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Abstract

Likelihood-based exact inference procedures are derived for the multivari-

ate regression model, for singly and multiply imputed synthetic data generated

via Posterior Predictive Sampling (PPS), via a newly proposed sampling method,

which will be called Fixed-Posterior Predictive Sampling (FPPS), and via Plug-in

sampling. By contemplating the single imputation case, the new developed pro-

cedures fill the gap in the existing literature where inferential methods are only

available for multiple imputation and, by being based in exact distributions, it

may even be applied to cases where the sample size is small. Simulation studies

compare the results obtained from all the proposed exact inferential procedures

and also compare these with the results obtained from the adaptation of Reiter’s

combination rule to multiply imputed synthetic datasets. An application using

U.S. 2000 Current Population Survey data is discussed and measures of privacy

are presented and compared among all methods.

Keywords: Finite sample inference, Maximum likelihood estimation, Pivotal

quantity, Partially synthetic data, Statistical Disclosure Control, Unbiased estima-

tors
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Resumo

Procedimentos inferenciais baseados em funções de verosimilhança são dedu-

zidos para o Modelo de Regressão Linear Multivariado, para dados sintéticos de

imputação única e de imputação múltipla gerados via Posterior Predictive Sampling
(PPS), via um novo método, que se denominará por Fixed-Posterior Predictive Sam-
pling (FPPS), e via Plug-in Sampling. Ao contemplar o caso de imputação única, os

novos procedimentos desenvolvidos preenchem um vazio na literatura existente

onde métodos inferenciais estão disponíveis exclusivamente para casos de impu-

tação múltipla e, como se baseiam em distribuições exatas, podem ainda assim ser

aplicados a casos onde a dimensão da amostra é pequena. O estudo de simulações

permite a comparação de todos os resultados provenientes dos procedimentos

exatos propostos como também a comparação destes com os resultados obtidos

aquando da aplicação da regra combinatória de Reiter a dados sintéticos de múl-

tipla imputação. É discutida uma aplicação usando dados da U.S. 2000 Current
Population Survey e medidas de privacidade são apresentadas e comparadas entre

todos os métodos.

Palavras-chave: Inferência amostral/estatística finita, Estimação de máxima ve-

rosimilhança, Quantidades pivotais, Dados parcialmente sintetizados, Controlo

da divulgação estatística, Estimadores centrados
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1
General Introduction

«In intelligence work,[. . . ] there are limits to the amount of information
one can share. Confidentiality is essential[. . . ].»

Gijs de Vries

1.1 Introduction

When releasing microdata to the public, methods of statistical disclosure control

(SDC) are used to protect confidential data, that is “data which allow statistical

units to be identified, either directly or indirectly, thereby disclosing individual

information” [29], without compromising an adequate and accurate statistical

analysis of the data. Several SDC methods have been recently developed in order

to protect the data, without changing its fundamental structure.

One may classify these methods into perturbative, which distort the origi-

nal data, non-perturbative, which suppress or reduce the detail without altering

the original data, and, more recently, methods of generation of synthetic micro-

data, which preserve some statistics or relationships of the original data [5, 9,

12]. Most of the proposed perturbative methods reduces the quality of the data

as such their utility may be questionable and researchers in general tend to not

trust these. Noise addition, data swapping and rounding are some examples

of these methods. When non-perturbative methods are used there is an higher

risk of disclosure, specially when applied to microdata on businesses, because

its population is usually smaller than the population associated to microdata on

individuals and the size of information may be already available in public sites.
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CHAPTER 1. GENERAL INTRODUCTION

Recoding, suppression, top and bottom coding are classified as non-perturbative

[5, 9, 12].

With these methods one faces the problem that some released data guaran-

tees respondents confidentiality but researchers may not accept it due to dubious

quality or the problem that in order to have high quality data, respondents sensi-

tive information could be put in high risk of disclosure. With the synthetic data

approach, which has gained considerable popularity and importance in recent

times, these problems can be overcome [21, 37].

Little [24] and Rubin [36], in 1993, first supported the use of synthetic data

for SDC, using the framework of multiple imputation [35]. Rubin claimed that

synthetic data so created do not correspond to any actual sampling unit, thus

preserving the confidentiality of the respondents. Rubin also proposed that one

could use fitted models to generate random and independent samples of the orig-

inal survey data and release these synthetic versions of microdata publicly, called

fully synthetic datasets. The quality of this approach is dependent on the model

to impute the values, therefore, all the relationship between variables must be

included and the joint distribution of these has to be specified, in order to not

give biased results when using the synthetic data [5, 6]. Later that year, Little [24]

proposed to only replace, with imputed values, the observed values that could

contain sensitive information, leaving the rest unchanged, a proposed solution to

overcome the problems inherent to the creation of fully synthetic datasets. This

approach is called generation of partially synthetic datasets. This will be the

context of the present work. In 1997, Kennickell [14] was the first to use multiply-

imputed partially synthetic data to protect the confidentiality of respondents in

the Survey of Consumer Finances. Only in 2003, inferential methods for fully

synthetic data were developed by Raghunathan et al [27], while, at the same time,

Reiter [30] presented the first methods for drawing inference for partially syn-

thetic data.

In comparison with the standard SDC methods, multiple imputation tech-

niques presents many advantages dealing with many real data problems that

other methods cannot. It preserves the joint distribution of the original data of-

fering a better quality analysis; is applicable to both categorical and continuous

variables; released fully synthetic datasets gives a very small disclosure risk; with

partially synthetic datasets generation one may only synthesize the records at risk,

maintaining intact the records that have no need to be protected; it allows the

possibility to impute missing values before generating synthetic datasets having

2



1.1. INTRODUCTION

no need to give up on some records; preserves linear constraints; allows the ana-

lyst to decide if valid results will be given from the synthetic data based on the

meta-data information. Some drawbacks exist as well. Since it is a perturbation

method there is a question on the utility limit of the data and only the statistical

properties gathered by the model are preserved [2, 5].

The most common methods to synthesize data are the Posterior Predictive

Sampling and Plug-in Sampling. Although most inferential methods for synthetic

data are based on multiple imputation, Klein and Sinha [17, 18, 19, 20] in a series

of recent papers developed exact parametric inferential methods based on singly

imputed synthetic data for several probability models, including the multiple

linear regression model where the sole response variable is considered sensitive,

thus requiring protection, while the covariates are treated as non-sensitive, having

no need of confidentiality protection.

The main goal of this thesis is to extend this scenario to the multivariate linear

regression model where there are multiple sensitive responses variables follow-

ing a multivariate normal distribution with expected values modeled as linear

combinations of multiple non-sensitive covariates. Based on the fitted multi-

variate linear regression model, the sensitive responses are synthesized based

on the Posterior Predictive Sampling method, Plug-in Sampling method and on

a new proposed sampling method that will be called Fixed-Posterior Predictive

Sampling, and exact data analysis procedures are developed for both single and

multiple imputation, for all methods. Reiter [30, 31] combining rules for scalar

and vector parameters are the most commonly used methodologies in the analysis

of released multiply imputed synthetic datasets [1, 4, 8, 13, 20], due to its easy

applicability to various statistical models, as such, in this thesis, one will compare

the new developed inferential procedures with the adaptations of Reiter’s [31]

methodology to Posterior Predictive Sampling and Plug-in Sampling multiply

imputed synthetic data, under the Multivariate Linear Regression model. The

contents of this thesis are as follows:

• In Chapter 2, based on singly imputed synthetic data generated via Posterior

Predictive Sampling, an exact inferential procedure is developed for the

matrix regression coefficients B. Based on multiply imputed synthetic data

generated via Posterior Predictive Sampling, an exact inference procedure

is presented, and based on multiply imputed synthetic data generated via

Fixed-Posterior Predictive Sampling, two exact inference procedures are

developed. The new exact procedure for the Posterior Predictive Sampling

3



CHAPTER 1. GENERAL INTRODUCTION

is contrasted with Reiter’s asymptotic methodology adaptation for multiple

imputation synthetic data [31]. It is also shown that pivot statistics based in

the classical test statistics for B under Multivariate Linear Regression model

are not pivotal for imputed synthetic data generated via Posterior-Predictive

Sampling.

• In Chapter 3, an exact inferential procedure for the matrix of regression co-

efficients B is developed based on singly imputed synthetic data generated

via Plug-in Sampling. Based on multiply imputed synthetic data, two exact

inference procedures are developed and compared with Reiter’s asymptotic

methodology adapted to multiply imputed synthetic data. It is also shown

that pivot statistics based on the classical test statistics for B under the Mul-

tivariate Linear Regression model are also not pivotal for imputed synthetic

data generated via Plug-in Sampling.

• In Chapter 4, it is proposed a measure, the radius, that measures the distance

between the center and the edge of the confidence sets for the regression

coefficients matrix B. Simulation results corroborate the accuracy of the the-

oretically derived results for the singly imputed and multiply imputed syn-

thetic datasets. These are compared with the results from Reiter’s adapted

procedures. Values for the confidence sets radius for all new procedures

developed in Chapters 2 and 3 are also compared.

• Chapter 5 presents data analyses under the proposed methods for singly and

multiply imputed synthetic data in the context of public use data from the

2000 U.S. Current Population Survey. The results are compared with those

obtained from the original data. Using the same public use data, the levels

of Privacy Protection for single and multiple imputation released synthetic

data for all sampling methods used in Chapters 2 and 3 are compared.

• A general discussion of the main results and conclusions is presented in

Chapter 6.

1.2 Generating Synthetic Data

In order to generate synthetic data for the purpose of public release, the tech-

niques used throughout this thesis will be the Posterior Predictive Sampling

(PPS), a new adapted method that we will call Fixed-Posterior Predictive Sam-

pling (FPPS) and the Plug-in Sampling.

4



1.3. THE MULTIVARIATE LINEAR REGRESSION MODEL

Brief descriptions of the three techniques are presented in the following sub-

sections where we consider that Y = (y1, . . . ,yn) are the original data which are

jointly distributed according to the probability density function (pdf) fθ(Y), where

θ is the unknown (scalar, vector or matrix) parameter.

1.2.1 Posterior Predictive Sampling (PPS)

A prior π(θ) for θ is assumed and then the posterior distribution of θ is obtained

as π(θ|Y ) ∝ π(θ)fθ , and used to draw M independent estimates θ•1, . . . ,θ
•
M of θ.

Following, M replacements of Y are generated, namely, Wj =
(
wj1, . . . ,wjn

)
, j =

1, . . . ,M, drawn all independently from the corresponding j-th pdf fθ•j , where fθ•j
is the pdf of Y where the original θ is replaced by θ•j , for j = 1, . . . ,M. These

synthetic datasets Wj (j = 1, . . . ,M) will be the datasets available to the general

public.

1.2.2 Fixed-Posterior Predictive Sampling (FPPS)

A prior π(θ) for θ is assumed and then the posterior distribution of θ is obtained

as π(θ|Y ) ∝ π(θ)fθ , and used to draw just one estimate of θ, θ•f . Then, one

generates M replacements of Y, namely, Wj =
(
wj1, . . . ,wjn

)
, j = 1, . . . ,M drawn all

independently from the same fθ•f , where fθ•f is the pdf of the original Y where

θ•f replaces the original θ. These synthetic datasets Wj (j = 1, . . . ,M) will be the

datasets available to the general public. One may observe that, forM = 1, both the

Posterior Predictive Sampling and the new Fixed-Posterior Predictive Sampling

methods concur.

1.2.3 Plug-in Sampling

We start by taking the value of a point estimator θ̂(Y) of θ, and plug it into the

joint pdf of Y. The resulting pdf, with the unknown θ replaced by the observed

value of the point estimator θ̂(Y), is denoted by fθ̂ . The multiply imputed syn-

thetic datasets, denoted by Wj(j = 1, . . . ,M), are then generated independently

by drawing Wj =
(
wj1, . . . ,wjn

)
from the joint pdf fθ̂ and these synthetic datasets

Wj (j = 1, . . . ,M) will be the datasets available to the general public.

1.3 The Multivariate Linear Regression Model

Since the inferential procedures will be developed for the Multivariate Linear

Regression (MLR) model, it will be important to give a general description of

5



CHAPTER 1. GENERAL INTRODUCTION

this model in the context of partially-synthetic data analysis and define the test

statistics that will be used for the original data.

Consider m sensitive variables yj , j = 1, . . . ,m, that should be replaced by their

synthetic version because they present a risk to respondents confidentiality, origi-

nating the vector y = (y1, . . . , ym)′, and a set of p non-sensitive variables

x =
(
x1, . . . ,xp

)′
, that do not need to be protected.

In terms of the MLR model, y = (y1, . . . , ym)′ will be considered the vector of

response variables and x =
(
x1, . . . ,xp

)′
the set of predictor variables or covariates.

We will consider that y|x ∼ Nm (B′x,Σ), with B and Σ unknown, and the orig-

inal data will consist of Y =
{
(y1i , . . . , ymi ,x1i , . . . ,xpi), i = 1, . . . ,n

}
, observing that

predictor variables are considered fixed. Let us write Y = (y1, . . . ,yn) with yi =

(y1i , . . . , ymi)
′ and X = (x1, . . . ,xn) with xi = (x1i , . . . ,xpi)′, assuming that rank(X :

p ×n) = p < n and n ≥m+ p. Therefore we have the following regression model

Ym×n = B′m×pXp×n + Em×n (1.1)

where Em×n will be distributed as Nmn (0,In ⊗Σ).

The maximum likelihood estimator (MLE) and uniformly minimum-variance

unbiased estimator (UMVUE) of B, distributed as Npm
(
B,Σ⊗ (XX′)−1

)
B̂ = (XX′)−1 XY′, (1.2)

independent of

Σ̂ =
1
n

(
Y− B̂′X

)(
Y− B̂′X

)′
(1.3)

which is the MLE of Σ, with nΣ̂ ∼Wm (Σ,n− p) [3, Chapter 8]. Therefore S = nΣ̂
n−p

will be an unbiased estimator (UE) of Σ.

Several tests for B based on the original data can be found in the literature

[3, Chapter 8], but, as it will be shown in the next Chapter, the adaptations of

this classical tests to the synthetic data cannot be used, therefore, for purposes

of comparison, it is developed a new test procedure for B and also for C = AB,

where A is a k × p matrix with rank(A) = k ≤ p and k ≥m. Inference based on the

original data will be drawn and will be used to compare with inference drawn

from the synthetic data. This test procedure will be based on

TO =

∣∣∣∣(B̂−B
)′

(XX′)
(
B̂−B

)∣∣∣∣
|(n− p)S|

∼
m∏
i=1

p − i + 1
n− p − i + 1

Fi (1.4)

and

TO,C =

∣∣∣∣(AB̂−C
)′ (

A(XX′)−1A′
)−1 (

AB̂−C
)∣∣∣∣

|(n− p)S|
∼

m∏
i=1

k − i + 1
n− p − i + 1

Fk,i (1.5)
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where Fi (i = 1, . . . ,m) and Fk,i (i = 1, . . . ,m) are two sets of independent random

variables following respectively Fp−i+1,n−p−i+1 and Fk−i+1,n−p−i+1 distributions.

