know low-level details of the

execution engine for developing new workflow activities. The programming of the al-

gorithm of a workflow activity (AWA T ask) is similar to programming any Java desktop

application which receives an array of invoking Arguments.

Contribution 1: Workflow specification is decoupled from the execution environ-

ment being mostly focused on structural aspects and a declarative view of the logical

dependencies between activities where the workflow developer defines: i) Names

for activities; ii) Names for their input and output ports in order to establish the

links to connect activities; iii) The token types associated to input and output ports;
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and iv) The qualified name of the software components for implementing the algo-

rithms of the workflow activities.

Decentralized control: The workflow execution is based on a decentralized control model,

which allows the Autonomic Workflow Activities (AWA) to be launched and run sepa-

rately on distributed computing nodes. Each AWA activity consumes and produces tokens

at its own pace and can terminate independently of the others.

Contribution 2: The workflow activities can be launched and run separately on

heterogeneous infrastructures, ranging from a single computer to distributed in-

frastructures, such as network of local computers, clusters and clouds. Depending

on the specific application scenarios a workflow can be subdivided into partitions

with multiple activities. Each partition can be separately launched on different

distributed sites and monitored by different users.

Dynamic reconfiguration: The structure and behavior of long-running workflows can

be dynamically modified: i) By launching new activities; ii) By changing the activity

parameters; iii) By changing the algorithm (AWA T ask); iv) By creating input/output

ports; v) By changing links between ports; vi) By changing the input and output ports

behavior and the corresponding mappings to the AWA activity T ask Arguments and

Results;

Contribution 3: A dynamic reconfiguration model relying on a set of primitive

operators for providing a unifying approach to handle multiple aspects: i) Explicit

dynamic workflow reconfiguration driven by users/tools on useful real scenarios;

ii) Recovery from faults using dynamic reconfiguration operators; and iii) Workflow

steering by multiple users, allowing each user to submit distinct reconfiguration

plans.

Integration of the AWARD Space abstraction: The AWARD Space is a global shared

tuple space based on the Linda model [CG89] used to support multiple aspects: i) The

coordination of the interactions between AWA activities to exchange tokens related to

data-flow or control-flow; ii) The submission of the dynamic workflow reconfigurations;

and iii) Monitoring the execution of workflows allowing to analyze intermediate results,

to observe the workflow state, the current elapsed execution times of each activity, and to

detect possible activity failures;

Contribution 4: The integration of the AWARD Space abstraction into the work-

flow model is completely transparent to the workflow developer in the following

dimensions: i) The workflow developer only needs to specify the token types, which

can be any according to the application requirements; ii) The workflow developer

transparently invokes workflow reconfiguration plans through a software library

(DynamicLibrary.jar), which automatically injects tuples in the AWARD Space rep-

resenting reconfiguration scripts to affect multiple activities; and iii) The developer
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benefits from the AWARD framework tools that provide transparent access to mon-

itoring, inspection and debugging functionalities.

Implementation of a workflow prototype: The AWARD framework is supported by an

effective architecture implementation composed of the following components: i) The

kernel to control the life-cycle of an AWA activity; ii) The AWARD Space server; iii) The

dynamic software library for applying dynamic reconfigurations; and iv) Tools to support

the development and execution of AWARD workflows.

Contribution 5: The AWARD framework components were developed in Java and

decoupled from particular computing environments. Their ease of use and porta-

bility allow the workflow development and execution on diverse computing in-

frastructures, such as a standalone computer, or virtual machines on distributed

infrastructures, such as clusters and clouds.

1.7 Publications

The following publications describe the main results of our work based on the proposal

of the AWARD model and its innovative contributions:

• Luís Assunção and José C. Cunha, “Enabling Global Experiments with Interactive

Reconfiguration and Steering by Multiple Users,” in Proceedings of International

Conference on Computational Science (ICCS 2014) - Procedia Computer Science,

pp. 2137-2144, Elsevier, 2014, Doi: 10.1016/j.procs.2014.05.198;

• Luís Assunção, Carlos Gonçalves, and José C. Cunha, “Autonomic Workflow Activ-

ities: The AWARD Framework,” International Journal of Adaptive, Resilient, and

Autonomic Systems (IJARAS), vol. 5(2), pp. 57-82, IGI Global, 2014, Doi: 10.4018/i-

jaras.2014040104;

• Luís Assunção and José C. Cunha, “Dynamic Workflow Reconfigurations for Recov-

ering from Faulty Cloud Services,” in IEEE 5th International Conference on Cloud

Computing Technology and Science (CloudCom 2013), pp. 88–95, IEEE, 2013, Doi:

10.1109/CloudCom.2013.19;

• Carlos Gonçalves, Luís Assunção, and José C. Cunha, “Flexible MapReduce Work-

flows for Cloud Data Analytics,” in International Journal of Grid and High Perfor-

mance Computing (IJGHPC), vol. 5(4), pp. 48–64, IGI Global, 2013, Doi: 10.4018/i-

jghpc.2013100104;

• Carlos Gonçalves, Luís Assunção, and José C. Cunha, “Data Analytics in the Cloud

with Flexible MapReduce Workflows,” in IEEE 4th International Conference on

Cloud Computing Technology and Science (CloudCom 2012), pp. 427–434, IEEE,

2012, Doi: 10.1109/CloudCom.2012.6427527;
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• Luís Assunção, Carlos Gonçalves, and José C. Cunha, “Autonomic Activities in

the Execution of Scientific Workflows: Evaluation of the AWARD Framework,” in

Proceedings of the 9th IEEE International Conference on Autonomic and Trusted

Computing (ATC 2012), pp. 423-430, IEEE, 2012, Doi: 10.1109/UIC-ATC.2012.14;

• Luís Assunção, Carlos Gonçalves, and José C. Cunha, “On the Difficulties of Using

Workflow Tools to Express Parallelism and Distribution - A Case Study in Geological

Sciences,” Proceedings of the International Workshop on Workflow Management

of the International Conference on Grid and Pervasive Computing (GPC 2009). pp.

104–110, IEEE, 2009, Doi: 10.1109/GPC.2009.30.

1.8 Organization of the Dissertation

A global perspective of this dissertation is presented in Figure 1.2, including the main

concerns discussed in each chapter regarding the development and evaluation of the

AWARD model.

Chapter 1: Introduction 
Motivation & Problem statement 
Dissertation overview & Contributions  
AWARD general requirements 

Chapter 2: Background & Related work 
Perspective of the scientific workflow initiatives  
Widely used workflow systems and tools 
Characterization of scientific workflows & Open issues 

Chapter 3: The Model 
Model rationale 
Model requirements 
Programmer´s view & AWARD machine 

Chapter 4: Dynamic Reconfigurations 
Dynamic reconfiguration rationale & Programmer´s view 
The AWARD machine support for reconfigurations 
Useful scenarios for  dynamic reconfigurations 

 
 

 

Chapter 5: Architecture & Implementation 
Workflow development life-cycle & Workflow specification 
AWARD Space server 
Dynamic reconfiguration API 
Internals of the AWARD machine 
AWARD Tools for executing workflows 

 

Chapter 6: AWARD Evaluation 
Parallel and distributed workflow execution 
Workflow scenarios  & Dynamic reconfigurations 
Application cases 
Comparing AWARD with other workflow systems 

 
 

 Chapter 7: Conclusions  
Lessons learned 
Future work 
 

 
 

AWARD 

Model 

Figure 1.2: The dissertation chapters and the related main concerns

This dissertation is organized in seven chapters with the following contents. This

Chapter (1) is dedicated to introduce the research questions, the motivations and the

requirements behind the development of the AWARD model. This chapter also presents
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the dissertation overview and discusses the main contributions, including the list of

scientific publications produced during the accomplished research work.

In Chapter 2, background and related work on the scientific workflows area are out-

lined in order to identify important open issues that have motivated the specification of

requirements to develop the AWARD model.

The remaining chapters present the AWARD model and its implementation in order

to support the development of application scenarios based on the scientific workflow

paradigm.

In Chapter 3, we discuss the rationale of the AWARD model, the concepts related

to the specification of the AWARD workflows and the AWARD abstract machine that

allows the parallel and distributed execution of the workflow activities, including the

operational view of an Autonomic Controller for executing workflow activities.

In Chapter 4, we discuss how the AWARD abstract machine was extended in order to

support structural and behavioral workflow dynamic reconfigurations. This includes the

definition of a set of dynamic operators to be used in reconfiguration scripts.

In Chapter 5, we present the AWARD machine architecture and its implementation,

including the internal components of the Autonomic Controller, such as the State Machine
and the Rules Engine, and the AWARD Space server. A set of useful tools are described

for launching and monitoring the execution of AWARD scientific workflows.

In Chapter 6, we present an evaluation of the AWARD model centered on the flexibil-

ity, functionality and feasibility for developing workflows. Three main dimensions are

considered: Parallel and distributed execution; Support for dynamic workflow reconfigu-

rations; Feasibility of using AWARD for implementing real application cases. Chapter 6

also compares the AWARD characteristics to other workflow systems.

Conclusions and future work directions are presented in Chapter 7.
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2
Background and Related Work

The background and related work, identifying issues that have motivated
the development of the AWARD model.

This chapter discusses the background and related work in the scientific workflows area.

After an introduction, in Section 2.1 for presenting a global perspective of the evolution

of the scientific workflow paradigm, we describe, in Section 2.2, several widely used

workflow systems, such as Pegasus, Triana, Taverna and Kepler.

In Section 2.3, we discuss the importance and the limitations that still exist for sup-

porting replicability and reproducibility of scientific workflows.

In Section 2.4, we outline several dimensions of the scientific workflow characteristics.

In section 2.4.1, we discuss generic characteristics, such as workflow structural patterns

and specification languages, and the workflow computational models. In Section 2.4.2,

we discuss the requirements and the existing limitations for distributed execution of

workflows. In Section 2.4.3, we discuss the flexibility for supporting dynamic reconfig-

urations. Section 2.4.4 discusses the support for exception handling and fault recovery

and, in Section 2.4.5, we discuss the support for interactive workflow steering by different

users.

In Section 2.5 we present conclusions, and identify the requirements of the AWARD

model.

2.1 Introduction

Technological improvements in computer hardware and communication networks that oc-

curred in the last two decades have enabled the possibility of performing high throughput
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computing on large sets of distributed computers. Previously, the execution of scientific

applications with intensive processing requirements was only possible on supercomput-

ers not easily available to many scientists or organizations.

The above mentioned technological improvements enabled the development of high

performance scientific applications and their execution on clusters, grids or more recently

on clouds.

Despite the availability of such distributed computing infrastructures the challenge

remains how to perform application decomposition in multiple components and how to

coordinate their execution on these infrastructures. Already successfully used during the

past fifteen years in business process modeling, the workflow paradigm was also adopted

for modeling scientific applications.

Figure 2.1 illustrates a global perspective of the scientific workflow initiatives and

their relation to previous works.

Scientific Workflows 

1997-GRID 

2006-Cloud 

Workflow Patterns 
Workflow Languages: BPEL, YAWL, … 
Workflow Dynamic adaptations 

2003: Triana 
2003: Taverna 
2004: Kepler 

2002: Pegasus 

2001-SOA 
 (Web services) 

2007: “Workflows 
for e-Science” book 

Thousands of 
publications 

Tools for Science and Engineering: 
   1987: Triana, Gravitational waves data analysis 
   1995: SCIRun 
   1996: Ptolemy II, Actor-oriented design 
   2003: Scufl  Workbench  
 

 
 
 
  

HTC Batch Systems: 
   1984: Condor 
   1992: LSF 
   1996: PBS 
   2001: DAGMan 
 
 
 
 

Business Workflows: 
   1993: Workflow Management Coalition 
 

Figure 2.1: A global perspective of the scientific workflow initiatives

Scientific workflows use graphs for specifying dependencies between activities in

complex scientific applications.

The evolution of scientific workflows was influenced and inherited the best practices

followed by three main research directions.

The first important influence came from previous research on business workflows. The

workflow paradigm, early adopted in the business context [Hol95] was also found useful

to model scientific applications, and allowing flexible mappings between the application

abstractions and the underlying computing infrastructures. The main contributions

are related to well known standards [WfM11], workflow patterns [Aal+00b], [AHR11],

and workflow specification languages, such as the Business Process Execution Language

[BPE06] and the YAWL (Yet Another Workflow Language) language [RH09]. Due to
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the needs of companies for constant adaptation for changing the business models some

workflow initiatives have also dealt with the support for dynamic workflow adaptations

[RD98].

The second influential research direction was related to approaches for application de-

composition into multiple components and their submission, as batch jobs, for execution

on distributed computing infrastructures. The supporting platforms, called distributed
batch computing systems or high throughput (HTC) batch systems, provided job submission,

scheduling and management as well as resource management functionalities. Users sub-

mit their jobs to the batch system that decides when and where to run the jobs, allows

monitoring their progress and ultimately informs the user upon job completion. Success-

ful batch execution systems, such as LSF (Load Sharing Facility) [Zho92], PBS (Portable

Batch System) [HT96] and HTCondor [TTM05], have been used both in the scientific and

the business worlds. However, these systems raise complex issues concerning the spec-

ification and management of dependencies between the application jobs. For instance,

the Directed Acyclic Graph Manager (DAGMan) [Cou+07] is a meta-scheduler for HT-

Condor that manages dependencies between jobs at a higher level than the HTCondor

scheduler. The job dependencies are represented by the arcs of a Directed Acyclic Graph

(DAG) whose vertices represent the jobs. According to this graph, DAGMan submits jobs

to HTCondor that finds computing nodes for executing each job.

The above batch job processing functionalities are used by Pegasus [Dee+15] that is

a workflow management system widely used to map abstract workflows into concrete

execution plans specified as DAGMan graphs for executing the workflow activities as

jobs on distributed platforms using particular middleware, in particular HTCondor. A

detailed discussion of Pegasus and its related work is presented in Section 2.2.

The third important influence that brought contributions to the scientific workflows

evolution is related to tool-based problem-solving approaches for developing scientific

and engineering applications in specific domains. Such approaches were typically sup-

ported by sets of tools integrated into Problem Solving Environments (PSE) [GHR94],

providing high-levels of transparency to the end user (a scientist or an engineer), with

easy to use interfaces and transparent access to parallel and distributed computing re-

sources. A PSE typically encompasses the entire application development and execution

life-cycle, by supporting problem specification using a domain-specific language; selec-

tion of the application software components, for computation, control or visualization,

and their interconnection using data-flow pipelines; followed by the configuration and

activation of experiments by setting up the application parameters and mapping the

components into the computing platforms; and including the execution management,

possibly with monitoring, visualization and steering.

Some PSE initiatives are still in use up to the present days and even originated tools

that are nowadays widely used. For example, the SCIRun PSE [PJ95] is a workbench for

visual programming developed by the SCI group at the University of Utah. Originally

developed for calculations in computational medicine, SCIRun has been extended to
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many other application areas [JPW00].

With the emergence of the concept of scientific workflows in the early years of the

21st century, some PSE have integrated the support for scientific workflows in their func-

tionality and architecture [Wal+00]. As examples, we can indicate the cases of Triana,

Ptolemy II and the SCUFL workbench described in the following. Triana has initially been

developed for analyzing data related to the detection of gravitational waves [TS98]. With

the advent of grid initiatives, Triana was later extended to be used as a scientific workflow

system for modeling applications within grid computing and peer-to-peer environments

[Tay+03].

Ptolemy II [Bro+08a] is a PSE developed at University of California at Berkeley in

the context of the Ptolemy project for simulating the design of concurrent real-time,

embedded systems. Ptolemy II supports experimentation with actor-oriented design

[Agh86]. Actors are concurrent software components interconnected by ports commu-

nicating through messages. A model of computation is expressed as a graph of inter-

connected actors with semantics determined by a software component called a director,

which coordinates the actors execution. Despite the possibility of developing new direc-

tors, Ptolemy II offers several directors [Bro+08b] supporting distinct models of computa-

tion, such as process networks (PN), discrete-events (DE), synchronous data-flow (SDF),

synchronous/reactive (SR), continuous-time (CT) and a rendez-vous model.

Built upon Ptolemy II, the Kepler scientific workflow system [Alt+04] inherits the

maturity of Ptolemy II, namely the supported models of computation as directors. The

Kepler project has been developing extended characteristics for allowing the development

of scientific workflows.

The SCUFL workbench [Add+03] is a software graphical tool for designing work-

flows using the workflow language SCUFL (Simple Conceptual Unified Flow Language).

This workflow language was developed as part of the myGrid project [GWS03] related

to e-Science communities, mainly in the areas of bioinformatics and the mapping of the

human genome. The SCUFL workbench is also a workflow enactor to execute workflows

accessing Web Services hosted on distributed computing resources. The Taverna work-

flow system [Oli+06] integrates the SCUFL workbench and uses the SCUFL workflow

language for supporting the development of scientific workflows.

Some of the workflow systems identified above have been widely used until today or

have been the root of multiple related works to explore specific characteristics of scientific

workflows. Therefore, in Section 2.2 we describe in more detail these workflow systems,

such as Pegasus, Triana, Taverna and Kepler.

In the meanwhile, from the early years of the 21st century, the emergence of e-Science

initiatives [FK03; Hin06; NeS12] claimed for improved software tools and environments

towards more productive modeling and experimentation with physical and virtual phe-

nomena in diverse scientific application domains. This has been introducing continuously

challenges and new requirements in scientific workflows systems.
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On one hand, this involves complex computational processes for simulation, visual-

ization, access to large data sets, and increasing degrees of interaction with the user. On

the other hand, it involves the establishment of standards related to Service Oriented

Architectures (SOA), and the emergence and availability of large computing resources on

grid and cloud infrastructures.

As a curiosity, in January 2016 a Google search for the "Scientific Workflows" sentence

gave 110.000 results. This reveals the impact of scientific workflows in multiple distinct

application domains leading to thousands of scientific publications. As an important

indication of such impact in the year of 2007, the book “Workflows for e-Science: Scientific
Workflows for Grids” [Tay+07] was published. This book represents a milestone by pro-

viding a survey of the state of the art and by discussing the future directions for scientific

workflows. The book also includes descriptions of the major existing scientific workflow

systems in particular Pegasus, Triana, Taverna and Kepler.

2.2 Widely Used Scientific Workflow Systems

In spite of intensive research efforts on scientific workflows and many early achievements,

unfortunately, there are only a few general purpose and flexible workflow systems that

can be effectively used by end users in different science domains [BH08; CG08; Gil+07;

McP+09; Tal13; YB05]. In spite of the large number of available scientific workflow

systems and tools, there is no consensus about what a general purpose scientific workflow

system is. In fact, some systems have been developed to support research on specific

science domains. For instance, Galaxy [Goe+10] and BioExtract [LGD15] are systems

closely related to bioinformatics. Despite the multiple contributions and achievements

from many other systems, in the following we only discuss scientific workflow systems

that are used in various science domains and that are widely cited in publications related

to scientific workflows: Pegasus [Dee+05], Triana [Chu+06], Taverna [Oli+06] and Kepler

[Lud+06].

2.2.1 Pegasus

Pegasus [Dee+05] is a framework for mapping scientific workflows onto distributed com-

putational resources based on grid or cloud systems [Dee+16].

In Pegasus an application is modeled by an abstract workflow specified in a high-level

language as a directed acyclic graph (DAG). At abstract level a workflow specification is

described using a proprietary language named DAX (as an acronym for Directed Acyclic

Graph in XML), which allows representing a DAG in XML. The workflow activities,

named tasks, are represented by the graph nodes and the data dependencies between

tasks are represented by the graph arcs. Pegasus transforms the abstract workflow to

a concrete workflow by mapping the workflow tasks to the existing computational re-

sources where the workflow application is executed. This concrete workflow is defined by
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a set of script files specified using the meta-scheduler DAGMan, [Cou+07] that enforces

the dependencies between tasks and submits the workflow tasks to be executed by the

HTCondor [TTM05] batch system. When a workflow task fails, DAGMan can retry its

execution. If the task continues to fail, DAGMan generates a rescue workflow that can be

resubmitted later.

Mapper 

• Servers for data staging 
and tasks execution; 

• Location of task executables; 
• Input data files 

Catalog: 

Engine 
(DAGMan) 

Scheduler 
(HTCondor) 

Workflow 
Specification 

(DAX) 

Computational 
 Resources 

Abstract 
Workflow 

Executable 
Workflow 

• Logs and data 
provenance 

Workflow DB: 

Monitor 

Figure 2.2: The Pegasus system components, [Dee+16]

As illustrated in Figure 2.2 the Pegasus system is composed of the following four

components:

1. Mapper: Based on the user DAX workflow specification, Mapper finds the adequate

computational resources required for workflow execution in a catalog, such as the

software components mapped to tasks and data repositories and generates an exe-

cutable workflow. For optimization purposes the Mapper can restructure the work-

flow by adding new tasks for data management including the generation of prove-

nance information;

2. Engine (DAGMan): According to the workflow task dependencies of the executable

workflow, DAGMan determines when tasks are ready to be executed and then sub-

mits them to the HTCondor queue for execution. The engine also checks the work-

flow failures and in case of a task failure retries its execution;

3. Scheduler (HTCondor Scheduler): The Scheduler manages a queue of tasks and their

execution on the available computational resources;

4. Workflow monitor: The Monitor maintains a database with runtime provenance and

performance information and notifies the users about task failures. The Monitor
provides a Web interface for allowing users to monitor their workflows.
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The specification of abstract workflows can be described using tools according to

the multiple projects that have been using Pegasus. For example, the workflow system

Wings (Workflow Instance Generation and Specialization) [Gil+11] automates the cre-

ation of large-scale workflows for simulations to construct seismic maps for the Southern

California Earthquake Center. The Wings system assists users to create workflows by

using artificial intelligent planning and semantic reasoning. The workflows generated

by Wings have associated directed acyclic graphs (in DAX) for submission and execution

using Pegasus.

However, Pegasus is strongly dependent on the High Performance Computing (HPC)

cluster model and the HTCondor scheduler. On one hand, for exchanging data between

tasks or even the task data input/output, the Pegasus approach depends on HPC clus-

ters shared file systems. On the other hand, if the HTCondor scheduler is not installed

on the computational infrastructure it is not possible to use DAGMan and consequently

the Pegasus workflow system. To solve this issue a new workflow engine, DAGwoman

[TS12], has been proposed to run DAGMan workflows on clusters and institutional com-

puting resources using other scheduling systems, for instance Sun/Oracle Grid Engine

(SGE/OGE).

2.2.2 Triana

Triana [Chu+06] is a workflow system, initially integrated as a problem-solving environ-

ment, most used for signal processing. Triana has a friendly Graphical User Interface

(GUI) for designing workflows by drag-and-drop of functional tools onto a workspace

and connect them for composing applications. Triana also has an embedded subsystem

for executing the workflow. As shown in Figure 2.3, the Triana user can design the work-

flow by simply drag-and-drop of the available Triana tools, connect them by data-flow

oriented links, and run the workflow application.

A Triana tool is a software component, called unit that implements a well-known

interface, which allows the development of new tools to be integrated in Triana for further

use on workflow design. Units can be grouped to create aggregate tools, called group units,
for simplifying the design and graph visualization of large workflows.

Behind the graphical user interface for designing the workflow, Triana uses its own

specification language based on XML.

Triana allows interaction with remote services through two interfaces, called Grid Ap-

plication Prototype (GAP) and Grid Application Toolkit (GAT). These interfaces enable

Triana workflows to interact with peer-to-peer systems, Web Services or grid tools, such

as the Globus Resource Allocation Manager (GRAM) and the Grid File Transfer Proto-

col (GridFTP). At run time the GAP/GAT interfaces support the workflow refinement

by automatically mapping the workflow tasks onto the available distributed resources

[Shi07a]. Furthermore, Triana users that are running the graphical interface can log in

into a remote Triana Controlling Service (TCS) for running Triana workflows remotely.
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Tools
Selection

Runworkflow

Workspace

Figure 2.3: The execution of a basic workflow using the Triana user interface, [Chu+06]

Despite the above interactions with remote services, Triana is based on a centralized

execution engine even when the workflow execution is performed remotely using TCS.

The links between Triana units are typically based on data-flow. However, control-flow

links can be supported easily by using special messages between units.

Triana has some limitations, for instance, it only supports Web Services synchronous

call. This penalizes the performance because it does not support two simultaneously

parallel units to invoke Web Services [AGC09]. Other limitation is related to supporting

complex data types when composing workflows using Web Services. In fact, Triana has

special units, WSTypeGen and WSTypeViewer to generate and view complex data types that

are useful for testing simple invocations of Web Services. However, if two Web Service

invocations use slightly different complex data types, the only way to connect them in a

workflow is to develop a new unit for ensuring data compatibility.

2.2.3 Taverna

The Taverna [Oli+06] workbench was developed in the context of the myGrid project

for supporting in silico experiments in life sciences and for providing a user-friendly

graphical interface allowing scientists to access underlying Web Services.

Taverna relies on an approach based on combining Web Services into workflows. This

approach assumes that users think in terms of data processing dependencies by con-

necting services together independently of the concepts and details of service-oriented
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architectures.

Taverna uses the Simple Conceptual Unified Flow Language (SCUFL) for workflow

specification. Taverna enables users to design and execute workflows using the embedded

workflow enactment engine. A processor, the basic execution unit in Taverna, can be

viewed as a function of a set of input data to a set of output data, represented as ports on

the processor. Ports can be connected by data links to support data-flow or by coordination

links to synchronize the execution of components.

As shown in Figure 2.4 the Taverna workbench has three areas: The Service Panel,
used to manage services, allows to choose or import Web Services; The Workflow explorer
is used to specify the workflow without direct interaction with the SCUFL language; and

the Workflow diagram is a visualization canvas used to represent and interact with the

workflow diagram.

The workflow example represented in Figure 2.4 allows getting the weather forecast

for a zip code.

Service Panel

Workflow
explorer

Workflow 
diagram

Run workflow

Figure 2.4: The design and execution of a basic workflow using the Taverna workbench,
[Wol+13]

Taverna was developed for satisfying the needs of bioinformatics scientists that mainly
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need to build scientific workflows from a diversity of remote Web Services. Therefore, a

significant characteristic of the Taverna system is the organization of Web Services into a

reusable collection of components. Taverna only assumes the XML data format and then

some of these components encapsulate data types that are resulting from the Web Service

specification based on the standard Web Service Definition Language (WSDL).

2.2.4 Kepler

The first experiments made with scientific workflows in the context of this dissertation

[AGC09] were based on Kepler. This decision was due to the following Kepler character-

istics:

• Ease of download, including the Java source code;

• Flexibility of the installation and configuration on Windows and Linux operating

systems without dependencies on any middleware except a Java Virtual Machine;

• An intuitive and user-friendly Graphical User Interface (GUI) allowing design and

execution of workflows;

• A very comprehensive documentation [Kep14], inherited from the Ptolemy project

including a detailed description of the user interface.

Kepler is an open-source Java-based environment for building scientific workflows

[Kep13; Lud+06]. The core of Kepler is based on the Ptolemy II environment [BL08] built

for modeling, designing and simulating concurrent systems.

Kepler provides a very intuitive Graphical User Interface (GUI), Figure 2.5, inherited

from Ptolemy II where the workflow components (actors, links and directors) are dragged

and dropped onto a canvas where they can be interconnected, customized and executed.

Models in Ptolemy II and Kepler are based on the composition of actors [BL05] that

are abstract boxes to encapsulate parameterized actions used to wrap different types of

software components, for example, local application jobs or remote Web Services. The

role of actors is receiving input tokens from input ports, processing these tokens and

producing output tokens to output ports. Actors are connected using links between output

and input ports, forming workflow graphs.

Kepler decouples the workflow model from the execution engine by assigning one

model of computation enforced by a director to each workflow.

The interaction between actors is orchestrated by a director that is responsible for

implementing the communication semantics among ports and the control or data flow

among actors. Like in cinema the director directs the action looking at how the actors are

connected, moving data from one actor to others, and firing the actors when they should

execute.

One specific director implements a Model of Computation (MoC) that defines the

scheduling and execution semantics (orchestration semantics) for workflows.
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Figure 2.5: The execution of a basic workflow using the Kepler user interface, [Kep14]

Ptolemy II defines eleven models of computation (MoC) implemented as directors
that are described in detail in [BL08] (Vol. 3: Ptolemy II Domains). A subset of directors
is available in Kepler. The Continuous Time (CT) and Discrete Events (DE) directors

are used in workflows with time dependencies and the Synchronous Data Flow (SDF),

Process Networks (PN) and Dynamic Data Flow (DDF) directors that are used in workflows

without time dependencies.

Despite the existing guidance from the Kepler User’s Manual [Kep14], the questions

how to choose directors and the different ways how they work are quite subtle. Directors
establish data-flow oriented structures for enabling the execution of the actors with data

tokens available in all input ports.

Kepler allows remote data access by file movements between locations using specific

actors that wrap middleware functions, for instance using protocols like GridFTP1 or

shell commands like SCP2.

Kepler does not have any fault handling mechanism at actor level. However, at the

workflow level when an exception occurs the workflow execution stops and an exception

window is displayed where a user can analyze the stack trace and can decide if it is

possible to dismiss the exception and resume the execution.

According to the director properties, workflows can be configured for executing long-

running workflows with multiple iterations. During the workflow execution a user can

1GridFTP is an extension of the standard File Transfer Protocol (FTP) used in grid environments. It is
defined as part of the Globus toolkit (http://toolkit.globus.org).

2The Secure Copy Protocol (SCP) is a network protocol that allows users to copy files securely between
computers in a network.
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graphically observe the workflow execution (Animate at Runtime in the Tools menu).

However, there is no way to dynamically change the structure and behavior of the long-

running workflows.

Kepler workflows are represented and easily exchanged in XML using the Modeling

Markup Language (MoML) inherited from Ptolemy II.

Despite some Kepler extensions to spawn distributed executions [Plo+13], by default,

actors in Kepler run as local Java threads inside a monolithic operating system process.

To summarize, Kepler has the following strong characteristics:

• An intuitive and user-friendly graphical interface;

• A large user community in different science domains;

• A component library with built-in actors (data input/output from files, databases

etc.) including specific actors for accessing Web Services or distributed resources on

clusters and grids;

• Different models of computation supported by different directors;

• The possibility of developing new actors in the Java language and using them in

specific workflows.

However, we also found several important limitations:

• The complexity of the data type model and the actor model for developing new

actors. In fact, to develop a new actor the developer needs to understand the inter-

action model between directors and actors as well as the rules for passing tokens

between actors. In some workflow scenarios the user needs to deal with low-level

data types, such as RecordToken, XMLToken etc.;

• The actor for invoking Web Services is not flexible to support tokens based on the

complex data types defined by the Web Service contract specified using the Web

Service Definition Language (WSDL);

• Despite the flexibility for using distinct computation models by choosing distinct

directors, some built-in actors do not work properly with all directors. For example

the PN director does not manage iterations, possibly leading to non-determinism

and undefined termination of the execution. In composite actors with workflow

hierarchies, if two actors have computation threads, it is ambiguous which actor
should be allowed to perform the computation [God+09];

• The workflow execution engine and actors run as local Java threads inside a mono-

lithic operating system process. This characteristic inherited from Ptolemy II repre-

sents a limitation for executing large workflows with many activities. Furthermore

this characteristic poses difficulties to the distributed execution of the workflow

activities.
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2.3 Replicability and Reproducibility of Scientific Workflows

In order to support in silico experimentation in some science domains it should be possible

to repeat experiments for validating results as well as for disseminating the experiment

and some results between scientists. [Dru09] presents the concept of replicability as

the possibility of recreating an experiment, using the same tools, the same data and

equivalent computing resources, and the concept of reproducibility as the possibility

of repeating an experiment where we always get the same output for the same input,

independently of the tools and computing nodes used. Aiming at similar goals related

to managing the evolution of workflow execution, the concept of provenance has been

addressed as an important characteristic for scientific workflows [DF08; Mat+13; Mil+08].

Other initiatives use artificial intelligence algorithms and semantic Web languages,

such as the World Wide Web Consortium (W3C) standards, Ontology Web Language

(OWL), Resource Description Framework (RDF), Simple Protocol and RDF Query Lan-

guage (SPARQL) to describe a workflow execution, including the input data, the compu-

tation steps and data results [Gar+12; GGC14]. These workflow descriptions are later

used to assist in future workflow compositions and their validation [Gil+11; GR16].

However, as discussed in [SP+16; Zha+12] the existing workflow systems still have

limitations on the adequate levels for supporting the replicability and reproducibility

properties.

We also consider that the difficulties related to the availability of workflow systems

and tools for downloading, installation and configuration also introduce limitations for

supporting the replicability and reproducibility properties. Nowadays, it is easy to create

and configure virtual machines (VM) with an entire working environment, including

the workflow system and its dependencies on other software components or even data

scripts and logs related to particular experiments. Furthermore, a snapshot of a stable

working environment can be saved on VM images that can be made publicly available.

These VM images facilitate the replicability of the working environment by allowing

to instantiate new virtual machines or even to reproduce scientific experiments. The

availability of cloud providers and the flexibility to host a large number of distinct virtual

machines ease the creation of replicable and reproducible scenarios. For instance, the

Amazon cloud infrastructure provides a Linux virtual machine image that includes the

Pegasus workflow system, the HTCondor worker daemons, and other packages required

to compile and run the tasks of the selected workflows, including the application binaries

[Juv+10].

Despite the advantages and opportunities of using virtual machines on clouds to

facilitate the replicability and reproducibility of scientific workflows there are still many

challenges to be met [How12].
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2.4 Dimensions of the Scientific Workflow Characteristics

In the last decade an extensive research work has encompassed multiple dimensions

related to scientific workflows. However, the scope and level of those dimensions are not

easily characterized and some works present overlapping distinct dimensions. Scientists

of distinct areas of science tend to classify the workflow characteristics according to their

interests. Most of the existing surveys on scientific workflows, typically, are focused on

specific characteristics or on a description of the basic concepts and the corresponding

implementation in the existing workflow systems. Since the year of 2007, when the book

“Workflows for e-Science: Scientific Workflows for Grids” [Tay+07] was published, multiple

publications have surveyed the characteristics of scientific workflows and discussed how

those characteristics are more or less fulfilled by the major existing scientific workflow

systems.

A concise survey of the technologies for supporting workflows in the business and

scientific domains is presented in [BH08]. This work concludes that workflow tools need

to be developed according to the science domain instead of being built by computer sci-

entists using highly specific and hardly used characteristics. As an example, the authors

argue that biologists are uncomfortable to think in terms of service abstractions currently

available in the existing workflow tools.

Illustrated with workflows in different science domains, including bioinformatics,

astronomy, and weather and ocean modeling, [RG08] discusses the requirements and

the constraints to manage workflows that are using distributed resources. In [RP10] the

authors present a classification model of the workflow characteristics based on a set of

workflow examples from multiple science domains. The classification model defines

the following workflow characteristics: i) The size of the workflow, considering some

properties, such as the total number of workflow activities, the maximum number of

parallel branches and the number of activities in the longest branch of the workflow;

ii) The dominant structural patterns in the workflow, such as sequence, parallel split, and

synchronization, according to [Aal+00a; Aal+00b]; iii) Data patterns, including input,

intermediate and output data as well as the data types and the transfer time associated

to the workflow data-flow; iv) The usage scenarios, such as interactive workflows where a

user can inspect intermediate data and make changes during the workflow execution.

In [YB05] an exhaustive taxonomy is presented, classifying the approaches for build-

ing and executing workflows on grids and also a survey of the existing grid workflow

systems. Despite the context of grid workflows many of the characteristics also apply

to scientific workflows. Illustrating well the complexity for enumerating all character-

istics of the workflow systems and tools, the classification taxonomy tree has 84 nodes

for defining, among others, characteristics related to the workflow design, for instance,

the workflow structure for supporting DAG and Non-DAG with loops, centralized and

decentralized task scheduling, fault tolerance at task level and workflow level, and charac-

teristics related to data movements. However, some characteristics are not well identified.
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For instance, characteristics related to the support of structural and behavioral dynamic

reconfiguration for long-running workflows are not considered. The work only considers

dynamic characteristics for retrieving information related to the selection of the adequate

resources for task scheduling and execution.

In a specific science domain, [Wan+10] presents a survey of scientific workflows for

astronomy. The authors argue that scientific workflows are significantly different from

the business workflows, pointing out that scientific workflows use more data-flow pat-

terns while business workflows use more control-flow and event patterns. The work also

discusses various drawbacks of the existing workflow systems related to three aspects:

i) Lack of flexibility and complexity for using software tools including some graphical

interfaces; ii) Difficulties to understand the architecture and to extend the functionality

of the workflow systems. As an example, the authors argue that only experts can easily

develop actors in the Kepler workflow system; iii) Installing and configuring software

platforms with complex dependencies is not easy for astronomers. Thus deploying some

workflow systems is a hard job for astronomers.

To achieve workflow interoperability, [EHT10] discusses characteristics of the three

dimensions that must be considered, such as the workflow execution environment, the

model of computation, and the workflow specification language. After discussing distinct

approaches for each dimension the work points out the existence of some trade-offs. For

example, a complete decoupling between the execution environment and the workflow

language improves the interoperability, but also makes the workflow design more tedious

and error prone. A trade-off also exists between the execution environment and the model

of computation. For example, in some models of computation the workflow activities are

tightly coupled to a particular workflow execution environment and it is not easy to reuse

those activities in a different workflow execution environment.

In [Tal13] is discussed how basic concepts of scientific workflows are supported in

some existing workflow systems and tools, such as Pegasus, Triana, Kepler, Taverna and

some grid related workflow systems, such as Askalon [WPF05] and the GridWorkflow

Execution Service [Hoh06]. The work also discusses some open research issues in the

area of scientific workflows. For example, the author argues that a pure data-flow con-

cept is very hard to implement using a decentralized control on parallel and distributed

systems, mainly to ensure fault tolerance. Therefore the author claims for adequate ab-

stractions for data representation and concurrent processing on large-scale computing

infrastructures available today for running scientific applications. The work also defines

a set of research issues towards the design of the next-generation scientific workflow

systems. These issues are related to: i) High-level and complex abstract structures to

be included in workflow programming tools; ii) The support for distributed workflow

execution on service-oriented and cloud infrastructures; iii) Techniques for dynamically

adapting the execution of workflows; iv) Fault tolerance and recovery in scientific work-

flows; v) Techniques for managing, visualizing and mining provenance data to face the

Big Data challenge.
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Many works are related to scheduling techniques to map the workflow execution to

multiple computational nodes. The scheduling of N tasks on M processors is a well stud-

ied NP-complete optimization problem [BA04; Ull75]. The issue of launching workflows

with a large number of activities to a possibly scarce number of computational nodes with

possible constraints has been the subject of extensive research [Bru07; KA99], also in the

context of workflows [Che+15; DK07; IT07];

More specific surveys, such as related to failures and exception handling, and work-

flow steering have been published in works described in the following sections.

However, on one hand, the multiple stakeholders involved have difficulties in present-

ing a consensual characterization of the multiple dimensions of the scientific workflows.

On the other hand, it is unpractical to attempt an exhaustive discussion of all related

work due to the huge number of existing publications related to scientific workflows.

Nevertheless, in the following section we discuss the main dimensions and the related

work that influenced the development of the AWARD model and its implementation.

2.4.1 Generic Characteristics for Scientific Workflows

In this section, we first discuss characteristics concerning the expressiveness of the work-

flow specification and then we discuss characteristics related to the workflow computation

models.

−◦ Expressiveness of the workflow specification

The expressiveness of the workflow specification has been discussed in many formal and

theoretical works including: Workflow specification languages [Aal+04; AMA06; FQH05];

Structural workflow patterns [Aal+00a; Aal+00b; KHA03], workflow data and resource

patterns [RHE05] and more recently in scientific workflows context [Mig+11] as well as

techniques for verifying the correctness of workflows, for instance detection of deadlock

and lack of synchronization [AH00; Sor+07]; The Petri net formalism [BC92; Mur89] for

modeling workflows supporting both control-flow and data-flow [AH00; Gub+06; HA07;

TC09; TCBR11]; Models to support autonomic and decentralized workflow execution

[HPA05; LP05; NPP05; NPP06].

G Workflow languages

In the context of business workflows, including commercial systems, multiple specifi-

cation languages have been proposed. In [AH05] thirteen commercial workflow systems

are described, where each one has its own specification language and also ten more lan-

guages proposed by the academic community. This plethora of workflow languages, some

of them being proprietary, led to initiatives to define independent languages.

The design and implementation of a workflow system, which uses the Yet Another

Workflow Language (YAWL) is presented in [Aal+04]. The YAWL language supports most

of the workflow patterns [Aal+00b] and has a formal semantics defined as a transition

system based on Petri nets. The YAWL expressiveness and its formal semantics aimed to
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define a standard intermediate language for supporting language interoperability. How-

ever, to the best of our knowledge the YAWL language implementation relies on a cen-

tralized workflow execution engine. Although YAWL has been extended to support data

exchange using XML, its initial focus was on control-flow for supporting dependencies

between workflow activities.

The Abstract Grid Workflow Language (AGWL) used for specifying grid workflow

applications at a high level of abstraction is presented in [FQH05]. AGWL is a XML-

based language decoupled from low-level details of the underlying grid infrastructure.

However, AGWL is compromised with the ASKALON workflow runtime environment

[WPF05].

Despite the efforts within the Workflow Management Coalition (WfMC) [WfM11]

for defining workflow standards to be used in the business domain, most earlier com-

mercial workflow systems relied on proprietary workflow languages. However, in the

first years of the 21st century, the establishment of standards for Web Services led to the

emergence of the Business Process Execution Language for Web Services (BPEL4WS) (or

simply Business Process Execution Language (BPEL)) that in 2004 was considered a stan-

dard within the Organization for the Advancement of Structured Information Standards

(OASIS) [OAS15b] and has been adopted by the majority of the available commercial work-

flow systems. The BPEL syntax relies on the XML language and the workflow execution

engines, typically, run inside centralized business application servers.

Some scientific workflow initiatives have considered BPEL as a candidate language for

specifying scientific workflows. [AMA06] evaluates how BPEL meets the requirements

of scientific workflows and concludes that it is a good candidate for orchestrating Web

Services but has limitations for reusing primitive workflow activities and for supporting

user interactions. [Slo07] discusses how to adapt BPEL to scientific workflows and con-

cludes that BPEL is a viable choice for a grid workflow but BPEL workflow engines need

additional capabilities to address some grid requirements. As BPEL was designed for

using Web Services the authors found difficulties to integrate legacy scientific software.

Despite the efforts for trying to define a standard language for specifying scientific

workflows, unfortunately, this objective has not yet been reached. In fact, most of the

existing scientific workflow systems, such as Pegasus, Triana, Taverna and Kepler, are

using their own specific languages with their specific XML dialects.

G User interfaces

The user interface supporting the specification of workflows is an important charac-

teristic. For example, the Triana, Kepler and Taverna workflow systems have powerful

and user-friendly graphical interfaces, which have contributed to their wide adoption.

Typically the user environment associated with a workflow system has a graphical

user interface with a canvas area where the workflow developer designs the workflow

graph without having to deal with low-level scripts or XML dialects as a specific work-

flow language. It is the tool that automatically generates the workflow specification file

according to the used workflow language.
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However, most of the existing tools supporting the workflow graphical design have

limited support for editing and displaying parts of large workflow graphs. For example,

[RG08] describes two workflows (Avian Flu and PanSTARRS) that have over a thousand of

activities. Although this dissertation does not address the support for designing workflow

graphs, the design of workflow graphs with hundreds or thousands of activities is still an

important open issue.

G Workflow patterns

Several works from the business workflow domain tried to define workflow patterns

for systematically identifying the workflow requirements and functionality. For example,

[Aal+00a; Aal+00b] have identified more than forty patterns from the basic to advanced

workflow patterns aiming to establish a comparison among the commercially available

workflow management systems.

[Rus+05] identifies workflow data and resource patterns describing how data and

resources are represented and used in workflows.

[AH00; Sor+07] discuss techniques for verifying the structural correctness of work-

flows, for instance, deadlocks detection and lack of synchronization.

In the scientific workflow context, [Mig+11] presents a pattern-based evaluation of

the well-known scientific workflow systems, such as Kepler, Taverna and Triana, and

compares them with other business workflow systems. The authors observed that some

patterns are not directly supported in scientific workflow systems. These patterns, classi-

fied as routing patterns, are related to the flexibility for combining and routing the input

tokens before the task execution. This work also claims for the need of integrating human

agents into scientific workflows.

−◦ Computation models

Different approaches have been proposed for modeling and expressing the computation

models governing the workflow execution.

G Process Networks

The Process Networks(PN) model of computation [Kah74] is a powerful computation

model that implicitly supports parallelism between a group of processes that commu-

nicate through unbounded FIFO channels by reading and writing atomic data elements

called tokens.

The PN model of computation assumes that the write operation is non-blocking and

always succeeds, while the read operation is blocking, that is reading tokens from an

empty channel blocks the process until at least a token is available. The PN model does

not allow processes to check input channels to test for the existence of tokens without

consuming them.

The PN model leads to programs with a determinate behavior, that is given a trace of

input tokens a process computation is deterministic, always producing the same trace of

output tokens, thus the execution order of processes does not affect the output trace of

tokens.
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As pointed out by Parks [Par95], due to the equivalence of a PN process network to a

set of interconnected Turing machines, both termination and boundness are undecidable

in finite time. Namely the question whether a PN network is strictly bounded is undecid-

able, that is, to determine in finite time if any execution of a PN network requires bounded

memory. This introduces important practical issues concerning the implementation of

PN networks.

The first approach to address the boundness of PN networks is due to [Par95], where

execution starts with processes connected by bounded FIFO channels, of predefined

initial sizes, and the execution proceeds in a data-driven way until a deadlock occurs, that

is all processes are blocked on full or empty channels. In this case, if at least one process

blocks on a full channel, the deadlock is said artificial as it would not have occurred in a

PN network with unbounded channels; otherwise, the deadlock indicates termination of

execution (with all processes blocked on input channels). Artificial deadlocks are resolved

at runtime by increasing the capacity of one of the full FIFO channels.

Since Parks’ original proposal, several approaches have been developed based on the

same idea [BH01; GB03]. However, most of them are restricted to single-processor or

multiprocessor architectures.

Although the PN networks boundness problem has been studied also for distributed-

memory PN frameworks [AZE07; Ama+03; OE06; PR03], and there are proposals that try

facing the challenges posed by the lack of global state and the difficulties of distributed

deadlock detection and resolution to the best of our knowledge there is a lack of effective

working implementations of solutions to this issue, in real PN distributed frameworks.

G Petri nets

Petri nets, introduced in 1962 by Carl Adam Petri, are a graphical and mathemati-

cal formalism used for modeling the structure and behavior of large set of system types

[BC92; Mur89], namely for modeling the semantics of concurrent and distributed systems.

The flexibility for representing such systems as Petri nets and the recognized capability

for analyzing and proving properties on the behavior of the system using formal tech-

niques, have led Petri nets to be the most used model for analyzing the workflow behavior.

Therefore multiple workflow systems, both in business and scientific domain, rely on the

semantics of Petri nets for describing the structure and behavior of workflow patterns.

For example, [AH00; KHA03] describe basic workflow control-flow patterns using Petri

nets. [Gub+06] presents a model and a tool for composing scientific workflows based

on the Petri nets formalism. [HA07] discusses how Petri nets can be applied for man-

aging workflows towards the choreography, orchestration, and execution of e-Science

applications.

[GRC08] also use Petri nets for representing scientific workflows and for demonstrat-

ing how patterns and operators can be used to adapt the structure and behavior of a

Triana workflow.

Some variants of Petri nets were also used for modeling particular characteristics

of scientific workflows. For example, based on Reference nets, as a particular class of
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Petri nets, [TC09] proposes a scientific workflow engine, called DVega, with special em-

phasis on the flexibility for supporting hierarchical workflows capable of handling and

propagating exceptions in the hierarchy. The exception handler can dynamically adapt

the workflow by replacing a subworkflow in the hierarchy with an alternative subwork-

flow without affecting the rest of the workflow structure. The alternative subworkflow is

chosen from a list of previously defined candidates.

G DAG and non-DAG

Many cases of scientific workflows can be described as a directed acyclic graph (DAG),

where the nodes represent computational tasks and the edges represent dependencies

between them. For instance, in [Gar+12] a catalogue of scientific workflow motifs is

proposed as a result of an empirical analysis performed over 177 DAG workflows. There-

fore most of the workflow management systems, including Pegasus, Triana, Taverna and

Kepler have support for executing DAG workflows.

However, some workflow scenarios [AGC09] require a structure involving feedback

loops mainly when the workflow is to be executed with multiple iterations. Iterations

and feedback loops are not supported in many existing workflow systems, for instance,

in Pegasus.

Triana supports loops and execution branching, handled by specific units with not

easy to use semantics.

Kepler supports iterations and a particular case of feedback loops using the built-in

SampleDelay actor, which outputs a set of tokens that are used as initial input values

when a workflow starts up and for each iteration it simply carries its input port value to

its output port at the current iteration.

As discussed in Section 2.2.4, Kepler is a flexible workflow system with support for

multiple models of computation inherited from Ptolemy II. However, the most useful

models concerning scientific workflows are the Synchronous Data Flow (SDF) and the

Process Networks (PN), [AEA08]. Most of the composite actors built with Kepler to be used

in scientific workflows have been based on the PN model. However, nesting a PN director
inside a subworkflow with a SDF director would be invalid in most cases [God+07]. The

Kepler PN model is based on Kahn Process Networks (PN) [Kah74]. As an extension of

the Kepler system, COMAD [McP+09] extends the Kepler process network (PN) data-flow

model to facilitate the management of scientific data within Kepler scientific workflows.

G Pipelines

A pipeline is a particular structure of a workflow with a sequence of tasks that con-

tinuously process a stream of items, where each item is pumped from one task to its

successor as soon as possible. Typically, items are produced by partitioning the input

data into chunks with the same size. The pipeline execution model is used for concurrent

processing on many different types of middleware platforms. However, for processing

multiple items in parallel, the workflow execution engine needs to support an efficient

execution scheduler. [Ben+13] presents a survey of pipelined workflow scheduling tech-

niques concluding that, despite the significant body of literature, there is a need for more
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work, both theoretical and practical, in order to support realistic application scenarios.

As an example, [Thr+10] discusses how to execute a bioinformatics pipeline workflow

used for sequencing and extracting representatives of the mRNA3 of a cell.

Some workflow systems and tools have given special attention to pipeline workflows.

For instance, Taverna 2 [Mis+10], a new version of the Taverna workflow system, has an

improved internal architecture in order to efficiently support streaming pipelining where

the workflow activities can process in parallel sequences of unbounded length of input

data sets that are continuously produced by a predecessor activity.

G Tuple spaces

The concept of tuple space was introduced in the Linda model [CG89] for separating

the concurrent coordination logic from the application logic. A tuple space is a memory

abstraction for storing and retrieving data as tuples (an ordered list of typed fields) that

is shared among all interacting participants. The participants interact with the tuple

space through a simple interface: i) The write operation for storing tuples; ii) The read

operation for reading tuples without removing the tuples (non-destructive read); iii) The

take operation for retrieving and atomically removing tuples from the tuple space.

Tuples are read and retrieved by associative addressing using tuple templates. A tuple

template contains values of any subset of fields of the tuple to be retrieved and a wildcard,

for instance, the character “?” for representing any value of a field.

The implicit parallel coordination logic of tuple spaces is based on the following mech-

anisms: i) Operations for reading or taking tuples block the execution of the invoking

thread until a matching tuple can be found; ii) Any application participant can register a

tuple template in order to be sent an asynchronously notification when tuples matching

the template are written into the tuple space.

The tuple space concept was introduced in 1989, and in the last decades a large num-

ber of implementations of the tuple space model have been developed and available on

middleware platforms, such as IBM TSpaces [Leh+01], GigaSpaces [Gig12], or JavaSpaces

[Ora12]. Despite the increasing difficulty to ensure the tuple space semantics, namely

concerning consistency, in recent years multiple distributed versions of the tuple space

concept have also been implemented. Comet [LP05], is a scalable peer-to-peer coordi-

nation space that provides a global shared tuple space accessed independently of the

physical location of the tuples and the peers. Tupleware [Atk08] is a distributed tuple

space that uses a decentralized approach and intelligent tuple search and retrieval to

be used as a cluster middleware for supporting computational intensive scientific and

numerical applications.

The simplicity of using tuple spaces for coordinating concurrent, parallel or dis-

tributed components has been used in multiple application domains including some

scientific workflow systems.

1messenger RiboNucleic Acid that mediates the transfer of genetic information from the cell nucleus.
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[YB04] proposes a workflow enactment engine (WFEE) with a just in-time scheduling

system, which uses a tuple space for exchanging events related to the scheduling of

workflow tasks and their execution status on grid resources.

[LP06] presents Rudder, an agent-based system for composition of grid services sup-

porting workflow execution using Comet [LP05]. It provides a decentralized associa-

tive shared space, which supports abstractions for workflow composition and execution.

Namely it supports a global persistent space for registering and discovering grid services

and local spaces as a communication mechanism to support the workflow execution.

[MWL08b] argues that the tuple space model is suitable for executing workflows

specified as Petri nets.

DVega [TC09] also uses a specific class of Petri nets, named Reference nets, for com-

posing workflows and a tuple space for supporting the interaction between the workflow

tasks and the resources for their execution.

[Bal+14] presents a decentralized workflow engine based on the Higher-Order Chem-

ical Language (HOCL) and a shared tuple space for supporting the coordination model

inspired by the chemical programming model [CNP08].

G Hierarchies and subworkflows

Workflows can have dozens or hundreds of activities making it difficult to draw a

graphical representation or even the workflow specification using a single level of de-

scription.

X Y Z

A B D

C

I P2 O

P1

P3

Level 0

Level 1

Level 2

Figure 2.6: Workflow hierarchy

When workflows become more complex, hierarchies become important to keep the
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workflow comprehensible [Hoh06]. Thus workflows should be expressed using hierar-

chies where an activity represents a subworkflow. For instance, Triana (group units) and

Kepler (composite actors) can be used for encapsulating subworkflows as single workflow

activities.

In Figure 2.6, the workflow is composed of three levels. At level 0 the B activity is a

subworkflow represented at level 1, where the Z activity is a subworkflow represented at

level 2.

2.4.2 Distributed Workflows

The term “distributed workflow” has been ambiguously used in many works and their

related publications.

−◦What is the meaning of distributed workflows?

Sometimes the term “distributed workflow” is used to discuss how much the control

of the execution engine is decentralized, and at other times the term is used to indicate

that workflow activities can use distributed resources, for instance, the activity tasks can

be executed on remote computing nodes although the execution engine is centralized.

This ambiguity already existed in business workflows and naturally has been contin-

ued in scientific workflows. In fact, most of the business workflow systems have a central-

ized execution engine, typically according to the standard architecture defined by WfMC

[WfM11]. Also most of the widely used scientific workflow systems have a centralized

execution engine implemented to be run as an operating system process. Furthermore,

despite the use of a centralized engine, the adoption of service-oriented architectures

based on standards, for instance, Web Service Definition Language (WSDL) and Business

Process Execution Language (BPEL), has supported the design of workflows as a composi-

tion of services executed on distributed resources, which led to consider these workflows

as distributed workflows. The Taverna workflow system is a notorious case, where its

centralized execution engine orchestrates the invocation of Web Services according to

the workflow specification [Wol+13]. Other works rely on particular approaches for us-

ing large distributed resources, for instance Circulate [BWH09] is a workflow system for

executing data-centric scientific workflows, maintaining the simplicity of a centralized or-

chestration engine extended with external proxies as gateways, allowing distributed Web

Services to exchange data directly, and avoiding data transfers and possible bottlenecks

through the centralized engine.

Triana also incorporates modules, such as Grid Application Prototype (GAP) and Grid

Application Toolkit (GAT) [Chu+06; Tay+03] for integrating existing grid services and

Web Services, as well as peer-to-peer communication allowing remote service invocations.

Distributed execution of Triana workflows relies on a specialized unit for distributing

any task or group of tasks as subworkflows. However, the Triana core processing units
as well as units for data transformation and visualization, are executed by a centralized
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enactment engine called Triana Controlling Service.

In Kepler [God+09] distributed workflow execution is achieved by using composite
actors and by extending directors for transporting and executing workflows and subwork-

flows across a distributed set of computing nodes in order to improve execution perfor-

mance. In [Plo+13] a variety of distributed execution techniques is presented for Kepler

workflows including a distributed data parallel framework using Hadoop [Apa15a] and

grid execution by using specific actors, such as Serpens, Nimrod/K and Globus.

However, both Triana and Kepler rely on a centralized control for workflow execu-

tion. Furthermore the above described Triana and Kepler functionalities for distributed

execution of workflows were not yet available as of December 2015 in the downloadable

system versions. Therefore end users can not take advantage of these functionalities. This

is more noticeable in Triana version 4 [Tri15].

G Decentralizing the control of the workflow execution

The support for business processes across multiple companies without using a cen-

tralized entity is a complex issue and has been an important area of research. This is also

true for decentralizing the control of business workflow execution [MWL08a; NCS04].

Therefore, multiple works have investigated and proposed business workflow systems

for decentralizing the control of workflow execution. In [HPA05] an autonomic workflow

execution engine is discussed and implemented as an extension to the JOpera workflow

engine [PA04]. The system is initially deployed as a centralized engine and gradually

evolved to a distributed engine using a tuple space used to coordinate request and notifi-

cation events between Navigators (an extension of the workflow engine) and distributed

dispatchers (Task executors). [LMJ10] describes NINOS, a BPEL-based workflow engine

for distributing business process execution across several agents where each agent is a

single BPEL workflow activity. NINOS utilizes and extends the communication capa-

bilities of the PADRES [Li+06] publishing/subscribing routing infrastructure, allowing

the process coordination among the agents. [SS13] presents the OSIRIS-SR system, a

distributed workflow engine that relies on a decentralized ring overlay as reliable data

storage, allowing a decentralized execution of OSIRIS-SR nodes to autonomously control

the execution of workflow instances as a peer-to-peer workflow execution engine.

Also, in the scientific workflows area, some works have proposed models for decen-

tralizing the control of the workflow execution. However, most of these proposals are the-

oretical models or concrete implementations are not available. As an example, [NPP06]

proposes and describes the semantics of a decentralized coordination model based on

the chemical metaphor for modeling the execution of workflows. The model envisages

that the possible matchings between resources and workflow activities can be modeled

by chemical properties defining the affinity of molecules to react. Also inspired in chem-

istry, [FTP11] presents a decentralized architecture with an external storage (Multiset) as

a shared space between workflow activities encapsulating a chemical execution engine

where reactions consume data molecules for producing new molecules in an implicitly

parallel, autonomous, and decentralized way.
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TiDeFlow [Oro+11] is a data-flow execution model for many-core architectures with

shared-memory configurations. The model uses actors for representing parallel loops

expressed as actor properties, such as the number of iterations in the loop and a function

that contains the code to be executed in each iteration. When an actor finishes its exe-

cution, it signals other actors by sending tokens through a global shared memory queue.

The TIDeFlow runtime system is distributed because no one processor, thread, or task is

responsible for scheduling, but it is still centralized from the point of view of access to

the shared memory. Thus TiDeFlow cannot support parallel computations on distributed

infrastructures.

Despite the multiple initiatives for supporting parallel and distributed execution of

scientific workflows, there is still a lack of support for an adequate integration with grid

and cloud infrastructures. Most of the existing scientific workflow systems have been

adapted to support multithreading on multicore architectures. However, few workflow

systems are able to incorporate some powerful characteristics of cloud infrastructures

like dynamic and autonomous allocation of machines [BL13].

Furthermore the large scale of resources available on grid and cloud infrastructures al-

lows developing scientific workflows executed as a large number of distributed activities,

demanding workflow systems with a decentralized control of the workflow execution.

2.4.3 Dynamic Workflow Reconfiguration

The possibility to reconfigure dynamically computational systems during its execution

[AC03a] has been studied since the early eighties in multiple contexts, such as dis-

tributed systems [KM85], operating systems [Sou+04], software engineering architectures

[Bra+04], [KM09].

The goal to support flexibility by adaptation in business workflows has been a con-

cern for several decades [DR09; HSW01; Hei+99]. In fact, in order to keep up the global

marketplaces, companies continuously need to introduce rapid changes in business pro-

cesses and consequently in the workflows used for modeling these processes. Therefore

in the last decades a significant research work has been performed in business workflow

systems towards supporting workflow adaptation and dynamic changes.

[Hei+99] discusses a classification scheme concerning flexibility of the workflow man-

agement and its partial evaluation on a centralized workflow execution engine. The

scheme proposed addresses two concepts: flexibility by selection, where modifications

of a workflow instance can be done during workflow execution for supporting situations

that can not be anticipated during workflow modeling; and flexibility by adaptation,

where a workflow must be adapted in order to support new requirements of the business

process.

[RD97; RD98] present a framework based on a set of minimal operations for support-

ing workflow structural dynamic changes, such as insertion and deletion of workflow

activities, in the context of a centralized business workflow management system called
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ADEPTflex. Issues related to enforcing consistency and correctness are discussed by the

same authors in [RB07; RRD04].

[WRR08] describes change patterns and change support features in business work-

flows, identifying a set of possible changes for adapting the business processes.

