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Abstract  

 

 

In the last few years, the importance of the internet in our lives increased 

considerably. 

Networks have become a big part of our lives and there will be a setup 

almost everywhere we go: in our homes, in the workplace, in stores, in 

universities, in the subway. Each and every one of these places has a network, a 

router, Wi-Fi, etc. Due to its high importance, service providers must guarantee 

a fully operational network, 24 hours a day, leaving no room for mistakes.  

However, that creates a problem: how can developers test new protocols? 

In no way is a service provider willing to risk ruining its network because a 

developer tested a non-working protocol. 

Researchers who dedicate themselves to the study of these frameworks 

believe that the main problems of a fully operational network lie essentially in its 

architecture, as network devices incorporate different and quite complex 

functions. Major networks, such as service providers, are built upon robust 

architectures with the ability to support large traffic volumes, with different 

characteristics. The service provider is able to process large amounts of data 

simultaneously, as well as route and forward traffic. As they have built-in control 
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functions that work in a distributed manner and considering they are made by a 

limited number of manufacturers, these networks present several limitations. 

Besides its complexity and configuration, it must be taken into account that every 

network should be prepared to deal with potential failures that might occur, as 

well as any security-related problems. A network - regardless of its level of use - 

must allow its users to use it as safely as possible.  

Networks today have poor flexibility and their development, growth and 

innovation are far from simple. Thus, the provision of more diversified services 

to satisfy the users presents a challenge to service providers, since the system and 

the administration functions are separated.  

The answer to these problems lies within the Software-Defined Networks 

(SDN), given that they seem to be very promising as far as innovation is 

concerned, allowing the development of new strategies and management control 

networks. 

These networks use programmable switches and routers that can process 

packets of data for several isolated experimental networks simultaneously, 

through virtualization. These networks run in the Control Plane, in servers 

operating separately from the network devices. This gives the network 

administrator a greater control over the network, as it allows to manage different 

resources by directing them to different traffic flows. 

A SDN using OpenFlow is capable of supporting a high-response network 

to each and every controller failures that might occur, without slowing the 

network's response, as it offers great flexibility and helps with fighting the 

limitations of any existing network. 

The main goal of this thesis is to explain how to use this new approach 

(SDN) and its capacities. This work will serve as a basis to all who wish to obtain 

new knowledge about this topic. One of the main focuses of this thesis is to 
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pinpoint the advantages and disadvantages of SDN with an OpenFlow 

architecture. 

 

Keywords: Software-Defined Networks, OpenFlow 
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Resumo 

 

 

Nos últimos anos, a importância da internet nas nossas vidas aumentou 

consideravelmente. 

 As redes tornaram-se uma grande parte das nossas vidas, e nos sítios que 

frequentamos no nosso quotidiano: nas nossas casas, no trabalho, nas lojas, nas 

universidades, no metro. Aqui, é quase sempre possível encontrar uma rede, um 

router, uma rede Wi-Fi, etc. Devido à sua elevada importância, os prestadores de 

serviços devem garantir uma rede totalmente operacional, 24 horas por dia, sem 

haver margem para erros. 

 No entanto, isso cria um problema: Como é que se podem testar novos 

protocolos? Os prestadores de serviços não estão dispostos a arriscar arruinar a 

sua rede porque um programador testou um protocolo que pode comprometer a 

rede. 

 Os investigadores que se dedicam ao estudo destas redes acreditam que 

os principais problemas de uma rede totalmente operacional estão na sua 

arquitetura, pois os dispositivos de rede disponibilizam funcionalidades 

diferentes e bastante complexas. Grandes redes, como as dos prestadores de 

serviços, são construídas sobre arquiteturas robustas e são capazes de suportar 
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grandes quantidades tráfego e com diferentes caraterísticas. O prestador de 

serviço necessita de processar uma grande quantidade de dados 

simultaneamente, enquanto encaminha tráfego. Como estas redes contêm 

funções internas de controlo que funcionam de forma distribuída e considerando 

que são desenvolvidas por um número limitado de fabricantes, estas redes 

apresentam várias limitações. Além da sua complexidade e configuração, estas 

redes também têm de estar preparadas para lidar com potenciais falhas que 

possam ocorrer, assim como com problemas de segurança. Uma rede –

independentemente do nível de uso- deve ser o mais segura possível. 

 As redes atuais têm pouca flexibilidade e o seu desenvolvimento, 

crescimento e inovação são tarefas complexas. Portanto, a prestação de serviços 

mais diversificada para satisfazer os utilizadores representa um desafio para os 

prestadores de serviços. 

 A resposta para estes problemas está no paradigma das redes definidas 

por software (SDN), dado que as SDNs são muito promissoras, quanto à 

inovação e à possibilidade de automação e mais independência do hardware. 

 Estas redes utilizam switches programáveis que podem processar pacotes 

de dados de acordo com as regras instaladas por um plano de controlo separado, 

gerido em software. Isto dá ao administrador de rede um maior controlo sobre a 

rede, já que permite gerir os recursos, direcionando-os para diferentes fluxos de 

tráfego. 

 Uma rede definida por software, que use o protocolo OpenFlow, oferece 

uma resposta rápida para cada falha que possa ocorrer no controlador, sem 

atrasar o funcionamento da rede, Oferece uma grande flexibilidade e ajuda na 

luta contra as limitações das redes tradicionais. 

 O objetivo principal desta tese é explicar como usar esta nova abordagem 

(SDN) e as suas capacidades. Este trabalho servirá como base para quem deseja 
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saber mais sobre este tópico. Um dos focos é mostrar as vantagens e desvantagens 

das SDN com o protocolo OpenFlow. 

Palavras- Chave: Software-Defined Network, OpenFlow 
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1. Introduction 

 

 Motivation 
 

Today’s computer networks and infrastructures constitute an important 

service to society, by serving as infrastructure for several other services. 

However, the inflexibility of the traditional networks’ architecture is becoming a 

problem. 

Network operations can be divided into two levels designated by data 

plane and control plane [1], as shown in Figure 1.1. In traditional networks these 

two levels run within each switch. 

The data plane is responsible for forwarding packets from one device to 

another. The control plane consists in the protocols used to produce the decisions 

on how to forward the packets. These decisions are usually enforced by the 

forwarding tables of the switches, routers and all data plane devices. 

There are also software services which are used to remotely monitor and 

configure the control functionality. 

 

 

 

 

1 
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        Router 

 

 

 

 

                                                                                    

 

 

 

Data Plane 

Figure 1.1: View of traditional networking 

 

Traditional networks are composed by several kinds of equipment, from 

routers and switches to middleboxes, such as network address translators, 

firewalls, server load balancers, and intrusion-detection systems [1]. 

In traditional networks the architecture itself and its configuration are 

responsible for a large percentage of errors. The device’s software differs from 

manufacturer to manufacturer, and sometimes even from product to product, 

within the same manufacturer. In addition, network administrators need to 

configure every device individually and are prone to committing various errors. 

In fact, configuration errors still account for a large percentage of data center 

failures and are the number one security threat.  However paramount, 

reconfiguration and response mechanisms are still virtually non-existent in 

current IP networks [1].  

Moreover, with the addition of thousands of network devices that must be 

individually configured and managed, networks became vastly more complex. 

        Control Plane 

 

 

Routing protocol 

Routing Table 

Forwarding Table 

Output Input 
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When a network device is added, the control plane on every existing network’s 

elements needs to be updated, which leads to an ossification of the network. The 

deployment of new services requires individual configuration of every network 

equipment, which is very time consuming and sometimes entails the installation 

of new devices. This is blocking innovation and has been hindering networks’ 

management. So, the network designers have to implement  sophisticated  

policies and tasks,  by  using  a  limited  and  restrictive  set  of  low-level device 

configuration  commands,  in  order  to meet   systems   requirements   and   

guarantee   their   good performance. 

Software-Defined Networks offer a new paradigm that tries to overcome 

the mentioned obstacles. SDNs have four basic design characteristics: [1] 

1. The control and data plane are decoupled; 

2.  Forwarding decisions are flow-based; 

3.  Control logic is moved to an external entity, the SDN controller or 

Network Operating System (NOS); 

4. The network is programmable through software applications 

running on top of the NOS that interacts with the underlying data plane devices. 

[1]. 

 



4 

 

The following image presents the structure of a Software-defined 

Network: 

 

Figure 1.2: Architecture and structure of a SDN 

 

These aspects are key factors to simplifying network management and 

enabling network evolution and innovation [1]. In spite of the benefits of this new 

paradigm, the security and dependability of the SDN itself are still an open issue 

[2]. However, SDNs are already a reality with several application examples. In 

data center networks they are already replacing traditional networks, and several 

examples of their use in service provider networks and campus networks are also 

already in production.  Standards like OpenFlow (a southbound API between the 

control plane and the data plane) are already implemented in modern 

equipment, and several equipment vendors and network operators are 

committed to the development of controllers and Network Operating Systems 

ecosystems. 

 

                                       

Controller 



5 

 

  Objectives and contributions  
 

The main objective of this thesis is to study the state of the art in the 

development of software applications for software defined networks. In this 

process we will: 

 Present the Software-Defined Networks paradigm and identify its 

characteristics; 

 Present the OpenFlow protocol and its characteristics; 

 Explain and document how to program SDN applications that use 

OpenFlow. 

 

The main contribution will be the presentation of a systematized view of 

how to implement applications for SDNs in a current state of the art controller. 

 

 Thesis Layout  
 

This thesis is structured into three chapters:  the present Chapter 1 is a 

brief introduction of the proposed work, its motivation and objectives. The  

second  is  the  state  of the  art,  that  addresses the currently available solutions 

in SDNs and especially in OpenFlow, which is intended to explore its evolution, 

extension and how it can be used, and also its advantages and disadvantages. In 

Chapter 3, a guide of how to develop an application for a SDN is documented. 