The derivation of the distributions of TO and TO,C can be seen in Appendix A.

1.4 An important Lemma

Concluding this Chapter, it will be important for the derivation of all the results

developed in Chapters 2 and 3 to make an observation regarding the existence of

sufficient statistics.
Suppose the original data are Y ∼ fθ̂(Y), and the synthetic dataV = (V1, . . . ,VM)

are generated such that V1|Y, . . . ,VM |Y are independent and identically

distributed (i.i.d.) from fθ̂(Y). Suppose that T(Y) is a sufficient statistic for θ based

on the original data. Then the pdf of the synthetic data V = (V1, . . . ,VM) is

∫ { M∏
i=1

fθ̂(Y)(Vi)
}
fθ(Y)dY =

∫ { M∏
i=1

gθ̂(Y) (T(Vi))h(Vi)
}
fθ(Y)dY

=
{ M∏
i=1

h(Vi)
}∫ { M∏

i=1

gθ̂(Y) (T(Vi))
}
fθ(Y)dY,

where gθ̂(Y) (T(Vi)) and h(Vi) are non-negative functions, with g depending on Vi

only through the statistic T (Vi) and h only depending on Vi , which implies the

following result.

Lemma 1.4.1. Suppose that when the original data Y are observed, T(Y) is a suffi-
cient statistic for θ. Then when the synthetic data V = (V1, . . . ,VM) are observed,
(T(V1), . . . ,T(VM)) is jointly sufficient for θ. Furthermore, if M = 1, the sufficient
statistic is simply T(V1), and if M > 1, then

∑M
i=1 T(Vi) is sufficient if

fθ(Y) = h(Y)ψ(θ)exp {γ(θ)′T(Y)} , i.e., if fθ(Y) belongs to the exponential family.
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2
Inference for Multivariate

Regression Model based on

synthetic data generated via PPS

and FPPS

The main objective of this chapter is to present the likelihood-based approach

developed for the analysis of partially-synthetic data generated via Posterior Pre-

dictive Sampling (PPS) and via a new proposed sampling method called Fixed-

Posterior Predictive Sampling (FPPS) which is originated from an adaptation of

the PPS method.

When one uses the PPS method to generate the multiply imputed synthetic

data one has to deal with the problem of obtaining the distribution of a sum of

Wishart distributions with different parameters. The use of the FPPS method is

suppose to overcome this problem.

Most of the content of Sections 2.1 and 2.3 is taken from [25].

2.1 Posterior Predictive Sampling (PPS)

Imputing the sensitive variables in the original data is somewhat similar as treat-

ing them as missing data. Rubin [35] was the first to propose the use of multiple

imputation in order to handle the problem of missing data and Little [24] and

Rubin [36], in 1993, first supported the use of synthetic data for SDC, using the

framework of multiple imputation. Since then, many authors [5, 10, 28, 32, 34]

9



CHAPTER 2. INFERENCE FOR MULTIVARIATE REGRESSION MODEL

BASED ON SYNTHETIC DATA GENERATED VIA PPS AND FPPS

developed asymptotic based inferential procedures to analyze multiply imputed

synthetic data using the PPS method to generate these synthetic data. All these

inferential procedures are only suitable for the analysis of multiply imputed syn-

thetic datasets leaving a gap in the state of art by leaving out the single imputation

case. Since, in some cases [11, 15, 16] it is mandatory to only release one single

synthetic data due to the high risk of disclosure, it is important to make available

an inference procedure for this case.

2.1.1 Single Imputation: Posterior Predictive Sampling Method

The PPS method was generally described in subsection 1.2.1. In this subsection,

we will start by describing specifically the PPS method under the MLR model case.

Let us consider the MLR model (1.1) with Y, X, B, Σ, B̂ and S defined in that

same context. Consider the joint prior distribution

π(B,Σ) ∝ |Σ|−α/2

and from it let us develop the posterior distributions for the unknown parameters

Σ and B in model (1.1). Let us observe that Y|B,Σ ∼ Nmn(B′X,In ⊗Σ). Hence the

likelihood function for Y will be

l(B,Σ|Y) ∝ |Σ|−n/2e−
1
2 tr{Σ−1(Y−B′X)(Y−B′X)′},

and the joint posterior distribution for (B,Σ) can be obtained from the product of

the previous prior and likelihood functions

π(B,Σ|Y) ∝ |Σ|−
n+α

2 e−
1
2 tr{Σ−1(Y−B′X)(Y−B′X)′}.

Regarding the exponent part of this joint posterior distribution, we may de-

compose it as

tr
{
Σ−1(Y−B′X)(Y−B′X)′

}
= tr

{
Σ−1(Y− B̂′X + B̂′X−B′X)(Y− B̂′X + B̂′X−B′X)′

}
= tr

{
Σ−1

[
(Y− B̂′X)(Y− B̂′X)′

]}
+ tr

{
Σ−1

[
(Y− B̂′X)(B̂′X−B′X)′ + (B̂′X−B′X)(Y− B̂′X)′ + (B̂′X−B′X)(B̂′X−B′X)′

]}
= tr

{
Σ−1

[
(Y− B̂′X)(Y− B̂′X)′

]
+ (B− B̂)′(XX′)(B− B̂)

}
+ 2tr

{
Σ−1

[
(Y− B̂′X)(B̂′X−B′X)′

]}
.
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Note that 2tr
{
Σ−1

[
(Y− B̂′X)(B̂′X−B′X)′

]}
is null, since B̂′ =

[
(XX′)−1XY′

]′
=

YX′(XX′)−1 and so(
Y− B̂′X

)(
B̂′X−B′X

)′
= YX′B̂−YX′B + B̂XX′B̂ + B̂XX′B

= YX′B̂−YX′B + YX′(XX′)−1XX′B̂ + YX′(XX′)−1XX′B

= YX′B̂−YX′B−YX′B̂ + YX′B = 0,

therefore obtaining the posterior distribution proportional to

|Σ|−
n+α−p

2 e−
n−p

2 tr{Σ−1S} |Σ|−
p
2 e−

1
2 tr{Σ−1(B−B̂)′(XX′)(B−B̂)},

by recalling the definition of S as S = 1
n−p (Y− B̂′X)(Y− B̂′X)′.

Using Corollary 2.4.6.2. in [22], the posterior distribution for Σ is given by

Σ|S ∼W −1
m

(
(n− p)S,n+α − p

)
, (2.1)

where W −1
m (Ψ,ν) denotes the Inverse Wishart distribution with Ψ :m×m a posi-

tive definite matrix and ν degrees of freedom, and the posterior distribution for

B is given by

B|B̂,Σ ∼Npm
(
B̂,Σ⊗ (XX′)−1

)
(2.2)

assuming n+α > p+m+ 1.

Now, it is possible to generate the synthetic dataset under the MLR model.

Start by drawing Σ̃ from (2.1) and B̃ from (2.2), upon replacing Σ by Σ̃ in this

latter expression, and then generate one single synthetic dataset, denoted as W =

(w1, . . . ,wn) where wi = (w1i , . . . ,wmi)′, will be independently distributed as

wi |B̃,Σ̃ ∼Nm
(
B̃′xi, Σ̃

)
, i = 1, . . . ,n. (2.3)

Let us define

B• = (XX′)−1 XW′ (2.4)

and

S• =
1

n− p
(
W−B•

′
X
)(

W−B•
′
X
)′
, (2.5)

that will be the estimators of B and Σ, respectively. By Lemma 1.4.1 these estima-

tors are jointly sufficient. Note that conditionally on
(
B̃, Σ̃

)
, B• is independent of

S•, as in the original data B̂ and S were also independent.

With the access to the partially synthetic data one may derivate the joint pdf

involving the estimators of B and Σ obtained from this data.
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Theorem 2.1.1. The joint pdf of B•, S• and Σ̃−1, for B• and S• respectively defined in
(2.4) and (2.5), is proportional to

e
− 1

2 tr
{
(2Σ̃+Σ)

−1
(B•−B)′XX′(B•−B)+(n−p)Σ̃−1S•

}

× |S
•|

(n−p)−m−1
2

|Σ̃|
(n−p)+n+α

2 −m−1
|Σ|−

n
2

∣∣∣∣∣12Σ̃−1 +Σ−1
∣∣∣∣∣−p/2 ∣∣∣Σ̃−1 +Σ−1

∣∣∣− 2n+α−2p−m−1
2 . (2.6)

Proof. Given Σ̃ and B̃ respectively from (2.1) and (2.2), we have that

W′ |B̃,Σ̃ ∼Nnm
(
X′B̃, Σ̃⊗ In

)
=⇒ B•|B̃,Σ̃ = (XX′)−1XW′ |B̃,Σ̃ ∼Npm

(
B̃, Σ̃⊗ (XX′)−1

)
and

(n− p)S•|Σ̃ ∼Wm

(
Σ̃,n− p

)
.

Since B• and S• are independent, the conditional joint pdf of (B•,S•), given B̃
and Σ̃, will be proportional to

e−
1
2 tr{Σ̃−1[(B•−B̃)′XX′(B•−B̃)+(n−p)S•]} |S

•|
(n−p)−m−1

2

|Σ̃|
(n−p)+p

2

, (2.7)

while, due to the independence of B̃ and Σ̃−1 drawn respectively from (2.2) and

(2.1), the joint pdf of (B̃, Σ̃−1), given S, is proportional to

|Σ̃|−p/2e−
1
2 tr{Σ̃−1[(B̃−B̂)′XX′(B̃−B̂)+(n−p)S]} |S|

n+α−p−m−1
2

|Σ̃|
n+α−p

2 −m−1
. (2.8)

Given the independence of B̂ and S, defined in (1.2) and (1.3), the joint pdf of

(B̂,S) is proportional to

e−
1
2 tr{Σ−1[(B̂−B)′XX′(B̂−B)+(n−p)S]} |S|

n−p−m−1
2

|Σ| n2
. (2.9)

Thus, by multiplying the three pdf’s (2.7), (2.8) and (2.9), the joint pdf of(
B•,S•, B̃, Σ̃−1, B̂,S

)
is obtained.

Since

tr
{(

B• − B̃
)′

XX′
(
B• − B̃

)}
= tr

{(
B̃−B•

)′
XX′

(
B̃−B•

)}
,

and since from (A.1) in Result A.2.1,(
B̃−B•

)′
XX′

(
B̃−B•

)
+
(
B̃− B̂

)′
XX′

(
B̃− B̂

)
=

= 2
[
B̃− 1

2

(
B• + B̂

)]′
XX′

[
B̃−1

2

(
B• + B̂

)]
+

1
2

(
B•−B̂

)′
XX′

(
B•−B̂

)
,
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the joint pdf of (B•,S•, Σ̃−1, B̂,S) is obtained by integrating out B̃, being propor-

tional to

e−
1
2 tr{Σ̃−1[ 1

2 (B•−B̂)′XX′(B•−B̂)+(n−p)(S•+S)]+Σ−1[(B̂−B)′XX′(B̂−B)+(n−p)S]}

× |S
•|

(n−p)−m−1
2

|Σ̃|
(n−p)+n−α

2 −m−1

|S|n+α
2−p−m−1

|Σ| n2
. (2.10)

Taking into account that

tr
{1

2
Σ̃−1

(
B• − B̂

)′
XX′

(
B• − B̂

)
+Σ−1

(
B̂−B

)′
XX′

(
B̂−B

)}
=

= tr
{

XX′
[1
2

(
B• − B̂

)
Σ̃−1

(
B• − B̂

)′
+
(
B̂−B

)
Σ−1

(
B̂−B

)′]}
and from (A.2) in Result A.2.2,

1
2

(
B• − B̂

)
Σ̃−1

(
B• − B̂

)′
+
(
B̂−B

)
Σ−1

(
B̂−B

)′
=

=
[
B̂−

(1
2

B•Σ̃−1 + BΣ−1
)(1

2
Σ̃−1 +Σ−1

)−1](1
2
Σ̃−1 +Σ−1

)
[
B̂−

(1
2

B•Σ̃−1 + BΣ−1
)(1

2
Σ̃−1 +Σ−1

)−1]′
+ (B• −B)

(
2Σ̃+Σ

)−1
(B• −B)′ ,

integrating out B̂, the joint pdf of
(
B•,S•, Σ̃−1,S

)
will be proportional to

e−
1
2 tr{(2Σ̃+Σ)−1(B•−B)′XX′(B•−B)+(n−p)Σ̃−1(S•+S)+(n−p)Σ−1S}

× |S•|
(n−p)−m−1

2

|Σ̃|
(n−p)+n−α

2 −m−1

|S|n+α
2−p−m−1

|Σ| n2

∣∣∣∣∣12Σ̃−1 +Σ−1
∣∣∣∣∣−p/2 .

Consequently, integrating out S one ends up with the joint pdf of
(
B•,S•, Σ̃−1

)
proportional to (2.6), concluding the proof.

In expression (2.6), one may see that S• and B•, conditionally on Σ̃−1, are

separable, with

B•|Σ̃ ∼Npm
(
B, (2Σ̃+Σ)⊗ (XX′)−1

)
(2.11)

and

S•|Σ̃ ∼Wm

(
1

n− p
Σ̃,n− p

)
, (2.12)

independent of B•.
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Immediately from pdf (2.6), we may conclude that the MLE of B based on the

synthetic data will be B•, with

E (B•) = (XX′)−1 XE(W′) = (XX′)−1XX′E
(
B̃
)

= E
(
B̂
)

= B,

therefore making B• an UE. Its variance may be derived from

V ar(B•) = V ar
[
E(B•|B̃, Σ̃)

]
+E

[
V ar(B•|B̃, Σ̃)

]
,

where, for n+α > p+ 2m+ 2,

V ar
[
E(B•|B̃, Σ̃)

]
= V ar

[
B̃
]

= V ar
[
E(B̃|B̂, Σ̃)

]
+E

[
V ar(B̃|B̂, Σ̃)

]
= V ar(B̂) +E

[
Σ̃⊗ (XX′)−1

]
= Σ⊗ (XX′)−1 +

n− p
n+α − p − 2m− 2

Σ⊗ (XX′)−1

and

E
[
V ar(B•|B̃, Σ̃)

]
= E

[
Σ̃⊗ (XX′)−1

]
=

n− p
n+α − p − 2m− 2

Σ⊗ (XX′)−1,

thus yielding

V ar(B•) =
2(n− p −m− 1) +n− p+α

n+α − p − 2m− 2
Σ⊗ (XX′)−1,

under the condition that n+α > p+ 2m+ 2.

We may also observe that S• is an UE of Σ, if α = 2m− 2, since

E(S•) = E(Σ̃) = E
(

n− p
n+α − p − 2m− 2

S
)

=
n− p

n+α − p − 2m− 2
Σ .

