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Abstract

The overuse of synthetic non-biodegradable plastic packaging in the last decades turned

into a serious global environmental problem, once recycling and energy recovery are

not perfect solutions. To overcome this problem, efforts have been done by researchers

around the world to use biodegradable biopolymers from renewable resources as food

packaging materials.

In this thesis, FucoPol, a microbial exopolysaccharide has been studied as a sustain-

able alternative and the following questions were raised:

• Is it possible to produce films of FucoPol and which properties should be improved?

• Which strategies may be applied to improve their behaviour, specially their barrier

properties to gases and water vapour?

• Is it possible to use FucoPol films as an alternative to synthetic plastics aiming their

use as packaging material?

This study shows that, FucoPol films offer good barrier properties to gases and bio-

degradability. Their weaker properties, low barrier properties to water, have been im-

proved along the work, using two distinct strategies: formulation of bilayer films of

FucoPol and chitosan and use of different coatings techniques in FucoPol films.

The results have shown that, it is possible to improve FucoPol films properties, namely

the barrier properties to gases and water vapour, and resistance to liquid water.

FucoPol combined with chitosan as a bilayer film was used for walnuts packaging and

it was possible to verify that it can protect food susceptible to lipid oxidation as effectively

as synthetic materials.

Keywords: FucoPol, Exopolysaccharide, Biodegradable films, Films characterization,

Barrier Properties, Food packaging.
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Resumo

O uso excessivo de embalagens de plástico sintéticas e não biodegradáveis nas últimas

décadas tornou-se um sério problema ambiental a nível global, uma vez que as soluções

como reciclagem ou incineração para recuperação de energia não são soluções perfeitas.

Para ultrapassar este problema, esforços têm sido feitos por investigadores de todo o

mundo para usar biopolímeros biodegradáveis de fontes renováveis para produção de

materiais para embalagens alimentares.

Nesta tese, FucoPol, um exopolisacárido microbiano foi estudado como uma alterna-

tiva sustentável e as seguintes questões foram levantadas:

• É possível produzir filmes de FucoPol e que propriedades podem ser melhoradas?

• Que estratégias podem ser aplicadas para melhorar o seu desempenho, especial-

mente as suas propriedades barreira a gases e vapor de água?

• É possível usar filmes de FucoPol como alternativa a plásticos sintéticos visando a

sua utilização como material para embalagem?

Este estudo demonstra que os filmes de FucoPol têm boas propriedades barreira a

gases e são biodegradáveis. A sua propriedade mais fraca é a deficiente barreira à água

que foi melhorada ao longo do trabalho, utilizando duas estragégias distintas: formulação

de filmes bi-camada de FucoPol e quitosano e uso de diferentes técnicas de revestimento

em filmes de FucoPol.

Os resultados mostraram que é possível melhorar as propriedades dos filmes de Fuco-

Pol, nomeadamente as propriedades barreira aos gases e vapor de água, e a resistência à

agua.

FucoPol combinado com quitosano em forma de filme bi-camada foi utilizado para

embalar nozes e foi possível verificar que pode proteger os alimentos susceptíveis de

oxidação lipídica tão eficazmente como materiais sintéticos.

Palavras-chave: FucoPol, Exopolissacárido, Filmes biodegradáveis, Caracterização de

filmes, Propriedades barreira, Embalagem alimentar.
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1
Motivation

Plastic packaging is essential nowadays. However, the huge environmental problem

caused by landfill disposal of non-biodegradable polymers in the end of life has to be

minimized and preferentially eliminated. The solution may rely on the use of biopoly-

mers, in particular polysaccharides. These macromolecules possess film-forming prop-

erties and are able to produce attracting biodegradable materials possible to apply in

food packaging. Despite all advantages of using polysaccharides obtained from different

sources, some drawbacks, mostly related to their low resistance to water, mechanical per-

formance and price, have hindered their wider use and commercialization. Nevertheless,

with increasing attention and research on this field, it has been possible to trace some

strategies to overcome the problems and recognize solutions.

1.1 State of the art

Currently food packaging is essential for preservation, protection, storage, among others.

Non-biodegradable synthetic plastic packaging has been widely used since they are flex-

ible, light, stable and have low cost. Their extended use and implemented methods to

mold and extrude are so established in industry that makes difficult their substitution by

another environmentally friendly solution. However, the growth of synthetic plastics use

caused by growing of human population has caused a serious environmental problem,

the post-consumer plastic waste.

One of the current trends in food industry consists on the substitution of synthetic

plastics and non-biodegradable materials by natural compounds, in particular, by bio-

polymers. Biopolymers obtained from renewble resources are biodegradable and com-

postable, which makes them suitable to close carbon cycle.
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The interest in a particular type of biopolymers - polysaccharides - has been increas-

ing, once they are the most abundant macromolecules in the biosphere. Polysaccharides

are high molecular weight carbohydrates, non-toxic, which can be obtained from different

sources, such as plants, algae, animals or microorganisms. A high diversity of polysaccha-

rides (chitosan, starch, carrageenan, pullulan, among others) have been used to produce

biodegradable films used in packaging and edible coatings in food industry. A detailed

description of different polysaccharides and their use in food packaging is presented in

Chapter 2.

Polysaccharides obtained by microorganisms (yeast, fungus or bacteria) represent a

good alternative to others recovered from different sources, once their production is non

dependent on climatic or seasonal effects. Actually, several microbial polysaccharides

(xanthan, pullulan, gellan gum, among others) have been used to produce films for food

packaging applications.

Polysaccharide films present good barrier properties to gases (in particular oxygen

and carbon dioxide) at low and moderate relative humidity. Nevertheless, their main

drawback is related with poor barrier to water vapour and their sensitivity to liquid

water, which results from their hydrophilic nature.

In this thesis, FucoPol, a fucose-rich exopolysaccharide is used for designing films

with potential use in food packaging. FucoPol is a high molecular weight heteropolysac-

charide produced by bacterium Enterobacter A47 using glycerol by-product from biodiesel

industry as carbon source. It is composed by neutral sugars (fucose, galactose and glu-

cose), an acidic sugar (glucuronic acid) and acyl groups (acetate, succinate and pyruvate).

Its anionic character, imposed by glucuronic acid, succinate and pyruvate, provide inter-

esting properties such as emulsion and film-forming capacity.

1.2 Questions and goals

Concerning the state-of-the-art and the problems previously raised, the following ques-

tions become of significant scientific relevance:

• Is it possible to produce films of FucoPol and which properties should be improved?

• Which strategies may be applied to improve their behaviour, specially their barrier

properties to gases and water vapour?

• Is it possible to use FucoPol films as an alternative to synthetic plastics aiming their

use as packaging material?

To address these questions, the following research strategy was applied:

1. Development of effective formulations for obtaining films, transparent and mal-

leable enough to manipulate and characterize.
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2. Development of systems with two biopolymers (FucoPol and chitosan) to improve

FucoPol stand-alone films properties.

3. Coating of FucoPol films with different metal oxide thin layers, to enhance or even

introduce new properties.

4. Performance evaluation of the formulated films with food susceptible to lipid oxi-

dation, as case study.

By fulfilling this strategy and consequent goals, it is envisaged a valuable contribution

of this thesis for polysaccharide films research, showing different approaches for improv-

ing films properties and contributing with relevant discussion in the food packaging

field.

1.3 Thesis outline

This thesis presents the work developed during the PhD period and it is organized in

seven chapters and one appendix.

Overall, the work described in this thesis encompasses development and character-

ization of different FucoPol biodegradable films, with potential use in packaging, as

alternative to synthetic and non-biodegradable polymers obtained from non-renewable

sources.

Once FucoPol is a bacterial exopolysaccharide (EPS), each chapter was developed with

polymer obtained from a different batch production. The exceptions were Chapters 4 and

6, where bilayer films were developed with biopolymer from the same batch production.

Each chapter includes a short review of the state of the art, describes the materials and

methods used and discusses the results and main conclusions obtained. The methodology

used in each individual chapter is detailed in the context of the respective subject.

The work performed during this PhD resulted in three scientific papers, which have

been published in international scientific journals, referred in the ISI Web of Science. Fur-

thermore, two more manuscripts, were already prepared to be submitted to international

scientific journals, also referred in the ISI Web of Science (Appendix A).

A brief description of the contents of each chapter is described below and Figure 1.1

schematizes its organization.

Chapter 1 - Introduction - This chapter introduces the main subject of this thesis,

providing some insight on the motivation and outlining the main goals of this work. This

chapter also describes the thesis structure.

Chapter 2 - Background - Introduces an overview and state of the art of food packag-

ing, focused on polysaccharides. This chapter presents an introduction to food packaging,

plastics end of life, alternatives to synthetic polymers, biodegradable polymers and fi-

nally polysaccharides. Several polysaccharides are categorized by source and described

in detail.
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Figure 1.1: Thesis structure

Chapter 3 - Biodegradable films produced from the bacterial polysaccharide Fu-

coPol - Focuses on design and characterization of FucoPol films, prepared with citric

acid which has plasticizing effect in the polymeric matrix. Characterization in terms of

optical, hygroscopic, mechanical and barrier properties was fulfilled to evaluate their

performance and possible application as food packaging material.

Chapter 4 - Development and characterization of bilayer films of FucoPol and chi-

tosan - Is dedicated to produce bilayer films composed by FucoPol and chitosan, polymers

with opposite charges. Characterization of bilayer and stand alone films of FucoPol and

chitosan, respectively, was fulfilled in terms of optical, morphologic, hygroscopic, me-

chanical and barrier properties. From this interaction, bilayer films presented improved

properties when compared with stand-alone films. Those referred properties give us a

material more suitable to use in food packaging applications, namely in packages for
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dehydrated food products with high oil content.

Chapter 5 - Comparison of different coating techniques on the properties of Fu-

coPol films - This chapter is focused on development of different coatings in FucoPol

films surface, performed with different techniques, such as, low-pressure plasma deposi-

tion, liquid flame spraying and atomic layer deposition. The characterization of coated

films in terms of surface and barrier properties was performed aiming the use of films

for food packaging applications.

Chapter 6 - Evaluation of FucoPol and Chitosan bilayer films performance for pack-

aging of walnuts (Juglans regia L.) - In this chapter, the bilayer films were applied

in walnuts packages. Their performance was compared to that of a commercial non-

biodegradable polymer, by evaluating the walnuts oil oxidation over time.

Chapter 7 - Conclusions and future work - Presents an overview of the overall con-

clusions of this work and describes suggestions of possible future work aiming the use of

FucoPol exopolisaccharide as material to use in food packaging application.

Appendix A - It provides a list of the author’s publications, papers in journals ac-

cepted and under review and oral and poster communications.
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2
Background

Food packaging is essential for products containment, protection, preservation, conve-

nience, to provide information about the product, brand communication, among others.

This work is focused on primary packaging that is in direct contact with food, such as

bottles, trays or bags [33]. This type of packaging is the most familiar to consumers and

is defined as “a sales unit to the final user or consumer at the point of purchase” [145].

It should prevent or reduce products damage and food spoilage, reduce or eliminate

the risk of adulteration and present food in a hygienic and aesthetically attractive way.

Essentially, packaging strategies result from the combination of food science, processing

and preservation, once they must extend the shelf life of food products reducing the

wastage [33, 202].

Plastic packaging represents almost 40% of the European plastics market and is es-

sential for processing, storing, transporting, protecting and preserving food [156, 158].

In fact, over 50% of all European goods are packaged in plastics, and this commercial

success is due to a combination of properties such as flexibility, strength, lightness, sta-

bility, impermeability and ease of sterilization. These characteristics make them ideal

materials for almost every commercial and industrial consumers [157]. According to the

last report of PlasticsEurope - Association of plastics manufacturers (2015), the plastics

production has grown globally and is stable in Europe (57 Mtonne per year). This success

of plastics comes from the fact that many of them can be molded, extruded, cast and

blown in different shapes, films or foams [155, 158].

Polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) are the

most used in the packaging sector [10], but polyvinyl chloride (PVC) and polystyrene (PS)

are also easily found in food packaging due to their biological resistance and excellent

water barrier properties [153].

The real success of plastics in food packaging industry is achieved with combination
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of all referred characteristics (in particular lightness) and their use to help keeping food

fresh and free of contamination [10]. The extended shelf life of food products has been

reported for different foods with simple packaging, for example, unwrapped cucumber

loses moisture and becomes dull and unsaleable within 3 days, but 1.5 g of plastic wrap-

ping can keep a cucumber fresh for 14 days. Some more complex plastic packaging can

extend (three times) the shelf-life of specific products, due to unique properties such as:

resealable portioned packs, anti-microbial agents, humidity control systems and mod-

ified atmosphere packaging solutions. Furthermore, it is expected that in near future

more innovations will be available in large scale and at low price, such as absorbers and

emitters of natural occurring gaseous substances to prolong products shelf life, biosen-

sors that detect bacteria or printable radio-frequency identification (RFID) tags to inform

about integrity of the products [58, 156].

Plastic films are usually produced by extrusion, co-extrusion, casting, extrusion coat-

ing, extrusion lamination and metallization. These processes have advantages and disad-

vantages depending on the polymer used and the thickness required, usually less than

250 µm [153].

However, the crucial problem of using plastics for packaging is the post-consumer

waste, once packaging is by far the largest contributor (63%) of plastic waste [78]. In

addition, some materials are difficult to reuse and it is estimated that less than 14% of

plastic packaging materials are recyclable [204]. According to the report Plastics – The

facts 2014/2015 [158], despite recycling and energy recovery solutions have increased

since 2006, the landfill disposal remains the largest solution for plastic in the end-of-

life, making 9.5 Mtonne (38% of total plastic waste) in 2012, for EU27+Switzerland and

Norway. Because most materials used are non-biodegradable, which remain in environ-

ment for long periods of time, they consist on threats to human health as well as to the

environment [158].

The other used solution, incineration for energy recovery, has a severe environmental

impact (as for most solid wastes or fuels) which can include some airborne particulates

and greenhouse gas emissions [78].

According to these facts and knowing that, in the last decades a quick growth in

synthetic polymers use has been observed, and it is predicted that value could multiply

by four by the year of 2100 as result of growing human population and prosperity, it

will be necessary the use of 25% of the world’s current oil production just to plastics

manufacture [153]. Taking in account this scenario, one valid option to overcome this

environmental problem is the use of bio-based polymers from renewable resources.

This chapter provides an overview of the application of biodegradable polymers from

renewable resources in packaging materials. A wide range of different polysaccharides,

their properties, and their state of the art in research and commercial fields are described

and discussed.
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2.1 Biodegradable Polymers

For the polymer industry and consumers it is important to distinguish between biopoly-

mers and biodegradable materials. According to American Society for Testing and Materi-

als (ASTM Standard D-5488-84d), a biodegradable material is defined as “material capable
of undergoing decomposition into carbon dioxide, methane, water, inorganic compounds, or
biomass in which the predominant mechanism is the enzymatic action of microorganisms, that
can be measured by standardized tests, in a specified period of time, reflecting available disposal
condition”. On the other hand, biopolymers are polymeric materials derived totally from

renewable resources. While biopolymers are biodegradable, not all biodegradable mate-

rials are considered biopolymers. As examples, polycaprolactone (PCL), polyglycolide

(PGA) and polybutylene succinate adipate (PBSA) which are biodegradable materials, but

not classified has biopolymers because they are produced from non-renewable resources

(fossil-sourced chemicals) (Figure 2.1) [153].

Biopolymers are generally classified according to their source:

i Polymers directly extracted or removed from biomass such as polysaccharides (e.g.

starch, galactomannans, starch, cellulose) and proteins (e.g. casein, gluten).

ii Polymers produced by chemical synthesis from renewable bio-derived monomers,

as polylactic acid (PLA), a thermoplastic aliphatic polyester derived from lactic

acid monomers. The monomer itself is produced via fermentation of carbohydrate

feedstocks.

iii Polymers produced by microorganisms, like some polysaccharides (e.g. gellan gum,

pullulan) and polyhydroxyalkanoates (PHA) [70, 122].

According to the European Bioplastics organization, biopolymers from renewable re-

sources have to be biodegradable and especially compostable, which allows disposal of

the package in the soil, being more energy efficient than recycling, so they can act as

fertilizers and soil conditioners [70, 185].

Sustainability requires a fine balance between environmental, economic and social

concerns. Biopolymers can be considered sustainable in terms of material supply, water

and energy use and waste product generation. Moreover, the product viability, human

resources and technology development also should be pondered from a point of view of

sustainability.

Biodegradable products are usually more expensive than polymers manufactured

from petrochemicals, but this circumstance is changing gradually, either by material col-

lection, processing and conversion technologies, as well as economies of scale. With the

increasing demands for plastic in the world, the consumer concern about the environ-

ment and the use of environmentally friendly products has grown. In addition to that,

new regulations have been implemented, namely in EU countries, restricting the use
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of traditional materials, which led to a great development in biodegradable packaging

materials [42].

Figure 2.1: Biodegradable Polymers (Adapted from Encyclopedia of Membranes [32])

The idea of using biopolymers (from renewable resources and biodegradable) in pack-

aging, to contribute for a sustainable development is recognized, since it is possible to

dispose the plastic waste to be degraded in nature. This solution is particularly inter-

esting for food packaging since this kind of materials are usually contaminated by food

residues that constitute a health hazard in sorting and mechanical recycling [42].

2.2 Polysaccharides in food packaging

Polysaccharides are the most abundant macromolecules in the biosphere. These complex

carbohydrates constituted by glycosidic bonds are often one of the main structural ele-

ments of plants (e.g. cellulose) and animal exoskeletons (e.g. chitin), or have an important

role in the plant energy storage (e.g. starch) [195].

A high variety of polysaccharides and their derivatives have been used to produce

biodegradable films and thin membranes, and used in several industries, such as food,

medical, pharmaceutical and specific industrial processes (e.g. pervaporation) [69]. Poly-

saccharides have been widely used in food industry, as additives or in packaging films and

edible coatings. Polysaccharide films are generally attractive due to their good barrier

against oxygen and carbon dioxide (at low or moderate relative humidity) and good
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mechanical properties. However, their major drawback is related to their low barrier

against water vapour due to their hydrophilic nature [70, 169]. The improvement of

polysaccharide films have been studied in order to reach satisfactory biopolymer based

packaging behaviour, possible to use in industrial applications [169]. In the following

sections (2.2.1 - 2.2.4), the attention will be driven to polysaccharides application in food

packaging.

2.2.1 Polysaccharides obtained from animals

Chitin and chitosan

Chitin is the second most abundant agro-polymer produced in nature. It appears nat-

urally in the exoskeleton of arthropods and in the cell walls of fungi and yeasts. It is

an acetylated polysaccharide composed of N-acetyl-D-glucosamine and is produced com-

mercially by chemical extraction processes from prawns and crabs wastes. Chitin can also

be produced by using enzyme hydrolysis or fermentation process, but these processes are

not economically feasible yet on industrial scale [13, 195].