 

 

 

 

 

 



6 

 

  



7 

 

 

2. State of the Art 

 

 Typical Network Architecture 
 

 Network devices are responsible for receiving the packets, checking the 

packets headers, and deciding where to route them. There are network devices 

operating in Layers 1, 2 and 3. In Layer 1 we have a HUB, which only retransmits 

what it receives, without checking anything, thus working as a signal repeater. 

In Layer 2 there are Switches, which interconnect computers from the same 

network. Finally, in Layer 3, we have a Router which interconnects computers 

and other devices from different networks. 

         On these networks, the Switch has two levels: the Control Plane, 

that checks the packets’ headers and decides where to route them; and Data 

Plane, that forwards traffic to the next hop, according to the Control Plane’s 

decision. So, when a packet arrives at a Switch, the Control Plane examines it, 

decides where to send it and communicates the decision to the Data Plane, which 

then proceeds to sending the packet to where it is supposed to go. 

         This communication between the Control and Data Planes happens 

inside the switch, which has vendors’ closed software and hardware. This limits 

the ability to engineer and manage traffic across equipment from several 

vendors. On top of that, the algorithms of the Control Plane have to be configured 

2 
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before the switch is installed, and if the network administrator wants to add 

another rule he has to access the switch and change it manually. 

The architecture of current networks is based essentially on the use of 

layered networks which divides the information in different units of varying 

sizes called packages. These packages are generally lower than the size of the 

original message and are sent by alternative routes [3]. This characteristic makes 

for greater effectiveness in the communication network, because if there is a 

network failure the data flow is not interrupted [4]. 

 

The current architecture of networks meets the following specifications 

[4]:  

 Connectivity; 

 Generality; 

 Heterogeneity; 

 Robustness; 

 Accessibility 

 

 

 The Road to Software-Defined Networks 
 

One of the first examples of control centralization in a network came in 

the 1990s, when AT&T introduced Network Control Point (NCP) [5], with the 

separation of the voice and the signaling channels in the telephone network. 

 In this system, when someone wanted to make a call, the signaling of the 

call went straight to a NCP, and then it would make a query to a back-end 

Database containing all the routing information that would reply with the asked 

information. This offered the possibility of services on demand, the easy and 

quick input of new information (since it was only necessary to update the 
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Database), and shorter holding time due to the fact that the NPC could know the 

status of a line, so it would route the call through the quickest line available. This 

type of control was called Central Control and is still used today by AT&T. 

Computer Networks nowadays involve many kinds of components like 

Switches, Routers, Firewalls, Network Address Translators, Server Load 

Balancers, among others. That conjunction of equipment makes the networks 

complex and difficult to manage. 

The architecture of a network Switch has two levels: data plane, which 

deals with packet switching; and control plane, which does the routing decisions 

for the packets. The decision process of switching or routing and the actual data 

plane are, typically, on the same device. This creates a tight relation between the 

control and data planes, which makes tasks like debugging configuration 

problems very difficult. 

There are several kinds of Switches in different layers of the OSI model. In 

layer 1 the Switch is used as signal repeater and regenerator, in layer 2 it 

interconnects devices that belong to the same network, and in layer 3 it 

interconnects devices from different networks. 

The networks’ configuration process consists on having the network’s 

administrator configure each device individually, using different interfaces that 

diverge from vendor to vendor, and sometimes even from device to device, both 

from the same vendor. 

The exponential growth of networks led to scalability problems. Adding 

many devices means the network will become much more complex, resulting in 

much more work for the administrators to configure the devices, trying to guess 

the traffic patterns (which are static), and readjust all the network. So, adding 

millions of new devices becomes impossible due to the work involved. 
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Therefore, this mode of operation has blocked innovation, caused poor 

performance due to redundant operations at different protocol layers, increased 

complexity, created major scaling problems, and raised the costs of running a 

network. 

The first attempt to solve some of these issues was Active Networks, of 

which there were two kinds: Integrated and Discrete. In the integrated approach, 

each message contains a code which will be evaluated by every programmable 

middle box (or active node) and then ran in an execution environment of those 

middle boxes. On the discrete kind, the code is installed in the active nodes, and 

the packets are dispatched to the appropriate code block based on the values on 

the packet headers. 

These networks were a great step towards Software-Defined Networks, 

but came too soon. At the time, there was no application for these Networks since 

data centers and cloud computing did not exist. Other major issues that 

prevented the Active Networks’ success was the idea of having code passing 

through the network, which raised many security concerns and the need of 

hardware and firmware upgrades due to lack of operability with the existing 

networks. 

 

 

 Network Virtualization 
 

With Network Virtualization [15] it is possible to create several logical 

network partitions on a physical network infrastructure, isolated from each 

other. These logical networks can provide the same services, similarly to an 

ordinary network, and can be different from each other, in spite of sharing the 

same resources and coexisting in the same physical network infrastructure, as 

show on the Figure 2.1. 
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Figure 2.1: Virtual Network integration in physical infrastructure 

 

For the user, there is no difference in using a logical partition or a physical 

network, but for network managers it is a big improvement in terms of managing 

networks. There are several resources available to a network such as switches, 

routers and virtual machines. These resources can be used by several logical 

partitions at the same time, without interfering with each other, and can be 

reallocated in real time in order to obtain better efficiency. If one instance of the 

network has a lot of resources allocated, but is not using all of them, they can be 

reallocated to a struggling partition with a lot of traffic at that moment. So with 

virtualization, the use of a physical network infrastructure is maximized, because 

instead of one network, it is possible to have multiple other network instances, 

so the costs are decreased as well, because the network resources are shared by 

several networks as needed at any given time.  
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 Common problems of Traditional Networks  
 

The growth of networks, as well as their importance, is undeniable. With 

this growth the amount of hardware needed is larger, therefore some scalability 

problems occur. Networks are configured using commands or network 

management systems [27], so it is a very time consuming work to set up a new 

network, or to change a certain parameter in every hardware of the network.  

The rise of the cloud, mobile computing, data centers and other trends like 

Internet of Things demands good performance from the networks, and because 

they require timely adjustments to change their configurations, they can be 

considered essentially static and inefficient at deploying dynamic services such 

as ensuring resources to applications when they need it the most. This means the 

adaptation of these networks to new services may take years, since they need 

feature upgrades, architecture adjustments or introduction of new devices to 

meet new service requirements. For example, the traditional Layer 2 VLAN 

mechanism of a cloud data center with virtual machines and virtual networks is 

required to run new protocols on switches to meet scalability requirements; 

however, the physical devices involved cannot adapt to these requirements 

quickly enough. 

Software-defined networks are a viable possibility to solve the problems 

presented above and will be described ahead. These networks are able to provide 

better visibility into the network, making troubleshooting the network easier. 

Anomalies from the network can also trigger actions to identify where the 

problem is and possibly solve the issue. 

 In this case of the cloud data center, software-defined virtual switches 

combined with overlay networking can bypass the limitations of physical 

switches and still satisfy the scalability requirements of the network. 
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 Software-Defined Networks  
 

Traditionally, networking relied and evolved over a non-transparent 

distributed model for the deployment of protocols and configuration of devices 

that resulted in complex protocols and intrinsically difficult configuration of 

network devices [5]. 

Software-Defined Networks present a new way of thinking in networking, 

shifting the complexity of protocols and management functions from the 

network devices to a general purpose logically centralized service. The 

motivation behind this decoupling is to simplify the operation of the network for 

users. 

Software-Defined Networks (SDN) are based on virtualization and allow 

software to run separately from the hardware. The routing decisions (Control 

Plane) are separated from packet switching (Data Plane), leaving the decisions 

regarding where traffic is sent to be handled by a centralized Control Plane, 

which knows the state of the entire Network at any given time. This separation 

of Control and Data Planes gives the Switch more process capability and can 

virtualize the network environment, offering at the same time a much more 

programmable network due to the fact that only one element has to be 

configured: the centralized controller. This also allows network developers to 

develop new protocols that can control the Data Plane, and to test it without 

configuring every switch of a given network. 

Understanding the biggest contributions in the SDN research field allows 

for a better picture of its composition, benefits, and drawbacks, thus historical 

changes in networks that have molded the current SDN architecture [5]. 

SDN contributions can be decomposed in three phases: the introduction 

of programmable network hardware; the control and data plane separation; and, 

finally, standardization of the data plane interface [5]. 
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As previously seen, the history of SDN takes us back to when the 

incredible success of the Internet exacerbated the challenges of management and 

evolution of the network infrastructure, in which the focus was on innovation in 

the networking community. However, these innovations were in some cases 

catalyzed by progress in other areas, including distributed systems, operating 

systems, and programming languages. Efforts to create a programmable network 

infrastructure also clearly refer to the long list of discussion about the 

programmable packet processing at high speeds. Based on the above, the history 

of SDN can be divided into three main stages: (1) The first stage concerns the 

ideas of active networks (mid-2000) in which functions that were programmable 

were introduced, and originated more creativity and evolution; (2) The second 

step concerns the separation of data and control plane (mid 2001). Finally, (3) the 

third step relates to the emergence of OpenFlow, considered an open interface to 

make the separation of control plane and data plane [6]. 

In addition to that, an important aspect, as seen previously, is that the 

Software-Defined networks constitute a much larger universe than the one 

defined by the OpenFlow.                                                                          

 OpenFlow provides a simple solution for creating multiple virtual 

networks on a physical infrastructure, where each network consists of switches 

and routers. But the paradigm of Software-Defined Networks makes it possible 

to develop new network applications, something that was thought in the past, in 

traditional networks [13]. 