This way, having access only to one released synthetic dataset it is simple to

compute estimates for the unknown parameters from the usual estimators.

At this point one could suggest, in order to perform tests for B, the following

adaptations of the classical test criteria for the multivariate regression model (see

[3, Secs 8.3 and 8.6] for the classical criteria):

(a) T •1 = |S•|
∣∣∣S• + (B• −B)′ (XX′) (B• −B)

∣∣∣−1
(Wilks’ Lambda Criterion);

(b) T •2 = tr
{
(B• −B)′(XX′)(B• −B)(S•)−1

}
(Pillai’s Trace Criterion);

(c) T •3 = tr
{
(B• −B)′(XX′)(B• −B) [(B• −B)′(XX′)(B• −B) + S•]−1

}
(Hotelling -

Lawley Trace Criterion);
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(d) T •4 = λ1 where λ1 denotes the largest eigenvalue of (B• − B)′(XX′)(B• −
B)(S•)−1 (Roy’s Largest Root Criterion).

However, these statistics are non-pivotal, that is, their distributions will be func-

tion of Σ. When using the term ‘statistic’ we are assuming B known. In fact,

Lehmann in [23, Sec. 8.4] said that the distributions of these classical test statistics

will depend only on the nonzero roots of the equation |E−λΣ| = 0 thus implying

that their distribution will depend on Σ. Therefore, it is expected that the adapted

statistics in (a)-(d) for the analysis of synthetic data will also have distributions

that will be function of Σ. Considering this fact, let us begin by rewriting all four

classical statistics T •1 , T •2 , T •3 and T •4 , in order to make them assume the same type

of form and then prove why all of them are non-pivotal.

Let us consider

H =
(
2Σ̃+Σ

)− 1
2 (B• −B)′ (XX′) (B• −B)

(
2Σ̃+Σ

)− 1
2 (2.13)

and

G = (n− p)Σ̃−
1
2 S•Σ̃−

1
2 . (2.14)

By Theorem 2.4.1 in [22], for p ≥m,

(B• −B)′(XX′)(B• −B)|Σ̃−1 ∼Wm

(
2Σ̃+Σ,p

)
.

As such from Theorem 2.4.2 in [22] and subsection 7.3.3 in [3] we have for H
and G in (2.13) and (2.14)

H|Σ̃−1 ∼Wm (Im,p) (2.15)

and

G|Σ̃−1 ∼Wm (Im,n− p) , (2.16)

whose distributions are not function of Σ.

The statistic T •1 may then be rewritten as

T •1 =
|G|∣∣∣∣∣G + (n− p)Σ̃−1/2

(
2Σ̃+Σ

)1/2
H

(
2Σ̃+Σ

)1/2
Σ̃−1/2

∣∣∣∣∣ .
while T •2 and T •3 may be rewritten as

T •2 = (n− p)tr
{

H
(
2Σ̃+Σ

)1/2
Σ̃−1/2G−1Σ̃−1/2

(
2Σ̃+Σ

)1/2
}

and

T •3 = tr
{

H
[
H + (n− p)

(
2Σ̃+Σ

)−1/2
Σ̃1/2GΣ̃1/2

(
2Σ̃+Σ

)−1/2
]−1

}
.
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Concerning T •4 , we have that T •4 = λ1 where λ1 denotes the largest eigenvalue of

(n− p)H
(
2Σ̃+Σ

)1/2
Σ̃−1/2G−1Σ̃−1/2

(
2Σ̃+Σ

)1/2
.

Now, let us observe that a term in the denominator of the expression T •1 is

Σ̃−1/2
(
2Σ̃+Σ

)1/2
H

(
2Σ̃+Σ

)1/2
Σ̃−1/2 ∼Wm

((
2Im + Σ̃−1/2ΣΣ̃−1/2

)
,p

)
,

while in the expressions for the other statistics there are terms similar to

(n−p)
(
2Σ̃+Σ

)−1/2
Σ̃1/2GΣ̃1/2

(
2Σ̃+Σ

)−1/2
∼Wm

((
2Σ̃+Σ

)−1/2
Σ̃
(
2Σ̃+Σ

)−1/2
,n−p

)
which have distributions that will depend on Σ. Since the remaining terms in T •1
are G and in the other three statistics are H, the distributions of these statistics

will themselves be function of Σ, therefore making these statistics non-pivotal.

In order to illustrate how these statistics are dependent on Σ, one may analyze

in Figure 2.1 the empirical distributions of T •1 , T •2 , T •3 and T •4 for m = 3, p = 24,

α = 4, n = 100 and

Σ =
(

1 ρ ρ
ρ 1 ρ
ρ ρ 1

)
with ρ = 0.2,0.4,0.6,0.8 for a simulation size of 104.
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10000

20000

30000

40000
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c Pillai
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Figure 2.1: Smothed Empiricaldistributionsandcut-offpoints (γ=0.05) of T •1 , T •2 , T •3 and T •4 for
ρ =0.2,0.4,0.6,0.8.
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As seen, these adaptations of the classical criteria cannot be used to make

inference about the regression coefficient matrix since they will always depend

on the original data, through Σ̃. Therefore there is a need to propose a different

quantity which will be pivotal, not dependent on the original data.

Theorem 2.1.2 makes available a pivotal statistic that is not dependent on the

original data and which may be used to draw inference for B from the synthetic

version of the original data, which is the accessible data to general public.

Theorem 2.1.2. Let us consider

T • =
|(B• −B)′(XX′)(B• −B)|

|(n− p)S•|
. (2.17)

Its distribution can be obtained from the decomposition

T •|Ω
st∼

 m∏
i=1

p − i + 1
n− p − i + 1

Fi

 |2Im +Ω|

where st∼ means ‘stochastic equivalent to’ and where Fi ∼ Fp−i+1,(n−p)−i+1 are indepen-
dent random variables, themselves independent of Ω, which has the same distribution

as that of A
1
2
1 A−1

2 A
1
2
1 where A1 ∼Wm(Im,n+α −p−m−1) and A2 ∼Wm(Im,n−p) are

two independent random variables.

Proof. Let us recall the distributions of S• and B• in (2.11) and (2.12) and that

conditionally on Σ̃−1, S• is independent of B•.

Let us also recall H and G defined in (2.13) and (2.14), whose distributions are

given in (2.15) and (2.16). Given the independence of B• and S•, conditionally on

Σ̃, H will be independent of G.

Since T • in (2.17) can be written as

T • =
|(B• −B)′(XX′)(B• −B)|

|(n− p)S•|
=

∣∣∣2Σ̃+Σ
∣∣∣

|Σ̃|
× |H|
|G|
,

where |G| ∼
∏m
i=1χ

2
n−p−i+1 and |H| ∼

∏m
i=1χ

2
p−i+1, with independent chi-square

random variables in each product, the distribution of |H|/ |G|, given Σ̃−1, is that

of a product of independent F-distributions, given the independence of H and

G. Since the distributions of H and G, respectively given in (2.15) and (2.16), are

not function of Σ̃ then we will have that they will be independent of
∣∣∣2Σ̃+Σ

∣∣∣ / |Σ̃|,
therefore making this latter ratio independent of |H|/ |G|.

17



CHAPTER 2. INFERENCE FOR MULTIVARIATE REGRESSION MODEL

BASED ON SYNTHETIC DATA GENERATED VIA PPS AND FPPS

Thus,

T •|Σ̃−1 ∼

 m∏
i=1

p − i + 1
(n− p)− i + 1

Fp−i+1,(n−p)−i+1

× ∣∣∣∣Σ̃−1
(
2Σ̃+Σ

)∣∣∣∣ .
Noting that∣∣∣∣Σ̃−1

(
2Σ̃+Σ

)∣∣∣∣ =
∣∣∣2I + Σ̃−1Σ

∣∣∣ =
∣∣∣2Σ−1 + Σ̃−1

∣∣∣ |Σ|
=

∣∣∣Σ1/2
∣∣∣ ∣∣∣2Σ−1 + Σ̃−1

∣∣∣ ∣∣∣Σ1/2
∣∣∣ =

∣∣∣2I +Σ1/2Σ̃−1Σ1/2
∣∣∣ ,

from (2.6), integrating out B• and S• we end up with

fΣ(Σ̃−1) ∝ |Σ̃|
n−p

2
∣∣∣2Σ̃+Σ

∣∣∣ p2 1

|Σ̃|
(n−p)+n−α

2 −m−1
|Σ|−

n
2

×
∣∣∣∣∣12Σ̃−1 +Σ−1

∣∣∣∣∣−p/2 |Σ̃−1 +Σ−1|−
2n+α−2p−m−1

2

∝ |Σ̃−1|
n+α−2m−2

2
∣∣∣2Σ̃+Σ

∣∣∣ p2 |Σ|− n2 ∣∣∣∣∣12Σ̃−1 +Σ−1
∣∣∣∣∣−p/2 |Σ̃−1 +Σ−1|−

2n+α−2p−m−1
2 .

Making the transformation Ω = Σ
1
2 Σ̃−1Σ

1
2 , which implies that Σ̃−1 = Σ−

1
2ΩΣ−

1
2

(the Jacobian of the transformation of Σ̃−1 to Ω is |Σ|−m+1
2 ) we have

f (Ω) ∝ |Ω|
n+α−2m−2

2
∣∣∣2Ω−1 + Im

∣∣∣ p2 ∣∣∣∣∣12Ω+ Im

∣∣∣∣∣−p/2 |Ω+ Im|−
2n+α−2p−m−1

2 .

Since |2Ω−1 + Im|
p
2 = 2p/2

∣∣∣1
2Ω+ Im

∣∣∣ p2 |Ω|− p2 we end up having

f (Ω) ∝ |Ω|
n+α−p−2m−2

2 |Ω+ Im|−
2n+α−2p−m−1

2

not function of Σ, where from [26, Theorem 8.2.8.] Ω has the same distribution

as that of A
1
2
1 A−1

2 A
1
2
1 , where A1 ∼Wm(Im,n+α − p −m− 1) and A2 ∼Wm(Im,n− p)

are two independent random variables, and where Ω, being a function of Σ̃, is

independent of |H|/ |G|.

Remark 2.1.1. When m = 1 and M = 1, the statistic in (2.17) reduces to the statistic
T 2 used in [17] whose pdf is obtained by noting that

T 2|Ω=ω ∼
p

n− p
(2 +ω)Fp,n−p where fΩ(ω) ∝ ω

n+α−p−4
2

(1 +ω)
2n+α−2p−2

2

.

In Table 2.1 are listed the simulated 0.05 cut-off points for T • for some values

of p, m and n.

18
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Table 2.1: Cut-off points of the 95% confidence set for the regression coefficients matrix B.

n
p = 3

m = 1 m = 3
α = 2 α = 4 α = 4 α = 6

10 6.568 7.433 20.11 29.08
50 5.502E-01 5.581E-01 9.277E-03 9.691E-03

100 2.518E-01 2.542E-01 9.212E-04 9.443E-04
200 1.207E-01 1.208E-01 1.049E-04 1.064E-04

n
p = 4

m = 1 m = 3
α = 2 α = 4 α = 4 α = 6

10 11.08 12.69 239.2 372.7
50 6.884E-01 6.984E-01 3.550E-02 3.697E-02

100 3.108E-01 3.128E-01 3.487E-03 3.564E-03
200 1.487E-01 1.490E-01 3.674E-04 3.723E-04

If instead of testing the regression coefficients matrix B, someone wants to test

a linear combination of the parameters in B, namely, C = AB where A is a k × p
matrix with rank(A) = k ≤ p and k ≥m, one may define

T •C =
|(AB• −C)′(A(XX′)−1A′)−1(AB• −C)|

|(n− p)S•|
,

which will present a similar distribution to that of T • in (2.17). If one notes that

(AB• −AB)′ |Σ̃−1 ∼Nmk
(
0 ,A(XX′)−1A′ ⊗ (2Σ̃+Σ)

)
,

and that

(AB• −C)′(A(XX′)−1A′)−1(AB• −C)|Σ̃−1 ∼Wm(2Σ̃+Σ, k),

easily realizing that

T •C |Ω
st∼

 m∏
i=1

k − i + 1
(n− p)− i + 1

Fk,i

 |2Im +Ω| , (2.18)

with Fk,i as independent random variables with Fk−i+1,(n−p)−i+1 distribution, them-

selves independent of Ω defined in Theorem 2.1.2.

So, if one wants to perform the test

H0 : C = C0 versus H1 : C , C0,

should rejectH0 whenever T •C0
exceedsωk,m,n,p;γ , whereωk,m,n,p;γ satisfies (1−γ) =

P r(T •C0
≤ ωk,m,n,p;γ ) when H0 is true. The value of ωk,m,n,p;γ can be obtained by
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simulating the distribution in (2.18). To perform a test for B = B0 one must take

A = Ip, C0 = B0 and k = p in (2.18).

A (1−γ) level confidence set for C will be given by

∆(C) = {C : T •C ≤ωk,m,n,p;γ }. (2.19)

The inference for the regression coefficients when just a single partially syn-

thetic dataset is released is now made available fulfilling the existing gap and

fulfilling the first objective of this work.

This derivation of an exact inference procedure for the singly imputed syn-

thetic data generated via PPS, allows the derivation of an exact inferential pro-

cedure for multiply imputed synthetic datasets generated via PPS, as shown in

subsection 2.2.2.

2.2 Multiple imputation: Posterior Predictive

Sampling

In Chapter 1, it was referred the inclusion of multiple imputation as a SDC tech-

nique for partially synthetic data, treating the values from sensitive variables as

missing data and replacing these by synthesized values. These values may be

generated independently M times via PPS method, which is the most common

method when dealing with missing data.

To specify in detail the PPS method in the MLR model context, let us consider

again the model (1.1) with Y, X, B, Σ, B̂ and S defined in that context.

The synthetic data will consist of M synthetic versions of Y generated based

on the PPS method.

Let us consider the joint prior distribution

π(B,Σ) ∝ |Σ|−α/2,

as in subsection 2.1.1 leading to the same posterior distributions for Σ and B as

in (2.1) and (2.2), assuming that n + α > p +m + 1. Consequently, we draw Σ̃1

from (2.1) and B̃1 from (2.2), generating the first synthetic dataset, denoted as

Z1 = (z11, . . . ,z1n) where z1i = (z11i , . . . ,zm1i), are independently distributed as

z1i |B̃1,Σ̃1
∼Nm

(
B̃′1xi, Σ̃1

)
, i = 1, . . . ,n. (2.20)

Then, we repeat the same procedure in order to generate i.i.d. Z2, . . . ,ZM , by

drawing sequentially Σ̃2, . . . , Σ̃M and B̃2, . . . , B̃M , in order to generate i.i.d.
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Z2, . . . ,ZM.

2.2.1 Reiter’s adapted methodology

Before presenting the development of an exact inference procedure, we will

present an adaptation of Reiter’s [31] methodology for drawing inference based

on multiply synthetic data generated via PPS for a vector valued parameter, to

the inference on a matrix value parameter.