However, even considering business workflows many issues still remain open, regard-

ing the support for dynamic changes [APS09; BL10; SJ09].

The scientific workflows also require flexibility for supporting dynamic changes. In

fact, scientific experiments modeled as long-running workflows are often designed based

on incomplete knowledge on the problem domain. Therefore, by observing the work-

flow intermediate data or by identifying the need to increase the execution performance

during the workflow execution, there is a requirement to support dynamic workflow

reconfigurations.

[Liu+07] argues that science experiments require scientists to put efforts on exploring

problem-solving methods instead of detailed considerations related to resource manage-

ment or other implementation details. The work identifies several issues to be addressed

in order to achieve an adequate scientific workflow system, such as: i) The granularity of

the basic elements and their relationships in a workflow, especially for an unsolved prob-

lem; ii) Due to the indeterminism and dynamism of science processes, scientific workflow

systems must assist scientists in implementing workflow modifications during execution;

iii) What are the soundness properties and the corresponding issues for verifying the

consistency of the dynamic modifications.

Some works related to scientific workflows have proposed approaches for improved

flexibility in several dimensions of the workflow execution. For example, there is intensive

research related to the flexibility of the workflow tasks scheduling.

In the context of Pegasus DAG workflows and the difficulties for mapping the entire

workflow before its execution, [Dee+05] proposes a strategy for dynamically mapping the

workflow tasks to the available computing resources according to phases of the workflow

execution. Each phase is called a future horizon that can be expressed as a set of workflow

tasks to be executed within a future predicted time interval. [MFPF12] also discusses

mechanisms for scheduling scientific workflows in a commercial multicloud environment

using optimization techniques, namely based on monetary costs.

[TCBR11] proposes dynamic runtime adaptive parallelism using Petri nets based

patterns for workflow specifications and a case study of a pipeline version of a Montage

workflow. The expressiveness of Reference nets (a particular class of Petri nets) allows

representing workflow structures with parallelism that can be dynamically modified at

runtime.

Based on the chemical computational model [NPP06], in [CNP08] a chemical work-

flow engine is proposed for supporting dynamic changes according to the change patterns

presented in [WRR08].

However, the most widely used scientific workflow systems, such as Pegasus [Dee+05],
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Triana [Chu+06], Taverna [Oli+06] and Kepler [Lud+06] have great limitations for sup-

porting dynamic workflow reconfigurations, whether they are for changing the workflow

structure or for changing the activities behavior.

Therefore, we identified important open issues related to the support for dynamic

changes during workflow execution, mainly if the control of the workflow execution is

based on decentralized models. Due to the challenges involved, these issues require new

approaches beyond the current state of the art. Thus, we consider that the support for

dynamic reconfigurations during the execution of long-running workflows represents a

necessary research direction towards improving scientific workflow systems and associ-

ated tools.

2.4.4 Failures and Exceptions in the Workflow Execution

Faults and unexpected exceptions originated at workflow, middleware and resource in-

frastructure levels are usually handled by separate mechanisms in the workflow engine

or runtime environment [Gil+07; HA00; HK03; Kam+00]. A taxonomy for faults in scien-

tific workflows is discussed in [Lac+10]. However, the existing approaches for recovering

from faults only address very specific concerns for restricted scenarios and well-known

and expected situations whose handling is predefined at development time. For example,

in some of the more popular scientific workflow systems, such as Taverna [Tav11], Triana

[Tri11], or Kepler [Kep13], although there is some support for user handling of faults,

the allowed recovery actions follow strategies, such as retrying workflow tasks a certain

number of times, or replacing them at runtime, by considering the selection of alternative

handling candidates defined at development time, only applying them to well-defined

and expected event types.

Other approaches are also restricted to predefined strategies at workflow design time

using, for example, workflow patterns [RAH06; TC+10] for dynamic replacement of

subworkflows on the occurrence of exceptions.

Therefore, the support for fault and exception recovery remains an open issue, which

is still more complex when we consider a decentralized workflow execution engine.

2.4.5 Interactive and Steering Workflows

Dynamic steering of long-running scientific workflows by users is an important require-

ment. Therefore, workflow systems need to provide facilities for human interactions in

order to support workflow monitoring and possible dynamic workflow reconfigurations

performed by multiple users.

Computational steering [JPW00; VS99] is the ability to monitor the progress of a

long-running application by tracking intermediate data and the possibility to change or

calibrate the future behavior of the application. This can be made by the application

users by changing the application parameters, by selecting alternative algorithms or

even by restarting the application execution with a new configuration. For example,
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introducing application decomposition at runtime under user control for load balancing

can be considered a form of computational steering to improve performance.

[SKD10] discusses a conceptual architecture and an implementation based on BPEL

and the Pegasus workflow system, combining existing scientific and business workflow

technologies in order to support human interactions in the management of workflow

execution. The work concludes that, unlike business workflows, the integration of human

tasks into the execution phase of the scientific workflows was difficult and required a

lot of additional effort to develop the appropriate adapters according to the Application

Programming Interface (API) provided by the scientific workflow system.

Some large scientific experiments require the processing of distributed data that are

stored on multiple repositories [Ben+12], involving multiple users. [Ngu+15] proposes

the WorkWays science gateway that supports human-in-the-loop scientific workflows by

allowing users to insert or export data in a continuously running workflow.

The vision for supporting user-steered scientific workflows is an important issue to-

wards enabling distributed and collaborative scientific research on many science domains

[Gil+07], and is driving significant research efforts [Mat+13]. A survey of the early and

current efforts addressing issues in dynamic steering of scientific workflows is presented

in [Mat+15].

However, the most widely used workflow systems do not yet provide steering facilities.

2.5 Chapter Summary

Workflows have been used for developing scientific applications in several domains

[Chi+11; Dee+05; Tay+07; YB05]. Such efforts have been supported by multiple workflow

tools [Laz11], such as Triana [Tri11], Taverna [Tav11] and Kepler [Kep14]. However, there

is still a need for improving the support provided by the workflow tools, as discussed for

example in [Chi+11; Dee07; Dee+08] and [AGC09]. However, despite the extensive work

in the area there are few available scientific workflow systems supported by effective

working environments that can be used for developing scientific applications.

The survey presented in this chapter concerning the state of the art of scientific work-

flows, allows us to reach a paradoxical observation.

On one hand, the increase of e-Science initiatives and the availability of virtualiza-

tion technologies on cloud infrastructures have created a real possibility for developing

scientific applications with high demands of processing throughput. Furthermore, in

many scientific domains, modeling these applications by using the workflow paradigm

has shown a great potential.

On the other hand, the concept of scientific workflows has shown enormous promises

and expectations that have not yet been fully achieved. In fact, existing workflow systems

and tools have not yet fulfilled the following issues:

• A decentralized execution control of the workflow activities in order to better take
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advantage of the available large distributed computing infrastructures, namely

clusters and clouds;

• Decoupling, as much as possible, the workflow execution system from proprietary

platforms. In fact, due to the lack of standards in virtualization technologies and

cloud infrastructures there is a need for transparent, flexible and portable workflow

approaches in order to support their execution on distinct platforms with minimal

efforts;

• The support for continuous steering and dynamic reconfiguration in order to make

changes to ongoing experiments. This is due to the increased complexity of in silico
experimentation, which requires long-running workflows that need adaptations

during their execution.

This chapter presented an overview based on our systematic study of the intensive

research and the large number of publications in scientific workflows. This led us to

identify multiple open issues, which encompass the subset of issues addressed by this

dissertation.
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3
The AWARD Model

The characteristics of the AWARD model in two perspectives. The program-
mer’s view and the operational view.

This chapter presents the AWARD (Autonomic Workflow Activities Reconfigurable and Dy-
namic) workflow model. Firstly in Section 3.1 the rationale for the model is presented

covering a set of issues considered important to support real scientific application sce-

narios. This is followed by a summary of the main requirements for the design of the

AWARD model in Section 3.2. Then the AWARD model is presented according to two

complementary points of view.

On one hand, in Section 3.3 we present the workflow developer’s view by describing

the main characteristics of the AWARD model. In sections 3.3.1 and 3.3.2 we discuss

what a workflow developer needs to know in order to define a real workflow specification.

In section 3.3.3 we illustrate a complete specification of a simple concrete workflow.

On the other hand, in Section 3.4 we present the AWARD machine as an operational

view of the AWARD model by describing the internal operation of an Autonomic Controller
which supports the model for executing AWARD workflows. The operational view of the

AWARD model is based on the Kahn’s process networks (PN) model of computation where

each workflow activity is supported by an Autonomic Controller. The life-cycle of each

autonomic workflow activity (AWA) is executed by an Autonomic Controller described as

a State Machine supported by a Rules Engine. This allows launching and executing the

workflow activities separately on single computers or on distributed infrastructures. The

workflow activities exchange information by passing tokens over links connecting activity

input and output ports. Links are supported by a communication abstraction named

AWARD Space, which allows storing and retrieving tokens during workflow execution.
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Section 3.5 presents the chapter conclusions.

3.1 Rationale of the Model

The workflow paradigm was introduced in the second half of the 20th century as a way to

organize and automate steps of work within organizations. Initially mainly used in man-

ufacturing companies as a way to increase productivity and ensure quality the workflow

concept quickly extended to companies of the most varied businesses. In the last decade

of the 20th century, information technology companies gradually aimed at developing

software systems based on standards, under the generic name of Workflow Management
System, enabling organizations to model, run and monitor their business processes as

sequences of tasks, arranged as workflows. Also, in the world of scientific computing

the developers increasingly adopted the use of the workflow paradigm as a way to model

the increasing complexity of scientific experiments that require flexible ways to compose

multiple tasks and use large data sets located in different geographical regions.

The similarity between business workflows and scientific workflows [BG07] as a way

to run a task graph allowed certain scientific workflows to be modeled and executed using

workflow management systems initially developed to support business processes.

However, there are important key issues required to support the development of

scientific applications that are not well supported in business workflow management

systems and in most of existing scientific workflow systems.

Among the open issues that were surveyed in Chapter 2, this dissertation addresses

the key issues described in the following subsections.

3.1.1 Decentralized and Autonomic Workflows

Business workflows systems based on standards established by the Workflow Manage-

ment Coalition [WfM11] are usually based on centralized execution engines that control

the sequence and state of the workflow tasks execution in a monolithic way. In the same

way in the world of scientific workflows even the most commonly used systems, such as

Triana, Kepler and Taverna (as discussed in Section 2.2) rely on a centralized execution

engine responsible for deciding at each time which tasks can be running.

However, centralized approaches pose several difficulties, such as: i) They are not

able to model workflow execution involving distributed infrastructures across several

geographical regions; ii) They can not support multiple users cooperating on the devel-

opment and control of workflow activities, where each user can separately execute and

control distinct distributed workflow activities; and iii) They preclude the development

of large-scale workflows involving an increasing number of activities.

In spite of the above limitations, some centralized systems have been extended to

allow a task accessing remote services or launching jobs on remote locations for instance

by invoking Web Services or by submitting remote jobs to a cluster scheduler.
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Therefore we emphasize the need for a model where the execution of each workflow

activity is independent of any form of centralized control. For example, the workflow

activities should be able to start/stop separately and run on distributed infrastructures,

such as clusters or clouds. This allows running a large number of activities within multi-

ple computing nodes, which could be standalone computers on a local network, multiple

cluster nodes, or multiple cloud virtual machines.

Furthermore each activity must have autonomic characteristics according to the au-

tonomic computing vision [KC03] where an autonomic system has self characteristics

(self-configuration; self-optimization; self-healing and self-protection), allowing the sys-

tem to make decisions on its own, based on high-level policies and to dynamically check

its status in order to automatically adapt itself to changing conditions.

3.1.2 Transparency and Ease of Programming

While business workflows tend to be developed by specialized software engineers, scien-

tific workflows are often developed by scientists of multiple science domains, without

expertise in information technology.

Therefore, a workflow model must provide a sufficient degree of transparency in order

to ease the development of scientific applications. The workflow developer should only

need to have a minimum knowledge and concern about the low-level operational and

implementation details of the underlying workflow execution engine and the execution

environment.

In the context of our work an adequate degree of transparency should ideally encom-

pass the following dimensions:

1. At the level of specification of the workflow activities, by decoupling the activity

task from the interconnection links between activities allowing to manipulate the

workflow structure in an orthogonal way from the task definitions;

2. At the level of the semantics of the interconnection links, by ensuring their indepen-

dence from the implementation details. For example the tokens that support the

flows between workflow activities should be application dependent and not obscure

data types compromised with the specific implementation details of the execution

engine. If that is not ensured then in some application scenarios it can be difficult

to map the application data types to tokens as defined in the execution engine;

3. At the level of the workflow structure, by ensuring that the number of activities

and their interdependencies are completely decoupled from the mappings onto

the concrete execution environments. That is, the workflow structure should be

completely independent from the available computing nodes and the physical data

distribution patterns;
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4. At the level of the workflow behavior, by separating the functional specification of

each activity task from its implementation as an executable unit, such as a thread,

an operating system process, a Web Service or a remote job.

3.1.3 Expressiveness of the Workflow Model

The workflow model should provide constructs enabling the developer to express the

application requirements related to the following dimensions:

1. Concerning the interactions between workflow activities it is important to support

both data-flow and control-flow. In some workflow systems [Shi07b] a distinction

is made between a data-flow token when it carries data and a control-flow token

when it only carries a synchronization signal, for instance to start or to terminate an

activity. Ideally the tokens that support data exchange between activities over the

links of the workflow graph should be expressed as generic data types, encompass-

ing both control-flow and data-flow tokens. This gives freedom to the developer

for defining the semantics associated to the tokens according to the application

requirements;

2. Concerning the behavior and the execution control the workflow model should

support sequential and concurrent workflow patterns [AHR11; Aal+00b], allowing

to express sequences and parallel split and joining of activities with high degrees

of concurrency and parallelism. Activities should be able to evolve asynchronously

and independently of each other, only requiring synchronization for exchanging

tokens;

3. Concerning the type of workflow graphs supported a large number of existing work-

flow systems only allow direct acyclic graphs (DAG). However, ideally the model

should be able to express feedback dependencies or more complex cyclic interac-

tions as loops between the workflow activities;

4. Concerning the workflow specification it is desirable that the workflow model sup-

ports the concepts of iterations and instances:

• Iteration: Each workflow activity repeats its execution N times according to

the number of iterations as defined by the workflow specification and accord-

ing to the pace at which input tokens are available;

• Instance: The workflow activities are started N times possibly concurrently

according to the number of instances N defined by the workflow specification,

each instance possibly having different parameters, and executing indepen-

dently from the other instances.

The support of iteration and instance concepts introduce distinct behaviors to the

execution engine, as discused using the example presented in Figure 3.1.
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(a) Iteration: each activity processes N
tokens, one token per iteration
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(b) Instance: the workflow is launched N
times, spawning N instances of the work-
flow

Figure 3.1: Workflow iterations and workflow instances

Consider, in Figure 3.1(a), a unique instance of a workflow with N iterations where N
is equal to 100. Then the first A activity produces 100 tokens by reading from a data file,

then the B activity consumes the 100 tokens as they are produced by the activity A and

the C activity produces a result by consuming the 100 tokens as they are produced by the

B activity.

One the other hand, in Figure 3.1(b), an example shows the case where a workflow is

launched N times generating N independent instances possibly allowing different param-

eters in some activities in distinct instances, for example in parameter sweep scenarios.

In a workflow with N iterations each individual activity executes its own iterations in

a strict sequential order. However, depending on the model the multiple workflow activi-

ties can be globally coordinated in different ways across distinct iterations. For example,

if the computation model enforces a strict sequential order upon all workflow iterations,

then all activities are globally synchronized at the end of each iteration. Therefore all

activities must wait for the completion of the (K − 1)th iteration before all activities are

allowed to start the K th iteration, and then the execution of a workflow with N itera-

tions is equivalent to sequentially launch N instances of the workflow, each with one

iteration. As an example, the Synchronous Data Flow (SDF) director in Kepler [Kep14]

centralizes scheduling decisions in order to enforce a strictly sequential execution order

of all iterations.

As an alternative, if the computation model supports independent execution of each

activity the iteration concept allows to implement pipelines where multiple items are

under concurrent processing, each one in a different activity of the workflow.

Furthermore, the iteration concept has another important characteristic compared

with the instance concept that may become important for workflows that must handle

a large number of items. For example, if we have 1 million items to be processed, the

workflow in Figure 3.1(a) would only need three activities contrasting to the workflow in

Figure 3.1(b) that could require 3 million activities.

Nowadays long-term scientific applications can process large data sets, for example

using a streaming pattern. This requires a long-running workflow to support the concept
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of each activity executing N, possibly infinite number of iterations, processing a different

data set per each iteration.

Furthermore, a workflow that supports a large number of iterations introduces the

possibility to dynamically change the activity parameters facilitating parameter sweep

and user steering scenarios.

3.1.4 Dynamic Workflow Reconfigurations

Concerning long-running workflows with multiple finite or even infinite number of it-

erations the observation of intermediate results of the workflow execution can suggest

changes to the workflow structure and/or changes to the behavior of some activities. This

motivates an important requirement for a workflow model supporting dynamic reconfig-

urations by allowing structural and behavioral changes during the workflow execution. It

should be possible to change the workflow structure by adding or removing activities and

by creating or deleting links. It should also be possible to change the workflow behavior

by replacing the algorithm of any activity task, as well as by changing other characteristics

affecting activities and links.

3.1.5 Effective Support for Experimentation

In order to enable the practical development and evaluation of the workflow applications

it is important to provide operational prototype support to the basic mechanisms required

to perform monitoring of the workflow execution by logging all activities information

states, including about the tokens exchanged between activities. This also enables the

development of debugging and data provenance functionalities allowing future workflow

reuse and improvements.

3.2 The AWARD Model Requirements

To address the above key issues we identified the following requirements for the AWARD

model (acronym for Autonomic Workflow Activities Reconfigurable and Dynamic):

1. Decentralized and autonomic computational model: Each workflow activity of

the AWARD model should have autonomic behavior for running independently

of any centralized control. The workflow activities should be able to start/stop

separately for running in parallel according to the Process Networks (PN) model of

computation [Kah74]. The T ask executed by an activity should be driven by tokens

received on the activity input ports that are connected to other activities;

2. Transparency and ease of programming: The AWARD model should support work-

flow specifications focused on the application requirements so that the workflow

developer only needs a minimum knowledge on the low-level operational and im-

plementation details of the workflow execution engine and the execution computing
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environment. Therefore the AWARD model should provide transparency and ease

of programming concerning the following characteristics:

(a) The workflow structure specification should be orthogonal, that is indepen-

dent, from the T ask definitions;

(b) The activity T ask should be decoupled from the interconnection links between

activities;

(c) The activity T ask specification should be decoupled from its implementation.

A T ask should encapsulate any kind of executable unit, such as a thread, an

operating system process, an invocation of a Web Service, or a remote job;

(d) A clear separation should be promoted between the workflow specification and

its mapping to the execution environment. For instance the same workflow

specification with minimal modifications to its mappings should be executable

on a single standalone computer, on multiple computers on a local computer

network, or on distributed infrastructures, such as clusters and clouds;

3. Expressiveness of the workflow model: The AWARD model should provide con-

structs allowing the workflow developer to express the application requirements

using the following characteristics:

(a) The control or data tokens flowing between the workflow activities should

have application-dependent semantics and be expressed as generic data types

and not obscure data types compromised with the execution engine details;

(b) The workflow model should support sequential and concurrent workflow pat-

terns for expressing sequences and parallel splitting and joining of activities

with high degrees of concurrency and parallelism. Activities should be able

to evolve asynchronously and independently of each other, only requiring syn-

chronization for exchanging tokens;

(c) The workflow specification should support expressing multiple structural lay-

outs, including feedback loops between activities;

(d) The workflow specification and execution should support multiple iterations

or even infinite number of iterations as long-running workflows, where differ-

ent activities can run at their own pace, each in a different iteration number;

4. Dynamic workflow reconfigurations: During the execution of long-running work-

flows it should be possible to change the workflow structure and behavior by apply-

ing dynamic reconfiguration plans affecting only one activity or multiple activities

without the need to restart the entire workflow execution. Each activity must be

autonomic for applying its part of the reconfiguration plan;

5. Effective support for experimentation: The AWARD model must be implementable

by an operational prototype enabling the practical development and evaluation of
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the workflow applications, including mechanisms supporting monitoring of the

workflow execution and tools for launching the workflow execution and submitting

dynamic reconfiguration plans.

3.3 The AWARD Model: The Programmer’s View

The objective of this section is to present the essential concepts and definitions of the

AWARD model allowing programmers to specify their applications as workflows.

The AWARD model is based on Kahn Process Networks (PN) model [Kah74] where

processes communicate through unbounded FIFO channels by reading and writing atomic

data elements called tokens.

The PN model of computation assumes that the write operation is non-blocking and

always succeeds, while the read operation is blocking, that is reading tokens from an

empty channel blocks the process until at least a token is available. The PN model does

not allow processes to check input channels to test for the existence of tokens without

consuming them.

G Autonomic workflow activity (AWA)

In the AWARD model, a PN process is an Autonomic Workflow Activity (AWA) executed

inside an independent operating system process so it is possible that workflow activities

or groups of activities are launched and executed on distributed computing nodes.

Each AWA activity has a possibly empty set of input ports where the activity receives

tokens from other activities, and a possibly empty set of output ports to which the activity

sends tokens that are passed to other activities via links established between activities.

The model guiding the composition and execution of activities relies on a decentral-

ized control approach where each AWA activity is autonomic. The coordination of AWA

activities is token driven. When all input ports of an activity have tokens to be processed

the activity is enabled and immediately starts executing its T ask, which encapsulates the

corresponding application algorithm assigned to the workflow activity. When its T ask

terminates, the activity produces tokens on its output ports for enabling other activities to

start their own tasks. Then according to the PN model, the AWARD model supports a par-

allel execution of activities where activities proceed asynchronously with a coordination

only based on the tokens production pace.

G Links between input/output ports

In the AWARD model there are not explicit communication channels between input

and output ports of AWA activities, that is, the interconnection between activities is only

implicitly specified through the relationship defined between output and input ports. The

connection or link between an output port and an input port is based on a communication

abstraction with the following properties:

1. Direct communication: Each output port explicitly specifies a list of input ports as

communication destinations;
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2. Anonymous communication: In order to get an input token, the receiver input

port does not have to know the identification of the emitters (source) of the data

received;

3. Unbounded links: Each link connecting an output port to an input port supports

an unbounded number of tokens allowing different paces of producing/consuming

tokens.

G Tokens

A token is composed of information related to exchange data or control between

activities and, when it is emitted by an output port is marked with the name of the

destination input port.

G Activity Tasks

Each AWA activity has an associated T ask, which is a software component developed

without the need to be aware of details on any execution engine. A T ask is developed as

a Java class implementing a generic interface specifying an entry point function where

the T ask receives as input an unbounded number of objects and returns as output an

unbounded number of objects. The T ask internal definitions are only dependent on the

application algorithms. Then the T ask is able to encapsulate calls to externally defined

services, such as Web Services, or run local or remote programs, supporting binary legacy

applications in other languages, for example in C or Fortran.

The objects that implement the activity T asks are bound dynamically. This occurs

when an activity needs to execute its T ask. Then the activity instantiates an object that

implements the generic interface and calls the entry point function. In such a way the

activity specification only needs to know the absolute name of the class that implements

the activity T ask.

G Iterations and instances

The AWARD model supports the concept of workflow iterations. Therefore the spec-

ification of an AWARD workflow defines a global maximum number of iterations. By

default each AWA activity executes a number of times according to this maximum num-

ber of iterations. However, each AWA activity can override that maximum number of

iterations by specifying a different number of iterations in the individual AWA speci-

fication. The AWARD model is flexible to support different types of iteration models:

i) A simple Direct Acyclic Graph (DAG) workflow where the number of iterations is one;

ii) An infinite number of iterations, where each activity runs continuously by consuming

tokens on its inputs and producing tokens on its outputs; and iii) An activity can specify

a specific number of iterations. For example in a scenario where an activity consumes, in

each iteration, any token produced from multiple activities, the consumer activity needs

to run as much iterations as the sum of the iterations of the producer activities.

The AWARD model supports the concept of instances as distinct and possible concur-

rent workflow executions. However, the AWARD model does not support any interdepen-

dency between instances.
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G Flexibility and expressiveness

The properties of the links, namely the anonymous communication, introduce flexi-

bility in the workflow specification by decoupling an activity from all activities that are

upstream in the workflow graph.

Since each token is marked with the unique name of the destination port, the commu-

nication abstraction for links can be mapped to any data store paradigm supporting data

storing and data retrieving operations using primary keys or associative memory.

According to each application scenario and the corresponding interdependencies be-

tween activities, the workflow developer can decide on the semantics of the tokens pro-

duction and consumption, repectively at output and input ports.

G Basic workflow patterns

The AWARD model supports the expressiveness of sequential and concurrent work-

flow patterns [AHR11; Aal+00b], such as sequence, parallel split and parallel merge, as

illustrated in Chapter 6 of this dissertation. The model also supports dynamic reconfigu-

ration scenarios, as presented in Chapter 4.

The data parallelism pattern with independent activities, as depicted in Figure 3.2,

can be expressed as an AWA activity whose name is A with multiple output ports con-

nected to input ports of distinct (P1, ..., Pn) AWA activities executed in parallel. When the

A AWA activity puts tokens in its outputs ports, the (P1, ..., Pn) AWA activities are enabled

to start their execution independently. Fig 3.2
Fig 3.3
Fig 3.4
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Figure 3.2: Data parallelism pattern

The merge pattern can be expressed as depicted in Figure 3.3, where multiple inde-

pendent parallel AWA activities (P1, ..., Pn) are connected to a merge AWA activity (M) that

performs some data merge.

The M AWA activity also performs a synchronization action in each iteration, waiting

for a token produced by each of the (P1, ..., Pn) AWA activities that are executed indepen-

dently with possible different paces of tokens production.

The pipeline pattern can be expressed as depicted in Figure 3.4, where three stages

are developed as the A, B and C AWA activities. Data into the pipeline are sequentially

processed at each stage. The tokens produced by the A activity are received by the B

activity and tokens produced by the B activity are received by theC activity. For a pipeline
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Figure 3.3: Merge/Synchronization pattern

working on data streaming, activities repeat their functionalities. This is supported by

defining a workflow with iterations where the pace of tokens production by the A, B and

C activities can be distinct, for instance the A activity may already have produced N

tokens, meaning that has completed the N th iteration and the B activity may still only

have produced K tokens with K much smaller than N .
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Figure 3.4: Pipeline/Streaming pattern

In the above examples tokens can carry some application-dependent data, for instance,

filenames or can only carry control for synchronizing the start of activities.

The programmer’s view of the workflow specification is based on the assumption that

in the AWARD model the development of application algorithms only requires user’s

knowledge on their logical decomposition into T asks and the specification of activity

dependencies through their input and output ports.

In the following sections we present: i) The main concepts of the AWARD model

(Section 3.3.1); ii) A set of definitions that a workflow developer should know to spec-

ify AWARD workflows (Section 3.3.2); and iii) The example specification of a concrete

workflow (Section 3.3.3).
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3.3.1 Main Concepts

In order to explain the main concepts of the AWARD model we use the example depicted

in Figure 3.5. This AWARD workflow is a graph with activities named as A, B, C, D and

E connected by unidirectional links with the LAC ,LBC ,LCD ,LCE names to exchange the

T1,T2,T3,T4 control or data-flow tokens.

A

B

C
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LCD

T1

T2

T3

T4

D

E

LCELBC

MaxIter or  Infinite iterations

I1C

I2C

O1C

O2C

I1D

I1E

O1A

O1B

Fig 3.5

Figure 3.5: Workflow with the A, B, C, D and E activities, connected by LAC ,LBC ,LCD ,LCE
links and the T1,T2,T3,T4 flow tokens

G Links

Links correspond to associations between activity ports. For example, the C activity

in the workflow represented in Figure 3.5, has input ports named I1C and I2C and output

ports namedO1C andO2C . The origin of a link is an Output port and the link destination,

shown as an arrow in Figure 3.5, is an Input port.

The AWARD model does not require any explicit definition of the links as separate

entities connecting ports. Links are implicitly defined by associations between names of

output and input ports. For instance, the LAC link in workflow represented in Figure 3.5

is implicitly defined by the pair (O1A, I1C) where, O1A is the name of the output port of

the A activity and I1C is the name of an input port of the C activity. An activity can have

multiple input and output ports, including the possibility to have only outputs (A and B

activities) or only inputs (D and E activities).

G Iterations

An AWARD workflow has always an associated global iterations number which de-

fines a maximum number for the workflow iterations, which must be greater than zero.

By default this iteration number is inherited by all workflow activities. However, each

workflow activity can specify an individual maximum number of iterations specific to

the activity. The maximum number of workflow iterations is denoted by MaxIter, if it is

finite, or Inf inite for long-running workflows performing iterations continuously.

An activity terminates its execution after it performs the MaxIterth iteration. If a

workflow has an Inf inite number of iterations, the activities can only terminate upon

receiving a command for explicit forced termination.
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G Task

A workflow activity has an associated functionality defined by its Task, which receives

as input an array of Arguments containing data resulting from the mapping of the input

ports and an array of constant activity P arameters defined in the workflow specification.

After executing the T ask algorithm with the input Arguments and P arameters, the data

returned by Task are mapped to the activity output ports.

G Tokens

Each AWA activity can produce tokens on its output ports at its own pace. The

execution of each AWA is only driven by the availability of tokens in all input ports of

the AWA activity, independently of other activities.

As an example, depending on the global number of iterations of the workflow of Figure

3.5 on page 56, the A and B activities produce a certain number of tokens, respectively,

T1 and T2. As the A and B activities proceed asynchronously, it may happen that the

A activity can produce all of its tokens even before the B activity produces any of its

tokens. In any case, the C activity will only be enabled to proceed each time whenever

both tokens from A and B are available.

The AWARD model ensures that a Link supports an unbounded set of tokens. This

allows the workflow activities to produce and consume tokens at different paces according

to their execution speed per iteration.

The AWARD model also ensures that there is no loss of tokens, that is, Links are

reliable in the sense that each produced token will be consumed providing that the desti-

nation activities are not failed or terminated before the maximum number of iterations,

(MaxIter), is reached.

3.3.2 Workflow Specification

From a point of view of a workflow application developer, the specification of AWA

activities has two views:

1. An external view of the entire set of AWA activities and their interactions is related

to the topological structure of the workflow and the corresponding implicit links

between activities;

2. An internal view of each single AWA activity is related to the implementation of the

activity T ask, the state and operation of the input and output ports as well as how

activity P arameters and tokens from input ports are mapped to the T ask Arguments

and how T ask Results are mapped to tokens on output ports of the activity.

Together both views are required to complete the workflows specification. Then the

specification of AWARD workflows requires knowledge about the following concepts:

G Naming

A workflow, each workflow activity, each input port and each output port have global

names, assumed to be unique.
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Definition 3.1: Naming

Unique names are defined by the elements in a set Names = {name1, ...,namen}
where each namei , 1 6 i 6 n, is a sequence of characters and each character belongs

to the set Characters = {A...Z,a...z,0...9,−}.

G AWARD workflow

An AWARD workflow (W ) is defined as a tuple with a workflow name (Wname), a

global number of maximum iterations (gIterations) and a graph (G) of activities.

Definition 3.2: AWARD workflow

An AWARD workflow is defined by a tuple W = (Wname,gIterations,G), where:

Wname is the workflow name; gIterations is a number greater than zero denoted

by MaxIter or is denoted by the Inf inite keyword meaning that the workflow has

an infinite number of iterations; and G is the workflow graph (as in Definition 3.3).

Definition 3.3: AWARD workflow graph

The graph G of the workflow is a tuple G = (Activities,Links) with a finite non-

empty set of activities (Activities) and a set of unidirectional links (Links) defining

the connections between output and input ports.

G Tokens

The information flow between workflow activities is based on token passing over

the links that connect the activities. A token is composed of two types of information

concerning exchange data or control flow between activities: i) Data information to be

mapped to the Arguments of the activity T ask; ii) Control information to be used for

controlling the execution of activities.

Definition 3.4: Token

A token T transmitted through a link is defined by a tuple T =

(νT ,I,Seq,destInName). The field νT is data value information according

to an application-defined data type. The control information placed by the emitter

activity consists of two fields, I and Seq. By default the iteration number (I)

is defined as the current iteration number of the emitter activity. However, if

the activity has an input port in the Sequence input mode (Definition 3.7) then

the iteration number (I) in the produced token is equal to the iteration number

contained in the token received in the input port. The Seq field is a sequence

number defining the total ordering of tokens produced in each link and it can be

used to control the reception ordering of the tokens on the downstream destination

port. The field destInName ∈Names is the name of the destination input port.
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In the above Definition 3.4, the data type of the token value νT is a primitive or an

application-dependent data type, denoted by T type. For instance, for a T type = Integer

we can have νT = 5, or for an object value of the type T type = SomeClass we can have

νT = new SomeClass() where νT is assigned as an object instance of the SomeClass class.

G Activity

Each activity (A) is defined as a tuple with an activity name (Aname), a possibly empty

array of constant P arameters (AP ars), a possibly empty set of input ports (AInputs), a

possibly empty set of output ports (AOutputs), the name of the activity T ask (AT ask), a

mapping from input port names to T ask Arguments (AMapins), a mapping from T ask

Results to output port names (AMapouts) and an optional number (AMaxIter) specifying

an individual maximum number of iterations specific to this activity, which overrides the

global workflow maximum iterations number (gIterations).

Definition 3.5: Activity

An activity (A) is defined as a tuple

A = (AName,AP ars,AInputs,AOutputs,AMapins,AT ask,AMapouts,AMaxIter).

G Inputs and outputs

Each workflow activity can have zero or more input and output ports.

In each iteration, each workflow activity consumes one token from each of its input

ports and produces one token for each of its output ports. According to Definition 3.4

each token carries an iteration and a sequence number, which are used to determine the

order of token consumption at each input port and that is equivalent to a FIFO discipline

in the links as in the PN netorks model.

Nevertheless, we have decided to also allow the possibility of handling non-determinis-

tic behavior in a merge workflow activity by defining an input port mode with a non-

deterministic semantics (Any mode as in Definiton 3.7). This is found useful in practical

situations where unpredictable sequences of events must be handled. Other authors

[AB84; BH01; LP95] also argue in favor of a non-deterministic merge.

Definition 3.6: Inputs and outputs

An activity (A) has a set of input ports AInputs = {I1A, ..., InA} and a set of output

ports AOutputs = {O1A, ...,OnA} where IiA represents the name of the ith input port

of theA activity andOiA represents the name of the ith output port of theA activity.

G Input port

An input port of an activity (A) is defined by a tuple, named the input port configuration
context (Cf Ctxin) as in Definition 3.7.

G Output port

An output port of an activity (A) is defined by a tuple named output port configuration
context (Cf Ctxout) as in Definition 3.8.
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Definition 3.7: Input port

The input port configuration context is defined by a tuple

Cf Ctxin = (InameA,T type, IMode,State)

with the following fields:

• A unique global name (InameA ∈ Names) (as in Definition 3.1);

• A type T type, which is the data type of the token value (as in Definition 3.4);

• The input port mode, which specifies how the input port receives tokens

(IMode ∈ {Iteration,Sequence,Any}). For the Iteration and Sequence modes,

the input port consumes tokens respectively according to the total ordering

of the iteration or sequence numbers (as in Definition 3.4). For the Any mode,

tokens are consumed non-deterministically, in any order irrespective of the

iteration and sequence numbers in each token

• In the case of the Sequence input mode, there is a restriction imposing that

the activity can only have a single input port, which can only be connected

to a unique simple link (as in Definition 3.9).

• The field (State), which specifies the initial state of the input port (as in

Definition 3.15).

Definition 3.8: Output port

The output port configuration context is defined by a tuple

Cf Ctxout = (OnameA,T type,OMode,SendT o,State)

with the following fields:

• A unique global name (OnameA ∈ Names) (as in Definition 3.1);

• A type (T type) that is the data type of the token value (as in Definition 3.4);

• A non-empty set (SendT o) of simple links SLink (as in Definition 3.9) origi-

nated in that output port;

• The output port mode (OMode ∈ {Single,Replicate,RoundRobin}) which

specifies how the output port sends tokens: The Single mode applies when

SendT o has a single element and a token is sent to the single destination

input port. The Replicate and RoundRobin modes are applied when SendT o

has multiple elements (as in Definition 3.10);

• The value (State), which specifies the initial state of the output port (as in

Definition 3.15).
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G Links

The workflow specification does not require an explicit definition of the Links as

separate entities connecting output and input ports. Links are implicitly defined by

associations between the unique names of the ports, which are specified in the output

port definitions.
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(c) A multi-link connects many
outputs to one input (join
pattern)

Figure 3.6: Links versus input and output ports of activities

Definition 3.9: Links

A simple link SLink is an ordered pair (O1A, I1B) which represents a connection

between the O1A activity output port (the origin of the link) and the I1B activity

input port (the destination of the link) (see Figure 3.6(a)). A multi-link MLink is a

set of simple links SLink representing an output port connected to multiple input

ports (see Figure 3.6(b)) MLink = {(O1A, I1B1), ..., (O1A, I1Bn)} or a set of simple

links SLink connecting multiple output ports to an input port (see Figure 3.6(c))

MLink = {(O1A1, I1B), ..., (O1An, I1B)}.

Definition 3.10: Multi-link split pattern

For aMLink multi-link, such as in Figure 3.6(b) the origin output port emits tokens

in one of two distinct modes (OMode as in Definition 3.8): i) Replicate, such as

each produced output token is replicated and sent to every connected destination

port included in the multi-link; and ii) RoundRobin where each produced output

token is marked with a sequential number (Seq) for each destination link and is

alternately sent in a round-robin fashion to each one of the connected destination

input ports included in the MLink multi-link. In this case each of the destination

input ports must be in the Sequence input mode because the iteration numbers

marked in each token produced for each link are not consecutive.

61



CHAPTER 3. THE AWARD MODEL

Definition 3.11: Multi-link join pattern

For a MLink multi-link, such as in Figure 3.6(c)) the destination input port of the

B activity consumes the tokens received from the connected output ports, that is,

the multiple sources of the multi-link.

In this case the input port mode (IMode) (Definition 3.7 on page 60) is restricted

to the Iteration or Any cases. Due to the B activity consumes a token on its input

port for each iteration, in the Iteration mode the B activity consumes tokens se-

quentially according to the activity current iteration number independently of the

source link. In the Any mode the B activity consumes any token without any order.

In this case the number of iterations of the B activity must be equal to the sum of

the number of iterations of all A1...An source activities.

G Task

Each activity (A) is responsible for implicitly managing the following sequence of

steps, sketched in Figure 3.7:

1. AGetT okens get one token for each of its enabled input ports;

2. AMapins maps these tokens to the T ask Arguments;

3. AT ask invokes the AWA T ask using the Arguments and the AWA P arameters;

4. AMapouts maps the T ask Results to all its output ports;

5. AP utT okens produces one token for each of the mapped output ports.

Fig  3.7 
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Figure 3.7: The internal view of an AWA activity
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Definition 3.12: Activity Task

An AWA T ask (AT ask) is an implementation of a generic inter-

face IGenericInterf ace that specifies the T ask execution entry point,

EntryP oint(Arguments,P arameters) → Results, where Arguments is an ar-

ray of items mapped from the activity input ports [ATargs0, ...,ATargs(nargs − 1)] =

AMapins(AInputs), P arameters is an array of constant parameters directly ob-

tained from the activity specified field (AP ars) and Results is an array of items

[ATres0, ...,ATres(q − 1)] to be mapped as tokens to the activity output ports

AOutputs = AMapouts(Results).

G Mappings

Definition 3.13: Mapping Inputs

The mapping of input ports to T ask Arguments, AMapins, is defined by a func-

tion that maps the activity input port names to the array of the T ask Arguments

and returns a set of pairs where each pair associates at most one position in the

Arguments array with an input port name.

AMapins = {(0, Iname0), ..., (k, Inamek), ..., (nargs − 1, Inamenargs−1)} where

0 6 k 6 nargs − 1 and Inamek ∈ AInputs.

Definition 3.14: Mapping Outputs

The mapping of T ask Results to the activity output ports, AMapouts, is defined

by a function that maps the array of T ask Results to all output port names and

returns a set of pairs where each pair associates each output port name Onamek ,

0 6 k 6N −1 (where N is the number of output ports) with at most one position in

the T ask results array,

AMapouts = {(Oname0, res0), ..., (Onamek , resk), ..., (Onamen−1, resn−1)} where

0 6 resk 6 nres − 1 and Onamek ∈ AOutputs.

G Specification of an AWARD activity

From the above definitions the programmer’s view of the specification of the AWARD

activity, named A, with m input ports and n output ports, is described in Equation 3.1.

{O1A, ...,OnA} = AMapouts(AT ask(AP ars,AMapins({I1A, ..., ImA}))) (3.1)
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G Setting up the state of ports and activities

Definition 3.15: The state of input and output ports

The state of an input or an output port is one of the set

{Enable,Disable,EnableFeedback} with the following semantics:

1. In the Enable state, the port is ready to process the associated tokens (the

received tokens for an input port or the produced tokens for an output port);

2. In the Disable state, there is a null action on ports: i) For an input port, the

tokens associated with this port are not processed by the AGetT okens control

step of the activity; and ii) For an output port, the tokens are not produced.

3. The EnableFeedback state only applies to cyclic workflows with multiple

iterations as follows:

• Given an activity A with current iteration K , all input ports that have

the EnableFeedback state set are not processed by the AGetT okens step

at this iteration K . Instead, those input ports are automatically changed

to the Enable state and will be considered only when the A activity

execution reaches the next iteration (K + 1);

• Given an activity A with current iteration K , for all output ports that

have the EnableFeedback state set, the AP utT okens control step marks

the iteration field I in the produced tokens (as in Definition 3.4) with

an iteration number equal to (K + 1). In order to avoid the production

of tokens that would never be consumed, an output port that has the

EnableFeedback state set, is automatically set to Disable when the activ-

ity reaches the iteration (MaxIter − 1).

The workflow depicted in Figure 3.8, is an example of a cyclic workflow using the

state EnableFeedback to manage the ports (O1F) and (I1A) involved in a feedback loop.

Fig 3.8
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Figure 3.8: Workflow with a feedback loop

This requires that as a result of executing the K th iteration in the Feedback activity its

output port (O1F) in the EnableFeedback state must produce tokens to be consumed only

at the (K + 1)th iteration by the connected input port (I1A) in the A activity. The (I1A) port
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is set to be in the EnableFeedback state at the K th iteration, passing automatically to the

Enable state at the (K + 1)th iteration in the A activity, in order to consume the token sent

from the (O1F) output port.

According to the specification of the activity input ports state, the condition for an

AWA activity execute its T ask is presented in Definition 3.16.

Definition 3.16: Condition for an activity to execute its Task

An activity is enabled for executing its T ask when all its enabled input ports have

received tokens to be processed. If an activity has no input ports, the execution of

its T ask is always enabled.

3.3.3 Specifying a Concrete Workflow

To illustrate the specification details let us consider the workflow of Figure 3.8 on page

64 as an example of a data filtering scenario with Inf inite number of iterations and

involving a feedback loop where we assume that the A, B, C and Feedback activities have

the following characteristics:

• The A activity processes files stored in a directory whose name is passed as a

P arameter and prepares data sets, whose data type has the wkf.AppRecord abso-

lute name, that are then sent via the O1A output port to the I1B input port of the B

activity;

• The B activity processes the data sets received on the I1B input port, and produces,

on theO2B output port, an array of strings with features extracted from the data set

to be sent to the I1F input port of the Feedback activity. Furthermore the unchanged

data set is sent via the O1B output port to the I1C input port of the C activity;

• Based on a database with knowledge about historical features, the Feedback activity

analyzes the array of features received on its I1F input port and produces, on the

O1F output port, a data filter criterion stored as a data type with the absolute

name wkf.FilterCriteria which is sent (closing the loop) to the I1A input port. For

each iteration this loop allows the A activity to receive feedback from the previous

iteration for improving the data sets produced. The connection details to access the

database are defined through an activity parameter;

• The data sets received on the I1C input port of the C activity are stored in a database

with connection details passed as a parameter of the C activity.

The complete workflow specification is presented in Table 3.1 on page 67 where the

italic fields are the names of the specification attributes and the bold strings are the

specific specification values of the workflow presented in Figure 3.8 on page 64.
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The workflow specification has an header with the workflow name and a maximum

iterations number (Inf inite) indicating that each activity performs an infinite number of

iterations.

The workflow activities (AWA) are specified as independent blocks where each activity

specifies its name, its input and output ports, and its T ask.

It is important to note the almost complete independence between all AWA specifica-

tions. In fact, only the SendT o field of the output ports specification carries dependencies

between the AWA specifications by indicating the names of the destination input ports of

the other downstream AWA activities.

In order to illustrate an example of how to develop an AWA T ask we present, in Listing

3.1, the skeleton of the T ask of the Feedback activity.

According to the workflow specification (Table 3.1) the programmer responsible for

developing this T ask only needs to know the order and the data types of the Arguments,

the P arameters and the Results to be returned from the T ask.

Listing 3.1: An example of an AWA T ask

1 // Class which implements the Task of the Feedback activity

2 public class TaskFeedback implements IGenericTask {

3 public Object[] EntryPoint(Object[] Arguments, Object[] Parameters) {

4 // From mapping of the I1F input

5 String[] features = (String[]) args[0];

6 // Gets the activity Parameter

7 String DBconnect = (String) Parameters[0];

8 // Analyze the features and produce the filter criteria object

9 wkf.FilterCriteria fcrit= new wkf.FilterCriteria(. . .);

10 // Return only one result as an object of the wkf.FilterCriteria class

11 Object[] Results = new Object[]{ fcrit };

12 return Results;

13 }

14 }

This simple example highlights some important characteristics of the AWARD model:

• The workflow specification consists of the specification of a list of AWA activities;

• The interactions between AWA activities (Links) are specified as associations be-

tween input and output ports;

• T ask developers do not need to know low-level details about any execution engine

focusing solely on the application algorithms.
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Table 3.1: Specification of the workflow depicted in Figure 3.8 on page 64

Workflow Name Data Filtering Workflow with a Feedback Loop
Maximum Iterations Infinite

AWA Name A

Inputs
Name State TokenType IMode
I1A EnableFeedback wkf.FilterCriteria Iteration

Outputs
Name State TokenType OMode SendTo
O1A Enable wkf.Record Single I1B

Task

Parameter /usr/filteringFiles/
SoftwareComponent wkf.TaskProduceRecords
Mapping Inputs to Arguments Input Name Argument Order

I1A 0
Mapping Results to Outputs Result Order Output Name

0 O1A

AWA Name B

Inputs
Name State TokenType IMode
I1B Enable wkf.Record Iteration

Outputs
name State TokenType OMode SendTo
O1B Enable wkf.Record Single I1C
O2B Enable java.lang.String[] Single I1F

Task

Parameter Null
SoftwareComponent wkf.TaskExtractFeatures
Mapping Inputs to Arguments Input Name Argument Order

I1B 0
Mapping Results to Outputs Result Order Output Name

0 O1B
1 O2B

AWA Name Feedback

Inputs
Name State TokenType IMode
I1F Enable java.lang.String[] Iteration

Outputs
name State TokenType OMode SendTo
O1F EnableFeedback wkf.FilterCriteria Single I1A

Task

Parameter "server=S;database=DBHist;"
SoftwareComponent wkf.TaskDataFiltering
Mapping Inputs to Arguments Input Name Argument Order

I1F 0
Mapping Results to Outputs Result Order Output Name

0 O1F

AWA Name C

Inputs
Name State TokenType IMode
I1C Enable wkf.Record Iteration

Task

Parameter "server=S;database=DBREC;"
SoftwareComponent wkf.TaskStoreRecords
Mapping Inputs to Arguments Input Name Argument Order

I1C 0
Mapping Results to Outputs Result Order Output Name

Null Null
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3.4 The AWARD Machine: The Operational View

The AWARD machine follows a distributed model of computation based on the Kahn

process networks (PN) [Kah74]. The workflow activities (PN processes) communicate

through Links as abstractions implicitly defined by associations between the unique

names of the activity ports (as in Definition 3.9). Links connect output ports to input

ports for passing tokens (as in Definition 3.4).

G The computation model of the AWARD machine

The AWARD model is based on the Process Networks (PN) model, where processes

are named Autonomic Workflow Activities (AWA). Each AWA activity is executed within

an independent operating system process running an Autonomic Controller (AC) which

controls the life-cycle of the AWA activity. This model of computation allows the work-

flow activities (AWA) to be launched and executed separately on single or distributed

computing nodes with a decentralized control and supporting mappings to distributed

architectures, for instance clusters or clouds. However, the AWARD machine is neutral

regarding the scheduling of the workflow activities for execution. For instance, requests

for activity execution can be submitted as jobs to an external scheduler.

In the AWARD machine, activities communicate through the AWARD Space abstrac-

tion, which supports the links and the corresponding tokens between input and output

ports of the workflow activities.

In the following we describe the basic mechanisms of the AWARD Machine that

support an operational semantics for executing the AWARD workflows. This will be

extended in Chapter 4 in order to describe the characteristics of the AWARD model to

support dynamic reconfigurations.

3.4.1 Introduction

In Section 3.3 we described how a workflow developer can specify an AWARD workflow

by providing a specification of the workflow activities and their T asks, and by specifying

the logical dependencies between activities, expressed through the interconnection of the

activity ports.

As illustrated in Figure 3.9 the above declarative specification of an AWARD workflow

is interpreted by what we call the AWARD Machine. The implementation of the AWARD

Machine abstract architecture and a set of related tools allows the execution of workflows

specified according to the AWARD model.

The AWARD Machine performs the operations required to fulfill the semantics of the

AWARD model. These operations can be subdivided into two main classes:

1. Operations to execute the life-cycle (iteration steps) for each individual workflow

activity, also including the dynamic loading and the invocation of the activity T ask

code;
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2. Operations to satisfy the token-driven coordination of all the workflow activities,

by performing the required synchronization and the data communication through

the connected activity ports.
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Figure 3.9: The AWARD Machine abstract architecture

In order to comply with the AWARD design philosophy based on autonomic and

decentralized control concepts, the AWARD Machine is designed as a collection of cooper-

ating autonomic controllers, each one responsible for the management of the operations

involving each individual workflow activity. As described ahead in this section, the Au-
tonomic Controller encapsulates a State Machine that controls the iteration steps of the

workflow activity. It also manages the workflow activity internal context and the rules

and conditions under which dynamic reconfigurations are allowed, with the support of

an internal Rules Engine.

The cooperation among the autonomic controllers is loosely coupled and is only re-

quired to preserve the semantics of token-based communication defined by the AWARD

model, regarding the semantics of the operations for sending and receiving tokens through

ports.

In order to maintain the goal of a decentralized design, all interactions among the au-

tonomic controllers are indirect, and rely on an intermediate logical abstraction called the

AWARD Space. By using this approach, the production of tokens by activity output ports

is a write operation into the AWARD Space that only involves the sender activity with

a non blocking semantics, as far as the AWARD Space is able to sustain the unbounded

assumption for storing tokens until they are retrieved.

Likewise, the operation for getting tokens into the activity input ports only requires

a retrieve operation from the AWARD Space, only involving the Autonomic Controller of

the receiver activity.
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Due to the above, the AWARD Space becomes an essential component of the AWARD

Machine architecture. As described in Chapter 4 the AWARD Space is also used to support

all required activity interactions for the purpose of dynamic reconfigurations manage-

ment.
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Figure 3.10: The AWARD model of computation

As an example, consider the workflow graph in Figure 3.10(a) to which corresponds

a configuration of the AWARD Machine as shown in Figure 3.10(b). This configuration

includes five separate instances of autonomic controllers, one dedicated to each workflow

activity, denoted by AWA A, AWA B, AWA C, AWA D, and AWA E. Additionally it

includes a logical instance of the AWARD Space, as the intermediate component for

coordination and interaction. We should note that the above configuration only reflects

a logical organization of the AWARD Machine, at an abstract machine level, and does

not compromise the implementation of the AWARD architecture on physical computing

systems, as discussed in Chapter 5.

Figure 3.10(b) also illustrates the indirect interactions of the five autonomic con-

trollers to exchange tokens through the AWARD Space.

According to the semantics of the AWARD model, the following operations define the

operational view of the AWARD Machine for executing the workflow of Figure 3.10:

(a) The autonomic controllers of the A, B, C, D and E activities are separately running

in parallel;

(b) The A and B activities produce, at their independent paces, respectively, the T 1 and

T 2 tokens and store them into the AWARD Space;

(c) The C activity is driven by the availability of the T 1 and T 2 tokens in the AWARD

Space. When both tokens are available, the C activity consumes them from its I1C

and I2C input ports. These tokens are mapped to the T ask Arguments and the T ask

entry point is invoked;
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(d) The Results of the T ask execution are mapped to the O1C and O2C output ports,

and the corresponding T 3 and T 4 tokens are stored into the AWARD Space;

(e) At their independent paces the D and E activities consume, respectively, the T 3 and

T 4 tokens from the AWARD Space.

3.4.2 The Semantics of Link Operations and the AWARD Space

The AWARD Space supports implicit links between activities.

Each token T = (νT ,I,Seq,destInName) (see Definition 3.4 on page 58) stored into the

AWARD Space has the destInName field to identify the unique name of the destination

input port. An AWA activity consumes tokens on its input ports by associative pattern

matching where the names of input ports are interpreted as unique keys among all tokens

stored into the AWARD Space.

For instance, in Figure 3.10 if the C activity is starting the K th iteration and its I1C

and I2C input ports are in Iteration mode then the Autonomic Controller of the C activity

blocks until consuming both tokens T1 = (νT1,K,−, I1C) and T2 = (νT2,K,−, I2C) where,

“–“ (the field corresponding to the sequence number) denotes “don’t care”.

After the completion of the T ask execution and the mapping of results to theO1C and

O2C output ports, the tokens T3 = (νT3,K,Seq, I1D) and T4 = (νT4,K,Seq, I1E) are stored

into the AWARD Space, thus enabling, respectively, the D and E activities.

The computation model of the AWARD Machine assumes that the AWARD Space sup-

ports an unbounded set of tokens for all links of a workflow. This allows AWA activities to

produce and to consume tokens at different paces according to their execution speeds in

each iteration. Despite this assumption, for a given workflow with a maximum number of

iterations, the maximum number of tokens in the AWARD Space is always defined deter-

ministically. For instance, if the workflow of Figure 3.10 has N iterations (MaxIter =N ),

the maximum number of tokens is N +N corresponding to the case where the A and B

activities succeed in producing all their tokens before the C activity has consumed any

one. However, if a workflow has an infinite number of iterations and the upstream activi-

ties produce tokens at a very high pace and the downstream activities consume them at

very slow pace, the number of accumulated tokens in the AWARD Space is unbounded.

In such extreme situations, due to the physical limits of the AWARD Space, the workflow

execution can fail.

The computation model of the AWARD Machine also assumes that links are reliable.

This requires an implementation ensuring that there is no token loss during communica-

tion and ensuring a persistent storage in the AWARD Space.

In the AWARD model, links are implicitly defined as pairs that associate names of

output ports to one or more names of input ports (as in Definition 3.9 on page 61). Links

carry tokens marked with their destination input ports (as in Definition 3.4 on page

58). Input and output ports have unique global names (as in Definitions 3.7 and 3.8,

respectively on pages 60 and 60).
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From an operational view, links are abstractions implicitly represented by sets of

tokens emitted anonymously by any output port and marked by the unique global name

of the destination input port.

In order to meet the requirements to support the link abstraction and the support

to asynchronous communication we defined the abstraction of a global data store space,

named the AWARD Space, which is characterized by the following properties:

• Unbounded size: The AWARD Space is unbounded for storing all tokens of all links

independently of the token production pace by all workflow activities. However,

physical limits can impose restrictions upon this property, namely the limit of mem-

ory on the computational resources used to support the AWARD Space operation;

• Associative (Content addressable): The access to tokens must allow to get tokens

by any of their fields or the tokens fields can be indexed as keys for future retrieval;

• Persistent write: A non-blocking operation which allows writing tokens. The

AWARD Space must ensure the persistence of tokens on non-volatile memory in a

transparent way;

• Atomic retrieval: A blocking operation for retrieving tokens using any of their

fields as keys for pattern matching. This operation must be atomic in the presence

of concurrent requests for retrieving a token. On success the operation removes the

token from the AWARD Space;

• Subscribing: The AWARD Space must allow implementing the observer or the

publish/subscribe messaging software design patterns [Gam+95], by maintaining

a list of registered subscribers interested in specific tokens. When these tokens are

written, the AWARD Space automatically notifies the subscribers. This property is

mainly used to provide asynchronous notifications that trigger the event handlers

in the autonomic controllers, for instance for managing dynamic reconfigurations.

3.4.3 The Life-cycle of an Autonomic Activity

The operation of the AWARD machine is based on autonomic workflow activities (AWA)

that can be separately executed, possibly in distinct computer nodes. The operation

of each workflow activity is managed by an Autonomic Controller (AC), which controls

the life-cycle of each AWA activity, including the control of iterations and the support

for dynamic reconfigurations. For each iteration, the Autonomic Controller performs the

following main actions:

1. GetTokens: Getting input tokens from the AWARD Space to all enabled input ports

specified in the workflow activity specification;

2. MapInputs: Mapping the values of these tokens to an array of Arguments used to

invoke the activity Task;
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3. InvokeTask: According to the activity specification, the Autonomic Controller dynam-

ically loads the software component developed to implement the T ask and invokes

the entry point function, passing the array of Arguments and an array of Parameters
specified in the activity specification;

4. MapOutputs: After T ask completion, the Autonomic Controller gets the Results re-

turned by T ask and maps them to output tokens, to be sent by the enabled output

ports;

5. PutTokens: Put the tokens of the enabled output ports into the AWARD Space. The

tokens are marked with the destination input ports;

6. IterationsControl: Verify if the current iteration number is the maximum iteration

number specified for that activity. If the last iteration was reached then the Auto-
nomic Controller terminates the activity, else the Autonomic Controller increments

the current iteration number and repeats the first action (step 1.) of the life-cycle.
Fig  3.11 
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Figure 3.11: Model of an AWA and interactions through the AWARD Space

As shown in Figure 3.11, firstly, the AWA Autonomic Controller takes the matching

tokens from the AWARD Space for each enabled input port and applies the mappings

of tokens to the T ask Arguments. Secondly, the software component that implements

the Task is dynamically loaded and its EntryPoint is called. Thirdly, the Results from

T ask execution are mapped to the enabled output ports of the AWA activity, and the

corresponding output tokens are generated and stored into the AWARD Space until they

are consumed by destination activities. The AWA Autonomic Controller ensures that

input and output tokens for each iteration are handled in the AWARD Space as distinct.
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Also, the token processing orderings are enforced by identifying tokens with the current

iteration number or a sequence number, according to the operation token modes defined

in the AWA input and output ports (Definitions 3.7 and 3.8 respectively on pages 60 and

60).

The internal details of the Autonomic Controller are described later in this section.

The AWA activities of AWARD workflows are data driven and decentralized, allowing

each activity to start, to run and to terminate separately without any centralized execution

engine.

During the activity life-cycle it is possible for a user or an external tool to interact

asynchronously with each Autonomic Controller.

By using the Subscribing property of the AWARD Space, each Autonomic Controller
registers the adequate handlers for subscribing to asynchronous events with multiple

purposes: i) getting information on the internal state and context of an activity; ii) ex-

plicitly forcing an AWA activity termination; iii) processing the dynamic reconfiguration

operators as presented in Chapter 4.

3.4.4 The Semantics of Task Invocation

In order to specify the workflow activities the developer only needs to know the names

of the software components used for implementing the activity T asks and specifying

their logical dependencies through the input and output ports. This is an important

characteristic of the AWARD model as it allows the development of T ask algorithms

by any programmer with expertise on the application problem domain, and eases their

integration into workflows.

Nowadays in multiple computational science domains it is common to provide soft-

ware libraries with algorithms to solve specific problems. The AWARD model supports

this strategy by allowing the activity T asks to be developed as object-oriented classes

inside specific problem-domain software libraries.

The only programmer’s commitment is to develop these classes with an entry-point

function (EntryP oint) obeying a generic interface defined by the following signature:

public Object[ ] EntryP oint(Object[ ] Arguments, Object[ ] P arameters)

In order to illustrate the semantics of T ask invocation, consider a software library

named awardlib and a class with name SomeTask, which implements the above generic

interface. If this class is used to execute an activity T ask, the absolute name of the T ask

that is used in the activity specification is awardlib.SomeTask.

When the Autonomic Controller needs to invoke the activity T ask, it dynamically

loads the class, creates an object instance and calls the method EntryPoint by passing the

Arguments obtained from the activity input ports and the activity Parameters as arrays of

objects.
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We assumed that the type of objects passed as Parameters is always the String type.

The types of objects passed as Arguments are types according to the activity input ports

specification.

After activating the T ask, the Autonomic Controller waits for T ask completion. If the

T ask completes with success the Autonomic Controller receives an array of objects with

the Results produced by the T ask. The types of these objects are types according to the

activity output ports specification. However, a T ask can fail by throwing an exception,

which leads the Autonomic Controller into a fault state.