In SDN there is only one communication protocol between different 

network elements, and the controller manipulates the flows in the network. The 

OpenFlow protocol was chosen in this work because it has a more advanced 

stage of development and provides a pattern of open communication. [7] 
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 SDN Architecture 
 

Like in a traditional network, a SDN is composed of network devices. The 

main difference between them, is that in SDN the network devices are simple 

processing elements without embedded control or software to take autonomous 

decisions. This means the network intelligence is removed from the data plane 

devices to a centralized logic [1].  

To ensure compatibility of configuration and interoperability between 

different control and data plane devices, these new networks are built on open 

and standard interfaces such as OpenFlow [1]. In the following figure is 

displayed a view of an SDN architecture. 

 

 

Figure 2.2: SDN architecture 

 

SDNs have three layers, as shown in Figure 2.2. At the top is the 

Application Layer, where are the SDN applications, which are programs for 
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network virtualization, network monitoring, intrusion detection (IDS) and flow 

balancing that communicate with the SDN Controller. This layer is completely 

isolated from the physical network. 

Following, comes the Control Plane to support data management 

applications and the set-up containing the “brain”, the SDN controller, making 

the routing decisions. It provides abstractions, essential services and common 

application programming interfaces for developers [2]. Between Application 

Plane and Control Plane, are the northbound application program interfaces 

(API), which provide a channel that allows the SDN Controller to send 

instructions to the applications running over the network, and help network 

administrators to shape traffic and deploy services. 

The last layer is Data Plane, the physical network containing the switches 

and other network elements, used to forward packets [8], respecting the SDN 

controller rules and policies. Between the SDN controller and the physical 

network are the southbound application program interfaces (API) that provide a 

channel by which instructions are sent to the devices to program them. These 

APIs use a routing protocol and enable the SDN Controller to make instant 

changes to face with real-time demands. 

In this architecture there are two main elements, routing/forwarding 

devices such as switches and the controller. An OpenFlow forwarding enabled 

device is based on a set of flow tables. Each entry of a flow table has three parts, 

one matching rule, actions to be performed in matching packets and counters to 

keep the corresponding packet statistics. When a packet arrives, the lookup 

process begins in the first table and ends with a match in one of the frames (or a 

rule is not found) [1]. 

This separation of Control and Data Planes gives the Switch more process 

capability and can virtualize the network environment, offering at the same time 
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a much more programmable network due to the fact that it is only necessary to 

configure one element: the centralized controller. This also allows network 

developers to test new protocols without configuring every switch of a network. 

With this information and based on an appropriate communication 

protocol, in this case OpenFlow, the controller sets the specific flow in each 

element involved, enabling the routing package. However, it is important to 

emphasize that the packets in the same flow are pre-configured and therefore 

will not need to perform a new query to the controller. 

The SDN and its architecture objectives are facilitating network 

management and ease the burden of solving network problems through a 

logically centralized control offered by a network operating system (NOS). 

At an architecture level, one of the most important aspects is having the 

controller as a central controller for the whole network, so there is only a single 

entity that ultimately manages all network devices. However, if this entity fails 

or if a malicious person takes control, there can be serious problems because the 

one who controls the SDN controller, can control the entire network [2]. 

Another important aspect that needs to be mentioned relates to the 

controller.  In this architecture, as there is a centralized element, all information 

is concentrated in one place. Each reading operation, after a writing operation, 

returns an updated value [1]. 

With distributed elements, it is important to define strategies to ensure the 

consistency of data updates. 

Some controllers have a low semantic consistency, which means that the 

data updates in distinct nodes can be updated in all nodes of the controller. On 

the other hand, a strong consistency ensures that all nodes of the controller will 

read a discounted value after a writing operation [9]. 
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In spite of its impact on the performance of the system, strong consistency 

offers a simpler interface for application users when compared with low 

consistency [9]. 

Another important aspect to be mentioned is the fault tolerance. When a 

node fails, the other node must assure the operation of the failed node. Until now, 

despite some controllers having trouble of collision, there are no arbitrary 

failures, i.e. any node with an abnormal behavior will not be replaced by a more 

appropriate behavior [1]. 

However, it is important to take into account, to assure the safety of SDN, 

the following architecture aspects: availability, performance, integrity and 

confidentiality [10]. 

OpenFlow is considered the first standard in SDN, it was the original 

southbound API and remains as one of the most common protocols. 

 

 Security issues of SDN 
 

The countless promises of a simplified control and a real-time 

programming offered by SDN constitute incentives for operators to keep the 

evolution at an accelerated pace. However, these questions raise barriers to 

safety, and the aim is that this will serve as a complement to secure architecture 

so that networks are protected against attacks by malicious users [10]. 

Looking at SDN characteristics, it is possible to verify that the main 

security problems lie on SDN’s greatest benefit, i.e.  the programmability and 

logical network centralization. 

Software-Defined Networks threats can be divided into two groups: (1) 

the threats that are specific to SDN and are not present in traditional networks, 

and (2) the threats that are not specific to SDN. 
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First the non-SDN-specific threats.   Compared with traditional networks, 

the separation of the control and data planes enables multi-tenancy and 

programmability, and introduces centralized management into the network 

architecture. From a security perspective, the ability to share and dynamically 

operate the same physical network is one of the key security-related differences 

between SDN and traditional architectures. As such, SDN security issues relate 

to the new control plane model, and more specifically to securing inter-

component communication, and controlling the scope of applications and 

tenants through specific APIs and access policies [10]. 

While it may sound like there are a number of obstacles to overcome, the 

programmability and centralized management brought by SDN enables a much 

greater level of autonomy to mitigate any security breaches [10]. 

Another problem is the falsification of a flow. The traffic flows can be 

forged or faked by a faulty (non-malicious) device or by a malicious user that can 

be used to attack switches and controllers. 

A traditional network is managed individually, but a SDN allows a 

coordinated management, resulting in a more flexible distribution process. While 

there is a risk of the SDN control plane becoming a bottleneck. An attacker can 

use network elements to launch an attack against the switches and controller 

resources. The solution to the problem presented undergoes the use of intrusion 

detection systems with support for runtime root- cause analysis to help identify 

abnormal flows.  Another security threat is the vulnerabilities explored in 

switches [2, 10]. An attacker could theoretically gain unauthorized physical or 

virtual access to the network or compromise a host that is already connected to 

the SDN and then try to perform attacks to destabilize the network elements.   
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For this threat, the solution is to use software attestation mechanisms or 

mechanisms to monitor and detect abnormal behavior of network devices using 

switches. Recovery mechanisms are very important in a network, i.e., when there 

is a network problem it is important, of course, to understand their cause and to 

recover by resetting. For that purpose, reliable information is needed from all 

components and domains of the network [2, 10]. Finally, related to non-specific 

threats it is important to refer that the created logs should be stored in a remote 

and secure environment [2]. 

Concerning SDN specific threats, it is important to refer to the form of 

communication between the three planes, namely the existing communication 

between both controller and applications. Attacks performed here can be used 

for data theft [2]. 

As it was said above, the communication between the three planes 

represent the most crucial link between controllers and forwarding devices [2]. 

However, despite this being an important element in an SDN, it also represents 

a threat for being a weak link in safety, compromising the communication. In 

fact, compromised OpenFlow-enabled forwarding devices can be used for man-

in-the-middle attacks that are nearly impossible to detect [11]. However, there 

are efforts to fight security threats, including security of SDN controllers, such as 

creating security domains to isolate applications, [12], the security of SDN is still 

reduced to the optional use of TLS. It is important to mention that the use of TLS 

is a good start for the construction of safer SDN architectures because it is one 

way of making it easier to identify and fix security issues by reducing the 

complexity of architecture SDN [12]. 
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 OpenFlow 
 

2.8.1. OpenFlow Protocol 
 

The OpenFlow is a standard protocol which is managed by the Open 

Network Foundation (ONF), a user-driven organization who wants to promote 

SDN, leading to a worldwide adoption of this kind of Networking. ONF is 

responsible for managing and publishing OpenFlow specifications. 

In a conventional network model, the decisions regarding where an 

incoming packet should be sent and fast packet forwarding occur in the Switch. 

An OpenFlow Switch allows the intelligence to be made on a centralized separate 

controller. The OpenFlow Switch and Controller communicate via the OpenFlow 

protocol, which defines messages, such as packet-received, send-packet-out, 

modify-forwarding-table, and get-stats. This means the policies and rules can be 

changed as network and application requirements change, and can be done 

immediately, being automatically propagated throughout the network. This 

makes network management much easier. 

OpenFlow [16] protocol allows a network administrator to quickly change 

the several flow-tables in the different switches and routers, which allows to 

define different traffic flows with almost on-the-go. It also enables the Service 

Providers to maintain their Production Flow running, while having the capability 

to run another flow working completely isolated, without the possibility of 

compromise the Production Flow. This second flow can be used, for example, to 

create the opportunity to new researchers of testing new security models, 

addressing schemes or even new routing protocols, since the researchers control 

the routes of their packets and process received on their own flows. 
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Other benefits of OpenFlow are: 

 More flexibility and control of software and simulation. 

 More speed and scalability of vendor hardware. 

 Vendors do not need to expose their closed implementation. 

 

OpenFlow had several versions. A presentation of the evolution of the 

protocol will be presented. 