In order to be possible to use Reiter’s methodology, developed for a vector of

parameters, to estimate B, a p ×m dimensional matrix parameter, let us consider

vec(B) = (B′1 B′2 . . . B′m)′, a pm×1 vector parameter, where Bj (j = 1, . . . ,m) denotes

the j-th column of B.

Based on the original data, vec(B̂) is an estimator of vec(B) and its covariance

matrix estimator is U = S⊗ (XX′)−1, a pm × pm matrix. Let Z1, . . . ,ZM be the M

synthetic datasets obtained via PPS. Let vec(B†j ) = vec((XX′)−1XZ′j) and Uj =

S†j ⊗ (XX′)−1, where S†j = 1
n−p (Zj − B†

′

j X)(Zj − B†
′

j X)′, for j = 1, . . . ,M. Note that

based on Zj , conditionally on B̂ and S, vec(B†j ) is an UE of vec(B) and Uj is an UE

of its variance. Then the following estimators

vec(B
†
M) =

1
M

M∑
j=1

vec(B†j ), UM =
1
M

M∑
j=1

Uj , (2.21)

bM =
1

M − 1

M∑
j=1

(vec(B†j )− vec(B
†
M))(vec(B†j )− vec(B

†
M))′ (2.22)

should be Reiter’s estimators to be used to draw inference about B, where vec(B
†
M)

is an estimator for vec(B), its variance being estimated by T = 1
MbM + UM .

Let us consider

TR,M =
(vec(B

†
M)− vec(B))′(UM)−1(vec(B

†
M)− vec(B))

pm(1 + r)
(2.23)

where r = tr(bMU
−1
M )

Mpm . Then following Reiter [31], the distribution of TR,M is approx-

imated by an Fpm,w(r) distribution where

w(r) = 4 + [pm(M − 1)− 4]
[
1 +

1
r
− 2

(M − 1)rpm

]2

. (2.24)

This result is one of the most used in the multiple imputation case [1, 4, 7, 8,

13, 20]. Nevertheless it faces some problems. First, it is not adequate for single

21



CHAPTER 2. INFERENCE FOR MULTIVARIATE REGRESSION MODEL

BASED ON SYNTHETIC DATA GENERATED VIA PPS AND FPPS

imputation cases, since, in fact, was developed only for multiple imputation and

also if one takes M = 1 in the expression of w(r), above, it becomes meaningless.

Thus the inclusion of the single exact inference method in the previous Section.

Second, it is asymptotic in nature and not exact, thus it is not fit for relatively

small sample sizes.

With this second problem in mind, follows in the next subsection the develop-

ment of an exact inference procedure for the multiply imputed synthetic datasets

via PPS.

2.2.2 Exact inference for multiple imputation cases based in

single imputation inference

In order to develop an exact inferential procedure for the multiple imputation

case, one first idea could be to obtain the distribution of the mean of the M indi-

vidual estimators of B, B†j , and the distribution of the mean of the M individual

estimators of Σ, S†j , defined in the previous subsection. Unfortunately, this would

be too hard to materialize for the distribution of the mean of the S†j estimators.

Since, to obtain the exact pdf of such an estimator, under the MLR model, one

would face the problem of deriving the distribution of the sum of variables that

follow Wishart distributions with different parameter matrices.

Therefore, a new approach is presented where each synthetic data is seen as

an individual sample.

Let

B†j = (XX′)−1XZ′j (2.25)

and

S†j =
1

n− p
(Zj −B•

′
j X)(Zj −B•

′
j X)′ (2.26)

be respectively the estimators of B and Σ based on the j-th synthetic dataset

(j = 1, . . . ,M), which by Lemma 1.4.1 are jointly sufficient for B and Σ.

Conditionally on (B̃j , Σ̃j), for every j = 1, . . . ,M, B†j will be independent of S†j
and

{
(B†1,S

†
1), . . . , (B†M ,S

†
M)

}
will be jointly sufficient estimators for B and Σ.

For each j = 1, . . . ,M, individually, one may note that, from Section 2.1.1, the

MLE of B would be B†j and Ŝj = n+α−p−2m−2
n−p S†j would be an UE for Σ.

Then, it is proposed the following test statistic

T †M =
M∑
j=1

T †j (2.27)
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with

T †j =
|(B†j −B)′(XX′)(B†j −B)|

|(n− p)S†j |
.

Let us note that T †M will be a pivotal quantity due to the fact that, for j =

1, . . . ,M, all T †j are not function of any original data parameter. From Theorem

2.1.2 we have that

T †j |Ω
st∼

 m∏
i=1

p − i + 1
n− p − i + 1

Fi

 |2Im +Ω| , j = 1, . . . ,M

leading to the conclusion that

T †M |Ω
st∼

M∑
j=1


 m∏
i=1

p − i + 1
n− p − i + 1

Fi

 |2Im +Ω|

 ,
where Ω has the same distribution as A

1
2
1 A−1

2 A
1
2
1 , where A1 ∼Wm(Im,n+α−p−m−1),

A2 ∼ Wm(Im,n − p) and Fi ∼ Fp−i+1,n−p−i+1 (i = 1, . . . ,m), all independent random

variables.

To test a linear combination of the parameters in B, namely, C = AB where A
is a k × p matrix with rank(A) = k ≤ p and k ≥m, one defines

T †M,C =
M∑
j=1

|(AB†j −C)′(A(XX′)−1A′)−1(AB†j −C)|

|(n− p)S†j |

and proceed by noting that

T †M,C|W
st∼

M∑
j=1


 m∏
i=1

k − i + 1
n− p − i + 1

Fk,i

 |2Im +Ω|

 (2.28)

with Fk,i ∼ Fk−i+1,n−p−i+1, all independent variables, themselves independent of Ω,

which is defined as above.

In order to test

H0 : C = C0 versus H1 : C , C0 ,

we reject H0 whenever T †M,C0
exceeds ψM,k,m,n,p;γ , where ψM,k,m,n,p;γ satisfies

(1 − γ) = P r(T †M,C0
≤ ψM,k,m,n,p;γ ) when H0 is true, where the value of ψM,k,m,n,p;γ

can be obtained by simulating the distribution in (2.28). Again if one wants to

perform a test for B = B0 one must take A = Ip, C0 = B0 and k = p in (2.28).
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A (1−γ) level confidence set for C will be given by

ΨM(C) = {C : T †M,C ≤ ψM,k,m,n,p;γ } . (2.29)

Thus, an exact procedure is made available to draw inference from the re-

leased multiply imputed synthetic datasets overcoming the problem implicit in

asymptotic based procedures, that is, its inapplicability to small sample sizes.

The procedure developed in this subsection only carries with the small prob-

lem that when resorting to Monte Carlo simulations to construct the empirical

distribution one may take a fair amount of time to reach a satisfying accuracy for

the distribution, since the number of cycles on the simulations will be multiplied

by M. Another problem that this procedure faces is the fact that it will not be

possible to compute the ‘radius’ of the confidence sets directly, as one may see in

Chapter 4, being only possible to frame this between an upper and lower bound.

2.3 Multiple Imputation: Fixed-Posterior Predictive

Sampling (FPPS)

In this subsection, under the MLR model, two new exact likelihood-based pro-

cedures are presented for the analysis of synthetic data generated using the new

FPPS Sampling method, for which a brief description can be found in subsection

1.2.2. The FPPS method will overcome the problem that rises when one uses the

PPS method to generate multiply imputed synthetic datasets, that is, the problem

of obtaining the distribution of a sum of Wishart distributions with different pa-

rameters when estimating Σ from the synthetic datasets. It is expected that this

new method of generating synthetic data will offer a lower level of disclosure risk.

In order to specify in detail the new FPPS method in the MLR model context,

let us consider again the model (1.1).

We consider the same joint prior distribution π(B,Σ) ∼ |Σ|−α/2, leading to the

same posterior distributions for Σ and B as in expressions (2.1) and (2.2), respec-

tively, assuming n+α > p+m+ 1.

Now, draw, only once, Σ̃ and B̃ from (2.1) and (2.2), respectively, and generate

the M i.i.d. synthetic datasets, denoted as Wj = (wj1, . . . ,wjn), j = 1, . . . ,M where

wji = (w1ji , . . . ,wmji), will be independently distributed as

wji |B̃,Σ̃ ∼Nm(B̃′xi, Σ̃), i = 1, . . . ,n, j = 1, . . . ,M. (2.30)
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Observe that now all synthetic versions are independently generated from the

same distribution, instead of being generated from M different normal distribu-

tions, based on M independent draws from M different posterior distributions.

2.3.1 A First Procedure

For j = 1, . . . ,M, let

B•j = (XX′)−1XW′j

and

S•j =
1

n− p
(Wj −B•

′
j X)(Wj −B•

′
j X)′

be the estimators of B and Σ, respectively, which by Lemma 1.4.1 are jointly

sufficient for B and Σ.

Conditionally on (B̃, Σ̃), for each j = 1, . . . ,M, B•j is independent of S•j and{
(B•1,S

•
1), . . . , (B•M ,S

•
M)

}
are jointly sufficient estimators for B and Σ.

Let us define also

B
•
M =

1
M

M∑
j=1

B•j and S
•
M =

1
M

M∑
j=1

S•j , (2.31)

which, given B̃ and Σ̃, are mutually independent. For p ≥m and n+α > p +m+ 1,

let us consider the two following Corollaries of Theorems 2.1.1 and 2.1.2.

Corollary 2.3.1. The joint pdf of B
•
M , S

•
M and Σ̃−1, for B

•
M and S

•
M defined in (2.31),

is proportional to

e−
1
2 tr{M+1

M (Σ̃+Σ)−1(B
•
M−B)′XX′(B

•
M−B)+M(n−p)Σ̃−1S

•
M}

× |S
•
M |

M(n−p)−m−1
2

|Σ̃|
M(n−p)+n+α

2 −m−1
|Σ|−

n
2

∣∣∣∣∣ M
M + 1

Σ̃−1 +Σ−1
∣∣∣∣∣−p/2 |Σ̃−1 +Σ−1|−

2n+α−2p−m−1
2 .

Proof. The proof is identical to the proof of Theorem 2.1.1, replacing the joint pdf

of (B•,S•) by the joint pdf of (B
•
M ,S

•
M), noting that we have

B
•
M |B̃,Σ̃ ∼Npm

(
B̃,

1
M

Σ̃⊗ (XX′)−1
)

and

M(n− p)S
•
M |Σ̃ ∼Wm(Σ̃,M(n− p)),

independent of B
•
M .
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Corollary 2.3.2. Let us consider

T •M =
|(B•M −B)′(XX′)(B

•
M −B)|

|M(n− p)S
•
M |

. (2.32)

Its distribution can be obtained from the decomposition

T •M |Ω
st∼

 m∏
i=1

p − i + 1
M(n− p)− i + 1

Fi


∣∣∣∣∣M + 1
M

Im +Ω
∣∣∣∣∣

where Fi ∼ Fp−i+1,M(n−p)−i+1 are independent random variables, themselves indepen-

dent of Ω, which has the same distribution as A
1
2
1 A−1

2 A
1
2
1 where A1 ∼Wm(Im,n+α −

p −m− 1) and A2 ∼Wm(Im,n− p) are two independent random variables.

Proof. The proof is identical to the proof of Theorem 2.1.2, replacing B• by B
•
M

and S• by S
•
M , noting that, from the distribution in Corollary 2.3.1,

B
•
M |Σ̃ ∼Npm

(
B,

(M + 1
M

Σ̃+Σ
)
⊗ (XX′)−1

)
and

S
•
M |Σ̃ ∼Wm

(
1

M(n− p)
Σ̃,M(n− p)

)
,

independent of B
•
M .

From the two corollaries above and proceeding similarly as in Section 2.1.1, it

is possible to conclude that the MLE of B is B
•
M , which will also be unbiased for

B, with

V ar(B
•
M)=NM,n,m,p,αΣ⊗(XX′)−1,

where

NM,n,m,p,α =
2M(n+ α

2 − p −m− 1) +n− p
M(n+α − p − 2m− 2)

,

for n+α > p+ 2m+ 2. An UE of Σ will be ŜM = n+α−p−2m−2
n−p S

•
M .

From Corollary 2.3.2, we have that T •M defined in (2.32) is a pivotal quantity

for the synthetic datasets since it does not depend on any parameter from the

original data in its definition and in its distribution.

In order to perform a test to a linear combination of the parameters in B,

namely, C = AB where A is a k × p matrix with rank(A) = k ≤ p and k ≥ m we

define

T •M,C =
|(AB

•
M −C)′(A(XX′)−1A′)−1(AB

•
M −C)|

|M(n− p)S
•
M |
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and proceed by noting that

T •M,C|Ω
st∼

 m∏
i=1

k − i + 1
M(n− p)− i + 1

Fk,i


∣∣∣∣∣M + 1
M

Im +Ω
∣∣∣∣∣ (2.33)

with Fk,i ∼ Fk−i+1,M(n−p)−i+1 and Ω defined as in Corollary 2.3.2.

Therefore, when testing

H0 : C = C0 versus H1 : C , C0

we should reject H0 whenever T •C0
exceeds ωM,k,m,n,p;γ where ωM,k,m,n,p;γ satisfies

(1− γ) = P r(T •M,C0
≤ ωM,k,m,n,p;γ ) when H0 is true, where the value of ωM,k,m,n,p;γ

is obtained by simulating the distribution in (2.28). To perform a test for B = B0

one must take A = Ip, C0 = B0 and k = p in (2.33).

A (1−γ) level confidence set for C is given by

∆•M(C) = {C : T •M,C ≤ωM,k,m,n,p;γ } . (2.34)

2.3.2 A Second Procedure

One may use more information from the released synthetic data if more infor-

mation about Σ is included in the test statistic used to perform inference about

B. Therefore, we propose a second likelihood-based approach for exact inference

about B, which is expected to offer more precision in the inference analysis than

the previous procedure.

Let us recall that Wj (j = 1, . . . ,M), is a m × n matrix formed by the vectors

(wj1, . . . ,wjn) as columns, generated from (2.30) and note that, conditionally on B̃
and Σ̃, (w1i , . . . ,wMi) is a random sample from Nm(B̃′xi , Σ̃), for each i = 1, . . . ,n.

Let us consider

wi =
1
M

M∑
j=1

wji and Swi =
M∑
j=1

(wji −wi)(wji −wi)
′

which are sufficient statistics for Σ, based on the i-th covariate vector.

Defining

Sw =
n∑
i=1

Swi , (2.35)

one has (w1, . . . ,wn,Sw) as the joint sufficient statistics for (B,Σ).
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Conditionally on B̃ and Σ̃, we have that

wi ∼Nm(B̃′xi ,
1
M

Σ̃) and Swi ∼Wm(Σ̃,M − 1).