3.4.5 The Operation of the Autonomic Controller

The Autonomic Controller (AC) operation to control an Autonomic Workflow Activity (AWA)

is depicted in Figure 3.12. The internal components of the Autonomic Controller interact

with the AWARD Space for getting and putting tokens from/to the activity input and

output ports, and for handling external asynchronous events. The latter are generated

by requests performed by Tools through an application programming interface named

Dynamic API.
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Figure 3.12: The interactions of the Autonomic Controller with the AWARD Space

Under the AWARD Space a set of Tools generate asynchronous events, for instance

requests for dynamic reconfigurations, which are published as notifications into the

AWARD Space by using a software library, which provides an application interface (Dy-
namic API).
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Tools can also submit notifications for requesting information related to the internal

state and context of the activity. Additionally the Autonomic Controller can be notified for

forcing the termination of the activity.

A detailed description of Tools and the Dynamic API interface is presented in Chapter

5.

3.4.5.1 The Internal Organization of the Autonomic Controller

As depicted in Figure 3.12 the Autonomic Controller is internally composed of the follow-

ing components:

1. The AWA Context, consisting of two types of information. One is the information

related to the actual activity configuration, for instance the state of the input and

output ports, and the second type of information is related to the internal state

variables of the Autonomic Controller, for instance the current iteration number;

2. A Rules Engine, which supports a knowledge base consisting of a set of facts ac-

cording to the AWA Context. Facts are arbitrary patterns of data records related to

the AWA Context. The Rules Engine also supports a set of rules for acting as if-then
statements triggered dynamically by conditions based on facts. When rules trigger,

the knowledge base is modified by retrieving or adding new facts to change the

AWA Context;

3. A State Machine, which controls the execution steps of the Autonomic Controller
according to its life-cycle and according to the AWA Context. For example, the State
Machine gets and puts tokens through the AWARD Space, according to the input

and output ports configuration, invokes the activity T ask, and handles the possible

faults;

4. A set of event handlers, for subscribing and managing asynchronous events, such as

related to requests for dynamic reconfigurations, for explicit AWA termination, and

for getting information on the current AWA Context. Such requests are published

into the AWARD Space by tools through the Dynamic API interface activating the

corresponding AWA callback handlers, which were previously registered into the

AWARD Space.

3.4.5.2 The AWA Context

As shown in Figure 3.12, internally to the Autonomic Controller the State Machine interacts

with a Rules Engine in order to maintain two types of information related to the activity

specification and to the Autonomic Controller operation.

The first information type is related to the configuration of the activity according to

the workflow specification, for instance, the definition of the input and output ports, the
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Table 3.2: The AWA Context

Context Information Content

Configuration

Pars: The activity P arameters;
Task: Name of software component that implements the activity T ask;
Inputs: The set of activity input ports;
Mapins: The Mapping of activity input ports to Arguments of the activity T ask;
Outputs: The set of activity output ports;
Mapouts: The Mapping of T ask Results to the activity output ports;
MaxIter: The activity maximum number of iterations.

Internal

IsToStart:
A condition to indicate if the activity starts immediately or needs to
wait for a signal according to the tool used for launching an activity

CurIter: The number of the current AWA iteration;
CurState: The current state of the State Machine;

IsFaulty:
A condition to indicate that a failure has occurred and the State Machine
is in a f ault state;

InsReady: A condition to indicate that all enabled inputs have received tokens;

InsTokens:
The list of tokens received from all inputs on the current iteration num-
ber;

OutsTokens:
The list of output tokens sent by the output ports in the current itera-
tion number;

TArgs:
The list of Arguments to invoke the activity T ask on the current itera-
tion number;

TRes:
The list of Results returned by the activity T ask on the current iteration
number.

activity T ask name and the maximum number of iterations. Note that this information

can be changed by submitting dynamic reconfiguration plans as we discuss in Chapter 4.

The second information type is related to the current operational state of the AWARD

machine, for instance, the value of the current iteration number, the current state of the

State Machine and the current input and output tokens.

The union of these types of information is named the AWA Context. In terms of

the operational view of the AWARD Machine, the AWA Context information, stored as

facts into the Rules Engine, represents the knowledge data base for the operation of the

Autonomic Controller.

As presented in Table 3.2, the AWA Context consists of two parts. The first part,

named Configuration Context, is related to the workflow specification and it embodies

the information on the current activity configuration. The second part, named Internal
Context, embodies the information of a set of global variables related to the operation of

the Autonomic Controller during the AWA execution.

The AWA Context of the A activity, denoted by Ctx(A) is defined by the following

definitions:

Definition 3.17: The AWA Context: Ctx(A)

The context of the A activity is the Ctx(A) = {Cf Ctx(A), IntCtx(A)} set that con-

tains the AWA configuration context, denoted by Cf Ctx(A) and the internal AWA
Context, denoted by IntCtx(A).
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The Configuration Context, denoted by Cf Ctx(A), is related to the basic definitions

of an AWA activity, namely the definition of what is an AWA activity (as in Definition

3.5 on page 59), with a set of inputs AInputs = {I1A, ..., InA}, a set of outputs AOutputs =

{O1A, ...,OnA} and the corresponding mappings AMapins (as in Definition 3.13 on page

63) and AMapouts (as in Definition 3.14 on page 63).

Definition 3.18: The Configuration context: Cf Ctx(A)

The configuration context of the A activity, denoted by Cf Ctx(A) is defined by the

following tuple:

Cf Ctx(A) = (AP ars,AT ask,Cf Ctxinputs,AMapins,Cf Ctxoutputs,AMapouts,MaxIter)

whose fields are:

1. The activity P arameters, denoted by AP ars;

2. The name of AWA T ask, denoted by AT ask;

3. The configuration context of the AWA inputs denoted byCf Ctxinputs, defined

below in Definition 3.19;

4. The corresponding inputs mapping to the T ask Arguments, denoted by

AMapins (Definition 3.13 on page 63) ;

5. The configuration context of the AWA outputs, denoted by Cf Ctxoutputs, de-

fined below in Definition 3.20;

6. The corresponding outputs mapping from T ask Results, denoted by

AMapouts (Definition 3.14 on page 63)

7. The maximum number of iterations, denoted by MaxIter.

Definition 3.19: The Configuration context of AWA inputs: Cf Ctxinputs

The configuration context of AWA inputs, denoted by Cf Ctxinputs, is defined by

the following set:

Cf Ctxinputs = {Cf Ctxin(I1A), ...,Cf Ctxin(InA)}
containing the configuration contexts of all input ports where the configuration

context of an input port (according to Definition 3.7 on page 60) is defined as:

Cf Ctxin(IiA) = (IiA,T type, IMode,State), 1 6 i 6 n.
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Definition 3.20: The Configuration context of AWA outputs: Cf Ctxoutputs

The configuration context of AWA outputs, denoted by Cf Ctxoutputs, is defined by

the following set:

Cf Ctxoutputs = {Cf Ctxout(O1A), ...,Cf Ctxout(OnA)}
containing the configuration contexts of all output ports where the configuration

context of an output port (according to Definition 3.8 on page 60) is defined as:

Cf Ctxout(OiA) = (OiA,T type,OMode,SendT o,State), 1 6 i 6 n.

Definition 3.21: The Internal context: IntCtx(A)

The internal context of the A activity, denoted by IntCtx(A), is defined by the

following tuple:

IntCtx(A) = (IsT oStart,CurIter,CurState, IsFaulty, InsReady,

InsT okens,OutsT okens,T Args,T Res)

containing the fields presented in the second part, (Internal), of the Table 3.2 on

page 77. Each field is an internal global variable of the Autonomic Controller.

3.4.5.3 The State Machine and the Rules Engine

Each Autonomic Controller controls the life-cycle and behavior of its associated AWA

activity taking the advantage of joining a Rules Engine to a State Machine. The Rules Engine
supports a predefined initial set of facts and rules used by the State Machine that can be

distinctly specified for each workflow AWA activity. As presented in Chapter 4, Section

4.3.2, the State Machine is extended to include the support for dynamic reconfigurations.

Therefore in this section we describe the State Machine without considering the states

related to dynamic reconfigurations.

As depicted in Figure 3.13 the State Machine has a set of states for performing the

operation of the Autonomic Controller according to the following phases:

• Starting: The start and init states for initializing the Autonomic Controller. Typically

the entry point state of the State Machine is the start state where the Autonomic
Controller waits for a synchronization signal issued by a tool used to launch the

workflow activities. The init state initializes the AWA Context and begins the imme-

diate operation of the Autonomic Controller on the executing phase;

• Executing: The main states are repeated over the multiple iterations for executing

the main actions of the Autonomic Controller. The idle state controls the current

iteration number to check if the maximum iteration number has been reached and

consequently terminating the execution of the activity. The input state gets the

tokens for all enabled input ports from the AWARD Space. The mapin state maps
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Figure 3.13: The states and transitions of the State Machine

the token values to the Arguments array of the activity T ask. The invoke state calls

the entry point of the software component that implements the T ask using the

mapped Arguments and the activity Parameters. The mapout state maps the array of

Results returned by the T ask to token values to be sent through the activity output

ports. The output state puts the tokens for all enabled activity output ports into the

AWARD Space;

• Terminating: The terminate state defines the end of execution of the Autonomic
Controller and the completion of the workflow activity;

• Faulting: During execution, the Autonomic Controller interacts with external re-

sources, where failures can occur. In input and output states, accessing the AWARD

Space can fail due to communication problems, or when the physical limits of the

storage capacity are reached. In the invoke state the software component that imple-

ments the activity T ask, can also fail. Therefore the faultIn, faultTask and faultOut
states are reached when failures happen, respectively, in states input, invoke and

output. On these failure states, the Autonomic Controller saves the AWA Context as

logging information to facilitate debugging and failure recovery. In Chapter 4 we
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illustrate how failure recovery can be achieved by applying dynamic reconfigura-

tions.

The association between the State Machine and the Rules Engine provides flexibility

in the operation of the Autonomic Controller, for example to control the State Machine
transitions. As depicted in Figure 3.13 the entry point state of the State Machine is the

start state where the Autonomic Controller waits for a synchronization signal. This entry

point state is specified as a default fact of the Rules Engine. However, the workflow

developer can change this fact in order to specify that the entry point of the State Machine
is the init state, in order to override the need for a starting synchronization signal. Also,

as presented ahead in this section, the state transitions are controlled by firing rules in

the Rules Engine.

G Definitions related to the State Machine

In each state of the State Machine, the Autonomic Controller performs the following

steps:

1. Execution of the corresponding state actions (as);

2. Evaluation of conditions (C) in order to decide on the state transition to the next

state;

3. Execution of actions (at) associated to the state transition.

Definition 3.22: The State Machine: SM

The State Machine is defined as the SM = (S,T ,V ,C,A) tuple, consisting of a set

of states (S), a set of state transitions (T ), a set of global variables (V ), a set of

conditions (C), and a set of actions (A) that can be actions performed in the state

(as), or actions performed during state transitions (at).

Definition 3.23: The State Machine states: S

The set of states (S) is defined as,

S = {start, init, idle, input,mapIn, invoke,mapOut,output,

terminate, f aultIn,f aultT ask,f aultOut}

and the corresponding actions (as) are described in Table 3.3.

G Transitions
Definition 3.24: A State Machine transition: t

A state transition denoted by t is defined as a tuple ∀t ∈ T , t = (si , sj , c,at) where (si)

is the source state and (sj ) is the destination state, (c) is a condition that enables the

state transition and (at) is a set of actions performed on the state transition. When

a transition has no actions the action set (at) is denoted by a dash (−).
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Table 3.3: The states and actions of the State Machine

State Description Actions of the Autonomic Controller (as)

start
The entry point of the State Machine to wait
for a start synchronization signal issued by
the tool that launched the activity

It waits for a start synchronization signal then
it puts the global variable IsT oStart to TRUE
and performs the tsync transition.

init
The initialization state of the State Machine
used to initialize the internal AWA Context.

It creates facts into the Rule Engine according
to the AWA Context information (Definitions
3.17, 3.18, and 3.21) and performs the t0 tran-
sition.

idle
The state to control the number of itera-
tions in order to verify if the last iteration
(MaxIter) is or not reached

It performs the t7 transition if the last itera-
tion is reached or the t1 transition to begin a
new iteration.

input

The state for getting tokens from the
AWARD Space for all inputs of the activity
by ensuring that each input port has a token
according to its configuration.

It gets the tokens from the AWARD Space
for all activity input ports and performs the
t2 transition; otherwise if the access to the
AWARD Space causes failures, the t8 transi-
tion is performed leading to the faultIn state.

mapIn

The state for mapping the token values re-
ceived on the input state to an array of Argu-
ments (Definition 3.12) used in the activity
T ask invocation.

It executes the input mapping function and
performs the t3 transition.

invoke

The software component that implements
the AWA T ask (AT ask) is loaded, in-
stantiated and the entry point function
(EntryP oint) is called using the array of
arguments (Arguments) prepared in the
mapIn state (Definition 3.12) and the con-
figured P arameters (AP ars).

It invokes the activity T ask and performs the
t4 transition for mapping the array of Results
(Definition 3.12) to the output ports, other-
wise if any failure occurs during the T ask in-
vocation the t9 transition is performed lead-
ing to the faultTask state.

mapOut
The state for mapping the array of Results
(Definition 3.12) returned from the T ask to
token values to be sent in the output state.

It executes the output mapping function and
performs the t5 transition.

output

The token values mapped in the mapOut
state are associated to tokens according
to the configuration of the activity output
ports. These tokens are written in the
AWARD Space.

It puts the output ports tokens in the AWARD
Space and loops back by performing the t6
transition to the idle state to start the next it-
eration, otherwise if the access to the AWARD
Space causes failures the t10 transition is per-
formed leading to the faultOut state.

terminate
This state defines the end of the life-cycle
of an activity.

It performs clean-up actions. For instance un-
register event handlers and close the connec-
tion to the AWARD Space.

faultIn
faultTask
faultOut

The states to wait for possible recovery ac-
tions based on dynamic reconfigurations.
(see Section 4.3.2 on page 113)

It reports the AWA Context and the reasons for
the failure as logging information.

Definition 3.25: The State Machine transition set: T

The set of state transition (T ) is defined as,

T = {tsync, t0, t1, t2, t3,t4, t5, t6, t7, t8, t9, t10}

and each transition tuple (t), (Definition 3.24), is detailed in Table 3.4 on page 83.
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G Actions on state transitions

As presented in Table 3.4 some transitions have actions to be performed during the

state transition. The action performed in t6 corresponds to increment the current iteration

number a6 = (CurIter = CurIter + 1). The actions a8, a9, a10 = SaveContext performed in

the t8, t9, t10 transitions, correspond to saving the information of the current AWA Context
to be logged in the faulty states for facilitating debugging and failure handling. The

SaveContext action is discussed in Chapter 5, which details the Autonomic Controller
implementation.

Table 3.4: The state transitions

Transition Source Destination Condition Action
(t) State (si) State (sj) (c) (at)

tsync start init
csync: The variable IsT oStart is
equal to TRUE indicating that the ac-
tivity must start immediately.

−

t0 init idle c0: Always TRUE −

t1 idle input
c1: The maximum iteration number
has not been reached.

−

t2 input mapIn
c2: All enabled inputs have tokens
and there are no failures in the ac-
cess to the AWARD Space.

−

t3 mapIn invoke c3: Always TRUE. −

t4 invoke mapOut
c4: There are no failures on T ask in-
vocation.

−

t5 mapOut output c5: Always TRUE. −

t6 output idle
c6: There are no failures in the ac-
cess to the AWARD Space.

a6: Increments the
current iteration.

t7 idle terminate
c7: The current iteration reaches the
maximum iteration number.

−

t8 input faultIn
c8: A failure occurs when accessing
the AWARD Space for getting the to-
kens of the input ports.

a8: Saves the current
internal AWA Context
(SaveContext).

t9 invoke faulTask
c9: A failure occurs when invoking
the T ask.

a9: Saves the current
internal AWA Context
(SaveContext).

t10 output faultOut
c10: A failure occurs when accessing
the AWARD Space for putting the to-
kens on the output ports.

a8: Saves the current
internal AWA Context
(SaveContext).

G Global variables of the State Machine
Definition 3.26: The State Machine global variables: V

The State Machine has a set of global variables V defined as,

V = {IsT oStart,CurIter,CurState, IsFaulty, InsReady,

InsT okens,OutsT okens,T Args,T Res}.

These variables define the internal AWA Context (Definition 3.21 on page 79).
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G Conditions
Definition 3.27: Conditions: C

The condition set C = {csync, c0, c1, c2, c3,c4, c5, c6, c7, c8, c9, c10} defines the conditions

associated to the state transitions. These conditions are TRUE or FALSE depending

on the evaluation of the expressions involving the global variables as presented in

Table 3.5.

Table 3.5: The conditions for the state transitions

csync = (IsT oStart == TRUE) c4 = not IsFaulty
c0 = TRUE c5 = TRUE
c1 = (CurIter < MaxIter) c6 = not IsFaulty
c2 = (not IsFaulty & InsT okens) c7 = (CurIter = = MaxIter)
c3 = TRUE c8, c9, c10 = IsFaulty

G The Rules Engine

The global variables (V ) and conditions (C) of the State Machine are managed using the

Rules Engine. Global variables and internal variables of the State Machine are stored into

the Rules Engine as facts denoted by tuples with the (variable value1, ...,valuen) pattern.

Rules act as if-then statements triggered by conditions based on facts.

As an example, in Listing 3.2 we present the pseudo-code of a rule for triggering the

state transitions of the State Machine. During the lifetime of the Autonomic Controller
there is always the fact (CurState value) for containing the value of the CurState global

variable. When the fact (ChangeState value next) is inserted to change the state value to

the state next, the rule ChangeStateMachineState fires and inserts a fact to represent the

new value of the global variable (CurState next). The facts that caused the rule firing

are deleted to avoid a retrigger of rules according to the common semantics of the Rules
Engine.

Listing 3.2: Example of a rule for allowing change the state of the State Machine

1 BeginRule ChangeStateMachineState

2 IF

3 ExistFact f1=(CurState value)

4 AND

5 ExistFact f2=(ChangeState value next)

6 THEN

7 DeleteFact f1

8 DeleteFact f2

9 InsertFact (CurState next)

10 EndRule

As another example when a failure occurs, a fact with the pattern (Failure reason)
is inserted into the working memory of the Rules Engine to indicate the failure and the

corresponding reason. In Listing 3.3 the pseudo-code of a rule is presented to force

the State Machine to enter the f aultT ask state when a failure occurs during the T ask
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Listing 3.3: Example of a rule to force the faultTask state of the State Machine
1 BeginRule Failure:

2 IF

3 ExistFact f1=(CurState invoke)

4 AND

5 ExistFact f2=(Failure reason)

6 THEN

7 InsertFact (ChangeState invoke faultTask)

8 EndRule

invocation. When this rule fires, the fact (ChangeState invoke faultTask) is inserted into the

working memory, to fire the previous rule (Listing 3.2) in order to lead the State Machine
to the f aultT ask state.

3.4.5.4 The Workflow Termination

The semantics of the workflow termination depends on the workflow specification and

the conditions that can occur during the workflow execution as illustrated in Figure 3.14.

According to the AWARD model, usually a workflow has a maximum number of

iterations (MaxIter) such that all workflow activities execute the same number of itera-

tions. Due to the autonomic characteristics of an activity the point where it reaches its

maximum number of iterations depends on its own processing pace.

The implicit termination of an activity occurs when it reaches the maximum number

of iterations (MaxIter) and the State Machine reaches the terminate state. Therefore the

execution of a workflow instance terminates orderly when all of its activities have already

reached the terminate state.

When a workflow terminates orderly, and all tokens produced by its activities were

consumed then the AWARD Space is empty, that is, there are no application tokens left.

Workflow 

Termination 

Explicit 

Termination  of  activities by external 
commands 

Synchronous 

Termination of activities by using 
dynamic reconfiguration plans 

Asynchronous 

Forced termination independently of 
the activity current internal context    

Implicit 

Orderly termination of activities by reaching 
a maximum number  of iterations 

Figure 3.14: The semantics of the workflow termination

85



CHAPTER 3. THE AWARD MODEL

However, some workflow scenarios introduce a requirement for explicit termination

of activities. The AWARD model supports synchronous explicit termination of activities

by applying dynamic reconfiguration plans (Chapter 4, Section 4.2 on page 101).

For example, when a workflow was initially specified with an infinite number of

iterations, the termination of activities can be performed by explicitly applying a dynamic

reconfiguration plan to redefine a finite maximum number of iterations equal for all

activities. In this case the semantics of the workflow termination falls into the situation

where all activities have already reached the terminate state.

Another possibility is to submit dynamic reconfiguration plans with a command to

terminate separately each workflow activity. However, the success of invoking a dynamic

reconfiguration plan with a command to terminate one activity depends on the internal

context of the activity. In fact, the reconfiguration actions for activity termination can

never complete if the State Machine of the activity is in the input state, waiting for tokens

that will not be produced anymore by an activity that had terminated first.

In order to ensure the completion of the workflow termination the AWARD machine

supports an asynchronous mechanism for forcing the termination of the activities inde-

pendently of their current internal contexts. This increases the flexibility of the AWARD

model by allowing a distinct maximum number of iterations for some activities by initial

specification, or as a consequence of applying dynamic reconfiguration scenarios. How-

ever, the asynchronous forced termination of activities may leave tokens unconsumed in

the AWARD Space.

3.4.5.5 Recovery from Failures

During the execution of the workflow, any Autonomic Controller can independently fail

on critical situations related to interactions with external entities. Namely, despite the

assumption that links between activities are reliable and there is no loss of tokens, an

Autonomic Controller can lose the connectivity to the external computing resources that

implement the AWARD Space, when trying to read or write tokens. Furthermore, an

activity T ask implementation can generate failures caused by algorithm errors or by

possible unavailability of the external resources used.

Faults can occur in input or output states related to the connectivity to the external

computing resources of the AWARD Space, when respectively trying to read and write

tokens.

The invoke state is a critical state where faults can occur. In fact any fault produced

within the T ask code, developed by application developers, such as unreachable resources

and network failures, etc., will force the State Machine to the f aultT ask state.

When a fault is caught, the State Machine reports the internal AWA Context, including

the failure reasons as facts into the Rules Engine and goes to the fault states where, if

it is possible, the failure reasons are logged into the AWARD Space. By monitoring the

AWARD Space, the workflow developer can try to perform actions based on dynamic
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reconfigurations for recovering from the failures or, at worst case, when the failures are

persistent the workflow developer can terminate the activity by explicit execution of a

forced termination command, which possibly implies aborting the workflow execution.

As presented in Chapter 4 and Chapter 6, the AWARD model supports the recovery

from faults by using dynamic reconfigurations. For instance, if the activity T ask invokes

external resources that are unavailable, it is possible to recover by changing the T ask

P arameters, or by changing the complete software component that implements the T ask

in order to redirect the invocation to alternative resources.

However, it is important to note that it is not always possible to recover from faults.

As an example, if some actions inside an activity T ask are not idempotent it may not be

possible to reinvoke the T ask with the same Arguments or the same P arameters. Another

example where the recovery may not be possible is when persistent failures occur during

the access to the AWARD Space. For instance, after relaunching or reconnecting to the

AWARD Space, it may not be possible to roll back the actions for getting or putting tokens

into the AWARD Space.

3.4.5.6 The Event Handlers

Internally, the Autonomic Controller of each AWA activity has three event handlers, for

subscribing and managing asynchronous events:

1. The Context Handler handles requests for getting information related to the current

AWA Context;

2. The Forced Termination Handler handles the request for explicit AWA activity termi-

nation;

3. The Dynamic Reconfiguration Handler handles requests for performing dynamic

AWA activity reconfigurations.

These AWA notification handlers, which were previously registered into the AWARD

Space, handle and manage the requested events published into the AWARD Space by

tools through a Dynamic API interface, whose implementation is detailed in Chapter 5.

For example, the request for obtaining the AWA Context can be submitted by any

application tool by invoking the function GetAwaContext(AwaName) of the Dynamic
API interface, which returns the current internal AWA Context.

The AWARD tool KillAwa(AwaName) ensures the termination of an AWA activity

independently of its internal context. The tool submits a request to be handled by the

Forced Termination Handler.

The requests for AWA activity dynamic reconfigurations are submitted by scripts

using a set of operators provided through the Dynamic API interface as presented in

Chapter 4.
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3.5 Chapter Conclusions

In this chapter we presented the AWARD model according to two perspectives. Firstly,

we described the fundamental concepts and essential definitions for allowing a workflow

developer to specify the AWARD workflows, completely decoupled from the low-level

details of the execution infrastructure. Secondly, we presented the operational view of

the AWARD Machine abstract architecture for supporting the execution of the AWARD

workflows, relying on an Autonomic Controller for controlling the life-cycle of the work-

flow activities and an abstraction called AWARD Space as an unbounded and reliable

global data store.

As presented in this chapter, the AWARD model for supporting the execution of

scientific workflows has the following main characteristics:

• Ease of specification of AWARD workflows, decoupled from low-level details;

• Autonomic workflow activities (AWA) executable without a centralized control;

• Links between AWA activities are abstractions supported by the AWARD space as a

unbounded and reliable global data store;

• The development of the T asks of the AWA activities is decoupled from the under-

lying execution infrastructure. This allows the workflow developer to focus on the

problem domain and not on low-level details related to the implementation of the

workflow execution engine.
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4
Dynamic Reconfigurations

The support of the AWARD model for dynamic reconfigurations of long-
running workflows. The reconfiguration plans based on a set of basic
dynamic reconfiguration operators can be applied to dynamically change
the structure and behavior of the AWARD workflows.

This chapter presents an important component of the AWARD model concerning the

support for dynamic reconfigurations of long-running workflows where each activity

executes a large number or even an infinite number of iterations.

Performing dynamic workflow reconfigurations is required and useful in many appli-

cation scenarios where the workflow structure and/or the behavior of activities must be

changed during workflow execution. As illustrative examples of structural changes we

can introduce new activities for data filtering, data monitoring and load balancing. This

also includes dynamically introducing feedback loops where a new activity receives inter-

mediate tokens as input and produces feedback tokens to previous activities in the struc-

ture. As examples of changing the activity behavior we can change activity P arameters or

change its T ask. This has the advantage of allowing the runtime modification of the ap-

plication algorithms, for example, to facilitate computational steering by multiple users

and the handling of T ask fault recovery.

This chapter is organized as follows. In Section 4.1 we present the rationale for dy-

namic reconfigurations and the main related concepts. Section 4.2 describes the workflow

programmer’s view for specifying an AWARD dynamic reconfiguration plan based on a

set of basic dynamic reconfiguration operators (Section 4.2.1). A concrete example is

presented (Section 4.2.2) to illustrate how the workflow programmer can establish a re-

configuration plan to change the structure and behavior of a long-running workflow.
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Section 4.3 reviews the operational view of the AWARD machine with the extensions

to the State Machine of the Autonomic Controller for supporting dynamic reconfigurations.

In order to support useful application cases, in Section 4.4 we present a set of dynamic re-

configuration scenarios applied to workflow templates. Section 4.5 concludes the chapter

by emphasizing the distinct characteristics of the AWARD model concerning the support

for dynamic workflow reconfigurations.

4.1 The Rationale for Dynamic Reconfigurations

The workflow paradigm is a useful approach for developing scientific applications based

on the composition of multiple activities, allowing each activity to be reused in different

application scenarios, for example, long-running experiments with multiple, possibly

infinite numbers of iterations for processing large data sets. These experiments are often

dynamic and subject to constantly changing requirements. For example, changes to the

goals of the experiments, changes to the activity algorithms in order to modify their

functionalities or optimize their performance, changes to the application parameters

allowing parameter sweep or to handle events arising during the workflow execution,

for instance related to failures. Furthermore, computational steering is an important

requirement for the emerging scenarios where transnational research teams are spanning

workflows over multiple autonomous organizations. Traditional workflow systems, based

on a single centralized workflow management engine, may be unsuitable to support these

scenarios.

Whereas the above requirements are not known at workflow design time, sometimes

there is the need to stop the entire workflow execution for redesigning the workflow and

restarting its execution anew. However, stopping and restarting long-running workflows

can lead to a waste of elapsed execution time which may also result in increased costs

regarding the used allocated resources. These costs can be significant, for instance, when

a public cloud infrastructure is used to execute the workflows.

Therefore, for enabling and accelerating collaborative scientific experiments accompa-

nied by continuous adaptation and improvement it is indispensable to develop workflow

systems with support for dynamic workflow reconfigurations and user-driven steering

[Dee07; Gil+07].

As presented in Section 2.4.3, in spite of the extensive work related to dynamic re-

configuration models and approaches in multiple contexts, such as distributed systems,

operating systems, software engineering architectures or business workflows, unfortu-

nately the most widely used and available scientific workflow systems do not provide

sufficient flexibility to support dynamic changes of long-running workflows. For exam-

ple, the support for dynamically adding new workflow activities is an issue not fully

addressed by most of the existing scientific workflow systems. Since the beginning of

our research we envisioned a workflow model to accommodate dynamic workflow adap-

tations and structural changes during the workflow execution. This is motivated by the

90



4.1. THE RATIONALE FOR DYNAMIC RECONFIGURATIONS

need to enable dynamic changes on the structure and behavior of a workflow triggered by

distinct events, such as: i) User requests in interactive workflow scenarios; ii) Application

tools requests during the workflow execution; and iii) Requests originated from events

in the execution infrastructure, such as failures related to unavailability of resources or

variations in the quality of service. In general, an effective recovery strategy based on dy-

namic reconfiguration is a critical issue to enable the efficient execution of long-running

workflows by allowing substantial savings in elapsed execution time.

G What is an AWARD dynamic reconfiguration

The AWARD approach to support dynamic reconfigurations aims at providing flexi-

bility for allowing both structural and behavioral changes during the execution of long-

running workflows.

A structural change is any change that involves modifying the topology of the work-

flow graph, that is, adding or removing activities and adding, removing or changing the

links between activities. A behavioral change is any change that involves modifying char-

acteristics of the activities, that is, changing the activity P arameters, changing the activity

T ask, or changing properties of the activity input and output ports.

The current workflow configuration corresponds to the set of all contexts of the work-

flow activities where the context of each activity, Ctx(A) = {Cf Ctx(A), IntCtx(A)} (Def-

inition 3.17 on page 77) is composed of the activity configuration context Cf Ctx(A)

(Definition 3.18 on page 78) and the activity internal context IntCtx(A) (Definition 3.21

on page 79).

In general the configuration context of the workflow activities is initially defined by

the workflow specification and during the workflow execution only the internal contexts

of the workflow activities change according to the life-cycle of their autonomic controllers.

However, during the workflow execution the initial configuration context of the workflow

activities can be changed leading to changes in workflow configuration by requests from

the users, or application tools, or by events originated by the infrastructure environment.

In this dissertation these workflow configuration changes are called dynamic workflow
reconfigurations.

G What is a dynamic reconfiguration plan

When a workflow is running, dynamic workflow reconfigurations can be performed

successively in different stages of the workflow execution by applying a series of recon-

figuration plans.

As depicted in Figure 4.1 during the elapsed execution time (T ) the workflow ex-

ecution starts with an initial configuration (Wcf 0) and ends with a final configuration

(Wcf N ) by applying multiple reconfiguration plans (Rcf 0), (Rcf 1),. . . ,(Rcf i),. . . ,(Rcf N−1).
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Wcf0 Rcf0 

Elapsed Execution Time (T) 

Wcf1 Rcf1 Wcfi Rcfi Wcfi+1 ... WcfN ... 

Applying multiple reconfiguration plans 

Fig  4.1 

Figure 4.1: Workflow execution with multiple configurations

Definition 4.1: Workflow configuration: Wcf i

A configuration (Wcf i) of the W = (Wname,gIterations,G) workflow is a set

of contexts of all workflow activities Aj in G, with 1 6 j 6 n, that is, Wcfi =

{Ctx(A1),Ctx(A2), ...,Ctx(An)} where the context of the Aj activity, Ctx(Aj) =

{Cf Ctx(Aj), IntCtx(Aj)} (Definition 3.17 on page 77) is composed of the activity

configuration context Cf Ctx(Aj) (Definition 3.18 on page 78) and the activity in-

ternal context IntCtx(Aj ) (Definition 3.21 on page 79).

If there are no dynamic reconfigurations, each workflow activity continues its exe-

cution individually according to the semantics of the AWARD computation model and

according to dependencies between activities as established through the token-based

communication.

In the presence of a dynamic reconfiguration, each activity affected by the reconfig-

uration plan is subject to the necessary modifications as soon as an adequate execution

point is reached. Therefore, a dynamic reconfiguration for an individual Ai activity cor-

responds to a transition (T ) to apply the reconfiguration actions to the current context

Ctx(Ai)bef ore of the Ai activity, reaching a new activity context Ctx(Ai)af ter as depicted in

Figure 4.2.

Ai 
Execution trace 

Ctx(Ai)before Ctx(Ai)after 

Reconfiguration 
 

actions  

Ai 
Execution trace 

T 

Figure 4.2: Change the activity context by applying the reconfiguration actions

Definition 4.2: Reconfiguration plan: Rcf i

A reconfiguration plan (Rcf i) is a sequence of changes applied during a workflow

execution for modifying the current workflow configuration (Wcfi) to a new work-

flow configuration (Wcfi+1) and is defined as a transition Wcfi
Rcfi−−−→Wcfi+1. The

reconfiguration plan is atomic in the sense that all or none of the changes in the

sequence are performed.
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A reconfiguration plan (Rcf i) can modify the current workflow configuration (Wcfi)

to affect the structure of the workflow by changing the links between input and output

ports, or by launching new activities. The workflow configuration behavior can also be

affected by changing the T ask and P arameters of the workflow activities.

G The scope of a reconfiguration plan

A reconfiguration plan may not affect the entire workflow but just a workflow sub-

graph containing a set of activities to be modified.

Definition 4.3: The scope of a reconfiguration plan

The scope of a reconfiguration plan is the set of activities, including possibly

new activities, affected by the reconfiguration plan. Each activity A in this set

is affected individually by modifications to its configuration context, (Cf Ctx(A))

with changes to its P arameters (AP ars), the T ask name (AT ask), the input and out-

put contexts (Cf Ctxinputs and Cf Ctxinputs), the corresponding mappings to T ask

Arguments (AMapins) and T ask Results (AMapouts)) and the maximum number

of iterations (MaxIter). Also, the internal context of the activity (IntCtx(A)) can

be modified by reconfiguration operators.

G The AWARD approach for supporting dynamic reconfigurations

According to application requirements or utilization scenarios workflow developers

need a high degree of flexibility for dynamically modifying long-running workflows. The

AWARD model aims at providing an adequate degree of flexibility to support multiple

reconfiguration plans during the workflow execution in order to satisfy the application-

dependent change requirements to meet the goals of the application developers.

However, this flexibility regarding the freedom of specifying dynamic reconfiguration

plans introduces an essential question related to how to ensure the consistency of the

dynamic reconfigurations applied during the execution of long-running workflows.

G Difficulties and related work

The AWARD model allows the asynchronous execution of activities and also supports

multiple users separately launching and controlling autonomic workflow activities on

distributed infrastructures. This introduces difficulties related to the coordination of

the distinct views of the workflow execution state that are observed by the different

participants/users. In fact, each individual user can observe distinct behaviors of the

workflow execution, which leads to a large diversity of situations for demanding dynamic

reconfigurations of the long-running workflows.

Several works [SLI08; TCBR11] have addressed the issue of ensuring workflow consis-

tency in the presence of dynamic changes, namely related to task rescheduling [CD12],

or for handling exception failures [TC+10]. In order to manage changes in business work-

flows the consistency of modifications to running workflow instances has been addressed

in [AC03b; RB07; RRD04]. However, there is not a common and generic definition of
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consistency because it depends on the application context, the underlying workflow exe-

cution engine and the corresponding execution infrastructure.

Regarding consistency a widely used concept is the workflow soundness [Aal+11]

for defining a set of properties as correctness criteria that should be ensured before and

after workflow modifications, for instance by ensuring workflow termination, absence of

deadlocks and link consistency. Typically these soundness properties are verified by a

correctness tool before the workflow execution starts and are afterwards validated when

some workflow changes are performed.

G The soundness of a given AWARD workflow configuration

The semantics of the AWARD model defines the following soundness properties that

must be satisfied in any workflow:

Definition 4.4: Soundness properties

An AWARD workflow configuration is sound if the following properties are pre-

served:

1. Implicit termination: All workflow activities terminate after reaching their

maximum number of iterations (MaxIter);

2. Input ports reachability: Given any enabled input port there is at least one

enabled output port which produces tokens to be consumed by that input

port;

3. Token delivery: For any token produced there is one and only one destination

input port to consume the token.

Assuming that all links are reliable and unbounded (Section 3.4.2), the properties of

the above Definition 4.4, ensure that there is no loss of tokens and all tokens produced

are consumed.

G Consistency of an AWARD dynamic reconfiguration plan

Definition 4.5: Reconfiguration plan consistency

An AWARD dynamic reconfiguration plan Wcfi
Rcfi−−−→Wcfi+1 is consistent if Wcf i

and Wcf i+1 satisfy the soundness properties of Definition 4.4.

In the following we discuss the AWARD approach concerning the above consistency

definition (Definition 4.5). When using the AWARD model, workflow developers can

establish workflow reconfiguration plans by relying on a basic set of AWARD operators

for performing dynamic modifications to long-running workflows. These reconfiguration

plans can involve a single activity or a workflow partition consisting of multiple activities

contained in the scope of the reconfiguration plan (Definition 4.3 on page 93).

If the activities involved in the reconfiguration plan are independent from each other,
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then after receiving the request to apply the reconfiguration operators, each activity Auto-
nomic Controller could separately modify its individual context and continue its execution.

However, on one hand the reconfiguration plans can involve multiple activities, which

are interdependent through the production and consumption of tokens. On the other

hand, the production and consumption of tokens in the AWARD model is determined by

autonomic activities that may have different paces for executing successive iterations.

Due to the above issues, as depicted in Figure 4.3, it becomes necessary to ensure

a global coordination between the activities involved (A1, ...,Aj), in order to guaran-

tee that at any global observation point (K in the Figure 4.3) the reconfiguration plan

for a transition Rcf K can be applied in a such a way that the new activity contexts

(Ctx(A1)af ter , ...,Ctx(Aj )af ter ) correspond to a new workflow configurationWcf K+1, which

preserves the semantics of the AWARD model (according to above Definitions 4.4 and

4.5).
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Figure 4.3: Reconfiguration plan transition at observation point K

The global coordination between the activities involved in the reconfiguration plan

should ensure the following conditions:

1. Atomicity: The transition between workflow configurations should be atomic (all or

nothing);

2. Serialization: In the presence of multiple requests for concurrent reconfiguration

plans affecting the same activities, their global effect must be equivalent to a se-

quential execution of the reconfiguration plans;

3. Consistency: The RcfK reconfiguration plan should be consistent according to Defini-

tion 4.5, that is, both Wcf K and Wcf K+1 configurations should satisfy the AWARD

soundness properties of Definition 4.4.

Note that, due to the asynchronous and autonomic characteristics of the AWARD

model, as depicted in Figure 4.4, a long-running workflow with a sound current configu-

ration Wcf can be subject to distinct reconfiguration plans (Rcf1, ...,Rcfn) that could lead
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to a set of distinct new workflow configurations (Wcf1, ...,W cfn), where some of them

are sound and others are unsound, depending on the fulfillment of the above conditions,

namely ensuring the soundness properties of Definition 4.4.

Wcf 

Wcf1 

Wcfn 

Sound 

unsound 

Sound 

Fig  4.2 

Figure 4.4: Applying distinct reconfiguration plans to a sound workflow configuration

Due to the AWARD characteristics for supporting autonomic activities that are run-

ning asynchronously without a centralized control, there is a concern related to the veri-

fication of the soundness properties (as in Definition 4.4) that should be preserved when

applying a reconfiguration plan.

On one hand, the soundness verification should be delegated to an external entity that

acts as a global observer regarding the execution context of the entire workflow, in order

to validate if the transition Wcfi
Rcfi−−−→Wcfi+1 corresponds to a consistent reconfiguration

plan (as in Definition 4.5). By relying on an external entity for the verification of the

consistency of reconfiguration plans, this approach provides great flexibility as it allows

the above verification to be performed according to the application scenario.

On the other hand, from the point of view of the AWARD model the above decision is

compatible with the approach of providing a flexible model for dynamic reconfiguration,

which relies on a basic set of AWARD dynamic reconfiguration operators.

However, some basic mechanisms must be supported by the AWARD machine in or-

der to ensure that the Atomicity and Serialization conditions are enforced, and also that

each workflow activity in a long-running workflow executes the corresponding recon-

figuration operators at an adequate iteration. The latter guarantee must be based on a

common/global iteration agreement, collectively reached by all the activities involved in

the scope of a reconfiguration plan.

In the following, we discuss the issue of the verification of reconfiguration plans

based on an external entity, although this is left out of the scope of this dissertation.

Then we discuss the basic mechanisms supported by the AWARD machine concerning

the Atomicity and the common/global iteration agreement.
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G Verifying the consistency of a reconfiguration plan by an external entity

The approach that relies on an external entity for verifying the consistency of a recon-

figuration plan is schematically illustrated in Figure 4.5.
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A1 

Activity 
An 

Long-running workflow 

. . . 

. . . 

Wcf 

Reconfiguration plan 
 Rcfi 

Soundness 
Verification 

Apply Rcfi 
Yes 

No 

Warning about the inconsistency of Rcfi   

Fig  4.4 

Figure 4.5: Soundness verification before applying a reconfiguration plan

During the execution of a long-running workflow and before applying a reconfigura-

tion plan (Rcf i), an external entity analyses the workflow configuration (Wcf ) defined by

the contexts of all workflow activities and verifies if the resulting workflow configuration

is compliant to the soundness properties.

If the external entity, which performs the soundness verification, concludes for the

compliance, it then enables the application of the reconfiguration plan (Rcf i), otherwise

it notifies the user about the resulting unsound configuration.

The AWARD machine is neutral in relation to the strategies used by external entities

for prevalidating the compliance to soundness properties. This neutrality introduces

great flexibility in the AWARD model since it allows workflow developers to define the

more adequate strategies to enforce soundness properties according to their knowledge

about the application domain. For example, if a reconfiguration plan replaces the activity

T asks with new algorithms for changing the workflow functional requirements, the re-

sulting processed data for the new configuration can be different for the same input data.

It is up to the application developer to verify if this is acceptable and correct. However,

the new workflow configuration would also be sound by Definition 4.4.

G Consistency of the common/global iteration agreement

The AWARD model only provides the basic mechanism for the activities to reach an

agreement to choose the earliest global iteration between all activities involved such that
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a reconfiguration plan is applied. The activities are only responsible for providing this

basic guarantee by participating in a iteration agreement based on a two phase commit

protocol and by ensuring that their reconfiguration actions are atomically processed. The

point for atomically processing the dynamic reconfiguration operators is at the beginning

of the iteration whose number (K) resulted from the agreement between the activities

involved in the reconfiguration plan.

Definition 4.6: Global iteration agreement

The execution of a reconfiguration plan Rcf i satisfies the common/global iteration

agreement if it is applied to a sound workflow configuration Wcf i at an iteration

number K , resulting from an agreement of all activities (A1, ...,An) involved in the

Rcf i scope, in order to choose K as the earliest global iteration number, given by

K =maximum({It1, ..., Itn}) where Iti is the proposed iteration number by activity

Ai , with 1 6 i 6 n. If all Iti > 0 the execution of the reconfiguration plan succeeds,

otherwise if any Iti = −1 (the activity Ai can not apply its reconfiguration actions),

then K = −1 and in this case the execution of the reconfiguration plan fails, with

no effects.

Definition 4.7: Iteration proposed by activities

If an activity Ai , (1 6 i 6 n) is in a fault state (f aultIn, f aultT ask, f aultOut) the

proposed iteration number Iti is equal to its current iteration number; otherwise

Iti is equal to the current iteration number plus 1. If the activity can not apply its

reconfiguration, then Iti is equal to -1.

G The earliest global iteration (K)

The workflow activities can be running asynchronously with different current itera-

tion numbers. According to the AWARD model the current iteration number is used to

mark the tokens allowing the coordinated token processing on destination input ports.

Therefore for maintaining the consistency of links (properties 2 and 3 of Definition 4.4 on

page 94) between activities involved in a reconfiguration plan it is necessary to apply the

reconfiguration plan at a common iteration number agreed between all activities involved.

This needs to be inferred by the basic mechanisms of the AWARD machine for supporting

dynamic reconfigurations.

From the point of view of each individual activity the earliest point for performing

reconfigurations is before the activity starts the next iteration. Thus for applying recon-

figuration plans the adequate iteration number is the current iteration number plus 1.

However, if an activity enters a fault state (f aultIn, f aultT ask, f aultOut) then for trying

fault recovery of this activity the reconfiguration plan must be applied at the current itera-

tion number. Therefore before applying a reconfiguration plan each activity must supply

its adequate iteration number for performing the actions involved in the reconfiguration

plan.
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Considering IterSet = {it1, ..., itn} as the set of adequate iteration numbers obtained

from all activities involved in the reconfiguration plan, a simple way to choose the

best common iteration number, denoted by BestIt, is choosing the earliest global work-

flow iteration calculated as the maximum iteration number of the set {it1, ..., itn}, that is,

BestIt = maximum({it1, ..., itn}). Otherwise, if the chosen iteration was less than BestIt,

then before applying the reconfiguration plan for some activities it would be necessary to

perform complex rollback actions, for instance based on execution logs in order to repeat

the processing already done in previous iterations.

In order to illustrate the need to choose BestIt as the best common iteration number,

BestIt = maximum({it1, ..., itn}), let us consider the workflow reconfiguration example

illustrated in Figure 4.6.

The long-running workflow has two activities A and B where the A activity produces

tokens on its output port, which are received by the B activity on its input port configured

in the Iteration input mode. Assuming that the two activities have different processing

speeds, Figure 4.6(a) depicts an execution point where theA activity is in the 38th iteration

but the B activity is still in the 35th iteration so the link from A to B has two pending

tokens for delivery, which were already produced by the A activity, respectively, in its

iteration numbers 36 and 37.
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(a) Long-running workflow with activities A and B in
distinct iterations (38, 35)
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(b) Applying a reconfiguration at iteration 36

A 
It=36 

B 
It=35 

N 
It=36 

36 37 

36 

37 

? 
? 

37 

36 

A 
It=38 

B 
It=35 36 37 

A 
It=39 

B 
It=35 

N 
It=39 

36 37 38 

39 
39 

Fig  4.3 

(c) Applying the reconfiguration at iteration 39 as a
result of maximum(38 + 1,0 + 1)

Figure 4.6: A reconfiguration plan which introduces the new activity N

Let us assume a reconfiguration plan to introduce the new activity N between A and

B. Such scenario does not involve the B activity because it is not affected. In fact, due to

the autonomic characteristics of an AWARD activity the source of tokens sent to input

ports is not known.

However, let us arbitrarily assume two possibilities to make a choice of an iteration

number to apply the reconfiguration plan.

One possibility is to apply the reconfiguration plan at iteration number 36, as depicted

in Figure 4.6(b), where like the A activity the new activity N would produce two tokens
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for its iteration numbers 36 and 37.

Other possibility, as depicted in Figure 4.6(c), is to apply the reconfiguration at iter-

ation number 39 following the rule of choosing BestIt = maximum({38 + 1,0 + 1}) = 39,

that is, the involved A and N activities proposed respectively (38+1) and (0+1) as their

current iteration numbers plus 1.

Comparing the two possibilities we can understand the problem of choosing an itera-

tion number less than BestIt.

In Figure 4.6(b), the new activity N would produce two tokens for its iteration num-

bers 36 and 37, which leads to an ambiguity regarding the tokens processing because,

before applying the reconfiguration plan, the activity A had already produced tokens at

its iteration numbers 36 and 37 to be consumed by the input port of activity B. Besides,

in this case, the A activity would have to roll back to the 36th iteration.

In Figure 4.6(c) there is no such ambiguity because the activity B consumes its tokens

independently of the source of each token.

Therefore, before applying a reconfiguration plan it is necessary to reach an agree-

ment between the affected workflow activities in order to find the BestIt iteration number

as the earliest global workflow iteration number where all activities must apply the ac-

tions of the reconfiguration plan. If the agreement succeeds by finding a BestIt iteration

number, the reconfiguration plan is committed; otherwise if the agreement is not possible,

the reconfiguration plan is cancelled. For instance, if one affected activity has already

terminated because the last iteration was reached the agreement is not possible.

In the following (Section 4.2), we present the operators that can be used by workflow

developers to specify dynamic reconfiguration plans.

In Section 4.3, we describe the extensions to the Autonomic Controller of the AWARD

machine to support the execution of the dynamic reconfiguration operators.
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4.2 Dynamic Reconfigurations: Programmer’s View

Workflows with large number of iterations can run for a long time during which the work-

flow programmers may decide to change something in the structure or in the behavior of

the workflows. This decision can arise from the analysis of intermediate results or even

because some requirements of the workflows have changed.

After the decision for changing a workflow a programmer needs preparing a reconfig-

uration plan as a sequence of actions to be submitted to the workflow activities involved

in the reconfiguration plan.

The programmer’s view for specifying a reconfiguration plan consists of the prepara-

tion of a script where the programmer specifies operators at the following levels:

1. Compound: Operators for which the AWARD machine ensures atomicity of the

entire reconfiguration plan and the common iteration agreement where all involved

activities only apply their specific individual reconfiguration actions at an iteration

number K previously agreed upon (according to Definition 4.6 on page 98);

2. Elementary: Operators to modify the AWA Context of the activities, including a

particular operator to launch a new workflow activity.

As depicted in Figure 4.7 the interpretation of the script that specifies a reconfigu-

ration plan is executed with the semantics of a two-phase commit protocol. After the

involved activities agree to apply their specific actions at an iteration K , the set of distinct

changes in multiple workflow activities is applied as an atomic operation with an “all or
nothing” effect.
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. . . 
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. . . 
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. . . 
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Figure 4.7: Execution of a reconfiguration plan involving multiple activities
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In a first phase, the script interpreter acts as the coordinator of the commit protocol

and submits sequences of actions as blocks of operators to all activities involved. Each

block is delimited by Begin/End keywords, marked with a unique global identifier (RID)

of the reconfiguration plan requested, and is stored internally in each activity. In a sec-

ond phase the script interpreter collects an agreement set AgSet = {It1, ..., Itn} containing

the iteration numbers voted by the activities for applying their specific reconfiguration

sequences (as in Definition 4.6 on page 98). If some activities propose invalid iteration

numbers (Iti = −1), for instance, if an activity involved is in its last iteration, the reconfig-

uration plan is cancelled by sending the command Cancel(RID) to all activities. Otherwise

the script interpreter proceeds with the reconfiguration plan by sending the command

Commit(RID, K) to all activities, indicating that each activity must perform its sequence

of actions at the K agreed iteration number, which is the maximum iteration number of

the agreement set (AgSet), that is, K =maximum({It1, ..., Itn}).

In this way, the script interpreter ensures that a reconfiguration plan is atomic and

synchronized by an iteration number K agreed by all activities involved.

Each activity autonomously and atomically applies its sequence of actions when it

reaches the iteration number K previously agreed.

When an activity reaches an iteration, with Iti > 0, that it has proposed as a vote asso-

ciated with an RID reconfiguration plan, it waits until receiving a Cancel or Commit(K)

command related to the RID reconfiguration plan. Otherwise if the activity has proposed

(Iti = −1) the activity does not wait and proceeds with its execution.

After having received a Cancel command the activity discards the reconfiguration

plan locally and proceeds. If it received a Commit(K) command the activity proceeds the

execution unchanged until it reaches the iteration number (K) that was agreed upon, and

then it applies the corresponding local reconfiguration actions.

In order to specify the scripts for performing reconfiguration plans, the workflow

developers rely on a set of dynamic reconfiguration operators. These operators are pro-

vided by the Dynamic API interface, and encapsulate the interactions between a script

interpreter and the dynamic reconfiguration handlers in the autonomic controllers of the

activities involved in the reconfiguration plan (as depicted in Figure 3.12 on page 75 of

Chapter 3).

4.2.1 Operators for Dynamic Reconfiguration

The AWARD model for dynamic reconfigurations allows performing reconfiguration

plans involving one or multiple activities using scripts. The reconfiguration script is

a sequence of operators which are processed by a script interpreter that triggers the

interactions with all activities involved in the reconfiguration plan (Figure 4.7). The

specification of a script is enclosed by BeginReConf iguration and EndReConf iguration

compound operators that enforce the atomicity of the reconfiguration plan.
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Listing 4.1: A reconfiguration script involving multiple activities
1 RID=BeginReConfiguration(Awa1,...,AwaN)

2

3 BeginAwaReConfig(RID, Awa1) // begin of Awa1 reconfiguration block

4 // Sequence of operators to reconfigure the activity Awa1

5 . . .

6 It1=EndAwaReConfig(RID, Awa1) // end of Awa1 reconfiguration block

7 . . .

8 BeginAwaReConfig(RID, AwaN) // begin of AwaN reconfiguration block

9 // Sequence of operators to reconfigure the activity AwaN

10 . . .

11 Itn=EndAwaReConfig(RID, AwaN) // end of AwaN reconfiguration block

12 AgreementSet={It1,...,Itn} // The set of proposed iteration numbers

13 K=EndReConfiguration(RID, AgreementSet) // returns the iteration agreed upon

As shown in Listing 4.1 a script is built as a sequence of reconfiguration blocks for the

set of activities involved {Awa1, . . . ,AwaN }.
The atomic reconfiguration block as a sequence of operators for performing struc-

tural and behavioral reconfigurations of each individual activity is enclosed between

BeginAwaReConf ig and EndAwaReConf ig compound operators.

In the following we describe the set of dynamic reconfiguration operators supported

by the AWARD model. In Section 4.3.3 we formally describe each operator as performing

a transition from an old activity AWA Context to a new activity AWA Context, which

reflects the changes performed by the operator.

The operators description is organized in two groups:

1. Compound operators: A set of operators for defining the scope of a reconfiguration

plan, and the activity reconfiguration blocks;

2. Elementary operators: A set of operators for performing structural and behavioral

workflow changes and to manage the life-cycle of an activity, including an operator

to launch a new workflow activity.

æ Compound Operators

As illustrated in the script of Listing 4.1, the compound operators are Begin/End pairs for

specifying a reconfiguration plan involving multiple workflow activities and a reconfigu-

ration block applied to each activity. The following compound operators are supported:

• BeginReConfiguration: This operator starts the script execution by generating a

unique identifier (RID) of this reconfiguration plan. This RID identifier is included

as an input argument to each activity reconfiguration block that is sent by the script

interpreter to each individual activity;

• BeginAwaReConfig: This operator starts the reconfiguration block of each individ-

ual activity involved. The script interpreter signals the AWA activity to be prepared
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to receive a sequence of dynamic reconfiguration operators. The activity updates

its internal data structures for storing the sequence of operators;

• EndAwaReConfig: This operator ends the reconfiguration block of each individual

activity involved. The activity returns to the script interpreter a proposed iteration

number (Iti ) voted by the activity for applying its reconfiguration block. The script

interpreter collects all proposed iterations numbers in the agreement set AgSet =

{It1, ..., Itn} to be used for calculating the iteration number as the best iteration for

applying the reconfiguration plan;

• EndReConfiguration: This operator marks the end of the script execution and en-

forces the atomicity of the reconfiguration plan. If some activity has proposed an

iteration number (Iti = −1), indicating its impossibility to apply the reconfigura-

tion actions, the reconfiguration plan is cancelled and all activities discard their

corresponding reconfiguration blocks. Otherwise, after all activities have replied

with proposed iteration numbers Iti > 0, this operator calculates the earliest global

iteration number as K =maximum({It1, ..., Itn}) and sends commands to all activities

for committing the RID reconfiguration plan to be applied at iteration K . If the

reconfiguration plan commit succeeds, this operator returns the agreed iteration

number (K) to the invoking script interpreter, otherwise it returns -1 for indicating

the cancelation of the reconfiguration plan.

æ Elementary operators

Elementary operators are used enclosed by an activity reconfiguration bock, except for

the LaunchActivity operator, which is used to launch a new workflow activity.

• LaunchActivity: This operator launches the execution of a new activity to change

the structure of the workflow. The operator allows launching the new activity on

local or remote computing nodes. On being launched the new activity waits for

a reconfiguration block BeginAwaReConfig/EndAwaReConfig in order to participate

in the reconfiguration plan agreement. Accordingly, after the LaunchActivity op-

erator the script must include a reconfiguration block in order to send a starting

command (StartExec operator) for the new activity, as shown in the example of List-

ing 4.2 on page 106. As we shall see in Section 4.3.2 the operator LaunchActivity

introduces the need to extend the State Machine of the Autonomic Controller with

a new state for ensuring the reconfiguration of an activity, which was launched

during a reconfiguration plan.

G Structural and behavioral operators

An activity reconfiguration block specifies a sequence of operators to perform dy-

namic reconfigurations related to structural and behavioral changes to be applied to each

individual activity. The operators supported by the AWARD model are:
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• ChangeParameters: This operator changes the activity P arameters. This is a basic

but useful operator for changing the behavior of the activity T ask, for instance, for

supporting computational steering;

• ChangeTask: This operator changes the T ask of an activity allowing it to change its

behavior by executing a new algorithm, for instance to recover from failures or to

introduce algorithm optimizations;

• CreateInput: This operator creates a new activity input port according to the new

workflow structure resulting from the reconfiguration plan;

• ChangeInputOrder: This operator changes the order mode for token consumption

of an input port following three possible order modes (as in Definition 3.7 on page

60): Iteration - the order is based on the iteration number; Sequence - the order is

based on a sequence number generated by predecessor activities; or Any - tokens

are consumed non deterministically in any order;

• CreateOutput: This operator creates a new activity output port according to the

new workflow structure resulting from the reconfiguration plan;

• ChangeOutputLink: This operator changes the complete destination list of an out-

put port by changing the links associated to the output port;

• AddOutputLink: This operator adds one more link to the destination list of an

output port by adding a new destination input port connected to the output port;

• ChangeOutputStrategy: This operator changes the output port strategy for sending

tokens following three possible modes (as Definition 3.8 on page 60): Single - when

the output port is connected to a simple link and on each iteration a single token is

sent to the single destination input port; Replicate - the output port is connected to

a multi-link and each token is replicated and sent to all connected destination input

ports; or RoundRobin - the output port is connected to a multi-link and the tokens

marked with a sequence number are alternatively sent to each of the connected

destination input ports;

• ChangeInputState: This operator changes the input port state (as in Definition 3.15

on page 64): Enable, Disable, EnableFeedback;

• ChangeOutputState: This operator changes the output port state (as in Definition

3.15 on page 64): Enable, Disable, EnableFeedback;

• ChangeMaxIterations: This operator changes the maximum number of iterations

of an activity;

• ChangeMappingInputs: This operator changes the way how data from activity

input ports are mapped to T ask Arguments;
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• ChangeMappingOutputs: An activity T ask can return a sequence of results. This

operator changes the way how T ask Results are mapped to the activity output ports.

G Activity Life-cycle Operators

The following set of operators can be used to control the life-cycle of an activity:

• StartExec: This operator starts the execution of an activity, which was launched

using a LaunchActivity operator. The operator ensures that the new activity starts

its execution at the iteration resulting from the agreement achieved by the reconfig-

uration plan as illustrated by activity (N ) in example of Figure 4.6 on page 99;

• Suspend/Resume: This operator suspends or resumes the execution of an activity;

• Terminate: This operator explicitly and synchronously terminates the activity exe-

cution. Depending on the application scenario and the workflow structure the activ-

ities are autonomous running at their own paces so it may be impossible to obtain an

agreement for the iteration number where all activities must finish together. There-

fore for terminating activities individual activity reconfiguration blocks should be

submitted including one T erminate operator, as illustrated in Listing 4.3;

• RetryAfterFaultIn: This operator allows an activity to get back to the input state

for retrying the execution at the same point where the failure occurred to proceed

assuming that recovery actions related to the AWARD Space were performed;

• RetryAfterFaultTask: This operator allows an activity to get back to the invoke state

for retrying the T ask invocation assuming that recovery actions were performed,

for instance a new implementation of the T ask was specified using the ChangeT ask

operator to correct the failure;

• RetryAfterFaultOut: This operator allows an activity to get back to the output state

for retrying to proceed the execution at the same point where the failure occurred

assuming that recovery actions related to the AWARD Space were performed;

• GetAwaContext: This operator returns the AWA Context (Ctx(A)) of an activity.

This operator can be used by any tool developed for dynamically monitoring the

internal state of an AWA activity during its execution.

Listing 4.2: A reconfiguration block after launching a new activity

1 BeginAwaReConfig(RID, NewAwa)

2 StartExec(RID,NewAwa) // Start the execution of the NewAwa activity

3 IterProposed=EndAwaReConfig(RID, NewAwa)

Listing 4.3: Reconfiguration script to explicit synchronous termination of an activity

1 BeginAwaReConfig(RID, AwaName)

2 Terminate(RID,AwaName) //Terminate the execution of the AwaName activity

3 IterProposed=EndAwaReConfig(RID, AwaName)
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The operators LaunchActivity, CreateInput and CreateOutput require the enforce-

ment of the uniqueness of the names assigned to the new activity and the new input and

output ports.