 

2.8.2. OpenFlow characteristics 
 

To better understand how OpenFlow [26] protocol works, several 

concepts should be described before: 

Packet - an Ethernet frame, including header and payload; 

Flow Entry - An element in the flow table used to match and process 

packets. It has match fields and a list of instructions with one or more actions; 

Flow Tables - Contains at least one flow entry. Since OpenFlow version 

1.1 a switch can have more than one flow table enabling the pipeline search, 

which will try to match to the first flow table, then the second, and so on. A flow 

table can have a flow entry with an action instructing for the packet to be 

immediately sent. In this case, the switch will not try to match the packet with 

the remaining flow tables; 

Match or Match Field - A field to which a packet is compared including 

packet headers, the ingress port, and the metadata value. It is possible to match 

every packets by wildcarding this field. Usually when a packet is matched, an 

action is assigned to that packet. 

Action - The element that can forward the packet to an outport of the 

switch. It can also change the content of packet, like decrementing the TTL field. 

Multiple actions can be applied to one packet, and if two actions change the same 
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field, when the packet leaves this field will have the value from the last action. A 

list of actions can be found at [26]; 

Action Set - a set of actions associated with the packet that are 

accumulated while the packet is processed by each table and that are executed 

when the instruction set instructs the packet to exit the processing pipeline; 

Instruction - instructions describe the OpenFlow processing necessary 

when a packet matches the flow entry. An instruction either directs the packet to 

another flow table, or contains a set of actions to add to the action set, or contains 

a list of actions to apply immediately to the packet; 

Action Bucket – used in groups. It is a set of actions and associated 

parameters that will be applied when a packet is sent to a group; 

Group - a list of action buckets that will be applied to the packets. It has 

the means to choose which buckets will be applied to each packet 

 

2.8.3. OpenFlow Switch 
 

At first, in OpenFlow 1.0, an OpenFlow Switch contained two main 

components: 

 A Secure Channel necessary to connect to the SDN controller through the 

OpenFlow protocol. With this protocol, the controller can add, update, 

and delete flow entries. 

 A Flow Table that contains several flow entries, and does packet lookups 

and forwarding. 

 

 

In OpenFlow 1.1 it was introduced the possibility to have more Flow 

Tables, and a Group Table, which allowed the Switch to receive a packet from a 

sender, and forward it to several destinations.  
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A flow table consists of flow entries, and each flow entry has the 

components shown in Figure 2.3. 

There is a search made to all packets arriving at a switch, to see if there is 

a match at the flow table. The flow table contains a set of flow entries, and each 

of them has three components: Header Fields (to match packet headers), counters 

which are updated when a packet is matched with this flow entry, and a set of 

actions to apply to matching packets (ex.: forward the packet to a specified port, 

or forward the same packet to more than one port). 

 

 

 

Figure 2.3: Set of flow entries 

 

The SDN Controller determines how to handle packets that did not find 

any matching flow entry. These packets are sent by the switch through the secure 

channel, and then the controller adds a flow entry on the switch for that kind of 

packets, deletes or updates a flow entry or drop the packet. 

         In OpenFlow 1.1, the Switch was given the possibility of having two 

or more flow tables and a group table, as is shown in the Figure 2.4. 
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Figure 2.4: Architecture OpenFlow 

The process of matching a packet to a flow entry starts at the first flow 

table, proceeding to the next tables. When a match is made, an action on the 

packet may be performed. If a packet does not match with any flow entries, 

depending on the configuration, the packet could be sent to the controller over 

OpenFlow channel, or dropped. 

The group table contains group entries, and each group entry has a list of 

Action Buckets (which are a list of actions), therefore, a group entry has a list of 

list of actions. 

The key message types traded between the controller and a switch is show 

on Table 2.1. 

 

 

 

 

 

 

 



26 

 

Message Type Sent by Description 

Request 

features 

Controller Asks a switch for its configuration (i.e. port 

information) 

Request stats Controller Asks a switch port or flow statistics (i.e. byte 

and packet counters) 

Packet Out Controller Send a specific packet through a specific out 

port 

Flow 

modification 

Controller Insert, update or delete a flow entry in the 

switch’s flow table 

Features reply Switch Switch description of its features (i.e. ports) 

Stats reply Switch Report of port or flow statistics from the 

switch 

Packet_IN Switch Sent when a packet arrives and has no 

matching rule, or has a rule whose action 

directs the packet to the controller 

Flow removed Switch Notification that a flow entry was removed 

due to a request from the controller or due to 

timer expiration 

 Table 2.1:  Summary of the key OpenFlow messages 

 

 Building SDNs for simulations using virtual software 

switches 
2.9.1. Mininet 

 

Mininet [17] can create a network of virtual switches, controllers, links and 

hosts. Hosts run Linux and switches support OpenFlow. 

With Mininet it is possible to have a simple and inexpensive way of having 

a network running in a single computer and can be used for research and 
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development. It is possible to implement simple or complex topologies and find 

the best performance possible for a network, with a given hardware. It has a 

Command- line Interface that is topology-aware and OpenFlow-aware which is 

perfect for debugging. 

Mininet’s networks run code used on real networks that is why it can be 

moved to a physical network with minimal changes in order to evaluate the real 

performance of the implementation, which may be similar to networks’ 

performance on Mininet. 

Instead of virtualizing computing resources Mininet uses process-based 

virtualization to run many hosts and switches on a single OS kernel. So it is faster, 

offers the possibility of having more hosts and switches, provides more 

bandwidth and is easily installed than others emulators that use full system 

virtualization. Compared to hardware testbeds, Mininet does not need any 

money to test a network and it is quickly reconfigurable and restorable. 

Mininet has some limitations. It has resource limits, the server resources 

have to be shared and balanced between the virtual hosts and switches. Using 

only Linux kernel for all hosts means it is impossible to run software that 

depends on other system kernels. 

 

2.9.2. Floodlight Controller 
 

As explained before, every Software-Defined Network needs a controller. 

A controller is responsible for managing flows on the switches’ flow tables, and 

can do it remotely and on real time. SDN controllers are the “brains” of the 

networks because they can tell any switch / router where to send packets. 

The chosen controller was Floodlight [18]. Other options were ONOS or 

OpenDaylight but these two are more complex and difficult to set up than needed 

for the purpose of this thesis. 
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Floodlight is an open-source Controller. It is easy to set up, having 

minimal dependencies and is user friendly and developer friendly because it uses 

a module system (written in Java) that makes it easy to extend, adapt software 

and develop applications. It has Representational State Transfer Application 

Program Interfaces (REST APIs), that can be written in any language and 

exchange information with an external entity at runtime. This controller can work 

with OpenFlow and non-OpenFlow networks. 

The Controller performs the typical network operations, monitoring the 

network and updating flow tables in the switches while having applications, 

built as Java modules or over the Floodlight REST API that can be written in any 

language, realizing other features according the user needs over the network. 

When Floodlight starts [19], the controller and the module Java 

applications start running. These Java applications are loaded in floodlight’s 

properties file. The REST APIs are available via the REST port and can retrieve 

information or send http REST commands to the controller in order to invoke a 

variety of services.  



29 

 

 

Figure 2.5: Set modules in Floodlight controller 

 

The Module Applications implemented in floodlight are represented in 

Figure 2.5. 

 Virtual Network Filter (VNF). A MAC-based network isolation 

application which is not enabled by default. Exposes a variety of REST API 

that allow add, remove and inquire virtual networks. 

 Firewall. Application that can apply Access Control List (ACL) rules to 

allow or deny traffic based on a specified match. Exposes a variety of REST 

API that allow to enable or disable the firewall and add, remove or list 

rules. 

 Forwarding. A default reactive packet forwarding application which will 

forward packets between two devices. Since Floodlight is designed to 

work in networks that contain both OpenFlow and non-OpenFlow 
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switches Forwarding has to take this into account. The algorithm will find 

all OpenFlow islands that have device attachment points for both the 

source and destination devices. FlowMods will then be installed along the 

shortest path for the flow. If a PacketIn is received on an island and there 

is no attachment point for the device on that island the packet will be 

flooded. 

 Hub. An application that flood any incoming packet to all active ports, 

except the port from which the packet arrived. 

 Static Flow Entry Pusher. An application that can install a specific flow 

entry in a specific switch. Exposes a variety of REST API that allow to add, 

remove and inquire flow entries. 

 Learning Switch. A L2 learning switch. Exposes a REST API that allow to 

list the current switch table. 

 Port Down reconciliation. An application to reconcile flows in case a 

port or link goes down. 

 

Some examples of REST applications that use floodlight REST APIs are: 

 Circuit Pusher, that can create a permanent flow entry on all switches in 

route between two devices based on IP addresses with a given priority. 

 OpenStack, that allows Floodlight to run as the network backend for 

OpenStack using a Neutron plugin, exposing the network-as-a-service 

model. 
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 OpenFlow Concepts in Floodlight Controller 
 

The controller will be able to interact with network switches writing 

messages to the switch and processing the messages from the switch.  

The OpenFlowJ-Loxigen is a single, common, version-agnostic API that support 

OpenFlow versions from 1.0 to 1.4. It provides builders for several OpenFlow 

Concepts. Before explaining how to develop a network, it makes sense to explain 

these concepts, and to show a simple example about them. 

 

2.10.1. Factories 
 

Each OpenFlow version has a factory that can build all types and messages 

for that version. This library provides an easy method to create OpenFlow 

Messages, Matches, Actions, FlowMods, etc. It uses builders that handles the 

low-level details such as Message lengths. The switches that connect to 

Floodlight contain an OpenFlow factory compatible with the OpenFlow version 

running on the switch. It is possible to have several switches, running different 

versions of OpenFlow, communicating with the controller. In this case 

OpenFlowJ-Loxigen handles the low-level protocol differences in the 

background, and the user can write functions without concerning the version of 

each switch. In order for this to happen, the switch is exposed as an IOFSwitch, 

which has the function getOFFactory() to return the appropriate factory for the 

OpenFlow version running on the switch. In the initial handshake between the 

switch and the controller, a reference to an OpenFlow factory of the correct 

OpenFlow version is given to the switch. To create a message, the user only needs 

to reference the factory from the switch, create the builder and send it to the 

switch. Reference the OFFactory needed is mandatory before starting to compose 

an OFMessage to send or answer to a switch. In a case where the network 
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administrator knows there is only one version used in the network (i.e. 