From the M released synthetic data matrices Wj , j = 1, . . . ,M, let us define

WM =
1
M

M∑
j=1

Wj (2.36)

and for B its estimator

B
•
M = (XX′)−1XW

′
M , (2.37)

and for Σ its estimator

S•comb =
Sw +M ×S•mean

Mn− p
(2.38)

where we take

S•mean =
(
WM −B

•′
MX

)′ (
WM −B

•′
MX

)
. (2.39)

We use again the notation B
•
M for the present estimator of B since it is indeed

the same estimator used in the first procedure, since for B
•
M in (2.37)

B
•
M = (XX′)−1XW

′
M =

1
M

M∑
j=1

(XX′)−1XW
′
j =

1
M

M∑
j=1

B•j .

It is with the estimator S•comb that a surplus of information about Σ is acquired,

when compared with the estimator used in the first procedure.

In fact, if the M synthetic datasets are treated as a single big synthetic sample

of size nM, the estimators obtained for B and Σ would actually be the same as

those in (2.37) and (2.38).

With the purpose of proving this fact, let us start by considering the synthetic

datasets as one only sample of size nM arranged as Wa

Xa

 =

 W1 W2 . . . WM

X X . . . X

 ,
where Wa = (W1| . . . |WM) is them×nM matrix of the synthesized data under FPPS

and Xa = (X| . . . |X) the p × nM matrix of the M repeated ‘fixed’ sets of covariates,

from the original data.
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Let

Ba = (XaX
′
a)
−1XaW

′
a

be the estimator of B, based on the dataset of size nM, obtained by joining all the

M synthetic datasets in one only dataset. Consequently one has that

Ba = (XaX
′
a)
−1XaW

′
a = (M(XX′))−1XaW

′
a =

1
M

(XX′)−1XaW
′
a

=
1
M

(XX′)−1
(
X| ... |X︸   ︷︷   ︸
M times

)
W′a =

1
M

(
(XX′)−1XW1 + ...+ (XX′)−1XWM

)
=

1
M

(XX′)−1X (W1 + ...+ WM) = (XX′)−1XWM ,

which is same estimator for B as that in (2.37).

Now let

Sa =
1

nM − p
(Wa −B′aXa)(Wa −B′aXa)

′

be the estimator for Σ, based on the dataset of size nM, obtained by joining the

M synthetic datasets in one only dataset.

Observe that WM , defined in (2.36), can be written as

WM =
1
M

WaR

with R =
(−→

1 M ⊗ In
)

where
−→
1 M is a vector of 1’s of size M.

Now let us consider the estimator Sw of Σ, defined in (2.35). This estimator

may be written as

Sw =
n∑
i=1

M∑
j=1

(wji −wi)(wji −wi)
′,

where wji is the i-th column of Wj (i = 1, . . . ,n; j = 1, . . . ,M). We may thus write

Sw =
(
Wa −

−→
1 ′M ⊗WM

)(
Wa −

−→
1 ′M ⊗WM

)′
=

(
Wa −

1
M
−→
1 ′M ⊗ (WaR)

)(
Wa −

1
M
−→
1 ′M ⊗ (WaR)

)′
=

(
Wa −

1
M

WaRR′
)(

Wa −
1
M

WaRR′
)′
,

while the estimator Smean of Σ, defined in (2.39), may be written as

Smean =
( 1
M

WaR−
1
M

B′aXaR
)( 1
M

WaR−
1
M

B′aXaR
)′
.

We may therefore write the combination estimator Scomb defined in (2.38) as
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Scomb =
1

nM − p

[(
Wa −

1
M

WaRR′
)(

Wa −
1
M

WaRR′
)′]

+
1

nM − p

[
M ×

( 1
M

WaR−
1
M

B′aXaR
)( 1
M

WaR−
1
M

B′aXaR
)′]
.

To prove that Scomb is equal to Sa it will only be necessary to focus on(
Wa −

1
M

WaRR′
)(

Wa −
1
M

WaRR′
)′

+M ×
( 1
M

WaR−
1
M

B′aXaR
)( 1
M

WaR−
1
M

B′aXaR
)′

= WaW
′
a −

1
M

WaRR′W′a −
1
M

WaRR′W′a +
1
M2 WaRR′RR′W′a

+
1
M

WaRR′W′a −
1
M

B′aXaRR′W′a −
1
M

WaRR′X′aBa +
1
M

B′aXaRR′X′aBa ,

which, using the fact that 1
MXaRR′ = Xa and 1

MRR′RR′ = RR′, may be written as

WaW
′
a −

1
M

WaRR′W′a −
1
M

WaRR′W′a +
1
M

WaRR′W′a

+
1
M

WaRR′W′a −B′aXaW
′
a −WaX

′
aBa + B′aXaX

′
aBa

= WaW
′
a −B′aXaW

′
a −WaX

′
aBa + B′aXaX

′
aBa

= (Wa −B′aXa)(Wa −B′aXa)
′ = (nM − p)Sa .

Therefore, Scomb = Sa as it was referred.

In future derivations it will be used Scomb instead of Sa to be easier to recall

that this estimator contains a combination of information gathered about Σ.

Following, important Corollaries of Theorems 2.1.1 and 2.1.2 in order to de-

velop inference analysis for the matrix of regressor coefficients B are presented.

Corollary 2.3.3. For p ≥m, n+α > p+m+ 1, the joint pdf of B
•
M , S•comb, Σ̃

−1, for B
•
M

and S•comb defined in (2.37) and (2.38), is proportional to

e
− 1

2 tr
{
( M+1

M Σ̃+Σ)
−1

(B
•
M−B)′XX′(B

•
M−B)+(Mn−p)Σ̃−1S•comb

}

×
|S•comb|

Mn−p−m−1
2

|Σ̃|
Mn−p+n+α

2 −m−1
|Σ|−

n
2

∣∣∣∣∣ M
M + 1

Σ̃−1 +Σ−1
∣∣∣∣∣−p/2 |Σ̃−1 +Σ−1|−

2n+α−2p−m−1
2 .

Proof. The proof is identical to the proof of Theorem 2.1.1 replacing the joint pdf

of (B•,S•) by the joint pdf of (B
•
M ,S

•
comb), noting that we have

B
•
M |B̃,Σ̃ ∼Npm

(
B̃,

1
M

Σ̃⊗ (XX′)−1
)
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and

(Mn− p)S•comb|Σ̃ ∼Wm(Σ̃,Mn− p),

independent of B
•
M .

Corollary 2.3.4. Let us consider

T •comb =
|(B•M −B)′(XX′)(B

•
M −B)|

|(Mn− p)S•comb|
. (2.40)

For p ≥m, n+α > p+m+ 1, its distribution can be obtained from the decomposition

T •comb|Ω
st∼

 m∏
i=1

p − i + 1
Mn− p − i + 1

Fi


∣∣∣∣∣M + 1
M

Im +Ω
∣∣∣∣∣

where Fi ∼ Fp−i+1,Mn−p−i+1 are independent random variables, themselves independent

of Ω, which has the same distribution as A
1
2
1 A−1

2 A
1
2
1 where A1 ∼Wm(Im,n+α−p−m−1)

and A2 ∼Wm(Im,n− p) are two independent random variables.

Proof. The proof is identical to the proof of Theorem 2.1.2 replacing B• by B
•
M

and S• by S•comb, noting that from the distribution of Corollary 2.3.3,

B
•
M |Σ̃ ∼Npm

(
B,

(M + 1
M

Σ̃+Σ
)
⊗ (XX′)−1

)
and

S•comb|Σ̃ ∼Wm

(
1

Mn− p
Σ̃,Mn− p

)
,

independent of B
•
M .

From the two Corollaries above, one easily concludes that an UE of Σ will be

ŜM = n+α−p−2m−2
n−p S•comb.

Similar to what happened in subsection 2.3.1, we have that T •comb defined in

(2.40) is also a pivotal quantity for the synthetic datasets since it does not depend

on any parameter from the original data in its definition and in its distribution.

If one wants to test a linear combination of the parameters in B, namely,

C = AB where A is a k × p matrix with rank(A) = k ≤ p and k ≥m one defines

T •comb,C =
|(AB

•
M −C)′(A(XX′)−1A′)−1(AB

•
M −C)|

|(Mn− p)S
•
comb|
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and proceeds by noting that

T •comb,C|Ω
st∼

 m∏
i=1

k − i + 1
Mn− p − i + 1

Fk,i

∣∣∣∣M + 1
M

Im +Ω
∣∣∣∣ (2.41)

with Fk,i ∼ Fk−i+1,Mn−p−i+1 and Ω defined in Corollary 2.3.3, all independent vari-

ables.

In order to perform the test

H0 : C = C0 versus H1 : C , C0

one will reject H0 whenever T •comb,C0
exceeds ωcomb,M,k,m,n,p;γ where

ωcomb,M,k,m,n,p;γ satisfies (1 − γ) = P r(T •comb,C0
≤ ωcomb,k,m,n,p;γ ) when H0 is true,

where the value of ωcomb,M,k,m,n,p;γ can be obtained by simulating the distribution

in (2.41).

A (1−γ) level confidence set for C is given by

∆•comb(C) = {C : T •comb,C ≤ωcomb,M,k,m,n,p;γ } . (2.42)

It is expected that this second exact procedure of analyzing the synthetic data

generated via FPPS will offer a better precision than the first one, at least for mi-

crodata with small sample sizes, that is, originating smaller confidence sets; in

other words, confidence sets with smaller radius. The main difference between

the distributions in (2.33) and (2.41) is observed in the denominator degrees of

freedom of the F distributions. As n and M increases these degrees of freedom

become closer and closer and one may see that these two methods will become

identical.

In fact, making a simple scale change, the distributions from both procedures

converge in distribution to the same distribution. Concerning the first procedure,

making a scale change, in T •M defined in (2.33) one will have that

(M(n− p))mT •M |Ω
d−−−−−→

n→∞

 m∏
i=1

χ2
p−i+1


∣∣∣∣∣M + 1
M

Im +Ω
∣∣∣∣∣

and

(M(n− p))mT •M |Ω
d−−−−−→

M→∞

 m∏
i=1

χ2
p−i+1

 |Im +Ω| ,
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where
d−−−−→ represents convergence in distribution. This is due to the fact that

χ2
b

b
d−−−−−→

b→∞
1 =⇒ a Fa,b

d−−−−−→
b→∞

χ2
a .

On the other hand, relatively to the second procedure, making a similar scale

change in T •comb defined in (2.41), one will also have

(Mn− p)mT •comb|Ω
d−−−−−→

n→∞

 m∏
i=1

χ2
p−i+1


∣∣∣∣∣M + 1
M

Im +Ω
∣∣∣∣∣

and

(Mn− p)mT •comb|Ω
d−−−−−→

M→∞

 m∏
i=1

χ2
p−i+1

 |Im +Ω| .

Therefore concluding that the two FPPS inferential procedures become approx-

imately equal for large values of M, number of synthetic datasets released, and

for large values of n, the datasets sample size.
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3
Inference for Multivariate

Regression Model based on

synthetic data generated via

Plug-in Sampling

In the previous Chapter, we presented likelihood-based inference procedures to

draw inference about B when synthetic datasets generated via PPS method are

released. Nevertheless, this is not the only method which one can use to generate

replications of the original data and draw inference from them. We can generate

synthetic versions of the original data by plugging in the estimators B̂ of B and S
of Σ, obtained directly from this original data, in the MLR model. This method is

called the Plug-in method. Reiter and Kinney [33] showed that using the method-

ology developed in [31] one can draw inference about the unknown parameters

when having access to multiple synthetic datasets generated via Plug-in sampling.

This recent method of generating synthetic data is simpler and since it uses di-

rectly the original data point estimators plugged in the model one expects to

generate datasets with ‘better’ quality than the synthetic data generated via PPS,

thus representing a good alternative to the PPS method. However, Reiter’s com-

bination rules are not applicable to single imputation cases and are asymptotic

in nature, that is, are not applicable to datasets with small sample size. With this

fact in mind, in this Chapter, one will develop likelihood-based exact inferential

procedures of analyzing partially-synthetic datasets generated via Plug-in Sam-

pling Method, for the single and multiple imputation case under the MLR model.
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Concerning other models, one would like to point out that Klein and Sinha in

[18, 19, 20] already developed exact inferential procedures for Plug-in generated

synthetic datasets when assuming that the original data follows an exponential or

multivariate normal distributions and when a single sensitive variable is modeled

using a linear regression model, for the single imputation case, and under the

normal model, for both single and multiple imputation.

In this chapter, one will extend their work by presenting likelihood-based ex-

act inferential procedures to analyze partially-synthetic datasets generated via

Plug-in Sampling Method, for the single and multiple imputation case under the

MLR model, that is, when not only one but several sensitive variables are consid-

ered and these are used as a set of response variables in an MLR model. Using

this method, a synthetic version of the original data is generated by plugging in

directly the original data estimators B̂ of B and S of Σ into the MLR model. Since

it is a more direct approach of generating synthetic data, it will be expected to

present data with ‘better’ quality than the synthetic data generated via PPS or via

FPPS.

3.1 Single Imputation: Plug-in Sampling

Since literature does not contemplate methods of inference for cases when only

one synthetic dataset is released by statistical agencies, it will be presented in first

place the inferential procedure analyses for the single imputation case.

The released synthetic data will consist of a single synthetic version of Y gen-

erated from the original data (yi1, . . . , yim,x1i , . . . ,xpi), i = 1, . . . ,n. Considering the

MLR model (1.1) and the corresponding point estimators of B and Σ, B̂ and S,

respectively, one plugs these estimators into the joint pdf of Y. The synthetic data,

denoted as V = (v1, . . . ,vn), is then generated, noting that vi = (v1i , . . . , vmi)′ are

independently distributed as

vi|B̂,S ∼Nm
(
B̂′xi,S

)
, i = 1, . . . ,n. (3.1)

Based on the released V and X, let us define

B∗ = (XX′)−1XV′ and S∗ =
1

n− p
(V−B∗ ′X)(V−B∗ ′X)′, (3.2)

as the estimators of B and Σ, respectively. By Lemma 1.4.1 these estimators are

jointly sufficient for (B,Σ).

In order to perform tests for B one could propose to adapt the classical test

criteria for the MLR model (see [3, Secs 8.3 and 8.6]) by using the estimators
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defined in (3.2). Nevertheless, these adaptations would face the same problem as

for the PPS case, that is, they are not pivotal, due to the fact that their distributions

will be function of Σ, as illustrated in Figure 3.1, where the empirical distributions

of

(a) T ∗1 = |S∗| |S∗ + (B∗ −B)′(XX′)(B∗ −B)|−1 (Wilks’ Lambda Criterion);

(b) T ∗2 = tr
[
(B∗ −B)′(XX′)(B∗ −B)(S∗)−1

]
(Pillai’s Trace Criterion);

(c) T ∗3 = tr
[
(B∗ −B)′(XX′)(B∗ −B)[(B∗ −B)′(XX′)(B∗ −B) + S∗]−1

]
(Hotelling -

Lawley Trace Criterion);

(d) T ∗4 = λ1 where λ1 denotes the largest eigenvalue of (B∗−B)′(XX′)(B∗−B)(S∗)−1

(Roy’s Largest Root Criterion);

are presented considering the case where m = 2, p = 3, n = 100 and Σ =
(1 ρ
ρ 1

)
with

ρ = 0.2,0.4,0.6,0.8 for a simulation size of 1000.
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Figure 3.1: Smoothed empiricaldistributionsandcut-offpoints (γ=0.05) of T ∗1 , T ∗2 , T ∗3 and T ∗4 for
ρ =0.2,0.4,0.6,0.8.