Chitosan is obtained from deacetylation of chitin, and different factors (e.g. alkali

concentration, incubation time, ratio chitin to alkali, temperature and chitin source) can

affected its properties. Chitosan is usually insoluble in water, but may be easily dis-

solved in acidic solutions. Its distinct characteristics from other polysaccharides rely on

its cationic groups along the backbone and its antimicrobial properties against bacteria,

yeasts and fungi [13, 19, 170, 195]. The good film-forming properties allow the pro-

duction of films (thickness >30 µm) and coatings (<30 µm) to act as food preservative.

Chitosan films are biodegradable, biocompatible, non-toxic, renewable and commercially

available. Furthermore, chitosan films are reported as being semipermeable to gases

presenting low oxygen permeability, essential for some food products preservation, and

moderate water vapour barrier [19, 52, 57, 151].

Despite those unique properties of chitosan films, many research has been done fo-

cused on their improvement. Adding glycerol to chitosan films, and applying thermo-

mechanical treatment (mechanical kneading), it is possible to obtain a kind of thermo-

plastic material which grants good mechanical properties [53, 195].

The functional properties of chitosan-based films may also be improved by combi-

nation with other hydrocolloids. Blends of chitosan and anionic polymers have been

reported to have improved mechanical and barrier properties when comparing with stand-

alone films. This fact is attributed to the formation of polyelectrolyte complexes through

electrostatic interactions between the protonated amino groups of chitosan and the nega-

tively charged side-chain groups in the other biopolymer at the operating pH [52, 114].

Improvements in mechanical properties, better performance in terms of water vapour

permeability and lower water solubility have been reported for combinations of chitosan

with other polysaccharides, such as, starch, pectin or alginate [96, 114, 215] and proteins,

like, gelatin [171] and whey proteins [108], comparing to chitosan stand-alone films.
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Lipids are usually added to films to impart hydrophobicity and thereby reduce mois-

ture transfer. A wide range of lipid components is available, such as natural waxes, resins,

fatty acids and vegetables oils [71]. A decrease in water susceptibility has been reported

for chitosan films with beeswax [89], and decrease in water vapour permeability was

described for films with oleic acid [207], neem-oil [177], cinnamon essential oil [139],

among others.

The manufacturers and suppliers of chitosan and chitin products are present world-

wide. Primex (Iceland) commercializes ChitoClear®, chitosan products that pretend to be

based on the purest chitosan possible with potential application in food packaging [165].

Norwegian Chitosan (Norway) trades chitin and chitosan under brand names NorLife

and Kitoflok™ respectively, for several applications, including food and beverages [136].

G.T.C. Bio Corporation (China) which is a chitin and chitosan manufacturer, commercial-

izes different grades of both products with a price around 20€/Kg for chitin and between

18-45€ for chitosan (depending on required purity grade) [79].

2.2.2 Polysaccharides obtained from plants

Starch

Starch is the most abundant reserve polysaccharide in plants. As such, it is a renewable

resource, biodegradable, produced in abundance at low cost, easy-to-handle and can

exhibit thermoplastic behaviour. Starch can be extracted from cereals (e.g. corn, wheat

or rice), from tubers (e.g. potato, tapioca or manioc), from grain (e.g. amaranth) or even

from nuts (e.g. cashew), but commercially, the main sources of starch are corn, potato

and tapioca [13, 195].

Starch granules are insoluble in cold water and are composed of two types of glucose

polymers: amylose (the linear polymer which comprises approximately 20% w/w of

starch granules) and amylopectin (the branched polymer). Starch properties depend

directly on the botanical source, granule size distribution and morphology, genotype,

amylose/amylopectin ratio and other factors such as composition, pH, and chemical

modifications [13, 42].

This polysaccharide has ability to form films and coatings with very low oxygen per-

meability, however its applicability as packaging material is dependent on its high hy-

drophilic character, limited mechanical properties and the retrogradation (increase in

crystallinity over time, leading to increased brittleness) [95, 142]. Research has been car-

ried out to overcome these drawbacks, mainly using plasticizers, which increase the chain

mobility and improve the flexibility, to create starch plastics with mechanical properties

comparable to polyolefin-derived ones. The most used plasticizers are polyols such as

glycerol, glycol and sorbitol [2, 91, 129, 187].

Other studied approaches consist on designing blends and composites, as well as

starch chemical modification to produce a biodegradable material with appropriate me-

chanical strength, flexibility and water barrier properties for use as packaging material.
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Blending starch with more hydrophobic polymers is widely studied (e.g. PCL or PLA)

[12, 82], as well their composites with clay nanoparticles [11, 187].

The producers and traders of plastics based on starch include Novamont (Italy), which

commercializes Mater-Bi®, a biodegradable and compostable bioplastic, commercialized

in granular form that can be processed using the most common transformation techniques

for plastics [137]. In addition, Eco-Go (Thailand) sells finished packaging products (e.g.

bowls, food containers and food trays) from cassava and corn starch [50], and Plantic

Technologies Limited (Australia) which produces PLANTIC™, a high barrier multilayer

sheet for packaging goods, constituted by corn starch and PE and PP [154].

Galactomannans

Galactomannans are neutral polysaccharides obtained from the endosperm of dicotyle-

donous seeds of several plants, particularly the Leguminosae, where they function as

carbohydrate reserves [25].

These gums are heterogeneous polysaccharides composed by a β-(1-4)-D-mannan

backbone with a single D-galactose branch linked α-(1–6), they differ from each other

by the mannose/galactose (M/G) ratio. The three major galactomannans with interest

in food and non-food industries are guar gum (Cyamopsis tetragonolobo , M/G ratio: 2:1),

tara gum (Caesalpinia spinosa, M/G ratio: 3:1) and locust bean gum (Ceratonia siliqua,

M/G ratio: 3.5:1) [25, 148]. But just locust bean gum and guar gum are considered

commercially interesting due their availability and price [163].

These natural polysaccharides are commonly used in the food industry, mainly as

stabilizers, thickeners and emulsion stabilizers, as well as for the production of edible

films and coatings. The galactomannans ability to form very viscous solutions at rela-

tively low concentration and their resistance to pH alterations, ionic strength and heat

processing are their main distinct characteristics. The mechanical and barrier properties

of galactomannan films and coatings are the basis of their application to improve the

shelf-life, safety and quality of food products [25, 70].

Several studies have shown the film-forming properties of different galactomannans,

being the mannose/galactose ratio, the degree of substitution and the degree of polymer-

ization, the main parameters affecting edible films properties [125].

Edible films and coatings of galactomannans have been applied for example in fruit

and cheese. They have been tested in apples, to decrease the internal oxygen concentra-

tion. The sensory analyses revealed that the coated apples maintained consistent quality

in firmness, crispness and juiciness [35]. Coatings based on galactomannan, glycerol and

corn oil have been applied in cheese, decreasing the transfer rates (water vapour and

oxygen), weight loss and colour changes [26].

Cargill (USA) offers various types of locust bean gum and guar gum flour or extracts

under the trade name Viscogum™. Also, Chemtotal (Australia) produces and trades

galactomannans (guar gum, locust bean gum, tara gum and cassia gum). Other companies
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producing and commercializing galactomannans include Altrafine Gums (India), with

exportation for 90 countries of a wide range of different gums.

Cellulose

Cellulose is the most abundant occurring natural polymer on earth, being the predomi-

nant constituent in cell walls of all plants. Cellulose is composed of a unique monomer:

glucose under its β-D-glucopyranose form [41]. Due to its regular structure and array of

hydroxyl groups, it tends to form strong hydrogen bonded crystalline microfibrils and

fibers and is most familiar in the form of paper, paperboard and corrugated paperboard

in the packaging context [13, 42].

Its great interest is related with specific properties such as low density, high mechani-

cal strength, low cost, durability, non-toxicity, renewability, biocompatibility, biodegrad-

ability, good films-forming performance, chemical stability and ease of making chemical

derivatives [41, 48].

The most used raw material source for production of cellulose based products are

wood and cotton fibers and in small amounts stalks of sugarcane bagasse. Natural cellu-

lose fibers are low cost, biodegradable and have good mechanical properties, but they are

difficult to use for industrial applications due to their hydrophilic nature, insolubility in

water and crystallinity [42, 195].

Cellulosic materials are usually used in textiles, fibers and packaging and can be

divided into two groups: regenerated and modified cellulose. Chemical reactions are

usually performed to improve the thermoplastic behaviour of cellulose, such as etheri-

fication and esterification that are conducted on the free hydroxyl groups. Numerous

derivatives are commercialized, but the main used for industrial purpose are cellulose

acetate, cellulose esters (for molding, extrusion and films) and regenerated cellulose for

fibers. To overcome the hard mechanical properties of cellulose, beyond chemical modi-

fication, the use of plasticizers and blends with other polymers are also used, being the

final mechanical and chemical properties dependent on the blend composition.

To produce cellophane film, for example, cellulose has to be dissolved in aggressive

and toxic solutions, and then recast in sulphuric acid. In that way, it is possible to produce

a hydrophilic film with good mechanical properties. However, this film is not thermo-

plastic and cannot be heat-sealed [42].

Nowadays a large number of companies are suppliers of cellulose films. Innovia Films

(United Kingdom) presents two different products based on cellulose, Cellophan™ and

NatureFlex™, which are biodegradable and compostable, both sold worldwide for food

packaging applications (Pre-made bags, tapes, box overwrap, bunch wrap, among others)

[90]. Weifang Henglian Films CO. LTD (China) provides food grade cellulose films with

different sizes adapted for specific products.

14



2.2. POLYSACCHARIDES IN FOOD PACKAGING

2.2.3 Polysaccharides obtained from algae

Carrageenan

Carrageenan is a naturally occurring hydrophilic, anionic sulfated linear polysaccharide

extracted from red seaweeds, specifically from the Rhodophyceae family (e.g. Chondrus
crispus, Kappaphycus spp., Eucheuma spp., and Gigartina stellata) [164, 191]. This hydrocol-

loid is composed of α-D-1,3 and β-D-1,4 galactose residues that are sulfated at up to 40%

of the total weight. Carrageenans are classified based on their solubility in potassium chlo-

ride, into different types (λ, κ, ι, ε, µ) all composed by 22-35% sulphate groups although

these designations do not reflect definitive chemical structures [135]. The κ-carrageenan

is the one with less negative charges per disaccharide having excellent properties to form

gels and films. When comparing with λ- and ι-carrageenan, the κ-carrageenan films

exhibit better mechanical properties [20, 121, 135].

Carrageenan is approved as food-grade additive, and it has been used mainly as emul-

sifier and stabilizer in flavored milks, dairy products, pet food, dietetic formulas and

infant formulas [121, 135].

Carrageenan is also used to produce edible films and coatings, though the reports

about its application in coatings are much more common. Carrageenan edible films

and coatings and their blends with other polymers were reported to be used in food to

preserve fresh cut fruits, by reducing moisture loss and decreasing gas exchange, as well

as preventing the discoloration and maintaining texture [17, 159]. Films of carrageenan

have also been reported as encapsulating matrices of aroma compounds [55, 83, 191].

FMC (USA) is the largest and the most experienced producer of carrageenan extracts

worldwide. Its film-forming carrageenans have brand names of Gelcarin® and Vis-

carin® [65]. Other important companies in carrageenan market are CP Kelco (USA),

Danisco (Denmark), Ceamsa (Spain), and Quest International (The Netherlands). JetNet

Corporation (USA) produces carrageenan films, in particular Nutrafilm™ carrageenan

film packaging for meat and poultry, and over 300 different styles and sizes of elastic

netting [93].

Alginate

Alginate is a linear polysaccharide that is abundant in nature and is synthesized by brown

seaweeds (e.g. Laminaria digitata and Ascophyllum nodosum) and some soil bacteria. It has

an anionic character and is water-soluble, consisting of monomeric units of 1-4-linked

α-d-mannuronate (M blocks) and β-l-guluronate (G blocks), as well as segments of alter-

nating mannuronic and glucuronic acids (MG blocks). The physical properties of algi-

nates depend on the relative proportion of these three blocks, which are directly related

with extraction source [149]. They are appealing film-forming compounds because of

their non-toxicity, biodegradability, biocompatibility and low cost. Also, other functional

properties have been studied, such as thickening, stabilizing, suspending, gel-producing,
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among others [13, 191, 209].

Sodium alginate is the most used in industry and was the first by-product from al-

gal purification. Having an efficient brown seaweed extraction, would be interesting to

produce an environmentally friendly biopolymer-rich extract for industrial applications,

such as, food packaging material, release agents, paper, pharmaceutical and medical uses,

among others [191]. Due to the linear structure of alginate, the films are strong, with

adequate fibrous structures in solid state, being considered a good filmogenic material

[18].

The market of alginate producers is concentrated in few companies, including FMC

(USA), Cargill (USA) and DuPont (Danisco) (Denmark). The price of alginate has in-

creased between 2009 and 2013 due to the stronger demand, but become stable in 2014

at 11€/Kg [24].

The properties and applications in food packaging of the polysaccharides obtained

from animals, plants and algae are summarized in Table 2.1.

2.2.4 Polysaccharides obtained from microorganisms

Several polysaccharides with film-forming ability can be produced by microorganisms

(yeast, fungus or bacteria), such as pullulan, gellan gum, xanthan gum, FucoPol, bacterial

cellulose or bacterial alginates. This sub chapter will focus on the most used polymers

except bacterial cellulose and alginate referred before.

Pullulan

Pullulan, is a linear, water-soluble and neutral exopolysaccharide (EPS), constituted

mainly of maltotriose units connected by α-1,6 glycosidic units and produced by yeast

like fungus Aureobasidium pullulans using a variety of feedstocks containing simple sug-

ars [13]. The molecular weight of pullulan, ranging from 4.5x104 to 6x105 Da, is greatly

affected by cultivation parameters (temperature, pH, type of carbon source and type of ni-

trogen source). The commercial production of pullulan began in 1976 by the Hayashibara

Company (Japan). Its production was an outgrowth of starch syrup production, noted in

1883. Pullulan films started to be commercialized by Hayashibara in 1982 [30, 161].

Pullulan is biodegradable, non-toxic, tasteless and odourless. It can be used as food

additive, as flocculant agent or even as blood plasma substitute, beyond film forming

agent. Pullulan films are edible, homogeneous, transparent, printable, heat sealable,

flexible and good barriers to oxygen [69, 76, 107]. However, they are water sensitive and

mechanically weak [183, 184]. These properties, and the fact of pullulan films inhibit

fungal growth, make them a good material for food applications.

Despite all advantages of pullulan, its high cost has limited the use of pullulan and

pullulan films in several applications. Research has been carried out on blending pullu-

lan with other biopolymers and additives to produce films with better physicochemical

characteristics and mechanical properties. Blends of pullulan with alginate, chitosan,
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Table 2.1: Properties and food applications of polysaccharides obtained from animals,
plants and algae

Polysaccharide Composition Films properties Main films food applications Reference

Chitin N-acetylglucosamine

• Biodegradable

• Antibacterial and fungistatic
properties

• Biocompatible and non-toxic

• Highly transparent

• Cofee capsules

• Food bags

• Packaging films

[31, 113, 170, 188]

Chitosan D-glucosamine
N-acetyl-D-
glucosamine

• Biodegradable

• Biocompatible and non-toxic

• Antifungal and antibacterial
properties

• Good mechanical properties

• Barrier to gases

• High water vapor permeabil-
ity

• Brittle – need to use plasti-
cizer

• Edible films and coatings
(Strawberries, cherries,
mango, guava, among
others)

• Packaging films for vegeta-
bles and fruit

[20, 53, 70,
101, 188]

Starch Glucose

• Biodegradable

• Transparent

• Odorless and tasteless

• Retrogradation

• High elongation and tensile
strength

• Flexible packaging

– Extruded bags

– Nets for fresh fruit
and vegetables

• Rigid packaging

• Thermoformed trays and
containers for packaging
fresh food

[20, 42]

Galactomannans
Mannose
Galactose

• Biodegradable

• Edible

• Semi-permeable barrier to
gases

• Edible films and coatings

– Fruits
– Cheese

[25, 70]

Cellulose Glucose

• Biodegradable

• Good mechanical properties

• Transparent

• Highly sensitive to water

• Resistance to fats and oils

• Need to perform modification,
use of plasticizer or polymer
blend

• Cellophane films [20, 42]

Carrageenan Galactose

• Biodegradable

• Fragile and ductile behaviour

• Usually blended with other
polymers

• Coatings

– Fruits
– Meat

• Encapsulation

[20, 191]

Alginate Mannuronic
Glucuronic acid

• Biodegradable

• High water vapour permeabil-
ity

• Poor water resistance

• Strong and brittle films

• Cross-link with calcium

• Coatings

• Prevent water loss in fresh
cut fruit (apple, papaya,
pear and melon)

• Inhibition of microbial
growth (turkey products)

• Microwaveable food (in-
crease warming efficiency)

[20, 70, 191]

cellulose and starch have been reported with improvements in thermal and mechani-

cal properties, low water vapour permeability and low water absorption [99, 103, 198,
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203, 212]. Also, composite films of pullulan with lipids and proteins have shown im-

proved properties. Pullulan films with gelatin have demonstrated higher tensile strength

and reduced oxygen permeability and cost [216], while the use of rice wax has shown

improvements in water vapour barrier properties [183].

Nowadays, apart from the Hayashibara corporation, Shandong Jinmei Biotechnology

Co. Ltd. (China) is also a key producer of pullulan (Jinmei Pullulan), which is commer-

cialized in powder or capsules forms, with application in edible films, oral dissolving

films, coatings in soft candies, among others [97].

Gellan gum

Gellan gum is an anionic water-soluble exopolysaccharide, produced by Sphingomonas
elodea, also known as Auromonas elodea or Pseudomonas elodea. This heteropolysaccharide

is a linear high molecular weight (around 5x105 Da) compound, with a tetrasaccharide

repeating sequence which consists of two residues of β-D-glucose, one of β-D-glucuronic

acid and one of β-L-rhamnose [133]. The approximate composition comprises glucose

(60%), rhamnose (20%) and glucuronic acid (20%) [162]. Gellan gum was identified as

a product with potential commercial value by Kelco (USA) during an extensive screen-

ing program of soil and water bacteria. In its original form (high acyl gellan), gellan

gum has two acyl substituents (acetate and glycerate). Low acyl gellan gum is obtained

with removal of acyl groups [104, 133]. High acyl gellan forms soft, elastic, non-brittle,

thermo-reversible gels, and low acyl gellan tends to form firm, non-elastic brittle and

thermostable gels [45, 104].

In food industry, gellan gum is usually used as additive (stabilizer, thickening agent

and gelling agent), however the applications of gellan gum may be extended to films and

coatings for food industry also, such as breading and batters for chicken, fish, cheese,

vegetables and potatoes, coatings and adhesion systems. These films and coatings offer

advantages, essentially due to their ability to reduce oil absorption by providing an effec-

tive barrier. In batters, for example, product crispness is maintained long after frying or

baking, which helps to maintain product quality under heating lamps [38].