OpenFlow 1.3), it is possible to refer that particular factory by doing the 

following:  

 

OFFactory my13Factory = 

OFFactories.getOFFactory(OFVersion.OF_13); /* Get an OpenFlow 1.3 

factory. */ 

 

We can get the correct factory from a switch by creating a new IOFSwitch 

object with the switch’s MAC address, and then use the method  getOFFactory(). 

 

IOFSwitch mySwitch = 

switchService.getSwitch(DatapathId.of("00:00:00:00:00:00:00:01")

); 

OFFactory myFactory = mySwitch.getOFFactory(); /* Use the 

factory version appropriate for the switch in question. */ 

 

It is also possible to get the proper factory from an existing object 

generated by an OFFactory itself. OFVersion and OFFactory classes provide 

functions to do this as shown below. 

 

OFVersion flowModVersion = myFlowMod.getVersion(); /* We 

assume myFlowMod has been already constructed */ 

OFFactory myFactory = 

OFFactories.getFactory(flowModVersion); /* Get the OFFactory 

version we need based on the existing object's version. */ 

 

OFFactories expose the builders for almost all of the OpenFlow concepts. That is 

why the first step on composing messages is to refer the proper factory, which 

will provide the correct builders for the OpenFlow version running in the switch. 

 



33 

 

2.10.2. Matches 
 

Matches are related with the characteristics of packet header fields. One 

use of Matches happens when the controller wants to insert / update a flow in a 

switch. This modifications requests are sent via a specific type of message: 

FlowMod. Using OpenFlowJ-Loxigen’s builder, to construct Matches is a simple 

and direct process. 

Match myMatch = myFactory.buildMatch() 

    .setExact(MatchField.IN_PORT, OFPort.of(1)) 

    .setExact(MatchField.ETH_TYPE, EthType.IPv4) 

    .setMasked(MatchField.IPV4_SRC, 

IPv4AddressWithMask.of("192.168.0.1/24")) 

    .setExact(MatchField.IP_PROTO, IpProtocol.TCP) 

    .setExact(MatchField.TCP_DST, TransportPort.of(80)) 

    .build(); 

 

 

2.10.3. Actions 
 

Actions differ from one OpenFlow version to another, therefore is mandatory 

first to get the correct version, which can be provided by the OFFactory. An action 

set is intended to apply to a packet. It can discard, modify, queue or forward an 

incoming packet. 

 

2.10.4. Instructions 
 

Starting in OpenFlow 1.1, each flow entry of a flow table has a set of instructions 

to apply to all matching packets. These instructions can be used to modify the 

packets state, forward the packet to a particular port or forward the packet to 

another table or group. Each packet maintains an action set, which contains a set 
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of actions to apply to the packet when no further table processing can be 

accomplished. There are several Instructions: 

 Write and clear instructions, which provide ways of manipulating the 

action set.  

 Apply instruction that performs actions immediately.  

 Goto instruction provides a mechanism to choose the next flow table for 

processing.  

 Meter instruction allows the application of a rate limiter to the flow.  

 Experimenter instructions provides a structure for custom extensions to 

instructions.  

 

2.10.5. FlowMods 
 

Like the concepts before, FlowMod also refers to one OpenFlow version 

only, therefore it is necessary first to know it. FlowMod will insert, update or 

remove a rule for a specific type of packets in the switch’s flow table. 

 

2.10.6. Groups 
 

OFGroups allows to make more complex operations in an OpenFlow switch 

such as duplicating packets or applying different sets of OFActions to a single 

packet. To allow this, the structure of an OFGroup is a list of lists of OFActions. 

Those lists are called buckets, therefore an OFBucket contains a set of OFActions. 

There are four types of OFBucket: 

 OFGroupType.ALL:  Provide each OFBucket with a copy of the packet, 

and apply the list of OFAction's within each OFBucket to the OFBucket's 

copy of the packet. 
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 OFGroupType.SELECT:  Use a switch-determined (typically round-robin) 

approach to load-balance the packet between all OFBuckets. Weights can 

be assigned for a weighted round-robin distribution of packets. 

 OFGroupType.INDIRECT:  Only a single OFBucket is allowed, and all 

OFAction's are applied. This allows for more efficient forwarding when 

many flows contain the same action set. Identical to ALL with a single 

OFBucket. 

 OFGroupType.FF:  Fast-Failover. Use a single OFBucket and change 

automatically to the next OFBucket in the OFGroup if a specific link or a 

link in the specified OFGroup fails for the active OFBucket.  

The user has to configure the switch with the amount, and type, of 

OFGroups wanted. OFGroups can be added, modified or deleted through the 

OFMessages: OFGroupAdd, OFGroupModify and OFGroupDelete which can be 

composed and then written to a switch. 

 

2.10.7. Packet-Ins 
 

OFPacketIn is an OpenFlow object which also can be done by getting an 

OFFactory. When a switch receives a packet which does not have its destination 

on the switch’s flow table, it sends a message to the controller as a packet-in. The 

controller then can process the OFPacketIn and can get useful information such 

as the Match corresponding to the packet within. 

 

2.10.8. Packet-Outs 
 

OFPacketOut is an OFMessage that allows the controller to send a packet 

to the switch with instructions to be injected into its data plane. After the switch 

received an OFPacketOut, it should take the payload from the packet and send it 
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out through whichever port(s) the OFPacketOut specifies. This kind of packets 

should also contain some data validating the packet itself. 

 

2.10.9. Meters 
 

Meters allow to monitor the ingress rate of traffic from one flow, before 

they leave the switch. Using the instruction goto-meter, the packets are sent to a 

meter which can perform some operations based on the rate it receives packets. 

Meters can be compared to flows since they can be managed (installed, modified, 

and removed) at runtime using OpenFlow. Also, OpenFlow defines an 

abstraction called a meter table, which simply contains rows of meters. These 

meters receive packets as input and (optionally) send packets as output. 

 

2.10.10. Collect switch statistics 
 

There are several statistics messages available in OpenFlow that allow the 

controller to query the switch for information about its flow stats, meter stats, 

queue stats, aggregate stats, table stats, and port stats. It is very useful to know 

about this information, however these statistics cannot be shown in real-time 

since the query from the controller has to go to the switch and then the switch 

will answer the query. When the response arrives at the controller, the statistics 

are probably already outdated because they were verified when the stats reply 

message was being written. For many applications, this inaccuracy is tolerable 

but the use of reactive algorithms that rely on these statistics need to be careful 

with this delay. 

Statistics can also be used to compute bandwidth. To determine 

bandwidth consumption, we can use byte counters returned at two points in 

time. The difference between these two counters divided by the time elapsed 
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between the "snapshot" point of each counter value tells us the bandwidth. But 

this is not as easy as it seems because there is no timestamp of when the statistics 

were taken. To compute the time elapsed between two reads, the controller can 

only rely on when the stats message was sent or when the reply was received. 

This could lead to an inaccurate time interval because there are delays in the 

network and they can vary. There are two ways to work around this problem:  

 Issue lots of stats requests and compute the bandwidth frequently to 

attempt to keep up with almost real time bandwidth consumption. The 

problem is the delay, which can vary and alter the bandwidth values; 

 Issue less frequent stats requests and compute and update the bandwidth 

less frequently. This solution will delete the delay problem, but will not 

allow to monitor the bandwidth consumption in real-time. 

 

It is a network administrator’s decision whether to take the first or the 

second approach. 

 

 Conclusion  
 

Software-Defined Networks (SDN) constitute a new paradigm for the 

development of research computer networks.  These networks gained 

importance in recent years on the researchers’ part, including OpenFlow, which 

made a new approach possible. However, Software-Defined Networks go far 

beyond OpenFlow, opening new perspectives in terms of abstractions, control 

environments and network applications that can be developed simply and free 

of limitations of current network technologies. 
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3. Developing Applications for Software-

Defined Networks 

 

The goal of this thesis is to present a practical guide to develop an 

application capable of managing a Software-Defined Network (SDN). As said 

before, the Floodlight controller will be used, using OpenFlow to communicate 

with the switches, and Mininet to set a virtual network. 

In this Chapter we will document the steps necessary for the development 

of an application that runs in the floodlight controller which could control a 

software-defined network. The communication between the application in the 

controller and switches is performed using the Openflow API. The controller 

needs to be able to process information received from networks’ switches, and 

also need to send messages so that they can operate as the user wants. It will be 

described how to configure the controller using Floodlight’s libraries. 

To show some of the capabilities of a SDN, two examples of applications 

will be used. For each example it will be described how to develop, how to 

simulate and how the results can be verified. 

 

 

 

3 
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 Example 1 
 

The application in the first example implements the behaviour of a 

learning switch. A learning switch learns paths such that they do not flood 

(broadcast) excessively. They do this by learning the paths to the foreign MACs, 

and, upon receiving a packet destined to the foreign switch, they will only send 

out through the correct path.  

To better explain, let us use the topology presented in Figure 3.1. Before 

any connection between the hosts, the two switches do not know any paths to 

any hosts.  When Host 1 wants to send a packet to Host 4, it sends it to Switch A. 

Switch A will record which port Host 1 came in from. Since Switch A does not 

know where the MAC address for Host 4 is, it will flood and send a copy of the 

packet to both remaining ports. It will reach Host 2, but it will also reach Switch 

B. Switch B will save off how to get to Host 1 (via Switch A), and flood to hosts 3 

and 4. 