Since it is not possible to use the adaptations of the referred classical test

criteria, it is required the introduction of a new pivotal statistic, which we propose

to be somewhat similar to the statistic found in Theorem 2.1.2. This proposed
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statistic will use the estimators B∗ and S∗ defined in (3.2), thus it will be necessary

their joint pdf, in first place. As in Chapter 2, when using the term ‘statistic’ we

are assuming B known.

Theorem 3.1.1. The joint pdf of B∗ and S∗ defined in (3.2), is proportional to∫
e−

1
2 tr{(Σ(I+Ψ))−1(B∗−B)′(XX′)(B∗−B)+(n−p)Ψ−1Σ−1S∗+(n−p)Ψ}

× |S∗|
n−p−m−1

2
|Ψ|−

p+m+1
2

|Σ| n−m+1
2

∣∣∣Im +Ψ−1
∣∣∣−p/2dΨ .

Proof. Given (B̂,S), one has for B∗ and S∗ defined in (3.2),

V′ |B̂,S ∼Nnm(X′B̂,S⊗ In) =⇒ B∗|B̂,S = (XX′)−1XV′ |B̂,S ∼Npm(B̂,S⊗ (XX′)−1)

and
(n− p)S∗|S ∼Wm(S,n− p).

Given the independence of B∗ and S∗, the conditional joint pdf of (B∗,S∗) is

proportional to

e−
1
2 tr{S−1[(B∗−B̂)′XX′(B∗−B̂)+(n−p)S∗]} |S

∗|
n−p−m−1

2

|S| n2
, (3.3)

while, given the independence of B̂ and S, defined in (1.2) and (1.3), the joint pdf

of (B̂,S) is proportional to

e−
1
2 tr{Σ−1[(B̂−B)′XX′(B̂−B)+(n−p)S]} |S|

n−p−m−1
2

|Σ| n2
. (3.4)

Therefore, the joint pdf of (B∗,S∗, B̂,S) will be obtained by multiplying the two

joint pdf’s (3.3) and (3.4).

Since

tr
{
S−1(B∗ − B̂)′(XX′)(B∗ − B̂) +Σ−1(B̂−B)′(XX′)(B̂−B)

}
= tr

{
(B∗ − B̂)S−1(B∗ − B̂)′(XX′) + (B̂−B)Σ−1(B̂−B)′(XX′)

}
,

where, from (A.2) in Result A.2.2,

(B∗ − B̂)S−1(B∗ − B̂)′ + (B̂−B)Σ−1(B̂−B)′ =

=
[
B̂− (B∗S−1+ BΣ−1)(S−1+Σ−1)−1

]
(S−1+Σ−1)

[
B̂− (B∗S−1+ BΣ−1)(S−1 +Σ−1)−1

]′
+ (B∗ −B)(S +Σ)−1(B∗ −B)′,
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integrating out B̂, one obtains the joint pdf of (B∗,S∗,S) proportional to

e−
1
2 tr{(Σ+S)−1(B∗−B)′(XX′)(B∗−B)+(n−p)S−1S∗+(n−p)Σ−1S}

× |S∗|
n−p−m−1

2
|S|−

p+m+1
2

|Σ| n2
∣∣∣Σ−1 + S−1

∣∣∣−p/2 . (3.5)

By making the transformation Ψ = Σ−1S, where the Jacobian is |Σ|m, and

integrating out Ψ, the desired result is obtained.

From (3.5), the MLE of B based on the synthetic data is B∗, with

E(B∗) = B

which is therefore an UE of B, with

V ar(B∗) = 2Σ⊗ (XX′)−1.

It is also possible to conclude that an UE of Σ is S∗, since E(S∗) = Σ.

After deriving the joint pdf of B∗ and S∗ in Theorem 3.1.1, it is now possible to

propose a pivotal statistic which is a function of these estimators with the purpose

of making available a procedure that may be used to draw inference for B.

Theorem 3.1.2. Let us consider

T ∗ =
|(B∗ −B)′(XX′)(B∗ −B)|

|(n− p)S∗|
. (3.6)

Its distribution can be obtained from the decomposition

T ∗|W
st∼

 m∏
i=1

p − i + 1
n− p − i + 1

Fi

∣∣∣(n− p)W−1 + Im
∣∣∣

where Fi ∼ Fp−i+1,n−p−i+1 are independent random variables, themselves independent
of W ∼Wm(Im,n− p).

Proof. From (3.5), we may observe that S∗ and B∗, conditional on S, are separable,

with

B∗ ∼Npm
(
B, (Σ+ S)⊗ (XX′)−1

)
and

(n− p)S∗ ∼Wm(S,n− p),

independent of B∗.
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Then, we have that

(B∗ −B)′ |S ∼N (0, (XX′)−1 ⊗ (Σ+ S)) ,

and by Theorem 2.4.1 in [22] one has that, for p ≥m,

(B∗ −B)′(XX′)(B∗ −B)|S ∼Wm(Σ+ S,p).

From Theorem 2.4.2 in [22] and subsection 7.3.3 in [3] we have

H|S = (Σ+ S)−
1
2 (B∗ −B)′(XX′)(B∗ −B)(Σ+ S)−

1
2 ∼Wm(Im,p)

and

G|S = (n− p)S−
1
2 S∗S−

1
2 ∼Wm(Im,n− p),

where H and G are two independent random variables, given the independence

of B∗ and S∗.
Considering T ∗ defined in (3.6), one may write it as

T ∗|S =
|(B∗ −B)′(XX′)(B∗ −B)|

|(n− p)S∗|
=
|Σ+ S|
|S|

× |H|
|G|
,

where|G| ∼
∏m
i=1χ

2
n−p−i+1 and |H| ∼

∏m
i=1χ

2
p−i+1, with the chi-square random vari-

ables in each product independent, ending up with a product of independent

F-distributions, given the independence of H and G. The distribution of |H|/ |G|
will be independent of |Σ+ S|/ |S|, due to the fact that both H and G have distribu-

tions which are not function of S.

Thus, conditionally on S,

T ∗|S ∼

 m∏
i=1

p − i + 1
n− p − i + 1

Fp−i+1,n−p−i+1

× ∣∣∣S−1(Σ+ S)
∣∣∣ .

Noting that we have (n− p)S ∼Wm(Σ,n− p), thus implying 1
n−pS−1 ∼

W −1
m

(
Σ−1,n− p+m+ 1

)
, one has that, for W = (n− p)Σ−1/2SΣ−1/2,

W−1 =
1

n− p
Σ1/2S−1Σ1/2 ∼W −1

m (Im,n− p+m+ 1) ,

and that the distribution of |S−1(Σ+ S)| = |(n− p)W−1 + Im| will not depend on the

parameter Σ, concluding the proof.

One may use T ∗ defined in Theorem 3.1.2 and its distribution to draw infer-

ence about B from a single synthetic version of the original data under the Plug-in

Sampling method. For instance, it can be used to perform the test of significance
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of the matrix of regression coefficients. But, if instead of performing a test on

the full matrix of regression coefficients, B, one wants to test the significance of

a set of regression coefficients, or more generally, of a linear combination of the

parameters in B, namely, C = AB where A is a k × p matrix with rank(A) = k ≤ p
and k ≥m, one may define

T ∗C =
|(AB∗ −C)′(A(XX′)−1A′)−1(AB∗ −C)|

|(n− p)S∗|

and proceed by noting that, for W ∼ Wm(I,n − p) and Fk,i ∼ Fk−i+1,n−p−i+1, all

independent random variables,

T ∗C|W
st∼

 m∏
i=1

k − i + 1
n− p − i + 1

Fk,i

∣∣∣∣(n− p)W−1 + Im
∣∣∣∣ . (3.7)

Thus, in order to testH0 : C = C0 versusH1 : C , C0, we should rejectH0 when-

ever T ∗C0
exceeds δk,m,n,p;γ , where δk,m,n,p;γ satisfies (1 − γ) = P r(T ∗C0

≤ δk,m,n,p;γ )

when H0 is true and where the value of δk,m,n,p;γ can be obtained by simulating

the distribution in (3.7). In particular, a test for B = B0 follows upon taking A = Ip,

C0 = B0 and k = p in (3.7).

A (1−γ)-level confidence set for C is given by

∆∗(C) = {C : T ∗C ≤ δk,m,n,p;γ } . (3.8)

In Table 3.1 we list the simulated 0.05 cut-off points for T ∗C for some values of

p, m and n, for γ = 0.05, k = p and C = B.

Table 3.1: Cut-off points of the 95% confidence set for the regression coefficients matrix B.

p n m = 1 m = 2 m = 3

3

10 4.667 8.033 8.108
20 1.234 5.419E-01 1.083E-01
50 3.698E-01 4.922E-02 2.849E-03

100 1.697E-01 1.044E-02 2.749E-04
200 8.212E-02 2.418E-03 3.040E-05

p n m = 1 m = 2 m = 3

4

10 7.693 29.22 106.1
20 1.652 1.165 5.356E-01
50 4.621E-01 9.248E-02 1.115E-01

100 2.089E-01 1.903E-02 1.034E-02
200 9.997E-02 4.339E-03 1.113E-03
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Remark 3.1.1. When m = 1, T ∗ in (3.6) reduces to the statistic T 2 used in [20] which
has a pdf obtained from the fact that

T 2|W=w ∼
p

n− p

(
1 +

n− p
w

)
Fp,n−p where fW (w) =

1

2
n−p

2 Γ
(
n−p

2

)e−w2w n−p
2 −1.

This way, with the development of an exact inferential procedure for the ma-

trix of the regression coefficients for the single imputation case, one fulfills an-

other existing gap in the literature, in this case, for partially synthetic datasets

generated via Plug-in sampling.

Regarding the multiple imputation case, since the original data estimators are

directly plugged in to the generating distribution, one does not have to develop

an exact inferential procedure similar to the one developed for the PPS case. It

is possible to derive exact inferential procedures somewhat similar to the ones

developed for the new method of generating synthetic datasets, the FPPS method,

as it is shown in subsections 3.2.2 and 3.2.3. These procedures will not have

the constraints presented by the PPS method in subsection 2.2.2, which are the

necessity of dealing with the distribution of the sum of Wishart distributions with

different parameters and the consequent fact of not being able to use the proposed

radius measure to evaluate the extent of the confidence sets.

3.2 Multiple imputation: Plug-in Sampling

In this section, an adaptation of Reiter’s combination rule [31] to be used when

dealing with multiple synthetic datasets generated via Plug-in Sampling is pre-

sented and two new exact likelihood-based procedures for the analysis of these

same synthetic datasets are developed.

For this purpose, let us recall again the MLR model (1.1). To generate synthetic

versions of Y based on the Plug-in Sampling method one takes the original data

(yi1, . . . , yim,x1i , . . . ,xpi), i = 1, . . . ,n, and after estimating B and Σ by B̂ and S, respec-

tively, generates theM synthetic datasets, denoted as Vj = (v1j , . . . ,vnj), j = 1, . . . ,M

where vij = (v1ij , . . . , vmij)′, are independently distributed as

vij |B̂,S ∼Nm(B̂′xij ,S), i = 1, . . . ,n, j = 1, . . . ,M, (3.9)

that is, by plugging in the estimators of the original data into the model in order

to draw synthetic data from it.
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3.2.1 Reiter’s adapted Methodology

In this subsection, an adaptation of Reiter [31] methodology to a matrix value

parameter is formulated for multiply imputed synthetic data generated via Plug-

in Sampling. As it was referred in subsection 2.2.1, Reiter’s methodology was

originally developed for the analysis of synthetic datasets generated via Posterior

Predictive Sampling, but Reiter and Kinney [33], in 2012, argued that it is also

valid when synthetic datasets are generated via the Plug-in Sampling method.

Therefore, having access to M synthetic data sets V1, . . . ,VM as the synthetic

data sets generated via Plug-in Sampling , let us define vec(B∗j) = vec((XX′)−1XV′j)
and Uj = S∗j ⊗ (XX′)−1, where S∗j = 1

n−p (Vj −B∗
′
j X)(Vj −B∗

′
j X)′, for j = 1, . . . ,M. Based

on Vj , given B̂ and S, vec(B∗j) will be an UE of vec(B) and Uj will be an UE of its

variance. Then if we consider the estimators in (2.21) and (2.22), upon replacing

B†j by B•j , TR,M given by (2.23) will yet be approximated by an Fpm,w(r) distribution,

with w(r) defined in (2.24).

However, we should recall that this methodology is based on an asymptotic

combination rule, and therefore it is a methodology which is inadequate for cases

where the sample size of the synthesized datasets is small. This leads to the need

of the development of exact inference procedures for the analysis of multiple syn-

thetic datasets generated under Plug-in Sampling method which are developed

in the next sections. We will then use this Reiter’s adapted methodology with the

purpose of comparing results.

3.2.2 A First New Procedure

Let us start by developing the first exact inference procedure for the analysis of

multiple synthetic datasets generated under Plug-in Sampling method where the

estimators of B and Σ will be the mean of the estimators for each synthetic dataset,

as it was similarly done in subsection 2.3.1.

Let

B∗j = (XX′)−1XV′j

and

S∗j =
1

n− p
(Vj −B′j

∗X)(Vj −B′j
∗X)′

be the estimators of B and Σ based on Vj , for j = 1, . . . ,M. By Lemma 1.4.1, B∗j and

S∗j will be jointly sufficient for B and Σ.

Conditionally on (B̂,S), for each j = 1, . . . ,M, B∗j is independent of S∗j and{
(B∗1,S

∗
1), . . . , (B∗M ,S

∗
M)

}
are jointly sufficient estimators for B and Σ.
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Let us also define

B
∗
M =

1
M

M∑
j=1

B∗j and S
∗
M =

1
M

M∑
i=1

S∗j , (3.10)

which are mutually independent, conditionally on B̂ and S.

For p ≥ m, let us consider the two following two Corollaries of Theorems

3.1.1 and 3.1.2 which will be important to draw inference about B from a pivotal

statistic.