CP Kelco (USA) is the leading global producer of gellan gum, commercializing Gel-

rit™ (low acyl) and Kelcogel™ (high acyl). Also, Dancheng Caixin Sugar Industry co.

ltd (China) is producer and world-wide seller of high and low acyl gellan.

Xanthan gum

Xanthan gum is an exopolysaccharide produced by Xanthomonas campestris using glucose

and sucrose as sole carbon source. It was discovered in 1963 at the Northern Regional

Research Laboratories (USA) and was the second microbial polysaccharide commercial-

ized. Nowadays is the most extensively studied and widely accepted industrial microbial

biopolymer, being the most significant bacterial EPS in global hydrocolloids market [66,

143]. This heteropolysaccharide consists of repeated pentasaccharide units composed by
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glucose, mannose and glucuronic acid (2 : 2 : 1 ratio) and pyruvate and acetyl substituent

groups [72].

Xanthan is water-soluble and non-toxic. It imparts a high viscosity at low concentra-

tions in aqueous media, with a strong shear-thinning behaviour. The rheological prop-

erties of xanthan solutions are quite stable in a wide range of pH, ionic strength and

temperature values [59, 64].

Xanthan gum has been used in a wide variety of industrial applications, such as food,

cosmetic, pharmaceutical, textile, petroleum production or even slurry explosives. In

food industry, it is mainly used as additive (suspending and thickening agent) [143, 174].

So far, there is not much information about xanthan films for food packaging, maybe

caused by still high cost of xanthan production [143]. Nevertheless, xanthan coatings

applied to acerola, showed it is an effective system for reducing the weight loss and the

respiration process, keeping the colour and eventually increasing the shelf-life [167].

The major producers include CP Kelco (USA), Danisco (Denmark), Merck (USA),

Sanofi-Elf (France) and Jungbunzlauer (Switzerland) that commercialize xanthan with

different purity grades and trade names.

The properties and applications in food packaging of the microbial polysaccharides

are summarized in Table 2.2.

Table 2.2: Properties and application of microbial polysaccharides in food packaging

Polysaccharide Microorganism Composition Films properties Main films food applications Reference

Pullulan Aureobasidium
pullulans

Maltotriose
(three
glucose)

• Biodegradable

• Transparent

• Edible

• Oil and grease resis-
tant

• Heat sealable

• High water solubility

• Barrier to oxygen

• Coating material

• Wrapping material

• Blends with other poly-
mers to improvement
of mechanical proper-
ties

• Inner package

– Seasoning bag
of instant noo-
dles

– Instant coffee

[30, 188, 216]

Gellan Gum Sphingomonas
elodea

Glucose

Rhamnose

Glucuronic
acid

• Biodegradable

• Edible

• Lipid barrier

• Excellent gas barrier

• Good tensile strength

• Edible Coatings

– Breadings and
batters for
chicken, fish,
cheese, vegeta-
bles and potatoes

• Encapsulation of flavor
and bioactive ingredients

[69, 133, 213]

Xanthan gum Xanthomonas
campestris

Mannose

Glucuronic
acid

Acetate

Pyruvate

• Biodegradable

• Edible

• Edible coating

– Meat (Prevent
moisture mi-
gration during
frying)

– Fruit (Extend
shelf-life)

[167, 188]
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FucoPol

FucoPol is a new high molecular weight exopolysaccharide (2–10x106 Da) produced

by Enterobacter A47 (DSM 23139) using glycerol by-product from biodiesel industry

as carbon source. This biodegradable, anionic and water-soluble heteropolysaccharide

is composed by fucose (36–38 % mol), galactose (22–24 % mol), glucose (27–33 % mol),

glucuronic acid (9–10 % mol) and acyl groups (acetate, succinate and pyruvate), which

account for 12–18 wt% of the FucoPol dry weight [7, 199, 200].

FucoPol production at lab-scale has shown productivities and yields comparable to

other commercial microbial bacterial polysaccharides, such as xanthan and gellan [64].

Although this polysaccharide is not commercially available yet, the scale up of its produc-

tion is being developed.

FucoPol has demonstrated flocculating and emulsion stabilizing capacity, comparable

to commercial polymers [67]. FucoPol has also shown to have a good thickening capacity

in various aqueous formulations (with a wide range of pH and ionic strength) [201]. These

functional properties make this polymer a good alternative in several applications in the

food, pharmaceutical, cosmetic, textile, paper and petroleum industries.

In this thesis film-forming capacity of FucoPol was tested and their capacity to be used

in food industry and packaging material was evaluated and described in the following

chapters.
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3
Biodegradable films produced from the

bacterial polysaccharide FucoPol

3.1 Summary

FucoPol, an exopolysaccharide produced by Enterobacter A47, grown in bioreactor with

glycerol as carbon source, was used with citric acid to obtain biodegradable films by

casting. The films were characterized in terms of optical, hygroscopic, mechanical and

barrier properties. These films have shown to be transparent, but with a brown tone,

imparting small colour changes when applied over coloured surfaces. They were hy-

drophilic, with high permeability to water vapour (1.01x10−11 mol m−1s−1Pa−1), but

presented good barrier properties to oxygen and carbon dioxide (0.7x10−16 mol m m−2-

s−1Pa−1 and 42.7x10−16 mol m m−2s−1Pa−1, respectively). Furthermore, films have shown

mechanical properties under tensile tests characteristic of ductile films with high elon-

gation at break, low tension at break and low elastic modulus. Although the obtained

results are promising, films properties can be improved, namely by testing alternative

plasticizers, crosslinking agents and blends with other biopolymers. Taking into account

the observed ductile mechanical properties, good barrier properties to gases when low

water content is used and their hydrophilic character, it is foreseen a good potential for

FucoPol films to be incorporated as inner layer of a multilayer packaging material.

3.2 Introduction

Petrochemical-based plastics, such as polyethylene terephthalate (PET), polyethylene

(PE), polypropylene (PP) and polyamide (PA), have been intensively and increasingly

used in food packaging because they are manufactured at a low-cost, presenting simul-

taneously interesting functional characteristics. They are heat sealable, possess good
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mechanical and thermal properties, as well as, suitable barrier properties to gases, aroma

compounds and microorganisms [180, 185]. However, their use must be reduced because

they are non-biodegradable and their recyclability is limited, which causes a serious envi-

ronmental impact [186]. This problem can be overcome by replacing synthetic polymers

by natural/bio-based polymers [186]. Most of the bio-based polymers obtained from re-

newable resources are biodegradable. They may be classified according to the production

method or source as: polymers directly extracted from biomass (such as plant or algal

polysaccharides and proteins), polymers obtained from renewable bio-based monomers

(such as polylactic acid (PLA) or polymers produced by microorganisms (such as polyhy-

droxyalkanoates (PHA) and bacterial exopolysaccharides (EPS) [44, 122].

Polysaccharides are usually nontoxic and widely available [102]. They have hydrophil-

ic character, usually forming strong films with poor water vapour barrier properties [34,

102, 211]. Nevertheless, polysaccharide films are excellent gas, aroma and lipid barriers

and show good mechanical properties. The film forming capacity and film properties of

different polysaccharide materials, including, chitosan [49, 52, 57], starch [73, 94, 110,

112], alginate [80, 176] and carrageenan [8] have been intensively studied.

Microbial polysaccharides represent an alternative to others recovered from animal,

algal or plant sources, because their production is not dependent on climatic or seasonal

impacts. The high molecular structure variability, availability and the properties of these

polysaccharides turns them attractive to a wide range of applications, ranging from chem-

ical industry to food, medicine and cosmetics [69]. Some microbial polysaccharides, such

as gellan, kefiran and xanthan, have been studied to produce biodegradable films with

potential final use on packaging materials [143, 152, 162]. Such microbial polysaccharide

films could be applied as primary packaging (as stand-alone films) or coatings. How-

ever, their hydrophilic nature limits their use as moisture barrier. Thus, development

of biodegradable films based on polymer blends or multilayer films has been explored

in order to obtain polymeric matrices with new and improved mechanical, barrier and

bioactive properties [69, 182]. For hydrophilic materials (such as polysaccharides) mul-

tilayer structures are more advantageous than polymer blends, because the hydrophilic

polymer can be sandwiched between hydrophobic materials [56].

In this work, a polysaccharide, FucoPol, was used for the preparation of biodegrad-

able films for food packaging. FucoPol is a recently reported bacterial EPS produced by

Enterobacter A47 (DSM23139) using glycerol as the sole carbonsource [7, 199]. It is a high

molecular weight (4.19x106 – 5.80x106) heteropolysaccharide composed of sugar residues

(fucose, galactose, glucose and glucuronic acid) and acyl groups (pyruvate, succinate and

acetate) [67]. It has an anionic character and has interesting functional properties, includ-

ing emulsion and film-forming capacity [68].

The films were prepared using citric acid, which presents cross-linking and plasticizer

properties, already reported for starch [141], gelatin [21, 208] and blends of wheat flour/-

PLA films [1]. FucoPol films were characterized in terms of their optical, hygroscopic,

mechanical and barrier properties for their potential use either alone, blended or as a
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layer in a multi-layered film for food packaging.

3.3 Materials and methods

3.3.1 FucoPol production and purification

FucoPol was produced by Enterobacter A47, cultivated using glycerol byproduct as carbon

source in a 10 L bioreactor (BioStatB-plus, Sartorius), with controlled temperature (30 ºC)

and pH (6.8). The bioreactor was operated in a batch mode (initial glycerol concentration

of 40 g L−1) during the first day of cultivation, followed by a fed-batch mode for 3 days

(feeding with a 200 g L−1 glycerol solution at a constant rate of 20 g L−1h−1). The aeration

rate (0.125 vvm), volume of air per volume of reactor per minute was kept constant

throughout the cultivation, and the dissolved oxygen (DO) concentration was controlled

at 10% air saturation by automatic variation of the stirrer speed (400 – 800 rpm) provided

by two 6-blade impellers [67]. Overall, 50 g L−1 of glycerol were consumed and a final

FucoPol concentration of 7.8 g L−1 was achieved at the end of the 4 days production run,

corresponding to a product yield on substrate of 0.156 g g−1.

FucoPol extraction and purification consisted on several steps. Firstly, the culture

broth was diluted (1:6) with deionised water for viscosity reduction and centrifuged (1 h,

8875 × g), for cell separation. The cell-free supernatant submitted to thermal treatment

(1 h, 70 ºC) followed by a second centrifugation (15 min, 8875 × g) to remove precipitated

proteins and remaining cells.

The supernatant was then submitted to a diafiltration process,using a hollow fibre

membrane module (Model #: UFP-500-E-6A, GE Healthcare), with a 500 kDa cut-off and

a surface area of 2800 cm2, operated at transmembrane pressure below 0.7 bar, to remove

low molecular weight contaminants, e.g. salts, glycerol and proteins. After impurities

removal, the treated supernatant containing FucoPol was concentrated (5:1) using the

same membrane module, switching to an ultrafiltration process mode. The obtained

solution was freeze dried (Martin Christ, model Epsilon2–40, Germany) during 48 h and

the obtained FucoPol was stored at ambient temperature.

3.3.2 FucoPol films preparation

FucoPol was dissolved in distilled water (1.5% w/w) under stirring, at room temperature,

until complete dissolution. Then, citric acid (Panreac Química S.L.U., Barcelona, Spain)

was added in a proportion of 1:1 w/w (dry basis) and the solution was let under stirring

for at least 12 h for complete homogenization.

After removing the air bubbles under vacuum, 30 mL of solution were transferred

to Teflon petri dishes, diameter 100 mm (Bola, Germany) and let to dry at 40 ºC, during

15 h, to form a film. The films were stored at a specific relative humidity and temper-

ature,depending on the tests to be performed. Films thickness was measured with a

manual micrometre (Brave Instruments, USA).
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3.3.3 Colour and transparency

The transparency of films was determined by measuring the transmittance at 600 nm

using a spectrophotometer (Heλos α, Thermo Spectronic, UK), and calculated according

to Eq. 3.1.

T ransparency =
−logT600

x
(3.1)

Where T600 is the transmittance at 600 nm and x is the film thickness (mm). In

addition, the colour alterations on objects caused by application of the prepared films

was evaluated by measuring the colour parameters of coloured paper sheets, covered and

uncovered by the test films. A Konica Minolta CR-400, USA, colorimeter was used, and

the CIELa∗b∗ colour space was applied with the calculation of colour differences (∆Eab),

chroma (Cab) and hue (hab), with the following equations:

∆Eab = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]
1
2 (3.2)

Cab = [a∗2 + b∗2]
1
2 (3.3)

h = arctan
(
b∗

a∗

)
x

180
π
, for a∗ > 0 and b∗ > 0 (3.4)

h = arctan
(
b∗

a∗

)
x

180
π

+ 180, for a∗ < 0 (3.5)

h = arctan
(
b∗
a∗

)
x180
π + 360,

for a∗ > 0 and b∗ < 0
(3.6)

Where L∗0, a∗0, b∗0 refer to the colour of the uncovered sheets. Five measurements on

different areas of the coloured sheets, with and without films, were carried out.

3.3.4 Water sorption isotherms

Water sorption isotherms were determined by a gravimetric method at 30 ºC. Samples

with dimensions of 20 mm×20 mm were previously dried at 70 ºC during 24 h. The

samples were then placed in desiccators with different saturated salt solutions: LiCl,

CH3COOK, MgCl2·6H2O, K2CO3, Mg(NO3)2, NaNO2, NaCl, (NH4)2 SO4, BaCl2 and

K2SO4, with a water activity of 0.115, 0.225, 0.324, 0.447, 0.520, 0.649, 0.769, 0.806,

0.920 and 0.977, respectively. Three film replicates for each salt solution were analyzed.

The samples were weighed after three weeks, ensuring that the equilibrium has been

reached. The Guggenheim–Anderson–de-Boer (GAB) model (Eq. 3.7) was used to fit the

experimental sorption data.

X =
CkX0 aW

(1− k aW )(1− k aW +CkaW )
(3.7)
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where X is the equilibrium moisture content (gwater/gdry solids) at the water activity (aW ),

X0 is the monolayer moisture content, C is the Guggenheim constant and represents

the energy difference between the water molecules attached to primary sorption sites

and those absorbed to successive sorption layers, and k is the corrective constant owing

to properties of multilayer molecules with respect to the bulk liquid. GAB equation

parameters were determined by non-linear fitting using the software package Scientist™,

from MicroMath®.

3.3.5 Mechanical properties

Tensile tests were performed using a TA-Xt plus texture analyser (Stable Micro Systems,

Surrey, England) performed at 23 ºC using film strips (20x70 mm) attached on tensile

grips A/TG and stretched at 0.5 mm s−1 in tension mode. The tensile stress at break (TS,

MPa) was calculated as the ratio of the maximum force to the films initial cross-sectional

area. The elongation (strain) at break (EB, %) was determined as the ratio of the extension

of the sample upon rupture by the initial gage length. The Elastic Modulus (EM, MPa)

was calculated from the slope of the initial linear region of the stress-strain curve. The

samples were equilibrated previously (44.3% RH and 22±2 ºC). Five film replicas were

analyzed.

3.3.6 Water vapour permeability

The water vapour permeability (WVP, mol m−1 s−1 Pa−1) was measured gravimetrically at

30 ºC. The films samples were sealed on the top of a glass cell with a diameter of 44.5 mm

and placed in a desiccator containing a saturated salt solution and equipped with a fan to

promote air circulation. Room temperature and relative humidity inside the desiccator

were monitored over time using a thermohygrometer (Vaisala, Finland). The driving force

tested was imposed by using a saturated NaCl solution (RH = 76.9%) inside the cell dish

and a saturated CH3COOK solution outside (RH = 22.5%). The films were previously

equilibrated at a relative humidity of 76.9%. The water vapour flux was measured by

weighing the cell at regular time intervals during 24 h and the water vapour permeability

was calculated by Eq. 3.8,

WVP =
NW δ
∆PW.ef f

(3.8)

where Nw (molm−2s−1) is the water vapour flux, δ (m) is the film thickness and ∆Pw,ef f
(Pa) is the effective driving force. Three film replicates were analysed.

3.3.7 Gas permeability

The tests were made using a stainless steel cell with two identical chambers separated

by the film. The films were equilibrated at 30 ºC in a desiccator containing a saturated

MgCl2·6H2O solution, with a water activity of 0.324. The permeability was evaluated
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by pressurizing one of the chambers (feed) up to 0.4 bar, with pure gas (carbon dioxide

(99.998%) or oxygen (99.999%) Praxair, Spain), followed by the measurement of the

pressure change in both chambers over time, using two pressure transducers (Druck,

PDCR 910 model).

Five independent measurements were made at a constant temperature of 30 ºC, using

a thermostatic bath (Julabo, Model EH,Germany). The permeability was calculated by Eq.

3.9,

1
β

(
∆p0

∆p

)
= P

t
δ

(3.9)

where ∆p (mbar) is the pressure difference in feed and permeate compartment, P (mol m-

m−2s−1Pa−1) is the gas permeability, t (s) is the time, δ (m) is the film thickness and β is

the geometric parameter of cell, as described by Alves et al. [6].

3.4 Results and discussion

FucoPol, produced and purified as described in Section 3.3.1 was characterized and used

to prepare the filmogenic solutions to produce the films according to Section 3.3.2. The

obtained films were stored in a desicator with a controlled relative humidity (0% RH)

and temperature (25 ºC) before performing their characterization in terms of their optical,

hygroscopic, mechanical and barrier properties.

3.4.1 FucoPol films appearance, colour alteration and transparency

The prepared films are transparent with a slight brownish tone and flexible when handled.

They are totally soluble in water indicating the inexistence of cross linking reactions in

spite of the use of citric acid. The transparency measured at 600 nm is 3.67±0.57. This

value is higher than the obtained for films from other biopolymers, such as chitosan

(1.13±0.05) or gelatin (0.67±0.01), although lower than ahipa starch (4.0±0.1), cassava

starch (4.7±0.1) or corn starch (4.6±0.1) [112]. The transparency value of FucoPol films

is similar to the value obtained for some synthetic films, such as low density polyethylene

(LDPE) (3.05) [171].

The colour alteration of objects due to the application of the films was also evaluated

by measuring the colour parameters of coloured paper sheets, uncovered and covered

by the film sample. Figure 3.1 shows the CIELa∗b∗ colour parameters a* and b*, for all

colours tested. It may be perceived that the hue (hab, angle towards the horizontal axes)

does not change significantly with the application of the FucoPol film for the majority

of the colours, except for yellow and blue, for which a hue variation was perceived upon

film application. In addition, for all cases, the dots move towards the origin,which cor-

responds to a decrease of colour saturation (chroma, Cab). The colours alteration (∆Eab)

are low (<15.2) (insert in Figure 3.1), but with values representing colour changes that
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are perceived by the human eye. The colours that present higher colour alterations are

yellow, green and blue, because they are the colours furthest from the film colour itself.