A complete list of the above operators and their detailed parameters is presented in

Figure 5.13 on page 167.

4.2.2 An Example of a Workflow Dynamic Reconfiguration

To illustrate a complete example of a dynamic reconfiguration let us consider the work-

flow in Figure 4.8 (based on the example of Figure 3.8 on page 64 without the loop with a

feedback activity). Assuming that this workflow has an infinite number of iterations, now

we consider that when analyzing intermediate results during the workflow execution, the

workflow developer decides to change the workflow by introducing the feedback loop as

presented in Figure 4.9.

Recalling what has already been described in Section 3.3.3 (Specifying a concrete

workflow, on page 65) the Feedback activity analyses the array of features as strings

received on I1F input port and produces, on its O1F output port, a token with a data

filter criterion stored as a data type with the absolute name wkf .FilterCriteria. It is also

important to recall that the I1A input port needs to be set initially at the EnableFeedback

state, passing automatically to the Enable state at the next iteration. However, unlike the

example of Figure 3.8, the Feedback activity will be now dynamically launched during

the workflow reconfiguration.
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Figure 4.8: A workflow example without loops
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Figure 4.9: Change the workflow of Figure 4.8 with a feedback loop

In order to achieve the above dynamic reconfiguration the workflow developer needs

to prepare a script with the reconfiguration plan containing the following sequence of

actions:
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Listing 4.4: The script to change the workflow of Figure 4.8 to the workflow of Figure 4.9
1 int RID = BeginReConfiguration("A", "B", "Feedback")

2 BeginAwaReConfig(RID, "A")

3 CreateInput(RID, "A", "I1A", "EnableFeedback", "wkf.FilterCriteria")

4 ChangeMappingInputs(RID, "A", new String[]{"I1A"});

5 ChangeTask(RID, "A", "wkf.TaskAwith1Arg");

6 int it1 = EndAwaReConfig(RID, "A")

7 BeginAwaReConfig(RID, "B")

8 CreateOutput(RID,"B","O2B","Enable","String[]","Single",new String[]{"I1F"})

9 ChangeTask(RID, "B", "wkf.TaskBwith2Results")

10 ChangeMappingOutputs(RID, "B", new String[]{"O1B", "O2B"})

11 int it2 = EndAwaReConfig(RID, "B")

12 LaunchActivity("Feedback","FeedbackSpec.xml")

13 BeginAwaReConfig(RID, "Feedback")

14 StartExec(RID, "Feedback")

15 int it3 = EndAwaReConfig(RID, "Feedback")

16 AgreementSet={it1,it2,it3}

17 int K=EndReConfiguration(RID, AgreementSet)

1. Create an input port in the A activity, initially in state EnableFeedback, and a token

type wkf .FilterCriteria;

2. Since the A activity has now an input port it is necessary to change the inputs

mapping function of the A activity to define the new map pair (0, I1A). This pair

associates the T ask argument in index 0 of the A activity to its input port named

I1A;

3. Since the T ask of the A activity has now an argument in index 0 to be processed it

is necessary to change the T ask of the A activity to process one more argument;

4. Create a new output port, named O2B in the B activity initially in state Enable with

a token type as an array of features as strings and a single link to the I1F destination

port;

5. Change the T ask of the B activity to produce two results to be mapped to the two

output ports O1B and O2B;

6. Change the outputs mapping function of the B activity to map both T ask Results

to the two outputs O1B and O2B;

7. Launch the new Feedback activity (specified in the file FeedbackSpec.xml) to run in

some available computing node.

The above described script of the reconfiguration plan is presented in Listing 4.4

demonstrating in detail how dynamic operators are used to perform dynamic reconfigu-

rations.

The script starts with the BeginReConf iguration operator, which gets a global unique

identifier (RID) for marking all operators related to the reconfiguration plan. The script

108



4.2. DYNAMIC RECONFIGURATIONS: PROGRAMMER’S VIEW

shows that each activity involved (A, B and Feedback) receives a sequence of operators to

perform the actions needed in each activity reconfiguration. The sequence of operators

of each activity is an atomic block enclosed between the BeginAwaReConf ig operator

and the EndAwaReConf ig operator. The latter operator EndAwaReConf ig returns the

iteration number that each activity proposes as the earliest iteration number where it

can atomically apply its reconfiguration block. The agreement set of iterations proposed

by the three activities involved is denoted by AgreementSet and is equal to {it1, it2, it3},
which includes the iterations proposed respectively by A, B and Feedback activities.

The final operator EndReConf iguration performs the following steps: i) If the agree-

ment set (AgreementSet) contains some invalid iteration number (-1), the earliest global

iteration K is invalid (-1), otherwise K is calculated as maximum(it1, it2, it3); ii) If K is in-

valid the reconfiguration plan RID is cancelled, otherwise a coordinated commit is issued

involving the A, B and Feedback activities, which must apply the reconfiguration block

marked with RID at the iteration defined by K ; and iii) The operator returns the value of

K which can be used to report the successful or unsuccessful result of the reconfiguration

plan.

The LaunchActivity operator receives, as a second argument, the name of the file

FeedbackSpec.xml, containing the specification of the new Feedback activity as presented

in Table 4.1 and invokes the AWARD tool (AwardLaunchAWA.jar presented in Chapter

5, Section 5.9) used to launch an AWA activity in the available computing nodes.

Table 4.1: Specification of the Feedback activity

AWA Name Feedback
InitialState WaitConfig

Inputs
Name State TokenType IMode
I1F Enable java.lang.String[] Iteration

Outputs
Name State TokenType OMode SendTo
O1F EnableFeedback wkf.FilterCriteria Single I1A

Task

Parameter "server=S;database=DBHist;"
SoftwareComponent wkf.TaskDataFiltering
Mapping Inputs to Arguments Input Name Argument Order

I1F 0
Mapping Results to Outputs Result Order Output Name

0 O1F

The specification of the new Feedback activity is basically the same as the specification

of the Feedback activity in the workflow presented in Table 3.1 of Section 3.3.3 (Specifying

a concrete workflow, on page 65) except for the new InitialState field, which contains

the value WaitConf ig. In Section 4.3.2 the need for this new field is explained when

discussing how the State Machine of the Autonomic Controller controls the processing of

dynamic reconfiguration operators.
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4.3 The AWARD Machine and Dynamic Reconfigurations

After having presented how programmers can prepare scripts with reconfiguration plans

for dynamically changing a long-running workflow, this section describes the operational

view of the AWARD machine for supporting dynamic reconfigurations.

The interactions with the AWARD machine related to supporting dynamic reconfig-

uration are based on the publishing/subscribing model. As presented in Section 3.4 in

addition to supporting the links for connecting the input and output ports, the AWARD

Space has properties for allowing dynamic interactions based on the publishing/subscrib-

ing model.

Therefore for each AWA activity the Autonomic Controller (AC) of the AWARD machine

registers a Dynamic Reconfiguration Handler (DRH) on the AWARD Space for subscribing

to the asynchronous events related to dynamic reconfiguration operators.

The AWARD model is neutral regarding the way how these events are published into

the AWARD Space, which allows flexible implementation approaches. In terms of the

operational view this approach relies on a software library addressing two goals:

1. Providing a reusable software library with an application programming interface

(named by Dynamic API) for exposing the set of reconfiguration operators;

2. Publishing, into the AWARD Space, the events corresponding to the requests for

applying the distinct dynamic reconfiguration operators.

In the following (Section 4.3.1), we describe how reconfiguration requests to an AWA

activity are handled by interactions between the Dynamic API, the AWARD Space and the

Dynamic Reconfiguration Handler (DRH) within the Autonomic Controller (AC). In Section

4.3.2 we present the extensions to the State Machine of the Autonomic Controller (AC)

for supporting the new states where dynamic reconfiguration operators are processed.

Finally in Section 4.3.3 the semantics of each dynamic operator is described in terms of

context transitions expressing how the AWA Context is changed.

4.3.1 Handling Reconfiguration Requests through the Dynamic API

Figure 4.10 illustrates the operational view of the interactions between the Dynamic API,
the AWARD Space and the Dynamic Reconfiguration Handler (DRH) within the Autonomic
Controller (AC). The Dynamic API provides an application programming interface (API)

exposing the reconfiguration operators for allowing the submission of reconfiguration

plans. During the initialization of each Autonomic Controller, a Dynamic Reconfiguration
Handler (DRH) is registered into the AWARD Space in order to subscribe to asynchronous

events. Each event is represented by a tuple (RID,Event,AWAname,argsList), where

RID is a reconfiguration plan identifier, Event identifies the event, AWAname identifies

the activity involved in the event, and argsList is a list of Arguments according to the

event.
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Figure 4.10: The operational interactions for applying dynamic reconfigurations

A reconfiguration plan starts by invoking the BeginReConf iguration operator through

the Dynamic API to get a unique identifier (RID) of the reconfiguration plan, as presented

in Section 4.2 (Figure 4.7 on page 101).

For each operator the Dynamic API allows to publish events into the AWARD Space

as tuples with the (RID,Event,AWAname,argsList) pattern subscribed by the Dynamic
Reconfiguration Handler (DRH). Then the DRH handles and stores the sequence of opera-

tors until it receives the EndAwaReConf ig operator, which implies to return an iteration

number as a proposal to perform the AWA activity reconfiguration. The DRH handler

gets the activity current iteration number from the AWA Context and proposes this itera-

tion number according to Definition 4.7 on page 98, thus indicating that from the point

of view of this AWA activity (Awa1), the dynamic reconfiguration can take place as soon

as possible, that is normally at the next iteration or at the current iteration in the case of

the activity being in a fault state.

The iteration proposal, including the iteration number to propose (iter), is published

into the AWARD Space as a tuple (RID,AWAname,IterP roposed, iter) that will be con-

sumed during the processing of the EndAwaReConf ig operator.

When the EndReConf iguration operator is processed the earliest global iteration

agreed, denoted by K , is calculated as the maximum of all iteration numbers proposed

by all activities involved, assuming these numbers are all valid iteration numbers greater

than zero. Otherwise, if any activity has proposed an iteration number invalid (-1) to

signal that it can not participate in the reconfiguration plan, then K = −1. Afterwards

K is published into the AWARD Space as a tuple (RID,Agreement,AWAname,K). Each

DRH handler, in each AWA activity consumes this tuple and if K is greater than zero it

marks the corresponding AWA activity reconfiguration sequence as ready to be processed
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when its State Machine reaches the iteration agreed; otherwise if K is equal to -1, the

reconfiguration was not committed and the reconfiguration sequence marked with RID

is discarded by each Dynamic Reconfiguration Handler of the activities involved in the

reconfiguration plan.

As an example let us consider that an AWA activity reconfiguration sequence is han-

dled by its DRH handler during iteration number 14. As illustrated in Figure 4.11 when

the handler receives the EndAwaReConf ig operator, it proposes the iteration number 15

as a possible iteration number to apply its reconfiguration. Later when the DRH handler

receives the tuple with the agreement to the reconfiguration identified by RID it marks

the corresponding AWA activity reconfiguration sequence to take place at iteration 25,

which was the earliest global iteration K agreed by all activities involved. Later, when the

State Machine reaches the 25thiteration, the reconfiguration actions will be applied.

Dynamic Reconfiguration 
Handler (DRH) 

if  (BeginAwaReConfig) 
then Initiate_sequence; 
if (EndAwaReConfig) 
then Iteration_Proposed=CurrentIteration + 1; 
if (Agreement) 
then Iteration_Agreed=K; 

AWARD 
Space 

Reconfiguration 
Identifier (RID) 
 

Operators 
Sequence 
 

Iteration_Proposed = 15 

Iteration_Agreed = 25 

State 
Machine 

Fig  4.12 

Figure 4.11: Reconfiguration sequence to be processed by an AWA activity

In order to support dynamic reconfigurations, the AWARD machine needs extensions

to the State Machine of the Autonomic Controller (AC) presented in Section 3.4.5.3. These

extensions must meet the following requirements:

1. When the State Machine reaches the idle state at a previously proposed iteration

number, it needs to wait for the confirmation of the agreement completion before

proceeding;

2. When the State Machine reaches the idle state at an iteration number already agreed

upon to apply a given reconfiguration, it needs to enter a new state (Conf ig) in

order to process the corresponding sequence of reconfiguration operations.

Due to the RID uniqueness of each reconfiguration plan, an AWA activity can agree

to submit multiple reconfiguration sequences at the same iteration number. In this case,

each reconfiguration sequence is applied according to the order of the reconfiguration

identifier (RID).
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4.3.2 Extended State Machine for Supporting Dynamic Reconfigurations

As presented in Section 3.4.5.3 the life-cycle of each AWA activity is controlled by an

Autonomic Controller (AC) based on a State Machine. In order to support dynamic recon-

figurations this State Machine needs to be extended to fit the new requirements, namely

the operation of the Dynamic Reconfiguration Handler (DRH) and the need for processing

the reconfiguration operators. These requirements are covered by the new states and new

state transitions depicted in Figure 4.12, enclosed within the dashed line and described

in the following.

terminate
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faultIn

idle

input

mapIn

invoke
(task)

mapOut

output

t2

t3

t4

t5

t6

t7
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Config
Suspend

TR1

TR2
TR3

TR4

TR5

TR6
TR7

TR8

start
tsync

faultTask

faultOut

TR9

TR10

TR8r

TR9r

t0

ConfigIn

ConfigTask

ConfigOut

TR10r

Figure 4.12: The State Machine extended to support dynamic reconfigurations

G Initial state

During the initial state (init) of the State Machine it is necessary to distinguish two

cases.

The first case is when an activity is launched for running immediately and then the

State Machine goes (transition t0) to the idle state.

The second case is when a new activity is launched in the scope of a reconfiguration

plan which requires the activity to wait for a reconfiguration block with the StartExec

operator for allowing the activity to participate in the agreement that defines the earliest

global iteration number K where the new activity will start its execution. This implies a
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new WaitConf ig state in the State Machine to ensure that the new activity waits for the

required reconfiguration block.

In order to distinguish between the two cases the specification of an activity needs to

be changed to contain a new InitialState item which can take the following two values:

idle; or WaitConf ig.

From the workflow example presented in Figure 4.9 on page 107 in Section 4.2.2, in

Table 4.2 we illustrate the two cases.

The new Feedback activity launched during the reconfiguration plan specifies that

after initialization its State Machine moves (TR1) to the WaitConf ig state. Before apply-

ing the reconfiguration plan the workflow activity named C was launched for running

immediately, so after initialization its State Machine moves (t0) to the idle state.

Table 4.2: Specification of activities with the State Machine initial state

AWA Name Feedback
InitialState WaitConfig

Inputs
Name State TokenType IMode
I1F Enable java.lang.String[] Iteration

Outputs
Name State TokenType OMode SendTo
O1F EnableFeedback wkf.FilterCriteria Single I1A

Task

Parameter "server=S;database=DBHist;"
SoftwareComponent wkf.TaskDataFiltering
Mapping Inputs to Arguments Input Name Argument Order

I1F 0
Mapping Results to Outputs Result Order Output Name

0 O1F

AWA Name C
InitialState idle

Inputs
Name State TokenType IMode
I1C Enable wkf.Record Iteration

Task

Parameter "server=S;database=DBREC;"
SoftwareComponent wkf.TaskStoreRecords
Mapping Inputs to Arguments Input Name Argument Order

I1C 0
Mapping Results to Outputs Result Order Output Name

Null Null

G Moving to the Config state

Before the beginning of any iteration in the idle state the State Machine checks for

still pending but already agreed upon reconfigurations at this iteration. If there is any

pending reconfigurations the State Machine moves (TR3) to the new Conf ig state where

the operators of the corresponding reconfiguration block are processed (TR4). Also, for

supporting the StartExec operator, when the State Machine is in the WaitConf ig state

and the Dynamic Reconfiguration Handler (DRH) receives the agreement related to the

needed reconfiguration block, the State Machine also moves (TR2) to the new Conf ig

state.

After processing a reconfiguration block ended by the EndAwaReConf ig operator in

the Conf ig state, the next state of the State Machine always moves to the idle state (TR5).
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However, for supporting possible recovery from faults by using dynamic reconfigu-

rations, after the Dynamic Reconfiguration Handler (DRH) receives a dynamic reconfig-

uration bock the State Machine also moves by (TR8), (TR9) or (TR10) respectively from

the faulty states (f aultIn, f aultT ask or f aultOut), to the corresponding fault recovery

configuration states (Conf igIn, Conf igT ask or Conf igOut).

G Moving to the fault recovery configuration states

The reconfiguration plan used to recover an activity in the faulty states (f aultIn,

f aultT ask or f aultOut) should only include a reconfiguration block with the adequate

operators for the activity.

As an example if the State Machine is in the f aultT ask state the adequate reconfig-

uration actions are changing the activity T ask (ChangeT ask operator) or changing the

activity P arameters (ChangeP arameters operator).

When the State Machine is in the f aultIn or f aultOut faulty states, it can be more

difficult to recover. In fact, failures related to the AWARD Space connectivity may cause

difficulties for ensuring the atomicity for reading or writing all tokens of all input or

output ports.

However, depending on the failure analysis and possible recovery actions, for instance

the status replacement of the AWARD Space server, the workflow developer can submit

reconfiguration plans for retrying the execution without faults.

The reconfiguration plans for recovering from failures must be issued for only one ac-

tivity and must include the RetryAf terFaultIn, RetryAf terFaultT ask orRetryAf terFau-

ltOut operators for moving the State Machine from the corresponding fault recovery con-

figuration states (Conf igIn, Conf igT ask or Conf igOut) back to the input, invoke or

output state respectively (transitions TR8r , TR9r and TR10r in Figure 4.12).

G Moving to the Suspend state

The new Suspend state is related to the Suspend/Resume operators. Before the begin-

ning of any iteration in the idle state the State Machine checks if a Suspend operator was

processed to be applied in this iteration and moves (TR6) to the new Suspend state.

Later, when a new reconfiguration block containing the Resume operator is pro-

cessed the State Machine moves (TR7) to the Conf ig state and after the processing of

the EndAwaReConf ig operator, the State Machine comes back (TR5) to the idle state.
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G Redefinition of the State Machine

The above modification to the State Machine implies little changes to the definitions

presented in Section 3.4.5.3. These changes are presented in the following:

Definition 4.8: The new set of State Machine states: SR

According to Definition 3.23 (on page 81) the set (S) of states of the State Machine:

S = {start, init, idle, input,mapIn, invoke,mapOut,output,

terminate, f aultIn,f aultT ask,f aultOut}

is redefined to the new set (SR) of states:

SR = S ∪ {WaitConf ig,Conf ig,Suspend,Conf igIn,Conf igT ask,Conf igOut}

where the new states and the actions performed in each state are described in Table

4.3 on page 118.

Definition 4.9: The new set of state transitions: TR

According to Definitions 3.24 (on page 81) and 3.25 (on page 82), the set (T ) of

state transitions:

T = {tsync, t0, t1, t2, t3,t4, t5, t6, t7, t8, t9, t10}

is redefined to the new set (TR) of transitions as:

TR = T ∪ {TR1,TR2,TR3,TR4,TR5,TR6,TR7,TR8,TR9,TR10,TR8r ,TR9r ,TR10r}

where the t0 and t7 transitions are redefined in the new set (TR). The new transi-

tions including the redefinition of the t0 and t7 are described in Tables 4.4 (on page

118), 4.5 (on page 119), 4.6 (on page 119), 4.7 (on page 120) and 4.8 (on page 120).
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Definition 4.10: The new global variables of the State Machine: VR

According to Definition 3.26 (on page 83), the set (V ) of global variables of the

State Machine for defining the internal AWA Context:

V = {IsT oStart,CurIter,CurState, IsFaulty, InsReady,

InsT okens,OutsT okens,T Args,T Res}

is extended to the new set (VR):

VR = V ∪ {WaitT oConf ig,EndAwaConf ig,AgreedIter,

isT oSuspend, isT oResume, isT oT erminate},

where the new global variables include information related to the new states and

the associated new conditions, as described in Tables 4.9 (on page 120) and 4.10

(on page 120).

Definition 4.11: The new conditions of the State Machine: CR

According to Definition 3.27 (on page 84), the set (C) of State Machine conditions:

C = {csync, c0, c1, c2, c3,c4, c5, c6, c7, c8, c9, c10}

is redefined to the new set (CR):

CR = C ∪ {CR0,CR1,CR2,CR3,CR4,CR5,CR6,CR7,CR8,CR9,C10,CR8r ,CR9r ,CR10r}

Depending on the global variables presented in the above Definition 4.10, Table

4.10 (on page 120) presents the new conditions and the redefinition of the c7 con-

dition.

An activity launched in the scope of a reconfiguration plan starts its execution at

the iteration agreed for applying the reconfiguration. Then the action AR2 associated to

transition TR2 between states WaitConf ig and Conf ig (Table 4.5 on page 119) is made

to assign the iteration agreed to the global variable which stores the current iteration of

the activity and is defined as AR2 = (CurrentIter← AgreedIter) meaning that the activity

starts the execution according to the iteration number agreed upon between all activities

involved in the reconfiguration plan.
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Table 4.3: The new states and actions of the State Machine

State Description Actions of the Autonomic Controller (as)

WaitConfig

When an activity is launched in the scope
of a reconfiguration plan it needs to wait
for a reconfiguration. Then, after the ini-
tialization, the State Machine moves to this
state.

The State Machine waits in this state until
the Dynamic Reconfiguration Handler han-
dles an iteration agreement and then moves
(TR2) to the Conf ig state.

Suspend

At the beginning of any iteration, in the idle
state, if the activity was reconfigured to be
suspended, the State Machine moves (TR6)
to the Suspend state.

The State Machine waits in this state until
the Dynamic Reconfiguration Handler han-
dles a reconfiguration block with a Resume
operator that resumes the execution of the
activity.

Config

This is the state for processing reconfigura-
tion blocks with sequences of operators han-
dled by Dynamic Reconfiguration Handler
(DRH). According to the operator seman-
tics the State Machine produces facts and
rules into the Rules Engine, for instance a
fact with a new T ask name in a ChangeT ask
operator or a fact with a new parameter list
in a ChangeP arameters operator.

The State Machine processes the sequence
of reconfiguration operators and according
to the transitions for the Conf ig state, af-
ter processing the EndAwaReConf ig oper-
ator for ending the reconfiguration block,
the State Machine moves to the idle state
(TR5).

ConfigIn

This is the state for processing a reconfig-
uration block handled by Dynamic Recon-
figuration Handler for trying recovering the
activity failure on input state.

The State Machine waits in this state
until the Dynamic Reconfiguration Han-
dler handles a reconfiguration block with
a RetryAf terFaultIn operator and then
moves (TR8r ) to the input state.

ConfigTask

This is the state for processing a reconfig-
uration block handled by Dynamic Recon-
figuration Handler for trying recovering the
activity failure on invoke state.

The State Machine waits in this state un-
til the Dynamic Reconfiguration Handler
handles a reconfiguration block with a
RetryAf terFaultT ask operator and then
moves (TR9r ) to the invoke state.

ConfigTask

This is the state for processing a reconfig-
uration block handled by Dynamic Recon-
figuration Handler for trying recovering the
activity failure on output state.

The State Machine waits in this state
until the Dynamic Reconfiguration Han-
dler handles a reconfiguration block with
a RetryAf terFaultOut operator and then
moves (TR10r ) to the output state.

Table 4.4: The Init state transitions

Transition Source Destination Condition Action
(t) State (si) State (sj) (c) (at)

t0 redefined init idle
cR0: The specification field
initialState is idle, for running
the activity immediately.

−

TR1 init WaitConfig

cR1: The specification field
initialState is WaitConf ig for
the activity waiting for a reconfigu-
ration.

−
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Table 4.5: Moving to/from the Conf ig state

Transition Source Destination Condition Action
(t) State (si) State (sj) (c) (at)

TR2 WaitConfig Config

cR2: The Dynamic Reconfiguration
Handler handles a reconfiguration
agreement that must include the
StartExec operator.

AR2: An activity
launched starts its
execution at the
iteration number
agreed

TR3 idle Config
cR3: Current iteration is equal to an
iteration agreed for applying a re-
configuration.

−

TR4 Config Config
cR4: TRUE until processing the
EndAwaReConf ig operator of the
reconfiguration block.

−

TR5 Config idle
cR5: TRUE if completed the process-
ing of the EndAwaReConf ig opera-
tor of the reconfiguration block.

−

Table 4.6: Moving to/from fault reconfiguration states

Transition Source Destination Condition Action
(t) State (si) State (sj) (c) (at)

TR8 faultIn ConfigIn

cR8: The Dynamic Reconfiguration
Handler has handled a reconfigu-
ration block that must include the
RetryAf terFaultIn operator for try-
ing recovering the activity failure on
input state.

−

TR9 faultTask ConfigTask

cR9: The Dynamic Reconfiguration
Handler has handled a reconfigu-
ration block that must include the
RetryAf terFaultT ask operator for
trying recovering the activity failure
on invoke state.

−

TR10 faultOut ConfigOut

cR10: The Dynamic Reconfigura-
tion Handler has handled a recon-
figuration block that must include
the RetryAf terFaultOut operator
for trying recovering the activity
failure on output state.

−

TR8r ConfigIn input

cR8r : TRUE if completed the pro-
cessing of the RetryAf terFaultIn
operator to recover the activity fail-
ure on input state.

−

TR9r ConfigTask invoke

cR9r : TRUE if completed the pro-
cessing of the RetryAf terFaultT ask
operator to recover the activity fail-
ure on invoke state.

−

TR10r ConfigOut output

cR10r : TRUE if completed the pro-
cessing of the RetryAf terFaultOut
operator to recover the activity fail-
ure on output state.

−
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Table 4.7: Moving to/from Suspend state

Transition Source Destination Condition Action
(t) State (si) State (sj) (c) (at)

TR6 idle Suspend
cR6: Current iteration is equal to an
iteration agreed for applying the re-
configuration Suspend operator.

−

TR7 Suspend Config

cR7: Dynamic Reconfiguration Han-
dler has handled a reconfiguration
block with a Resume operator to re-
sume the activity.

−

Table 4.8: Moving to terminate state

Transition Source Destination Condition Action
(t) State (si) State (sj) (c) (at)

t7 redefined idle terminate

c7: The current iteration reaches
the maximum iteration number, or
an explicit synchronous termination
(terminate operator) occurred.

−

Table 4.9: Global variables and the associated conditions

Variable Type Description Related conditions

WaitT oConf ig Boolean

It indicates that the activity is launched in the
scope of a reconfiguration plan and needs to wait
for a reconfiguration block. The variable is related
to the initialState field of the activity specifica-
tion.

CR0; CR1

EndAwaConf ig Boolean
It indicates that the Dynamic Reconfiguration Han-
dler completes a reconfiguration block by process-
ing the EndAwaReConf ig operator.

c7; CR2; CR4; CR5;
CR7; CR8; CR9;
CR10; CR8r ; CR9r ;
CR10r

AgreedIter Integer

Defines the iteration number agreed to perform a
reconfiguration, indicating that the Dynamic Re-
configuration Handler already processed the com-
pound EndReConf iguration operator.

CR3; CR6

isT oSuspend Boolean
Indicates that the Suspend operator was processed
in the Conf ig state.

CR6

isT oResume Boolean
Indicates that the Resume operator was processed
in the Conf ig state.

CR7

isT oT erminate Boolean
Indicates that the T erminate operator was pro-
cessed in the Conf ig state.

c7

Table 4.10: The new conditions of the State Machine

c7(redef ined) = (CurIter == MaxIter) or (EndAwaConf ig and isT oT erminate)
CR0 = not WaitT oConf ig
CR1 =WaitT oConf ig
CR2 = EndAwaConf ig
CR3 = (CurIter == AgreedIter)
CR4 = not EndAwaConf ig
CR5 = EndAwaConf ig
CR6 = (CurIter == AgreedIter) and isT oSuspend
CR7 = EndAwaConf ig and isT oResume
CR8,CR9,CR10 = isFaulty and EndAwaConf ig
CR8r ,CR9r ,CR10r = EndAwaConf ig

120



4.3. THE AWARD MACHINE AND DYNAMIC RECONFIGURATIONS

4.3.3 The Semantics of Operators as Transitions between AWA Contexts

Except for the compound operators used to define the scope of a reconfiguration plan

and the activity reconfiguration blocks, the elementary dynamic reconfiguration opera-

tors presented in Section 4.2.1 are used for changing the context characteristics of the

workflow activities involved in reconfiguration plans. These changes in the contexts of

activities perform structural and behavioral modifications on the long-running workflow.

Then considering an AWA Context the semantics of each dynamic reconfiguration opera-

tor can be described as a transition to a new AWA Context, where the new context reflects

the modifications made by the operators.

Before presenting the context transitions caused by each operator let us review the

definitions related to the context of an AWA activity. Recalling the Chapter 3 Definitions

(3.17; 3.18; 3.19; 3.20; 3.21), and the new internal AWA Context, including the new global

variables (as in Definition 4.10 on page 117), the complete context of the A activity, de-

noted by Ctx(A), is defined as follows:

G The Context of the A activity

Ctx(A) = {Cf Ctx(A), IntCtx(A)}
G Configuration Context of the A activity

Cf Ctx(A) = (AP ars,AT ask,Cf Ctxinputs,AMapins,Cf Ctxoutputs,AMapouts,MaxIter)

G Internal Context of the A activity

IntCtx(A) = (IsT oStart,CurIter,CurState, IsFaulty,

InsReady, InsT okens,OutsT okens,T Args,T Res,

WaitT oConf ig,EndAwaConf ig,AgreedIter,

isT oSuspend, isT oResume, isT oT erminate)

G Configuration Context of the input ports of the A activity

Cf Ctxinputs = {Cf Ctxin(I1A), ...,Cf Ctxin(InA)}
G Configuration Context of an input port (IiA) of the A activity

Cf Ctxin(IiA) = (IiA,T type, IMode,State), 1 6 i 6 n

G Configuration Context of the output ports of the A activity

Cf Ctxoutputs = {Cf Ctxout(O1A), ...,Cf Ctxout(OnA)}
G Configuration Context of an output port (OiA) of the A activity

Cf Ctxout(OiA) = (OiA,T type,OMode,SendT o,State), 1 6 i 6 n

G Input ports mapping to a Task with nargs Arguments

AMapins = {(0, Iname0), ..., (k, Inamek), ..., (nargs − 1, Inamenargs−1)}
where 0 6 k 6 nargs − 1 and Inamek ∈ AInputs

G Output ports mapping from the res Task Results

AMapouts = {(Oname0, res0), ..., (Onamek , resk), ..., (Onamen−1, resn−1)}
where 0 6 resk 6 nres − 1 and Onamek ∈ AOutputs
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G The semantics of the dynamic reconfiguration operators

The semantics of a dynamic reconfiguration operator applied to an AWA activity (A)

is defined as the Ctx(A)
Operator(arguments)
−−−−−−−−−−−−−−−−−−→ Ctxnew(A) transition from the AWA Context

Ctx(A) to a new AWA Context Ctxnew(A). The transition is labelled with the operator

name and the specific arguments of each operator.

In most operators only the activity configuration context Cf Ctx(A) is modified. The

internal context is modified in the operators related to the activity life-cycle, namely

for starting, suspending, resuming or terminating an activity or when a new activity is

launched. Therefore in the following operator transitions we only highlight the compo-

nent of the activity context which is modified. A detailed description of the operator

arguments is presented in Figure 5.13 on page 167.

Definition 4.12: ChangeParameters

Applying the ChangeP arameters operator to the A activity changes the configu-

ration context Cf Ctx(A) by changing the current list of P arameters denoted by

AP ars to a new list of P arameters denoted by AnewP ars.

(AP ars,AT ask,Cf Ctxinputs,AMapins,Cf Ctxoutputs,AMapouts,MaxIter)

ChangeParameters(AnewPars)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(AnewPars,AT ask,Cf Ctxinputs,AMapins,Cf Ctxoutputs,AMapouts,MaxIter)

Definition 4.13: ChangeTask

Applying the ChangeT ask operator to the A activity changes the configuration

context Cf Ctx(A) by changing the current T ask denoted by AT ask to a new task

denoted by AnewT ask.

(AP ars,AT ask,Cf Ctxinputs,AMapins,Cf Ctxoutputs,AMapouts,MaxIter)

ChangeTask(ANewTask)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(AP ars,ANewTask,Cf Ctxinputs,AMapins,Cf Ctxoutputs,AMapouts,MaxIter)
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Definition 4.14: CreateInput

Applying the CreateInput operator to the A activity changes the configura-

tion context Cf Ctx(A) by changing the Cf Ctxinputs configuration context of

the input ports to the new NewCf Ctxinputs configuration context of the in-

put ports, which includes, according to Definition 3.7 on page 60, the new

(InewNameA,T type, IMode,State) input port. Adding a new input port implies

changing the AMapins activity inputs mapping to the new NewAMapins inputs

mapping.

(AP ars,AT ask,Cf Ctxinputs,AMapins,Cf Ctxoutputs,AMapouts,MaxIter)

CreateInput(InewNameA,Ttype,IMode,State)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(AP ars,AT ask,NewCfCtxinputs,NewAMapins,Cf Ctxoutputs,AMapouts,MaxIter)

where, NewCfCtxinputs = Cf Ctxinputs
⋃
Cf Ctxin(InewNameA) is a new set of the

input ports context, including the configuration context of the new input port

named InewNameA, Cf Ctxin(InewNameA) = (InewNameA,Ttype,IMode,State);

The new NewAMapins inputs mapping function includes a new

(nargs,InewNameA) pair to map the new input port to a new T ask argu-

ment:

NewAMapins = AMapins
⋃
{(nargs,InewNameA)} where AMapins is the set

AMapins = {(0, Iname0), ..., (k, Inamek), ..., (nargs − 1, Inamenargs−1)}.

Definition 4.15: ChangeInputOrder

Applying the ChangeInputOrder operator to an input port named InameA of the A

activity changes the Cf Ctx(A) configuration context by changing the IMode input

order mode of the Cf Ctxin(InameA) configuration context of the InameA input

port to the new InewMode ∈ {Iteration,Sequence,Any} input port mode.

Cf Ctxin(InameA) = (InameA,T type, IMode,State)

ChangeInputOrder(InewMode)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Cf Ctxin(InameA) = (InameA,T type,InewMode,State)

Note that if the InewMode is the Sequence input mode then this operation is only

allowed if the A activity has a single input port connected to a simple link (Defini-

tion 3.7 on page 60)
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Definition 4.16: CreateOutput

Applying the CreateOutput operator to the A activity changes the configura-

tion context Cf Ctx(A) by changing the Cf Ctxoutputs configuration context of

the output ports to the new NewCf Ctxoutputs configuration context of the out-

put ports, which includes, according to Definition 3.8 on page 60, the new

(OnewNameA,T type,OMode,SendT o,State) output port. Adding a new out-

put port implies changing the AMapouts activity outputs mapping to the new

NewAMapouts output mapping.

(AP ars,AT ask,Cf Ctxinputs,AMapins,Cf Ctxoutputs,AMapouts,MaxIter)

CreateOutput(OnewNameA,Ttype,OMode,SendTo,State)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(AP ars,AT ask,Cf Ctxinputs,AMapins,NewCfCtxoutputs,NewAMapouts,MaxIter)

where, NewCfCtxoutputs = Cf Ctxoutputs
⋃
Cf Ctxout(OnewNameA) is a

new set of the output ports context including the configuration context

of the new output port named OnewNameA, Cf Ctxout(OnewNameA) =

(OnewNameA,Ttype,OMode,SendTo,State);

The new NewAMapouts outputs mapping function includes a new

(OnewNameA,resn) pair to map a T ask result to the new output port:

NewAMapouts = AMapouts
⋃
{(OnewNameA,resn)} where AMapouts is the set

AMapouts ={(Oname0, res0), ..., (Onamek , resk), ..., (Onamen−1, resn−1)}.

Definition 4.17: ChangeOutputLink

Applying the ChangeOutputLink operator to an output port named OnameA of

the A activity changes the Cf Ctx(A) activity configuration context by changing the

Cf Ctxout(OnameA) configuration context in order to change the link of the output

port to a new destinations list.

Cf Ctxout(OnameA) = (OnameA,T type,OMode,SendT o,State)

ChangeOutputLink(NewSendTo)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Cf Ctxout(OnameA) = (OnameA,T type,OMode,NewSendTo,State)
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Definition 4.18: AddOutputLink

Applying the AddOutputLink operator to an output port named OnameA of the

A activity changes the Cf Ctx(A) activity configuration context by changing the

Cf Ctxout(OnameA) configuration context in order to change the link of the output

port by adding the new NewDest destination to the SendT o destination list.

Cf Ctxout(OnameA) = (OnameA,T type,OMode,SendT o,State)

AddOutputLink(NewDest)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Cf Ctxout(OnameA) = (OnameA,T type,OMode,NewSendTo,State)

where NewSendTo = SendT o ∪ {NewDest}

Definition 4.19: ChangeOutputStrategy

Applying the ChangeOutputStrategy operator to an output port named OnameA

of the A activity changes the Cf Ctx(A) activity configuration context by changing

the Cf Ctxout(OnameA) configuration context in order to change the output port

strategy, which consists of changing the OMode current output mode to the new

OnewMode ∈ {Single,Replicate,RoundRobin} output mode.

Cf Ctxout(OnameA) = (OnameA,T type,OMode,SendT o,State)

ChangeOutputStrategy(OnewMode)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Cf Ctxout(OnameA) = (OnameA,T type,OnewMode,SendT o,State)

Definition 4.20: ChangeInputState

Applying the ChangeInputState operator to an input port named InameA of

the A activity changes the Cf Ctx(A) configuration context by changing the

Cf Ctxin(InameA) input configuration context in order to change the current input

port state (State ) to the new newState ∈ {Enable,Disable,EnableFeedback} input

port state.

Cf Ctxin(InameA) = (InameA,T type, IMode,State)

ChangeInputState(newState)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Cf Ctxin(InameA) = (InameA,T type, IMode,newState)
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Definition 4.21: ChangeOutputState

Applying the ChangeOutputState operator to an output port named OnameA of

the A activity changes the Cf Ctx(A) activity configuration context by changing the

Cf Ctxout(OnameA) output configuration context in order to change the current

output port state (State ) to the new newState ∈ {Enable,Disable,EnableFeedback}
output port state.

Cf Ctxout(OnameA) = (OnameA,T type,OMode,SendT o,State)

ChangeOutputState(newState)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Cf Ctxout(OnameA) = (OnameA,T type,OMode,SendT o,newState)

Definition 4.22: ChangeMaxIterations

Applying the ChangeMaxIterations operator to the A activity changes the

Cf Ctx(A) configuration context by changing the MaxIter maximum number of

iterations to the new NewMaxIter maximum number of iterations.

(AP ars,AT ask,Cf Ctxinputs,AMapins,Cf Ctxoutputs,AMapouts,MaxIter)

ChangeMaxIterations(NewMaxIter)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(AP ars,AT ask,Cf Ctxinputs,AMapins,Cf Ctxoutputs,AMapouts,NewMaxIter)

Definition 4.23: ChangeMappingInputs

Applying the ChangeMappingInputs operator to the A activity changes the

Cf Ctx(A) configuration context by changing the AMapins map function of input

ports to the T ask Arguments to the new NewAMapins map function.

AMapins = {(0, Iname0), ..., (k, Inamek), ..., (nargs − 1, Inamenargs−1)}

ChangeMappingInputs(NewAMapins)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

NewAMapins = {(0,InewName0), ..., (k,InewNamek), ..., (nargs − 1,InewNamenargs-1)}

where NewAMapins maps the input ports to T ask Arguments in other arbitrary or-

der, as the set, {(0,InewName0), ..., (k,InewNamek), ..., (nargs − 1,InewNamenargs-1)}
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Definition 4.24: ChangeMappingOutputs

Applying the ChangeMappingOutputs operator to the A activity changes the

Cf Ctx(A) configuration context by changing the AMapouts map function of T ask

Results to output ports to the new NewAMapouts map function.

AMapouts = {(Oname0, res0), ..., (Onamek , resk), ..., (Onamen−1, resn−1)}

ChangeMappingOutputs(NewAMapouts)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

NewAMapouts = {(OnewName0, res0), ..., (OnewNamek, resk), ...,

(OnewNamen-1, resn−1)}

where NewAMapouts maps the T ask Results to out-

put ports in other arbitrary order, as the set,

{(OnewName0, res0), ..., (OnewNamek, resk), ..., (OnewNamen-1, resn−1)}

G Life-Cycle operators

The life-cycle operators only change the activity internal context (IntCtx(A)).

Definition 4.25: StartExec

The StartExec operator is used only to reconfigure activities launched in the scope

of a reconfiguration plan in order to notify the State Machine that it must move to

the Conf ig state. This operator also defines the iteration where the activity must

start according to the agreement achieved in the reconfiguration plan. Then apply-

ing the StartExec operator to the A activity only implies changing the IntCtx(A)

internal context by changing the curState =WaitConf ig current state of the State
Machine to the newNewcurState = Conf ig state, and the CurIter current iteration

number to the iteration agreed (AgreedIter).

IntCtx(A) = (IsT oStart,CurIter=0,CurState=WaitConfig, IsFaulty,

InsReady, InsT okens,OutsT okens,T Args,T Res,

WaitT oConf ig,EndAwaConf ig,AgreedIter,

isT oSuspend, isT oResume, isT oT erminate)

StartExec()
−−−−−−−−−−−−−→

IntCtx(A) = (IsT oStart,CurIter=AgreedIter,CurState=Config, IsFaulty,

InsReady, InsT okens,OutsT okens,T Args,T Res,

WaitToConfig=FALSE,EndAwaConf ig,AgreedIter,

isT oSuspend, isT oResume, isT oT erminate)

127



CHAPTER 4. DYNAMIC RECONFIGURATIONS

Definition 4.26: Suspend

Applying the Suspend operator to the A activity only changes the IntCtx(A) inter-

nal context by changing the CurState = idle current state of the State Machine to

the new CurState = Suspend state.

IntCtx(A) = (IsT oStart,CurIter,CurState=idle, IsFaulty,

InsReady, InsT okens,OutsT okens,T Args,T Res,

WaitT oConf ig,EndAwaConf ig,AgreedIter,

isToSuspend=TRUE, isT oResume, isT oT erminate)

Suspend()
−−−−−−−−−−−−→

IntCtx(A) = (IsT oStart,CurIter,CurState=Suspend, IsFaulty,

InsReady, InsT okens,OutsT okens,T Args,T Res,

WaitT oConf ig,EndAwaConf ig,AgreedIter,

isToSuspend=FALSE, isT oResume, isT oT erminate)

Definition 4.27: Resume

Applying the Resume operator to theA activity only changes the IntCtx(A) internal

context by changing the CurState = Suspend current state of the State Machine to

the new CurState = Conf ig state.

IntCtx(A) = (IsT oStart,CurIter,CurState=Suspend, IsFaulty,

InsReady, InsT okens,OutsT okens,T Args,T Res,

WaitT oConf ig,EndAwaConf ig,AgreedIter,

isT oSuspend, isToResume=TRUE, isT oT erminate)

Resume()
−−−−−−−−−−−→

IntCtx(A) = (IsT oStart,CurIter,CurState=Config, IsFaulty,

InsReady, InsT okens,OutsT okens,T Args,T Res,

WaitT oConf ig,EndAwaConf ig,AgreedIter,

isT oSuspend, isToResume=FALSE, isT oT erminate)
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Definition 4.28: Terminate

Applying the T erminate operator to the A activity only changes the IntCtx(A)

internal context by changing the CurState = idle current state of the State Machine
to the new CurState = terminate state.

IntCtx(A) = (IsT oStart,CurIter,CurState=idle, IsFaulty,

InsReady, InsT okens,OutsT okens,T Args,T Res,

WaitT oConf ig,EndAwaConf ig,AgreedIter,

isT oSuspend, isT oResume, isToTerminate=TRUE)

Terminate()
−−−−−−−−−−−−−−→

IntCtx(A) = (IsT oStart,CurIter,CurState=terminate, IsFaulty,

InsReady, InsT okens,OutsT okens,T Args,T Res,

WaitT oConf ig,EndAwaConf ig,AgreedIter,

isT oSuspend, isT oResume, isToTerminate=FALSE)

Definition 4.29: RetryAfterFaultIn, RetryAfterFaultTask, RetryAfterFaultOut

Applying the RetryAf terFaultIn, RetryAf terFaultT ask andRetryAf terFaultOut

operators for retrying fault recovery of the A activity only changes the IntCtx(A)

internal context by changing the CurState ∈ {Conf igIn,Conf igT ask,Conf igOut}
current state of the State Machine to the new CurState ∈ {input, invoke,output}
state according respectively to the occurred {f aultIn,f aultT ask,f aultOut} fault

states

IntCtx(A) = (IsT oStart,CurIter,CurState ∈ {ConfigIn,ConfigTask,ConfigOut},
IsFaulty=TRUE, InsReady, InsT okens,OutsT okens,T Args,T Res,

WaitT oConf ig,EndAwaConf ig,AgreedIter,

isT oSuspend, isT oResume, isT oT erminate)

{RetryAfterFaultIn, RetryAfterFaultTask, RetryAfterFaultOut}()
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

IntCtx(A) = (IsT oStart,CurIter,CurState ∈ {input,invoke,output},
IsFaulty=FALSE, InsReady, InsT okens,OutsT okens,T Args,T Res,

WaitT oConf ig,EndAwaConf ig,AgreedIter,

isT oSuspend, isT oResume, isT oT erminate)
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Definition 4.30: LaunchActivity

Applying the LaunchActivity operator to launch an activity namedA initializes the

configuration context (Cf Ctx(A)) of the activity from the activity specification file

(specif icationFile) as well as the internal context (IntCtx(A) with theWaitConf ig

state as the current state of the State Machine.

Ctx(A) = {−,−}

LaunchActivity(A, specificationFile)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ctx(A) = {CfCtx(A),IntCtx(A)}

Where null contexts are denoted by (−) and the configura-

tion context of the new A activity, denoted by CfCtx(A) =

(AP ars,AT ask,Cf Ctxinputs,AMapins,Cf Ctxoutputs,AMapouts,MaxIter) is initial-

ized from the information in the specification file named specificationFile and the

IntCtx(A) activity internal context reflects the initialization of the State Machine
as follows:

IntCtx(A) = (IsToStart=TRUE,CurIter=0,CurState=WaitConfig,

IsFaulty=FALSE,InsReady=FALSE,InsTokens=Null,OutsTokens=Null,

TArgs=Null,TRes=Null,WaitToConfig=TRUE,

EndAwaConfig=FALSE,AgreedIter=-1,

isToSuspend=FALSE, isToResume=FALSE, isToTerminate=FALSE)

Definition 4.31: GetAwaContext

Applying the GetAwaContext operator to the A activity returns the Ctx(A) activity

context. The operator does not change the configuration and internal activity

contexts.
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4.4 Scenarios for Dynamic Reconfigurations

The requirements of a scientific application may not be completely defined at the begin-

ning of an experiment thus forcing scientists to discuss and decide on taking subsequent

actions, which can be based on intermediate experimental results, or/and based on newly

gathered advice by other expert scientists. If the experiments are based on workflows,

scientists can decide to change the workflows in order to achieve their goals. However, if

a workflow is already running it can be costly, especially concerning wasting processing

time, to stop the execution of the entire workflow for restarting a new workflow which

includes the needed modifications. Therefore the workflow execution environment must

support dynamic reconfigurations of long-running workflows according to the appli-

cation demands, for example for enhancing application performance or improving its

functionality.

For example, scientists should be able to dynamically change the workflow activity

T asks, the activity P arameters or even change the workflow structure by introducing

new activities for instance for performing data filtering. Furthermore in scenarios where

workflow activities are independently running on distributed infrastructures with multi-

ple sites the workflow activities should be independently monitored and independently

steered using dynamic reconfigurations by multiple users.

As presented in Section 4.2 the AWARD model provides a set of operators to elaborate

scripts containing reconfiguration plans used to apply dynamic structural and behavioral

modifications to long-running workflows.

Depending on each application scenario when a workflow is running there are multi-

ple possible reasons and consequently multiple reconfiguration plans that can be applied

to dynamically change the workflow. These reasons can result from some monitoring

process allowing observing intermediate results, thus detecting activity failures, or rais-

ing the need to reduce the execution time of some activities, or the need to extend the

workflow functionality. Therefore for each workflow the universe of all possible work-

flow reconfiguration scenarios is unlimited, because the possible reconfigurations have

dependencies on the problem domain, as well as dependencies on events that happen

during the execution of the workflow and that are often hard to predict before execution,

that is at the workflow design time.

As an example, let us consider a simple workflow as depicted in Figure 4.13, where

several possible reconfiguration plans can be applied according to the specific goals of

each concrete application scenario. In a first scenario, reasons related to the inappro-

priate behavior of the A, B and C activities can lead the workflow developer to decide

changing the T asks of the activities and/or their P arameters. Then multiple and distinct

reconfigurations plans can be applied, such as change the T ask and/or P arameters of

each activity separately, or even change the T asks and/or their P arameters of the three

activities jointly in a unique reconfiguration plan.

In other scenarios, due to reasons related to the structure of the workflow and the need
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A B C 
O1A I1B I1C 

I1A 

O1B 

Fig  4.14 

Figure 4.13: A simple long-running workflow

for monitoring of intermediate results, the workflow developer can decide to introduce

new activities to perform new processing steps, such as introducing a filtering or data

transformation activity between A and B, or between B and C, or even introducing two

new distinct activities, one between A and B and a second between B and C. Furthermore

the workflow developer can decide to introduce a new activity to introduce a feedback

loop to be established between B andA or between C andA, which involves the creation of

a new input port on the A activity and a new output port respectively on B or C activities.

Given the multitude of possible scenarios the approach followed in this dissertation

consisted of finding a set of useful and realistic scenarios capable of addressing the fol-

lowing goals:

1. To validate and improve the design and implementation of a basic set of dynamic

workflow reconfiguration operators;

2. To evaluate concrete cases of applications based on workflows that reveal possi-

ble scenarios for applying reconfiguration plans involving the reconfiguration of

multiple workflow activities using the proposed dynamic reconfiguration operators;

3. To exercise and evaluate the developed AWARD prototype by implementing several

application examples, as discussed in Chapter 6.

The next sections describe several selected useful workflow reconfiguration scenarios,

including the scripts of each reconfiguration plan based on the skeleton described in

Section 4.2 (Listing 4.1 on page 103). These reconfiguration plan scripts also illustrate

the invocation details of each dynamic reconfiguration operator.

4.4.1 Scenario 1: Change the Task and the Parameters of Activities

As depicted in Figure 4.14 let us consider a workflow based on the Synchronization AND-
join pattern [Aal+00b] where the A and B activities are executed in parallel and the C

activity synchronously joins the tokens produced by the A and B activities. The last

activity, named D, is used to output the workflow result and is only executed after the

execution of the C activity, as in the Sequence pattern [Aal+00b].

In order to illustrate a dynamic reconfiguration scenario let us consider the workflow

in Figure 4.14 as a long-running workflow with multiple iterations and assume that,

during its execution it requires dynamic reconfigurations, for example for changing the

activity T asks, and/or for changing the P arameters of the activities. This can be used for

improving the application performance or changing the functionality of activities.
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RECONFIGURATION SCENARIOS  
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Figure 4.14: Workflow based on Synchronization AND-join pattern

Assuming that there is a software library (named scenariostasks) containing multiple

implementations of the activity T asks a possible reconfiguration plan is presented in

Listing 4.5. The scope of the reconfiguration plan involves the A, B and C activities in

order to change the T asks of theA andC activities respectively to scenariotasks.T askAnew

and scenariotasks.T askCnew and to change the P arameters of the B activity to the new

P arameters list {”T askB”,”p1”,”p2”,”pnew”}.

Listing 4.5: Reconfiguration plan to change activity T asks and activity P arameters

1 int RID = BeginReConfiguration("A","C","B");

2 BeginAwaReConfig(RID, "A");

3 ChangeTask(RID, "A", "scenariotasks.TaskAnew");

4 int it1 = EndAwaReConfig(RID, "A");

5 BeginAwaReConfig(RID, "C");

6 ChangeTask(RID, "C", "scenariotasks.TaskCnew");

7 int it2 = EndAwaReConfig(RID, "C");

8 BeginAwaReConfig(RID, "B");

9 ChangeParameters(RID, "B", new String[]{"TaskB", "p1", "p2", "pnew"});

10 int it3 = EndAwaReConfig(RID, "B");

11 int[] AgreementSet=new int[]{it1, it2, it3};

12 int K=EndReConfiguration(RID, AgreementSet);

It is important to recall that the AWARD machine supports the submission of multiple

concurrent reconfiguration plans with distinct reconfiguration identifiers (RID) meaning

that this script can be submitted multiple times with different T asks to A and C activities

and different P arameters for the B activity. For instance, as presented in Listing 4.6

a different reconfiguration plan can be submitted later for changing the T ask of the B

activity to a new T ask named scenariotasks.T askBnew.

Listing 4.6: Reconfiguration plan to only change the T ask of the B activity

1 int RID = BeginReConfiguration("B");

2 BeginAwaReConfig(RID, "B");

3 ChangeTask(RID, "B", "scenariotasks.TaskBnew");

4 int it1 = EndAwaReConfig(RID, "B");

5 int[] AgreementSet=new int[]{it1};

6 int K=EndReConfiguration(RID, AgreementSet);
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The value of K in the above reconfiguration plans indicates the agreed upon iteration

number such that the reconfiguration plan takes effect for producing the new workflow

configuration to be applied at iteration K .

4.4.2 Scenario 2: Introduce New Activities for Monitoring Workflow
Executions

During the execution of long-running workflows the analysis of intermediate results,

for instance for verifying some behavior expectations, is mandatory. Typically in some

workflow systems this is only supported by logging mechanisms that must be planned and

considered at the workflow design time. The support provided by the AWARD model to

dynamically reconfigure workflows introduces great flexibility for monitoring workflows

without the need of considering this at workflow design time.

The scenario presented in Figure 4.15 considers the same workflow pattern as in

scenario 1 (Figure 4.14), but now we consider that during the workflow execution at a

certain point the workflow developer needs to monitor and store the data flowing between

the A and C activities for future analysis.

A 

C 

B 

D 
Output 

MonitorLinkAC 

C-IN1 

A-O1 

MonitorLinkAC-IN1 

Figure 4.15: Monitoring the link between the A and C activities

Among other possibilities, for instance to change the T ask of the A activity for doing

some type of logging, a more flexible approach consists of dynamically launching a new

workflow activity, named MonitorLinkAC, for monitoring the link between the A and C

activities.

In order to perform the workflow reconfiguration required for monitoring the link

between the A and C activities, as shown in Figure 4.15, the reconfiguration plan needs to

launch the new MonitorLinkAC activity specified in the MonitorLinkAC.xml file. Also

the A-O1 output port of the A activity changes to support a multi-link by changing its

destination list to include the MonitorLinkAC-IN1 input port of the new activity.

The scope of the reconfiguration plan involves the A and MonitorLinkAC activities.

The script of the reconfiguration plan is presented in Listing 4.7, where the reconfigu-

ration operator (ChangeOutputLink) changes the destination list of the A-O1 output port
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to include the MonitorLinkAC-IN1 input port in addition to the C-IN1 input port of the C

activity. Also the output mode strategy of the A-O1 output port is changed to Replicate.

Listing 4.7: Reconfiguration plan for monitoring the link between the A and C activities

1 int RID = BeginReConfiguration("MonitorLinkAC", "A");

2 LaunchActivity("MonitorLinkAC.xml", "MonitorLinkAC");

3 BeginAwaReConfig(RID, "MonitorLinkAC");

4 StartExec(RID,"MonitorLinkAC");

5 int it1 = EndAwaReConfig(RID,"MonitorLinkAC");

6 BeginAwaReConfig(RID, "A");

7 ChangeOutputLink(RID,"A","A-O1",new String[]{"C-IN1","MonitorLinkAC-IN1"});

8 ChangeOutputStrategy(RID, "A", "A-O1", "Replicate");

9 int it2 = EndAwaReConfig(RID,"A");

10 int[] AgreementSet=new int[]{it1,it2};

11 int K=EndReConfiguration(RID, AgreementSet);

Another approach for monitoring a workflow activity is depicted in Figure 4.16. The

reconfiguration plan, whose script is presented in Listing 4.8, consists of changing the

T ask of the C activity to produce data to be sent to a new output port, named C-O2,

connected to the CollectC-IN1 input port of the new CollectC activity. The scope of the

reconfiguration plan involves the C activity and the new CollectC activity.
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Figure 4.16: Change the activity C for collecting data

Listing 4.8: Reconfiguration plan for collecting data from the C activity

1 int RID = BeginReConfiguration("C", "CollectC");

2 BeginAwaReConfig(RID, "C");

3 ChangeTask(RID, "C", "scenariotasks.TaskCwith2outputs");

4 CreateOutput(

5 RID,"C","C-O2","TypeToken","Single",new String[]{"CollectC-IN1"},"Enable"

6 );

7 ChangeMappingOutputs(RID, "C", new String[]{"C-01","C-02"});

8 int it1 = EndAwaReConfig(RID, "C");

9 LaunchActivity("CollectC.xml", "CollectC");

10 BeginAwaReConfig(RID, "CollectC");

11 StartExec(RID, "CollectC");

12 int it2 = EndAwaReConfig(RID, "CollectC");

13 int[] AgreementSet=new int[]{it1, it2};

14 int K=EndReConfiguration(RID, AgreementSet);
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The script of the reconfiguration plan presented in Listing 4.8 shows the use of the

CreateOutput operator whose arguments are according to the output port configuration

context (Definition 3.8 on page 60: Cf Ctxout = (OnameA,T type,OMode,SendT o,State)).

The script also shows the use of the ChangeMappingOutputs operator to change

mappings of the C-O1 and C-O2 output ports according to the new T ask Results.

4.4.3 Scenario 3: Change the Workflow Structure

The introduction of new activities can be useful for modifying the workflow structure

in multiple ways. Let us consider a workflow based on the Sequence pattern [Aal+00b]

which is a three steps pipeline with three activities named Fa, Fb, and Fc as depicted in

Figure 4.17.

We assume that, after a certain time, by monitoring the execution behavior of the

workflow, the workflow developer concludes that it is possible to improve the expected

results of the workflow by changing the workflow structure as follows.

The output data of the A activity is also processed in parallel by a new activity, named

Fn, with a T ask which implements a new algorithm.

The T ask of the Fc activity is changed to receive the output data of two activities: The

existing Fb activity; and the output data from the new Fn activity.

In this way the Fc activity can choose the best result among the data produced by two

distinct algorithms.

The scope of the reconfiguration plan involves the Fa, Fc and Fn activities.

Fa Fb 
Fc 

Fn 

ao1 bo1 bi1 ci1 

ci2 

ni1 no1 

Figure 4.17: Change the structure of a workflow with distinct processing

The script of the reconfiguration plan is presented in Listing 4.9 showing the use of the

following two operators: The AddOutputLink operator, to add an additional link which

is the ni1 input port of the new Fn activity to the ao1 output port of the Fa activity; and

the CreateInput operator whose arguments are according to the input port configuration

context (Definition 3.7 on page 60: Cf Ctxin = (InameA,T type, IMode,State)) to add the

new ci2 output port to the Fc activity.
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Listing 4.9: Reconfiguration plan to change the structure of a workflow

1 int RID = BeginReConfiguration("Fn", "Fa", "Fc");

2 LaunchActivity("FnSpec.xml", "Fn");

3 BeginAwaReConfig(RID, "Fn"););

4 StartExec(RID, "Fn");

5 ChangeOutputLink(RID, "Fn", "no1", new String[]{"ci2"});

6 int it1 = EndAwaReConfig(RID, "Fn");;

7 BeginAwaReConfig(RID, "Fa");

8 AddOutputLink(RID, "Fa","ao1", new String[]{"ni1"});

9 ChangeOutputStrategy(RID, "Fa", "ao1", "Replicate");

10 int it2 = EndAwaReConfig(RID, "Fa");

11 BeginAwaReConfig(RID, "Fc");

12 CreateInput(RID, "Fc","ci2", "TypeToken", "Iteration", "Enable");

13 ChangeTask(RID, "Fc", "scenariotasks.TaskFcWith2Args");

14 ChangeMappingInputs(RID, "Fc", new String[]{"ci2", "ci1"});

15 int it3 = EndAwaReConfig(RID, "Fc");

16 int[] AgreementSet=new int[]{it1, it2, it3};

17 int K=EndReConfiguration(RID, AgreementSet);

Another useful scenario to dynamically change the structure of a workflow is to introduce

a new activity for the purposes of data filtering or even data translation as depicted in

Figure 4.18.

Fa Fb Fc 
ao1 bo1 bi1 ci1 

Filter 
ni1 no1 

Figure 4.18: Change the workflow structure for filtering or translating data

In this scenario the pipeline workflow with Fa, Fb and Fc activities is modified to

introduce the new Filter activity between the Fb and Fc activities.

The required reconfiguration plan is simple and consists of launching the new Filter

activity and of changing the link of the bo1 output port of the Fb activity to be connected

to the ni1 input port of the new Filter activity.