If, afterwards, Host 3 tries to send a packet to Host 1, Switch B will learn 

how to get to Host 3, will not flood and will send it directly to Switch A. Switch 

A will also learn how to get to Host 3 (via Switch B), and forward the packet 

directly to Host 3. 

 

 

Figure 3.1: Network Topology 
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We will implement the behavior of a learning switch, and we will use three 

steps to complete it. The switches in our network will have only one rule: to send 

a Packet_IN message to the controller when a packet with an unknown 

destination is received. The three steps are three possible answers that the 

controller will send to the switches through a Packet_OUT message. We will start 

with the simplest, and least efficient until the most efficient. The steps represent 

the response of the controller after the reception of the Packet_IN message. 

Step A: The controller sends a Packet_OUT message to the switch with the 

action set to flood the original packet. Upon the reception of the Packet_OUT the 

switch floods the packet through all ports except the in port of the original packet. 

No flow entries are installed in the switch in this step. This is the behavior of an 

HUB. 

Step B: First the controller will check its tables to see if it knows the 

mapping for the desired destination. If the mapping was already learned by the 

controller app, the action is a forward action with the output port where the 

switch should send the packet. If the mapping is still not known the action is to 

flood the packet, as explained in Step A. 

Step C: The controller makes the same verification as in Step B. If the 

mapping is available, the controller app sends a Flow Modification message 

instructing the switch to add a Flow Entry rule that matches incoming packets 

with the learned incoming port / source MAC pair and an action to forward them 

to the learned output port. If the path was not learned yet, the controller will 

instruct the switch to flood the packet, as in the previous examples. 

Next, the implementation details for each of the steps are described. It will 

also be explained the setup of a test simulation were the implications of each step 

in terms of controller-switch communication will be shown by measuring the 

effective transmission throughput that we can achieve in each case. 
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3.1.1. Developing the floodlight module 
 

The first step is to create a new class in floodlight.  The class should be 

created in the “src/main/java” directory and it should be on its own Java package, 

the module can implement a number of different floodlight interfaces. In this 

example the module implements the IOFMessageListener and the 

IFloodlightModule interfaces. IOFMessageListener is a message listener that gets 

notifications when the controller receives a packet. IFloodlightModule defines an 

interface for loadable floodlight modules, it is responsible to provide a template 

file when a new class is added, with the needed methods (which are empty) for 

a module to work. This interface is mandatory to develop a module for floodlight. 

After defining the implemented interfaces a new class is generated with the 

skeleton of a floodlight module. An example of the template file generated when 

a new class is created can be found in [21]. 

This automatic file generation happens if we use Eclipse, with a floodlight 

project compiled with ant. The virtual machine provided in floodlight’s site 

already has the floodlight project compiled. If the user does not want to use this 

virtual machine, the project can also be imported to Eclipse using the following 

commands on a terminal: 

 

sudo apt-get install build-essential default-jdk ant 

python-dev eclipse 

git clone git://github.com/floodlight/floodlight.git 

cd floodlight 

ant eclipse 

 

Next, the interface’s methods need to be implemented since they are 

empty. These methods will determine the behavior of the controller.  
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Finally, the module must be registered in floodlight for it to be loaded. 

This is done by adding the module name in two distinct files and it will be 

explained later. 

 

3.1.2. Emulating the network on Mininet 
 

Mininet offers the possibility to initialize the topology via a Python script 

where the network elements such as switches, controllers and hosts are created 

and links between the elements are also defined. Some commands, such as ping, 

pingAll, iperf, etc, can be launched automatically after the network starts, in the 

python script. Another option is to start Mininet in the CLI (Command-Line 

Interface) and write the commands as wanted. 

For the first example we used the topology represented in Figure 3.2. 

 

 

Figure 3.2: Topology used in Example 1 

 

The python script to create this network can be found in [20]. In the file it 

is possible to see how to initialize the topology by adding the elements and then 
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the links, how to start the network and two examples of how to run automatically 

a ping from Host 1 to Host 4 and a pingAll instruction. The command examples 

are only present to illustrate how to do it. 

 

3.1.3. Implementing the behavior step by step 
 

We will start with Step A, where the controller sends a Packet_OUT 

message to the switch with the action set to flood the original packet. Upon the 

reception of the Packet_OUT the switch floods the packet through all ports except 

the in port of the original packet. No flow entries are installed in the switch in 

this step. 

To implement the module we start with the class module skeleton code. 

The first step is to include the needed dependencies for the code to work. Next, 

the IFloodlightProvider object needs to be declared for registering with the 

Floodlight main module and a logger object is declared to output the events. This 

is achieved by adding the following lines in the module: 

protected IFloodlightProviderService floodlightProvider; 

protected static Logger log; 

 

Next we need to tell the module loading system that we depend on it, 

which is done in the getModuleDependencies method: 

 

public Collection<Class<? extends IFloodlightService>> getModuleDependencies() { 

  Collection<Class<? extends IFloodlightService>> l = 

         new ArrayList<Class<? extends IFloodlightService>>(); 

     l.add(IFloodlightProviderService.class); 

     return l; 

 }    
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The init method loads the dependencies and initialize datastructures. It is 

called early in the controller startup process and it must be modified in order to 

get the controller instance and to create the logger, adding the following lines: 

 

floodlightProvider =                 context.getServiceImpl(IFloodlightProviderService.class); 

//get controller instance 

       log = LoggerFactory.getLogger(Example1a.class); //create logger class 

 

When the controller receives a Packet-In it should be notified, therefore 

the listener must be implemented. The method startUp is where the message 

listener is registered by invoking the method addOFMessageListener and telling it 

we want to listen for events of type Packet_IN. The startUp method should be 

edited adding the following line: 

 

floodlightProvider.addOFMessageListener(OFType.PACKET_IN, this); 

 

It is also necessary to put an ID for the OFMessage listener. This is done in 

the getName call. 

public String getName() { 

  return Example1a.class.getSimpleName(); 

 } 

 

The received method is the callback method called when the OpenFlow 

messages that the module is registered to listen arrive at the controller. In that 

method we have to add code to handle the reception of the Packet_IN messages.  

In this case we create a separate method called processPacketInMessage, which will 
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get the information from the Packet_IN and sends a Packet_OUT message to the 

switch with the Actions set for flooding the packet. 

An example of the module is available at [22]. 

Finally, the module should be registered in floodlight. This is done by 

adding the following line to the file in the following subdirectory of the floodlight 

project parent directory src/main/resources/META-INF/services/ 

net.floodlightcontroller.core.module.IFloodlightModule: 

 

net.floodlightcontroller.exe1.Example1a 

 

being net.floodlightcontroller.exe1 the Java package and Example1a the module’s 

name. It is also necessary to add the referred line into the properties file which 

can be accessed in src/main/resources/floodlightdefault.properties. 

 

In Step B, the controller has a hash table where it collects the in port / 

source MAC address pair. After the reception of the Packet_IN message, the 

controller searches in the hash table for the destination MAC address. If the 

destination port for a MAC address is not in the table, it has to be stored and the 

controller sends a Packet_OUT message to the switch with the action set to flood. 

Upon the reception of the Packet_OUT the switch floods the packet through all 

ports except the in port of the original packet. In other hand, if the destination 

port for a MAC address is found, the controller sends a Packet_OUT message to 

the switch with the action set to send the packet through a specific port. No flow 

entries are installed in the switch in this step. 

 To implement this step’s behavior, we start with the class module 

skeleton code. The methods described in Step A have the same code in this step, 

but in init method it should be added an instance for the hash table. Since we are 
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working with a hash table, two methods need to be created in order to save new 

information and to search information from the table. These methods are 

addToPortMap and getFromPortMap. Comparing to step A’s code, the 

processPacketInMessage method needs to be modified. It needs to get the 

information from the Packet_IN and search the hash table for the in port and 

MAC address in order to see if it already has this information or if it needs to 

save it. Then it will build the Packet_OUT message. If the destination port for the 

MAC address asked in the Packet_IN is not in the hash table, the Actions set in 

the Packet_OUT message sent to the switch will have a flooding action. If the 

destination port is found, the Actions set will have an action with the output port 

where to send the packet. 

An example of this module can be found at [23]. 

 

The Step C is similar to Step B with the difference that a flow will be added 

in case the destination MAC is known by the controller.  

The controller has the hash table where it collects the in port / source MAC 

address pair. After the reception of the Packet_IN message, the controller 

searches in the hash table for the destination MAC address. If the destination port 

for a MAC address is not found, it has to be stored and the controller sends a 

Packet_OUT message to the switch with the action set to flood. Upon the 

reception of the Packet_OUT the switch floods the packet through all ports except 

the in port of the original packet. The difference from step B is in case the 

destination port for a MAC address is found. The Packet_OUT message will still 

have an action with the specific output port, but now it will also have a FlowMod 

message which will add a flow entry in the switch, instructing it to send every 

packet with that destination to a specific output port. To assure the switch always 

has the updated information of the network, the flow entry in the switch has an 
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idle timeout. When this timeout expires a message is sent to the controller, which 

has to analyze the outdated flow entry and send a FlowMod message instructing 

the switch to delete that flow entry. 