Figure 3.1: Parameters a∗ and b∗ of the CIELAB system for coloured paper sheets uncov-
ered (diamonds) and covered (circles) by the test films and calculated colour differences
(insert).

3.4.2 Water sorption isotherms

The water sorption isotherms of FucoPol films are presented in Figure 3.2 as well as those

of the bacterial polysaccharide GalactoPol, pectin and chitosan films previously reported,

for comparison. The obtained experimental data is well described by GAB model. The

general isotherm is similar to that of GalactoPol films, although FucoPol films present a

higher hydrophilic behaviour. The water vapour sorption capacity is analogous to pectin

for water activity values lower than 0.7, but above this value FucoPol has a significantly

higher affinity to water vapour. When compared to chitosan films, it can be observed a

much higher affinity to water vapour by the FucoPol films, for the entire range of water

activity.

3.4.3 Mechanical properties

The film samples presenting a water content of 8±0.4% (on a dry basis), were subjected to

tensile tests. The results show that FucoPol films present a typical behaviour of a ductile

film: tensile strength at break (TS) values (3.1±0.3 MPa), high elongation at break (EB)

(54.9±4%) and low elastic modulus (EM) (2.8±0.2 MPa) (Table 3.1).
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Figure 3.2: Water sorption isotherms of FucoPol films at 30 ºC (symbols) and GAB equa-
tion for FucoPol, GalactoPol, pectin and chitosan films (lines).

The mechanical properties of polysaccharide films are strongly dependent not only on

the characteristics of the biopolymer used, but also on the addition of plasticizers, cross-

linking agents and other additives upon film formation, as well as on the water content

of the polymeric matrix during the measurements. This fact turns difficult to compare

the mechanical properties of films obtained in different works. Still, it can be noticed that

the EB and TS of FucoPol films are close to those reported for films from galactomannans

plasticized with glycerol (Table 3.1) [28]. On the other hand, when comparing FucoPol

and GalactoPol films, it is found that their properties are completely different. GalactoPol

films are rigid, presenting higher TS and EM (51 MPa and 1738 MPa), especially due to the

absence of a plasticizer and to evidence of cross-linking [9]. The mechanical properties

of FucoPol films reveal a polymeric structure that is not mechanically resistant enough to

be used as a stand-alone film. However, there is the potential to be used as a hydrophilic

layer incorporated in a multi-layered material.

The mechanical properties of FucoPol films reveal a polymeric structure that is not

mechanically resistant enough to be used as a stand-alone film. However, there is the

potential to be used as a hydrophilic layer incorporated in a multi-layered material.
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Table 3.1: Mechanical properties of EPS films, along with those of other polymers referred
in literature

Films %RH Tensile strength Elongation at break Elastic modulus Reference
(MPa) (%) (MPa)

FucoPol 44.3 3.1 ± 0.3 54.9 ± 4.0 2.8 ± 0.2
Present
Study

GalactoPol 44.3 51.0 ± 3.0 9.5 ± 3.9 1738.0 ± 114.0 [9]

Gelatin
(unplasticized) 65.0 59.0 3.0 19.6 ± 2.4 [172]

Gelatin
(100g glycerol/100g gelatin) 65.0 5.0 190.0 0.035 ± 0.004 [172]

Galactomannan
(unplasticized) 54.0 18.6 ± 4.4 3.8 ± 0.1 − [28]

Galactomannan
(2g glycerol/100g
galactomannan) 54.0 1.7 ± 0.1 38.7 ± 3.8 − [28]

3.4.4 Water vapour permeability

The obtained water vapour permeability (WVP) for FucoPol films was (1.01 ± 0.23)x10−11

mol m−1 s−1 Pa−1, for a driving force of 76.9−22.5% RH, which is about two orders of

magnitude higher than those reported for synthetic films used in industry (LDPE or PET)

(Table 3.2) [77]. However, the WVP is similar to other films obtained from biopolymers

(GalactoPol [9], corn starch [73] or gelatin [172]).

Due to their hydrophilic behaviour, which makes them poor barriers to water vapour

they can be used as an inner layer sandwiched between hydrophobic materials.

Table 3.2: Water vapour permeability of natural and synthetic films.

Film ∆RH (%) WVP (x10−11 mol m−1 s−1 Pa−1) Reference

FucoPol 76.9− 22.5 1.01 ± 0.23 Present Study

GalactoPol 64.8− 22.0 1.10 ± 0.20 [9]

Galactomannan 100− 0 0.47 ± 0.03 [28]

Chitosan 75− 0 0.25 ± 0.03 [172]

Corn Starch 75− 0 0.98 ± 0.16 [73]

Gelatin 75− 0 1.50 [73]

LDPE 90− 0 0.01 [172]

EVOH 90− 0 0.09 [109]

PET 90− 0 0.01 [109]
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3.4.5 Gas permeability

The measured permeability of FucoPol films to oxygen (0.7x10−16 mol m m−2s−1Pa−1) is

two orders of magnitude lower than its carbon dioxide permeability (42.7x10−16 mol m -

m−2s−1Pa−1) (Table 3.3). The lower permeability values to oxygen than to carbon dioxide

has been reported by other authors to be characteristic of films from hydrophilic polymers

(e.g. wheat gluten, starch, carrageenan/pectin and galactomannans) [8, 27, 74, 77].

Table 3.3: Oxygen and carbon dioxide permeability of natural and synthetic films.

Films %RH O2 Permeability CO2 Permeability Selectivity Reference
(x10−16 mol m m−2s−1Pa−1) (x10−16 mol m m−2s−1Pa−1) (α)

FucoPol 32.4 0.7 ± 0.3 42.7 ± 5.6 62
Present
Study

GalactoPol − − 2.0 ± 0.3 − [9]

Starch 100 10.9 264.1 24 [77]

Starch 57 0.0062 ± 0.0013 − − [74]

Starch:sorbitol (4:1) 57 0.0014 ± 0.0009 − − [74]

Carrageenan/pectin − 0.4 39 98 [8]

Chitosan 50 2.3 ± 0.1 24.3 ± 2.7 11 [57]

Chitosan 0 0.006 0.018 3 [77]

Cassava starch 75 0.0220 ± 0.0001 − − [187]

Cassava starch:glycerol
(10:1) 75 0.109 ± 0.0002 − − [187]

Galactomannans:glycerol
(1:1) 50 0.13 ± 0.03 14.7 ± 0.6 113 [27]

Wheat gluten 91 9.8 245.0 25 [77]

Wheat gluten/beeswax 91 6.9 66.1 10 [77]

LDPE 0 10.03 42.2 4 [77]

PET 0 0.12 0.38 3 [77]

EVOH (10:1) 0 0.0003 − − [109]

PP 0 3.01 − − [109]

Cellophane 0 0.0134 − − [77]

FucoPol films show good barrier properties to oxygen when compared with some

synthetic polymers usually used as packaging materials, such as LDPE (10.03x10−16

mol m m−2s−1Pa−1) or PET (0.119x10−16 mol m m−2s−1Pa−1) [77]. However, their oxygen

permeability is higher than that of ethylene vinyl alcohol (EVOH), which is considered for

ultra-high barrier applications in dry conditions (0.0003x10−16 mol m m−2s−1Pa−1) [6].

When comparing to natural polymers, the oxygen permeability of FucoPol films is

similar to that of unplasticized carrageenan/pectin films, and to that of cassava starch
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and galactomannans films with plasticizers incorporation (Table 3.3).

Regarding FucoPol films carbon dioxide permeability, it is similar to the permeability

of LDPE and analogous to other natural polymers (carrageenan/pectin, chitosan, wheat

gluten blended with beeswax). However, as reported by Gontard et al. [77] for wheat

gluten films, it is essential to bear in mind that the oxygen and carbon dioxide permeabil-

ity of hydrophilic films is dependent on the water content of the polymeric matrix.

For packaging films, one of the most important parameter is the ratio of CO2/O2 per-

meabilities (selectivity, α), which deter-mines the relative proportion of carbon dioxide

and oxygen in the package. The selectivity is also dependent on the relative humidity

which determines the water content in the polymeric matrix. For FucoPol films, the ob-

tained selectivity (α = 62) was much higher than the values referred for biopolymers,

such as chitosan (α = 11 or α = 3), depending on the water content, wheat gluten (α= 25)

or starch (α = 24), and for synthetic polymers, such as LDPE (α = 4) or PET (α = 3), but

lower than the obtained for galactomannans (α = 113) (Table 3.3). Comparing FucoPol

and LDPE films, it can be observed that the former, show higher barrier properties to

oxygen maintaining similar values of carbon dioxide permeability. Thus, FucoPol films

can be advantageously used in modified atmosphere packaging without oxygen.

3.5 Conclusions

A bacterial exopolysaccharide, FucoPol, was used to prepare biodegradable films by cast-

ing of a filmogenic solution composed of polymer and citric acid.

The films are transparent, but have a brown shade that caused colour changes notice-

able to the human eye when placed over a coloured surface. FucoPol films are hydrophilic

and soluble in water, which makes them poor barriers to water vapour. By the contrary,

FucoPol films present good barrier properties to gases (oxygen and carbon dioxide). The

mechanical tests revealed a ductile film, with high elongation at break and a low tension

at break and elastic modulus.

Characteristics of FucoPol films indicate its potential application on food packag-

ing, though, the properties can be improved, namely by testing alternative plasticizers,

crosslinking agents and blends with other biopolymers. Taking into account the observed

ductile mechanical properties, hydrophilic character and good barrier properties to gases

for low film’s water content, the most promising application of these films may be as an

inner layer in a multi-layered film.
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Development and characterization of

bilayer films of FucoPol and chitosan

4.1 Summary

Bilayer films of FucoPol and chitosan were prepared and characterized in terms of optical,

morphologic, hygroscopic, mechanical and barrier properties, to evaluate their poten-

tial application in food packaging. Bilayer films have shown dense and homogeneous

layers, and presented enhanced properties when comparing to monolayer FucoPol films.

Though, a high swelling degree in contact with liquid water (263.3%) and a high water

vapour permeability (0.75x10−11 mol m−1s−1Pa−1), typical of polysaccharide films, was

still observed. However, they presented a low permeability to O2 and CO2 (0.47x10−16

mol m m−2s−1Pa−1 and 5.8x10−16 mol m m−2s−1Pa−1, respectively). Tensile tests revealed

a flexible and resistant film with an elongation at break of 38% and an elastic modulus

of 137 MPa. The studied properties, in particular the excellent barrier to gases, impart

these bilayer films potential to be used in packaging of low moisture content products, as

well as in multilayered hydrophobic/hydrophilic/hydrophobic barriers for food products

with a broader range of water content.

4.2 Introduction

Primary packaging, defined as “a sales unit to the final user or consumer at the point

of purchase” [145] tends to be the most visible aspect of packaging [15]. The use of

synthetic non-biodegradable polymers for primary packaging was tremendous in the

last century, mainly because they are low-cost and present good mechanical and ther-

mal properties, and are good barriers to gases, aroma compounds and microorganisms.
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Though primary packaging is mandatory for food preservation and protection, the inten-

sive use of synthetic plastics created serious environmental problems because they are

non-biodegradable and non-renewable materials.

This severe problem can be minimized using biodegradable natural and bio-based

polymers instead of the non-biodegradable synthetic ones [134, 185].

As such, the attention has been driven to the search of alternative materials for use in

food packaging. Bio-based films are usually designed from biodegradable, non-toxic and

edible polymers (e.g. polysaccharides and proteins) and lipids [70]. The use of blends and

multi-layers of those materials are strategies for new composite materials development,

with properties that turn them potential synthetic polymers substitutes [19, 46].

Polysaccharides obtained from plant, algae, animal and microbial origin (e.g. starch,

alginate, chitosan, gellan gum) have been widely used for edible and/or biodegradable

films development [19, 102, 186]. Such films are usually poor barriers to water vapour

but good barriers to gases.

FucoPol, one of the microbial polymers referred in the literature, is a fucose-rich

exopolysaccharide produced by the bacterium Enterobacter A47 [7, 199]. It is a high

molecular weight heteropolysaccharide composed of neutral sugars (fucose, galactose,

glucose), an acidic sugar (glucuronic acid) and acyl groups (acetate, succinate and pyru-

vate). Glucuronic acid, together with succinate and pyruvate, are responsible for the

anionic character of the biopolymer [67]. FucoPol has film forming capacity and its films

have been reported to be transparent, with brown tone, hydrophilic with high permeabil-

ity to water vapour and good barrier properties to gases (CO2 and O2) [60].

Chitosan is derived from chitin, which is the most abundant natural amino polysac-

charide and the second most abundant biopolymer in nature. Crustacean shells, a food

industry waste, are one of the chitin main sources [168]. Chitosan is a copolymer of

β-(1-4)-2-cetamido-D-glucose and β-(1-4)-2-amino-D-glucose units, with the latter usu-

ally exceeding 60%. It possesses a cationic character, antimicrobial properties and film

forming capacity [52]. Chitosan films have a selective permeability to gases (CO2 and O2)

and good mechanical properties, but are highly permeable to water vapour that limits

their use in food packaging applications.

The improved properties obtained by the combination of different hydrocolloids have

been reported for several systems. Blends and bilayer films of chitosan and anionic poly-

mers have been reported to have improved mechanical and barrier transport properties

comparing to single component based films. This fact was attributed to the formation

of polyelectrolyte complexes through electrostatic interactions between the protonated

amino groups of chitosan and the negatively charged side-chain groups in the other

biopolymer at the operating pH [52, 114, 138].

Improvement in mechanical properties, better performance in terms of water vapour

permeability and lower water solubility have been reported for blends and bilayer films

of chitosan with starch, pectin or alginate [96, 114, 215], gelatin [171] or whey [108],

comparing to chitosan stand-alone films.
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Some authors reported difficulties in total solubilization of one of the polymers in

specific conditions and formation of insoluble complexes between polymers in blends

preparation [63]. Otherwise, bilayer systems are reported to have better water vapour

barrier properties than blend films [108, 171]. In this context, the aim of the present

study is to develop bilayer films in combination with chitosan in order to enhance the

properties of FucoPol films. The films were characterized in terms of their optical, hy-

groscopic, surface, mechanical and barrier properties, envisaging their potential use in

food-packaging applications.

4.3 Materials and Methods

4.3.1 Materials

FucoPol was produced and purified as described in Chapter 3, section 3.3.1. The freeze

dried FucoPol was analysed in terms of chemical composition and average molecular

weight. Commercial medium molecular weight chitosan (deacetylation degree 75 – 85 %)

was purchased from Sigma (USA). Citric acid monohydrate was purchased from VWR

chemicals – BDH Prolabo (UK). Glycerol (analytical grade) was used as plasticizer and

purchased from Sigma (USA).

4.3.2 FucoPol chemical composition

FucoPol dried samples (5 mg) were hydrolyzed (2 h at 120 ºC) with trifluoroacetic acid

(TFA) (0.1 mL TFA 99%), and the hydrolysate was used for the identification and quan-

tification of the constituent sugar monomers by ion chromatography (HPIC), using a

CarboPac PA10 column (Dionex), equipped with an amperometric detector. The sep-

aration was performed at 30 ºC with a gradient of NaOH (0.018 – 0.025 mol L−1) and

CH3COONa (0 – 0.17 mol L−1). Fucose, glucose, galactose and glucuronic acid (Sigma,

USA) were used as standards at concentrations between 0.005 and 0.1 g L−1. The acid

hydrolysates were also used for the identification and quantification of acyl groups by

HPLC with an Aminex HPX-87H column (BioRad) coupled to a UV detector. The analysis

was performed using sulphuric acid (0.005 mol L−1 H2SO4) as eluent, at a flow rate of

0.6 mL min−1 and a temperature of 30 ºC. Acetate, pyruvate and succinate (Sigma, USA)

were used as standards at concentrations between 0.015 and 1.0 g L−1.

4.3.3 FucoPol average molecular weight

The EPS average molecular weight (Mw) were determined by size exclusion chromatogra-

phy–multi-angle laser light scattering (SEC-MALLS - Wyatt Technology Corporation

Dawn Model). The FucoPol solutions (2 g L−1) were prepared in 0.1 M Tris–HCl, NaCl

(0.2 mol L−1), pH 8.1 buffer, which was also the SEC mobile phase. The SEC columns

(PL aquagel-OH mixed 8 µm, 300×7.5 mm) were equilibrated for 24 h before running
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the analysis at a flow rate of 0.7 mL min−1 at room temperature. Each analysis was con-

ducted in duplicate. Signals from MALLS were recorded in parallel and treated with

Astra (V 4.73.04) in order to follow the purity and molecular mass distribution of the

polysaccharide. A dn/dc of 0.190 mL g−1 was adopted to calculate the Mw.

4.3.4 Films preparation

FucoPol filmogenic solutions were prepared by dissolving freeze dried FucoPol in dis-

tilled water (1.5% w/w) under stirring, at room temperature, until complete dissolution.

Then, citric acid (50% wcitric acid/wdried polymer) was added and the solution was left under

stirring for complete homogenization.

Chitosan films were prepared by dissolving chitosan in an acetic acid (1% w/w) solu-

tion, at a concentration of 1.5% (w/w). After stirring overnight at ambient temperature,

glycerol (50% wglycerol/wdried polymer) and citric acid (50% wcitric acid/wdried polymer) were

added, followed by stirring for complete homogenization.

Air bubbles were removed under vacuum, and the solution was transferred to Teflon

petri dishes and left to dry at 30 ºC, during 24 h.

Bilayer films were prepared by a two-step coating technique. Firstly, the FucoPol

solution, prepared as described above, was cast onto a Teflon petri dish and then dried

at 30 ºC until a firm but still adhesive surface was obtained. Then, the chitosan solution,

prepared as described above, was cast on the top of FucoPol film and both layers were

dried at 30 ºC during 24 h.

4.3.5 Morphological characterization

The morphology of the bilayer films was evaluated by scanning electron microscopy (SEM)

using a FEG-SEM JEOL JSM7001F (Oxford) equipment, with the acquisition system JEOL

software PC-SEM. Samples were coated with chromium sputtering (Quorum Technolo-

gies, Q150TES) to enable the observation of surface and cross section. For cross-section

observation, the films were cryofractured by immersion into liquid nitrogen.

4.3.6 Colour and transparency

Colour alteration on objects caused by application of the prepared films and their trans-

parency were determined as described in chapter 3, section 3.3.3.

4.3.7 Contact angle measurements

The hydrophilic character of the films was evaluated from the water contact angles of

their upper surface. The water contact angles were measured at room temperature (23 ºC)

using a goniometer (KSV Instruments LTD, CAM 100, Finland) with the software KSV

CAM 100. Samples with dimensions of 10 mm x 50 mm were used and the contact angle
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value was given by the average on both sides of the drop. Three film replicates were

analyzed.