The scope of the reconfiguration plan involves the Fb and the new Filter activities.

The script of the reconfiguration plan is presented in Listing 4.10. All reconfiguration

operators involved have been used in the previous scenarios.

It is important to note that the Fc activity is not involved in the reconfiguration plan.

In fact, the semantics associated with input ports ensures that the Fc activity consumes

tokens sent from the Fb activity until the (K − 1)th iteration. At the K th iteration, as

agreed between Fb and Filter activities for applying the reconfiguration plan, the Fb

activity starts sending tokens to the new Filter activity, which produces tokens that will

be consumed by the Fc activity.
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Listing 4.10: Reconfiguration plan for filtering or translate data

1 int RID = BeginReConfiguration("Filter", "Fb",);

2 LaunchActivity("FilterSpec.xml", "Filter");

3 BeginAwaReConfig(RID, "Filter"););

4 StartExec(RID, "Filter");

5 ChangeOutputLink(RID, "Filter", "no1", new String[]{"ci1"});

6 int it1 = EndAwaReConfig(RID, "Filter");;

7 BeginAwaReConfig(RID, "Fb");

8 ChangeOutputLink(RID, "Fb", "bo1", new String[]{"ni1"});

9 int it2 = EndAwaReConfig(RID, "Fb");

10 int[] AgreementSet=new int[]{it1, it2};

11 int K=EndReConfiguration(RID, AgreementSet);

4.4.4 Scenario 4: Change the Workflow Structure with a Feedback Loop

Although many workflow systems only allow direct acyclic graphs (DAG) thus limiting

their use only for workflows without loops, the AWARD model allows the design of

workflows with loops. Furthermore the AWARD support for dynamic reconfigurations

of long-running workflows allows introducing these loops during the execution of a

workflow.

To illustrate this scenario let us consider a pipeline workflow with the Fa, Fb and Fc

activities as presented in Figure 4.19.

Fa Fb Fc 

Feedback 

ao1 bo1 bi1 ci1 

no1 ni1 

ai1 

Figure 4.19: Change the workflow structure for introducing a feedback loop

Assume that during the execution of the workflow we can improve the workflow

results by changing the workflow structure with a feedback loop for improving the Fa

activity with information produced by the Fb activity in a previous iteration. Due to

the sequence pattern of the workflow the feedback loop implies that tokens produced by

the bo1 output port and processed by the new Feedback activity at the K th iteration are

processed by the new ai1 input port of the Fa activity at the (K + 1)th iteration.

Therefore the no1 output port of the new Feedback activity and the new ai1 input port

of the Fa activity are configured to the EnableFeedback state (Definition 3.15 on page 64).

The T ask of the Fa activity also needs to be changed in order to process the new argument

which results from the input mapping of the new ai1 input port. For the Fb activity it

is only necessary to change the destination links of the bo1 output port and change the

output mode strategy to Replicate.

138



4.4. SCENARIOS FOR DYNAMIC RECONFIGURATIONS

The scope of the reconfiguration plan involves the Fa, Fb and Feedback activities.

The script of the reconfiguration plan is presented in Listing 4.11. To illustrate the

use of dynamic operators the reconfiguration block of the Feedback activity includes

the ChangeOutputLink, ChangeOutputState and ChangeOutputStrategy operators to

reconfigure the no1 output port. However, these operators can be omitted if these re-

quired output port configurations have been defined in the initial specification of the

Feedback activity in the FeedbackSpec.xml file.

Listing 4.11: Reconfiguration plan to introduce a feedback loop

1 int RID = BeginReConfiguration("Fa","Fb","Feedback");

2 BeginAwaReConfig(RID,"Fa");

3 CreateInput(RID,"Fa","ai1","TypeToken","Iteration","EnableFeedback");

4 ChangeTask(RID,"Fa","scenariotasks.TaskFaWithOneArg");

5 ChangeMappingInputs(RID,"Fa",new String[]{"ai1"});

6 int it1 = EndAwaReConfig(RID,"Fa");

7 BeginAwaReConfig(RID,"Fb");

8 AddOutputLink(RID,"Fb","bo1", new String[]{"ni1"});

9 ChangeOutputStrategy(RID,"Fb","bo1","Replicate");

10 int it2 = EndAwaReConfig(RID,"Fb");

11 LaunchActivity("FeedbackSpec.xml","Feedback");

12 BeginAwaReConfig(RID,"Feedback");

13 StartExec(RID,"Feedback");

14 ChangeOutputLink(RID,"Feedback","no1",new String[]{"ai1"});

15 ChangeOutputState(RID,"Feedback", "no1","EnableFeedback");

16 ChangeOutputStrategy(RID,"Feedback","no1","Single");

17 int it3 = EndAwaReConfig(RID,"Feedback");

18 int[] AgreementSet=new int[]{it1, it2, it3};

19 int K=EndReConfiguration(RID, AgreementSet);

4.4.5 Scenario 5: Introduce New Activities for Load Balancing

Independently of the workflow topology and the number of activities there are always

workflow segments where some activities exhibit sequential dependencies with respect to

other activities. If an activity has a slow pace because its T ask exhibits a high execution

time for each token processed then all successor activities are affected and will be left

waiting for tokens produced by the slower activity.

As an example let us consider the workflow based on a sequence pattern formed by

the Fa, Fb and Fc activities presented in Figure 4.20.

Let us assume that the T ask of the Fa activity reads data items from files; the T ask of

the Fb activity processes the data items, and the T ask of the Fc activity stores the results

into a database. Assuming that the Fb activity has a slow pace, an adequate solution is

to use a load balancing scenario where the data items produced by Fa are distributed to

multiple replicas of the Fb activity for alternatively processing them in parallel.

The AWARD support for dynamic reconfigurations allows introducing new activities

for load balancing purposes during a long-running workflow. Without the need to restart
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Fa Fb Fc 

Fb1 

ao1 bo1 bi1 ci1 

b1i1 b1o1 

Figure 4.20: Change the workflow for load balancing of the Fb activity

the workflow execution anew, as depicted in Figure 4.20, a reconfiguration plan can

launch a replica of the Fb activity, hereby named Fb1, for processing tokens alternatively

in a round-robin fashion.

The reconfiguration plan also needs to change the mode of the ao1 output port of the

Fa activity to the RoundRobin mode (Definition 3.10 on page 61) by using the reconfig-

uration ChangeOutputStrategy operator and also change the bi1 and b1i1 input ports,

respectively, of the Fb and the Fb1 activities to the Sequence input mode (Definition 3.7

on page 60) by using the reconfiguration ChangeInputOrder operator.

The scope of the reconfiguration plan involves the Fa, Fb and Fb1 activities.

The script of the reconfiguration plan is presented in Listing 4.12 where the Fc activity

is not involved in the reconfiguration plan because on each iteration, the ci1 input port

continues receiving tokens still using the Iteration input mode without the need to know

if their origin is from the Fb or from the Fb1 activities. According to Definition 3.4 on

page 58 the tokens received by the ci1 input port follow the iteration numbers marked

by the upstream Fa activity.

Listing 4.12: Reconfiguration plan to introduce an activity for load balancing

1 int RID = BeginReConfiguration("Fa", "Fb", "Fb1");

2 BeginAwaReConfig(RID, "Fa");

3 AddOutputLink(RID, "Fa", "ao1", new String[]{"b1i1"});

4 ChangeOutputStrategy(RID, "Fa", "ao1", "RoundRobin");

5 int it1 = EndAwaReConfig(RID, "Fa");

6 BeginAwaReConfig(RID, "Fb");

7 ChangeInputOrder(RID, "Fb", "bi1", "Sequence");

8 int it2 = EndAwaReConfig(RID, "Fb");

9 LaunchActivity("Fb1Spec.xml", "Fb1");

10 BeginAwaReConfig(RID, "Fb1");

11 StartExec(RID, "Fb1");

12 ChangeInputOrder(RID, "Fb1", "b1i1", "Sequence");

13 int it3 = EndAwaReConfig(RID, "Fb1");

14 int[] AgreementSet=new int[]{it1, it2, it3};

15 int K=EndReConfiguration(RID, AgreementSet);

To improve the effects of the load balancing, later and as many times as necessary it

is possible to increase the number of replicas of the Fb activity.
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In Figure 4.21 a scenario is depicted where one more activity, named Fb2, is intro-

duced as a new replica of the Fb activity.

The possibility of introducing multiple and variable number of activities as replicas

for load balancing purposes hinders the determinism of knowing the maximum number

of iterations for each replica activity.

Fa Fb Fc 

Fb1 

ao1 bo1 bi1 ci1 

b1i1 b1o1 

Fb2 
b2i1 b2o1 

Figure 4.21: Introduce one more activity to increase the load balancing effects

The script of the reconfiguration plan for introducing one more activity, as depicted

in Figure 4.21, is presented in Listing 4.13.

Note that the output strategy of the ao1 output port in the Fa activity keeps unchanged

as RoundRobin, as previously defined in Listing 4.12.

Listing 4.13: Reconfiguration plan to introduce the Fb2 activity as one more replica

1 int RID = BeginReConfiguration("Fa", "Fb2");

2 BeginAwaReConfig(RID, "Fa");

3 AddOutputLink(RID, "Fa", "ao1", new String[]{"b2i1"});

4 int it1 = EndAwaReConfig(RID, "Fa");

5 LaunchActivity("Fb2Spec.xml", "Fb2");

6 BeginAwaReConfig(RID, "Fb2");

7 StartExec(RID, "Fb2");

8 ChangeInputOrder(RID, "Fb2", "b2i1", "Sequence");

9 int it2 = EndAwaReConfig(RID, "Fb2");

10 int[] AgreementSet=new int[]{it1, it2};

11 int K=EndReConfiguration(RID, AgreementSet);

4.4.6 Scenario 6: Recovering from Faults

Long-running scientific experiments involving data streaming can be supported by long-

running workflows characterized by multiple activities for processing data sets. These

activities execute multiple, eventually infinite number of iterations and their T asks can

access external resources often unreliably or with limitations on the quality of service

that can cause faults. After a fault has occurred, the most common approach followed by

some widely used workflow systems, for instance Kepler [Kep14], requires restarting the
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entire workflow anew, which can lead to a waste of execution time due to unnecessarily

repetition of computations. However, by using dynamic reconfigurations of long-running

AWARD workflows some activity faults can be recovered in order to avoid restarting the

complete workflow. For illustrating fault recovery scenarios let us consider the workflow

presented in Figure 4.22, where during the execution of the multiple iterations any of the

three activities can fail.

The Fa activity can fail when it puts tokens into the AWARD Space (output state of

the State Machine), the Fb activity can fail during T ask invocation (invoke state of the

State Machine) and the Fc activity can fail when it gets tokens from the AWARD Space

(input state of the State Machine).

Fa Fb Fc 

ao1 bo1 bi1 ci1 

T O 

I 

Figure 4.22: Distinct failures (Output, Task and Input) on workflow activities

Each activity can fail separately on distinct iterations. Therefore it may not be possible

to apply a reconfiguration plan involving the three activities.

However, according to the analysis performed by the workflow developer three possi-

ble reconfiguration plans can be applied for recovering faults respectively for the Fa, Fb

and Fc activities, as presented respectively in Listing 4.14, Listing 4.15 and Listing 4.16.

Listing 4.14: Recover a fault when Fa is in the output state

1 int RID = BeginReConfiguration("Fa");

2 BeginAwaReConfig(RID, "Fa");

3 RetryAfterFaultOut(RID, "Fa");

4 int it1 = EndAwaReConfig(RID, "Fa");

5 int[] AgreementSet=new int[]{it1};

6 int K=EndReConfiguration(RID, AgreementSet);

Listing 4.15: Recover a T ask fault when Fb is in the invoke state

1 int RID = BeginReConfiguration("Fb");

2 BeginAwaReConfig(RID, "Fb");

3 ChangeTask(RID, "Fb", "scenariotasks.TaskFbnew");

4 RetryAfterFaultTask(RID, "Fb");

5 int it1 = EndAwaReConfig(RID, "Fb");

6 int[] AgreementSet=new int[]{it1};

7 int K=EndReConfiguration(RID, AgreementSet);
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Listing 4.16: Recover a fault when Fc is in the input state

1 int RID = BeginReConfiguration("Fc");

2 BeginAwaReConfig(RID, "Fc");

3 RetryAfterFaultIn(RID, "Fc");

4 int it1 = EndAwaReConfig(RID, "Fc");

5 int[] AgreementSet=new int[]{it1};

6 int K=EndReConfiguration(RID, AgreementSet);

The plan in Listing 4.14 for recovering the Fa activity assumes that any token had not

yet been written in the output state. This requires that failure problems related to the

AWARD Space access are solved and possible clean up actions performed on the AWARD

Space.

The plan in Listing 4.15 for recovering the Fb activity assumes that the workflow

developer specifies a new activity T ask for solving the problem that caused the failure.

The plan in Listing 4.16 for recovering the Fc activity assumes that any token had not

yet been read in the input state. This requires that problems related to the AWARD Space

access are solved and possible restore actions performed on the AWARD Space.

4.4.7 A Note on the Soundness of the Reconfiguration Scenarios

The workflow reconfigurations reached from applying the scenarios 1 to 4 presented in

the previous sections satisfy the soundness properties (Definition 4.4 on page 94). How-

ever, in scenario 5 (Section 4.4.5) the 1st soundness property (Implicit termination) is not

guaranteed for activities that are processing tokens in a load balancing scenario. In fact,

in workflow of scenario 5, the Fa activity issues tokens in round-robin fashion to be re-

ceived by the downstream Fb, Fb1 and Fb2 activities that are running separately without

any knowledge about the number of tokens sent by the Fa activity to each of the down-

stream Fb, Fb1 and Fb2 activities. Therefore when the Fa activity terminates by reaching

its maximum number of iterations, the downstream Fb, Fb1 and Fb2 load balancing ac-

tivities cannot terminate because they are waiting for the next sequence token. In this

scenario all load balancing activities must be terminated separately by using an explicit

asynchronous forced termination command. In scenario 6 the satisfaction of soundness

properties is dependent on the success of the reconfiguration plan for recovering the

activity faults. For the case of T ask invocation fault if the new T ask corrects the problem

that originated the fault the reconfiguration is completely compliant with the soundness

properties. For the cases of input or output faults if the actions for restoring the AWARD

Space are unsuccessful the faults may become persistent requiring to explicitly force the

termination of the workflow activities, which violates the 1st soundness property (Implicit
termination).
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4.5 Chapter Conclusions

The support for dynamic reconfigurations is an innovative contribution of the AWARD

model. It is strongly justified by real scientific applications involving long-running work-

flows that after a long elapsed execution time may require dynamic changes for adjusting

the structure or the behavior of the workflow. In many scenarios of real scientific applica-

tions the requirements are not well known at workflow design time so it is important to

be able to change the workflow without the need of discarding the results of the previous

workflow processing.

The AWARD model and a corresponding extension to the AWARD machine support

the concept of dynamic reconfiguration plan for submitting sequences of reconfiguration

operators to allow structural and behavioral workflow changes. When a reconfiguration

plan involves multiple workflow activities a two phase commit protocol is used for achiev-

ing the earliest iteration number where all activities apply their part of the reconfiguration

plan.

This chapter presented the extensions to the AWARD machine for supporting a set

of dynamic reconfiguration operators allowing structural and behavioral changes of the

workflow. The semantics of each operator as well as the semantics of dynamic reconfig-

uration plans are also presented. The chapter terminates with a discussion of a set of

useful workflow scenarios illustrating the flexibility of the AWARD model for supporting

dynamic reconfigurations.

All of the presented scenarios as well as all application examples presented later in

Chapter 6 were actually implemented and executed, supported by the AWARD architec-

ture, whose design and implementation is discussed in detail in the following chapter.
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5
The Architecture and Implementation of

the AWARD Machine

The architecture and implementation of the AWARD framework, which
allows the development and execution of scientific workflows based on the
AWARD model.

An important contribution of this dissertation is providing the implementation of an

operational framework for allowing end users to be able to develop and execute their

workflows without the need to know about low-level details related to the AWARD ma-

chine.

This chapter describes the AWARD framework for supporting the development and

the execution of real scientific workflows based on the AWARD model. The software ar-

chitecture and the corresponding implementation of the AWARD framework components

are based on object-oriented software design and rely on XML and Java technologies.

In Chapter 6 we describe how the implementation of the AWARD framework and a

set of associated tools have been used for developing workflows in distinct application

cases, namely a text mining application, which was entirely developed by an external

user, relying upon AWARD to experiment with alternative solutions.

According to the standards, in particular the IEEE 1471-2000 [IEE12], a software

architecture of a system must describe the principles governing its design as well as the

fundamental organization of the system in terms of its components, their relationships

to each other and the dependencies upon the underlying execution environment.

Therefore in Section 5.1 we discuss the rationale, principles and assumptions for

developing the AWARD framework to support running AWARD workflows on distinct
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MACHINE

and heterogeneous execution platforms, from standalone computers to processing nodes

on cluster or cloud infrastructures.

In Section 5.2 we describe the AWARD framework. It is organized with a top layer, the

Abstract Workflows layer, for defining the concerns involved when developers are design-

ing the AWARD workflows and a bottom layer, the Concrete Workflows layer, including

the operational components, namely the AWARD Space and the AWARD machine as an

Autonomic Controller for allowing the execution of workflows on computational resources.

The life-cycle for developing AWARD workflows is described in Section 5.3.

In Section 5.4 we describe the grammar for specifying AWARD workflows using the

XML Schema Definition (XSD) language [W3C15].

In Section 5.5 we discuss the requirements for implementing the AWARD Space and

the reasons why we have chosen an implementation based on the IBM TSpaces [Leh+01],

which is itself based on the Linda model [CG89].

In Section 5.6 we describe the DynamicLibrary.jar and its application interface (Dy-
namicAPI) for providing the set of reconfiguration operators that must be integrated in

any Java application for submitting dynamic reconfiguration plans.

Section 5.7 outlines the main software components of the AWARD machine, and

the structure of the XML file used for supporting the configuration of the execution

environment, the main object classes and their interactions to implement the architecture

of the AWARD machine as an AWA executor, including the integration of a Rules Engine.

The set of handlers supported by the Autonomic Controller for receiving asynchronous

notifications, such as for requesting the AWA Context, for forcing an AWA termination

and for supporting dynamic reconfigurations are described in Section 5.8.

Section 5.9 describes the set of tools designed and implemented for running and

monitoring AWARD workflows.

The chapter conclusions are presented in Section 5.10.

5.1 Assumptions for Implementing the AWARD Framework

Unfortunately many scientific workflow systems and tools lack the needed flexibility

to install, configure and execute workflows on heterogeneous infrastructures. In most

cases there are dependencies on software components, middleware platforms or database

systems that preclude easy replication of these workflow systems on multiple and hetero-

geneous computing nodes.

Therefore from the beginning of our research we intended to provide an operational

implementation of the AWARD model as a working prototype with minimal dependencies

on disparate technologies and decoupled from any particular execution infrastructure.

Then we settled the following set of requirements and assumptions to implement the

AWARD framework:
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G Implementation requirements

• A workflow activity (AWA) must be executed in distinct infrastructures with hetero-

geneous operating systems and decoupled from disparate technologies for allowing

the workflow execution in a diversity of infrastructures, ranging from a standalone

Windows or Linux-based computer system to computing nodes in clusters and

clouds. Therefore Java technologies were chosen;

• All configuration data and the AWARD workflow specification must be described

using standard markup languages in order to facilitate their edition, parsing vali-

dation and memory loading. Therefore the XML language and the corresponding

XML schema were chosen;

• The executable program which encapsulates the Autonomic Controller of an AWA

activity should be as transparent as possible regarding the networking and the

related addressing issues;

• Activity T asks development for specific problem domains should be able to use any

type of Java software libraries independently of the AWARD machine. Then the

specification of AWARD workflows may include the file system location of these

libraries to be loaded under the control of the Autonomic Controller when it executes

an activity T ask;

• The end user tools for launching and monitoring the workflow execution must

be available as flexible commands able to be submitted to local computers or to

remote computing nodes. As an example the command to launch the workflow

AWA activities must be able to launch one AWA activity or groups of AWA activities

in distinct computing nodes.

5.2 The AWARD Framework

The AWARD framework (presented in Figure 5.1) encompasses the concepts and mecha-

nisms for the development and execution of AWARD workflows and is subdivided in two

main levels:

1. The Abstract Workflows level defines the high-level abstractions, such as what is an

AWARD workflow, links as abstractions over the AWARD Space for connecting the

workflow activities and a set of dynamic reconfiguration operators for supporting

workflow reconfiguration plans;

2. The Concrete Workflows level offers an operational implementation of the AWARD

model and a set of software tools for facilitating the life-cycle of AWARD workflows
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Figure 5.1: The AWARD framework

development. The upper side of this level defines how to specify concrete workflows

using a specific XML schema as well as a concrete configuration for the execution

environment. This includes, for instance, the configuration of the access to the

AWARD Space and the underlying infrastructure, namely the available computing

nodes, and the configuration of the software libraries possibly used in the T ask

development and required to execute the workflows. This level provides the core

components for executing concrete workflows:

• The implementation of the AWARD machine as an Autonomic Controller capa-

ble of executing any workflow activity, including the support for handling the

activity dynamic reconfiguration;

• The implementation of the AWARD Space as a tuple space following the Linda

model [CG89];

• The dynamic reconfiguration interface (DynamicAPI), which encapsulates the

dynamic reconfiguration operators allowing the development of scripts for

applying reconfiguration plans;

• The AWARD tools, available as a set of commands, for supporting the end users

in launching and monitoring the execution of workflow activities on the un-

derlying infrastructures such as local network standalone computers, clusters,

clouds and allowing interfacing with distinct data storage mechanisms such as
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local file systems, distributed file systems such as the Hadoop Distributed File

System (HDFS) [Apa15a] or the Network File System (NFS) [San+88] or other

middleware for managing distributed data repositories.

5.3 The Life-cycle for Developing AWARD Workflows

An important motivation that led to the creation of the AWARD model aimed at simplify-

ing the life-cycle of scientific workflows by allowing the workflow developers to focus on

the application requirements and not on details of the workflow system implementation.

In general the life-cycle of scientific workflows includes the application decomposi-

tion into activities and the design of each activity by the selection of adequate programs

or software components for executing these activities, as well as the configuration setup

of the connections for supporting the data or control flows between activities. After that

stage the workflow instances are launched for execution on the underlying infrastructures.

Usually there is a lack of support for monitoring the activities execution until their ter-

mination. Therefore the AWARD workflow life-cycle is based on eight steps as depicted

in Figure 5.2 where the 7th step is used to provide an adequate support for monitoring

the workflow execution and, as a distinct characteristic of the AWARD model, the 8th

step supports the development and submission of reconfigurations plans for allowing

dynamic workflow reconfigurations.

1 - Application as a composition 
of activities 

2 – Assign unique names 
(identifiers) to activities and 

input/output ports  

3 -  Specify links between 
activities 

4 – Specify and develop the  
activities    

6 – Launch activities for 
workflow execution    

7 – Monitor the workflow 
execution    

8 –  Prepare and submit 
reconfiguration plans    

End of 
Execution 

yes 

No 

5 – Configure the infrastructure 
environment    

Figure 5.2: The life-cycle of the AWARD workflows

149



CHAPTER 5. THE ARCHITECTURE AND IMPLEMENTATION OF THE AWARD

MACHINE

The main actions, performed by workflow developers on each step of the life-cycle,

are described in the following:

Step 1: According to the problem domain requirements the application is decomposed

into multiple activities and their dependencies are specified in terms of sequential or

parallel patterns. The activity composition includes the links for connecting the output

ports of an activity to the input ports of other activities. The result of this step is a graph

design, the AWARD workflow, where the graph vertices are the workflow activities and

the graph edges are the links between activities. The AWARD workflow has a logical name

related to the application and a global maximum number of iterations for all activities;

Step 2: According to the AWARD model this step corresponds to assigning names as

unique identifiers to each activity, to each input port and to each output port. Currently

the AWARD architecture assumes that the uniqueness of names is ensured at design time

by the workflow developer;

Step 3: For each link the associated token type is defined by specifying an application

dependent data type used to exchange data or control flow between activities. In the case

of a simple link, the output port (the origin of link) is associated with the name of the

destination input port and the token mode is specified as Single. In addition to specifying

the set of associated destination input ports, the output port (the origin of link) of a multi-

link also specifies the token mode as Replicate or RoundRobin. The destination input port

of a simple link also specifies the input mode as Iteration or Sequence. If the input mode

is Sequence, then this restricts the corresponding activity to a single input port, which can

only be connected through a simple link. In the case of a multi-link the input mode of a

destination input port is Iteration or Any;

Step 4: For each activity its internal components are specified and developed accord-

ing to the substeps presented in Figure 5.3.

4.1 – Map the input ports to the 
Task arguments 

4.3 – Program the activity Task 
as a Java class  

4.4 -  Map the Task Results to 
the output ports 

4.2 – Define the activity initial 
Parameters  

4 – For each 
Activity 

Figure 5.3: Substeps for specifying and developing the activities
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Step 4.1: An activity T ask can receive an array of Nargs arguments. A map function

defines how tokens received on the activity input ports are mapped to T ask Arguments

by a set of pairs where a pair associates the argument number 0..Nargs to the name of an

input port;

Step 4.2: An activity can receive an array of Npars initial P arameters, for instance

filenames, URLs, IP addresses, IP ports etc;

Step 4.3: Each activity resulting from the application decomposition has an associated

T ask, which represents the executable code of the activity algorithm. The workflow de-

veloper specifies, in the Java language, the entry point of the activity T ask class according

to the skeleton presented in Listing 5.1;

Step 4.4: An activity T ask can return an array of Nres Results. A map function defines

how these Results are mapped to the output ports by a set of pairs where a pair associates

the name of an output port to an result number 0..Nres.

Listing 5.1: The entry point class for implementing an activity T ask

1 // Entry point class for implementing an activity Task

2 public class ActivityTask implements IGenericTask {

3

4 public Object[] EntryPoint(Object[] Arguments, Object[] Parameters) {

5 // Any Java code, including the invocation of the class methods

6 // for modeling the activity algorithm, the utilization

7 // of application-dependent software libraries and other resources,

8 // for instance the possible access to Web services

9

10 Object[] Results = new Object[]{ res0,...,resN };

11 return Results;

12 }

13 // Other class methods for modeling the activity algorithm

14 }

Step 5: The AWARD workflows can be launched in distinct infrastructures, including

a single computer, multiple computers in a local network or multiple computing nodes

as virtual machines, for instance in clusters or clouds. Therefore before launching a

workflow some configuration details of the underlying infrastructure must be defined,

for instance, the addressing details of the AWARD Space, the working directories for

accessing data and executable files or the home directories for software libraries needed

for running some activities. An important characteristic of the configuration environment

is related to the levels of logging for debugging or monitoring the workflow execution.

These configurations are specified in a configuration file named awardConfig.xml whose

schema is presented in Section 5.7.1 (Listing 5.10 on page 168);

Step 6: The workflow is launched for execution on the available underlying infras-

tructure. The AWARD framework offers flexible tools to launch all activities in the same

computer or groups of activities including one by one on separate computing nodes, for

instance virtual machines in clusters or clouds;
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Step 7: The AWARD configuration environment allows specifying different levels of

logging for enriching the information available during the workflow execution. Therefore

in this step the workflow developer can perform the monitoring of the workflow execution

with great flexibility;

Step 8: As presented in Chapter 4 the AWARD model supports dynamic workflow

reconfigurations. Following the analysis of logging information performed in the 7th step

by monitoring the workflow execution or by analyzing the workflow intermediate results,

the developer can prepare reconfiguration plans in order to change the structure or the

behavior of the workflow. Therefore the 7th and 8th steps can be repeated cyclically until

the termination of the workflow execution.

5.4 The Workflow Specification XML Schema

The flexibility and usability of user interfaces to design scientific workflows are important

issues, namely when the workflows have a large number of activities. Other important

issue is the lack of standards related to workflow specification languages. Initiatives like

extensions to the Business Process Execution Language (BPEL) [BPE06], the Yet Another

Workflow Language (YAWL) [RH09] as a workflow language inspired in Petri nets, the

UML (Unified Modeling Language) [OMG15] diagrams or in most cases some specific

XML schemas [W3C15] have been used without consensus. These issues are out of the

scope of this dissertation.

However, in our work we found out that the flexibility of the standard XML Schema

Definition (XSD) is sufficient for defining markup languages for specifying the workflow

activities and their interactions as well as other workflow configurations.

Specifying an AWARD workflow consists of editing a XML file containing the defini-

tion of values for workflow details where the structure of the XML file is conforming to

a XML schema. This schema defines the grammar for workflow specification and allows

validating if a given workflow XML file is or is not well-formed. In order to facilitate

the description in the following the AWARD XML schema is presented by blocks using a

graphical representation and the corresponding syntax in XSD (XML Schema Definition),

as recommended by the World Wide Web Consortium (W3C) for specifying how to formally

describe the elements in an Extensible Markup Language (XML) document.

As simple but sufficient view of the XSD syntax there are few main concepts: i) The

XML namespaces as definitions for the scope of names; and ii) The ComplexType to define

an entity type as a sequence of named element of primitive types (int, string, etc.) or other

ComplexTypes.

As depicted in Figure 5.4 and detailed in Listing 5.2 the specification of an AWARD

workflow (element named AwardWorkflow in line 7 of the listing) consists of assigning

values to the elements of the AwardSpecification complexType. These elements are defined

in the scope of AWARD specification XML namespace, denoted by http://Award.xsd.
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Figure 5.4: AWARD XML schema: The workflow specification

The first element named WorkflowName defines a name for the workflow as a string.

The element named MaxIterations defines the maximum number of iterations as an inte-

ger number. The element named AdditionalLibrariesPath is a string containing a list of

application dependent additional Java packages used to develop the T asks of the work-

flow activities to be added to the Java CLASSPATH environment variable. The repeatable

Listing 5.2: AWARD XSD: The workflow specification
1 <?xml version="1.0" encoding="utf-8"?>

2 <xs:schema

3 targetNamespace="http://Award.xsd"

4 elementFormDefault="unqualified"

5 xmlns:Ans="http://Award.xsd"

6 xmlns:xs="http://www.w3.org/2001/XMLSchema" >

7 <xs:element name="AwardWorkflow" type="Ans:AwardSpecification"/>

8 <xs:complexType name="AwardSpecification">

9 <xs:sequence>

10 <xs:element name="WorkflowName" type="xs:string"/>

11 <xs:element name="MaxIterations" type="xs:int"/>

12 <xs:element name="AdditionalLibrariesPath" type="xs:string">

13 <xs:annotation>

14 <xs:documentation>

15 Additional libraries to the Java CLASSPATH

16 </xs:documentation>

17 </xs:annotation>

18 </xs:element>

19 <xs:element name="Awa" type="Ans:AwaSpecification"

20 minOccurs="1" maxOccurs="unbounded"/>

21 </xs:sequence>

22 </xs:complexType>

23 . . .

24 </xs:schema>
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element named Awa defines the specification of each workflow activity and is based on

the AwaSpecification complexType.

The specification of an Autonomic Workflow Activity (AWA) (AwaSpecification), as de-

picted in Figure 5.5 and detailed in Listing 5.3, consists of assigning values to the elements

of the AwaSpecification complexType. The element named name defines a name for the

AWA activity as a string. The element named ControlUnit is a complexType used to specify

the initial configuration of the State Machine. The element named input with zero or more

occurrences allows the specification of the AWA activity input ports where each input

port is an instance of the input complexType. The element named output with zero or more

occurrences allows the specification of the AWA activity output ports where each output

port is an instance of the output complexType. The element named Task is a complexType
used to specify the activity T ask.

Figure 5.5: AWARD XML schema: The AWA specification

Listing 5.3: AWARD XSD: The AWA specification

1 <xs:complexType name="AwaSpecification">

2 <xs:sequence>

3 <xs:element name="name" type="xs:string"/>

4 <xs:element name="ControlUnit" type="Ans:ControlUnit"/>

5 <xs:element name="input" type="Ans:InputPort" minOccurs="0"

6 maxOccurs="unbounded"/>

7 <xs:element name="output" type="Ans:OutputPort"

8 minOccurs="0" maxOccurs="unbounded"/>

9 <xs:element name="Task" type="Ans:Task" />

10 </xs:sequence>

11 </xs:complexType>

As depicted in Figure 5.6 and detailed in Listing 5.4, the specification of the initial

configuration for the State Machine (element named ControlUnit) consists of assigning
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an optional particular value to the AWA MaxIterations that overrides the global value of

MaxIterations defined for all workflow activities. The element named InitialState allows

specifying (as a string) if the State Machine initialization is in idle state or in the WaitConfig
state. The element named RulesFilePath is a string with the pathname of the text file con-

taining the initial default facts and rules used by Rules Engine of the Autonomic Controller.

Figure 5.6: AWARD XML schema: The initial State Machine specification

Listing 5.4: AWARD XSD: The initial State Machine specification

1 <xs:complexType name="ControlUnit">

2 <xs:sequence>

3 <xs:element name="MaxIterations" type="xs:int" minOccurs="0" maxOccurs="1">

4 <xs:annotation>

5 <xs:documentation>

6 Overrides the global MaxIterations

7 </xs:documentation>

8 </xs:annotation>

9 </xs:element>

10 <xs:element name="InitialState" type="xs:string">

11 <xs:annotation>

12 <xs:documentation>{idle,WaitConfig}</xs:documentation>

13 </xs:annotation>

14 </xs:element>

15 <xs:element name="RulesFilePath" type="xs:string">

16 <xs:annotation>

17 <xs:documentation>

18 Text file containing the initial rules

19 </xs:documentation>

20 </xs:annotation>

21 </xs:element>

22 </xs:sequence>

23 </xs:complexType>

As depicted in Figure 5.7 and detailed in Listing 5.5, the specification of an input

port (InputPort) consists of assigning values to the elements of a complexType named

InputPort. The element named name allows assigning a name to the input port as a
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string. The element named state allows assigning one of the three possibly string values

(Enable, Disable, EnableFeedback) to the initial state of the input port. The element named

tokenType allows specifying the qualified name of the Java type used for tokens associated

with the input port. The element named orderMode allows assigning one of the three

possibly string values (Iteration, Sequence, Any) to specify the mode how the input port

consumes tokens.

Figure 5.7: AWARD XML schema: The input port specification

Listing 5.5: AWARD XSD: The input port specification

1 <xs:complexType name="InputPort">

2 <xs:sequence>

3 <xs:element name="name" type="xs:string" />

4 <xs:element name="state" type="xs:string" >

5 <xs:annotation>

6 <xs:documentation>{Enable, Disable, EnableFeedback}</xs:documentation>

7 </xs:annotation>

8 </xs:element>

9 <xs:element name="tokenType" type="xs:string" />

10 <xs:element name="orderMode" type="xs:string" >

11 <xs:annotation>

12 <xs:documentation>{Iteration, Sequence, Any}</xs:documentation>

13 </xs:annotation>

14 </xs:element>

15 </xs:sequence>

16 </xs:complexType>

As depicted in Figure 5.8 and detailed in Listing 5.6, the specification of an output

port (OutputPort) consists of assigning values to the elements of a complexType named

OutputPort. The element named name allows assigning a name to the output port as a

string. The element named state allows assigning one of the three possibly string values

(Enable, Disable, EnableFeedback) to the initial state of the output port. The element named

tokenType allows to specify the qualified name of the Java type used for tokens associated

with the output port. The element named modeToken allows assigning one of the three

possibly string values (Single, Replicate, RoundRobin) to specify the mode how the output
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port emits tokens. The element named sendTo allows specifying (as strings) one or more

names of destination input ports connected to the output port.

Figure 5.8: AWARD XML schema: The output port specification

Listing 5.6: AWARD XSD: The output port specification

1 <xs:complexType name="OutputPort">

2 <xs:sequence>

3 <xs:element name="name" type="xs:string" />

4 <xs:element name="state" type="xs:string">

5 <xs:annotation>

6 <xs:documentation>{Enable, Disable, EnableFeedback}</xs:documentation>

7 </xs:annotation>

8 </xs:element>

9 <xs:element name="tokenType" type="xs:string" />

10 <xs:element name="modeToken" type="xs:string">

11 <xs:annotation>

12 <xs:documentation>{Single, Replicate, RoundRobin}</xs:documentation>

13 </xs:annotation>

14 </xs:element>

15 <xs:element name="sendTo" type="xs:string" minOccurs="1"

16 maxOccurs="unbounded">

17 <xs:annotation>

18 <xs:documentation>

19 List of names of the destination input ports

20 </xs:documentation>

21 </xs:annotation>

22 </xs:element>

23 </xs:sequence>

24 </xs:complexType>

As depicted in Figure 5.9 and detailed in Listing 5.7, the specification of the activity

task (Task) consists of assigning values to the elements of a complexType named Task. The
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optional element named Parameters allows defining one or more initial T ask parameter

where each parameter is a string named par. The element named SoftwareComponent
allows specifying the Java software component implementing the activity algorithm as

well as the mappings from input ports to T ask Arguments and mappings from T ask

Results to the output ports.

Figure 5.9: AWARD XML schema: The activity T ask specification

Listing 5.7: AWARD XSD: The activity T ask specification

1 <xs:complexType name="Task">

2 <xs:sequence>

3 <xs:element name="parameters" type="Ans:Parameters"

4 minOccurs="0" maxOccurs="1" />

5 <xs:element name="SoftwareComponent" type="Ans:SoftwareComponent" />

6 </xs:sequence>

7 </xs:complexType>

8

9 <xs:complexType name="Parameters">

10 <xs:sequence>

11 <xs:element name="par" type="xs:string" minOccurs="1"

12 maxOccurs="unbounded" />

13 </xs:sequence>

14 </xs:complexType>

As depicted in Figure 5.10 and detailed in Listing 5.8, the specification of the ac-

tivity T ask software component (SoftwareComponent) consists of assigning values to the

elements of a complexType named SoftwareComponent. The element named mappingArgs
allows specifying how T ask Arguments are mapped from input ports as an unlimited se-

quence of elements named arg. Each element arg allows assigning values to the elements

of a complexTypenamed arg that represents an association between an input port named

inName and the index position, named idxArg, on T ask Arguments list.

The element named taskImplementationType allows to specify the qualified name of

the Java type which implements the T ask algorithm.

The element named mappingResults allows specifying how a list of T ask Results are

mapped to output ports as an unlimited sequence of elements named result. Each element
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Figure 5.10: AWARD XML schema: The T ask software component specification

Listing 5.8: AWARD XSD: The T ask software component specification
1 <xs:complexType name="SoftwareComponent">

2 <xs:sequence>

3 <xs:element name="mappingArgs" type="Ans:MappingArguments"

4 minOccurs="0" maxOccurs="1"/>

5 <xs:element name="taskImplementationType" type="xs:string"/>

6 <xs:element name="mappingResults" type="Ans:MappingResults"

7 minOccurs="0" maxOccurs="1"/>

8 </xs:sequence>

9 </xs:complexType>

10 <xs:complexType name="MappingArguments">

11 <xs:sequence>

12 <xs:element name="arg" type="Ans:Argument"

13 minOccurs="1" maxOccurs="unbounded"/>

14 </xs:sequence>

15 </xs:complexType>

16 <xs:complexType name="Argument">

17 <xs:sequence>

18 <xs:element name="idxArg" type="xs:int"/>

19 <xs:element name="inName" type="xs:string"/>

20 </xs:sequence>

21 </xs:complexType>

22 <xs:complexType name="MappingResults">

23 <xs:sequence>

24 <xs:element name="result" type="Ans:Result"

25 minOccurs="1" maxOccurs="unbounded"/>

26 </xs:sequence>

27 </xs:complexType>

28 <xs:complexType name="Result">

29 <xs:sequence>

30 <xs:element name="idxRes" type="xs:int"/>

31 <xs:element name="outName" type="xs:string"/>

32 </xs:sequence>

33 </xs:complexType>
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result allows to assign values to the elements of a complexType named result that represents

an association between a position index, named idxRes, of the T ask Results and an output

port named outName.

For representing the data associated to the AWA specification details the implementa-

tion of the Autonomic Controller internally uses a set of objects as presented in Section 5.7

(Figure 5.15 on page 170).

G Discussion

Nowadays there are a lot of tools to edit XML files and validate their conformity to

a XML schema. Therefore editing XML workflow files and their validation against the

AWARD XML schema is out of the scope of this disertation. However, we developed

a basic tool, included in the AWARD tools described in Section 5.9 for helping work-

flow developers to verify if a workflow specification is conform to the XML specification

schema.

The development of a graphical tool for designing the AWARD workflows is also out

of the scope of this dissertation.
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5.5 The AWARD Space

In the AWARD model the AWARD Space abstraction supports the communication (links)

and the corresponding tokens between input and output ports of the workflow activities.

Furthermore, the AWARD Space also supports the asynchronous event communica-

tion with workflow activities for forcing the termination of an AWA, for requesting the

activity context information or for supporting the dynamic reconfiguration of activities.

The AWARD Space can be implemented as any globally accessed data store character-

ized by the properties defined in Section 3.4.2 on page 71 and outlined in the following:

• Unbounded size: Support for storing all tokens of all links independently of the

token production pace by all workflow activities;

• Associative (Content addressable): The access to tokens must be associative for

allowing token retrieval by any of their fields;

• Atomic write: When a producer writes a token into the AWARD Space, the con-

sumers can not observe uncomplete sets of the token fields;

• Persistent write: The AWARD Space must ensure the persistence of tokens on non-

volatile memory in a transparent way;

• Atomic retrieval: Token retrieval from the AWARD Space must be atomic in the

presence of concurrency;

• Subscribing: The AWARD Space must allow implementing the observer software

design pattern or the publish/subscribe messaging pattern, by maintaining a list of

registered subscribers interested in specific tokens. When these tokens are written

into the AWARD Space the subscribers are automatically and asynchronously noti-

fied. This property is mainly used to implement the event handlers for supporting

the asynchronous communication to the Autonomic Controller, namely on dynamic

reconfigurations.

For implementing the AWARD Space many distinct alternatives are available, for

example multiple Data Base Management Systems (DBMS), multiple Message Oriented
Middleware (MOM) based in message queues, or multiple in-memory key-value storage

systems.

As examples (and considering only alternatives without license costs) we have several

DBMS systems, such as MySQL [WA02], several MOM implementations based on the

standard Advanced Message Queuing Protocol (AMQP) [OAS15a], for instance Apache

Qpid [Apa15b] or based on Java Message Service (JMS) specification [Jav15] and multiple

in-memory key value data storage, for instance Cassandra [LM10].

However, most of these possible approaches are closely coupled to specific infrastruc-

tures and are not flexible for installation in heterogeneous environments, for instance on
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a standalone computer, on clusters or in computing nodes as virtual machines of distinct

clouds.

On one hand the motivations for developing the AWARD model are the flexibility

for decoupling the workflow execution from particular infrastructures and their configu-

rations for instance the execution of distinct workflow activities in different computing

nodes should not be dependent on the prior installation of technologies except for the

Java runtime. On the other hand the properties required by the AWARD Space are closely

related to the tuple space concept based on Linda model [CG89].

Then conceptually the AWARD Space can be implemented by any tuple based asso-

ciative memory from several existing solutions. As examples, JavaSpaces [Ora12], IBM

TSpaces [Leh+01], MozartSpaces [Spa12], Gigaspaces [Gig12], and SQLspaces [Col12] or

even distributed tuple spaces, such as Comet [LP05] and Tupleware [Atk08], a distributed

tuple space for cluster computing. However, most of those tuple space implementations

are unavailable for reutilization or have dependencies upon other technologies. Although

currently (as of 2016) the IBM TSpaces is unavailable, at the beginning of the first AWARD

prototype implementation it was available and was chosen for the following reasons:

• The IBM TSpaces only depends on the Java language runtime;

• The IBM TSpaces software library is provided by a Java package (tspaces.jar) with a

very small size of 411 KB, which enables that potentially any Java application can

host a tuple space server or can access other remote tuple space servers;

• The communication for accessing the tuple space server is supported by Transmis-

sion Control Protocol/Internet Protocol (TCP/IP) connections, using a binary data

format, which does not introduce great overheads;

• The IBM TSpaces server has the built-in functionality to support access via Hyper

Text Transfer Protocol (HTTP) for accessing the status of the server. This is an

important characteristic for monitoring the execution of long-running workflows

by inspecting the tuples stored into the tuple space server containing the AWARD

Space. Furthermore, due to the property of a unbounded size of the AWARD Space,

acessing the status of the tuple space server allows to monitor the memory occupied

by tokens, which is important to anticipate possibe problems related to physical

memory limits, namely in workflows where some activities consume tokens at a

slow pace when comparing with a high pace of the associated upstream activities

5.5.1 The AWARD Space as a Set of Tuple Spaces

The architecture of the AWARD Space implementation is presented in Figure 5.11. The

AWARD Space is a Java application server that can be executed on any computing node

and is accessible using two ports: a TCP/IP port used for supporting the operations

performed by workflow activities (AWA) on a set of tuple spaces; and an HTTP port used
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for supporting the server state monitoring including the visualization of tuples that are

stored on all tuple spaces.

Tuple
Space

Http

Tcp

Java Virtual Machine

IBM API tspaces.jar
Configuration 

file

Tuple
Persistence

AWARD Space
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executions

Tuple
Space

Tuple
Space

Fig 5.12

Figure 5.11: The AWARD Space implementation based on IBM TSpaces

The AWARD Space implementation uses distinct tuple spaces, such as a main tuple

space for supporting the tokens flow between input and output ports and a set of tuple

spaces for logging status information during the execution of the workflow activities as

well as for logging information related to the elapsed execution time of each iteration of

the workflow activities.

The IBM TSpaces supports the persistence of tuples in a relational database or in a

file in the current server directory. In order to decouple the AWARD Space from database

technologies the persistence of tuples is supported by a file store. This makes the instal-

lation of the AWARD Space server very simple only by copying files to any file system

directory of any computing node only depending on the Java virtual machine.

After the copy of the required files and assuming that the destination directory is in

the system PATH variable, launching an AWARD Space server is simply made by using

the AWARD tool "AwardSpace [tcpport=8500 httpport=8501]" to submit a local or remote

command to launch the server.

The definition of TCP/IP ports is optional to override the default ports values included

in the configuration file as shown in Listing 5.9.

Despite the possibility for changing multiple parameters in the configuration of the

IBM TSpaces server in the AWARD Space server we only change the accessing ports and

disable the verification of permissions based on access control lists.

We developed a software library for accessing the AWARD Space to facilitate the devel-

opment of the AWARD tools and any application, namely the workflow activities running

in distinct computing nodes.
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Listing 5.9: Excerpt of the AWARD Space server configuration file
1 [TCPServer]

2 TcpPort = 8200 // Tcp connection port

3 [HTTPServer]

4 HTTPServerSupport = true // enable Http access on HttPort

5 HttpPort = 8201

6 [Users]

7 Sysadmin // user administrator

8 [AccessControl]

9 CheckPermissions = false // disable access control lists

10 AdminUser = sysadmin AdminPassword = admin

This library provides the following operations:

• TSpace=CreateSpace(SpName, ServerName, TcpPort): It allows to initiate a tuple

space named SpName on the AWARD Space running on a computer named Server-
Name and accessed on the TcpPort port. This allows to distinguish the spaces of

different workflows or even different runs of the same workflow;

• StoreTuple(TSpace, Tuple): A non-blocking operation which allows to write a Tuple
into a previously created TSpace;

• Tuple TakeTuple(TSpace, TupleTemplate): A blocking operation which allows to atom-

ically taking (destructive read) a Tuple from the TSpace. The TupleTemplate tuple

supports undefined fields denoted by (?) to define the tuple pattern matching. For

instance, according to a token definition (Definition 3.4 on page 58) a tuple tem-

plate can be interpreted as a token produced on the K th iteration bound for the

input port named I1A with any token value and any sequence number;

• RegisterEventHandler(TSpace, Handler, TupleTemplate): An operation to register a

callback event handler (Handler) activated when any tuple that conforms to the

tuple template TupleTemplate is written into the TSpace. This operation plays an

important role for the support of dynamic interactions with the workflow activities,

namely on dynamic reconfigurations.

5.6 Dynamic Reconfiguration API

As presented in section 3.4 the AWARD Space supports the links for connecting the

input and output ports of the workflow activities. Additionally the AWARD Space has

properties for allowing dynamic interactions based on the publishing/subscribing model.

The AWARD model is neutral regarding the way how these events are published into

the AWARD Space which allows flexible approaches. The implemented approach allows

any tool as a Java application to publish these events using a reusable Java library named

DynamicLibrary.jar, which implements an application programming interface named Dy-
namicAPI. This Dynamic Reconfiguration API (DynamicAPI) provides the functionality of
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a set of dynamic reconfiguration operators to be integrated in development environments

for developing tools, such as applications used to perform reconfiguration plans. For in-

stance in Chapter 6 we describe a scenario that has also been presented in [AC13] where

a tool monitors the execution of a workflow for detecting faults and automatically uses

the Dynamic Reconfiguration API, to reconfigure the workflow in order to recover from

faults.

For each reconfiguration operator the Dynamic Reconfiguration API encapsulates the

interactions with the AWARD Space for allowing the AWA autonomic activities involved

in reconfiguration plans to handle their reconfiguration sequence and achieve the global

common iteration agreement needed to the success of a reconfiguration plan. These

interactions are detailed in Section 5.8 on page 177 where the AWARD machine handlers

are described.

5.6.1 Dynamic Reconfiguration Operators in the DynamicLibrary

The Java library DynamicLibrary.jar that implements the DynamicAPI interface must be

used by the AWARD workflows developer when developing any kind of tools to monitor

and reconfigure long-running workflows.

The library provides a set of functions corresponding to the dynamic operators de-

fined in Section 4.2.1 and depicted in diagram of Figure 5.12.

Each function corresponding to a dynamic reconfiguration operator of the Dynam-
icAPI interface, including the operator signature (arguments and respective types) is

presented in Figure 5.13 on page 167.

Note that the CreateOutput function has two versions with different signatures. This

allows to create an output port without specifying the destination links (SendT o), that

must be configured later using the AddOutputLink or ChangeOutputLink operators.

The description of arguments is presented in Table 5.1 on page 166.

Currently, the AWARD architecture and its implementation requires the developer

who is responsible for the programming of the reconfiguration plan to ensure that the

names of new activities and new input output ports are unique.

165



CHAPTER 5. THE ARCHITECTURE AND IMPLEMENTATION OF THE AWARD

MACHINE

«interface»
DynamicAPI

(from DynamicLibray)

AddOutputLink()
BeginAwaReConfig()
BeginReConfiguration()
ChangeInputOrder()
ChangeInputState()
ChangeMappingInputs()
ChangeOuputState()
ChangeOutputLink()
ChangeOutputStrategy()
ChangeParameters()
ChangeTask()
CreateInput()
CreateOutput()
EndAwaReConfig()
EndReConfiguration()
ForceTermination()
GetAwaContext()
LaunchActivity()
Resume()
Terminate()
StartExec()
Suspend()
ChangeMaxIterations()
ChangeMappingOutputs()
RetryAfterFaultIn()
RetryAfterFaultTask()
RetryAfterFaultOut()

Page 1 of 1

01/07/2016file:///D:/Investigação2016/TeseLatex/TeseLass/Chapters/Figures/DynamicLibrayV2....

Figure 5.12: The interface provided by DynamicLibray.jar

Table 5.1: The arguments of the dynamic reconfiguration operators

Argument Description

RID Reconfiguration identifier
awaName Activity name
inName Input port name
outName Output port name
dstList List of input port names for adding to sendTo destinations of an output port
awaNameList List of activity names
orderInputMode Input port order mode for consuming tokens: Iteration, Sequence, Any
portState State of the input and output ports: Enable, Disable, EnableFeedback
inputsToArgs List of input port names for mapping T ask Arguments
outputMode Output port mode to issue tokens: Single, Replicate, RoundRobin
SendTo List of of input port names destinations
params List of activity P arameters
taskType The qualified name of the Java class implementing the activity T ask
tokenType The qualified name of the Java class implementing the token type
ItersProposed Set of iteration numbers proposed to achieve the reconfiguration agreement
AwaContext Java Class for containing the AWA Context
awardConfigFile Filename of the AWARD configuration file
wkfXmlFile Filename of the XML workflow specification
newMaxIter New maximum iteration number
resToOutputs List of output port names for mapping T ask Results
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Figure 5.13: The signature of the operators provided by DynamicAPI.jar
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MACHINE

5.7 The Components of the AWARD Machine

For supporting the execution of the Autonomic Controller of an autonomic workflow activ-

ity (AWA) the AWARD machine is implemented as a Java application named AwaExecutor.

The implementation design follows the object-oriented programming model by defining

Java classes to model data and the corresponding methods for implementing the algo-

rithms and interactions between objects for supporting the AWARD machine. Therefore

the relationships between the main internal components of the AwaExecutor are described

using UML simplified diagrams to represent object classes and sequences of object inter-

actions.

5.7.1 The Configuration of the Execution Environment

Considering that the multiple workflow activities (AWA) can be executed on distinct

computing nodes the AwaExecutor requires configuration data related to the execution

environment, for instance the location of the AWARD Space as well as the pathnames of

directories containing the required files such as the workflow definition XML file. This

configuration data is defined in a XML file as presented in Listing 5.10. It is assumed that

each workflow activity executed by an AwaExecutor is able to read this configuration file,

which should be replicated or accessible in all computing nodes.

Listing 5.10: The AWARD configuration environment file

1 ?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <AwardConfig>

3 <LogLevel>0</LogLevel>

4 <TimesExecEnabled>yes</TimesExecEnabled>

5 <JavaSDKbin>C:\Program Files\Java\jdk1.7.0_40\bin\java</JavaSDKbin>

6 <TSpacesHostTcpName>PLASS2</TSpacesHostTcpName>

7 <TSpacesTcpPort>8500</TSpacesTcpPort>

8 <TSpacesHostHttpName>PLASS2</TSpacesHostHttpName>

9 <TSpacesHttpPort>8501</TSpacesHttpPort>

10 <MainSpaceName>Tokens</MainSpaceName>

11 <AwaExecutorBaseDirectory>D:\AwaExecutor\</AwaExecutorBaseDirectory>

12 <ExecutableAwaExecutor>AwaExecutor.jar</ExecutableAwaExecutor>

13 <WorkflowDirectoryFiles>D:\WorkflowFiles\</WorkflowDirectoryFiles>

14 </AwardConfig>

The configuration file contains information related to the location (addresses and

ports) of the AWARD Space, the name of the tuple space used, the home directories for

getting the executable JAR of the AwaExecutor as well as the home directory to get the

workflow specification. Additionally some configuration information is related to the

support for monitoring the execution of workflows. The AwaExecutor produces log in-

formation according to levels where level 0 is the most verbose and level 10 only logs

the current iteration number, the current state of the State Machine, the input and output

tokens, the T ask Arguments and the T ask Results. The AwaExecutor also supports the
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logging of the elapsed execution times for allowing the analysis of overheads or for in-

stance to measure the benefits of applying reconfiguration scenarios in terms of execution

times.

The first two entries in configuration file <LogLevel> and <TimesExecEnable> are

useful for supporting monitoring and debugging of the workflows execution.

The LogLevel number is used by the AWARD machine components for producing more

or less detailed logging information.

The TimesExecEnable flag is used to produce, or not, logging information related to

the elapsed execution times of each internal step of the Autonomic Controller.

In Section 5.9 we demonstrate how this logging information is useful. This config-

uration information is accessed by all components of the AwaExecutor using the class

represented in Figure 5.14.

AwardConfig

LogLevel: int
TimesExecEnabled: String
JavaSDKbin: String
TSpacesHostTcpName: String
TSpacesTcpPort: int
TSpacesHostHttpName: String
TSpacesHttpPort: int
MainSpaceName: String
AwaExecutorBaseDirectory: String
ExecutableAwaExecutor: String
WorkflowDirectoryFiles: String

Page 1 of 1

03/08/2016file:///D:/AWARDv21/AWARDessentials/NewDiagrams/ClassAwardConfigV2.svg

Figure 5.14: AWARD configuration class

5.7.2 Workflow Specification Classes

The workflow specification is obtained from the workflow specification XML file and is

stored by a set of classes and the corresponding associations as represented in Figure 5.15.

These classes store the details of a workflow specification as presented in Section 5.4 on

page 152.

The associations between classes indicate: i) A workflow has one or more AWA activi-

ties; ii) An AWA activity has zero or more inputs, zero or more outputs, one T ask and one

control unit; iii) A T ask is a software component; iv) The software component has one

mapping from inputs to T ask Arguments and a mapping from T ask Results to outputs;

v) Mapping arguments maps zero or more inputs to the Arguments list; vi) Mapping

results maps zero or more outputs from T ask Results.
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Awa

name: String

AwaControlUnit

+maxIterations: Integer
+initialState: String
+rulesFilePath: String

1

+controlUnit
AwardWorkflow

workflowName: String
maxIterations: Integer
additionalLibrariesPath: String

+awaset

1..*

AwaInput

+name: String
+state: String
+tokenType: Class
+orderMode: String

0..*

+inputs

AwaTask

1

+task

TaskSoftwareComponent

taskImplementationType: String

1

+softwareComponent

AwaOutput

name: String
state: String
tokenType: Class
modeToken: String
sendTo: String

0..*

+outputs

TaskArgsList

1
+mappingArgs

TaskResultList

1
+mappingResults

TaskArg

+idxArg: Integer
+inName: String

+arg

0..*

TaskResult

+idxRes: Integer
+outName: String

0..*

+result

Page 1 of 1

04/07/2016file:///D:/AWARDv21/AWARDessentials/NewDiagrams/WorkflowSpecificationClas...

Figure 5.15: The workflow specification classes

5.7.3 The AWA Executor

The implementation of the AWA executor relies on the interactions between a set of

software components modeled as Java objects. The main objects and their interactions

are depicted in Figure 5.16 as a UML simplified sequence diagram that does not include

the interactions related to handlers for getting the AWA Context, for performing dynamic

reconfigurations as well as for forcing the AWA activity termination. These handlers will

be presented in the Section 5.8. Therefore the main interactions are described in the

following:

1. The main object named AwaExecutor is a Java application launched from tools de-

veloped for working with AWARD workflows;

2. The AwaExecutor object loads the AWARD configuration XML file;

3. The AwaExecutor creates the AwaController object responsible for the global coordi-

nation of the AWA activity life-cycle;
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Figure 5.16: The sequence interactions of the AWARD machine components
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4. The AwaController starts and establishes a connection to the AWARD Space;

5. The AwaController creates the RulesEngine object as an abstraction object for encap-

sulating the Rules Engine of the AWARD machine;

6. The AwaController loads the AWA activity specification from the workflow defini-

tion file;

7. The AwaController creates the AwaInternal object to store the global data related

to the AWA activity specification, for instance the T ask name, the input ports def-

initions and its corresponding mappings for T ask Arguments as well as the T ask

Results and the corresponding mappings for the output ports;

8. The AwaController creates the AwaContext object for storing the internal AWA Con-
text initially defined according to AWA activity specification and for reflecting all

facts changed when rules fired on the Rules Engine;

9. The tool that launched the AwaExecutor (step 1), or another tool issues the start

signal for this AWA activity. The signal can be issued in other sequence even be-

fore or after the creation of the AWA activity State Machine. This allows possible

starting synchronization between distinct workflow activities launched in differ-

ent moments. The start signal is simply implemented by injecting the (awaName,
"start") tuple into the AWARD Space;

10. The AwaContext object initializes the AWA Context as facts and rules into the Rules
Engine;

11. The AwaController creates the StateMachine object as the heart of the Autonomic
Controller for controlling the execution of the AWA activity life-cycle;

12. The StateMachine begins the execution of its state actions;

13. In the start state the State Machine synchronizes by getting the start signal issued by

any tool (step 9). The State Machine waits for the start signal until it has been issued

by taking the (awaName, "start") tuple from the AWARD Space;

14. After synchronization in the init state the StateMachine object gets the next state

for the State Machine. This state, specified in the workflow specification (idle or

WaitConfig states) is stored into the AwaContext object (step 8) ;

15. The AwaContext always reflects the information existing as facts on the Rules Engine;

16. The StateMachine object gets the AwaContext information for performing the actions

of each distinct state until the termination (terminate) state;
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17. An important action performed by the StateMachine object consist of constant inter-

actions with the AwaContext object for getting or updating the context information

for instance the current state of the State Machine and the current iteration number

or for changing the state of input and output ports as results of dynamic reconfigu-

rations;

18. The AwaContext always reflects the information existing as facts on the Rules Engine;

19. Possible configuration changes resulting from dynamic reconfigurations are up-

dated in the AwaInternal object;

20. In input state the StateMachine gets tokens from the AWARD Space for all input

ports enabled;

21. In mapIn state the StateMachine gets the input mappings from the AwaInternal
object;

22. In invoke state the StateMachine gets the T ask Parameters from the AwaInternal
object;

23. In invoke state the StateMachine creates the AwaTask object and invokes its entry

point for executing the AWA T ask;

24. When the code of the AWA activity T ask returns, the StateMachine object gets the

output mappings from the AwaInternal object;

25. In output state the StateMachine puts the output tokens into the AWARD Space;

26. When the State Machine ends, for instance by reaching the maximum number of

iterations, it signals the AwaController object;

27. The AwaController terminates the AwaExecutor object which terminates the process

launched for executing the autonomic workflow activity (AWA).