 

To implement this behavior, the modifications will happen in 

processPacketInMessage method which now needs to have the same functionalities 

as before, but now it also needs to write a FlowMod message. To achieve this, a 

new method must be developed, called writeFlowMod. This method will be called 

in the processPacketInMessage method. As it happens in step B if the destination 

port for the MAC address asked in the Packet_IN is not in the hash table, the 

Actions set in the Packet_OUT message sent to the switch will have a flooding 

action. If the destination port is found, the Packet_OUT message will contain a 

FlowMod adding a flow entry to that switch. When the flow entry expires the 

switch will send a message with that information, therefore in the startup method, 

we need to add a listener to this type of messages adding the following line: 

floodlightProvider.addOFMessageListener 

(OFType.FLOW_REMOVED, this) 

 

In the receive method we need to contemplate this message type and call 

the processFlowRemovedMessage method. This method will send a FlowMod 

message instructing the switch to delete the expired flow entry: 

case FLOW_REMOVED: 

return this.processFlowRemovedMessage(sw, 

(OFFlowRemoved) msg); 

 

An example of this module can be found at [24]. 
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3.1.4. Connect Mininet topology to Floodlight controller 
 

After implementing the module on floodlight and creating the python file 

containing the topology, the controller should be started. Next, opening a 

terminal and navigating to the folder containing the topology file, the network 

can be started with the command: 

sudo python *filename.py* 

And, immediately, it is possible to see in the controller’s log the switches 

being added. To try the step A, a ping from Host 1 to Host 4 is made in order to 

force the switch to ask the path to the controller. Opening the python file it is 

possible to see the following lines: 

h1= net.get('h1') 

result = h1.cmd('ping -c4 10.0.0.4') 

print result 

This will make the desired ping automatically, just by running the script 

mentioned above. If preferred, these lines can be removed and the ping can be 

done manually in the CLI. The pingAll Example next should be removed in order 

to be clearer to see what is happening. 

Opening an Xterm window for any switch (“xterm s1” on the terminal for 

Switch 1) is possible to see the flow entries in the switch. On the Xterm window 

we can write: 

sudo ovs-ofctl dump-flows s1 -O OpenFlow13 

 Resulting in the following output: 

  

Figure 3.3: Flow configuration of switch S1 

 



50 

 

It is possible to see a flow with the action: CONTROLLER. This flow will 

direct all packets with an unknown destination to the controller as a Packet_IN 

message. The controller will process the packet and send a response to the switch 

instructing it to flood the packet in order to find the correct path. 

To test the controller, four packets are sent from Host 1 to Host 4. When 

the ping is made, it is possible to see that all packets have similar times. To ping 

Host 4, Host 1 sends a packet to Switch 2 left. The problem is the switch does not 

know where to send it and sends a message to the controller, the controller 

processes this message and sends back a message ordering the switch to flood all 

ports in order to find the path for Host 4. When Switch 2 left floods the packet, it 

goes to Switch 1, and this switch will now follow the same method as Switch 2 

left regarding the controller. At some point, all switches are flooding the network 

with copies of the first packet sent. The following three packets sent will also be 

flooded by every switches. For this example, in which was used the floodlight’s 

virtual machine, the ping statistics obtained are shown in the figure below. 

 

 

Figure 3.4: Ping statistics for Step A 

 

The packets sent from Host 1 to Host 4 had an average time of 13.888ms. 

In a trip containing only three switches (S2left-S1-S2right) this solution is not 

ideal in terms of speed. It is easy to imagine a trip with many hops to be very 

slow. 
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Using iperf, it runs an iperf TCP server on one virtual host, then runs an 

iperf client on a second virtual host. Then they connect to each via a TCP tunnel. 

Once connected, it is possible to see the speed of the TCP connection between 

two hosts, in this case Host 1 and Host 4. 

 

Figure 3.5: Bandwidth between Host 1 and Host 4 

 

These results show that a data transfer between Host 1 and Host 4 would 

be made at a rate in an interval between 779 Kbits per second and 1.16 Mbits per 

second. This rate will be our reference to compare with the following steps. 

 

Next will be tested the Step B code. Again, first we start the controller and 

then the topology. Issuing the ping between Host 1 and Host 4 we have the 

following results. 

 

 

Figure 3.6: Ping statistics for Step B 

Here it is possible to see that the first packet is the slowest. This happens 

because the controller does not know the network until it receives the first packet. 

Upon the reception of this first Packet_IN message, asking where to send a packet 

with an unknown destination, the controller has to learn the network and then 
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can send to the switch the out port where to send the packet. After the first packet, 

the controller responds quicker so the packets arrive faster. 

Issuing the iperf, it is possible to show a big improvement in terms of 

bandwidth. 

 

Figure 3.7: Bandwidth between Host 1 and Host 4 

 

Finally, it is Step C. Having its code running, we can see the flows inserted 

in the switch in the Xterm window of s2left: 

sudo ovs-ofctl dump-flows s2left -O OpenFlow13 

 

 

Figure 3.8: Flows in switch s2left 

 

And we can see the flows showing that any packet with an unknown 

destination will be sent to the controller. When we try to ping Host 4 from Host 

1, the first packet takes 131 ms to arrive. As explained in Step B this is the time 

the controller takes to learn the network. When the controller learns the paths 

across the network, it sends two FlowAdd messages to all the switches in order 

to insert the flows containing the destinations ports to be used when sending 

packets from Host 1 to Host 4 and from Host 4 to Host 1. These messages can be 

seen in the controller’s log with several lines (for several switches) like this: 

OFSwitchBase DPID[00:00:00:00:00:00:00:22] adding flow mod OFFlowAddVer13 

After the flow entry is added, the packets are forwarded by the switches 

very quickly without any communication with the controller since the switch 
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now has a flow entry which matches the packets therefore it knows which port 

to forward the packets.  

 

 

Figure 3.9: Ping statistics for Step C 

 

The ping statistics confirm what was said above. The first packet takes 

longer because it is the time needed by the controller to learn the paths, and then 

the packets go from Host 1 to Host 4 with great speed, since the switches already 

know where to send them. If we immediately issue another ping, since the flow 

is already installed in the switches, we have the results shown in Figure 3.10 

confirming that the delivery of the four packets was much faster. 

 

 

Figure 3.10: Ping statistics for Step C with flows instaled 

 

Running the Iperf command, it is clear that the bandwidth is higher than 

step B, which was proved by the times spent by the packets to reach their 
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destinations. The differences are not too accentuated since the path has only 3 

hops. 

 

 

Figure 3.11: Iperf results for Step C 

 

Issuing the dump-flows command again on switch s2left, it is now 

possible to see the two flows added, one used when sending packets to Host 1 

and another to send packets to Host 4.  

 

 

Figure 3.12: Flows in switch s2left 

 

 Example 2 
 

With this example it is intended to show the capabilities of group tables to 

overcome sudden port failures in the network. These groups allow link failure 

detection and recovery to be done entirely in the data plane, without consulting 

the controller. This illustration will be made with an application that uses group 

tables with a Fast-Failover (FF) group to define alternative ports in case of failure. 

This port definition occurs at a data plane level, without the need to communicate 
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with the controller, meaning it will be faster than having to wait for the 

controller’s answer. 

As mentioned before FF groups are designed to detect and overcome port 

failure. It has a list of buckets like the other group types but in each bucket it also 

has another parameter: a watch port or watch group. This parameter defines the 

port or group that is monitored and analyses the status of the port used by the 

bucket. Only one bucket can be used at a time and will be used for every packet, 

unless the liveness status of the port or group transitions from up to down. If this 

event occurs that bucket will not be used anymore and the FF group will quickly 

select the next bucket in the bucket list with a watch port/group that is up. 

Although the search for the next bucket with a live watch port / group 

could take some time, it is almost guaranteed it will be faster than the alternative 

of sending a message for the controller and wait for the reply with a new 

forwarding rule. 

Figure 3.13 shows the topology used in this example. There are four 

OpenFlow switches between two hosts. Within these four switches is possible to 

outline two possible paths connecting the two hosts: A and B. The FF groups will 

be used on Switch 1 and Switch 3. The Switch 1 and Switch 3’s FF groups will 

have two buckets. The first bucket will have a watch port, evaluating the liveness 

of the port connected to Switch 2a and the second bucket will have a watch port 

evaluating the liveness of the port connected to Switch 2b. Depending on the link 

status of the links connecting Switch 2a and Switch 2b to Switch 1 and Switch 3, 

one path should choose between the Host 1 and Host 2. 
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Figure 3.13: Topology used in Example 1 

 

The python script to create this network can be found in [25]. 

In order to test this example, we will execute the application on the 

network shown in Figure 3.13 and set a link liveness to down, forcing Switch 1 

and Switch 3 to choose another path. The recovering time and efficiency will be 

studied by measuring the effective transmission throughput and the number of 

packet loss. 

 

3.2.1. Application Development 
 

In this step we will use Fast Failover groups in Switch 1 and Switch 3. The 

application is responsible to send the flows and group modification to the 

switches in our topology. 

It will be used a REST API to emulate port up/down events to cause the 

installed groups to change to path A or path B. Therefore, a handler for the REST 

API is included to listen for commands. 
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We will develop an interface which exposes our module as a service to 

other Floodlight modules. When a REST command is received, our module’s 

handler can be invoked as a service by the REST API module. The code for this 

interface is very simple, it simply calls the methods implemented in our 

application. The first method is handleToggleRequest, which will change the path 

used by setting ports along path A up and path B down or the opposite, 

depending which path is being used. The second method is handleResetRequest 

that will set all ports up. 

    For this example groups will be installed on Switch 1 and Switch 3. 

These groups will contain two buckets, representing the two possible paths. The 

bucket for path A has the switch port number that reaches Switch 2a as its output 

and will check the liveness of this port. The bucket for path B has the switch port 

number that reaches Switch 2b and will check the liveness of this port.  