4.3.8 Water sorption isotherms

Water sorption isotherms were determined by a gravimetric method at 30 ºC. Samples

with dimensions of 20x20 mm were previously dried at 70 ºC during 24 h. The samples

were then placed in desiccators with different saturated salt solutions: LiCl, CH3COOK,

MgCl2 6H2O, K2CO3, Mg(NO3)2, NaCl, BaCl2 and K2SO4, with a water activity of 0.115,

0.225, 0.324, 0.447, 0.520, 0.769, 0.920 and 0.977, respectively. Three film replicates

were equilibrated at each salt solution. The samples were weighed after three weeks,

ensuring that the equilibrium has been reached. The Guggenheim–Anderson–de-Boer

(GAB) model (Eq. 4.1) was used to fit the experimental sorption data.

X =
CkX0 aW

(1− k aW )(1− k aW +CkaW )
(4.1)

where X is the equilibrium moisture content (gwater/gdry solids) at the water activity (aW ),

X0 is the monolayer moisture content, C is the Guggenheim constant and represents

the energy difference between the water molecules attached to primary sorption sites

and those absorbed to successive sorption layers, and k is the corrective constant owing

to properties of multilayer molecules with respect to the bulk liquid. GAB equation

parameters were calculated by non-linear fitting using the software OriginLab® Origin

9.

4.3.9 Solubility and swelling degree

For measuring the solubility and swelling degree, samples (20 x 20 mm) were placed 24 h

at 70 ºC to obtain a dried sample mass (m1, g). Then the films were placed in 20 mL

of deionized water during 24 h under orbital stirring at room temperature. Afterwards,

they were weighted (m2, g), dried again during 24 h at 70 ºC and weighted (m3, g). The

solubility (S, %) and swelling degree (Sw, %) were calculated by the following equations:

S =
m3 −m1

m1
x 100 (4.2)

SW =
m2 −m3

m1
x 100 (4.3)

4.3.10 Mechanical properties

Tensile tests were performed in order to determine tensile stress at break (TS, MPa),

elongation at break (EB, %) and Elastic Modulus (EM, MPa), as described in chapter 3,

section 3.3.5.

The samples were equilibrated previously at 50.3% RH and 23 ºC. Five film replicas

were analyzed.
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4.3.11 Water vapour permeability

The water vapour permeability (WVP, mol m−1s−1Pa−1) was measured gravimetrically,

and determined as described in chapter 3, section 3.3.6.

4.3.12 Gas permeability

The tests were carried out using a stainless steel cell with two identical chambers sepa-

rated by the film. The films were equilibrated at room temperature (24 ºC) and relative

humidity (50%) before being tested. The permeability was evaluated by pressurizing one

of the chambers (feed) up to 0.7 bar, with pure gas, either carbon dioxide (99.998%) or

oxygen (99.999%) (Praxair, Spain), followed by the measurement of the pressure change

in both chambers over time, using two pressure transducers (JUMO, Model 404327, Ger-

many). The temperature was maintained constant at 30 ºC, using a thermostatic bath

(Julabo, Model EH, Germany). The permeability was calculated by Eq. 4.4, using five

independent measurements:

1
β

(
∆p0

∆p

)
= P

t
δ

(4.4)

Where ∆p (mbar) is the pressure difference between feed and permeate compartment,

P ( mol m m−2 s−1 Pa−1) is the gas permeability, t (s) is the time, δ (m) is the film thickness

and β is the geometric parameter of cell, as described by Alves et al. [6].

4.3.13 Statistical analysis

In this work, the obtained data values were statistically analysed by one-way analysis of

variance (ANOVA) using OriginLab® Origin 9. Differences between pairs of means were

assessed on the basis of confidence intervals using the Tukey test. The least significance

difference was P > 0.05.

4.4 Results and discussion

4.4.1 FucoPol characterization

The chemical composition analysis revealed FucoPol was composed of fucose (33 mol%),

glucose (25 mol%), galactose (25 mol%) and glucuronic acid (15 mol%) and a total acyl

groups content of 18 wt%. The average molecular weight was 4.7x106 g mol−1.

4.4.2 Films appearance, colour alteration and transparency

FucoPol, chitosan and bilayer films were uniform and homogeneous by naked eye ob-

servation. The bilayer films presented a brownish tone, as well as FucoPol stand-alone

films.

38



4.4. RESULTS AND DISCUSSION

The transparency of bilayer films measured at 600 nm was 5.6±0.3, while that of

chitosan and FucoPol stand-alone films was 1.9±0.1 and 9.4±0.2, respectively. These

results suggest that the transparency value of the bilayer film is the average of the trans-

parency values of the two films and is in the same order of magnitude of that of low

density polyethylene (LDPE) which presents a transparency value of 3.05 [171].

Regarding morphology, SEM analysis revealed that FucoPol, chitosan and bilayer

films were constituted by a dense structure (Figure 4.1). The chitosan (upper layer) was

homogeneous without any pores (Figure 4.1a). The cross-section image (Figure 4.1b)

shows two distinct dense layers: the upper chitosan layer was compact and smooth, while

the lower FucoPol layer presented a more irregular structure. This characteristic may be

attributed to some polymer aggregates of FucoPol that are not completely dissolved, in

fact, its filmogenic solution was not fully transparent.

a b

Figure 4.1: SEM images of bilayer films (a) Upper surface - chitosan (magnification
1500x) (b) Cross-section (magnification 600x)

Figure 4.2 presents the colour parameters of coloured paper surfaces, uncovered and

covered by the films samples. It is possible to observe that the hue (hab, angle towards

the horizontal axes) did not change substantially with films application.

In addition, for all covered coloured surfaces, there was an approximation towards

the origin, which corresponds to a decrease in colour saturation (chroma, Cab). The Cab

values observed for the bilayer films were similar to that observed for FucoPol films.

From the values of ∆Eab (Insert in Figure 4.2), it may be foreseen that the total colours

alteration originated by all films can be perceived by the human eye. The largest ∆Eab

was found for the most different colours (violet, green, red) of the original film colour.

Overall, the higher differences in colour were induced by FucoPol films, which influenced

the behavior of the bilayer films.
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Figure 4.2: Parameters a∗ and b∗ of the CIELAB system for different coloured surfaces un-
covered (diamonds - ♦) and covered by FucoPol films (circles - ◦), chitosan films (squares
- �) and FucoPol/chitosan bilayer films (triangles - 4) and total colour alteration (∆E)
values (insert).

4.4.3 Contact angle measurements

The water contact angle was measured in the upper surface of the films, which was not

affected by the flat Teflon petri dish where the films were dried. The obtained values were

the average of the first 5s after the water drop deposition. A contact angle of 58.1±5.0º

was obtained for chitosan stand-alone films revealing its hydrophilic character.

The bilayer films presented a higher contact angle (70.6±1.6º), although the upper

side layer was composed by chitosan, there was a significant difference in the contact

angle values comparing with chitosan stand-alone films.

Similar results were obtained by Kurek et al. for bilayer films of chitosan and whey

protein with a contact angle increase from 71º to 94º [108]. This change in the contact an-

gle was attributed to immediate swelling of chitosan layer and surface hygroscopicity. In

the present work, a glycerol transference by diffusion from the chitosan filmogenic solu-

tion to the lower FucoPol layer upon bilayer formation may also have occurred, resulting

on a less hydrophilic chitosan layer surface that increased contact angle.
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In addition, the single chitosan film was cast on a completely flat and rigid surface

(Teflon surface), while in the bilayer films the chitosan layer was cast on a previously less

flat and more flexible FucoPol layer. The contact angles difference could be also a result

of small differences on the surface roughness between the two types of films, inherent to

the different film formation methods.

4.4.4 Water sorption isotherms

The water sorption isotherms for the bilayer FucoPol/chitosan, FucoPol and chitosan

stand-alone films, and respective GAB equation parameters are presented in Figure 4.3.

Figure 4.3: Water sorption isotherms of FucoPol, chitosan and bilayer films at 30 ºC fitted
by GAB model (lines), experimental data (symbols) and the obtained GAB parameters
(insert).

The obtained moisture content for all films increased slowly for water activity values

below 0.75, but above that, a great increase in moisture content with increasing water

activity was observed. A similar behavior was referred for other polysaccharide films (e.g.

gellan gum, GalactoPol, pectin and starch) [3, 60, 115].

It may be emphasized that chitosan films demonstrated a higher water vapour adsorp-

tion capacity than FucoPol and bilayer films, for water activity values above 0.7, which

might be related to the concentration of glycerol present. Higher concentration of plas-

ticizer increases the films moisture affinity, due to the hydrophilicity of the plasticizers,

presenting hydroxyl groups able to interact with water by hydrogen bonds. This behavior
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in plasticized films with glycerol has been reported for starch films [115], feather keratin

films [173] and alginate films [140] among others.

The experimental data for all films is well described by the GAB model (r2 = 0.995

– 0.999). The monolayer value (X0) indicates the maximum amount of water that can

be absorbed in a single layer per gram of dry film. X0 obtained for FucoPol films (0.06

gwater/gsolids) is in agreement with the values referred in Chapter 3, section 3.4.2 for

FucoPol films with citric acid (0.07 gwater/gsolids), Abdillahi et al. [1] for wheat flour/g-

lycerol/PLA blends with low content in citric acid (0.06 gwater/gsolids) and Mali et al.

[115] for cassava starch films with glycerol (0.05 gwater/gsolids). Higher X0 values were ob-

tained for chitosan and the bilayer films (0.18 and 0.14 gwater/gsolids, respectively), which

suggests that the bilayer films X0 value was controlled by the chitosan layer.

The C parameter is related to the difference of magnitude between the upper water

molecules layers and the monolayer. This parameter decreases with increasing plasticizer

concentration, which is in agreement with the presented results: the lowest value (0.4)

was obtained for chitosan films, which has the highest plasticizer concentration. The k

parameter that determines the profile at the highest activity range, regulating the up-

swing after the plateau [197], shows no significant differences among the studied films.

The same behavior was reported by Mali et al. [115] and Coupland et al. [37] for cassava

starch and whey protein films with different plasticizer content.

4.4.5 Solubility and swelling degree

The results presented in Figure 4.4a reveal that the solubility of FucoPol films may be

decreased with the application of a chitosan layer. The bilayer films, with a solubility in

water of 33.6±3.6%, were significantly less soluble than FucoPol films (solubility in water

of 47.5±5.2%), but not significantly different from chitosan films (solubility in water of

30.5±0.5%). This fact may result from electrostatic interactions between both polymers

due to different net charges, beyond hydrogen bonds, as has been reported for bilayers of

gelatin and chitosan [150].

a b

Figure 4.4: Solubility (a) and swelling degree (b) of studied films.
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Regarding the swelling degree (Figure 4.4b), FucoPol films presented the highest value

(400.2±15.1%). High values of swelling (>150%) have been reported for pork gelatin, ox-

idized potato starch [105] and pectin [146], among others. Moreover, the swelling degree

is influenced by the amount of plasticizer used (e.g. glycerol). It is usually higher when

high amounts of plasticizer are used, because it increases water uptake. Chitosan films

presented the lowest swelling degree (94.0±0.9%), which may be attributed to crosslink-

ing reactions with citric acid. Cui et al. [43] reported the formation of amide bond

between citric acid and chitosan amine group, which might be responsible for increased

water resistance. As it was observed for solubility in water, the swelling of FucoPol films

could be decreased by the combination with the chitosan layer, having in account the

bilayer structure, its swelling degree is nearly the average of that of stand-alone films

of chitosan and FucoPol, once the bilayers are constituted by half of each polymer. The

bilayer films presented a swelling degree of 263.3±23.3%, which is significantly lower

than that of FucoPol films which may be attributed to the lower water absorption capac-

ity of chitosan. Still, from the results presented for all films tested, it is foreseen their

application in environments with low water content, due to their high affinity to water

that may compromise their physical integrity.

4.4.6 Mechanical properties

The film samples were conditioned at 50.3% relative humidity and subjected to tensile

tests. The mechanical parameters obtained for FucoPol/Chitosan bilayer films present

intermediate values of both polymer layers. It is possible to notice a significant difference

of elongation at break (38.4±11.3%) and elastic modulus (137.0±36.8 MPa) when com-

paring with FucoPol stand-alone films (Table 4.1). The bilayer films were stretched until

break and no separation from each layer was noticed, even upon rupture. Bilayer films

worked always as a whole system showing good adhesion.

Table 4.1: Mechanical properties of the films tested in this study along with others re-
ferred in the literature.

Films %RH Tensile strength at break Elongation at break Elastic modulus Reference
(MPa) (%) (MPa)

FucoPol 50.3 7.6 ± 2.2 6.6 ± 2.6 237.5 ± 43.7 Present Study

Chitosan 50.3 18.5 ± 7.3 86.7 ± 9.9 20.8 ± 5.2 Present Study

Bilayer 50.3 11.9 ± 6.2 38.4 ± 11.3 137.0 ± 36.8 Present Study

FucoPol
(1:1 citric acid) 44.3 3.1 ± 0.3 54.9 ± 4.0 2.8 ± 0.2 [60]

Chitosan − 22.2 ± 3.9 73.6 ± 8.2 − [4]

Chitosan 50±2 66 51 19 [63]

FucoPol films with a water content of 11% (on a dry basis) have shown the more

stiff characteristics: lower tensile strength at break (TS) (7.6±2.2 MPa), low elongation at
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break (EB) (6.6±2.6%) and higher elastic modulus (EM) (237.5±43.7 MPa). Comparing to

FucoPol films in Chapter 3, it is possible to see the effect of the decrease amount of citric

acid in the films composition. The proportion 1:2 in citric acid:FucoPol used is not suffi-

cient to have the plasticized effect described previously for films 1:1 (citric acid:FucoPol).

On the other hand, chitosan films, with a water content of 7% (on dry basis), have shown

a higher TS (18.5±7.3 MPa), higher EB (86.7±9.9%) and lower EM (20.8±5.2 MPa). The

results obtained for chitosan are difficult to compare with the literature, because of the

large range of variables involved (different compositions, degree of acetylation, molecu-

lar weight, film preparation methods and conditioning conditions). Despite that, similar

values of TS and EB were reported by Abugoch et al. [4] and a similar value of EM was

reported by Ferreira et al. [63] for films with 1:10 w/w (glycerol/chitosan) (Table 4.1).

The plasticizing effect of glycerol is given by the presence of the additive itself, and also

by its hygroscopic behavior. The films containing glycerol are able to adsorb more water

vapour, increasing the plasticizing degree. In this work, beyond citric acid, which has

been described to produce brittle films when used as additive, chitosan films have 50%

of glycerol (dry basis) that enabled to obtain flexible chitosan matrices [144].

The mechanical parameters of bilayer films of FucoPol and chitosan present inter-

mediate values of both polymer layers. It is possible to notice significant differences of

elongation at break (38.4±11.3%) and elastic modulus (137.0±36.8 MPa) when compar-

ing with FucoPol films.

4.4.7 Water vapour permeability

Water vapour permeability (WVP) is one of the most important properties of bio-based

polymer films for food packaging applications since it has direct influence on the shelf

life of food products. Polysaccharide films present a high WVP due to their hydrophilic

nature.

Table 4.2: Water vapour permeability of natural films.

Film ∆RH (%) WVP (x10−11 mol m−1s−1Pa−1) Reference

FucoPol 76.9− 22.5 0.75 ± 0.05 Present Study

Chitosan 76.9− 22.5 4.13 ± 0.13 Present Study

Bilayer 76.9− 22.5 1.65 ± 0.40 Present Study

FucoPol
(1:1 citric acid) 76.9− 22.5 1.01 ± 0.23 [60]

Chitosan 65− 0 1.06 ± 0.05 [150]

Chitosan 75− 30 1.32 ± 0.21 [108]

FucoPol films exhibited higher water vapour barrier properties, (0.75±0.05)x10−11-

mol m−1s−1Pa−1, than chitosan ones (4.13±0.13)x10−11 mol m−1s−1Pa−1 for a driving

force of 76.9–22.5% RH (Table 4.2). A higher WVP value was reported for FucoPol films
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with higher citric acid content [60]. Regarding the WVP of chitosan, it is difficult to

compare the results obtained with the reported by other authors, since the WVP is highly

dependent on the driving force used, amount of plasticizer or other additives, molecular

weight, among others variables. Kurek et al. [108] and Pereda et al. [150] reported

lower WVP values for chitosan films with 30% (w/w) and 28% (w/w) of glycerol contents,

respectively (Table 4.2).

The water vapour permeability, for a driving force of 76.9–22.5% RH, obtained for

the bilayer films was (1.65±0.23)x10−11 mol m−1s−1Pa−1, which is an intermediate value

significantly different from that of both FucoPol and chitosan films.

It is possible to calculate the permeability of multi-layer films using the permeability

and thickness of each individual layer [36]. So, in this work, the permeability of the

bilayer films was estimated by:

lBL
PBL

=
lF
PF

+
lCh
PCh

(4.5)

Where l is the thickness and P is the permeability of bilayers (BL), FucoPol (F) and

chitosan (Ch) respectively. The permeability obtained using Eq. 4.5, was 1.41x10−11 mol-

m−1s−1Pa−1 which is not significantly different from the experimental value. This result

shows that is possible to design and predict the permeability characteristics of bilayer

films using the permeability values of each layer if the process of building the bilayer

system causes no significant interferences at the layers interface.

4.4.8 Gas permeability

Gas barrier properties of polymeric films are essential to study and design materials

for food packaging applications. Polysaccharides usually provide good barriers to gases

(e.g. oxygen and carbon dioxide) due to their highly packed hydrogen-bonded dense

polymer matrix, at low relative humidity (RH), but their permeability to gases increases

significantly with increasing ambient moisture, due to the plasticizing effect of water. In

this work, the permeability was measured for films previously conditioned at a RH of

55% and the results are presented in Table 4.3.

The oxygen permeability of the FucoPol, chitosan and the bilayer films are one order of

magnitude lower than their carbon dioxide permeability values. This behavior is common

for hydrophilic polymer films, such as chitosan, pullulan or starch, and has been reported

by other authors [57, 77].

Bilayer films presented a significantly higher barrier to oxygen than the control films,

with an O2 permeability of 0.47x10−16 mol m m−2s−1Pa−1. Regarding the barrier behavior

to carbon dioxide, bilayer films presented a permeability of 5.8x10−16 mol m m−2s−1Pa−1,

which is significantly lower than that of chitosan film. However, the value was not signif-

icantly different than that of the FucoPol film.

The permeability to gases of polymeric films is affected by many factors, such as

relative humidity, polymer morphology and polymer matrix plasticization. FucoPol has

45



CHAPTER 4. DEVELOPMENT AND CHARACTERIZATION OF BILAYER FILMS

OF FUCOPOL AND CHITOSAN

Table 4.3: Oxygen and carbon dioxide permeability of selected natural and synthetic
polymer films.