5.7.4 The Rules Engine

The term "rules engine" is sometimes ambiguous and used in multiple domains as a sys-

tem that uses any form of rules that are applied to data to produce some outcomes, for

instance, rules are used to define business logic, such as "A product order with total ex-

ceeding 100€ receives a 10% discount". However, the Rules Engine used in the Autonomic
Controller is a Production Rules Engine [LGX10] based on the architecture depicted in

Figure 5.17. Facts are stored into a Working Memory and Rules are stored in a Production
Memory. The Inference Engine matches Facts against Rules and puts into the Agenda the

Rules enabled to fire according to a pattern matching algorithm. The Agenda manages

the execution of Rules. Facts in the Working Memory represent any type of data. A Rule is

a two-part structure, If <Conditions> then <Actions>, evaluated as an if-then statement,
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where Conditions are Boolean expressions based on Facts and Actions are assertions or

retractions of Facts into the Working Memory. The pattern matching process uses a for-

ward chaining algorithm, which is "data-driven" and reactive by allowing one or more

Rules being concurrently enabled and executed for allowing the assertion or retraction of

Facts into the Working Memory. For instance, the Rete Match Algorithm [Doo95; For90] is

an efficient method for comparing a large collection of patterns to a large collection of

objects and it is widely used in Production Rules Engines.

Production 
Memory
(Rules)

Working
Memory
(Facts)

Inference 
Engine

Agenda

Pattern

Matching

Figure 5.17: The Production Rules Engine architecture [LGX10]

G JESS rules engine

Despite the many implementations of Production Rules Engine available, the Auto-
nomic Controller of the AWARD implementation is based on JESS [FH10] that uses the

Rete Match Algorithm for processing rules. Besides JESS can be interactively used as a

standalone program it also provides a flexible software library of small size (less than 1

MB), which can be embedded within any Java application.

The working memory of a JESS rule engine holds a collection of data organized as

pure facts or shadow facts connected to the Java application objects for allowing the rules

engine to know events that happened outside its working memory.

Every fact has a template with a name and a set of slots that is similar to a Java class

or to a relational database table where slots are columns. Therefore a fact is like a single

Java object or single row in a database table. As part of the AWA Context the current

configuration of the activity input ports is managed by the Rules Engine of the Autonomic
Controller. As an example, the Listing 5.11 presents the Java class used for representing

the current state of an input port and the Listing 5.12 presents the corresponding JESS

fact template and the addition (assert command) into the working memory of a particular

fact for disabling an input port named Awa1-In1.

Similar to a basic programming statement If (condition) then Action a JESS rule has

two parts, a left-hand side and a right-hand side, separated by "=>" symbol that can be

read as "then". The left-hand side part consists of patterns used to match facts into the

working memory of the Rules Engine. The right-hand side part consists of a set of actions

for changing the working memory.
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A rule fires if the pattern matching is satisfied like the Condition is true in the If
statement. Therefore rules can only react by addition and deletion of facts into the

working memory. Identifiers starting with the question mark (?) character are variables

names, for instance ?n, ?f1, ?ns are valid variable names. The symbol "<-" is used to

assign variables.

Listing 5.11: Java class to represent the input port state

1 package awaexecutor;

2

3 public class InputState {

4 private String name;

5 private String state;

6 }

Listing 5.12: A corresponding fact template and a single fact

1 (import awaexecutor.*)

2 (deftemplate InputState (declare (from-class InputState)))

3

4 ;; add a single fact to the working memory

5 (assert (InputState (name Awa1-In1) (state Disable)))

As shown in the above Listing 5.12 the current state of input ports is managed by

facts in the working memory that can be changed by rules. As an example, Listing 5.13

lists the rule named ChangeInputState used to change the state of any activity input port

with the following behavior:

The rule fires when two facts in working memory match the pattern in the left-hand-

side of the rule. Then the rule can be read as follows. For an input port named by ?n
with the current state identified by ?as its state is changed to a new state identified by ?ns
when a fact named ChangeInState is inserted into the working memory and matches the

pattern. The actions performed consist of deleting (retract command) the facts ?f1 and

?f2 that have fired the rule and by inserting (assert command) a new fact InputState for

representing the new state ?ns for the input port named by ?n.

Listing 5.13: A generic rule for changing the state of an activity input port

1 (defrule ChangeInputState

2 ?f1 <- (ChangeInState (name ?n) (astate ?as) (nstate ?ns))

3 ?f2 <- (InputState (name ?n) (state ?as))

4 =>

5 (retract ?f1)

6 (retract ?f2)

7 (assert (InputState (name ?n) (state ?ns)))

8 )

The flexibility of the JESS API for Java programming did greatly simplify the implemen-

tation of the Rules Engine component of the Autonomic Controller of the AWARD machine.

In fact, it is very easy and flexible to use a JESS rules engine for managing insertion
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and deletion of facts, for defining and evaluating rules as well as for calling other useful

functions.

The code developed for the Autonomic Controller relies on the JESS API for the Java

programming. Some code snippets numbered from CS1 to CS5 are presented in Listing

5.14.

Listing 5.14: Code snippets illustrating the use of the JESS API

1 //CS1: Instantiate the Rules Engine

2 Jess.Rete engine = new Jess.Rete();

3

4 //CS2: Rules Engine initialization

5 engine.batch("InitialFactsAndRules.clp");

6

7 //CS3: Run the Rule Engine to fire enabled rules

8 engine.run();

9

10 //CS4: Insert a rule into the Rules Engine

11 engine.eval(

12 "(defrule ChangeInputState

13 ?f1 <- (ChangeInState (name ?n) (astate ?as) (nstate ?ns))

14 ?f2 <- (InputState (name ?n) (state ?as))

15 =>

16 (retract ?f1)

17 (retract ?f2)

18 (assert (InputState (name ?n) (state ?ns)))

19 )"

20 );

21 engine.eval(

22 "(assert (ChangeInState (name Awa1-In1) (astate Disable) (nstate Enable)))"

23 );

24

25 //CS5: Function to get the names of the enabled input ports

26 ArrayList<String> getNamesOfInputPortsEnabled() {

27 Jess.Context gctx=engine.getGlobalContext();

28 Jess.Value inName, inState;

29 ArrayList<String> list = new ArrayList<String>();

30 Iterator it=engine.listFacts(); //iterate all facts in the working memory

31 while (it.hasNext()) {

32 Jess.Fact f = (Jess.Fact) it.next();

33 if (f.getName().compareTo("InputState") == 0) { //if fact is InputState

34 inName = f.getSlotValue("name"); //get the name of the input port

35 inState = f.getSlotValue("state"); //get the state of the input port

36 if (inState.symbolValue(gctx).compareTo("Enable") == 0) {//if state Enable

37 list.add(inName.symbolValue(gctx)); //add the input name to the list

38 }

39 }

40 }

41 return list;

42 }
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The CS1 snippet shows how the object engine is instantiated from the class Rete of the

JESS API. The engine object represents the abstraction of the Rules Engine globally inside

the Autonomic Controller.

The CS2 snippet shows how the Rules Engine is initialized from a text file using the

JESS scripting language with facts and rules definition. For instance the fact template

presented in Listing 5.12 and the rule presented in Listing 5.13 are initially loaded from

a text file named InitialFactsAndRules.clp which is part of the predefined AWARD config-

uration.

Additionally, a workflow developer can customize the initial facts and rules by specify-

ing a different file on the ControlUnit section of each AWA specification. This introduces

great flexibility for allowing the internal context of distinct workflow activities to be

initialized with different behaviors.

The CS3 snippet forces the engine to run in order to fire all applicable rules.

The CS4 snippet shows the eval function of the engine for inserting facts and rules

into the Rules Engine object using text strings based on the JESS scripting language.

As examples, the rule ChangeInputState presented in Listing 5.13 is inserted into the

Rules Engine as well as the insertion of a ChangeInState fact that fires the rule causing the

input port named Awa1-In1 to change its state from Disable to Enable.

The CS5 snippet shows the getNamesOfInputPortsEnabled function used by the State
Machine to get the names of all enabled input ports. After getting the list of all facts from

the engine the function iterates each fact named InputState and if the state value is equal

to Enable the corresponding input port name is added to a list of names returned by the

function.

5.8 The Handlers of the AWARD Machine

During the execution of an autonomic workflow activity (AWA) its Autonomic Controller is

able to receive external asynchronous events published into the AWARD Space by any ex-

ternal tool developed in Java using the software library DynamicLibrary.jar. These events

are related to: i) Requests for getting the AWA Context; ii) A command to explicitly and

asynchronously force the AWA activity termination; and iii) the submission of dynamic

reconfiguration operators.

According to the events functionality the dynamic library publishes tuples into the

AWARD Space for notifying the corresponding handlers previously registered by each

AWA activity in the AWARD Space.

For subscribing and processing the asynchronous events from the AWARD Space

the AWARD machine implements three notification handlers described in the following

sections.
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5.8.1 The Request Context Handler

The Autonomic Controller implements the ContextHandler for handling the events related

to requests for getting AWA Context. As illustrated in Figure 5.18 the sequence of actions

to get the AWA Context is described in the following:

AwaController AWARDSpace ContextHandler AwaContextDynamicLibraryAnyTool

1 : createContextHandler

2 : registerContextHandler

3 : getAwaContext

4 : requestContext

5 : eventNotification

6 : getContext

7 : writeContext

8 : readContext

9 : returnContext

Page 1 of 1

03/07/2016file:///D:/AWARDv21/AWARDessentials/NewDiagrams/RequestContextHandler.svg

Figure 5.18: The sequence of interaction actions to get the AWA Context

1. In the initializing phase of the Autonomic Controller, the AwaController creates

the ContextHandler object for processing the future requests of the AWA Context;

2. The AwaController registers the ContextHandler object on the AWARD Space to

enable future notifications;

3. Any tool (AnyTool) developed in the Java language, for instance a tool for monitor-

ing the workflow execution calls the getAwaContext function of the DynamicLibray

library for requesting the AWA Context;

4. This getAwaContext function injects a tuple into the AWARD Space containing the

request for the AWA Context and blocks until it receives a reply;

5. By asynchronous notification the request tuple is received by the ContextHandler;

6. The ContextHandler collects the context information from the AwaContext object;

7. The context information is written as a tuple into the AWARD Space for satisfying

the blocked request performed in action 4;

8. The getAwaContext function reads the AWA Context from the AWARD Space ;

9. The context information is returned to the tool.
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5.8.2 The Explicit Forced Termination Handler

During the execution of a workflow unexpected situations, for instance, the failure of

an upstream activity introduces the need for ensuring that the termination of an AWA

activity is always possible. The Autonomic Controller has a Forced Termination Handler for

accepting a command to explicitly and asynchrounouly terminate the activity indepen-

dently of its internal context. As illustrated in Figure 5.19 the sequence of actions to force

the AWA activity termination is described in the following:

AwaController AWARDSpace ForcedTerminationHandler AwaContextDynamicLibraryAnyTool

1 : createForcedTerminationHandler

2 : registerForcedTerminationHandler
3 : ForceTermination

4 : requestTermination

5 : eventNotification

6 : getContext

7 : writeContext

8 : exit

9 : readContext

10 : returnContext

Page 1 of 1

03/07/2016file:///D:/AWARDv21/AWARDessentials/NewDiagrams/ForceTerminationhandler.svg

Figure 5.19: The sequence interactions to force an AWA termination

1. In the initializing phase of the Autonomic Controller, the AwaController creates the

ForcedTerminationHandler object for processing a future command to force the AWA

activity termination;

2. The AwaController registers the ForcedTerminationHandler object on the AWARD

Space to enable the forced termination notification;

3. Any tool (AnyTool) developed in Java language, for instance the KillAwa.jar AWARD

tool, presented in Section 5.9, calls the ForceTermination function of the DynamicLi-
bray to request the AWA termination;

4. The ForceTermination function injects a tuple into the AWARD Space containing the

request for AWA activity termination and blocks until receives a reply;

5. By asynchronous notification the request tuple is received by the ForcedTermination-
Handler;
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6. The ForcedTerminationHandler collects the context information from the AwaContext
object;

7. The context information is written as a tuple into the AWARD Space for satisfying

the blocked request performed in action 4;

8. The ForcedTerminationHandler forces the AwaController to exit;

9. The ForceTermination function reads the AWA Context from the AWARD Space;

10. The context information is returned to the invoking tool (AnyTool).

5.8.3 The Dynamic Reconfiguration Handler

The Autonomic Controller has a Dynamic Reconfiguration Handler (DRH) for subscribing

the asynchronous events related to dynamic reconfiguration operators. As illustrated

in Figure 5.20 the sequence of interactions for performing dynamic reconfigurations is

described in the following:

1. In the initializing phase of the Autonomic Controller, the AwaController creates the

ReconfigurationHandler object;

2. The AwaController registers the ReconfigurationHandler object on the AWARD Space

for subscribing asynchronous events related to dynamic reconfigurations. These

events are represented by tuples (RID, Event, AWAname, argsList), where RID is a

reconfiguration plan identifier, Event identifies the event associated to the reconfig-

uration operator, AWAname is the activity name, and argsList is a list of arguments

according to the event;

3. By integrating the DynamicLibray any Java application as a tool can submit recon-

figuration plans. The tool starts a reconfiguration plan by calling the BeginReconfig-
uration library function for getting a global unique reconfiguration identifier (RID)

(steps 4, 5 and 6). The uniqueness of the RID identifier is ensured by the AWARD

Space that stores a tuple with the (RID, value) template;

4. The implementation of the getRID request gets the tuple from the tuple space,

increments the value of RID and puts the new tuple into the AWARD Space. The

atomicity of retrieving a tuple from the AWARD Space ensures the uniqueness of

the RID identifier;

5. The getRID request returns the next RID reconfiguration identifier;

6. The new RID is returned to the invoking tool;
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Figure 5.20: The sequence of interactions for supporting dynamic reconfigurations
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7. For each activity involved in the reconfiguration plan there is a reconfiguration

block started and ended respectively by BeginAwaReconfig and EndAwaReconfig com-

mands (step 15). This block can apply a sequence of operators illustrated by the

SomeOperator generic operator (step 11);

8. The implementation of the BeginAwaReconfig command consists of writing a tuple in

the AWARD Space for enabling the asynchronous notification of the reconfiguration

handler;

9. The ReconfigurationHandler is notified and consumes the BeginAwaReconfig operator;

10. The ReconfigurationHandler initializes a new entry identified by RID into the hash

table HashMapReconfig to store the following sequence of operators;

11. The tool submits the SomeOperator operator;

12. The implementation of all operators is similar by writing a tuple containing the

operator;

13. The ReconfigurationHandler is notified that there is a new operator;

14. The ReconfigurationHandler reads and inserts the operator into the list on the HashMapRe-
config hash table;

15. After the tool has submitted all operators involved in the reconfiguration plan, it

submits the EndAwaReconfig command;

16. The implementation of the EndAwaReconfig command writes the respective tuple

and blocks, waiting for an iteration number proposed by the AWA activity to submit

its part of the reconfiguration plan;

17. The insertion of the EndAwaReconfig tuple notifies the ReconfigurationHandler;

18. The ReconfigurationHandler requests the proposed iteration number to the AwaCon-
text object;

19. The ReconfigurationHandler gets the adequate proposed iteration number (iterprop)

from the AwaContext object. This is the current iteration number plus one for indi-

cating that from the point of view of this AWA activity, the dynamic reconfiguration

can take place as soon as possible, that is at the next iteration, or the value -1 if

the reconfiguration can not be applied, for instance the activity is executing its

maximum iteration number;

20. The proposed iteration number (iterprop) returned by the AwaContext is written as

a tuple in the AWARD Space by the ReconfigurationHandler;
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21. The implementation of the EndAwaReconfig command unblocks by reading the tu-

ple with the proposed iteration number (iterprop). This iteration number is returned

by the EndAwaReconfig command;

22. The tool AnyTool that has submitted the reconfiguration plan stores the iteration

proposed (iterprop) in the iteration agreement set that is passed to the EndReconfig-
uration command;

23. The implementation of the EndReconfiguration command calculates the maximum

iteration contained in the iteration agreement set as a value K, which is the iteration

agreed upon where all activities involved will apply its part of the reconfiguration

plan;

24. The iteration agreement is written as a tuple in the AWARD Space;

25. The iteration agreement tuple notifies the reconfiguration handlers of all activities

involved in the reconfiguration plan that an agreement is achieved to be applied in

the K iteration;

26. If K is equals to -1, the reconfiguration plan was not committed and the reconfigu-

ration sequence marked with RID in the HashMapReconfig hash table is discarded

by the ReconfigurationHandler; otherwise the ReconfigurationHandler marks, in the

HashMapReconfig hash table, that the RID reconfiguration plan with a list of opera-

tors is ready to be applied at the K iteration.

G Processing reconfiguration plans

Before starting each iteration the State Machine verifies in the HashMapReconfig hash

table if there are any reconfiguration plans ready to be applied. As illustrated in Figure

5.21 the sequence of interactions for processing dynamic reconfiguration operators is

described in the following:

1. The State Machine in the idle state checks if the current iteration number is equal to

any K iteration number resulting from previous agreements;

2. If some ready reconfiguration exists, then the State Machine goes to the Config state;

3. In Config state the State Machine processes the reconfiguration plan by processing

the list of dynamic reconfiguration operators;

4. The current AWA activity configuration is changed in the AwaInternal object;

5. After processing all operators of the reconfiguration plan the State Machine comes

back to the idle state to proceed with the K iteration number, where the AWA activity

has a new structure and a new behavior according to the reconfiguration plan. As

an example, if the reconfiguration changed the activity T ask then in the invoke state

the State Machine instantiates the new T ask object and invokes its entry point.
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HashMapReconfigStateMachine

On idle
state

if exist a reconfiguration ready
(currentIteration is equal to the
agreed iteration K)

On Config
state

AwaInternal

For each dynamic operator
change the AWA current
configuration

The state machine proceed with performed
changes in AWA, for instance with new input
or output ports

1 : isReconfigReady(currentIteration)

2 : goesToConfigState(K)

3 : ProcessReconfigurationPlan(K)

4 : changeAWAconfig

5 : goesToIdleState

Page 1 of 1
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Figure 5.21: Processing reconfiguration plans

5.9 The AWARD Tools

The main requirement for developing the AWARD tools was producing a set of flexible

commands that can be easily used by workflow developers for allowing the execution of

AWARD workflows. Therefore a minimal but sufficient set of tools are provided by the

AWARD framework for supporting launching the AWA activities of AWARD workflows

and for allowing the observation of logging information in order to monitor the execution

of the long-running AWARD workflows.

According to the application algorithms, data and resources location, the workflow

developers define partitions of AWA activities and assign these partitions to the available

computational nodes. Thus the AWARD framework provides commands to launch one

or more AWA activities as Java applications (one operating system process per each AWA

activity) on any computing node, whether it is local or remote. In fact, using any Secure
Shell (SSH) client it is possible launching AWA activities on virtual machines on cluster

or cloud infrastructures.

The autonomic characteristics of the AWARD workflows allow activities to be executed

separately on distinct computing nodes and subject to dynamic reconfigurations.

According to the elapsed execution time of the T ask algorithm, each activity produces

output tokens at its own pace and consequently the connected downstream activities also

consume these tokens at their own paces. This requires the capability of dynamically

monitoring the state of the execution of the workflow activities.
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The AWARD framework uses a logging mechanism supported by the AWARD Space

given that it is shared by all AWA activities. For instance, when the State Machine of an

AWA activity reaches a faulty state, the AWA Context is saved in the AWARD Space as

logging information (actions a8, a9 and a10 of Table 3.4 on page 83).

This logging functionality of the AWARD machine is an important characteristic for

workflow developers to perform debugging actions. During the prototype implementa-

tion this characteristic was a fundamental aspect for detecting and correcting software

bugs, as well as for easing the experimentation with implementation alternatives.

5.9.1 Basic Tools for Launching and Monitoring the Workflow Execution

The developed and provided set of AWARD tools, presented in Table 5.2, includes tools

for launching the AWARD Space server, for launching activities, for getting the logging

information, for instance, the elapsed execution time of an activity T ask. These tools

can be executed as shell commands or easily integrated within any specific problem do-

main tool. A user can develop other tools in order to manage the execution of AWARD

workflows on distributed infrastructures. As an example, this was done in the context

of the development of a data analytics application expressed as a distributed AWARD

workflow [GAC12]. In Chapter 6 we present use cases where tools for launching activities

are integrated with other tools to perform text mining experiments as well as a real sce-

nario where the logging information is used to detect failures on activity T ask invocation

followed by a recovery using a dynamic reconfiguration plan for changing the activity

T ask.

The tools presented in Table 5.2 are using the following arguments:

• [tcpport=8500 httpport=8501]: Redefinition of the TCP/IP ports to be used by the

AWARD Space server;

• <Config File>.xml: The absolute name of the AWARD configuration file for defining

the execution environment for instance, the pathname for the adequate version of

the Java platform, file system directories for workflow files and T ask libraries, as

well as the location of the AWARD Space;

• <workflow File>.xml: The filename of the file that contains the workflow specifica-

tion. This filename is appended to the directory <WorkflowDirectoryFiles> specified

in the AWARD configuration file;

• <AWA name>: An AWA activity name of the workflow activities;

• <Dump text file>.txt: The filename of a text file for dumping logging information

used for monitoring the workflow execution. This filename is appended to the

directory <WorkflowDirectoryFiles> specified in the AWARD configuration file.

The AWARD tools are described in the following:
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Table 5.2: The developed and provided AWARD tools

Tool: Launch the AWARD Space server
Usage:
java -jar AwardSpace.jar [tcpport=8500 httpport=8501]
Tool: Launch an AWA executor as a java application
Usage:
java -jar AwaExecutor.jar <Config File>.xml <workflow File>.xml <AWA name>
Tool: Launch workflow partitions with one or more AWA
Usage:
java -jar AwardLaunchAWA.jar <Config File>.xml <workflow File>.xml <AWA name1> ... <AWA
nameN>
Tool: Launch workflow partitions with one or more AWA where the AWA executor waits for a signal to start
Usage:
java -jar AwardLaunchAWAwaiting.jar <Config File>.xml <workflow File>.xml <AWA name1> ...
<AWA nameN>
Tool: Send a signal for starting AWA executors of a workflow partition with one or more AWA
Usage:
java -jar AwardAWAstart.jar <Config File>.xml <workflow File>.xml <AWA name1> ... <AWA nameN>
Tool: Launch a complete workflow (all AWA) in the same computing node
Usage:
java -jar AwardLaunchWkf.jar <Config File>.xml <workflow File>.xml
Tool: Forces the termination of an AWA
Usage:
java -jar KillAwa.jar <Config File>.xml <AWA name>
Tool: Dump the logs of an AWA
Usage:
java -jar DumpLogs.jar <Config File>.xml <AWA name> <Dump text file>.txt
Tool: Dump the elapsed execution times of an AWA
Usage:
java -jar DumpExecTimes.jar <Config File>.xml <AWA name> <Dump text file>.txt
Tool: Gets the context of an AWA activity
Usage:
java -jar GetContext.jar <Config File>.xml <AWA name> <Dump text file>.txt

G Tool for launching the AWARD Space

• AwardSpace.jar: This tool is used to launch the AWARD Space.

G Tools for launching workflow activities

• AwaExecutor.jar: This tool is used to launch the executor of an autonomic workflow

activity (AWA) as a Java application. The tool parses the XML workflow specification

file for searching the AWA activity name passed as an argument. After initializing

the execution environment this tool starts the State Machine in the init state to init

the activity life-cycle;

• AwardLaunchAWA.jar: This tool allows launching a workflow partition formed by

one or more AWA activity executors on the same computing node. Each executor

is launched as an independent Java application. In this way one workflow can be

spread on multiple computing nodes on a cluster or on a cloud infrastructure;
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• AwardLaunchAWAwaiting.jar: This tool is similar to the AwardLaunchAWA.jar but

the AWA activity executors block in the start state, waiting for a start signal that

must be issued by the AwardAWAstart.jar tool;

• AwardAWAstart.jar: This tool issues one or more starting signals for one or more

AWA activity executors launched by the AwardLaunchAWAwaiting.jar tool;

• AwardLaunchWkf.jar: This tool launches all AWA activities of a workflow on the

same computing node.

G Tool for explicitly and asynchronously forcing an activity termination

• KillAwa.jar: This tool is used for forcing the termination of a workflow activity in-

dependently of its internal state. The tool simply invokes the ForcedTermination
operator for activating the corresponding handler that forces the exit of the AwaEx-
ecutor.

G Tools for monitoring workflow activities

• DumpLogs.jar: This tool extracts, from the AWARD Space, the logging information

related to the AWA activity whose name is passed as an argument. The information

is stored in the text file whose name is passed as an argument;

• DumpExecTimes.jar: This tool extracts from the AWARD Space the logging infor-

mation containing the elapsed execution times of an AWA activity whose name is

passed as an argument. The information is stored in the text file whose name is

passed as an argument;

• GetContext.jar: This tool is used for getting the AWA Context for monitoring the

AWA activity internal state. The tool simply invokes the GetAwaContext operator

provided by the DynamicLibrary API for activating the corresponding reconfigura-

tion handler.

G The logging information details

The Autonomic Controller of each AWA activity stores tuples into the AWARD Space

containing logging information related to levels of the current execution context. The

workflow developers can configure the logging level using the <LogLevel> field of the

AWARD configuration file as a number between 0 and 10. The level 0 is the most de-

tailed, for instance it includes all actions executed in each state of the State Machine, such

as the state of input and output ports, the current iteration and the values of the input

and output tokens as well as the T ask Arguments. A level greater than 0 excludes some

details, for instance level 5 only produces logging information related to the T ask invo-

cation, including the corresponding Arguments and Results or exceptions thrown by the

software component that implements the T ask algorithm. The level 10 only produces
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Listing 5.15: An example of logging information
1 ("Log:", "0", "Add", "Dir=D:\AWARD\WorkflowFiles\, File=workfAddIntegers.xml")

2 ("Log:", "0", "Add", "Workflow Name:workflow Add two Integers")

3 ("Log:", "0", "Add", "NIterations=20")

4 ("Log:", "0", "Add", "AdditionalLibs=D:\AWARD\TaskLibrary\AwardTaskLib.jar")

5 ("Log:", "0", "Add", "AWA specification")

6 ("Log:", "0", "Add", "Maximum iterations: Not redefined")

7 ("Log:", "0", "Add", "Initial state: Idle")

8 ("Log:", "0", "Add", "RulesFileName=TaskBasicRules.clp")

9 ... (Omitted other AWA specification details)

10 ("Log:", "2", "Add", "State Machine initialization state :init")

11 ("Log:", "2", "Add", "goes to state:idle:Iteration:0")

12 ... (Omitted details of iterations 0 until 14)

13 ("Log:", "2", "Add", "Current Iteration:15")

14 ("Log:", "2", "Add", "goes to state:idle")

15 ("Log:", "2", "Add", "Check for Reconfigurations isReconfReady:FALSE")

16 ("Log:", "2", "Add", "goes to state: input at iteration=15")

17 ("Log:", "2", "Add", "Input Enable:AddI1")

18 ("Log:", "2", "Add", "Input Enable:AddI2")

19 ("Log:", "0", "Add", "Input:AddI1 Tuple read:(15, 0, "AddI1", 25)")

20 ("Log:", "0", "Add", "Input:AddI2 Tuple read:(15, 0, "AddI2", 30)")

21 ("Log:", "2", "Add", "Token iteration:AddI1:15")

22 ("Log:", "2", "Add", "Token iteration:AddI2:15")

23 ("Log:", "2", "Add", "Token sequence:AddI1:0")

24 ("Log:", "2", "Add", "Token sequence:AddI2:0")

25 ("Log:", "2", "Add", "Token value:AddI1:25")

26 ("Log:", "2", "Add", "Token value:AddI2:30")

27 ("Log:", "5", "Add", "goes to :mappingInputs at iteration=15")

28 ("Log:", "5", "Add", "idxArg=0:AddI1=25, idxArg=1:AddI2=30")

29 ("Log:", "5", "Add", "goes to:Invoke:awardtasklib.TaskIntegerAdd:iteration=15")

30 ("Log:", "5", "Add", "Invoke task with args:25, 30")

31 ("Log:", "5", "Add", "Task Results: idxRes=0:55")

32 ("Log:", "5", "Add", "goes to :MapOutputs at iteration=15")

33 ("Log:", "5", "Add", "idxRes=0:AddO1")

34 ("Log:", "5", "Add", "mappingResults to:AddO1:Enable:Replicate:SendTo->InI1")

35 ("Log:", "2", "Add", "Token value:AddO1:55")

36 ("Log:", "2", "Add", "goes to : Output at iteration=15" )

37 ("Log:", "0", "Add", "Output:AddO1 tuple write:(15, 0, "InI1", 55)")

38 ("Log:", "2", "Add", "insert fact IncrementCurIteration on JESS")

39 ("Log:", "2", "Add", "goes to :Idle at iteration=15")

40 ("Log:", "2", "Add", "Run the rules on JESS")

41 ("Log:", "2", "Add", "Current Iteration:16")

42 ... (similar tuple sequences until iteration 19)

43 ("Log:", "2", "Add", "goes to :Idle at iteration=19")

44 ("Log:", "2", "Add", "Run the rules on JESS")

45 ("Log:", "2", "Add", "Current Iteration:20")

46 ("Log:", "2", "Add", "Awa Executor terminates")
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logging information related to unexpected exceptions, for instance, when accessing the

AWARD Space and the JESS rules engine.

Therefore AWARD workflow developers can monitor the workflow execution by con-

tinuous observation of the logging tuples into the AWARD Space using any HTTP browser

that connects to the AWARD Space server, even after the workflow was terminated. Before

the AWARD Space server shutdown, the logging information can be retrieved and stored

in a text file using the AWARD tool DumpLogs.jar for allowing future analysis.

To illustrate an example of the logging functionality consider a workflow with an

activity named Add that adds two integer numbers received at two input ports named

AddI1 and AddI2. The addition result is sent to an output port named AddO1 connected

to an activity with an input port named InI1.

Listing 5.15 partially shows the logging information produced by considering the

number 20 as the maximum number of iterations. The first log entries partially report the

Add activity specification details. Afterwards the State Machine reports its initialization

state by indicating that the AWA activity starts execution on idle state at iteration 0.

The logs for the 15th iteration are shown in detail, where we can observe all actions

of the State Machine including the Arguments and Results of the T ask invocation. Finally

the logs of the 19th iteration are presented to indicate the AWA activity termination when

it reaches the maximum iteration number.

For analyzing the workflow performance in terms of the elapsed execution times the

AWARD machine has the possibility to produce logging of the execution times of each

step of the State Machine. This allows analysis of overheads, for instance getting answers

to the following questions, such as, "What are the slower activities?", "What is the over-
head for getting tokens from the AWARD Space?", "What is the average time for executing
an iteration?", among others. This functionality can be enabled or disabled through the

<TimesExecEnabled> field of the AWARD configuration file. When the functionality is en-

abled the state machines of all activities also write log tuples into the AWARD Space that

can be monitored during workflow execution or extracted using the DumpExecTimes.jar
tool. The elapsed execution times are based on the system time of the computer where the

AWA activity is running. In case of multiple computing nodes for executing the multiple

workflow activities we assume that the possible clock drifts are negligible.

As an example the elapsed execution time of the 15th iteration of the activity Add,

which adds two integer numbers from its two input ports and produce on its output port

the result, is presented in Listing 5.16.

Listing 5.16: Example of logging with elapsed execution time

1 ("TIMES:", "Add", "15", "BI-1443376098855", "AI-1443376098948",

2 "BT-1443376098962", "AT-1443376098966",

3 "BO-1443376098995", "AO-1443376099066")

The log presents the current system time in milliseconds for the following steps of

the State Machine: Before input (BI); After input (AI); Before T ask (BT); After T ask (AT);
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Before Output (BO) and After Output (AO). The log of Listing 5.16 allows to calculate the

following elapsed execution times:

• 93 milliseconds (1443376098948-1443376098855) as the difference between AI and

BI to get the input ports tokens;

• 71 milliseconds (1443376099066-1443376098995) as the difference between AO

and BO to put the output port token;

• 9 milliseconds (1443376098966-1443376098962) as the difference between AT and

BT as the execution time of the T ask.

Furthermore we can roughly calculate the elapsed iteration execution time of 211

milliseconds as the difference between AO and BI (1443376099066-1443376098855).

5.9.2 A Graphics Interface Tool for Managing AWARD Workflows

Additionally for executing AWARD workflows on standalone computers the AWARD

framework also provides a basic tool with a graphical user interface presented in Figure

5.22.

1 2 3 4 5

4

Figure 5.22: AwardGUI.jar tool to execute AWARD workflows on standalone computers
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The tool shown in Figure 5.22 named AwardGUI.jar allows:

1. View and change the AWARD configuration file (Menu 1);

2. Launch or terminate the AWARD Space server (Menu 2);

3. Visualize/Monitor the current content of the AWARD Space (Menu 3);

4. Load and visualize an AWARD workflow specification as well as launch all activities

of the workflow for execution (Menu 4, which opens the dialog box to navigate the

workflow specification);

5. Submit basic but useful reconfiguration plans, such as change P arameters or change

the T ask of the running activities (Menu 5).

5.10 Chapter Conclusions

The architecture design and implementation of an operational working prototype to

support the development, execution, monitoring and dynamic reconfiguration of AWARD

workflows follows the object-oriented programming paradigm using the JAVA language.

In addition to the native Java environment, the AWARD framework resulting from

this implemented prototype has minimum dependencies upon third-party software com-

ponents, namely it depends on the Java JESS library to implement the Rules Engine and

the Java IBM TSpaces Server library for implementing the AWARD Space.

The AWARD framework developed, including the AWARD tools and the Dynamic

library for performing dynamic reconfigurations is very lightweight and so it provides

great flexibility for running AWARD workflows on very distinct types of computing nodes,

such as, standalone computers as well as virtual machines on cluster and cloud infras-

tructures. As two examples the Java executable, including the necessary libraries, for

executing an AWA activity has a size less than 7 MB and the AWARD Space server, as a

standalone Java application server, has a size less than 1 MB.

A useful characteristic of the AWARD framework is the possibility (by configuration)

to explore logging information during the workflows execution. For long-running work-

flows the observation of this logging information is a crucial point to monitor the behavior

of all workflow activities even those that are running on distinct computing nodes. In

addition this logging information is also very helpful for code debugging. This was very

important during the prototype implementation but it was also shown important when

used by a workflow developer to perform application-level debugging.
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6
Evaluation of the AWARD Model and its

Implementation

Evaluation of the AWARD model and its implementation to develop concrete
workflow scenarios and application cases.

This chapter discusses the evaluation of the AWARD model and its implementation con-

cerning its functionality, expressiveness and feasibility for developing scientific work-

flows. The evaluation explores the AWARD characteristics for operational workflow ex-

ecution on parallel and distributed infrastructures, for supporting dynamic workflow

reconfigurations and the feasibility of using the implemented AWARD framework for

developing concrete application cases.

In Section 6.1 we describe the strategy followed for evaluating the AWARD function-

ality, expressiveness and feasibility for developing workflows using scenarios arranged in

three dimensions that are described in the remaining sections.

In Section 6.2 the dimension of parallel and distribution execution includes scenar-

ios to demonstrate how basic and non basic workflow patterns can be executed using

AWARD where all activities or activity partitions can be mapped for execution on a single

computer or on distributed infrastructures. This section also presents a discussion related

to execution performance and the subjacent overheads.

In Section 6.3 we discuss a set of structural and behavioral workflow reconfiguration

scenarios for evaluating the AWARD characteristics to support the dimension of dynamic

workflow reconfigurations using the reusable software library (DynamicLibrary.jar), which

provides a set of reconfiguration operators.
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In Section 6.4 we demonstrate the feasibility of using AWARD for developing a set

of concrete application cases, such as using AWARD for implementing the MapReduce

model, recovering from faulty cloud services, and a text mining application involving a

considerable number of activities and virtual machines for their execution which actually

executed on local clusters and on two different public cloud infrastructures: Amazon

AWS [Ama15b]; and Lunacloud [Lun15].

In Section 6.5 we compare AWARD with other workflow systems in particular Tri-

ana [Chu+06] and Kepler [Kep13], and we discuss the autonomic characteristics of the

AWARD model.

Finally in Section 6.6 we present the conclusions and the lessons learned from the

experiments for evaluating the AWARD model and its implementation.

6.1 The Strategy for Evaluating the AWARD Framework

The strategy for evaluating the AWARD model was guided by the motivations (Chapter 1,

Section 1.1) and the rationale for developing the AWARD model (Chapter 3, Section 3.1),

including the support for dynamic reconfigurations (Chapter 4, Section 4.1).

Bearing always in mind the operationality of the implemented architecture and pre-

senting a comparison with other existing scientific workflow systems, the evaluation of

the AWARD framework aims to demonstrate three fundamental AWARD characteristics:

i) The functionality; ii) The expressiveness; and iii) The feasibility for developing scientific

workflows.

As illustrated in Figure 6.1 these AWARD characteristics are evaluated following three

dimensions:

1. The AWARD support for parallel and distributed workflow execution;

2. The AWARD support for dynamic workflow reconfigurations;

3. The feasibility of using AWARD for implementing application cases.

The above three dimensions are detailed in the following:

G Parallel and distributed execution

According to this dimension the AWARD model is evaluated in its capability for spec-

ifying scientific workflows with multiple activities connected using basic and non-basic

patterns [Aal+00b]. We consider some basic patterns, such as Sequence (an activity is en-

abled after the completion of another), Parallel split (a single activity splits into multiple

activities which can be executed in parallel), and Join (joining of multiple parallel activi-

ties). As non-basic patterns we consider the Feedback loop structural pattern (activities

receive tokens and synchronize with outputs from the previous iteration) and the Multi-

choice or Conditional routing pattern (based on a conditional decision a branch is chosen),

applied to Load balancing. This dimension also demonstrates the AWARD flexibility for
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Figure 6.1: Dimensions for evaluating the AWARD framework

mapping the execution of all workflow activities on standalone computers, or allowing

the execution of partitions of activities on parallel and distributed infrastructures.

G Dynamic workflow reconfigurations

Scientific experiments based on long-running workflows with multiple or possibly

infinite iterations sometimes require structural and behavioral dynamic workflow re-

configurations. According to this dimension we evaluate a set of workflow scenarios

that demonstrate the AWARD characteristics for supporting dynamic reconfigurations

involving dynamic reconfiguration operators, available through the reusable Java library

DynamicLibrary.jar.

G Application cases

In this dimension we evaluate the feasibility of using the AWARD framework for de-

veloping concrete workflow application cases. The following set of cases, which have been

designed and implemented using AWARD, is presented: i) Using AWARD to implement

programming models such as MapReduce, or to access Web Services; ii) Using AWARD for

fault recovery by avoiding to restart entire long-running workflows; iii) Using AWARD

for developing real application scenarios such as workflows with steering by multiple

users, and workflows for exploring parallelism and distribution in text mining.

A set of useful workflow scenarios encompassing the above dimensions is used for

evaluating the functionality, expressiveness and feasibility of the AWARD framework.

Performing an analysis of the performance of the AWARD model and implementation
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is out of scope of our work. However, the AWARD feasibility goal for developing real

and concrete workflow applications guided the AWARD implementation to also address

performance issues. Therefore on some scenarios we discuss performance indicators and

the subjacent execution overheads.

6.2 Parallel and Distributed Workflow Execution

The AWARD model and the implemented architecture allow the execution of workflow

activities on heterogeneous environments. The workflow activities can be mapped to

standalone computers, distributed infrastructures for example, local area networks with

Windows and Linux computer systems, clusters or cloud infrastructures involving large

sets of virtual machines. The AWARD Space can also be mapped for execution on any

virtual machine accessed from the activity virtual machines. Furthermore the AWARD

model allows any data type to be used by workflow developers for specifying application-

dependent tokens.

The evaluation of parallel and distributed workflow execution was performed using

a set of workflow scenarios with basic and non-basic patterns and the corresponding

mappings for executing the workflow activities on multiple virtual machines, allocated

on local clusters and on the Amazon cloud infrastructure. Some experimental results of

these scenarios have already been published in [AC13; AC14; AGC12; AGC14].

6.2.1 Mappings

AWARD workflows can be executed on standalone computers, for instance all activities

and the AWARD Space can be mapped for execution on a laptop computer.

For experimenting with a distributed environment, the Amazon EC2 infrastructure

[Ama15b] was used. An Amazon EC2 Instance is a virtual machine that can be dynam-

ically created, with associated resources (CPUs, memory, IP addresses) and a selected

operating system (in our experiments we used Linux 64 bit). Elastic Block Storage (EBS)

volumes support virtual storage as persistent disks that can be easily attached and de-

tached to the running EC2 Instances. Based on a volume with data files a snapshot can

be created allowing the later creation of multiple volumes, all of them sharing the data

files. Therefore a pool of Amazon EC2 Instances communicating using the TCP/IP proto-

col, where each instance shares (mount) data volumes, is virtually equivalent to a local

network or a cluster with shared data storage. The mapping of AWARD components, the

AWA workflow activities and the AWARD Space onto the Amazon EC2 infrastructure is

depicted in Figure 6.2.

The number of EC2 Instances and their types in terms of computing power as well as

the size of the cloud shared storage depends on a cost/benefit relation, which is defined

by end users according to the application aims. As an example one EC2 Instance should
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Figure 6.2: AWARD experimentation on Amazon cloud infrastructure

be enough for running simple workflows. In this case the AWARD Space and all AWA

activities are launched on the same computing node.

Therefore after the workflow specification, typically the setup for performing experi-

ments consists of the following steps:

1. Choose the EC2 Instance type and create the necessary EC2 instances using the

Amazon AWS console;

2. Connect to each EC2 Instance by using any Secure Shell (SSH protocol) application

for instance for copying the workflow specification file and application dependent

data to the cloud shared storage;

3. Launch the AWARD Space server on a dedicated EC2 Instance accessed from the

other EC2 Instances through the TCP/IP protocol. In this way the AWA workflow

activities can be spread on multiple computing nodes and the tokens between input

and output ports are passed through the AWARD Space using the internal Amazon

communication network;

4. Launch one or more activities or even the entire workflow on EC2 Instances by

using the AWARD tools described in Section 5.9;

5. Monitor the workflow execution by observing the logging information of the activ-

ities stored into the AWARD Space server, which can be accessed from anywhere

outside the Amazon infrastructure by using any HTTP browser;

6. Submit dynamic reconfiguration plans by any tool developed using the available

Java library (DynamicLibrary.jar).
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6.2.2 Support for Application-dependent Tokens

Application decomposition on multiple activities that are modeled as data-flow work-

flows typically require the tokens to be passed between activities as application-dependent

data types according to the application domain. However, some existing workflow sys-

tems lack the required flexibility regarding this issue. For instance Kepler requires tokens

to be compromised or dependent on the execution engine implementation specific details.

Concerning the token expressiveness, the AWARD machine is completely decoupled

from the token data types. The programmer has the freedom to specify any token data-

type according to the activity T ask implementation using the Java pattern for defining

serializable classes. As an example, if a token contains a location of a database the

workflow developer can program the token class as depicted in Listing 6.1 and assign

the type name DBserverInfo to the fields <tokenType> of the input and output ports when

specifying the workflow.

Furthermore AWARD is neutral regarding the semantics interpretation of tokens un-

like other workflow systems [Shi07b] where a distinction is made between a data-flow

token, when it carries data, and a control flow token, when it carries a synchronization

signal. AWARD does not make any distinction between data-flow and control-flow to-

kens, leaving such semantics interpretation to the workflow developers according to the

application requirements.

Listing 6.1: An example of an application-dependent token

1 public class DBserverInfo implements Serializable {

2 public String username;

3 public String password;

4 public String hostName;

5 public int tcpPort;

6 public String DatabaseNme;

7 }

6.2.3 Basic Workflow Patterns

Concerning the expressiveness dimension the AWARD model supports the basic workflow

patterns [Aal+00a], for instance the Sequence pattern where an activity is enabled after

the completion of another, the Parallel split pattern where a single activity splits into

multiple activities which can be executed in parallel, and the Join pattern where an

activity coordinates the joining of multiple parallel activities. For evaluating these basic

patterns and their execution mappings on distinct environments including distributed

infrastructures we developed the following two workflows, that are presented in this

section:

1. A basic workflow with multiple iterations for performing arithmetic operations

deterministically. For allowing comparative analyses, namely concerning the execu-

tion overheads on distinct mappings, this workflow was also developed using the
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Kepler workflow system [Kep14];

2. A workflow with 25 activities that simulates a simple Montage workflow [Dee+05;

Juv+10] for demonstrating the AWARD functionality for separately launching mul-

tiple partitions of workflow activities.

6.2.3.1 A Basic AWARD Workflow Compared with Kepler

The evaluation of basic characteristics of the AWARD model involved the execution of

a similar workflow with multiple iterations using the AWARD framework and the Ke-

pler system [Kep14] as presented in Figure 6.3, using the Kepler executable desktop

application generated from the source code version 2.0.

The comparison of AWARD and Kepler was performed in several experiments includ-

ing the execution of the long-running workflow and the execution of the AWARD Space

server on a standalone computer or a single virtual machine on the cloud, and the ex-

ecution of partitions of the workflow activities as well as the AWARD Space server on

parallel and distributed infrastructures.

Ramp1
Initial=1
Step=1

Ramp2
Initial=0
Step=2

Add2-1sec

Add1-1sec

Multiply

OutputToFile

p1

p3

p2

(a) AWARD workflow with 3 possible partitions

(b) Kepler workflow using customized actors

Figure 6.3: An equivalent workflow in AWARD and in Kepler

The workflow of Figure 6.3 has two Ramp activities for generating sequences of inte-

ger numbers until a maximum number of iterations. These numbers are added on the

Add1-1sec and Add2-1sec activities and the addition results are multiplied in the Multiply
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activity. The OutputToFile activity writes the results to a file whose name is defined as an

activity parameter.

The workflow contains some of the basic workflow patterns. As examples, the Sequence
pattern when the OutputToFile activity is only enabled after the completion of the Multiply
activity, the Parallel split pattern when the Ramp1 activity splits its output for the two add

activities (Add1-1sec and Add2-1sec) executed in parallel, and the Synchronization pattern

when an add activity, for instance Add1-1sec coordinates the joining of the two parallel

Ramp activities.

Both AWARD and Kepler support parallelism in the execution of the workflow pat-

terns. In Kepler all activities are executed by a single operating system process and the

parallelism is enforced by the PN Director [God+09] where each workflow activity (actor)

is executed in a Java thread, and all actors are executed concurrently communicating

through memory buffers. Therefore in Kepler the control for executing the workflow ac-

tivities is centralized. In fact, to the best of our knowledge and according to the available

publications and the available software distribution, Kepler does not allow a decentral-

ized control for executing workflow activities in distinct operating system processes and

much less on distinct computing nodes. In AWARD the parallelism is much more flexible

due to the autonomic characteristics of each workflow activity. In fact in AWARD activi-

ties can be separately launched in the same computing node as distinct operating system

processes or even distinct processes on distinct computing nodes.

For simulating long elapsed execution times, in this experiment the AWARD Add1
and Add2 activities have a T ask with a sleep time of 1 second, this time being defined as

a T ask parameter as presented in Listing 6.2.

For achieving the same behavior in Kepler we customized the corresponding actors.
As an example, Listing 6.3 presents the Kepler actor to add two numbers with the same

sleep time of 1 second and to manage the workflow iterations.

In a similar way as the AWARD capability for logging execution times on the AWARD

Space that can be retrieved by the DumpExecTimes.jar tool, the Kepler actor reports the

execution time per iteration into a log file located in an operating system temporary

directory.

As a first evaluation comment the simplicity of developing AWARD T asks (Listing

6.2) should be noted when compared to Kepler (Listing 6.3 on page 202).

In Kepler the programmer needs to deal with low-level details related to the execution

engine, for instance for creating the input and output ports and for getting their tokens.

In AWARD these actions are transparently performed by the Autonomic Controller
based on the workflow specification.

The experiments were executed on the Amazon EC2 infrastructure as depicted in

Figure 6.2 on page 197 and used an EC2 Instance type with 4 virtual CPU (2 virtual cores

with 2 EC2 Compute Units each), 7.5GB memory, 8 GB root device, and a 8 GB shared

volume running the Linux operating system.
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Listing 6.2: AWARD T ask to add two numbers with a delay of 1 second

1 package awardutiltasklibrary;

2

3 import awardtaskinterface.IGenericTask;

4 import awardlog.logging;

5

6 /** @author lassuncao */

7 public class TaskIntegerAdd implements IGenericTask {

8

9 public Object[] EntryPoint(Object[] args, Object[] params) throws Exception {

10 Object[] Results = new Object[1];

11 Integer res = null;

12 Integer del = null;

13 try {

14 Integer x = (Integer) args[0];

15 Integer y = (Integer) args[1];

16 res = new Integer(x.intValue() + y.intValue());

17 Results[0] = res;

18 if (params != null) {

19 del = new Integer((String) params[0]);

20 Thread.sleep(del.intValue());

21 }

22 } catch (InterruptedException ex) {

23 AwardLog.logging(3, "Exception in Task TaskIntegerAdd");

24 } catch (Exception uex) {

25 throw uex;

26 }

27 return Results;

28 }

29 }

For executing the Kepler workflow we used a single EC2 Instance because Kepler does

not support the execution of workflow partitions.

For executing AWARD workflow we considered four cases:

• Case 1: We ran the workflow using a single EC2 Instance, including the AWARD

Space server for allowing a fair comparison with the Kepler execution;

• Case 2: We used two EC2 instances, one to host the AWARD Space server and the

other to execute the workflow activities;

• Case 3: We used four EC2 instances, one to host the AWARD Space server and three

EC2 instances to distribute the activities according to the p1, p2 and p3 workflow

partitions, as shown in Figure 6.3(a). The mappings of the workflow activities and

the AWARD Space to four EC2 Instances are illustrated in Figure 6.4;

• Case 4: We ran the workflow using a single EC2 Instance, including the AWARD

Space server, using a more powerful and expensive EC2 Instance with 8 virtual CPU

and 60 GB memory with high network performance.
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Listing 6.3: Kepler actor for adding two numbers with a delay of 1 second
1 package actorkepler;

2 import java.io.*;

3 import ptolemy.actor.*;

4 import ptolemy.data.Token;

5 import ptolemy.kernel.*;

6 /** @author lassuncao */

7 public class AddDelay1Second extends TypedAtomicActor {

8 public AddDelay1Second(CompositeEntity container, String name)

9 throws IllegalActionException, NameDuplicationException {

10 super(container, name);

11 input1 = new TypedIOPort(this, "input1", true, false);

12 input2 = new TypedIOPort(this, "input2", true, false);

13 output = new TypedIOPort(this, "output", false, true);

14 output.setTypeAtLeast(input1); output.setTypeAtLeast(input2);

15 curIter = 0;

16 filetimes = File.separator + "tmp" + File.separator + this.getName() + ".txt";

17 }

18 private String filetimes; /* To store the iterations elapsed execution time */

19 /* Input and output ports for tokens */

20 public TypedIOPort input1;

21 public TypedIOPort input2;

22 public TypedIOPort output;

23 private int curIter; /* Current iteration: Counts the number of actor fires */

24

25 public Object clone(Workspace workspace) throws CloneNotSupportedException {

26 AddDelay1Second newObject = (AddDelay1Second) super.clone(workspace);

27 newObject.output.setTypeAtLeast(newObject.input1);

28 newObject.output.setTypeAtLeast(newObject.input2);

29 return newObject;

30 }

31 /* Add tokens on the input ports. Fired by each iteration */

32 public void fire() throws IllegalActionException {

33 super.fire();

34 Token sum = null;

35 curIter++;

36 FileWriter fstream = null;

37 try {

38 fstream = new FileWriter(filetimes, true);

39 BufferedWriter out = new BufferedWriter(fstream);

40 long ts = System.currentTimeMillis();

41 out.write(this.getName() + ", " + curIter + ", fire, " + ts + "\n");

42 if ((input1.getWidth() > 0) && (input2.getWidth() > 0) &&

43 input1.hasToken(0) && input2.hasToken(0)) {

44 sum = input1.get(0);

45 sum = sum.add(input2.get(0));

46 } else throw new IllegalActionException("Illegal Firing");

47 out.flush();

48 fstream.close();

49 Thread.sleep(1 * 1000); /* Sleep 1 second */

50 if (sum != null) {

51 output.send(0, sum);

52 }

53 } catch (InterruptedException ex) {

54 throw new IllegalActionException("AddDelay actor: Sleep exception");

55 } catch (IOException ex) {

56 throw new IllegalActionException("AddDelay actor: IO exception");

57 }

58 }

59 }
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Figure 6.4: Mapping workflow partitions to multiple EC2 instances (Case 3)

The average execution time per iteration is shown in Figure 6.5 for executions with 1,

10, 50, 100, 500 and 1000 iterations. These results confirm that the current implemen-

tation of AWARD has higher overheads compared to the used implementation of Kepler,

version 2.0. This is due to the fact that the Kepler implementation uses a centralized

execution engine with a dedicated thread for each actor inside a single monolithic process

and the actors exchange data over links implemented in memory, whereas the AWARD

implementation uses an independent process for each AWA activity and exchanges tokens

through the AWARD Space server using TCP/IP connections. Then for a small number of

iterations the AWARD execution time is mostly penalized by the inherent overheads orig-

inated by the execution of multiple decentralized processes and the overheads associated

to the TCP/IP communication with the AWARD Space server.

However, as shown in Figure 6.5, for long-running workflows with thousands of

iterations, AWARD exhibits only small overheads when compared to Kepler, allowing

us to conclude that AWARD becomes adequate to execute such class of workflows. For

example in case 4 (single powerful EC2 instance) for 1000 iterations the AWARD average

iteration execution time is only 4 milliseconds higher when compared with the Kepler

case. For case 3 (4 EC2 instances for executing the p1, p2, and p3 workflow partitions)

the execution time is smaller compared to case 1 and 2, for distributed execution on

multiple EC2 instances, even for lower numbers of iterations. However, the execution

time reduction is not so strong when the iterations increase up to the thousands. This is

explained by the cost due to the tuple matching and tuple persistence operations when

the size of the tuple space grows inside the AWARD Space server.
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Figure 6.5: Average of iteration execution time

6.2.3.2 A Montage Workflow Simulation

For demonstrating the AWARD functionality and feasibility to support parallel and dis-

tributed execution of workflows with a large number of activities we developed a work-

flow with 25 activities that simulates a simple Montage workflow [Dee+05; Juv+10].

The AWARD flexibility allows workflow activities to be separately launched by dif-

ferent users without a centralized control. Furthermore the AWARD flexibility supports

easily changing the workflow activity mappings to distinct virtual machines without any

modification to the workflow specification.

The software toolkit Montage [Mon15] which provides tools for processing astro-

nomical image mosaics is used on Montage workflows involving thousands of activities

for modeling experiments to construct mosaics centered on celestial objects [Dee+05;

Juv+10]. However, without considering the activities used to transfer the image data

files a Montage workflow, as presented in [Dee+05], has a structure with seven levels as

depicted in Figure 6.6.

As presented in [Dee+05], the workflow development assumed that for levels with

multiple activities the activity T asks at each level are equal and have the reference elapsed

execution time that are indicated in the right side of Figure 6.6, respectively for each level

from 1 to 7.

Therefore considering the sequential dependencies between the levels and the par-

allelism among the activities within each level allow considering the sum of all level

execution times, that is, 147.7 seconds as a reference time for the total workflow exe-

cution time. This value was used in the experiment as a reference time to evaluate the
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Figure 6.6: The structure of a Montage workflow, [Dee+05]

performance (total execution time) which was obtained by AWARD workflows in different

execution scenarios.

For evaluating performance and overhead indicators of the AWARD framework im-

plementation we developed the Montage workflow with 25 activities presented in Figure

6.6 where the Output activity is used to visualize the final workflow result, as presented

in Figure 6.7. In order to simulate the behavior of the Montage workflow each AWARD

activity T ask imposes a delay of a constant execution time equal to the indicated on the

right side of Figure 6.6.

Each activity produces tokens with the "ActivityName(TokenInput1,...,TokenInputN )"
string type pattern on its N outputs, where "TokenInput1,...,TokenInputN " is a list of tokens

received on the activity input ports or a list of activity P arameters.

As an example the L11 activity that has two P arameters (image1 and header) pro-

duces, on its three outputs, the "L11(image1,header)" string and similarly the L12 activity

produces the "L12(image2,header)" string.

Therefore the L21 activity produces the "L21(L11(image1,header),L12(image2,header))"

string on its unique output. When the workflow execution finishes, the Output activity

shows the workflow result as illustrated in Figure 6.7.
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Figure 6.7: The activity Output shows the workflow result

This workflow enabled multiple experimental scenarios for evaluating the perfor-

mance and overheads associated to the execution of the AWARD workflows as well as the

AWARD flexibility for executing workflows on distributed infrastructures where multiple

users can execute a large workflow interactively by executing their specific partitions of

activities.

G Scenario 1: Executing the Montage workflow and AWARD Space server on a stan-

dalone computer

According to this first scenario we launched the workflow on a laptop computer (Win-

dows 8, 64 bit, 8GB RAM, i7-368-Dual core, 2.1GHz) using the AWARD tool presented in

Section 5.9.2 on page 190. This means that the AWARD Space server and the 25 workflow

activities ran in the same computing node.

To calculate the elapsed workflow execution time we used the AWARD functionality

for supporting logs related to the steps of the Autonomic Controller of each activity, namely

the execution times retrieved by the DumpExecTimes.jar AWARD tool. Therefore we

considered the difference between the BO (Before Output) time of the L7 activity and the

BI (Before Input) lower time of the first level activities {L11,. . . ,L16}.

The average of the elapsed execution time achieved from various executions was 160.4

seconds which allows to calculate an overhead of 12,7 seconds, as the difference between

160.4 and the Montage workflow reference execution time of all activities (147.7 seconds).
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This overhead of 8.6% includes the operating system overheads for scheduling all 25

executors of AWA activities (AwaExecutor) as well as a negligible overhead of 157 millisec-

onds caused by locally accessing the AWARD Space server for issuing and retrieving the

51 string tokens passed between activities.

This scenario allows concluding that the overhead for executing workflows with 25

workflow activities on a standalone computer is acceptable. It is important to note that

other operating system processes (Windows 8 services) were running on the laptop com-

puter during the experiment.

G Executing the Montage workflow and AWARD Space server on the Amazon cloud

In this scenario we used the Amazon EC2 infrastructure as described in Section 6.2.1

for experimenting with two approaches for launching the workflow of Figure 6.6.

The first approach consists of launching all activities and the AWARD Space server in

the same EC2 Instance.

The second approach consists of launching different workflow partitions by different

users on multiple EC2 instances for exploring distributed executions. Considering the

heuristics that some activities can only run after the completion of an upstream group of

activities, three possible partitions (p1, p2, p3) can be launched by 3 users in 3 different

EC2 instances as depicted on Figure 6.8.

These partitions are explicitly defined by the user according to a decomposition strat-

egy depending on the application knowledge. Another possible heuristics could be based

on strategies for optimizing the utilization of computational resources by only launching

the workflow partitions that can be run in the near future. For instance, [Dee+05] evalu-

ates the benefits of task clustering for optimizing the scheduling of workflow tasks to the

available resources using the Pegasus workflow system.

The type of EC2 Instances used in this 2nd scenario was m2.4xlarge (8 virtual CPU

and 60 GB memory).

In the first approach, when launching the entire workflow including the AWARD

Space server in the same EC2 Instance, the elapsed execution time was 153.4 seconds

which decreases the overhead relative to Montage reference time, to 5.7 seconds (153.4-

147.7), that is 3,9% instead of the value of 8.6% previously obtained on the laptop stan-

dalone computer. The overhead for locally accessing the AWARD Space server for issuing

and retrieving 51 string tokens passed between activities was 168 milliseconds, similar

to the laptop computer overhead.

In the second approach we used four EC2 Instances (8 virtual CPU and 60 GB mem-

ory), one dedicated EC2 Instance to run the AWARD Space server and three EC2 instances

to run the workflow partitions (p1, p2, p3) as depicted in Figure 6.8. The elapsed execu-

tion time was 154.2 seconds which is slightly above (800 milliseconds) the time obtained

when using a single EC2 Instance. This can be partially justified by the greater overhead

of 234 milliseconds related to Amazon network communication between EC2 instances

to access the AWARD Space server.
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Figure 6.8: Workflow partitions (p1, p2, p3) to be separately launched

Although the distributed execution of the three partitions (p1, p2, p3) does not ben-

efit the execution performance this scenario allows concluding in favor of the AWARD

flexibility to execute workflows with a large number of activities that can be separately

launched by distinct users on distributed computing nodes.

Both scenarios allow concluding that the communication overheads for accessing the

AWARD Space server do not have a significant weight in the workflow elapsed execution

time.

6.2.4 Non-basic Workflow Patterns

The approach of modeling application decomposition using workflows requires flexibility

[Gil+07; Shi07b] to develop workflow patterns not supported in most of the existing and

widely used workflow systems. Also in our preliminary work [AGC09] we identified the

need for a non-basic pattern of a feedback loop.