When a switch establishes a connection to a controller, the controller sends 

a feature request message to the switch and waits for a reply. When the reply 

arrives, the controller gets informed about the features provided by the switch, 

for instance, the datapath ID (i.e., DPID), list of ports, etc. After the connection is 

made, the controller periodically sends a Packet_OUT to the switches to flood 

LLDP packets to its neighbors. When these packets are received, every switch 

sends a Packet_IN message to the controller with the LLDP Ethernet frame 

structure received. If two switches send the same packet, it means they have a 

link between them and the controller learns that link. Having the source switch, 

source port, destination switch and destination port, a Link object is created.  The 

Link class can provide us the port numbers to use in group’s buckets as watch 

ports. These ports can be extracted from the Link variables link_dpid1_to_dpid2a 

and link_dpid1_to_dpid2b using the methods exposed by Link class: 
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OFPort theSrcPort = someLink.getSrcPort(); // get source port of link 

       OFPort theDstPort = someLink.getDstPort(); // get destination port of link 

 

We can use the object link_dpid1_to_dpid2a to obtain the port on Switch 1, 

by asking for the source port, and the in port on Switch 2a, by asking for the 

destination port. The two switches ports leaving Switch 1 to Switch 2a and Switch 

2b will be the output action of the two buckets defined in our group and, because 

its liveness will determine the path chosen, the watch ports’ parameter. 

Next, we will compose the required buckets for our group used in Switch 

1. 

ArrayList<OFBucket> 

buckets= new ArrayList<OFBucket>(2); 

buckets.add(sw1.getOFFactory().buildBucket() 

    .setWatchPort(link_dpid1_to_dpid2a.getSrcPort()) 

    .setWatchGroup(OFGroup.ZERO) 

    .setActions(Collections.singletonList((OFAction) 

sw1.getOFFactory().actions().buildOutput() 

        .setMaxLen(0xffFFffFF) 

        .setPort(link_dpid1_to_dpid2a.getSrcPort()) 

        .build())) 

    .build()); 

buckets.add(sw1.getOFFactory().buildBucket() 

    .setWatchPort(link_dpid1_to_dpid2b.getSrcPort()) 

    .setWatchGroup(OFGroup.ZERO) 

    .setActions(Collections.singletonList((OFAction) 

sw1.getOFFactory().actions().buildOutput() 

        .setMaxLen(0xffFFffFF) 

        .setPort(link_dpid1_to_dpid2b.getSrcPort()) 

        .build())) 

    .build()); 
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This bucket’s array is used when we create the group and send it to Switch 

1. 

OFGroupAdd groupAdd = sw1.getOFFactory().buildGroupAdd() 

   .setGroup(OFGroup.of(1)) 

   .setGroupType(OFGroupType.FF) 

   .setBuckets(buckets) 

   .build();  

 sw1.write(groupAdd); 

 

The final step is to compose the FlowMod messages that will instruct the 

switch to send the packets coming from Host 1 to our group. In order to permit 

ARP and IPv4 packets, we need to add two new flows to Switch 1 and Switch 3, 

one for each packet type. These two switches have two ports, one leading to 

Switch 2a and to Switch 2b and another leading to the hosts.  The Match needed 

in the OFFlowAdd needs to contemplate the packets which the incoming port is 

the one connected to the hosts, and we can determine that port using the 

getHostPort function, that takes an OFSwitch as an argument and returns an 

OFPort leading to a host. The flow for ARP packets is shown below: 

OFFlowAdd flowAdd = sw1.getOFFactory().buildFlowAdd() 

   .setCookie(cookie) 

   .setHardTimeout(0) 

   .setIdleTimeout(0) 

   .setPriority(FlowModUtils.PRIORITY_MAX) 

   .setMatch(sw1.getOFFactory().buildMatch() 

   .setExact(MatchField.ETH_TYPE, EthType.ARP) 

   .setExact(MatchField.IN_PORT, getHostPort(sw1)) 

   .build()) 
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   .setActions(Collections.singletonList((OFAction) 

sw1.getOFFactory().actions().buildGroup() 

   .setGroup(OFGroup.of(1)) 

   .build())) 

   .build(); 

sw1.write(flowAdd); 

 

The flow for IPv4 packets is similar because only the Eth Type changes, 

therefore the ARP OFFlowAdd flowAdd code can be reused as follows: 

flowAdd = flowAdd.createBuilder() 

   .setMatch(sw1.getOFFactory().buildMatch() 

       .setExact(MatchField.ETH_TYPE, EthType.IPv4) 

       .setExact(MatchField.IN_PORT, getHostPort(sw1)) 

       .build()) 

   .build(); 

sw1.write(flowAdd); 

 

3.2.2. Connect Mininet topology to Floodlight controller 
 

With the controller started we can start the topology for example 2. Since 

the learning switch is disabled in the controller, the switches in the network do 

not have flows saved and the paths are not known yet, making it impossible to 

ping from one host to another. We need to trigger our module to create and insert 

the desired flows and groups, so we have to use the REST API mentioned in 3.2.1 

to invoke the method handleToggleRequest, issuing the following command in our 

controller: 

curl http://localhost:8080/wm/fast-failover-demo/toggle-path -X POST -d '' | python -

m json.tool 
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Now is possible to check the switch's configuration to see if the 

configurations are correct. Opening an Xterm for Switch 1 or Switch 3 (“xterm 

s1” on the terminal) it is possible to see the flows and groups inserted in the 

switch by our controller. On the Xterm window we can write:  

 

sudo ovs-ofctl dump-flows s1 -O OpenFlow13 

 

And we see the two flows inserted which direct all IPv4 and ARP packets 

to group 1: 

 

 

Figure 3.14: Flows in Switch S1 

 

This group 1 can be examined issuing the following command: 

sudo ovs-ofctl dump-groups s1 -O OpenFlow13 

 

Figure 3.15: Groups in Switch S1 

 

And it is clear that it is an FF group, that have two buckets whose actions 

are output to port 1 or output via port 2 (links for switch 2a and switch 2b). The 

decision concerning where to send the packets depends on the watch ports 

values. 
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This is the setup of both Switch 1 and Switch 3 and only one port will be 

active at a time. To watch the FF group in action, a link failure must be simulated. 

To do it, the REST API should be called, the link between Switch 1 and Switch 2a 

is set to down and the path between Host 1 and Host 2 is damaged, so another 

path must be found. After sending some ARP packets finding the new path, 

Switch 2b tells Switch 1 that there is a path through it to Host 2 and the packets 

start being sent through Switch 2b. The reaction time can be seen in the image 

below, where it is possible to see two packets that took longer to arrive at their 

destination. 

 

 

Figure 3.16: Demonstration of a link failure reaction 

 

This example shows how fast a network can react to a link failure just by 

using groups, without having to communicate with the switch, making it a good 

solution in preventing this events. 
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4. Conclusion 

 Conclusions 
 

This thesis has demonstrated how to use SDN, when using the floodlight 

controller and Mininet. Other softwares can provide the same result however 

require more complex setups. With Mininet, the programmer can easily 

implement a virtual network with a custom topology. The floodlight’s modules 

developed in this thesis were used as southbound APIs to guarantee the 

communication between the controller and the switches. This enables the 

possibility of having dynamic behaviors on the same network. A module in 

floodlight determines the behavior of the controller by having a packet 

processing method in a familiar, general-purpose programming language. This 

packet processing method will be called when a switch sends a Packet_IN 

message to the controller, after the switch itself receives a packet with an 

unknown destination. This method is conceptually applied to every packet with 

an unknown destination entering a switch. The ability to add more modules 

opens the door to a number of extensions and refinements. However, the 

development of these modules is not an easy task since it is a complex and 

extensive code and requires the developer to understand how a switch works at 

a low level because the instructions to the switch contemplate, for example, the 

switch ports. Even for simple modules, several methods need to be developed 

4 
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for the module to work, making this approach time-saving for big networks, but 

complicated to simple exercises. 

The cost of the communication between the switches and the controller 

was evaluated with three different steps. The premise of the test was a switch 

receiving a packet whose destination was unknown to the switch, and it would 

send a message to the controller asking for what to do. The three options were 

telling the switch to flood the packet in order to find the path, telling the switch 

which out port to send the packet and telling the switch to send every packet 

with that destination to a specific out port. The last option was proven the fastest 

because the communication between the switch and the controller happens only 

once. 

The second example showed how to use groups to enhance link failure 

recovery. With groups, no communication between switch and controller is 

needed, making it the fastest option. 

 

 

 Future work 
 

Several aspects were not mentioned or detailed in this thesis and would 

be interesting to develop in future work. 

 Pipeline processing 

With OpenFlow 1.1 came the possibility for a switch to have several 

flow tables. Pipeline processing always starts at the first flow table 

and the packet is first matched against its flow entries. Other flow 

tables may be used depending on the outcome of the match in the 

first table. If a flow entry is found, the instruction set included in 

that flow entry is executed, those instructions may explicitly direct 

the packet to another flow table (using the Goto 
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Instruction), where the same process is repeated again. 

 Queues 

Queues are designed to provide a guarantee on the rate of flow of 

packets placed in the queue. As such, different queues at different 

rates can be used to prioritize "special" traffic over "ordinary" 

traffic. 

 Flow Meters 

With Flow Meters we can monitor the ingress rate of traffic as 

defined by a flow. Flows can direct packets to a meter using the 

goto-meter OpenFlow instruction, where the meter can then 

perform some operation based on the rate it receives packets. Each 

meter may have one or more meter bands. Each band specifies the 

rate at which the band applies and the way packets should be 

processed. Packets are processed by a single meter band based on 

the current measured meter rate, the meter applies the meter band 

with the highest configured rate that is lower than the current 

measured rate. If the current rate is lower than any specified meter 

band rate, no meter band is applied. 

 Collect Switch Statistics 

OpenFlow has many statistics messages to allow the controller to 

query the switch for information about its running state. Examples 

include flow stats, meter stats, queue stats, aggregate stats, table 

stats, and port stats. 
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