Films %RH O2 Permeability CO2 Permeability Selectivity Reference
(x10−16 mol m m−2s−1Pa−1) (x10−16 mol m m−2s−1Pa−1) (α)

FucoPol 55± 5 1.93 ± 0.70 6.53 ± 0.79 2.7
Present
Study

Chitosan 55± 5 2.35 ± 0.48 15.03 ± 4.25 6.4
Present
Study

Bilayer 55± 5 0.47 ± 0.19 5.80 ± 0.70 12.6
Present
Study

FucoPol
(1:1 citric acid) 32.4 0.7 ± 0.3 42.7 ± 5.6 62 [60]

Chitosan 50 2.3 ± 0.1 24.3 ± 2.7 11 [57]

Pullulan 30 0.17 0.72 4.2 [77]

Galactomannan
(1:1 glycerol) 50 0.13 ± 0.03 14.7 ± 0.6 113 [27]

HDPE 55 - 75 2.2 35.5 16.4 [206]

LDPE 50 - 75 8.4 26.6 3.2 [206]

EVOH 29 90 0.24 0.165 0.68 [206]

been reported to present significant differences in O2 and CO2 permeability, for films

prepared with 1:1 citric acid in Chapter 3, when compared to those of this Chapter.

This may be attributed to the different plasticization of the polymer matrix and relative

humidity at which the films were conditioned (RH=32%). Regarding chitosan films, no

significant differences in permeability were noticed with the reported by Fajardo et al.

[57] for chitosan films with 50% HR.

Studies with bilayer films with natural and synthetic polymers revealed great improve-

ments in their barrier properties. Ortega-Toro et al. reported higher barrier to oxygen

transport of starch and polycaprolactone (PCL) bilayers, when compared to isolated poly-

mer layers [142]. And Schmid et al. reported that whey protein (WPI) coated polyethylene

terephthalate (PET) had a significant decrease in O2 permeability comparing to PET or

WPI films [178].

Comparing the FucoPol/chitosan bilayer with synthetic polymers used in packaging

(HDPE and LDPE), it is perceived significantly higher barrier properties, both to oxygen

and to carbon dioxide. However, the barrier of this bilayer is still lower than that of EVOH

films, one of the better hydrophilic gas barriers used in packaging, with a permeability

to O2 of 0.24x10−16 mol m m−2s−1Pa−1 [132].

For packaging applications, the ratio of CO2/O2 permeability values (selectivity -α),

is also important since it determines the proportion of those gases inside the package.

The selectivity values obtained for the bilayer films (12.6) is similar to those reported for

high density polyethylene (HDPE) (Table 4.3).
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4.5 Conclusions

Bilayer films of FucoPol and chitosan are homogeneous, flexible and resistant. They are

transparent, causing colour alterations on coloured surfaces detectable by human eye.

The films presented a high swelling degree in contact with liquid water and a high water

vapour permeability, which disables their used in applications that involve the direct

contact with high moisture content products. However, they have shown excellent barrier

properties to O2 and CO2, better than those referred for HDPE. Furthermore, the bilayer

films revealed to be significantly less permeable to O2 than single FucoPol films. Such

properties, together with their production from renewable resources, biodegradability

and nontoxicity, make these bilayer films good candidates to be used for packaging of low

moisture content products. In addition, they also present a good potential as alternatives

to some of the synthetic plastic materials from non-renewable resources currently used

in multilayered barriers (e.g. ethylene vinyl alcohol).
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5
Comparison of different coating techniques

on the properties of FucoPol films

5.1 Summary

Plasma deposition, liquid flame spray (LFS) and atomic layer deposition (ALD) were

used to form inorganic coatings in new exopolysaccharide (FucoPol) biodegradable films.

Coated films were characterized in terms of surface, optical and barrier properties in

order to evaluate their potential use in food packaging.

FucoPol films presented dense and homogeneous surface with instant water contact

angle of 95º. Plasma deposition of perfluorohexane (PFH) on FucoPol surface has not

shown significant improvement in the hydrophobic behavior over the time. The Fu-

coPol coating of SiO2 nanoparticles deposited by LFS and plasma deposition of PFH

have shown higher instant water contact angle (135º) caused by coating surface rough-

ness, but this hydrophobic behavior was not stable over time. FucoPol films coated only

with TiO2 deposited by ALD and combination of that with plasma deposition of PFH

have shown stable water contact angle during time (90º and 115º, respectively), trans-

parency in the same order of magnitude and significantly lower permeability to water

vapour (3.45x10−11 mol m−1s−1Pa−1 and 3.45x10−11 mol m−1s−1Pa−1 when compared to

uncoated films with 5.32x10−11 mol m−1s−1Pa−1). Moreover, films coated with TiO2-PFH

have also shown a permeability to oxygen of 1.70x10−16 mol m m−2s−1Pa−1 which is 67 %

lower than uncoated films.

5.2 Introduction

Food packaging is essential in the food industry to deliver quality products to the con-

sumer, by reducing food products damage and spoilage, and decreasing or eliminating the

49



CHAPTER 5. COMPARISON OF DIFFERENT COATING TECHNIQUES ON THE

PROPERTIES OF FUCOPOL FILMS

risk of adulteration. Synthetic petrochemical-based packaging materials are a common

choice due to a combination of properties such as flexibility, strength, lightness, stability,

impermeability, heat sealability, low price and ease of sterilization. However, due to their

non-degradability, synthetic plastic packaging became the largest contributor for plastic

waste [61, 194].

A good potential alternative to overcome this environmental problem relies on the

use of bio-based materials from renewable resources, in particular the use of biopolymers,

which include polysaccharides.

Polysaccharides are the most abundant macromolecules in the biosphere and can be

obtained from plants, algae, animals or produced by microorganisms. Polysaccharides

have been used to produce biodegradable films and thin membranes, which have been

applied in several areas, including in the food industry [61, 69, 195].

In this work, FucoPol, a high molecular weight exopolysaccharide produced by En-
terobacter A47, was used to produce biodegradable films. This is an anionic and water-

soluble heteropolysaccharide composed by sugars (fucose, galactose, glucose and glu-

curonic acid) and acyl groups (acetate, succinate and pyruvate). FucoPol films have been

characterized in previous chapters, showing to be transparent with brownish tone, duc-

tile behavior, low water vapour barrier properties but high barrier properties to gases, in

particular to oxygen [60–62]. However, for use in food packaging, its water repellency

and barrier towards gases and water vapour should be improved.

Water repellency (superhydrophobicity and water sorption) and barrier properties

(water vapour and oxygen) of polymer films have been enhanced both for synthetic (e.g.

polyethylene (PE), polyvinyl chloride (PVC), ethylene vinyl alcohol (EVOH), polyethylene

terephthalate (PET) and LDPE) and natural (e.g. cellulose, alginate and pullulan.) mate-

rials [40, 194]. Multilayer systems have been employed to improve barrier performance,

traditionally by incorporation of an aluminum foil, however this hinders its recyclability

[85]. The research for improving barrier properties to water vapour and oxygen is thus

important for achieving sustainable solutions. The most common technology to improve

such barriers on polymeric substrates consists on the deposition of inorganic thin films

of metals or oxides. Deposition of inorganic oxide layers is advantageous over metallic

aluminum due to their transparency and microwaveability.

However, the barrier properties of a polymer-coated system depend on numerous

factors, such as thickness, composition, density, surface topography and defects in the

inorganic layer [54, 194].

In this work three different thin coating techniques were used: plasma deposition,

liquid flame spray (LFS) and atomic layer deposition (ALD).

Plasma deposition can be used to deposit functional layers, made of hydrocarbons,

hydrocarbons with polar groups, organosilicons, halocarbons and organometallics at low

substrate temperature [166]. In this work perfluorohexane (PFH) was used, aiming at

achieving a stable hydrophobic behavior of FucoPol films. PFH has been used in several

other studies to induce hydrophobic behavior on different surfaces, like wood [130, 205],
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paper and board [166], silica surfaces [84], among others.

Liquid flame spray (LFS) is a thermal aerosol-based process used to deposit nano

metal and metal oxide particles. In this process, a liquid precursor is used and fed to-

gether with combustion gases into a specially designed burner in which the precursor is

atomized to micron-sized droplets and evaporated in the high temperature flame. The

solid nanoparticles that deposit on the substrate are formed through different synthesis

reactions of the precursor vapor [196]. The range of materials that can be used as LFS

precursor is wide. As examples, iron oxide, manganese oxide, alumina, silica, titanium,

silver and palladium nanoparticles, have been successfully produced by LFS [127, 192].

LFS coatings have been used to improve water repellency, i.e. to create superhydropho-

bic surfaces on different packaging materials, e.g. paper, paperboard and LDPE-coated

paper. In particular, extremely water repellent surfaces can potentially be applied in

non-wetting and self-cleaning surfaces [128, 193].

In this study, FucoPol films were coated with silicon dioxide (SiO2) nanoparticles by

LFS, which were then coated with a hydrophobic PFH-layer by plasma deposition.

Atomic layer deposition (ALD) is a thin film deposition technique in which the pre-

cursor vapours are admitted into a reaction chamber one at a time. During each precur-

sor pulse, a monolayer or sub-monolayer of desirable material is formed. ALD can be

operated at room temperature, though somewhat higher temperatures are often used (85-

300 °C). It is distinguish by other techniques for its self-limited growth of the deposited

materials, which enables the deposition of high quality thin layers over large areas and

in roll-to-roll processes. The coating thickness can be controlled by changing the number

of ALD cycles used [75, 160, 210].

ALD can be used on thermally sensitive materials such as organic polymers, and can

also be used to create organic-inorganic polymer composites as gas diffusion barriers on

polymer surfaces [75].

Several studies have been published with ALD thin layers deposited on sensitive

packaging materials such as uncoated papers, polymer-coated papers and boards, and

synthetic and natural polymer films [86]. From those, several thin coating layers have

been studied, namely Al2O3, SiO2 and TiO2 [86–88, 100, 214] .

In this work, FucoPol film surfaces were coated by a thin layer of titanium dioxide

(TiO2) deposited by ALD.

The aim of the present study is to evaluate different coatings, applied with distinct

methods, on FucoPol surfaces targeting improved liquid repellence/hydrophobicity and

barriers to gases and vapour, to turn those films available to use as food packaging. It is

expected that plasma coatings can improve hydrophobic effects on FucoPol surfaces, LFS

treatment can provide water repellence behavior and ALD can induce water repellence

and barrier properties.

The characterization in terms of water contact angles, optical, morphological, hygro-

scopic and barrier properties was performed to compare the properties of the different

coatings on the FucoPol films.
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5.3 Materials and methods

5.3.1 FucoPol films preparation

FucoPol was dissolved in distilled water (1.5 % w/w) under stirring, at room temperature,

until complete dissolution. Then, hydrochloric acid was added until pH reached 3.5 and

the solution was stirred until complete homogenization.

After removing the air bubbles under vacuum, the solution was transferred to Teflon

petri dishes and let to dry at 30 ºC for 24 h, to form a polymer film. The films were stored

at a specific relative humidity and temperature, depending on the tests to be performed.

Films thickness was measured with a manual micrometer (Brave Instruments, USA).

5.3.2 Plasma deposition of perfluorohexane

Low-pressure plasma deposition was carried out using an in-house constructed reactor

consisting of a glass vessel connected to a double-stage rotary vacuum pump (Leybold-

Heraeus D 65 B).

Two externally wrapped, capacitively coupled, copper electrode bands were powered

by a 13.56 MHz radio-frequency power generator (ENI, Model ACG-3). Perfluorohexane

(PFH, Apollo Scientific) monomer was used as a precursor. During plasma deposition

the treatment (generator) power was 40 W at a pressure of 18 Pa during 5 min. Based

on previous experience, these plasma deposition parameters were chosen to provide an

uniform and homogeneous coverage of 30 nm thickness [131]. Deposition was performed

on both sides of the tested film.

5.3.3 Liquid Flame Spray coating of SiO2

The LFS coating was performed using a single nozzle type burner.

Hydrogen and oxygen with flow rates of 50 and 15 L min−1, respectively, were used

as combustion gases. Tetraethyl orthosilicate (98 % pure, Aldrich) diluted in 2-propanol

(VWR, HPLC Grade) was utilized as the SiO2 precursor. The concentration of the pre-

cursor solution was 50 mg mL−1 of silicon metal, the feed rate was 12 mL min−1, the

treatment distance was 60 mm and treatment speed was 50 m min−1.

5.3.4 Atomic Layer Deposition of TiO2

The ALD depositions were performed in a Beneq TFS-500 system using an inner cham-

ber of dimensions φ =20 cm and height of 3 cm. The deposition processes consisted of

sequential pulsing of TiCl4 and deionized water (type 2). Both reactants were delivered

from external sources kept at room temperature. N2 was used as carrier and purging gas,

and was separated from air in a nitrogen generator (Schmidlin UHPN3001 N2 purifier,

>99.999 % N2+Ar purity). The pulsing times were 1 s TiCl4 - 12 s purge - 0.5 s water -

12 s purge for 1000 consecutive cycles, resulting in a layer thickness of around 42 nm.
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Deposition was performed in both sides of the tested films and samples were kept in the

dark.

5.3.5 Morphological characterization

The morphology of the films was evaluated by scanning electron microscopy (SEM) us-

ing a FEG-SEM JEOL JSM7001F (Oxford) equipment, with the acquisition system JEOL

software PC-SEM.

Samples were coated with sputtered chromium (Quorum Technologies, Q150TES)

to enable observation of surface and cross section. For cross-sections, the films were

cryofractured after immersion into liquid nitrogen.

5.3.6 Contact angle measurements

The static contact angles of water were determined using an optical contact angle instru-

ment (CAM 200, KSV Instruments Oy). The droplet volume used was 5 µL. The treated

samples were stored and the measurements were performed in a controlled atmosphere

(50±2 % RH, 23±2 °C). Five replicates of each sample were analysed.

5.3.7 Water vapour permeability

Water vapour permeability (WVP, mol m−1s−1Pa−1) of coated and uncoated FucoPol films

were determined as described in chapter 3, section 3.3.6.

5.3.8 Colour and transparency

Colour and transparency of coated and uncoated FucoPol films were determined as de-

scribed in chapter 3, section 3.3.3.

5.3.9 Water sorption isotherms

Water sorption isotherms of coated and uncoated FucoPol films were determined by gravi-

metric method at 30 ºC as described in chapter 4, section 4.4.4.

5.3.10 Oxygen permeability

The tests were carried out using a stainless steel cell with two identical chambers sepa-

rated by the film. The films were equilibrated at room temperature (24 ºC) and relative

humidity (50 %) before being tested. The permeability was evaluated by pressurizing

one of the chambers (feed) up to 0.7 bar, with pure oxygen (99.999%) (Praxair, Spain),

followed by the measurement of the pressure change in both chambers over time, using

two pressure transducers (JUMO, Model 404327, Germany). The temperature was main-

tained constant at 30 ºC, using a thermostatic bath (Julabo, Model EH, Germany). The

permeability was calculated by Eq. 5.1, using five independent measurements:
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1
β

(
∆p0

∆p

)
= P

t
δ

(5.1)

Where ∆p (mbar) is the pressure difference between feed and permeate compartment,

P (mol m m−2 s−1 Pa−1) is the oxygen permeability, t (s) is the time, δ (m) is the film

thickness and β is the geometric parameter of cell, as described by Alves et al. [6].

5.4 Results and discussion

5.4.1 Morphological characterization

SEM analysis revealed that the FucoPol films were dense and homogeneous (Figure 5.1a

and 5.1b).

Fucopol films coated with PFH show on their surface, some dispersed agglomerates

separated by smooth areas (Figure 5.1d). Still, due to the low coating thickness of PFH, the

roughness and appearance shown in SEM image, is similar to uncoated samples. These

observations are similar to those previously reported for glass [124] and a thermoplastic

elastomer [175] coated with PFH.

FucoPol-LFS (SiO2)-PFH coated films (Figure 5.1e) show uniformly distributed SiO2

nanoparticles and agglomerates on the FucoPol surface as characteristic from the LFS

process. The cross section image (Figure 5.1f) does not show any alterations, excluding

migration of SiO2 nanoparticles to the inside of the film.

Analysis of the FucoPol-ALD (TiO2) coated films demonstrate a dense structure in

cross section (Figure 5.1h) but also show a cracking effect on the surface (Figure 5.1g)

where ALD deposition has occurred. This behavior has been reported before for PET-ALD

(Al2O3) coated films [106]. Commonly, two polymer properties define their behavior

under thermal cycling, the coefficient of thermal expansion and the glass transmission

rate. As inorganic materials deposited by ALD have significantly lower coefficient of

thermal expansion than coated polymers, this elastic misfit lead to an increase in strain

and subsequently cracking under thermal cycling [106, 126].

SEM images of FucoPol-ALD (TiO2)-PFH coated films (Figure 5.1i and 5.1j) confirm

that PFH layer cannot cover completely the cracks caused by ALD deposition, but signifi-

cant differences can be perceived.

5.4.2 Contact angle measurements

Water contact angle (WCA) measurements were used to characterize the water repellence

of FucoPol surfaces (Figure 5.2). WCA was measured on the top surface of FucoPol films,

to avoid any effects from the flat Teflon petri dish where the films were dried.

Figure 5.2 shows the static WCA of the plasma (PFH), LFS (SiO2) and ALD (TiO2)

coated FucoPol film. FucoPol film without any coating has a WCA around 95º. The thin

ALD (TiO2) coating does not change the WCA of Fucopol film. WCA of a smooth and
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Figure 5.1: SEM images of surface (a, c, e, g and i) and cross section (b, d, f, h and j) of
(a) (b) FucoPol films, (c) (d) FucoPol + PFH coating, (e) (f) FucoPol + LFS (SiO2) + PFH
coating, (g) (h) FucoPol + ALD (TiO2) coating and (i) (j) FucoPol + ALD (TiO2) + PFH
coating.
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Figure 5.2: Water contact angle of coated and uncoated FucoPol films at time 0 s.

totally clean TiO2 surface is known to be between 0º and 40º, depending on the surface

roughness and UV-exposure. However, surfaces exposed to ambient conditions and aging

are hardly completely clean, and the effect of organic molecules that are adsorbed onto

the surfaces, decreased the surface energy and smooth TiO2 surface is usually reported

to have CA around 80º [190]. A low pressure plasma deposition of PFH increased the

WCA of FucoPol film, as expected. As example, an increase in water contact angle have

been reported for poly(ethylene-co-vinyl alcohol) (EVOH) films from 52º to 105º with

CF4 plasma deposition [116]. In this work hydrophobic PFH-layer increased the WCA

of FucoPol from 95º to 112º, ALD (TiO2) coated FucoPol increased the WCA to 119° and

LFS (SiO2) coated FucoPol presented a WCA for 135°. On the contrary to ALD (TiO2)

and Plasma (PFH) coated FucoPol surfaces, the SiO2 nanoparticle coating increases the

roughness of the FucoPol surface, as seen in the SEM images in Figure 5.1e. The surface

roughness increased the WCA of hydrophobic surface [23].

However, FucoPol-LFS (SiO2)-PFH surface do not have micrometer and submicrome-

ter scale structure, which would cause air to be present in the interface between the sur-

face and water, and thus create a superhydrophobic surface, i.e. WCA over 150° [193]. In

addition to the static WCA measurement, which represents spontaneous wetting, WCAs

as a function of time were followed (Figure 5.3).