Therefore one important motivation for developing the AWARD model was the flexi-

bility needed to support some non-basic but useful workflow patterns.

In the following subsections we present examples of workflows to demonstrate some

non-basic patterns, such as multi-merge, feedback loop and load balancing patterns.
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6.2.4.1 Multi-merge Pattern

The multi-merge pattern [Aal+00b] is used to model a point in a workflow where multiple

branches converge without synchronization. If multiple branches have tokens, possibly

produced concurrently, the merge activity is started for any activation of any incoming

branch.

The AWARD model supports this pattern as illustrated in Figure 6.9 by using a multi-

link join (Definition 3.11 on page 62) to an input port named Ci1 configured according

to the Any order mode corresponding to a non-deterministic merge.

P1

P3

ConsumerP2

Order mode Any 

p1o1

p2o1

p3o1

Ci1

Figure 6.9: A Multi merge pattern (Producer/Consumer)

For evaluating this pattern the workflow of Figure 6.9 simulates the producer/con-

sumer pattern. The P1, P2 and P3 activities are executed in parallel and used for produc-

ing tokens on their p1o1, p2o1 and p3o1 output ports. These tokens are consumed in a

non-deterministic order by the Consumer activity that has an input port (Ci1) configured

to the Any order mode.

The relevant details of the workflow specification are presented in Listing 6.4 where

it is relevant to note that the Consumer activity specifies a maximum number of iterations

for overriding the specification of MaxIterations as the global number of iterations. This is

due to the fact that if each producer activity has 20 iterations, then the Consumer activity

must execute 60 iterations for consuming the total of 60 tokens produced by P1, P2 and

P3.

The workflow execution result is shown in Figure 6.10 where the non-deterministic

behavior of the Ci1 input port is clearly visible. For instance the first token produced by

P3 at iteration 0 is only consumed at the 20th iteration of the Consumer activity.
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Listing 6.4: Specification details of the Multi merge workflow (Figure 6.9)
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <AwardWorkflow>

3 <workflowName>workflow Producer/Consumer</workflowName>

4 <MaxIterations>20</MaxIterations>

5 <!-- . . . -->

6 <Awa> <!-- Activity Producer P1 -->

7 <!-- . . . -->

8 <name>P1</name>

9 <output>

10 <name>p1o1</name>

11 <state>Enable</state>

12 <tokenType>java.lang.String</tokenType>

13 <modeToken>Single</modeToken>

14 <sendTo>Ci1</sendTo>

15 </output>

16 <Task>

17 <parameters> <par>P1</par> </parameters>

18 <SoftwareComponent>

19 <taskImplementationType>tasks.TaskProducer</taskImplementationType>

20 <mappingResults>

21 <result> <idxRes>0</idxRes> <outName>p1o1</outName> </result>

22 </mappingResults>

23 </SoftwareComponent>

24 </Task>

25 </Awa>

26 <!-- . . . P2 and P3 AWA activities are similar to P1 -->

27 <Awa> <!-- Activity Consumer -->

28 <ControlUnit>

29 <MaxIterations>60</MaxIterations>

30 <InitialState>Idle</InitialState>

31 <RulesFilePath>TaskBasicRules.clp</RulesFilePath>

32 </ControlUnit>

33 <name>Consumer</name>

34 <input>

35 <name>Ci1</name>

36 <state>Enable</state>

37 <tokenType>java.lang.String</tokenType>

38 <orderMode>Any</orderMode>

39 </input>

40 <Task>

41 <parameters> <par>C</par> </parameters>

42 <SoftwareComponent>

43 <mappingArgs>

44 <arg>

45 <idxArg>0</idxArg>

46 <inName>Ci1</inName>

47 </arg>

48 </mappingArgs>

49 <taskImplementationType>tasks.TaskConsumer</taskImplementationType>

50 </SoftwareComponent>

51 </Task>

52 </Awa>

53 </AwardWorkflow>

210



6.2. PARALLEL AND DISTRIBUTED WORKFLOW EXECUTION

Figure 6.10: The multi-merge workflow execution

6.2.4.2 Feedback Loop Pattern

When a workflow has multiple iterations it can be useful that an activity T ask at iteration

K knows data produced in the previous iteration (K − 1) by any downstream activity. The

Feedback loop pattern consists of workflow activities that have input ports connected to

output ports of activities executed in a downstream sequence. For the evaluation of the

non-basic Feedback loop pattern supported by the AWARD model we used the workflow

depicted in Figure 6.11.

Fa Fb Fc

Feedback

ao1 bo1bi1 ci1

fo1 fi1

ai1

EnableFeedback state

Feedback
Token

Figure 6.11: Workflow with a feedback loop pattern
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The workflow has three activities, Fa, Fb, and Fc for processing a sequence of data

tokens as a pipeline during multiple iterations. However, on iteration K the Fa activity

receives, on its ai1 input port, feedback tokens that the Feedback activity emitted according

to the data token produced, in the (K − 1) iteration, by the Fb activity, on its bo1 output

port connected by a multi-link split to the ports fi1 of the Feedback activity and ci1 of the

Fc activity.

For supporting this pattern the workflow developer specifies the EnableFeedback state

(Definition 3.15 on page 64) for defining the behavior of the fo1 output port of the Feedback
activity as well as for the ai1 input port of the Fa activity. This means that at iteration

0 the ai1 input port of the Fa activity is disabled and will be automatically enabled on

the 1st iteration at that activity and the fo1 output port of the Feedback activity always

produces tokens marked with the current iteration number of the Feedback activity plus

1.

The relevant XML fragments of the workflow specification involved in the feedback

loop, in particular the specification of the bo1 and fo1 output ports and the ai1 input port,

are presented in Listing 6.5.

For demonstrating an operational example and visualize what happened on each

activity we developed activity T asks for all activities with a graphical user interface as

shown in Figure 6.12. For each iteration these T asks produce strings to be sent through

output ports with the following format "ActivityName(<string received on input port>)".
Thus on each iteration we visualize the feedback effect. For instance on the 1st iteration

the Fa activity received the "Feedback[it:0](Fb[it:0](Fa[it:0]()))" string token which can be

interpreted as - the token was issued by the Feedback activity at iteration 0 that had received a
token from the Fb activity at iteration 0 which in turn had received a token from the Fa activity
at iteration 0.

Although the workflow structure used in this example shows the Feedback activity

between the Fb activity and the Fa activity, many other structures can be used, for instance,

the feedback loop can be placed between the last Fc activity and any other workflow

activities for carrying intermediate results. This is depicted in Figure 6.13 where the

intermediate result of each iteration produced on the co1 output port gives feedback

information to the Fb activity on its bif input port.

This example assumes that the workflow developer is able to specify the feedback

loop at design time. However, in real applications the need for getting feedback data in

order to optimize a particular activity T ask can often be only recognized during work-

flow execution by observation of some application dependent intermediate results. In

Section 4.4.4 the scenario of Figure 6.13 is demonstrated where the Feedback loop pattern

is dynamically introduced by submitting a dynamic reconfiguration plan for changing

the structure of the long-running workflow originally composed only of the Fa, Fb, and

Fc activities.
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Listing 6.5: Relevant details of the workflow specification involved in a feedback loop
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <AwardWorkflow>

3 <workflowName>workflow Feedback Loop</workflowName>

4 <MaxIterations>5</MaxIterations> <!-- Number of Iterations -->

5 <!-- . . .-->

6 <Awa> <!-- Activity Fa -->

7 <!-- . . .-->

8 <name>Fa</name>

9 <!-- . . .-->

10 <input>

11 <name>ai1</name>

12 <state>EnableFeedback</state>

13 <tokenType>java.lang.String</tokenType>

14 <orderMode>Iteration</orderMode>

15 </input>

16 <!-- . . .-->

17 </Awa>

18

19 <Awa> <!-- Activity Fb -->

20 <!-- . . .-->

21 <name>Fb</name>

22 <!-- . . .-->

23 <output>

24 <name>bo1</name>

25 <state>Enable</state>

26 <tokenType>java.lang.String</tokenType>

27 <modeToken>Replicate</modeToken>

28 <sendTo>ci1</sendTo>

29 <sendTo>fi1</sendTo>

30 </output>

31 <!-- . . .-->

32 </Awa>

33

34 <Awa> <!-- Activity Feedback -->

35 <!-- . . .-->

36 <name>Feedback</name>

37 <!-- . . .-->

38 <output>

39 <name>fo1</name>

40 <state>EnableFeedback</state>

41 <tokenType>java.lang.String</tokenType>

42 <modeToken>Single</modeToken>

43 <sendTo>ai1</sendTo>

44 </output>

45 <!-- . . .-->

46 </Awa>

47 </AwardWorkflow>
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Figure 6.12: The execution of Fa, Fb, Fc and Feedback activities for 5 iterations

Fa Fb Fc

Feedback

ao1 bo1bi1 ci1

fo1 fi1

EnableFeedback state

Feedback
Token

co1

bif

Figure 6.13: Other possible workflow structure with a feedback loop

6.2.4.3 Load Balancing Pattern

The load balancing pattern supported by the AWARD model is very important for im-

proving execution performance of activities with heavy load characteristics. Although an

application can be decomposed into multiple workflow activities, the granularity of some

activities can be constrained by algorithm or data restrictions. Thus, if an overloaded

workflow activity exhibits a high execution time then other downstream activities are pe-

nalized by having to wait for tokens produced by the overloaded activity and as a result
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the total workflow execution time tends to increase.

According to the application requirements a possible solution to overcome this issue

is scaling out the overloaded activity with a number of replicas for load distribution. This

requires that the upstream activity has the capability for distributing tokens among all

the replicas of the scaled-out activity.

For demonstrating the load balancing pattern we considered the simple pipeline work-

flow presented in Figure 6.14 where the Delay activity is overloaded, thus having a signif-

icant elapsed execution time. Therefore despite the high rates of the Ramp and Output
activities for processing tokens, the Output activity is delayed because it depends on the

execution pace of the Delay activity.

Ramp Delay Output

Ro1 do1di1 Oi1

Figure 6.14: Pipeline workflow with an overloaded activity

This issue can be overcome by using the load balancing pattern supported by the

AWARD model allowing tokens produced by the Ramp activity to be distributed to multi-

ple parallel replicas of the Delay activity.

The workflow depicted in Figure 6.15 demonstrates the load balancing pattern ap-

plied to 1 up to 6 replicas of the Delay activity.

Ramp

Delay1

Output

Ro1

d1o1d1i1

Oi1

Delay2

d2o1d2i1

Delay6

d6o1d6i1

. . .

RoundRobinmode

Sequence order mode

Figure 6.15: Workflow with a load balancing pattern

The Ramp activity produces string tokens on its Ro1 output port configured in the

RoundRobin mode (Definition 3.10 on page 61) for sending tokens in round-robin fashion

to all destinations connected to the Ro1 output port. Each token carries a string with the

system time in milliseconds and is marked with a sequential number for each destination.
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The destination input ports are configured in the Sequence order mode (Definition 3.4 on

page 58) for receiving tokens in their sequence number order.

The Output activity receives tokens on its Oi1 input port (configured in the Iteration

input mode) from multiple sources without knowledge on how many token emitters exist

and shows the result strings for each iteration. This is presented in Figure 6.16 for a

workflow specification with six replicas of the Delay activity. As an example, note that

the token received in the Output activity in the 7th iteration (6> in Figure 6.16) and

produced by the Ramp activity in the 7th iteration was processed by the Delay1 activity

on its 2nd iteration.

Fig6.16 Output Load Balancing  pattern

Figure 6.16: The T ask of Output activity shows the iterations result

For evaluating the benefits of using this pattern we specified four versions of the

workflow for executing 200 iterations that have respectively 1, 2, 4 and 6 replicas of the

Delay activity. The T ask of the Delay activity sleeps during 1 second and then the Delay
activity sends a token with the system time to the Output activity. Therefore when a

single Delay activity is used the total workflow execution time is always greater than 200

seconds.

Listing 6.6 presents the relevant details of the workflow specification when six replicas

of the Delay activity are used. In particular, Listing 6.6 shows the specification of the

RoundRobin mode of the output port of the Ramp activity and the Sequence order mode

of the input port of the first replica, named Delay1.

As illustrated in Figure 6.17 the total workflow execution time with a single Delay
activity is 215 seconds where 200 seconds are spent by the Delay activity T ask, as sleep
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Listing 6.6: Relevant details of the workflow specification in the load balancing pattern
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <AwardWorkflow>

3 <workflowName>Load Balancer</workflowName>

4 <MaxIterations>200</MaxIterations> <!-- Number of workflow iterations -->

5 <!-- . . . -->

6 <Awa> <!-- Activity Ramp -->

7 <!-- . . . -->

8 <name>Ramp</name>

9 <output>

10 <name>Ro1</name>

11 <state>Enable</state>

12 <tokenType>java.lang.String</tokenType>

13 <modeToken>RoundRobin</modeToken>

14 <sendTo>d1i1</sendTo>

15 <sendTo>d2i1</sendTo>

16 <sendTo>d3i1</sendTo>

17 <sendTo>d4i1</sendTo>

18 <sendTo>d5i1</sendTo>

19 <sendTo>d6i1</sendTo>

20 </output>

21 <!-- . . . -->

22 </Awa>

23 <Awa> <!-- Activity LB Delay1 -->

24 <!-- . . . -->

25 <name>Delay1</name>

26 <input>

27 <name>d1i1</name>

28 <state>Enable</state>

29 <tokenType>java.lang.String</tokenType>

30 <orderMode>Sequence</orderMode>

31 </input>

32 <output>

33 <name>d1o1</name>

34 <state>Enable</state>

35 <tokenType>java.lang.String</tokenType>

36 <modeToken>Single</modeToken>

37 <sendTo>Oi1</sendTo>

38 </output>

39 <!-- . . . -->

40 </Awa>

41 <Awa> <!-- Activity LB Delay2 -->

42 <!-- . . . -->

43 <name>Delay2</name>

44 <!-- . . . -->

45 </AwardWorkflow>
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time during 200 iterations. However, the total execution time decreases significantly

when multiple replicas of the Delay activity are used for load balancing purposes. For

instance for six replicas of the Delay activity the total execution time decreases to 37

seconds. Considering a speedup definition, as Speedup =
ExecT imereplicas#1

ExecT imereplicas#6
= 215

37 = 5.8 we

achieved a quasi-linear speedup.
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Figure 6.17: Execution times with load balancing pattern in the Delay activity

6.2.5 Section Conclusions

The evaluation examples used for discussing the AWARD model concerning the support

of basic and non-basic workflow patterns demonstrated the AWARD flexibility and ex-

pressiveness for developing and executing workflows.

The following characteristics are emphasized:

• Functionality and expressiveness for using basic and non-basic workflow patterns;

• Feasibility for executing workflows on standalone computers and distributed com-

puters, namely on the Amazon cloud.

The evaluation examples also have shown that the workflow activities or the partitions

of workflow activities can be separately launched on different computing nodes.

The overheads involved particularly for accessing the AWARD Space server are ac-

ceptable without a significant impact upon the workflow elapsed execution time.

6.3 Evaluating the Support for Dynamic Reconfigurations

The flexibility for supporting dynamic workflow reconfigurations is a distinctive char-

acteristic of the AWARD model. In fact, the AWARD functionality and expressiveness

for supporting dynamic, adaptive, and user-steered reconfigurable workflows enable dis-

tributed and collaborative scientific experiments. Furthermore, the AWARD flexibility
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allows a continuous improvement, adaptation and recovery from failures during work-

flow execution by supporting dynamic changes, for instance, in the activity T asks in order

to increase the workflow performance.

The transparency provided by the API of the DynamicLibrary.jar contributes to simpli-

fying the programming of reconfiguration plan scripts as simple application-dependent

tools. In the following we discuss a set of experimental scenarios for evaluating the

AWARD characteristics for supporting dynamic reconfigurations.

6.3.1 Scenario 1: Change Task for Modifying the Activity Behavior

This simple scenario illustrates how the AWARD workflow based on basic patterns that

was discussed in Section 6.2.3.1 (shown again in Figure 6.18) can be dynamically recon-

figured for improving its performance. Even when the Kepler system is used the average

of the workflow iteration execution time is always greater than 1 second due to the delay

(defined as a T ask parameter) in the two Add activities (Add1-1sec and Add2-1sec) of the

workflow.

Ramp1
Initial=1
Step=1

Ramp2
Initial=0
Step=2

Add2-1sec

Add1-1sec

Multiply

OutputToFile

Figure 6.18: Workflow for improving performance by changing T asks

Assuming a long-running workflow with multiple iterations in Kepler if the need

arises for improving the workflow execution it is mandatory to develop a new workflow

and restart a new execution. However, in AWARD the execution performance can be

improved during the workflow execution by submitting a dynamic reconfiguration plan

for changing P arameters or even the T ask (algorithm) of any activity. As an example,

the average of iteration execution time can be improved by simply changing the T ask

P arameters or even by changing the T ask algorithms to new algorithms, leading to im-

proved performance of the Add1-1sec and Add2-1sec activities.

Figure 6.19 illustrates the result of the workflow execution when we dynamically

changed the T ask of the two Add1-1sec and Add2-1sec activities with a new algorithm

that was optimized for a delay of only 0.5 seconds instead of the previous value of 1

second.

This dynamic change was achieved by submitting a reconfiguration plan as presented

in Listing 6.7.
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Figure 6.19: Dynamic reconfiguration to improve performance

From Figure 6.19 we can note that in this experiment, the reconfiguration plan was

successfully applied at the 50th iteration. As a result, the average iteration execution time

decreases after the 50th iteration leading to a reduction of the overall execution time. The

reconfiguration plan script uses the ChangeTask dynamic operator to change the T asks of

the Add1-1sec and Add2-1sec activities to a new algorithm implemented by the new T ask

named Add-05sec.

Listing 6.7: Reconfiguration plan script for changing T asks

1 int RID = BeginReConfiguration(new String[]{"Add1-1sec","Add2-1sec"});

2 BeginAwaReConfig(RID, "Add1-1sec");

3 ChangeTask(RID, "Add1-1sec", "tasks.Add-05sec");

4 int it1 = EndAwaReConfig(RID, "Add1-1sec");

5 BeginAwaReConfig(RID, "Add2-1sec");

6 ChangeTask(RID, "Add2-1sec", "tasks.Add-05sec");

7 int it2 = EndAwaReConfig(RID, "Add2-1sec");

8 int[] AgreementSet=new int[]{it1, it2};

9 int K=EndReConfiguration(RID,new String[]{"Add1-1sec","Add2-1sec"},AgreementSet);

Although this example is minimal and very simple it clearly demonstrates the AWARD

functionality and feasibility as well as the advantages of performing dynamic workflow

reconfigurations.

6.3.2 Scenario 2: Change the Structure of a Pipeline Workflow

In scientific data-intensive experiments modeled as long-running workflows, the large

size of data involved may require changing or even discarding intermediate data results

for avoiding unnecessary computations in the future [Gon+13]. This implies a validation

whether data is or not compliant with quality and filtering criteria. However, this can pose

a problem due to the difficulties for defining such criteria before the workflow execution.

This problem can be overcome by using the AWARD model functionality for monitoring
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intermediate data results and the ability for performing structural and/or behavioral

workflow reconfigurations.

Therefore this scenario evaluates how dynamic reconfigurations can be used to change

the structure of a pipeline workflow by dynamically inserting a new activity for changing

the processing of intermediate data sets.

The scenario assumes the AWARD workflow of Figure 6.20(a) with infinite number of

iterations. The Random activity produces, on its ro1 output port, an infinite number of

tokens as random integer numbers ranging between 0 and a number N, which is specified

as an activity parameter. The Output activity receives, on its Oi1 input port, the random

numbers and its T ask displays them in a graphical user interface.

Random Output
ro1 Oi1

Filter
fi1 fo1

N

Random Output
ro1 Oi1

N

(a) Initial workflow

Random Output
ro1 Oi1

Filter
fi1 fo1

N

Random Output
ro1 Oi1

N

(b) Workflow after applying a dynamic reconfiguration

Figure 6.20: Workflow reconfiguration for data filtering

For illustrating the need to change the workflow behavior consider that the random

number 0 is unwanted in the Output activity.

The AWARD flexibility to support dynamic reconfigurations allows several approaches

for changing the workflow behavior. For instance, the T ask of the Random activity can

be changed for not producing the number 0. However, as a more general approach the

structure of the workflow can be changed by introducing a new activity named Filter, as

shown in Figure 6.20(b), which filters the random numbers and replaces the number 0

with a mark, for instance the number -1.

The reconfiguration plan for performing the workflow changes is presented in Listing

6.8, which consists of launching the new Filter activity and connecting its fo1 output

port to the Oi1 input port of the Output activity and changing the destination of the ro1
output port of the Random activity for sending tokens to the fi1 input port of the new

Filter activity.

For demonstrating the operation of this scenario the T ask of the Random activity

generates random numbers between 0 and 9 and the T ask of the Filter activity, named

TaskFilterInteger, is a Java class with a graphical user interface for showing the random

numbers as illustrated in Figure 6.21.

The result of applying the reconfiguration plan that succeeded at the 27th iteration is

shown in a dashed box where the random numbers 0 at iterations 33 and 35 are filtered

and replaced with the -1 number as received on the Output activity.

221



CHAPTER 6. EVALUATION OF THE AWARD MODEL AND ITS

IMPLEMENTATION

Listing 6.8: Reconfiguration plan for introducing the new Filter activity
1 int RID = BeginReConfiguration(new String[]{"Random", "Filter"});

2 LaunchActivity("FilterConfig.xml", "Filter");

3 BeginAwaReConfig(RID, "Filter");

4 StartExec(RID, "Filter")

5 ChangeOutputLink(RID, "Filter", "fo1", new String[]{"Oi1"});

6 int it1 = api.EndAwaReConfig(RID, "Filter");

7 BeginAwaReConfig(RID, "Random");

8 ChangeOutputLink(RID, "Random", "ro1", new String[]{"fi1"});

9 int it2 = api.EndAwaReConfig(RID, "Random");

10 int[] AgreementSet=new int[]{it1, it2};

11 int K=EndReConfiguration(RID, new String[]{"Random", "Filter"}, AgreementSet);

Figure 6.21: Result of introducing the Filter activity

6.3.3 Scenario 3: Change Workflow Structure to Introduce a Feedback Loop

As presented in Section 6.2.4.2 on page 211 the AWARD model expressiveness allows

workflow structures with feedback loops to be configured at design time. However, the

AWARD support for dynamic reconfigurations allows introducing feedback loops during

the workflow execution.

For evaluating this AWARD characteristic we consider a simple pipeline workflow

executed during multiple iterations. As presented in Figure 6.22 each activity has a

T ask with a graphical user interface for showing strings with the Task[@iteration](inputs)
pattern, where iteration is the current iteration and inputs is a list of tokens received at

the activity input ports.

By observing the intermediate results the workflow developer can decide to reconfig-

ure the workflow by introducing a feedback loop as presented in Figure 6.23 where the

new Feedback activity processes a token received from the C activity and sends a feedback
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A B C

ao1 bo1bi1 ci1

Figure 6.22: Pipeline workflow without feedback loop

A B C

Feedback

ao1 bo1bi1 ci1

fo1 fi1
Feedback
Token

co1

bif

A B C

ao1 bo1bi1 ci1

Figure 6.23: Workflow reconfiguration to introduce a feedback loop

token to a new bif input port dynamically created on the B activity.

The reconfiguration plan for introducing the feedback loop is presented in Listing 6.9,

which involves the creation of an input port (named bif ) and the creation of an output

port (named co1).

The creation of the new bif input port on the B activity can require changing the T ask

of the B activity as well as the mappings from its input ports to the T ask Arguments.

In the same way the creation of the new co1 output port on the C activity can require

changing the T ask of the C activity to produce a new result to be mapped to the new co1
output port and to be sent as a token to the fi1 input port of the Feedback activity.

In Figure 6.24 the execution result is presented after submitting the reconfiguration

plan that succeeded at the 9th iteration where the new T asks of the B and C activities

show the results of introducing the feedback loop.
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Listing 6.9: Reconfiguration plan for introducing the feedback loop
1 int RID = BeginReConfiguration(new String[]{"B", "C", "Feedback"});

2 BeginAwaReConfig(RID, "B");

3 CreateInput(RID,"B", "bif", "EnableFeedback", "java.lang.String", "Iteration");

4 ChangeMappingInputs(RID, "B", new String[]{"bi1", "bif"});

5 ChangeTask(RID, "B", "tasks.TaskBwith2args");

6 int it1 = EndAwaReConfig(RID, "B");

7 BeginAwaReConfig(RID, "C");

8 CreateOutput(RID, "C", "co1", "Enable", "java.lang.String", "Single");

9 AddOutputLink(RID, "C", "co1", new String[]{"fi1"});

10 ChangeMappingOutputs(RID, "C", new String[]{"co1"});

11 ChangeTask(RID, "C", "tasks.TaskCwithOutput");

12 int it2 = EndAwaReConfig(RID, "C");

13 LaunchActivity("FeedbackConfig.xml", "Feedback");

14 BeginAwaReConfig(RID, "Feedback");

15 StartExec(RID, "Feedback")

16 ChangeOutputState(RID, "Feedback", "fo1", "EnableFeedback");

17 ChangeOutputLink(RID, "Feedback", "fo1", new String[]{"bif"});

18 int it3 = EndAwaReConfig(RID, "Feedback");

19 int[] AgreementSet=new int[]{it1, it2, it3};

20 int K=EndReConfiguration(RID, new String[]{"B", "C","Feedback"}, AgreementSet);

Figure 6.24: Pipeline workflow with a feedback loop after the 9th iteration

6.3.4 Scenario 4: Change Workflow Structure and Behavior for Load
Balancing

As presented in Section 6.2.4.3 the AWARD model expressiveness allows workflow struc-

tures where an activity can be replicated for load balancing purposes and this can be
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configured at design time. However, the AWARD support for dynamic reconfigurations

allows introducing the load balancing pattern during the workflow execution.

For evaluating this AWARD characteristic we consider a simple pipeline workflow

executed during multiple iterations as presented in Figure 6.25.

A B C 

ao1 bo1 bi1 ci1 

1 sec / per token  0,25 sec / per token  

Figure 6.25: Workflow with delayed tokens delivery

The A activity produces tokens per each iteration at a pace of 0.25 seconds per token

to be processed by the B activity and are afterwards delivered to the C activity. Given that

the B activity incurs a delay of 1 second for delivering each token, then after performing

multiple iterations the per token delivery time increases for each token. In fact as the

producing rate of the A activity is four times the pace of the B activity the tokens produced

by the A activity are delayed in the AWARD Space until the B activity can consume them.

For evaluating this scenario we developed a token class, depicted in Listing 6.10, for

carrying timestamps. Therefore, before issuing tokens the A activity marks them with the

system time in milliseconds and the B activity also marks tokens with the system time

before delivering them to the C activity.

Listing 6.10: Token class that for carrying timestamps

1 import java.io.Serializable;

2

3 public class InterActivityLBToken implements Serializable {

4 public long TaskATime; //timestamp on activity A

5 public String itA; //current iteration at activity A

6 public long TaskBTime; //timestamp on activity B

7 public String balanceName; // Activity B, B1, B2 or B3

8 }

As illustrated in Figure 6.26 the per token delivery time (indicated "elapsed" in the

Figure 6.26) reach near 1 minute after 75 iterations.

By observation of the intermediate workflow results it is possible to conclude that

if we introduce three more replicas of the B activity the per token delivery time has a

tendency to reach 1 second because for each four tokens produced by the A activity there

are four instances of the B activity for processing them in parallel as illustrated in Figure

6.27.

The AWARD dynamic library operators can be used for preparing a reconfiguration

plan to introduce the three replicas of the B activity and changing the workflow struc-

ture. Additionally the token mode behavior of the ao1 output port of the A activity is
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Figure 6.26: Token delivery time reaches near 1 minute after 75 iterations
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Figure 6.27: The workflow with load balancing on activity B

also changed for emitting tokens in round-robin fashion. Also the order mode of the

bi1 input port of the existing B activity is changed to receive tokens in Sequence mode.

Assuming that the B1, B2 and B3 activities are specified in the replicasB.xml file where

the b1i1, b2i1 and b3i3 input ports are already configured with a Sequence order mode,

the reconfiguration plan for introducing load balancing on the B activity is presented in

Listing 6.11.

For demonstrating this reconfiguration scenario we used a single standalone computer

for launching the initial workflow with the A, B and C activities and for observing the

output of the C activity and by showing the per token delivery time as presented in Figure

6.28. These per token delivery time are based on the computer current system time in

milliseconds.

When per token delivery time exceed 1 minute we submitted the reconfiguration plan

of Listing 6.11 that led to the new workflow configuration with an agreement between

the involved activities for applying the reconfiguration at the 79th iteration.
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Listing 6.11: Reconfiguration plan for introducing load balancing on activity B
1

2 String[] awaNames=new String[]{"A","B","B1", "B2", "B3"};

3 int[] iters=new int[5];

4 int RID = BeginReConfiguration(awaNames);

5 for (int i=2; i < awaNames.length; i++) {

6 LaunchActivity("replicasB.xml", awaNames[i]);

7 BeginAwaReConfig(RID, awaNames[i]);

8 StartExec(RID, awaNames[i]);

9 iters[i] = EndAwaReConfig(RID, awaNames[i]);

10 }

11 BeginAwaReConfig(RID, "A");

12 ChangeOutputLink(RID,"A","ao1",new String[]{"bi1","b1i1","b2i1","b3i1"});

13 ChangeOutputStrategy(RID, "A", "ao1", "RoundRobin");

14 iters[0] = EndAwaReConfig(RID, "A");

15 BeginAwaReConfig(RID, "B");

16 ChangeInputOrder(RID, "B", "bi1", "Sequence");

17 iters[1]== EndAwaReConfig(RID, "B");

18 int[] AgreementSet=iters;

19 int K=api.EndReConfiguration(RID, awaNames, AgreementSet);

Listing 6.12: Reconfiguration plan to launch the B4 activity
1 int RID = BeginReConfiguration(new String[]{"A", "B4"});

2 BeginAwaReConfig(RID, "A");

3 AddOutputLink(RID, "A", "ao1", new String[]{"b4i1"});

4 int it1 = EndAwaReConfig(RID, "A");

5 LaunchActivity("replicasB.xml", "B4");

6 BeginAwaReConfig(RID, "B4");

7 StarExec(RID, "B4");

8 int it2 = EndAwaReConfig(RID, "B4");

9 int[] AgreementSet=new int[]{it1, it2};

10 int K=EndReConfiguration(RID, new String[]{"A", "B4"}, AgreementSet);

The results presented in Figure 6.28 [case a)] show that before the 79th iteration the per

token delivery time of the B activity increases until 65.7 seconds because the processing

pace of the A activity is four times the pace of the B activity. However, after applying the

reconfiguration plan at the 79th iteration as shown in Figure 6.28 [case b)] and Figure 6.28

[case c)] the per token delivery time of the B activity stabilize close to 63 seconds because

it starts receiving tokens near its processing rate and the new B1, B2 and B3 activities are

processing tokens at their pace of 1 second per token.

In order to compensate the remaining delay on the B activity a new reconfiguration

plan presented in Listing 6.12 is submitted for launching the B4 activity. This reconfigu-

ration plan, that succeeded at the 492nd iteration, led all five replicas of the B activity (B,

B1, B2, B3 and B4) to deliver tokens close to its processing rate of 1 second per token as

shown in Figure 6.28 [case d)].

Figure 6.29 illustrates the evolution of the per token delivery time on the initial B
activity showing the points at the 79th iteration and the 492nd iteration where the two

reconfiguration plans are applied.
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a) b)

c) d)

Figure 6.28: Per token delivery time on activity C
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Figure 6.29: Per token delivery time of activity B: before and after applying load balancing

This scenario clearly showed the advantage of applying dynamic reconfigurations

for optimizing workflow execution times. Additionally it is important to note that after

the B activity recovery, a third reconfiguration plan can be submitted to remove the B4
activity. Such reconfiguration plan would simply use the ChangeOutputLink operator for

changing the ao1 output port of the A activity and a Terminate operator to terminate the B4
activity. Therefore the AWARD characteristics for supporting dynamic reconfigurations

can also be used to develop automatic tools for introducing elastic scalability [HKR13]

as the capability of dynamically increasing and decreasing the allocation of resources to

optimize workload changes during a workflow execution.
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6.3.5 Section Conclusions

The reconfiguration scenarios presented demonstrate the functionality and the feasibility

of the AWARD model for supporting dynamic workflow reconfigurations using recon-

figuration plans implemented with the developed software library (DynamilcLibaray.jar),

which provides a set of reconfiguration operators. These operators allow structural and

behavioral workflow changes that can be used for improving workflow execution times,

or for adapting the application functionality to changing requirements.

6.4 Application Cases

The previous sections (6.2 and 6.3) presented various scenarios to demonstrate the flexi-

bility and feasibility of using AWARD for developing scientific workflows. However, the

AWARD framework has been effectively used for experimenting further scenarios in the

context of the following concrete application cases:

1. An implementation of the MapReduce model validated with experiments related to

data analytics in the cloud;

2. Workflows for invoking Web Services from external institutions;

3. Recovering from workflow activity faults using dynamic reconfigurations;

4. Workflows with steering by multiple users;

5. The workflow of a text mining application, which is a very significant case because it

demonstrates the flexibility and feasibility of the AWARD framework for developing

workflows by external users that have no knowledge about the AWARD machine

internals.

6.4.1 Case 1: AwardMapReduce Workflow

G Description

Data analytics applications are currently used for extracting relevant information

from large-scale data sets. These applications can be expressed as workflows with multi-

ple activities for data processing, filtering, analysis, combining, and visualization. This

requires a flexible composition of the workflow structure and possibly also its configu-

ration depends on the application requirements and the data localization. Therefore to

achieve practical results the workflow structure needs sufficient flexibility to use massive

parallel processing.

The MapReduce programming model has been used for data-parallel processing of

large data sets [DG04; Fad+12; Gun+10]. The MapReduce developer’s view is based on two

basic Map and Reduce functions and the operational view consists of an implicit workflow,

which is instantiated by the runtime system with nodes for input data splitting, parallel
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evaluation of the Map function, partitioning and distributing the generated intermediate

data, and parallel evaluation of Reduce function.

The MapReduce programming model has been applied in data analytic applications to

process large data sets in cluster and cloud environments. For developing an application

using the MapReduce model there is a need to install and configure specific frameworks

such as Apache Hadoop [Apa15a] or pay for accessing cloud services for instance the

Elastic MapReduce in Amazon cloud [Ama12]. However, the original MapReduce model

and the underlying execution environment lack a flexible support for the configuration

and composition of the workflow nodes. Therefore it would be desirable to provide

more flexibility in adjusting such configurations according to the multiple phases of data

analytic applications.

G Case contribution for the AWARD evaluation

The motivation for studying this application case was twofold. Firstly to evaluate the

functionality and flexibility of AWARD for specifying a specific workflow that implements

a well-known programming model. Secondly to evaluate the feasibility of executing such

workflow on cloud infrastructures where multiple activities are executed in parallel and

can process large data sets.

As a joint work with Carlos Gonçalves and in the experimental context of a text mining

application we developed the AwardMapReduce workflow for implementing the MapRe-
duce model [GAC12]. This work demonstrated how MapReduce workflows are supported

on top of the AWARD framework, with increased flexibility regarding their configuration

and composition within a complex application workflow. It also shows the feasibility for

executing the AwardMapReduce workflow activities on multiple virtual machines of the

Amazon EC2 infrastructure.

The text mining application is expressed as a complex workflow with three phases

whose final outcome is to extract the relevant expressions occurring in a natural language

corpus [GSC15; Sil+99]. The development of this application using AWARD is discussed

in Section 6.4.5. Here we discuss an experiment in using AWARD to support the specifi-

cation and execution of phase 1 of the above application, and explain how this led to the

development of the AwardMapReduce workflow.

G AwardMapReduce workflow specification

As presented in Figure 6.30, the phase 1 of the application workflow consists of

six parallel activities, denoted as "Phase 1, n-gram", with n=1 to n=6. Each activity is

responsible for counting all occurrences of n-grams of each given size (n=1, n=6), that

is, "Phase 1, 1-gram" counts all occurrences of unigrams, "Phase 1, 2-grams" counts all

occurrences of bigrams, etc.

Counting n-grams in large text files is a well-known problem that has been solved,

for example, using the MapReduce model, for each given value of n, in order to explore

data parallelism for large data sets.

As illustrated in the expanded workflow node in Figure 6.30, this is achieved by using

multiple Mapper processes performing the counting of n-gram in separate text partitions,
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followed by an aggregation of the partial results, performed by a set of Reducer processes.

In this way all nodes in phase 1 can be launched in parallel as separate MapReduce
workflows, where each is supported by an AwardMapReduce workflow in this experiment.

AwardMapReduce has a similar functionality as other MapReduce implementations

where the functions Map and Reduce are, respectively, the T asks of Mapper and Reducer
workflow activities of Figure 6.30. However, the fact that AwardMapReduce is imple-

mented as an AWARD workflow gives it an increased flexibility in its configuration and

P arameters definition. When compared to other MapReduce platforms, such as Apache

Hadoop [Apa15a] the advantage of using AwardMapReduce is the AWARD possibility for

specifying the same workflow template with different configuration P arameters to the

Mapper activity for counting the n-grams with the different values of n (from 1 to 6) for

all nodes of the phase 1.

Phase 1
1-gram

Phase 3
3-gram

Phase 1
2-gram

Phase 1
3-gram

Phase 1
4-gram

Phase 1
5-gram

Phase 1
6-gram

Phase 2
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Split

Mapper

Merge

Mapper

Reducer

Reducer

… …

Figure 6.30: Text mining application with a phase 1 modeled as a workflow [GAC12]

G AwardMapReduce implementation

Although the above mentioned experiments were performed in the context of the

above mentioned text mining application, we designed the AwardMapReduce workflow

with the following general requirements:

1. For developing any MapReduce application, the programmer only needs to provide

the same number of functions as when using other MapReduce platforms, typically

a function for getting Records from the input file, and the Map and Reduce functions.

The Map and Reduce functions developed in the Java language to run MapReduce
applications in other platforms, for instance Apache Hadoop, can be reused with

minimal modifications;
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2. The AwardMapReduce workflow is neutral regarding the file systems used. Accord-

ing to the application data and the computational infrastructure the input or output

files can be associated with local file systems and distributed file systems;

3. As an AWARD workflow the AwardMapReduce workflow can be launched in hetero-

geneous infrastructures with different operating systems on local networks, clusters

or virtual machines in cloud environments.

G The AwardMapReduce interface

The AwardMapReduce implementation provides the AwardMRlib.jar Java library to

facilitate the development of MapReduce applications. This software library defines the

interfaces and data types presented in Table 6.1 that are similar to other MapReduce plat-

forms. Developers only need to use this software library for developing new MapReduce
applications.

Table 6.1: Overview of AwardMRlib.jar library

Base classes: The application dependent Key and Value classes need to derive from the following base
classes:
class MRkeyBase implements Serializable, Comparable { }
class MRvalueBase implements Serializable, Comparable { }
Class to store Key/Value pairs: The method collect is invoked to store key/value pairs in the shared
storage for instance in the Map and Reduce functions.
class MRcollector { void collect(MRkeyBase k, MRvalueBase v); }
Interface of the record extractor function: The application dependent class for reading input data must
implement this interface where the getNextRecord method must return null when no more data records
are available.
interface IRecordExtractor { Record getNextRecord(); }
class Record {MRkeyBase k; MRvalueBase v; }
Interface of Map function: The application dependent class to process the key/value pairs must
implement this interface, and the map method must invoke the method collect of the MRcollector
argument.
interface IMap {void map(MRkeyBase k, MRvalueBase v, MRcollector c); }
Interface of Reduce function: The application dependent class for iterating the values set (v), and
applying the reduce algorithm must implement this interface. The final key/value pairs are stored into
the shared storage by invoking the MRcollector argument.
interface IReduce {void reduce(MRkeyBase k, Iterator<MRvalueBase> v, MRcollector c); }

G The AwardMapReduce workflow activities

The AwardMapReduce workflow developed in this experiment is depicted in Figure

6.31 with its main activities: Split, Mapper, Merger and Reducer. Depending on the size of

input data the workflow can be configured to have multiple Mapper and Reducer activities.

Also the workflow can be configured with any additional stages, for example intermediate

mergers.

The activities of the AwardMapReduce workflow can be spread for distributed execu-

tion on multiple computers. Therefore there is a need to share the intermediate data

as key/value pairs produced by the Mapper activities, merged and sorted by the Merger
activity and reduced by key at the Reducer activities. The AwardMapReduce relies on the

AWARD Space server for supporting multiple tuple spaces used as a shared storage for

storing and retrieving the intermediate data as tuples.
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Figure 6.31: The AwardMapReduce workflow [GAC12]

Each of the Mappers, the Merger and each of the Reducers has its own tuple space

instantiated in the AWARD Space server running on its local computing node. The Merger
tuple space only contains partitions-related information, to be used by the Reducers to

locate and read the key/value pairs from the Mappers tuple spaces. Therefore there is no

copy of key/value pairs from the Mapper tuple spaces to the Merger tuple space.

The dataflow between the AwardMapReduce workflow activities relies on tokens im-

plemented by the Java classes types presented in Listing 6.13. Between the Split and

the Mappers, the SplitToken is an object with the file name and the start/end input file

offsets for each split. Between the Mappers and the Merger, the TSToken is an object

of the TsServerInfo type identifying a tuple space (TCP/IP address, TCP/IP port, space

name). Between the Merger and the Reducers, the PartSetToken contains information on a

TsServerInfo object for the tuple space where the information generated by the Merger can

be found by each Reducer and two numbers (partStart/partEnd) for defining the sequence

of partitions to be processed by each Reducer.

In the following we summarize the functionality of the Split, Mapper, Merger and

Reducer acitivities of the AwardMapReduce workflow. More detail of each activity specifi-

cation can be found in [GAC12].

The Split activity calculates the file offset of each file split according to the input file

size and a number of splits equal to the number of Mappers. The activity sends to each

Mapper a SplitToken (as in Listing 6.13) containing the file name and the split offsets.

The Mapper activity invokes the application-dependent getNextRecord function ac-

cording to the IRecordExtractor interface (as in Table 6.1) for reading data records from

the assigned text file split and invokes the application-dependent Map function according

to the IMap interface (as in Table 6.1) for each key/value pairs (n-gram occurrence) found.
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Listing 6.13: Data-flow tokens as Java classes
1 package award.mapreduce;

2

3 public class SplitToken implements Serializable { //Split -> Mappers

4 public String fileName; // The input file name

5 public Long startOffset; // The split start offset

6 public Long endOffset; // The split end offset

7 }

8

9 public class TsServerInfo implements Serializable {

10 public String hostName; // the IP

11 public int tsPort; // the TCP port

12 public String tsName; // the name of the tuple space

13 }

14

15 public class TSToken implements Serializable { //Mappers -> Merger

16 public TsServerInfo tsmap;

17 }

18

19 public class PartSetToken implements Serializable { //Merger -> Reducers

20 public TsServerInfo tsmerg;

21 public Integer partStart; // The initial partition number

22 public Integer partEnd; // The final partition number

23 }

The pairs are stored into a tuple space identified by the TSToken (as in Listing 6.13) to be

sent to the Merger activity.

The Merger activity produces a tuple space with an ordered partition of keys. For

each key there is a tuple with a ordered partition number (key, partitionNumber) and a

corresponding tuple identifying all Mapper tuple spaces where the key was processed

(key, Space1,..., SpaceN). According to the number of Reducers the activity distributes a set

of partitions to each Reducer by sending a token PartSetToken (as in Listing 6.13) with a

sequence of key partitions.

The Reducer activity produces a tuple space with the final key/value pairs. The activity

T ask uses a thread for each partition number identified in the input token PartSetToken (as

in Listing 6.13) for performing the following actions: gets a tuple (keyX, partitionNumber)
from the Merger tuple space and using the keyX for getting the list of Mapper tuple spaces

that contain the keyX key from the Merger tuple space; gets all key/value pairs from the

Mapper tuple spaces and invokes the application-dependent Reduce function according to

the IReduce interface (as in Table 6.1). In the text mining application the keys are n-grams

and the values are the aggregated occurrence numbers of each distinct n-gram.

G Distributed execution of the AwardMapReduce workflow on Amazon cloud in-

frastructure

Another goal of these experiments was to evaluate the feasibility of using cloud plat-

forms for executing a data intensive application using the AwardMapReduce workflow. In

the context of the mentioned text mining application we configured the AwardMapReduce
workflow to count unigrams in a set of text files of different sizes.
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The experiments were performed involving multiple Amazon AWS virtual machines

(up to 20 EC2 instances). Given that the Split, Mappers, Merger and Reducers activities

have different CPU needs during execution we used two distinct EC2 instances types: The

Micro type (613 MB memory, 2 EC2 Compute Units, Linux 64-bit, Low I/O performance

); and the Large type (7.5 GB memory, 4 EC2 Compute Units, 850 GB instance storage:

Linux 64-bit, High I/O performance).

The workflow imposes the following dependencies between activities: The Split activ-

ity runs first; The Merger activity only runs after all the Mappers have terminated; and the

Reducers only run after the completion of the Merger activity, therefore after the comple-

tion of all Mappers. The mapping of workflow activities to EC2 instances was performed

as follows:

1. One of the EC2 instances is always dedicated to running the Split and Merger activi-

ties;

2. Each of the other EC2 instances runs a Mapper/Reducer pair;

3. The maximum number of EC2 instances that Amazon allows without special re-

quests is 20. Thus, as an example, the notation M19-R19, used in the charts of

Figure 6.32, means that we run 19 Mappers and 19 Reducers in 19 EC2 instances and

in the 20th remaining instance we run the Split and Merger activities.

The experiments performed used input files of different sizes (up to 5 Mbyte). Al-

though most of related work usually considers the raw file size only, the number of

distinct n-grams (keys) existing in the text input file is particularly relevant as it affects

the workload of each workflow activity. In fact distinct n-grams have different number

of occurrences. Thus, we present the results of executing an AwardMapReduce workflow

for a text file with 5709 distinct n-grams when using Micro EC2 instances (Figure 6.32(a))

and Large EC2 instances (Figure 6.32(b)). The axis "Execution Time (minutes)" is the total

execution time for counting the n-grams with n=1, that is unigrams of the text mining

application. This time is shown distributed by the parcels of execution time of the Map,

Merge and Reducer stages of the AwardMapReduce workflow. Both cases in Figure 6.32

show the results of using from 1 to 20 EC2 instances, corresponding to 1 Mapper and 1

Reducer (M1-R1) up to 19 Mappers and 19 Reducers (M19-R19).

We consider a speedup definition as Speedup = TM1−R1
TMi−Ri

where TM1−R1 is the execution

time when using only one Mapper and only one Reducer, and TMi−Ri is the execution time

when using i Mappers and i Reducers, with i = 1,3,6,10,19.

In both cases of using EC2 Micro instances (Figure 6.32(a)), and using EC2 Large

instances (Figure 6.32(b)) the results allow to conclude that speedup increases with the

number of EC2 instances hosting multiple Mapper and Reducer activities. For instance,

when using EC2 Large instances (Figure 6.32(b)) the speedup increases from 3 to 4.8

when comparing the workflow execution with 3 Mappers and 3 Reducers (M3-R3) to the

workflow execution with 19 Mappers and 19 Reducers (M19-R19).
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Figure 6.32: Using EC2 instances for counting unigrams

In terms of the Map stage we conclude that the AwardMapReduce workflow shows a

consistent reduction of the execution time of the Map phase when the number of Mappers
increase.

However, there are different saturation points. For EC2 Micro instances, the saturation

point is reached close to 6 Mappers/6 Reducers and for EC2 Large instances, the saturation

point is only reached close to 10 Mappers/10 Reducers. These saturation points are related

to the following aspects:

1. The bottleneck for accessing multiple tuple space servers. In fact, as the number of

Mappers and Reducers and the associated tuple spaces servers (Figure 6.31) increase,

each Reducer accesses multiple tuple spaces. Therefore there is room here for im-

proving the mapping of the shared storage as tuple spaces for example by using

alternative devices, such as distributed in-memory stores or non-relational data set

storage, like Amazon DynamoDB [Ama15a];
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2. The Merge and Reducer activities benefit from using the EC2 Large instances (4

EC2 Compute Units) because their T asks were developed using multithreading.

Therefore, the EC2 instance type for Merger activity and Reducer activities should

be chosen with a high number of Amazon EC2 Compute Units (ECU).

G Case conclusion

We have shown that we can execute a particular application phase as an AWARD

workflow designed to implement a MapReduce model. We also showed that the AWARD

framework is flexible to support the implementation and the execution of MapReduce
workflows using a similar API as used in other MapReduce platforms, for instance Apache

Hadoop [Apa15a]. Due to the logical abstraction level provided by AWARD model we

showed that AwardMapReduce workflows are easily mapped onto cloud platforms as Ama-

zon EC2, allowing experiments with multiple computing nodes without dependencies

upon specific features, like databases, message queues or file storage.

The experiments also show that the AwardMapReduce workflow speedup increases

when we use multiple Mappers and multiple Reducers, thus validating the AWARD flexi-

bility for allowing the development and deployment of alternative MapReduce workflow

configurations. New workflow activities and stages can be added, for instance to dump the

final key/value pairs to output files, or adding new intermediate stages for optimization

purposes. As an example, for a MapReduce workflow with a higher number of Mappers we

can easily redesign the workflow with a tree of Mergers. For instance, for 16 Mappers we

can have a first level of 4 Merger nodes, a second level with 2 Mergers and a final Merger
to combine and sort the total key/value pairs.

Furthermore, as shown in Section 6.3.4 the AWARD functionality for supporting

dynamic reconfigurations can be used to apply load balancing scenarios for dynamically

adjusting the numbers of Mapper, Merger, and Reducer activities.

6.4.2 Case 2: Invoking Web Services

G Description

The success of Service Oriented Architectures (SOA) based on Web Services standards

allowed cooperative organizations in multiple science domains to develop Web Services

that can be used by anyone anywhere. For example, Taverna [Wol+13] is an open source

workflow system for accessing a large number of Web Services in the fields of bioinformat-

ics, astronomy, chemoinformatics, health informatics and others. As an example of a Web

Service, the Protein Identifier Cross-Reference Service (PICR), described in [Cot+07] and

available in [EBI12] offers the possibility of obtaining a protein sequence given an protein

identifier by allowing access to a mapping algorithm that uses over 70 distinct databases

organized as UniProt Archive [Uni12] as data source. Thus, due to the importance that

any workflow system supports the access to the third party Web Services we developed an

application case for accessing the above mentioned PICR Web Service for getting protein

sequences.
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G Case contribution for the AWARD evaluation

This application case, already presented in [AGC14], demonstrates the functionality

and feasibility of the AWARD model to invoke third party Web Services. The AWARD

model is neutral concerning the internals of the activity T asks. Thus any activity T ask

can transparently invoke one or more Web Services.

G The workflow specification

The implemented workflow is depicted in Figure 6.33. For each iteration, the AwaPICR
activity invokes the Web Service to map a protein identifier received from its Pws-IN in-

put port for producing two results: a UniParc Protein Identifier (UPI) at the Pws-O1 output

port and the protein sequence at the Pws-O2 output port. The AwaPICR activity specifi-

cation includes a list of initial P arameters including the URL of the PICR Web Service, a

list of data base names and a taxonomy identifier (ID) to limit the mappings to the Homo
sapiens species.

AwaPICR
Invoke Web Service 

Protein Identifier
Cross-Reference

Out1

Parameters:
URL: http://www.ebi.ac.uk/Tools/picr/service
UniParc DataBases: SWISSPROT; TREMBL

Taxonomy ID: 9606 //Homo Sapiens species
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Figure 6.33: Workflow that invokes PICR Web Service to map protein sequences

Listing 6.14 illustrates a view of the workflow specification XML file with details of

the AWA activity that invokes the PICR Web Service and the corresponding definition of

the input and output ports.

G Implementation

Listing 6.15 illustrates the relation between the specification of AWARD activities and

the implementation of an activity T ask that invokes the Protein Identifier Cross-Reference
Service (PICR) Web Service. In the workflow specification details related to the PICR

are specified as P arameters, for instance the location (URL) of the Web Service. Note

the programming simplicity to get the Arguments and P arameters, and the possibility to

return many objects that will be mapped to the activity output ports. The Java package

uk.ac.ebi.picr.model containing the method getUPEntry and the UPEntry type was automat-

ically generated by parsing the Web Service WSDL (Web Service Definition Language).

For instance, in Netbeans (the Java integrated development environment used in these

experiments) the programmer only needs to supply the Web Service URL to generate

a package which contains the wrapper classes and the data types for invoking the Web

Service.
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Listing 6.14: The AWA activity specification that invokes the PICR web Service
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <AwardWorkflow>

3 <workflowName>workflow Invoke Protein PICR Web Service</workflowName>

4 <MaxIterations>9</MaxIterations> <!-- Number of Iterations -->

5 <AdditionalLibs>D:\AWARD\Libs\TasksInvokeProteinWS.jar</AdditionalLibs>

6 <Awa> <!-- Generate from a file a sequence of nine Proteins IDs --> </Awa>

7 <Awa> <!-- Invoke the PICR Web Service -->

8 <ControlUnit>

9 <InitialState>Idle</InitialState>

10 <RulesFileName>TaskBasicRules.clp</RulesFileName>

11 </ControlUnit>

12 <name>PICR</name>

13 <input>

14 <name>Pws-IN</name>

15 <state>Enable</state>

16 <tokenType>java.lang.String</tokenType>

17 <orderMode>Iteration</orderMode>

18 </input>

19 <output>

20 <name>Pws-O1</name>

21 <state>Enable</state>

22 <tokenType>java.lang.String</tokenType>

23 <modeToken>Single</modeToken>

24 <sendTo>Out1-IN</sendTo>

25 </output>

26 <output>

27 <name>Pws-O2</name>

28 <state>Enable</state>

29 <tokenType>java.lang.String</tokenType>

30 <modeToken>Single</modeToken>

31 <sendTo>Out2-IN</sendTo>

32 </output>

33 <Task>

34 <parameters>

35 <!-- Url of the Web Service -->

36 <par>http://www.ebi.ac.uk/Tools/picr/service</par>

37 <!-- list of databases to map proteins -->

38 <par>SWISSPROT;TREMBL</par>

39 <!the taxonomy ID to limit the mappings to Homo Sapiens species -->

40 <par>9606</par>

41 </parameters>

42 <SoftwareComponent>

43 <mappingArgs>

44 <arg> <idxArg>0</idxArg> <inName>Pws-IN</inName> </arg>

45 </mappingArgs>

46 <taskImplementationType>

47 tasksinvokeproteinws.TaskInvokeProteinsWS

48 </taskImplementationType>

49 <mappingResults>

50 <result> <idxRes>0</idxRes> <outName>Pws-O1</outName> </result>

51 <result> <idxRes>1</idxRes> <outName>Pws-O2</outName> </result>

52 </mappingResults>

53 </SoftwareComponent>

54 </Task>

55 </Awa>

56 <Awa> <!-- Activity Out1 with GUI interface to display UPI results --> </Awa>

57 <Awa> <!-- Activity Out2 with GUI interface to display Protein Sequence --> </Awa>

58 </AwardWorkflow>
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Listing 6.15: Pseudo-code of the AWA T ask that invokes the PICR Web Service

1 package tasksinvokeproteinws;

2

3 import awardtaskinterface.AwaContext;

4 import awardtaskinterface.IGenericTask;

5 import java.util.ArrayList;

6 import java.util.List;

7 import uk.ac.ebi.picr.model; // generated by adding the web Service reference

8

9 public class TaskInvokeProteinsWS implements IGenericTask {

10

11 public Object[] EntryPoint(Object[] args, Object[] params) {

12 String proteinID=(String)args[0];

13 String queryIdVersion = null;

14 //a list of all databases to map to

15 List<String> searchDB = new ArrayList<String>();

16 searchDB.add(params[1]);

17 searchDB.add(params[2]);

18 //the taxonomy ID to limit the mappings to H. Sapiens

19 String taxonomyID = params[3];

20

21 //get the UPEntry from method getUPIForAccession of the PICR web service proxy

22 UPEntry entry = getUPEntry(proteinID, null, searchDB, taxonomyID, true);

23

24 Object[] Results=new Object[2]; Task return two results

25 If (entry == null) {

26 Results[0]="UPI: No mappings for the protein";

27 Results[1]="Sequence: No mappings for the protein";

28 } else {

29 Results[0]=entry.getUPI();

30 Results[1]=entry.getSequence();

31 }

32 return Results;

33 }

34 }

G Operation of the workflow

The workflow execution result is visualized in the Out1 and Out2 activities as illus-

trated in Figure 6.34. For each of the nine workflow iterations the Out1 activity shows

the results of the UniParc Protein Identifier (UPI) and the Out2 activity shows the protein

sequence for a distinct protein identifier generated by the Generator activity.

G Case conclusion

This application case demonstrates the AWARD functionality and feasibility for allow-

ing workflows whose activities can access third party Web Services. In a transparent way

the invocation of Web Services is encapsulated into the activity T ask. This allows access

to Web Services to be performed in the same way as is common in Java programming

techniques and Java development environments.
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Figure 6.34: Workflow result for nine protein IDs

6.4.3 Case 3: Dynamic Reconfiguration Towards Fault Recovery

G Description

Workflows are characterized by multiple, eventually infinite number of iterations for

processing data sets in multiple activities according to the workflow graph. Some of these

activities can invoke cloud services often unreliably or with limitations on their quality

of service provoking faults.

After a fault has occurred the most common approach requires restarting of the entire

workflow which can lead to a waste of execution time due to unnecessarily repetition of

computations.

This application case, already presented in [AC13], discusses how the AWARD frame-

work supports recovery from activity faults using dynamic reconfigurations. This is

illustrated through an experimental scenario based on a long-running workflow where an

activity fails when invoking a cloud-hosted Web Service with a variable level of availabil-

ity. On detecting this, the AWARD framework allows the dynamic reconfiguration of the

corresponding activity to access a new alternative Web Service, and avoiding restarting

the complete workflow anew.

As shown in Figure 6.35, when a fault is detected in some workflow systems the only

possibility is to restart the workflow leading to waste of time (Tb+Tf). However, mainly

when the Tb elapsed time before the fault is significant, for instance hours, it should be

possible to decide to reconfigure the workflow in order to recover from the fault.

The time intervals for executing a workflow considering the occurrence of a fault and

a reconfiguration towards the fault recovery and its relations are illustrated in Figure

6.35, and described in the following:

• T is the foreseen (estimated) execution time;
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Figure 6.35: Execution time with reconfiguration after a fault

• Tf is the elapsed time in fault;

• Treconfig is the time to reconfigure a workflow;

• Trestart is the time to completly restart a workflow;

• The elapsed time before fault (Tb) is less than T;

• The foreseen time after fault (Ta) is less than T.

Thus, if no faults occurred (Tf is equal to 0) the workflow execution time (Texec)

is equal to T, that is, T exec = T = T b + T a. If after a fault the workflow needs to be

restarted without reconfiguration T exec = T b+T f +T restart+T ; Otherwise the workflow

execution time with dynamic reconfiguration after one fault (TexecR) is T execR = T b +

T f + T reconf ig + T a. Both Trestart and Treconfig times are dependent on the structure

of the workflow, for example, the number of activities involved. However, Trestart is

deterministic and composed of two components: i) Trestart1: The time to map activities

to the computing nodes; and ii) Trestart2: The time of launching the activities on the

computing nodes.

The Trestart time can be significant in the case of remote executions for instance on a

cloud infrastructure.

Assuming scenarios where a single activity is faulty, Treconfig time can be composed of

the following components: i) Treconfig1: Time to observe the fault details and to select the

reconfiguration alternatives for a recovery strategy, such as change the T ask associated

to the activity or change some P arameters, for instance a Web Service location. This

time is not deterministic but it can be small if the actions to reconfigure the activity are

previously known; ii) Treconfig2: Time to apply the recovery actions by using a tool to

invoke a reconfiguration plan to the faulty activity; and iii) Treconfig3: Time to complete

the agreement synchronization plus the processing time of the reconfiguration operators.

Comparing Trestart and Treconfig is not easy because these times are determined by

each specific workflow scenario. However, considering that T a < T and assuming sce-

narios where the Treconfig has the same order of magnitude as Trestart, we conclude that

the execution time with reconfiguration (TexecR) is always less than the execution time

without support for reconfigurations (Texec).
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Furthermore, as long as Tb tends to T then Ta tends to zero and excluding Trestart,
Treconfig and Tf, we can then conclude that T exec ≈ 2T and T execR ≈ T .

This allows us to conclude that an effective recovery strategy based on dynamic recon-

figuration plays a critical role to enable the efficient execution of long-running workflows

allowing to save substantial elapsed execution time.

G Case contribution for the AWARD evaluation

This application case demonstrates how AWARD can be used for modeling and experi-

menting with real workflow scenarios involving the access to cloud services. The AWARD

flexibility is exploited to manage faults by enabling fault detection using the logging

information produced during the workflow execution and performing the recovery by

applying dynamic reconfigurations without changing the workflow design. This appli-

cation case also demonstrates that fault recovery, by avoiding the need of restarting the

execution of long-running workflows, allows saving significant elapsed execution time.