Corollary 3.2.1. The joint pdf of B
∗
M and S

∗
M defined in (3.10) is proportional to∫

e−
1
2 tr

{
(Σ(Im+ 1

MΨ))−1(B
∗
M−B)′(XX′)(B

∗
M−B)+M(n−p)Ψ−1Σ−1S

∗
M+(n−p)Ψ

}

× |S∗M |
M(n−p)−m−1

2
|Ψ|−

M(n−p)−n+2p+m+1
2

|Σ|
M(n−p)+p−m+1

2

|I +MΨ−1|−p/2dΨ .

Proof. The proof is identical to the proof of Theorem 3.1.1, replacing the joint pdf

of (B∗,S∗) by the joint pdf of (B
∗
M ,S

∗
M) and observing that

B
∗
M |B̂,S =

1
M

M∑
j=1

B∗j |B̂,S ∼Npm(B̂,
1
M

S⊗ (XX′)−1),

and

M(n− p)S
∗
M |S = (n− p)

M∑
j=1

S∗j |S ∼Wm(S,M(n− p)) ,

are independent.

The following Corollary makes available pivotal statistic that may be used to

make inference about B based on multiply imputed synthetic datasets generated

via Plug-in Sampling.

Corollary 3.2.2. The pdf of T ∗M defined as

T ∗M =

∣∣∣(B∗M −B)′(XX′)(B
∗
M −B)

∣∣∣∣∣∣(n− p)S
∗
M

∣∣∣ (3.11)

can be obtained from the decomposition

TM |W
st∼

 m∏
i=1

p − i + 1
M(n− p)− i + 1

Fi

∣∣∣∣M(n− p)W−1 + Im
∣∣∣∣

where W ∼Wm(I,n− p) and Fi ∼ Fp−i+1,M(n−p)−i+1, all independent random variables.
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Proof. The proof is identical to the proof of Theorem 3.1.2, replacing B∗ and S∗ by

B
∗
M and S

∗
M , and noting that from the distribution in Corollary 3.2.1 one has that

B
∗
M |S ∼Npm(B, (Σ+

1
M

S)⊗ (XX′)−1)

and

M(n− p)S
∗
M |S ∼Wm(S,M(n− p)),

independent of B
∗
M .

From the above Corollaries and proceeding similarly as in Section 3.1 one may

conclude, for p ≥m, that B
∗
M is the unbiased MLE of B, with

V ar(B
∗
M) =

M + 1
M

×Σ⊗ (XX′)−1,

and that S
∗
M is an UE of Σ.

To test the significance of a set of regression coefficients or more generally of

a linear combination of these regression coefficients, C = AB where A is a k × p
matrix with rank(A) = k ≤ p and k ≥m, we define

T ∗M,C =
|(AB

∗
M −C)′(A(XX′)−1A′)−1(AB

∗
M −C)|

|(n− p)S
∗
M |

and proceed by noting that, for W ∼Wm(Im,n− p) and Fk,i ∼ Fk−i+1,M(n−p)−i+1(i =

1, . . . ,m), all independent random variables,

T ∗M,C|W
st∼

 m∏
i=1

k − i + 1
M(n− p)− i + 1

Fk,i

 |M(n− p)W−1 + Im|. (3.12)

In order to test

H0 : C = C0 versus H1 : C , C0,

we should reject H0 whenever T ∗M,C0
exceeds δM,k,m,n,p;γ , where δM,k,m,n,p;γ sat-

isfies (1 − γ) = P r(T ∗M,C0
≤ δM,k,m,n,p;γ ) when H0 is true and where the value of

δM,k,m,n,p;γ can be obtained by simulating the distribution of T ∗C, by first generat-

ing W ∼Wm(Im,n− p) and then generating the distribution in (3.12).

A (1−γ)-level confidence set for C is given by

∆∗M(C) = {C : T ∗M,C ≤ δM,k,m,n,p;γ } . (3.13)
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3.2.3 A Second New Procedure

As it was done in subsection 2.3.2, we propose in this subsection, a second

likelihood-based approach for exact inference about B, by treating the M syn-

thetic datasets as a big synthetic data sample of size nM.

Let us consider theM synthetic datasets as a single sample of size nM arranged

as  Va

Xa

 =

 V1 V2 . . . VM

X X . . . X

 ,
where Va = (V1| . . . |VM) and X = (X| . . . |X). Let us also consider

B∗a = (XaX
′
a)
−1XaV

′
a

and

S∗a =
1

nM − p
(Va −B′aXa)(Va −B′aXa)

′

as the estimators of B and Σ, respectively. Using a procedure similar to the one

employed in subsection 2.3.2, one can conclude that B∗a will be exactly the same

estimator as B
∗
M , defined in (3.10), and S∗a will be exactly the same as the estimator

S∗comb =
Sv +M ×Smean

Mn− p
, (3.14)

where

Sv =
n∑
i=1

M∑
j=1

(vji − v̄i)(vji − v̄i)
′,

with v̄i = 1
M

∑M
j=1 vji and vji as the column vectors of Vj (j = 1, . . . ,M), and

Smean =
(
VM −B

∗′
MX

)′ (
VM −B

∗′
MX

)
,

with VM = 1
M

∑M
i=1 Vj , for j = 1, . . . ,M.

With the estimator S∗a = S∗comb we end up using more information about Σ than

when S∗M defined in (3.10) is used. In fact, we may observe that the estimator

S∗comb, which is the same as S∗a, is a combination of two estimators of Σ, Sv and

Smean. To recall that we have indeed a combination of estimators, we will proceed

the development of this second procedure using from now on the notation S∗comb.
Next, we present a Corollary of Theorem 3.1.1 where it is derived the joint pdf

of B
∗
M and S∗comb, estimators of B and Σ, respectively. These estimators will then

be used to define a pivotal statistic which allows us to draw inference about B
based on multiply imputed synthetic datasets generated via Plug-in Sampling.
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Corollary 3.2.3. For p ≥m, the joint pdf of B
∗
M and S∗comb defined in (3.10) and (3.14)

is proportional to∫
e−

1
2 tr

{
(Σ(I+ 1

MΨ))−1(B
∗
M−B)′(XX′)(B

∗
M−B)+(Mn−p)Ψ−1Σ−1S∗comb+(n−p)Ψ

}

× |S∗comb|
Mn−p−m−1

2
|Ψ|−

Mn−p−n+2p+m+1
2

|Σ|
Mn−p+p−m+1

2

|I +MΨ−1|−p/2dΨ.

Proof. The proof is identical to the proof of Theorem 3.1.1 replacing the joint pdf

of (B∗,S∗) by the joint pdf of (B
∗
M ,S

∗
comb), respectively, and observing that

B
∗
M |B̂,S ∼Npm(B̂,

1
M

S⊗ (XX′)−1)

and

(Mn− p)S∗comb|S ∼Wm(S,Mn− p)

independent of B
∗
M .

Now that the joint pdf of B
∗
M and S∗comb has been given, in the following Corol-

lary of Theorem 3.1.2, we make available a pivotal statistic along with its dis-

tribution allowing us to draw inference about B when the M Plug-in generated

synthetic datasets are available.

Corollary 3.2.4. Let us consider

T ∗comb =

∣∣∣(B∗M −B)′(XX′)(B
∗
M −B)

∣∣∣∣∣∣(n− p
M )S∗comb

∣∣∣ . (3.15)

For p ≥m, its distribution can be obtained from the decomposition

Tcomb|W
st∼

 m∏
i=1

p − i + 1
Mn− p − i + 1

Fi

∣∣∣∣M(n− p)W−1 + Im
∣∣∣∣

where W ∼Wm(I,n− p) and Fi ∼ Fp−i+1,Mn−p−i+1, all independent random variables.

Proof. The proof is identical to the proof of Theorem 3.1.2 replacing B∗ and S∗ by

B
∗
M and S∗comb, respectively, noting that from the distribution in Corollary 3.2.1,

B
∗
M |S ∼Npm

(
B,

(
Σ+

1
M

S
)
⊗ (XX′)−1

)
and

(Mn− p)S∗comb|SWm(S,Mn− p),

independent of B
∗
M .
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From the two Corollaries above, one observes that an UE of Σ will be S∗comb.

If one wants to test the significance of a set of regression coefficients or more

generally, a linear combination of the parameters in B, namely, C = AB where A
is a k × p matrix with rank(A) = k ≤ p and k ≥m, we define

T ∗comb,C =
|(AB

∗
M −C)′(A(XX′)−1A′)−1(AB

∗
M −C)|

|
(
n− p

M

)
S∗comb|

and proceed by noting that, for W ∼ Wm(Im,n − p) and Fk,i ∼ Fk−i+1,Mn−p−i+1, all

independent variables,

T ∗comb,C|W
st∼

 m∏
i=1

k − i + 1
Mn− p − i + 1

Fk,i

∣∣∣∣M(n− p)W−1 + Im
∣∣∣∣ . (3.16)

In order to test

H0 : C = C0 versus H1 : C , C0,

we reject H0 whenever T ∗comb,C0
exceeds δcomb,M,k,m,n,p;γ where δcomb,M,k,m,n,p;γ sat-

isfies (1− γ) = P r(T ∗comb,C0
≤ δcomb,M,k,m,n,p;γ ) when H0 is true, where the value of

δcomb,M,k,m,n,p;γ may be obtained by simulating the distribution in (3.16).

A (1−γ) level confidence set for C is given by

∆∗comb(C) = {C : T ∗comb,C ≤ δcomb,M,k,m,n,p;γ } . (3.17)

As in the FPPS case in subsection 2.3, the second exact procedure developed

in this Chapter is expected to offer better precision, originating confidence sets

which will have smaller radius than the ones obtained from the first procedure.

It is also expected that the two procedures will come closer together for larger

values of n and M.

In fact, making a simple change of scale on T ∗comb, defined in (3.15), the distri-

butions of the statistics proposed in the two Plug-in procedures developed in this

Chapter, will converge in distribution to the same distribution. For T ∗M given by

(3.11) in the first procedure, we have

T ∗M |W
d−−−−−→

M→∞

 m∏
i=1

χ2
p−i+1

∣∣∣W−1
∣∣∣

and

T ∗M |W
d−−−−−→

n→∞

 m∏
i=1

χ2
p−i+1


∣∣∣∣∣W−1 +

1
M(n− p)

Im

∣∣∣∣∣ ,
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and for a scale change of T ∗comb given by (3.15) in the second procedure, we have(
n− p

M

)m
(n− p)m

T ∗comb|W
d−−−−−→

M→∞

 m∏
i=1

χ2
p−i+1

∣∣∣W−1
∣∣∣

and (
n− p

M

)m
(n− p)m

T ∗comb|W
d−−−−−→

n→∞

 m∏
i=1

χ2
p−i+1


∣∣∣∣∣W−1 +

1
M(n− p)

Im

∣∣∣∣∣ .
As such, for large values of M and large values of n both procedures become

identical.
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4
Radius and Accuracy

The two previous chapters presented the development of several procedures that

enable an analyst to draw inference about the regression coefficients matrix when

he or she has access to synthetic datasets generated by replicating the original

data via PPS, FPPS or Plug-in Sampling methods. In this Chapter, simulation

studies are undertaken to show that the inference methods developed in this

work perform as predicted, to compare the accuracy of these with the accuracy of

Reiter’s adapted procedure, for the multiple imputation case, and to measure the

extent of the confidence sets obtained from all exact procedures developed. With

this last objective in mind, before presenting the simulation studies it is important

to define a measure that will evaluate the extent of the referred confidence sets.

Most of the content associated to the FPPS method in Sections 4.1 and 4.2 is

taken from [25].

4.1 Measuring the confidence sets

In order to evaluate the ‘size’ of the confidence sets defined in Chapters 2 and 3 it

is usual to calculate its volume. Unfortunately, in our case this volume is infinite

as shown in the next subsection. Therefore, a measure that will be called radius,
which measures the distance between the center and the edge of the confidence

sets, is proposed and used in the simulation studies to illustrate the differences

between methods.
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4.1.1 Volume of the confidence sets

In this subsection, it will be proved that the volume cannot be used to measure

the confidence sets for the Plug-in Sampling case under single imputation using,

without any loss of generality, (3.13), with A = Ip. It is easy to observe that similar

proofs for all of the other cases can be made.

Let us recall that p ≥m, X is a p×nmatrix with rank equal to p < n, B is a p×m
matrix, and S is a m×m matrix. The confidence set (3.13) in the referred case will

be

∆(B) =
{

B :
|(B∗ −B)′(XX′)(B∗ −B)|

|(n− p)S∗|
≤ δM,m,n,p;γ

}
. (4.1)

The volume of this confidence set will be given by∫
· · ·

∫
∆(B)

(dB) =
∫
· · ·

∫
∆(B̃)

(dB̃)

where B̃ = (B−B∗), with J(B→ B̃) = 1, and

∆(B̃) =
{
B̃ : |B̃′(XX′)B̃| ≤ dm,n,p;γ × |(n− p)S∗|

}
.

Let us consider the transformation ˜̃B = (XX′)1/2B̃. By Theorem 2.1.4 in [26] we

have that J( ˜̃B→ B̃) = |XX′ |p thus implying that J(B̃→ ˜̃B) = |XX′ |−p. Therefore, the

volume of the confidence set ∆(B) will be given by

|XX′ |−p
∫
· · ·

∫
∆( ˜̃B)

(d ˜̃B)

where

∆( ˜̃B) =
{

˜̃B :
∥∥∥∥ ˜̃B
′ ˜̃B

∥∥∥∥ ≤ dm,n,p;γ × |(n− p)S∗|
}
.

Since ˜̃B
′ ˜̃B is a positive definite symmetric square matrix it can be represented

as T′T where T = (tij) is an upper-triangular matrix m×m, with positive diagonal

elements.

Let us take ˜̃B = H1T, where H1 is a p ×m matrix with H′1H1 = Im and T is a

m×m upper-triangular matrix with positive diagonal elements.

Let H2 (a function of H1) be a p × (p −m) matrix such that H = [H1 : H2] is an

orthogonal p × p matrix and let us write H = [h1...hm : hm+1...hp], where h1, ...,hm
are the columns of H1 and hm+1, ...,hp are the columns of H2.

All this decomposition of ˜̃B
′ ˜̃B allows the use of Theorem 2.1.13 in [26] making

the volume equal to

|XX′ |−p
∫
· · ·

∫
∆(T)

∫
Vm,p

m∏
i=1

t
p−i
ii (dT)(H′1dH1)
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with

(H′1dH1) ≡
m∧
i=1

p∧
j=i+1

h′jdhi

and (dT) =
∧m
i≤j dtij where

∆(T) =
{
T : |T′T| ≤ dm,n,p;γ × |(n− p)S∗|

}
and Vm,p = {H1 : H′1H1 = Im}, with

∧
denoting the exterior or wedge product.

From Theorem 2.1.15 [26] the volume will be given by

|XX′ |−p2mπmn/2

Γm(1
2n)

∫
· · ·

∫
∆(T)

m∏
i=1

t
p−i
ii (dT).