FucoPol films with no treatment demonstrate a decrease in water contact angle be-

tween 95º and 77º in 120 s. Treatment with low pressure plasma deposition of PFH has
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Figure 5.3: The effect of coating treatment in water contact angle of FucoPol films surface.

shown, as expected, an increase in initial value (time 0 s) to 112º, but after that WCA

decreased over time and no significant differences to uncoated FucoPol were noticed. De-

spite a hydrophobic behaviour of the PFH layer, the layer amount and swelling of FucoPol

leads to the decrease in WCA to values close to untreated FucoPol films.

The combination of LFS (SiO2) and plasma treatment with PFH showed a high increase

in WCA, but after 120 seconds the WCA decreased to lower values than the WCAs of

the other surfaces. WCA on FucoPol films with ALD coatings were stable with time,

demonstrated by changes lower than 4º. However, films with ALD (TiO2)-PFH show the

most hydrophobic behaviour, with WCAs between 119º and 115º.

Once the combined LFS (SiO2)-PFH coating did not demonstrate a stable WCA and

resulted in values close to untreated films (p<0.05), this coating was removed from the

rest of study.

5.4.3 Water vapour permeability

Water vapour permeability (WVP) is an important parameter in packaging material and

has a direct influence on the shelf life of food products.

In this study, the same driving force (76.9-22.5 % RH) was used for films with and

without coatings to evaluate their performance in the same conditions (Table 5.1). Un-

coated FucoPol films present a water vapour permeability of 5.28 x10−11 mol m−1s−1Pa−1.
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The plasma deposition of PFH in FucoPol films did not decrease the water vapour

permeability. Despite the value was higher than films with no coating, non-significant

(p>0.05) differences were noticed.

TiO2 deposition by ALD (with a 42 nm thick layer) demonstrated a significant de-

crease on water vapour permeability of about 35 %. ALD-grown oxides layers (such as

Al2O3, SiO2 and TiO2) have previously been reported as barrier layers to oxygen and

water vapour on polymeric materials (polylactide, pectin, among others) [88, 106].

The addition of PFH to FucoPol-ALD (TiO2) coated films has shown non-significant

differences in the water vapour barrier behavior, in contrast with what was observed with

WCA.

From the obtained results above, the deposition of TiO2 is the most important factor

to decrease water vapour permeability and not the hydrophobic layer of PFH.

However, it should be emphasized that barriers to water vapour are not directly pro-

portional to the thickness of the ALD layer. It has been reported that LDPE films with

ALD coatings of TiO2 with 40 nm thickness presented higher water vapour transmission

rates than LDPE films with a thickness of 23 nm [106]. It is important to notice that

the development of barrier behavior by coatings application in flexible subtracts has to

consider other aspects, such as polymer surface modification, polymer-inorganic layer

interface modification and inorganic layer structure.

Table 5.1: Water vapour permeability of coated and uncoated FucoPol films.

Film ∆RH (%) WVP (x10−11 mol m−1s−1Pa−1)

FucoPol 76.9− 22.5 5.32 ± 0.69

FucoPol + Plasma (PFH) 76.9− 22.5 6.25 ± 0.78

FucoPol + ALD (TiO2) 76.9− 22.5 3.45 ± 0.49

FucoPol + ALD (TiO2) + Plasma (PFH) 76.9− 22.5 3.40 ± 0.71

Once PFH coating alone did not demonstrate any improvement on WCA over time and

in barrier properties to water vapour, FucoPol films with this coating were not considered

in the rest of the study.

5.4.4 Colour and transparency

Transparency plays an important role in packaging materials because it is a key factor to

good acceptance by end-users when the aim is to show the product inside the package

upon purchase. The transparency of FucoPol films measured at 600 nm was 5.9 ± 0.1,

while that of FucoPol-ALD (TiO2) and FucoPol-ALD (TiO2)-PFH coated films was 9.6±0.3

and 8.4 ± 0.1, respectively, both significantly different from the one of films without coat-

ings . These results suggest that the TiO2 layer, or formation process of it, affects the

transparency of FucoPol films in a negative manner, giving a more yellowish colour. On
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the other hand, the application of PFH layer, seems to bring a positive effect to trans-

parency of FucoPol-ALD (TiO2) coating, probably due to a reduction in the scattering of

the TiO2 rough layer.

Colour parameters (a∗ and b∗) of coloured paper surfaces, uncovered and covered by

the films samples with several coatings are presented in Figure 5.4. An approximation

towards the origin can be noticed for all colours (exception to white). This behavior cor-

responds to a decrease in colour saturation (chorma, Cab) caused by coatings deposition.

Once more, FucoPol-ALD (TiO2)-PFH films presented a different behavior, and for yel-

low, green and red colour, these films demonstrate higher colour saturation (near initial

values), which are in accordance with the transparency results.

Figure 5.4: Parameters a∗ and b∗ of the CIELAB system for different coloured surfaces
uncovered (circles - ◦) and covered by FucoPol films (squares - �), FucoPol films + ALD
(TiO2) coating (triangles - 4) and FucoPol films + ALD (TiO2) + Plasma (PFH) coating
(diamonds - ♦) and total colour alteration (∆Eab) values (insert).

From the values of ∆Eab (Insert in Figure 5.4), it may be foreseen that the total colours

alteration originated by system FucoPol films with coating can be perceived by the human

eye. In general, higher ∆Eab values were found for films coated only with TiO2, just for

white colour, total colour alteration is significantly higher to films coated with both layer

(TiO2 and PFH).
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5.4.5 Water sorption isotherms

The water sorption isotherms for FucoPol films with and without coatings, and respective

GAB equation parameters are presented in Figure 5.5. The experimental data for all films

are well described by the GAB model (r2= 0.9991–0.9996). The obtained moisture content

for all tested films increased with water activity (aw), but curves for the three samples

films are considerably different.

Figure 5.5: Water sorption isotherms of FucoPol film coated and uncoated at 30 ºC fitted
by GAB model and the obtained GAB parameters (insert).

FucoPol films without any coating show the most sigmoidal shape, usually observed

for polysaccharides and corresponding to higher C parameter of GAB model, which is re-

sponsible for more pronounced form of the “knee” for lower activity range [197]. FucoPol-

ALD (TiO2)-PFH sample, as expected, show a less sigmoidal shape, corresponding to

lower C parameter and lower water absorption at low water activities, which might be

due to the hydrophobic behavior of PFH on top of FucoPol-ALD (TiO2) surface.

The k parameter determines the profile at higher activity range, regulating the up-

swing after the plateau, in this case uncoated FucoPol films have shown the highest value

(0.86±0.03) which are in accordance with GAB model fitting curve shape. As reported

by Timmermann the upswings determined by constant k should not be confused with

the upswing due to the third sorption stage (0.85< aw < 0.9) at highest sorbate activities

[197].
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The monolayer value (X0) indicates the maximum amount of water that can be ab-

sorbed in a single layer per gram of dry film. In this work higher values of X0 were

obtained for coated films, FucoPol-ALD (TiO2) and FucoPol-ALD (TiO2)-PFH coated

films have shown 0.15± 0.02 and 0.14± 0.05 respectively, while uncoated FucoPol films

presented a value of 0.09± 0.01. This behavior suggests that a layer of TiO2 allowed ad-

sorption of water, probably due to its rough surface. This behavior could be also related

with aging and UV-exposure, once ALD coating can turn more hydrophilic and adsorb-

ing more water with the influence of those two factors. In water sorption isotherms

experiments, samples were placed in desiccators during three weeks with light exposure.

5.4.6 Oxygen permeability

The study of gas barrier properties of polymeric films is essential to design food packaging

solutions. Usually, polysaccharides are good barriers to gases at low relative humidity

(RH), due to their highly packed hydrogen-bonded dense polymer matrix. The increase

of ambient moisture however, increases significantly the permeability of polymeric film,

due to the plasticization effect of water. In this study, the permeability was measured at

RH of 48 % (Table 5.2).

Table 5.2: Oxygen permeability of FucoPol films coated and uncoated, measured at
48± 5 % of RH.

Film O2 Permeability (x10−16 mol m m−2s−1Pa−1)

FucoPol 5.13 ± 0.28

FucoPol + ALD (TiO2) 3.31 ± 0.41

FucoPol + ALD (TiO2) + Plasma (PFH) 1.70 ± 0.71

FucoPol-ALD (TiO2) and FucoPol-ALD (TiO2)-PFH coated films present a significant

(p<0.05) lower permeability to oxygen than uncoated FucoPol films (5.13x10−16 mol m -

m−2s−1Pa−1). The thin TiO2 layer (42 nm) decreased the FucoPol permeability by 35 % to

3.31x10−16 mol m m−2s−1Pa−1. Previous studies have shown that a thin layer applied by

ALD can have an enormous effect on the barrier to oxygen. Hirvikorpi et al. reported a

decrease of 65 % in oxygen transmission rate to paperboard/PE system coated with 50 nm

of Al2O3 and 73 % when coated with 50 nm of SiO2 thin film [87]. Also Kääriäinen et al.

reported a decrease of 91 % in oxygen transmission rate to LDPE extrusion coated paper,

coated by ALD with 40 nm of TiO2 thin film [106].

Those decreases are much higher than what was measured in this work, which can

be due to the cracks shown in Figure 5.1g. FucoPol has a smooth surface, as such, a

42 nm TiO2 thin layer may be rather prone to cracking, and therefore a thinner layer

could have been better. This behavior was described by Hirvikorpi for paperboard/PLA

system coated with Al2O3 , where 25 nm of Al2O3 presented better barrier properties

than 100 nm [86]. However, the improvement detected with FucoPol-ALD (TiO2) films
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could be caused by strong bonding between functional OH- groups on FucoPol surface

and TiO2 layer. This behavior is well-known and described in literature for polymers

with high content of hydroxyl groups, such as, PVA or cellulose [81].

Plasma PFH coating applied on FucoPol-ALD (TiO2) coated film can improve the

oxygen barrier behavior even more, presenting a permeability of 1.70x10−16 mol m m−2-

s−1Pa−1 , which is 67 % lower than for untreated FucoPol films. In this case, PFH can

act to reduce the cracking effect of the TiO2 layer, in a similar manner as reported by

Charton et al., which described that the mechanism for permeation through inorganic

barrier coatings on polymers is usually dominated by defects in the inorganic barrier

layer [29, 194].

5.5 Conclusions

Several coatings were created on FucoPol film surfaces using plasma deposition, liquid

flame spraying and atomic layer deposition. Inorganic coatings were used with the aim of

improving the surface and barrier properties. FucoPol films coated with ALD (TiO2) and

ALD (TiO2)-Plasma (PFH) have shown potential use in food packaging, as they presented

higher and stable water contact angle, lower water vapour permeability, a transparency in

the same order of magnitude and significantly lower oxygen permeability values than the

uncoated films. Films coated with SiO2 nanoparticles presented a rough surface which

led to higher instant water contact angle, though not stable over time.

The combination of ALD (TiO2) and Plasma (PFH) coating has demonstrated to be

the best option, presenting a permeability to oxygen (1.70x10−16 mol m m−2s−1Pa−1) 67 %

lower than that of untreated films and a water vapour permeability of 3.40x10−11 mol -

m−1s−1Pa−1.
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6
Evaluation of FucoPol and Chitosan bilayer

films performance for packaging of walnuts

(Juglans regia L.)

6.1 Summary

The performance of FucoPol/chitosan bilayer and PA/PE commercial films, was evaluated

to storage fresh walnut (Juglans regia L., cultivar Chandler) kernels at accelerated storage

conditions (24 h of light, 33 % RH and 38 ºC) and compared with walnuts without any

package.

A previous study with extracted walnuts oil was performed to obtain a fast lipid

oxidation. The oxygen content inside the package, oil peroxide value and oxidation

compounds were monitored. A pronounced increase in peroxide values was noticed

along the experiment (14 days), related with increase of oxygen content. Walnut oil

does not show significant differences in peroxide values and oxidation compounds when

packaged with bilayer or commercial film, but significantly higher values were detected

for oil with no package.

As proof of concept, shelled walnut kernels were stored, at the same conditions to

evaluate the rancid taste using a trained sensory panel. Minor differences in rancidity

were detected for kernels packaged with both barrier materials, however significant dif-

ferences for walnut with no package were detected and classified as moderate to rancid

taste.

Overall, the behavior of the biodegradable bilayer films was found similar to that

of the non-biodegradable commercial ones, which makes them a promising sustainable

alternative as packaging materials.
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6.2 Introduction

Nowadays walnuts are cultivated on southern Europe, northern Africa, eastern Asia, USA

and western South Africa, and the high economic interest to food industry is related to the

broad variety of products and their uses. Walnuts are commercialized in-shell, shelled,

in kernels form or grounded. In addition, they can be consumed as fresh fruit or toasted,

as ingredient in bakery or even as flavour [118, 123].

Walnut (Juglans regia L.) kernels are highly appreciated not only due to their good

organoleptic characteristics, but also because of their health benefits, namely to reduce

blood pressure and total cholesterol and to prevent cardiovascular diseases. These proper-

ties are associated with their chemical composition, in particular with oil and antioxidants

(phytosterols and polyphenols). The oil content may vary from 52% to 74% according to

the cultivar and origin [14, 98, 111, 118].

The oil has a high polyunsaturated fatty acids (PUFAs) content, around 57.3 – 76.6

g/100 g, being oleic (13.8 - 33.0 g/100 g), linoleic (49.3 - 62.3 g/100 g) and linolenic (8.0 -

15.4 g/100 g) acids the major fatty acids referred to be present in its composition. The

overall and relative contents of PUFAs are important to economic and nutritional value

of the nuts, once higher levels of PUFAs are more desirable due to their potential health

benefits. However, high PUFAs content limits the nuts shelf life due to their suscepti-

bility to oxidation. This fact leads to the most important quality parameter of walnuts

conservation, lipid oxidation, which causes rancid taste and aroma that are unacceptable

to the final consumer [14, 217]. The oxidation reactions are directly related to external

factors, from the harvest until the conservation period, and are related essentially with

oxygen concentration, temperature, relative humidity and light.

Oxygen concentration is considered the most important external factor inducing lipid

oxidation. As such, several strategies have been studied to decrease the oxygen effect,

such as modified atmosphere packaging with low oxygen levels (composed mainly by

nitrogen and carbon dioxide), vacuum packaging, or the use of oxygen absorbers [92,

147]. The availability of oxygen in the package, can also be controlled by using oxygen

barrier materials [123] or a coating formulation [98]. The rate of oxidation is independent

of oxygen concentration at high oxygen partial pressure, but it is proportional to oxygen

concentration at low oxygen partial pressure [120]. Independently of the strategy used,

it is essential to minimize oxygen contact with walnut kernels to extend their shelf-life.

Storage temperature has also an important influence on oxidation rate. Several authors

reported that higher temperatures (above 21 ºC) induced a faster oxidation than lower

ones. According to several authors the optimal storage temperature for walnuts should

be always lower than 11 ºC [14, 92, 123]. It was also found that walnuts storage at higher

temperatures present higher levels of hexanal, a secondary metabolite of lipid oxidation

which is formed by breakdown of linoleic acid hydroperoxides [92].

The relative humidity (RH) can also affect the oxidative rancidity, since moisture

influences the rate of oxygen uptake by lipids in foods. Moreover, high values of RH
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can affect the performance of certain edible films decreasing their barrier properties to

oxygen [120].

Light is also an important factor in walnuts storage. Martínez et al. have reported its

high effect on the photo-oxidative degradation of walnut oil. In their work, the oil stored

in transparent glass bottles exposed to light at room temperature maintains an acceptable

quality only for two months of storage, which represents a very short shelf life [117].

As referred before, an efficient oxygen barrier material may be used for walnuts pack-

aging, since the availability of oxygen can be controlled by the oxygen permeability of

the packaging material. Several barrier materials (with one or more polymers) have

been studied, such as polyamide/polyethylene (PA/PE) [14, 111], low density polyethy-

lene (LDPE), polyethylene terephthalate/polyethylene (PET/PE) [123], polyethylene (PE),

ethylene-vinyl alcohol/low-density polyethylene(EVOH/LDPE) [92], among others.

A wide variety of biopolymers has been studied to produce barrier materials, in partic-

ular, polysaccharides, due to their good barrier against oxygen at low or moderate relative

humidity. These materials are biodegradable, making possible to contribute for reducing

plastic waste in the end of service life [61].

In this work a bilayer films composed by two biopolymers (FucoPol and chitosan) and

characterized in Chapter 4 was tested as barrier material. FucoPol is a high molecular

weight exopolysaccharide produced by bacterium Enterobacter A47 (DSM 23139) using

glycerol by-product from biodiesel industry as carbon source. This biodegradable anionic

heteropolysaccharide is composed by sugars (fucose, galactose, glucose and glucuronic

acid) and acyl groups (acetate, succinate and pyruvate).

Bilayer films of FucoPol and chitosan were tested as barrier material to oxygen to be

used in walnuts packaging. Storage experiments were carried out with walnut oil and

kernels, using the FucoPol/chitosan and commercial PA/PE films for comparison. The

performance of the two barrier materials was evaluated in accelerated storage conditions

(24 h of light, 33 % RH and 38 ºC), monitoring the oxygen content in the package, as well

as, the oils peroxide value and oxidation compounds over time.

6.3 Materials and methods

6.3.1 Walnut kernels and oil

Fresh walnut (Juglans regia L., cultivar Chandler) kernels were supplied by H. Reynolds

de Souza, Estremoz, Portugal. Oil from walnut kernels was extracted mechanically using

a homemade pressing machine composed of screw and a nozzle of 5 mm.

After extrusion, the pressing cake was discharged and the crude oil was centrifuged

(15 min, 48384 x g). The clean oil was transferred into amber glass bottles, which head-

space was flushed with nitrogen before closing. The bottles were stored at 4 ºC before

experiments for a maximum period of 24 h.
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6.3.2 Bilayer films preparation

Bilayer films of FucoPol and chitosan were prepared by a two-step coating technique as

described in chapter 4, section 4.3.4.

FucoPol was produced and purified as described in chapter 3, section 3.3.1. Commer-

cial medium molecular weight chitosan (deacetylation degree of 75 – 85%) was purchased

from Sigma (USA). Citric acid monohydrate was purchased from VWR chemicals – BDH

Prolabo (UK). Glycerol (analytical grade) was used as plasticizer and purchased from

Sigma (USA).

6.3.3 Packaging preparation

Depending on the experiment, walnuts oil (15 mL) or walnut kernels (12 g) were trans-

ferred to home-made glass vessels (35 mm diameter, 6 cm height) without cover. The

vessels possess an open vial-like (20 mm) where Mininert® Valve (Supelco, USA) was

inserted.

In order to have a sealed vessel, after introducing the walnuts kernel or walnuts oil,

the top of glass vessel was covered with the test film (bilayer film of FucoPol and chitosan

or commercial film) and sealed with a commercial aluminium foil (Avery Dennison, USA).