In AWARD long-running workflows with large number of iterations the activities are

enabled to invoke their T asks. For each iteration, T asks are invoked with data Arguments

from the inputs and a list of initial P arameters. Then in some situations unexpected

faults can be raised, for example the T ask algorithm does not expect some combinations

of Arguments and P arameters, or the T ask requires external resources which may have

been unavailable.

In the presence of these scenarios AWARD catches the fault and produces log informa-

tion reporting the fault occurrence (Section 5.9.1 on page 185). Logs can be analyzed by

the user for establishing a strategy to solve the problem and recover the activity from the

Fault state and later resuming the execution. The strategy can be more or less complex.

The user can modify the workflow structure by replacing the faulty activity with one or

more activities, or can change the complete T ask (algorithm), or can simply modify some

P arameters, for instance, by redirecting the T ask to new resources. Once the strategy is

defined the user can specify an automatic procedure to handle similar occurrences in the

future.

G The workflow specification

Nowadays in the context of social networks, blogs and discussion forums, millions of

small set of sentences of text, called posts, are produced using multi-cultural languages.

These posts can be submitted to text analytics processing in order to extract relevant

information such as statistics about occurrences of specific words, for instance personal

names, entity recognition, brands references, etc. Workflows are an adequate way to

develop such applications allowing the composition of different steps involved on text

analytics processing.

We developed an AWARD workflow, presented in Figure 6.36, that supports the con-

tinuous (infinite number of iterations) processing of millions of posts in multi-cultural

languages and produces a continuous ranking of relevant words that appear in posts.
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Figure 6.36: AWARD workflow to process posts and rank relevant words

G Implementation

The Posts Reader activity scans a file system directory for searching posts stored in

text files with arbitrary filenames and an extension indicating the cultural language, for

example facebook535.eng, stores an English post originated in Facebook.

For each iteration the Translate activity receives a post and the cultural language and

if it is not Portuguese, then it invokes a Translator Web Service hosted in Amazon EC2.

This Web Service is a wrapper that we developed in order to allow: i) Using multiple

applications with an independent interface from the existing and widely used translation

services; ii) Using translation service providers that offer better prices and good reliability;

iii) Using alternatives to ensure better availability. Currently we can use the Bing Microsoft
Translator service [Mic15] and Google translator service [Goo15].

Because the Google service is only available as a paid service we use mainly the Bing
Microsoft Service as a free of charge service. However, the Bing Microsoft service provokes

SOAP fault messages when throttling policies with quota limits are reached. This in-

troduces difficulties to have reliable long-running workflows because the Translator Web
Service hosted in Amazon and consequently the Translate activity depends on Bing Trans-
lator reliability and quality of service. These unreliability characteristics are transferred

to the Translator Web Service hosted in Amazon and consequently the Translate activity is

critical due to the possibility of failures caused by multiple situations: i) Quality of ser-

vice (quotas, throttling, enforced throughput limits); ii) Service unavailability provoked

by loss of connectivity or timeouts to the Amazon EC2 infrastructure; crashes in virtual

machines (EC2 instances); and iii) possible crash of the HTTP server (Apache Tomcat)

that hosts the Translator Web Service.

The Filter and Ranking Relevant Words activity tokenizes the sentences in Portuguese
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words and discards the Portuguese words not registered in the relevant words reposi-

tory. If the Portuguese word is registered, the rank of this word is updated according to

the rules defined in the repository. For example for each N word occurrences the rank

increases by one point.
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Figure 6.37: Sequence of actions to detect and to recover from failures

The sequence of actions that illustrate how AWARD supports fault detection and

recovery using dynamic reconfigurations is depicted in Figure 6.37 and is described as

follows:

1. The Translator Web Service, using the URL1 throws a fault inside the Task of the

Translate activity;

2. The State Machine of the faulty AWA activity catches the fault and logs the fault

context as tuples into the AWARD Space;

3. A user or an application tool inspects the log tuples and analyzes the type of fault;

4. Depending on the fault type an appropriate strategy is performed. In this case we

can have manual operation involving user intervention, or an automatic procedure,

both consisting of the following steps:

a) Create a new virtual machine instance, hosting the Translator Web Service and

obtaining a new URL2;

b) Submit a dynamic reconfiguration plan with the ChangeParameters operator to

change the parameter to the new URL2.

5. The State Machine of the Translate activity processes the dynamic reconfiguration

plan and resumes the execution using the new Web Service located through the new

URL2.
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G Operation of the workflow

The Virtual Machines used to run the Translator Web Service can be of any EC2 instance

type, launched from the Amazon Machine Image (AMI) [Ama13] (ID=ami-3584f75c), con-

figured with Linux and the Apache Tomcat as the HTTP server to host the Translator Web
Service at 40001 port.

We made several experiments with the Translator Web Service hosted in Amazon US

East (N. Virginia) and EU (Ireland) datacenters. To avoid high costs we always used a

less expensive EC2 instance type (t1.micro; 64 bit; 1 ECU; Memory 615 MByte; Very Low

Network performance). This type of EC2 instance proved to be good for our experimenta-

tion, because the low network performance combined with the quota limitations on Bing
Microsoft Translator provoked frequent failure situations on Translate activity, allowing

testing several dynamic reconfigurations to recover from these faults.

To run the workflow we used a local cluster with a disk storage (1 Tbyte) shared by all

computer nodes all connected by one Gbit Ethernet switch. Each computer node is a dual

core Pentium with 4GByte RAM. Post files and the database with relevant words were

located in disk. Each workflow activity (Posts Reader; Translate and Filter and Ranking) was

mapped to one computer node. The AWARD Space server was run on another computer

node.

The experiments conducted were based on a set of posts with sizes presented in Table

6.2. The workflow processed 34762 posts in Portuguese, English and Spanish languages

where roughly 8% are posts in English and Spanish languages leading to 50893 translated

words.

Table 6.2: Sizes of posts processed

Posts Text lines Total Words Translated Words
34762 83428 710021 50893

Although we have not conducted extensive scalability and throughput experiments,

Figure 6.38 presents the elapsed execution time versus the number of translated words for

processing the posts presented in Table 6.2. The results of two experiments are depicted:

i) Manual Reconfiguration; ii) Automatic Reconfiguration.

Both show the elapsed execution time for successive faults and corresponding recovery

actions by the user and by an automatic procedure. After 9594 words translated (see Fig.

6.39) the first fault happened with the message "AppId is over the quota!".

On manual reconfiguration, the application user detects this fault by inspecting the

log information, as partially presented in Figure 6.39. Then the user launches manually

a new EC2 instance with a new Translator Web Service hosted in the new URL2 location

and reconfigures the faulty Translate activity by using a reconfiguration plan with the

ChangeParameters operator for changing the URL1 to the new URL2.

As a user, we spent 8 minutes to do this reconfiguration (see Figure 6.38). This time

includes the time spent by the user analyzing the log information, plus 2 minutes and 20
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Figure 6.38: Manual versus automatic reconfiguration, with faults marked

seconds to create a new virtual machine from a pre-configured Amazon Machine Image
[Ama13]. The above also includes a negligible time (average of 13 milliseconds) for

the Application Handler to submit the reconfiguration plan by injecting tuples into the

AWARD Space through the dynamic library (DynamicLibrary.jar) and for its processing

by the Dynamic Reconfiguration Handler of the Translate activity.

In the automatic reconfiguration procedure, the fault scenario is already known and

the user has already created the new EC2 instances. As a result, less time is spent by the

user to submit dynamic reconfigurations plans (3 minutes).

Furthermore once this fault pattern was properly identified, the user prepares an

external Application Handler (as indicated in Figure 6.37 on page 245) to perform au-

tomatically the fault handling and the recovery by using the dynamic reconfigurations

API.

This corresponds to the following actions:

1. Manage a pool of EC2 instances with the Translator Web Service;

2. Wait for log tuples in the AWARD Space indicating that the activity was in fault

state;

3. Invoke a dynamic reconfiguration sequence with the ChangeP arameters operator

to change the T ranslate activity parameter, so that the activity T ask uses a different

location (URL2).
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. . .

(“Current state: invoke”)

(“Invoke state:Task Type: awardutils.TaskInvokeWStranslate”)

(“Task Fault: AppId is over quota!”)

(“Translate AWA Context at iteration=9035:”)

(“Task Type: awardutils.TaskInvokeWStranslate”)

(“Param 0: Posts/Posts9242”)

(“Param 1: http://ec2-54-227-179-36/WShosting/WStranslator”)

(“Current state: faultTask”)

. . .

(“Reconfiguration Handler: Operator received:”)

(“RECONFIG”, “Translate”, 9035, “CHANGE_PARAMS”,1,

http://ec2-75-101-226-34/WShosting/Wstranslator”)

(“Translate AWA leave the faultTask state at iteration=9035”)

. . .

(“Current state: idle”)

(“Translate AWA Context at iteration=9035:”)

(“Task Type: awardutils.TaskInvokeWStranslate”)

(“Param 0: Posts/Posts9242”)

(“Param 1: http://ec2-75-101-226-34/WShosting/WStranslator”)

. . .

Task fault

Fault handling
using a dynamic 
reconfiguration

Recovery 
and

Resume

URL1
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Figure 6.39: Partial snapshot of the log information in the AWARD Space

This automatic procedure allows a substantial improvement in the elapsed execution

time compared to the manual user intervention (22 minutes to translate near 60000

words) (see Figure 6.38).

G Case conclusion

The results of the experiments clearly demonstrate that for long-running workflows,

when the elapsed execution time before a fault (Tb) is significantly greater than the re-

configuration time (Treconfig), there is a clear advantage of recovering by using dynamic

reconfigurations.

This application case demonstrates the applicability of AWARD characteristics for

supporting dynamic workflow reconfigurations to recover from faults in long-running

workflows. We consider this is a distinctive contribution comparing to the existing ap-

proaches for failure handling in workflow systems.

We also demonstrated through a real scenario how a substantial elapsed execution

time (hours or days) can be saved when a long-running workflow is accessing faulty cloud

services.

In the presented scenario we need third party services so it is not easy to have multiple

alternative solutions. However, in order to improve reliability or quality of service in other
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scenarios we can use the AWARD support for other kind of dynamic reconfigurations. For

example: i) Change completely the T ask type (new Algorithm), for instance to invoke

services hosted in private clouds; ii) Replace the T ask with a new T ask dependent directly

on the Microsoft/Google translator services; iii) Introduce new activities for instance to

filter some data sets; and iv) Introduce new activities for load balancing purposes.

During our experiments we observed high performance variations when using virtual

machines hosted in Amazon USA or Ireland datacenters depending on the time of day.

So even without faults it would be easy to develop an application that depending on the

time of day could automatically and dynamically reconfigure workflows in order to use

resources with improved performance.

This distinctive characteristic of the AWARD approach unifies dynamic reconfigura-

tions to support structural and behavioral workflow changes on multiple scenarios as

well as to support fault recovery.

Despite the scenario presented in this paper is focused on a single activity we would

like to note that multiple activities can be independently monitored and reconfigured by

distinct users or different application handlers.

6.4.4 Case 4: Reconfiguration and Steering by Multiple Users

G Case description

Scientific cooperation is usually exploratory and unpredictable requiring a continu-

ous interaction and intervention by multiple users. For instance, the requirements of a

scientific application may not be completely defined at the beginning of an experiment

thus forcing scientists to discuss and decide on subsequent actions, which can be based

on intermediate experimental results, or/and based on newly gathered advice by other

expert scientists. Furthermore typically scientific collaborations in Big Data applications

exhibit a data-centric pattern where intermediate data with small sizes are extracted from

large data sets and then used by other applications along the collaboration process. As

such scientific scenarios rely on the storage of Big Data in distributed repositories spread

in multiple data centers, there are several currently open issues. On the one hand the size

and privacy of data preclude their movement between data centers. On the other hand

some scientific experiments require the processing of distributed data that are stored

on multiple repositories [Ben+12]. For instance despite the increasing resource capacity

made available by many cloud providers in terms of data storage and processing power, in

many application scenarios it may not be adequate to develop a centralized approach for

data storage and processing on a cloud provider [Arm+09], [MTB13], [Vah+13]. Another

issue is related to the current lack of decentralized execution models allowing the com-

position of distributed and interactive tasks contributing to a common problem-solving

goal and also supporting user steering where each user is responsible for executing, moni-

toring and dynamically reconfiguring specific tasks without the need to restart or change

the activities by other users. Most of the existing approaches are based on a centralized
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execution engine, although they may still allow the composition of distributed services

[Plo+13], [Wol+13] or the support for allocating tasks into the appropriate distributed

resources according to the application requirements [Xia+12]. Other approaches are

based on forms of decentralized control for example using peer-to-peer networks [BB11].

However, typically such approaches do not support the dynamic reconfigurations of the

scientific experiments with steering involving multiple users [Mat+15]. Many scientific

experiments require international cooperation with multiple users at a global scale. For

instance, the weather forecasting and the evaluation of the impacts of climate global

changes spread beyond national boundaries, necessarily forcing a worldwide collabora-

tion between scientists mainly when extreme climate events affect the world society in

terms of agriculture, aviation, shipping, water issues, etc. For instance, when extreme

climatic conditions are occurring in the North of America, also having influence upon

Europe storms that cause enormous damage in coastal regions of the Atlantic countries

such as Portugal, Spain, France, Ireland and Great Britain. Due to this, severe storm warn-

ings and climate monitoring and other geographically distributed phenomena are highly

dependent upon international information exchange and collaborations. To foster this

international cooperation, organizations such as the World Meteorological Organization
(WMO), the Network of European Meteorological Services (EUMETNET) and, among others,

the Bureau of Meteorology of Australian Government are continuously observing, collecting

and analyzing Big Data sets related to land temperatures, rainfall, atmosphere winds

and ocean tides in order to predict the weather and broadcast alerts as soon as possible.

Forecasters and scientists from universities and international institutions are constantly

processing these data sets gathered from their local sources, such as weather balloons,

satellites, rain gauges, barometers, thermometers, radars, and from the measurements

taken by ships and aircrafts, aiming at predicting the weather and ocean conditions (such

as waves, swells, currents, salinity levels and temperatures) for up to seven days. How-

ever, to enhance such predictions it is important to continuously receive inputs from

other regions of the globe, mainly exceptional phenomena that could drastically affect

the weather in the next days.

Figure 6.40 depicts a scenario of a multinational scientific cooperation that among

others can be applied to meteorological sciences. Such scenario was also presented in our

publication [AC14] and the subjacent workflow has the following characteristics:

• On each site A,B,C and D, different users manage large data sets;

• Data cannot be moved between sites due to issues related to data ownership, data

privacy and data communication costs;

• Each user uA, uB, uC and uD knows about their data models and develops or uses

software components with appropriate algorithms to process the local data sets;

• Users establish an international cooperation project to conduct multinational ex-

periments, where sites A and B at North and South America continuously produce
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Figure 6.40: Scenario of a multinational scientific cooperation

small data sets with the results obtained from their local experiments, for instance,

the main summary information related to sea tides and currents. Then site C uses

the information received from sites A and B as inputs to new forecasting algorithms,

while site D receives the results from the C site.

These continuous experiments generate long-running iterative computations, which

for each step can be functionally defined by Equation 6.1, where f ix represents the algo-

rithm functionality at site x ∈ {A,B,C,D} at iteration i.

f experimenti = f iD(f iC(f iA(), f iB())) (6.1)

In order to improve the predictions, each user should be allowed to independently

change their algorithms locally without the need to stop or restart the global experiment,

thus provoking only side effects on the results supplied as inputs to the other sites along

the experiment chain. For instance, at iteration n a user should be able to dynamically

reconfigure the local algorithm f nx in order to enhance the results. Then on site C at

iterations i and j with i < j it is possible that f iC , f
j
C meaning that the user has changed

the corresponding algorithm. Furthermore, at certain iteration the users in sites C and

D can agree to introduce improvements on their algorithms, using feedback information

(Figure 6.40, the dashed arrow from D to C), meaning that the function in site C shall be

replaced to receive one more argument with feedback information from the D site.

In this case and assuming this dynamic reconfiguration occurs at iteration k the func-

tionality of the experiment at iteration k + 1 can be described by Equation 6.2, where

f kDf eedback() represents the feedback information used to improve the algorithm of the C
site.

f experimentk+1 = f k+1
D( f k+1

C(f k+1
A(), f k+1

B(), f kDf eedback))) (6.2)

The main characteristics of this application case scenario are: i) The large data sets

remain on their local sites and there are not large amounts of data moving between

sites. Only small amounts of intermediate data are moved, typically to enable the next
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activities on the experiment chain; ii) The local activities are independently launched

and monitored by different users; iii) The experiment is a long-running workflow with

an infinite number of iterations, where the activities can be executed at different paces;

and iv) Users should be able to steering local activities by dynamic changes on algorithms

and their P arameters.

G Case contribution for the AWARD evaluation

This application case allows the AWARD evaluation with the following contributions:

i) Exploiting the flexibility of the AWARD framework to easily support dynamic recon-

figurations in a common application scenario where distributed scientific experiments

are performed by multiple interactive users; ii) Avoiding the need of restarting the exe-

cution of long-running workflows when structural and behavioral reconfigurations are

needed; and iii) Enabling independent and autonomous modification of multiple appli-

cation components and inclusion of feedback loops into an ongoing distributed scientific

experiment.

The implemented scenario shows the AWARD feasibility to run workflow activities on

distributed data centers in different countries without the need of moving large amounts

of data. The scenario also shows the AWARD functionality to support workflow activities

being independently monitored and dynamically reconfigured by different users. These

reconfigurations allow changing the T ask algorithms to improve the computation results

or changing the workflow structure to support feedback dependencies where an activity

receives feedback input from a downstream activity. We present experimental results

of an implementation of one practical scenario running on multiple data centers of the

Amazon cloud with steering by multiple users.

G The workflow specification

To demonstrate the execution of an application with similar requirements as the above

scenario, we have used the workflow depicted in Figure 6.41, which performs an infinite

number of iterations.

A

C

B

D
Output

Infinite iterations

parameters

parameters

TA

TB

TC

Figure 6.41: An evaluation workflow executed by different users

The A, B and C activities should be deployed and executed independently, for example

on the Amazon cloud infrastructure. The D activity could be executed on a scientist
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desktop machine in order to output the iterations results. For each iteration the T asks of

the A, B and C activities emit, respectively, the TA, TB, TC tokens described respectively

in Equations 6.3, 6.4 and 6.5:

TA = (T askA([parameter list]), ∆tA) (6.3)

TB = (T askB([parameter list]), ∆tB) (6.4)

TC = (T askC(TA,TB), ∆tC)[∆ε] (6.5)

where ∆tA, ∆tB and ∆tC are, respectively, the elapsed execution time of the A, B and C
activities, and ∆ε = max(∆tA,∆tB) +∆tC is the accumulated elapsed execution time until

the completion of the C activity.

The T ask of the D activity receives the TC tokens emitted by the C activity, show-

ing them through a graphical user interface component allowing a user to monitor the

intermediate results for each workflow iteration.

Furthermore different users on different computers should be able to monitor and

reconfigure other activities, for instance, by changing P arameters and the T ask algorithms

of the A and B activities.

To illustrate the case of feedback dependencies we submit a dynamic reconfiguration

plan to the workflow in Figure 6.41 leading to the workflow depicted in Figure 6.42.

A

C

B

D
Output

Dof

Cif

FeedInToken

TA

TB

TC

Figure 6.42: The workflow after a dynamic reconfiguration with a feedback loop

This scenario requires structural and behavioral workflow changes performed by the

following outlined reconfiguration plan:

1. CreateOutput Dof on the D activity;

2. ChangeTask on the D activity to produce tokens to the Dof output port;

3. CreateInput Cif on the C activity;

4. ChangeTask on the C activity to receive one more argument. Then TaskC is changed

to emits tokens TC = (T askC(FeedInT oken,TA,TB), ∆tC)[∆ε] where FeedInT oken

carries the date and time of the computer where the D activity runs.
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G Implementation

In the following, we demonstrate how the requirements of the above scenario are met

by an operational implementation under the AWARD framework and present experimen-

tal results as a proof of concept.

We developed the T ask of the A activity, named TaskA to emit periodically, on each

2000 milliseconds the TA token (as in Equation 6.3) and the T ask of the B activity, named

TaskB to emit periodically, on each 1000 milliseconds the TB token (as in Equation 6.4).

The C activity reads tokens from its two input ports and its T ask, named TaskC, imposes

a delay of 4000 milliseconds and then emits the TC token (as in Equation 6.5) converted

as a string.

Therefore the D activity displays the workflow execution results as shown in Figure

6.43 where we can observe that the accumulated elapsed execution time for each iteration

is 6000 milliseconds.

Figure 6.43: Activity D displays the workflow results

G Feasibility

The experiments used the following mappings for executing the workflows of Figure

6.41 and Figure 6.42:

• The A and B activities were launched on Amazon EC2 Linux virtual machines in

US data centers;

• The C activity was launched on the Amazon EC2 Linux virtual machine in Ireland

data center;

• The D (Output) activity is launched with a graphical interface (GUI) on a desktop

computer in Lisboa allowing a user constantly monitoring the results as shown in

Figure 6.43;

• The AWARD Space server was running in a Linux virtual machine hosted on Ama-

zon Ireland data center.
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Regardless of the location of the above Linux virtual machines, all of them have

been instantiated from the same EC2 image, previously configured with the AWARD

environment including the implementation of the activity T asks.

Using the AwardGUI tool (see Section 5.9.2) it is easy to dynamically change the

software component that implements the T asks in the workflow activities by submitting

reconfiguration plans. In Figure 6.44 we show the use case to change the T ask of the C
activity to the new TaskCnew T ask that occurred at the 41st iteration.

Figure 6.44: The AWARD tool for changing the T ask of the C activity

Figure 6.45 presents the graphical user interface of the D (Output) activity where we

can see that after the 37th iteration the user of the B activity changed the b1 value of the

TaskB parameter to a new b1new value and at the 41st iteration the user of the C activity

changed to a new TaskCnew T ask.

The new T ask of the C activity decreased from 4000 milliseconds to 2000 milliseconds,

illustrating how algorithm improvements can be achieved by dynamic reconfigurations.

To evaluate the workflow scenario of Figure 6.42 on page 253, we submitted the

reconfiguration plan presented in Listing 6.16 involving the C and D activities.

The reconfiguration plan of Listing 6.16 that led to the workflow illustrated in Figure

6.42 on page 253 changes the T ask of the D activity to emit tokens with the current time

on the new Dof output port connected to the new Cif input port of the C activity. Thus

the new T ask of the C activity, named TaskCwithFeedback receives three arguments where

the first one is the feedback token sent by the D activity.
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User of the B activity
changed the b1 parameter
to the new b1New value

User of the C activity
changed the TaskC task to 
the new TaskCnew task

Figure 6.45: Visualizing on activity D the effects of dynamic reconfigurations

Listing 6.16: Reconfiguration plan for introducing feedback between activities D and C
1 int RID = BeginReConfiguration(new String[]{"D", "C"});

2 BeginAwaReConfig(RID, "D");

3 CreateOutput(RID, "D", "Dof", "EnableFeedback", "java.lang.String", "Single");

4 AddOutputLink(RID, "D", "Dof", new String[]{"Cif"});

5 ChangeMappingOutputs(RID, "D", new String[]{"Dof"});

6 ChangeTask(RID, "D", "tasks.TaskDwithOutput");

7 int it1 = EndAwaReConfig(RID, "D");

8 BeginAwaReConfig(RID, "C");

9 CreateInput(RID, "C", "cif", "EnableFeedback", "java.lang.String", "Iteration");

10 ChangeTask(RID, "C", "tasks.TaskCwithFeedback");

11 ChangeMappingInputs(RID, "C", new String[]{"cif", "ci1", "ci2"});

12 int it2 = EndAwaReConfig(RID, "C");

13 int[] AgreementSet=new int[]{it1, it2};

14 int K=EndReConfiguration(RID, new String[]{"D", "C"}, AgreementSet);

The result of applying the reconfiguration plan with an agreement at the 23rd iteration

is shown in Figure 6.46. The reconfiguration plan changed the T ask of the D activity for

sending feedback to the C activity processed at the 24th iteration.

G Case conclusion

Although, at first sight, there is an apparent simplicity in these functionalities, the

execution of this workflow enables the following main characteristics:

• The execution is distributed by different data centers;

• Each activity is launched, monitored and dynamically reconfigured by different

users;

• The operation of the workflow activities proceeds in a completely decentralized

way, under the AWARD framework.
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Change the TaskC for receiving
feedback (current date and time) 
from the D activity

Figure 6.46: The D activity shows the effect of feedback between the D and C activities

6.4.5 Case 5: Text Mining Application

G Description

Applications for information retrieval and data analytics require automatic mecha-

nisms to select and extract relevant information from large-scale document collections.

The LocalMaxs algorithm [Sil+99] is based on a statistical language-independent approach

used to extract relevant expressions from text corpora. Relevant expressions are groups

of words (n-grams) in a corpus that are recognized as lexical units with strong semantic

meaning, such as "parallel processing", or "global finance crisis". In this method, the extrac-

tion of relevant expressions is based on the counting of the n-gram occurrences, and on

the evaluation of a metric that reflect the cohesion or "glue" of the identified n-grams, fol-

lowed by the decision on the relevance of the extracted n-grams. The algorithm consists

of a sequence of three phases that are modeled by a pipeline as illustrated in Figure 6.47.

Phase 1
Count n-grams

Occurrence

Phase 2
Calculate  n-grams

Glues

Phase 3
Find and rank

Relevant Expressions

Figure 6.47: Pipeline of the LocalMaxs algorithm

The LocalMaxs algorithm was proposed by [Sil+99] and its parallel and distributed

implementation was developed in an ongoing research project [SC15] in the context of

the PhD dissertation by Carlos Gonçalves [Gon17]. The description of the parallel version

of the LocalMaxs is summarized here and illustrated as a workflow in Figure 6.47 and

Figure 6.48, was developed by Carlos Gonçalves [GSC15].

The entire development of the parallel LocalMaxs application workflow was made

using the AWARD model and environment as a basis, in order to specify the LocalMaxs
T ask dependencies, their alternatives for parallelization at each phase, and also to man-

age the mappings of the workflow activities onto virtual machine nodes, in cluster and

cloud environments. The mechanisms for monitoring and debugging, as provided by

the AWARD environment, have also been intensively used for supporting the parallel
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4*18 + 3*18 + 2*18=162 no tal de 56 VM em Cloud

Phase 1
1-gram

Phase 3
3-gram

Phase 1
2-gram

Phase 1
3-gram

Phase 1
4-gram

Phase 1
5-gram

Phase 1
6-gram

Phase 2
3-gram

Phase 2
2-gram

Phase 2
4-gram

Phase 2
5-gram

Phase 2
6-gram

Phase 3
4-gram

Phase 3
5-gram

Phase 3
2-gram

Figure 6.48: Workflow for parallelizing the LocalMaxs algorithm

LocalMaxs implementation.

The fact that the AWARD model, its runtime environment, and its support tools,

have been intensively used by an external independent user, that is, someone who was

not involved neither in the design nor in the implementation of the AWARD model,

represents a clear indication, although still preliminary, that the AWARD framework,

as proposed in this dissertation, provides the required functionality for expressing real

robust applications, and is feasible to support their development and execution, by other

users.

In the above mentioned project, the automatic extraction of relevant expressions from

large text corpora was developed as workflow structures with multiple nodes for process-

ing the input corpus until 4-gram on phase 1, processing glues until 4 gram in phase 2

and processing the relevant expression with 2-gram and 3-gram on phase 3 as illustrated

in Figure 6.48 [GSC15].

In the experiments for supporting large corpus AWARD workflows have been used

where each activity is replicated in parallel up to 18 instances making workflows up to

162 activities for running up to 54 virtual machines hosted on cloud infrastructures.

G Case contribution for the AWARD evaluation

The AWARD flexibility for specifying workflows for parallel and distributed execution

of multiple activities, the independence of the AwardExecutor versus the activities T ask

internals and the AWARD feasibility for executing workflows on cluster and cloud infras-

tructures with dozens of virtual machines has been a key factor for effectively supporting

the intensive experimentation involving large text corpus [GSC15].

G Case conclusion

This application case is very important for demonstrating the following AWARD char-

acteristics:
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1. An independent developer that only knows the syntax and the programmer’s view

for specifying AWARD workflows as well as the AWARD tools, namely how to

start the AWARD Space and how to launch workflow activities, was able to use

the AWARD framework in order to develop and run effective working application

workflows without knowledge on the AWARD machine implementation;

2. The functionality of the AWARD environment for running distributed workflows

following application-dependent strategies by spreading multiple activities (up to

162) on multiple computing nodes (up to 54) of cluster or cloud platforms;

3. The total freedom for an application developer to program AWARD activity T asks as

complex algorithms involving multithreading and in-memory data storage, totally

decoupled from the internals of the AWARD machine.

6.5 Comparison of AWARD with other Workflow Systems

In the beginning of this dissertation work and even during the development of the

AWARD framework we found a plethora of initiatives related to scientific workflows.

However, many of these initiatives did not provide reusable workflow systems and tools

with easily installation and configuration in order to be used for developing workflow

applications. Therefore, in this section, the AWARD framework is compared with other

workflow systems regarding the support of the following dimensions:

1. Workflow execution on heterogeneous computing environments, for instance on a

simple standalone computer as well as on distributed infrastructures;

2. Dynamic reconfiguration of long-running workflows;

3. Decentralized control for executing the workflow activities with autonomic charac-

teristics.

G Parallel and distributed execution

The support for parallel and distributed workflow execution decoupled from any

specific middleware was one of the main motivations for developing the AWARD model.

The AWARD implementation only depends on Java technologies so the execution of

AWARD workflows is possible practically on all computing environments.

Typically some of the existing workflow systems are tightly coupled with specific

middleware technologies or even with particular versions of operating systems. For ex-

ample, the Pegasus workflow management system [Dee+15] that has been widely used

to map abstract workflows into concrete execution plans, has dependencies on specific

middleware for executing the workflow activities as jobs on distributed platforms, such

as Condor or Globus. Pegasus is not supported in the Windows operating system, its

model only supports direct acyclic graph (DAG) workflows and does not support neither

iterations nor feedback loops. The Askalon [WPF05] workflow system developed the
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Abstract Grid Workflow Language (AGWL) for describing grid workflow applications at a

high level of abstraction but a centralized workflow execution engine is required to in-

terpret the AGWL workflow and to map the jobs to grid resources managed by low-level

scheduling services such as PBS [HT96] and HTCondor [TTM05] wrapped by the Globus

middleware.

The success of service oriented architectures based on Web Service standards has

driven organizations to developing specialized Web Services for solving problems or pro-

cessing data in several science domains. For example, Taverna [Wol+13] was developed

for combining distributed Web Services and local tools into workflow pipelines that can

be executed on desktop computers or through distributed infrastructures, in the grid

or the cloud. The Taverna workbench allows users to select and combine Web Services

by dragging and dropping them onto the workflow design panel. The Taverna server

provides workflows from bioinformatics and biodiversity area. However, the approach

for developing workflows based on third party resources, for instance Web Services, orig-

inates issues related to the volatility of the resources required for workflow executions,

which can provoke breaks or unpredictable results on workflow rerunning [Zha+12].

Although the user interface for designing workflow graphs was not a topic addressed

in this dissertation it is an important practical issue mainly for workflows with a large

number of activities.

Triana and Kepler systems are widely used given their characteristics of having graph-

ical user friendly interfaces for visual designing of workflow graphs and are developed

in Java as open-source projects so they are easily installed on any computer. Both allow

designing of workflows by drag and drop pre-existing workflow activities as software

components called units in Triana and actors in Kepler.

Triana also incorporates modules, such as Grid Application Prototype (GAP) and Grid
Application Toolkit (GAT) [Chu+06; Tay+03] for integrating existing Grid Services and

Web Services as well as peer-to-peer communication for allowing remote service invoca-

tions. Distributed execution of Triana workflows relies on a specialized unit for distribut-

ing any task or group of tasks as subworkflows. However, the Triana core processing units
as well as units for data transformation and visualization are executed by a centralized

execution engine called Triana Controlling Service.

In Kepler [God+09] the basic workflow components are directors and actors. Following

one model of computation a workflow director controls the workflow execution and actors
perform the workflow computations/tasks by taking instructions from the director. The

communication between actors for sending data or message tokens is performed through

input and output ports. Each actor sends tokens to an actor connected to one of output

ports. An actor runs the required number of iterations where after receiving tokens on

its input ports it fires and generates new tokens with the resulting data on the output

ports. Actors can be grouped into a composite actor as a set of actors bundled together in

order to perform more complex operations used in workflows as nested subworkflows. A

composite actor has its own director, which can be different from the director used in the
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parent workflow. Distributed workflow execution is achieved by using composite actors
and by extension of directors for transporting and executing workflows and subworkflows

across a distributed set of computing nodes in order to improve execution performance.

In [Plo+13] some distributed execution techniques are presented for Kepler workflows in-

cluding a distributed data parallel framework using Hadoop [Apa15a] and grid execution

by using specific actors.
Furthermore and unfortunately the above described Triana and Kepler functionalities

for distributed execution of workflows are not yet available as of December 2015 in the

downloadable system versions. Therefore the feasibility for end users taking advantages

of these functionalities is not easy. This is more noticeable in Triana version 4 [Tri15].

One of the motivations for developing the AWARD model and its associated working

operational runtime environment aimed at providing flexibility and feasibility to enable

the practical execution of the workflow activities on distributed infrastructures.

When comparing AWARD with the above systems there is a significant difference.

Workflow activities in AWARD are autonomic and can be separately executed and con-

trolled by different users on distributed computing nodes without any centralized control.

In the above systems some form of centralized control remains. For instance both Triana

and Kepler have centralized control for executing the global workflow where special units
or actors can encapsulate distributed executions of subworkflows or invoking remote ser-

vices. These Triana units or Kepler actors functionalities can easily be implemented inside

AWARD activities. In fact, an AWARD activity T ask can be transparently programmed

for using any Java grid API.

In terms of non-basic workflow patterns Triana supports loops and execution branch-

ing handled by specific units with semantics not easy to use.

Kepler supports feedback loops using the built-in SampleDelay actor as illustrated in

the workflow of Figure 6.49.

The workflow is executed for 10 iterations and for each iteration the Ramp actor gener-

ates integer values from 0 until 9 to be added by the Add actor. For the first iteration the

SampleDelay actor fires a default value that is configured to zero and for the next iterations

the SampleDelay actor carries its input port value (the result of the previous iteration plus

1) to its output port that connects to the Add actor. The results of the 10 iterations are

shown by the Output actor.

AWARD supports feedback loops with a clear and useful semantics as presented in

Section 6.3.3, including the introduction of feedback loops by using dynamic reconfigura-

tion plans. Kepler only supports feedback loops at workflow design time because it is not

possible to dynamically change the workflow structure during the workflow execution.

Furthermore both Triana and Kepler do not support the AWARD load balancing pat-

tern.

Kepler has a rich set of directors for supporting a flexible set of models of computation

[God+09] including Synchronous Data Flow (SDF), Continuous Time (CT), Dynamic Data
Flow (DDF), Process Network (PN) and others.
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Figure 6.49: Workflow with a feedback loop in Kepler

There are important differences between Kepler and AWARD.

In Kepler the parallelism is based on executing each actor by threads within the same

monolithic process, and actors communicate using first-in-first-out memory buffers. The

execution order (actors firing) is controlled by a centralized PN Director that can be very

inefficient, as it must keep looking for actors with sufficient data to fire. If one actor fires

at a much higher rate than another, the actors’ memory buffers may overflow, causing

workflow execution to fail [Kep14]. In addition the PN Director does not manage itera-

tions, possibly leading to non-determinism and undefined termination of the execution.

For instance, in Composite actors with workflow hierarchies, if two actors have compu-

tation threads, it is ambiguous which actor should be allowed to perform computation

[God+09]. Instead, AWARD activities are encapsulated in parallel processes (AWA) and

can execute in distributed environments without a centralized control. Each AWA activity

has autonomic control and communicates through the AWARD Space by producing/con-

suming tokens at different rates without overflow problems. AWARD supports the notion

of iterations allowing determinism and well-defined termination of the AWA activities.

The current implementation of the AWARD Space uses a shared tuple space. Using

tuples for token communication improves flexibility by supporting different granularities

in complex data types and easily enabling the AWARD support for dynamic workflow

reconfigurations.

Although with different objectives other works also rely on tuple spaces. For exam-

ple the Workflow Enactment Engine (WFEE) [YB04] uses a tuple space for event-based

notification for just-in-time scheduling. In [HPA05] tuple spaces are mainly used to co-

ordinate request and notification events between Navigators (workflow engines) and the

Dispatchers (Task executors). However, none of these works use tuple spaces to support
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the Process Networks (PN) model.

Despite the advantages of the tuple spaces model it also raises difficulties related

to scalability and bottlenecks [OG02]. To address these problems some works rely on

distributed tuple spaces, using caching and replication techniques. For instance, Comet,

a decentralized tuple space [LP05] and Rudder [LP06; LP07], which provides a software

agents framework for dynamic discovery of services, enactment and management of work-

flows, where an interaction space is used to coordinate task scheduling among a set of

workers. Similar to the AWARD space, the task tuples contain data items among workflow

nodes.

As the AWARD model is orthogonal to the tuple space implementation, we argue that

it is possible to map the AWARD Space onto distributed tuple spaces, such as the Comet

space [LP05] or the Tupleware [Atk08].

Closer to AWARD, [AB11] proposes a framework based on persistent queues to sup-

port flow between activities, but with a monolithic workflow execution engine. Tasks are

also executed as threads, not allowing the execution of workflow activities on distributed

infrastructures. Additionally, [AB11] claims that persistent queues can easily support

provenance storage. This claim also applies to AWARD, as far as tuple spaces, including

IBM TSpaces, also support persistence. In [FTP11] a workflow system is presented with a

decentralized architecture with an external storage (Multiset) as a shared space between

workflow activities encapsulating a chemical engine. Unlike AWARD Space, the Multiset
contains coordination information and the workflow definition.

Although the goal to support flexibility in business workflows has been a concern

since the nineties [DR09] many issues still remain open, regarding the support for dy-

namic changes [BL10]. Such issues are also important in scientific workflows, and some

are supported by AWARD. Namely, supporting dynamic behavioral changes, for example,

by changing the execution T ask and its P arameters at runtime it is important in scientific

experiments where the behavior of algorithms and their P arameters are not known in

advance. A Kepler workflow [Kep14] is static and must be completely specified before

starting the execution, not allowing changes during run-time. However, a prototype im-

plementation based on Kepler [Ngu+08], proposes a frame abstraction as a placeholder

for actors to be instantiated at runtime (dynamic embedding), according to rules defined

at design time. This approach can be compared to our proposal to change dynamically

the algorithm of an activity. However, AWARD is more flexible because we do not need

to specify the alternative algorithms at design time as we allow to dynamically changing

them by invoking dynamic operators to inject tuples with the new tasks. In the GridBus

workflow execution engine [YB10] the user can either specify the location of a particu-

lar service at design time, or leave it open until the execution engine identifies service

providers at run-time. This is easily supported in AWARD. If the location of the service

(URL) is a parameter we can dynamically reconfigure the parameter to change the ser-

vice provider, or we can inject rules into the control unit of an AWA activity in order

to search for service providers in any service directory. Other approaches exploit the
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runtime reconfiguration of distributed services for managing the application behavior

[Tsa+04; Vaq+12] but they are not directly focused on workflow reconfigurations.

G Dynamic reconfigurations

The need to provide adequate solutions to handle the dynamic modification in applica-

tion and infrastructure behavior has motivated research efforts in dynamic reconfigurable

workflow models [Gil+07; RRD04].

Faults and other kinds of situations originating expected and unexpected events at the

workflow, middleware and resource infrastructure levels are usually handled by separate

mechanisms by the workflow execution engine or runtime environment [Gil+07; HA00;

HK03; Lac+10].

Most of the existing approaches only address very specific concerns involving a lim-

ited level of dynamic reconfiguration of the workflows, usually for restricted scenarios

and well-known and expected situations whose handling is predefined at workflow de-

sign time. For example, in some of the more popular scientific workflow tools such as

Taverna [Tav11], Triana [Tri11], or Kepler [Kep13], although there is some support for

user-handling of faults, the allowed recovery actions follow strategies such as retrying

workflow tasks a certain number of times, or replacing them at runtime, by consider-

ing the selection of alternative handling candidates defined at development time, only

applying them to well-defined and expected event types.

Other approaches are also restricted to predefined strategies at workflow design time

using for example workflow patterns [RAH06; TC+10] for dynamic replacement of sub-

workflows on the occurrence of exceptions.

However, on existing workflow systems, for example Kepler, there is still a lack of

general-purpose mechanisms and more unified approaches for supporting dynamic re-

configuration behaviors within the scope of current workflow framework and tools.

The AWARD support for dynamic reconfigurations is, to the best of our knowledge, a

distinctive characteristic as demonstrated in several evaluation scenarios and application

cases, where failures and degradation of quality of service situations are addressed by dy-

namic reconfigurations, allowing to handle unexpected event through user intervention,

and also allowing automated handled of well-identified situations. This is achieved by

relying on the mechanisms provided by the AWARD framework.

G The autonomic characteristics of the AWARD model

In the following we discuss why we consider the AWARD workflow activities (AWA)

as autonomic components.

An autonomic computing system consists of several autonomic elements, each of them

managing its internal behavior and relationships to other autonomic elements based in

policies specified by users or induced by the execution environment. Any autonomic

component needs an associated manager [KC03], as in Figure 6.50. Through a set of

sensors the manager constantly monitors and collects events originated internally or in

the surrounding environment. These events are analyzed and a changing plan enforces
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the current policies by provoking the execution of self-changes involving the autonomic

component.

Execute
changes

Analyze Plan
changes

Monitor
Sensoring

Knowledge
State

Managed element

Autonomic manager Policies

Figure 6.50: The architecture of an autonomic component [KC03]

Any AWA activity acts as an autonomic component because the AWARD Autonomic
Controller supports the following main capabilities: i) The knowledge state is the working

memory of the Rules Engine where facts and rules are stored for defining the states in the

life-cycle of an AWA activity; ii) The asynchronous event handlers, such as the Dynamic
Reconfiguration Handler act as sensors to detect special events in the AWARD Space, for

supporting dynamic self-reconfigurations; iii) Sequences of these events into the AWARD

Space allow preparing a plan to change the structure or behavior of the AWA activity. This

plan consists of a set of new facts and rules in the working memory of the Rules Engine
which provokes a self-reconfiguration by changing the AWA Context when an agreed upon

iteration is reached and the State Machine executes the change plans in the Config state,

as presented in Chapter 4.

Thus, AWARD workflows have autonomic attributes driven by the self-behaviors

of each AWA activity, or driven by external tools as interpreters of the reconfiguration

plans using the DynamicLibrary that inject the adequate events into the AWARD Space to

produce workflow changes.

For many useful scenarios the consistency of dynamic reconfiguration (Definition 4.5

on page 94) is achieved by relying on a global iteration agreement, between all activi-

ties involved (Definition 4.6 on page 98), associated with the specification of scripts for

performing reconfiguration plans.

Nowadays a big challenge is how to unify a large number of distributed autonomic

elements into a global autonomic system [Kep05]. The AWARD framework deals with

this challenge by supporting dynamic reconfigurations plans that affect large number of

distributed AWA activities.
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6.6 Chapter Conclusions

The evaluation of the AWARD model and its implementation was performed by using

significant scenarios for allowing practical experiments in three dimensions:

1. Parallel and distributed workflows execution: We demonstrate the AWARD func-

tionality and expressiveness for supporting workflows with basic patterns and the

feasibility for executing them on distributed computing infrastructures namely on

the Amazon cloud. Although it is a topic that is out of the scope of our work we

also discuss some performance indicators when we spread the workflow activities

to multiple computing nodes taking advantage of the decentralized control of the

workflow activities;

2. Structural and behavioral dynamic reconfigurations: We demonstrate the more

distinctive AWARD characteristic to support dynamic workflow reconfiguration

plans expressed as sequences of operators provided by an operational Java software

library. This support was discussed by experimenting with useful scenarios where

long-running workflows are reconfigured with clear advantages;

3. Functionality, expressiveness and feasibility to develop real application cases:

We illustrate the practical use of the model in real application scenarios: i) A con-

crete workflow for implementing the MapReduce model; ii) Workflows whose activ-

ities invoke third party Web Services; iii) The support for fault recovery by taking

advantage of dynamic reconfigurations; iv) Workflow steering and reconfiguration

by multiple users; and v) A text mining application developed by an independent

user which includes lauching multiple activities executed on a local cluster and on

two public cloud infrastructures (Amazon and LunaCloud).

The extensive experimentation with useful and concrete application cases and the

results achieved allow us to conclude that the AWARD model and its implementation is

suitable to be used for application development using the scientific workflows paradigm.

266



C
h
a
p
t
e
r

7
Conclusions

Dissertation conclusions and directions for future work.

This chapter presents the dissertation conclusions and identifies possible directions for

future work.

In Section 7.1 we outline the dissertation context and the dimensions related to the

AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) workflow model.

In Section 7.2, we summarize the relevant characteristics of the AWARD model and

the contributions of this dissertation. We also mention the publications in the context of

this dissertation.

In Section 7.3 we discuss the contributions and lessons learned concerning the AWARD

model and its implementation.

In Section 7.4 we discuss several relevant open issues and identify directions for future

work.

7.1 Outline of Dissertation Dimensions

The scientific workflow paradigm has been used for developing complex applications

based on problem decomposition into multiple activities. Workflows also facilitate large

scientific experiments where different users with expertise on distinct scientific domains

may develop specific activities that can be combined to execute applications in the avail-

able parallel and distributed computing environments.

As also realized by the scientific community [Chi+11; Dee07; Dee+08] we found a

need for improving the support provided by existing workflow tools [AGC09] in order to

find solutions to several open issues.
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Initially we studied the possibility for improving some of the existing systems, assum-

ing they were based on available and well documented open-source code. However, we

found great difficulties. On one hand, the existing systems were based on large amounts

of source code that were not well organized and easy to reuse and, even worse, some

code versions were changed almost daily. For example, the revisions of source code per-

formed from Kepler 1.0 to Kepler 2.0 have increased the complexity for developing and

integrating new components, including incompatibilities with components developed in

the previous versions. On the other hand, the available workflow systems, for instance

Triana and Kepler, were based on execution engines with centralized control, therefore

requiring a great software engineering effort for supporting the approaches needed for

solving the identified open issues.

Therefore we decided to develop and implement a new workflow model called AWARD

(Autonomic Workflow Activities Reconfigurable and Dynamic), to address the identified open

issues and to enable the development of scientific workflows with support for structural

and behavioral dynamic reconfigurations.

This dissertation aims at contributing to increase the flexibility and efficiency of the

problem solving process using scientific workflows by taking advantage of the AWARD

workflow model. An important goal of this dissertation was the implementation of a

working prototype, allowing experimentation and enabling continuous refinements to

the AWARD model in order to support the feasible execution of the concrete applications.

This goal required a great effort to provide a flexible and transparent implementation

of an AWARD machine decoupled from disparate technologies and capable of being

reused in multiple computing environments. The AWARD machine implementation, the

software library for supporting dynamic workflow reconfiguration plans and the AWARD

tools for launching and monitoring the workflow execution, they together provide an

operational framework for executing workflows in distinct computational environments

exploring forms of parallelism and distribution currently available on the cluster and

cloud computational infrastructures.

In this dissertation the AWARD framework was evaluated in multiple scenarios. Be-

sides a set of workflow template scenarios, which were used to exercise and evaluate the

AWARD model characteristics and their implementation, the use of the AWARD frame-

work was also evaluated through a set of concrete application cases where the main con-

cerns of expressing parallelism and distribution, performing dynamic reconfigurations

and supporting real experimentation on distributed computing infrastructures, were as-

sessed. The effectiveness of the AWARD model and its prototype implementation were

also evaluated by an external user that developed a text mining application, and only

needed to know the programmer’s view for specifying AWARD workflows and the asso-

ciated AWARD tools for launching and monitoring the workflow execution in distinct

computational infrastructures.
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7.2 Characteristics and Contributions of the AWARD Model

In the following the AWARD model characteristics are summarized according to several

dimensions related to the model itself, the operation of the AWARD machine, the im-

plementation of the AWARD framework, and the experimental evaluation for workflow

development including several international publications that also contributed to the

validation of the results achieved by this dissertation.

7.2.1 The Model

The AWARD model provides adequate expressiveness and flexibility to support multi-

ple workflow patterns allowing application parallel decomposition. In addition to the

support of basic workflow patterns, the AWARD model also contributes with support to

non-basic patterns, such as feedback loops between workflow activities and replication

of activities executed in parallel for load balancing purposes.

The AWARD model offers several types of transparency. The token types used for

passing information between workflow activities are application-dependent and totally

decoupled from the execution engine. The T ask development of the workflow activities is

decoupled from the underlying execution infrastructure. In fact, a T ask is any Java class

with a generic well-defined entry point for receiving a collection of objects mapped from

the tokens available at the activity input ports, and on its completion the T ask returns

an object collection to be mapped to the activity output ports. Furthermore, the AWARD

workflow specification is decoupled from the mappings to the execution environments.

The same workflow specification is executable on multiple standalone computers on

a local network, on multiple nodes of a cluster, or on clouds using multiple virtual ma-

chines by only requiring small adjustments to the configuration of the AWARD execution

environment (Listing 5.10 on page 168). Due to such transparency, the workflow devel-

opers can focus on the problem domain and not on the intricacies of the implementation

of the workflow execution engine.

The AWARD model provides a set of reconfiguration operators for dynamically chang-

ing the workflow structure and behavior during the execution of long-running workflows.

This is an innovative characteristic of the AWARD model which contributes to enable

useful scenarios where workflows can be repeatedly adjusted by reconfiguration plans

in order to dynamically achieve the application objectives. These scenarios include the

behavior improvement of some activities by changing their T asks and P arameters, for

instance, for failure recovery, or even the modification of the workflow structure by intro-

ducing new activities, for instance to support feedback loop and load balancing patterns.

7.2.2 The Operational View of the AWARD Machine

The design of the AWARD machine is based on a decentralized execution control model

where each Autonomic Workflow Activity (AWA) has an autonomic behavior and runs
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without dependencies on a centralized execution engine. The AWA workflow activities

execute multiple or even infinite number of iterations as a long-running workflow, where

different activities can proceed asynchronously in different iterations. Each AWA activity

consumes and produces tokens at its own pace and can terminate independently of the

others.

The Autonomic Controller that executes an AWA activity has an internal architecture

based on a State Machine and a Rules Engine, which provides openness to further exten-

sions, for instance, to modify the life-cycle or the behavior of a particular activity.

The links between AWA activities are abstractions supported by the AWARD Space

as a unbounded and reliable global data store. The AWARD Space is also used as inter-

mediary between the external tools and the AWARD machine to coordinate the actions

required for applying dynamic workflow reconfiguration plans during the workflow exe-

cution, involving one or more AWA activities.

These AWARD machine characteristics contribute to separate the workflow specifica-

tion from the execution environment, by allowing the workflow activities to be launched

and run separately on heterogeneous infrastructures, ranging from a single computer

to distributed infrastructures, such as network of local computers, clusters and clouds.

Depending on the specific application scenarios a workflow can be subdivided into par-

titions of multiple activities. Each partition can be separately launched on different

distributed sites and monitored by different users.

7.2.3 The AWARD Framework

The AWARD framework is supported by an effective working prototype composed of the

following components: The kernel for controlling the life-cycle of an AWA activity; the

AWARD Space server; the dynamic software library that encapsulates the interface for

applying dynamic reconfiguration plans; and a set of tools supporting the development

and execution of AWARD workflows.

The AWARD framework was implemented using the Java language and has minimum

dependencies upon third-party software components. In fact, the AWARD framework

only depends on the Java JESS library to implement the Rules Engine and the Java IBM
TSpaces library to implement the AWARD Space server.

The set of AWARD tools supports the life-cycle of workflow development. The asso-

ciated tools are used for specifying workflows, mapping their execution to computing

infrastructures, and monitoring and debugging them by analyzing the execution logs.

There are tools to setup and to launch one or more activities on computing nodes, tools to

force the termination of one or more activities and tools to manage the log information,

for instance to inspect the activity execution times.

The AWARD tools and the dynamic reconfiguration library are very lightweight and

easily portable to different computing environments. As two examples, the Java exe-

cutable for executing an AWA activity, which implements the AWARD machine including
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the necessary libraries, has a size less than 7 MB, and the AWARD Space, as a standalone

Java application server, has a size less than 1 MB. A useful characteristic of the AWARD

framework is to provide tools to inspect the workflow execution logs. For long-running

workflows the observation of this log information is a crucial point to monitor the behav-

ior of all workflow activities even those that are running on distinct computing nodes. In

addition the log information is also very helpful for code debugging purposes. This was

very important during the prototype implementation process but it was also shown im-

portant when used by workflow developers for performing application-level debugging.

The AWARD tools provide great flexibility for running AWARD workflows on distinct

types of computing nodes, such as, standalone computers as well as virtual machines on

cluster and cloud infrastructures.

As was demonstrated and validated by multiple experimental scenarios the AWARD

framework can easily be reused in multiple computing environments contributing to

simplify the development of real application scenarios.

7.2.4 Evaluation of the Experimental Results

This dissertation proposes a flexible and user-friendly workflow model addressing several

important requirements for developing scientific workflows. The dissertation also led

to the development of the AWARD framework with a flexible and transparent architec-

ture, whose implementation allows to explore the parallelism and distribution, currently

available on cluster or cloud infrastructures.

The experiments aimed at evaluating how the AWARD model and the implementation

of the AWARD framework are suitable to modeling multiple workflow scenarios and

developing application cases in the following dimensions:

• Parallel and distributed workflows execution: We demonstrate the AWARD func-

tionality and expressiveness for supporting workflows with basic patterns and ex-

ecuting them on distributed computing infrastructures namely on the Amazon

cloud. We also discuss some performance indicators when the workflow activities

are spread out on multiple computing nodes, by taking advantage of the decentral-

ized execution control. We observed that for long-running workflows with thou-

sands of iterations AWARD exhibited small overheads when compared with the

Kepler workflow system, which uses a centralized execution engine;

• Structural and behavioral dynamic reconfigurations: We demonstrate a distinc-

tive characteristic of the AWARD model to support dynamic workflow reconfig-

uration plans expressed as sequences of dynamically invoked operations. This

contributes to enabling useful scenarios, such as recovering from failures by chang-

ing the activity T asks or their P arameters, introducing activity replicas for load

balancing purposes, and workflow steering by multiple users, where long-running

workflows were reconfigured with clear advantages;
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• Developing real application cases: We demonstrate the feasibility of using AWARD

to develop real application cases, such as: i) A concrete workflow for implement-

ing the MapReduce model; ii) Workflows whose activities invoke third-party Web

Services; iii) Supporting fault recovery by taking advantage of dynamic reconfig-

urations; iv) Workflow steering and reconfiguration by multiple users; and v) A

text mining application developed by an independent user, including activities exe-

cuted on computing nodes in a local cluster and in two public cloud infrastructures

(Amazon and LunaCloud).

All the above experiments demonstrated that the AWARD model and its implemen-

tation are adequate to execute and dynamically reconfigure long-running workflows on

parallel and distributed infrastructures.

7.2.5 Publications

The main contributions related to the AWARD model were peer reviewed, presented and

published in the proceedings of international scientific conferences [AGC09], [AGC12],

[GAC12], [AC13] and [AC14]. Two of these conference publications originated invitations

to extended versions published in scientific journals [GAC13] and [AGC14].

7.3 Discussion and Lessons Learned

Despite the intensive work in scientific workflows during the last decade, a large number

of issues still remain unsolved. This dissertation proposes feasible solutions to some

of these issues by providing the AWARD model and its implementation as the AWARD

framework.

The following distinctive characteristics are highlighted: i) Expressiveness to sup-

port non-basic useful workflow patterns, such as feedback loops and load balancing;

ii) Transparency to decouple the workflow specification from the execution engine and

the underlying execution environments; iii) Support to apply dynamic reconfigurations

to long-running workflows; and iv) Support to a decentralized control model allowing

flexibility to execute workflows on parallel and distributed infrastructures.

Among other characteristics, it is important to distinguish the flexibility, transparency

and ease of use of the AWARD framework for developing scientific workflows. This was

effectively confirmed by an external user that only needed to know the AWARD program-

mer’s view in order to develop a complex text mining application using parallelism and

distribution [GSC15].

The AWARD support for dynamic reconfigurations is a distinctive contribution not

yet supported in the widely used workflow systems. For instance, despite its constant

development the Kepler system continues relying on a centralized execution engine and

it does not offer any mechanism to perform dynamic reconfigurations of long-running

workflows. However, we also have learned there is a need to better fulfill some still
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open issues. In fact, this dissertation opened a set of directions for further improving the

AWARD model and its implementation as well as the usability of the AWARD framework.

Some of these research directions are pointed out in the following:

G Unique names

Currently in the AWARD framework the uniqueness of names of the activities and

the input and output ports is ensured by the workflow developer. At execution time and

in presence of dynamic reconfigurations to introduce new activities or input and output

ports, uniqueness of names can be ensured by a global name service implemented using

the AWARD Space.

G Workflow hierarchies

The AWARD model supports workflow hierarchies by encapsulating subworkflows

within an activity T ask. In fact, using the AWARD tools the T ask performed by any work-

flow activity can launch another workflow. However, if a workflow has multiple iterations,

the activity that encapsulates the subworkflow launches the entire subworkflow in each

iteration which can be inefficient. Therefore there is a need of further developments to

improve the efficiency of this functionality.

G Dynamic reconfiguration operators

The proposed set of dynamic reconfiguration operators was shown to be adequate for

supporting useful and typical reconfiguration scenarios. However, other operators may

be necessary according to specific requirements of the application cases.

G Correctness issues

The AWARD model only provides the basic mechanism for the activities to reach an

agreement to choose the earliest global iteration between all activities involved such that

the reconfiguration plan is applied. Therefore there is a need to address the verification

of the correctness of AWARD workflows in dynamic reconfiguration scenarios.

G Distributed AWARD Space

The AWARD Space server implementation can replace the IBM TSpaces technology

with a distributed tuple space implementation in order to avoid the occurrence of possible

bottlenecks when the number of interactions between workflow activities increases.

Furthermore, a distributed implementation of the AWARD Space server can also in-

crease significantly the storage capacity, boosting the unbounded size property of the

AWARD Space to support a greater number of pending tokens, and tokens with a greater

granularity.

G Automate the generation of reconfiguration plans

The process for submitting dynamic reconfiguration plans requires a Java program

using the DynamicLibrary.jar. This can pose difficulties to some users to prepare and

submit reconfigurations plans. Therefore the development of a new AWARD tool for

interpreting a high-level script language or a graphical user interface for automatically

generating Java reconfiguration plans can be useful to the end users.
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G Graphical user interface

The AWARD framework tools need improvements in order to provide a flexible and

user-friendly graphical interface able to design workflows, configure the necessary exe-

cution mappings, launch the workflow for execution, monitor and later submit dynamic

workflow reconfigurations on parallel and distributed infrastructures.

G Public availability of the AWARD framework

A public virtual machine image of the AWARD framework is already available in

the Amazon EC2 infrastructure that can be instantiated by others. However, in order

to promote the dissemination of the AWARD model it is necessary to provide associated

documentation.

7.4 Future Work

In the last decade there has been intensive research in scientific workflows. However,

some issues and research challenges remain open. In addition to the above mentioned

improvements to the AWARD model and its implementation, we also have identified the

following challenges:

G User interfaces for large-scale workflows

The design of large-scale scientific workflow is itself a great challenge. However, the

usability of user interfaces to promote the design of large-scale workflows characterized

by a large number of activities is also an important challenge.

G Big Data

The integration of Big Data techniques and tools in data-flow workflows poses difficul-

ties, for example, to avoid the movement of large amounts of data. In fact, Big Data issues

are not just related to the storage size but also related to the composition of multiple

distributed computing units working together in order to solve large problems.

G Autonomic workflow behaviors

Dynamic monitoring or mining the workflow provenance data can provide useful

information to detect failures, or performance issues related to scalability. Therefore

there is a need to support autonomic workflow behaviors to allow self-reconfigurations

in order to recover from faults and support elastic scalability.

Although the importance of the above three challenges, we consider that the Big Data

and autonomic behaviors challenges are more related to the improvement of the AWARD

model. Therefore we select for future work the following two research questions:

1. How to integrate Big Data techniques and tools in the AWARD framework for al-

lowing data-flow, where tokens and workflow activities manage large data sets;

2. How to improve the autonomic characteristics of the AWARD model for supporting

self reconfigurations for instance automatic load balancing and fault recovery. This

introduces the need for improving the AWARD workflow provenance data in order
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to allow its dynamic monitoring and analysis. A possible direction can be the

emergent concept and technologies related to micro services [New15].

Finally we would like to collaborate with users from other science domains in order to

develop complex scientific applications that certainly could contribute to further validate

and improve the AWARD model approach.
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