The effective mass transfer area was 2 cm2. The leak tightness was tested to ensure that

the oxygen transfer took place exclusively through the tested films.

The permeability to oxygen of the commercial film (PA/PE 90) is lower than 4.6x10−17

mol m m−2 s−1 Pa−1 (according to the supplier), and that of the bilayer film was reported

in chapter 4 to be 4.7x10−17 mol m m−2 s−1 Pa−1.

The flasks with the samples (oil or walnut kernels) were flushed with nitrogen to start

with nearly zero oxygen content in the beginning of the experiments.

6.3.4 Storage experiments

Two different experiments were carried out. One of them with walnut extracted oil and

the other with shelled walnut kernels. In each case, samples totally exposed to air (la-

belled as No Package), sealed with bilayer films of FucoPol and chitosan (labelled as

Bilayer) and sealed with commercial film (polyamide cast flexible-polietylene (PA/PE 90),

purchased from AlemPack (Portugal)) (labelled as Commercial) were used.

For fast lipid oxidation monitoring, unpacked and packed walnut oil was stored in

climate chamber (Cassel, Germany) set to 38±2 ºC and 35 % relative humidity (RH) for

14 days with 24 h of light. Oxygen content inside the package and oil analysis (peroxide

value, primary decomposition products) were performed on the 1st, 7th and 14th days of

storage. Three replicates of each day were analyzed.

In the second experiment, shelled walnuts were packed in the same vessels, with the

same sealing method. Unpacked walnuts kernels were maintained at the same light and

temperature conditions. Sensory evaluation of packed and unpacked walnuts kernels
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were performed at the 7th and 11th days (to avoid complete oxidization). Four replicates

of each day were analyzed.

6.3.5 Analytical methods

6.3.5.1 Oxygen content

The oxygen content inside the glass vessels was measured along time using a headspace

gas analyser Checkmate 3 (Dansensor, Ringsted (Denmark)). Gas analysis was performed

by pulling out a headspace gas sample by piercing a syringe needle through Mininert®

Valve attached in the glass vessels.

6.3.5.2 Peroxide value of walnut oil

The peroxide value (PV) was determined according to the standard NP EN ISO 3960

(2010) “Animal and vegetable fats and oils - Determination of peroxide value - Iodometric

(visual) endpoint determination”.

An oil sample (5 g to estimate peroxide value between 0 - 12 meqO2 Kg−1) was dis-

solved in 10 mL of chloroform (analytical grade) under stirring. Glacial acetic acid (15 mL)

and potassium iodide (KI) were added to the previous solution and stirred for 1 minute in

a capped flask. Flask was left 5 minutes in dark at temperature between 15 - 20 ºC. Then,

75 mL of deionized water was added.

The liberated iodine was titrated with sodium thiosulfate (Na2S2O3) solution (0.002 N

solution for expected PV < 12 meqO2 Kg−1, and 0.01 N solution for expected PV > 12

meqO2 Kg−1) under high stirring, using a starch solution (10 g L−1) as an indicator. Two

replicates of each sample were analyzed.

The peroxide value was calculated by the following equation:

P V =
VN1000

m
(6.1)

Where, V (mL) is the volume of Na2S2O3 solution in the experiment (corrected with

blank test), N is the normality of Na2S2O3 solution and m (g) is the sample mass.

6.3.5.3 Oxidation compounds of walnut oil

Oil thermal oxidation was indirectly evaluated following the Portuguese standard NP

970:1986-pt “Edible fats and oils. Ultraviolet absorption” [51]. A solution of walnut oil

in isooctane (10 g L−1) (Carlo E Erba, France) was analyzed for lipid oxidation. The de-

tection of conjugated diene hydroperoxide products produced in the early stages of lipid

oxidation process was evaluated through a direct absorbance measurement at 232 nm

[181].

Similarly, conjugated trienes, the secondary products of oxidation, could be detected

from UV absorbance in the range of 268-272 nm of the same 10 g L−1 oil solution in

isooctane. Three replicates of each sample were analyzed.
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6.3.6 Sensorial analysis

Sensory evaluation of walnuts kernels was assessed by an expert panel of 5 trained as-

sessors (ISO 8586:2012) [179]. Prior to the sensory evaluation, the walnuts of the same

sample, unpackaged and package with bilayer and commercial films at 7th and 11th days,

were mixed and each panellist was served a representative sample of walnut. The wal-

nuts were randomly coded with 3-digit (one number and two letters). Sensory descriptive

analysis was performed to characterized rancid taste and aroma of the samples. Ratings

were based on a six-point numerical unipolar category scale (1 - absent until 6 - very

strong). The samples were presented to assessors monadically.

6.3.7 Statistical analysis

In this work, the obtained data values were statistically analysed by one-way analysis

of variance (ANOVA) using OriginLab® OriginPro 2016. Differences between pairs of

means were assessed on the basis of confidence intervals using the Tukey test. The least

significance difference was p > 0.05.

6.4 Results and discussion

6.4.1 Walnut oil storage experiment

Peroxides are the primer products of lipid oxidation and a conventional indicator to

quantify oxidative rancidity. The initial peroxide value (PV) of fresh walnut kernels was

very low, ≤ 0.1 meqO2 Kg−1 walnut oil, which is in accordance with other authors [118,

123, 189]. This fact indicates that the oil extraction method used in this work is effective

and does not promote oxidation.

The experiment was performed with 24 h of light, 38 ºC and 35% RH, and the variation

of oxygen content inside the packages and PV of walnut oil values over time are shown

in Figure 6.1. It may be observed a pronounced increase of PV for both packages (bilayer

film and commercial film), with no substantial differences between them. This fact is in

line with the oxygen content inside the package, which also increased over time nearly

in the same manner. According to Maté et al. nuts at standard atmosphere oxygen

concentration are unprotected, while an oxygen content lower than 2.5% represents good

conditions for nuts storage [120]. In the present work, the oxygen content increased up

to around 5% in the first day of the experiment for both films tested.

Regarding the oil stored in open flasks (no packaging), PV values have also shown

a great increase, reaching much higher levels, which is attributed to their contact with

21% of oxygen present in the atmosphere (Figure 6.1c). At day 1, the oil stored without

any package, exceeded the peroxide value limits for edible virgin oils (15 meqO2 Kg−1)

established by Portuguese law [47]. However, the oil stored in vessels capped with bilayer

and commercial films only exceeded that value at day 14. Significant differences (p<0.05)
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a b

c

Figure 6.1: Oxygen content inside the packages and peroxide value of walnuts oil stored
during 14 days in packages with (a) Bilayer film, (b) commercial film and (c) no package.

were observed in PV between packed and no packed walnut oil, though no substantial

differences were perceived between both packaging films.

This test was carried out during 14 days, under accelerated oxidation conditions,

especially due to deleterious effect of light and increased temperature, as reported for

olive oil, sunflower oil, peanut oil, among others [5, 16, 39]. Other storage conditions are

referred in the literature, such as the one reported by Mexis et al. that used LDPE and

PET/LDPE packages, subjected to light and T=20 ºC, in which after 12 months the PV

value observed is similar to that of this work at day 14 (32 meqO2 Kg−1) [123]. In addition,

tests performed by Martínez with walnut oil stored in transparent glass bottles in light, at

25 ºC, have shown similar values of PV (22.25 meqO2 Kg−1) after three months of storage

[119]. It is worthy to mention that other factors than temperature, light, relative humidity

and oxygen content, have to be taken into account on preservation studies, such as the

package volume, the mass of product and the internal void volume.

The formation of oxidation compounds of walnut oil was monitored and the results are

presented in Figure 6.2. Primary oxidation products (conjugated dienes) were evaluated

from the absorbance at 232 nm, Figure 6.2a. The Initial value (1.1 ± 0.1) is in accordance

with values referred by Martínez et al., range between 1.0 and 1.2 [118]. Only at day 14

significant differences (p<0.05) were noticed between oil with and without package. Still,
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no significant differences were detected between bilayer and commercial packages. Final

values of conjugated dienes for bilayer (5.2 ± 2.2), commercial (3.9 ± 1.2) and no package

(10.5 ± 1.8) samples are in accordance with PV values presented in Figure 6.1.

a b

Figure 6.2: Conjugated dienes (K232) (a) and conjugated trienes (K268-272) (b) from
walnut oil during the storage experiment.

The production of secondary oxidation products (conjugated trienes) over time is pre-

sented in Figure 6.2b. A similar behaviour can be observed, as only at day 14 significant

differences (p<0.05) were detected for walnut oil with and without package. Again, no

significant differences were noticed between both types of packaging films during all

experiment. Those high values of absorbance are correlated with presence of secondary

oxidation compounds, which could indicate that light degradation of primary oxidation

compounds was simplified and peroxide degradation reaction occurs more rapidly as

described by Caponio et al. for extra virgin olive oil [22]. Light is described by same

authors as the main cause for the increase in absorbance at 270 nm and loss of oil colour,

which also occurred in this experiment, and could be observed at human naked eye.

6.4.2 Walnut kernels experiment

As proof of concept, an experiment with shelled walnut kernels was carried out. Taking

into account the results obtained with walnut oil, two samples (at day 7 and day 11)

were evaluated in terms of sensory analysis, with a trained panel, aiming at targeting the

rancid attribute (aroma and taste). As in the previous experiment, after 7 days, the oxygen

content of the samples packed with bilayer film and commercial film was 6.9 ± 0.2 % and

4.3 ± 2.1 %, respectively; it was expected to achieve no significant differences in peroxide

values in kernel oil, and a lower value than the limit for peroxide value for edible virgin

oils (15 meqO2 kg−1 oil). However, the oil of walnut kernels with no package at the

referred day is expected to have a PV above the limit. The second sample was tested at

day 11 to obtain data near the limit of the experiment with oil, at which the content of

peroxides, and primary and secondary oxidation products, were substantially different

when comparing packaged and unpackaged oil.
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The results of sensory analysis, presented in Figure 6.3, are in agreement with the re-

sults obtained for walnut oil presented previously. Minor differences were found between

walnuts packed with bilayer of FucoPol and chitosan film and commercial film, and major

differences were found for walnuts with no package, once they were completely exposed

to oxygen. In this experiment no samples with very intense rancid taste or aroma were

detected by the panellists. Still, the samples stored with no package (for both days) were

classified as moderate in terms of those attributes. It was expected the panellists to de-

tect a higher rancid intensity, especially in walnuts kernels with no package, since in the

experiment with oil a high amount of secondary oxidation products, responsible for the

typical unpleasant sensory characteristics, was detected (Figure 6.2b) [16]. Knowing that

initial lipids are radically oxidized into hydroperoxides, which are odourless and tasteless,

these compounds are not detected in sensory analysis. In addition, in kernels experiment

the oil is more protected from all oxidation reactions as it remains physically entrapped

within the fruit. These facts may explain the low rancid taste or aroma detected by the

panellists.

Figure 6.3: Aroma and taste of the walnuts at 7th and 11th days of storage.

6.5 Conclusions

Experiments in accelerated storage conditions (24 h of light, 33 % RH and 38 ºC) for

walnuts oil were performed. The oxygen content in the package increased to 5 – 7 %
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along the experiment with both films used. The increase of peroxide values is related

with the presence of oxygen and follows the same trend as oxygen content. At day 1, oil

stored with no package presented a peroxide value above the legal limit (15 meqO2 kg−1),

however, films stored with bilayer and commercial films only present values above that

limit (23 and 31 meqO2 kg−1 respectively) at day 14.

Walnut oil with no package presents conjugated dienes values two times higher than

oil packaged with bilayer or commercial films, and this difference is even higher (almost

three times) for conjugated trienes.

As proof of concept walnuts kernels were also packaged with FucoPol/chitosan bilayer

and PA/PE commercial films, as well as, walnuts with no package aiming at the evaluation

of rancid taste in nuts. No significant differences in taste and aroma were detected in

walnuts packaged with bilayer films and PA/PE commercial films. However walnuts with

no package presented moderate values of rancidity.

From the results obtained, the protection effect of the biodegradable bilayer FucoPol/-

chitosan films was found to be similar to that of the non-biodegradable commercial ones

(PA/PE), which makes them a promising sustainable alternative as packaging materials.
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7
Conclusions and future work

The overuse of synthetic non-biodegradable plastic packaging has caused a serious global

environmental problem related with post-consumer waste. The way to overcome this

severe problem is currently a strong source of motivation to researchers around the world.

One of the current research paths to apply biodegradable polymers from renewable

resources in packaging. This solution is even more interesting to food packaging once,

usually, these materials are food contaminated which constitutes a health hazard in sort-

ing and mechanical recycling.

This chapter summarizes the developed work and presents an overall view of what

was accomplished. Future goals and work guidelines are also described.

7.1 General conclusions

The work underlying this PhD rises from the need of new biodegradable packaging ma-

terials. This study was established on films formulation based on FucoPol, able to use in

food industry, in order to face the environmental problem caused by the excessive use of

synthetic plastics. This thesis intended to address the following scientific questions:

• Is it possible to produce films of FucoPol and which properties should be improved?

• Which strategies may be applied to improve their behaviour, specially their barrier

properties to gases and water vapour?

• Is it possible to use FucoPol films as an alternative to synthetic plastics aiming their

use as packaging material?

Firstly, to achieve these goals, a study of biodegradable polymers, in particular micro-

bial polysaccharides used in food industry and their theoretical background and state-of-

the-art, was carried out.
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FucoPol, an exopolysaccharide produced by Enterobacter A47, grown in bioreactor,

using glycerol by product from biodiesel industry as carbon source was chosen to develop

this PhD work. Once this study had as main goal a positive contribution for the preser-

vation of environment by the use of sustainable reagents, the application of low-cost

products, create a distinctive starting point. As FucoPol is a bacterial EPS, each chapter

was developed with polymer obtained from the same batch production, and different

batch productions were used in the different chapters.

FucoPol films using citric acid as plasticizer were developed and characterized in

Chapter 3. FucoPol films were transparent with brownish tone, able to cause colour al-

teration noticeable at human eye when applied at coloured surfaces. Those films were

hydrophilic and soluble in water, which make them poor barriers to water vapour, how-

ever, presented good barrier properties to gases (oxygen and carbon dioxide) as reported

for several others polysaccharide films. FucoPol films presented ductile mechanical prop-

erties.

Based on these results, and answer to the first scientific question, FucoPol films had

potential application on food packaging, namely, as an inner layer in a multi-layered film,

in order to protect the ductile behaviour and hydrophilic character and use their good

barrier properties to gases.

In order to answer the second question and knowing that, FucoPol films show poten-

tial to be used in food packaging, the films characteristics can be improved. In that way

two main strategies were used:

• Formulation of bilayer films with FucoPol and chitosan

• Use of different coating techniques in FucoPol films.

The obtained bilayer films of FucoPol and chitosan, described in Chapter 4 were ho-

mogeneous, flexible, resistant and transparent, and their application in coloured surfaces

caused a decrease on the original colour saturation.

Bilyer films presented high swelling degree in contact with liquid water and a high

water vapour permeability, which disables their used in applications that involve the

direct contact with high moisture content products. Those films have shown excellent

barrier properties to gases (O2 and CO2), better than some synthetic materials (LDPE and

HDPE) and FucoPol stand-alone films. Once more, bilayer films characteristics presented

good potential to be used for packaging of low moisture content products, such as nuts or

to be used as alternative to some synthetic plastic materials from non-renewable sources

currently used in multilayered films (EVOH).

In Chapter 5, a different approach was used, the application of diverse coating mate-

rials on FucoPol films surface.

Plasma deposition, LFS and ALD techniques were used to form inorganic coatings

aiming the improvement of the surface and barrier properties, in particular, liquid water

and moisture resistance.
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FucoPol films presented dense and homogeneous surface with instant water contact

angle of 95º. Films coated with Plasma deposition (PFH) have not shown significant

improvement in the hydrophobic behaviour over the time, but with a coating of LFS

(SiO2)-Plasma (PFH) have shown a higher instant water contact angle (135º) caused by

coating surface roughness, but this hydrophobic behavior was not stable over time. In

contrast, FucoPol films coated with ALD (TiO2) and ALD (TiO2)-Plasma (PFH) exhibited

stable water contact angle during time (90º and 115º, respectively).

Moreover, films coated with ALD (TiO2) and ALD (TiO2)-Plasma (PFH) have shown

a decrease in water vapour permeability of 35 % and 36 % respectively and a decrease

in oxygen permeability of 35 % and 67 % respectively, with slightly differences in trans-

parency and colour alterations.

Having in account the studied characteristics, the combination of ALD (TiO2) and

Plasma (PFH) coatings in FucoPol films has demonstrated the best potential use in food

packaging.

In order to answer the third question and close this thesis work, a proof of concept

was developed in Chapter 6 using walnuts (Juglans regia L.).

To establish this work, the commercial film (PA/PE) performance was compared with

that of bilayer films of FucoPol and chitosan. Bilayer films were chosen, once from the

range of films developed and characterized during this PhD, presented the best charac-

teristics and availability to test a real case study. Walnuts packaged with both films were

also compared with walnuts without any package.

Tests with walnuts oil were executed previously to evaluate the conservation under ac-

celerated conditions and obtain a fast lipid oxidation. A pronounced increase in peroxide

values was noticed along the experiment, related with increase of oxygen content inside

the package. Walnut oil does not present significant differences in peroxide values and

oxidation compounds when packaged with bilayer or commercial film, but significantly

higher values were detected for oil with no package.

Shelled walnut kernels were stored, at the same conditions to evaluate the rancid taste

using a trained sensory panel. Minor differences in rancidity were detected for kernels

packaged with both barrier materials, however significant differences for walnut with no

package were detected and classified as moderate to rancid taste.

Overall, the protection effect of the biodegradable bilayer films was found similar to

that of the non-biodegradable commercial ones, which makes them a promising sustain-

able alternative as packaging materials.

Figure 7.1 complements the questions raised in Chapter 1, showing their correlation

with each study performed and consequent answers.
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Figure 7.1: Illustration of the final conclusions of this work. The scientific questions,
studies implemented and answers for initial questions

7.2 Future work

This PhD research leaves a few aspects unfinished and raises new questions for which

additional research effort should be devoted in the future. Concerning that, three work

guidelines should be considered for future improvements:

1. Scale up production of FucoPol films.

This goal includes FucoPol production at large scale, which has already started by

BPEG research group at Universidade NOVA de Lisboa. Production of films, it

self, should be tested with roller systems. In the case of bilayer films, knife coating

should be applied and characterization of films should be carried out to attest their

good performance.

2. Further study of coating techniques.

In this objective, it is intended to optimize the conditions previously tested, such

as ALD thickness deposition and PFH quantity. And also to test some possible
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other metal oxides. The production of these coatings at large scale is also an im-

portant work, already being tested by SP Technical Institution of Sweden for other

applications.

3. Study of different applications.

One of the most thrilling aspect of this work is the application in case studies. So,

the last path for future work is the application of bilayer films (or other) in food,

such as, cheese or fruits.
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