By definition, T is an upper triangular matrix therefore allowing the conclu-

sion that |T′T|will be the product of its diagonal elements, that is, |T′T| =
∏m
i=1 t

2
ii ≤

dm,n,p;γ × |(n− p)S∗|.
Let us define C2 = dm,n,p;γ × |(n−p)S∗|, making the domain of integration to be

given by

∆(T) =
{
T : |T′T| ≤ C2

}
.

Observing the integral that remains unsolved

I =
∫
· · ·

∫
∆(T)

m∏
i=1

t
p−i
ii (dT) =

∫ ∞
−∞
· · ·

∫ ∞
−∞

∫ · · ·∫
∆(T)

m∏
i=1

t
p−i
ii (

m∧
i=1

dtii)

 (
m∧
i<j

dtij),

it is possible to obtain the value of the integral containing the diagonal elements

since it is separable from the off-diagonal elements in I .

Let us define

I1 =
∫
· · ·

∫
∆(T)

m∏
i=1

t
p−i
ii (

m∧
i=1

dtii).

From
∏m
i=1 t

2
ii ≤ C

2, we have that for any j = 1, ...,m,

tjj ≤
C∏m
i,j tii

.

Leaving out tmm and dtmm, and integrating sequentially in order to

tm−1m−1, ..., t11, one can easily verify that

I1 =
Cp

p −m+ 1

m∏
i=1

t1−iii ,

thus having that
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I =
Cp

p −m+ 1

m∏
i=1

t1−iii

∫ ∞
−∞
· · ·

∫ ∞
−∞

(
m∧
i<j

dtij).

But, since
∫∞
−∞ · · ·

∫∞
−∞(

∧m
i<j dtij) is infinite, then I will also be infinite, as we

wanted to prove.

4.1.2 Radius of the confidence sets

As such, it is not possible to use the volume to determine the extent of each

confidence set defined in Chapters 2 and 3, but anyway it would be very important

to have a measure that would allow us to compare the precision of the inference

procedures developed for the analysis of PPS, FPPS and Plug-in synthetic datasets

by measurig the extent of the corresponding confidence sets.

Observing that the confidence set defined in (2.34) for the first FPPS procedure

can be written as

∆•M(C) =
{
C : |(AB

•
M −C)′(A(XX′)−1A′)−1(AB

•
M −C)| ≤ ωM,k,m,n,p;γ |M(n− p)S

•
M |

}
,

it will be possible to use ωM,k,m,n,p;γ |M(n−p)S
•
M | as a boundary for the confidence

sets. Let us also observe that we may also rewrite the confidence sets of the FPSS

second procedure and of both Plug-in Sampling procedures in a similar way, but

that the same cannot be done for the PPS confidence set. With this fact in mind,

it will be proposed a measure that evaluates the distance between the center and

the edge of a confidence set which we will call radius. This radius will then be

defined for the FPPS and Plug-in Sampling methods, while for the PPS method,

where this radius cannot be used, we will propose two measures which will be an

upper and a lower bound for the real distance between the center and the edge.

We propose

Υ •M = d•M,m,n,p,α,γ × |S̃
•
M | (4.2)

as the radius of the confidence sets when using synthetic data generated under

FPPS method, and

Υ ∗M = d∗M,m,n,p,γ × |S̃
∗
M | (4.3)

as the radius of the confidence sets when using synthetic data generated under

Plug-in Sampling.

For M = 0 the two measures proposed in (4.2) and (4.3) will be equal and will

refer to the original data where S̃•0 = S̃∗0 = (n− p)S and d•0,m,n,p,α,γ = d∗0,m,n,p,α,γ will

be the γ cut-off point for the original data.
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For M > 0, d•M,m,n,p,α,γ will be the cut-off point in (2.34) or (2.42) and d∗M,m,n,p,γ
will be the cut-off point in (3.13) or (3.17), with S̃•M = M(n − p)S

•
M for the first

FPPS new procedure, S̃•M = (Mn − p)S•comb for the second FPPS new procedure,

S̃∗M = (n − p)S
∗
M for the first Plug-in new procedure and S̃∗M = (n − p

M )S∗comb for

the second Plug-in new procedure, recalling that for M = 1 the two procedures

coincide in both FPPS and Plug-in methods.

We may observe that this radius is function of the matrix of variances com-

puted from the synthetic data thus it would also be important to derivate the

expectation of these radius.

Let us start with the FPPS method. Recalling that for the original data, (n −
p)S ∼Wm(Σ,n− p), thus implying that

E(|(n− p)S|) = |Σ|E

 m∏
i=1

χ2
n−p−i+1

 =
(n− p)!

(n− p −m)!
|Σ|, (4.4)

where
∏m
i=1χ

2
n−p−i+1 will be a product of independent chi-square variables, since

(n− p)Σ−1/2SΣ−1/2 ∼Wm(Im,n− p), and recalling that

Σ̃|S ∼W −1
m ((n− p)S,n+α − p) =⇒ Σ̃−1|S ∼Wm

(
1

n− p
S−1,n+α − p −m− 1

)
therefore, taking κn,α,p,m = n+α − p −m− 1, given S, one has that

E(|Σ̃|) = E(|Σ̃−1|−1) = |(n− p)S|E

 1∏m
i=1χ

2
κn,α,p,m−i+1

 = |(n− p)S|
(−2 +κn,α,p,m −m)!

(−2 +κn,α,p,m)!
,

(4.5)

where
∏m
i=1χ

2
κn,α,p,m−i+1 is a product of independent chi-square variables. Also

let us recall that, given Σ̃, M(n − p)S
•
M ∼ Wm(Σ̃,M(n − p)) and (Mn − p)S•comb ∼

Wm(Σ̃,Mn− p), thus concluding that, given Σ̃,

E(|M(n− p)S
•
M |) =

(Mn−Mp)!
(Mn−Mp −m)!

× |Σ̃|

and

E(|(Mn− p)S•comb|) =
(Mn− p)!

(Mn− p −m)!
× |Σ̃|.

Combining the results for E(|(n−p)S|) in (4.4) and E(|Σ̃||S) in (4.5), respectively

with the corresponding expected values of |M(n−p)S•M | and |(Mn−p)S•comb|, given

Σ̃, we end up with the expression for E(Υ •M) as

E(Υ •M) = d•M,m,n,p,γ ×
(n− p)!

(n− p −m)!
×K•M,n,p,m |Σ|
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where

K•M,n,p,m =
(−2 +κn,α,p,m −m)!

(−2 +κn,α,p,m)!
(Mn−Mp)!

(Mn−Mp −m)!

for the procedure in subsection 2.3.1 and

K•M,n,p,m =
(−2 +κn,α,p,m −m)!

(−2 +κn,α,p,m)!
(Mn− p)!

(Mn− p −m)!

for the procedure in subscection 2.3.2, with κn,α,p,m = n+α − p −m− 1, assuming

n+α > p+ 2m+ 2. For the original data we take K•0,n,p,m = 1.

For the Plug-in method, we have

E(|(n− p)S|) =
(n− p)!

(n− p −m)!
|Σ|,

and, conditionally on S, M(n− p)S
∗
M ∼Wm(S,M(n − p)) and (Mn − p)S∗comb ∼

Wm(S,Mn− p), thus concluding that, conditionally on S,

E(|(n− p)S
∗
M |) =

1
Mm(n− p)m

×
(Mn−Mp)!

(Mn−Mp −m)!
× |(n− p)S| (4.6)

and

E(|(n− p/M)Scomb|) =
1

Mm(n− p)m
×

(Mn− p)!
(Mn− p −m)!

× |(n− p)S| . (4.7)

Combining the result of E(|(n−p)S|) defined in (4.4) with each of the expected

values in (4.6) and (4.7), conditionally on S, we end up with the expression for

E(Υ ∗M) as

E(Υ ∗M) = d∗M,m,n,p,γ ×
(n− p)!

(n− p −m)!
×K∗M,n,p,m |Σ|

where K∗0,n,p,m = 1 for the original data,

K∗M,n,p,m =
1

Mm(n− p)m
(Mn−Mp)!

(Mn−Mp −m)!

for the procedure in subsection 3.2.2 and

K∗M,n,p,m =
1

Mm(n− p)m
(Mn−Mp)!

(Mn−Mp −m)!

for the procedure in subscection 3.2.3.

For the PPS method, in the multiple imputation case, the radius cannot be used

directly, due to the fact that it involves a sum of ratios where the denominators

are the different estimators S†j (j = 1, . . . ,M), being only possible to frame the ‘real’

radius between an upper and a lower bound.
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Let us then recall T †M defined in (2.27) from Subsection 2.2.2, that can be

written as

T †M =
M∑
j=1

|(B†j −B)′(XX′)(B†j −B)|

|(n− p)S†j |
.

One may see that it is possible to delimitate the values of T †M by considering the

maximum and the minimum of the denominators sum.

If one takes χmax = maxj=1,...,M

{
|(n− p)S†j |

}
and χmin = minj=1,...,M

{
|(n− p)S†j |

}
then

T †M ≥
M∑
j=1

|(B†j −B)′(XX′)(B†j −B)|
χmax

and

T †M ≤
M∑
j=1

|(B†j −B)′(XX′)(B†j −B)|
χmin

thus framing the values of T †M by an upper bound and a lower bound.

Therefore, let us propose the following two measures, for M > 1,

Υ †M,max =
1
M
d†M,m,n,p,α;γχmax (4.8)

and

Υ †M,min =
1
M
d†M,m,n,p,α;γχmin (4.9)

that will make possible to frame the value of the radius for the PPS case. For the

PPS minimum (4.9) and maximum (4.8), d†M,m,n,p,α;γ will be the cut-off point in

(2.29). The actual radius will be delimited by these boundaries and can be, for

example, estimated by means of these. One could think on using the mean of the

S†j , (j = 1, . . . ,M), to define an approximate value for the radius. However, this

would entail problems trying to obtain its expected value due to the problem of

dealing with the distribution of the sum of Wishart distributions with different

parameter matrices.

The proposed radius measures will allow us to compare the precision of the

three methods of synthesizing data, PPS, FPPS and Plug-in Sampling methods.

4.2 Simulation Studies

In this section, we will perform some simulations in order to show that the in-

ference methods developed in Chapters 2 and 3 perform as predicted, as well as

in order to compare the radius of the confidence sets defined for our exact proce-

dures, which will allow us to compare the precision of the proposed methods.
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For the entire simulations, the population distribution is taken as a multivari-

ate normal distribution with expected value given by the right hand side of (1.1),

for m = 2 and p = 3, with matrix of regression coefficients

B =


1 2

3 2

1 1


and covariance matrix

Σ =

 1 0.5

0.5 1

 .
All simulations were carried out using the software Mathematicar version 9.

For the FPPS and PPS methods, we set α = 6, in order to have, S†j , j = 1, ...,M,

S
•
M and S•comb as UEs of Σ. The regression variables x1i ,x2i ,x3i , i = 1, ...,n are

generated as i.i.d. N (1,1) and held fixed for the entire simulation.

4.2.1 Accuracy of Procedures proposed in Chapters 2 and 3

The first objective of these simulations is to show that the new exact inference

methods developed in subsections 2.2.2, 2.3.1, 2.3.2, 3.2.2 and 3.2.3 perform as

predicted in terms of the confidence sets coverage, as well as to compare the ac-

curacy of our proposed methodologies with the accuracy of the adapted Reiter

methodology for multiply imputed partially synthetic data.

Based on Monte Carlo simulation with 105 iterations, an estimate of the cov-

erage probability (percentage of observed values of the statistics smaller than the

respective theoretical cut-off points) is computed for the following confidence

regions, where in all cases, the confidence level is set to 0.95 (γ = 0.05):

1. the confidence sets for B and for C = AB, given by (2.29), respectively with

A = I3 and A = ( 02×1| I2), based on single and multiple synthetic datasets

generated via PPS, for M = 1,2,5; the estimated coverage probability of the

confidence set for B and the estimated coverage probability of the confidence

set for AB are shown in Table 4.1;

2. the confidence set for B obtained using Reiter’s adapted methodology, for

M(> 1) synthetic datasets generated via PPS, as described in subsection

2.2.1; for each of the cases M = 2 and M = 5, the estimated coverage prob-

abilities of the confidence sets are shown in Table 4.1 under the column

vec(B);
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3. the confidence sets for B and for C = AB, given by (2.34), for the first proce-

dure, and (2.42), for the second procedure, with A = I3 and A = ( 02×1| I2),

based on multiple synthetic dataset generated via FPPS as in (2.30), for

M = 2,5; the estimated coverage probabilities of the confidence sets are

shown in Table 4.2 under the columns B(1) and AB(1) for the 1st new pro-

cedure, and under the columns B(2) and AB(2) for the 2nd new procedure;

4. the confidence set for B obtained using Reiter’s adapted methodology, for

M(> 1) synthetic datasets generated via Plug-in Sampling, in subsection

3.2.1; for each of the cases M = 2 and M = 5, the estimated coverage prob-

abilities of the confidence sets are shown in Table 4.3 under the column

vec(B);

5. the confidence sets for B and for C = AB, given by (3.13), for the first proce-

dure, and (3.17), for the second procedure, with A = I3 and A = ( 02×1| I2),

based on single and multiple synthetic dataset generated via Plug-in as in

(3.9), for M = 1,2,5; for M = 1 the estimated coverage probabilities of the

confidence sets are shown in Table 4.3 under the columns B and AB, and

for M = 2 and M = 5 the estimated coverage probabilities of the confidence

sets are shown in Table 4.3 under the columns B(1) and AB(1) for the 1st

new procedure, and under the columns B(2) and AB(2) for the 2nd new

procedure.

Table 4.1: Estimated coverage probability for vec(B), B and AB under PPS.

n
M = 1 M = 2 M = 5

B AB vec(B) B AB vec(B) B AB
10 0.951 0.949 0.856 0.948 0.950 0.749 0.950 0.949
50 0.949 0.951 0.939 0.950 0.949 0.931 0.951 0.949

100 0.950 0.949 0.955 0.951 0.950 0.943 0.950 0.951
200 0.949 0.950 0.956 0.950 0.950 0.945 0.951 0.950

In Table 4.2, the values for M = 1 of the estimated coverage probability for B
and AB are not included since the FFPS concurs with the PPS method.

The results in Tables 4.1, 4.2 and 4.3, for n = 10,50,100,200, show that, based

on singly or multiply imputed synthetic data, the confidence sets for B and AB
when γ = 0.05 have an estimated coverage probability approximately equal to

0.95 for all the exact likelihood based procedures developed in this work. One

may also observe, that when using Reiter’s adapted methodology the estimated
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Table 4.2: Estimated coverage probability for B and AB under FPPS.

n
M = 2 M = 5

1st Proc. 2nd Proc. 1st Proc. 2nd Proc.
B(1) AB(1) B(2) AB(2) B(1) AB(1) B(2) AB(2)

10 0.948 0.950 0.951 0.952 0.950 0.949 0.948 0.950
50 0.950 0.949 0.951 0.949 0.951 0.949 0.949 0.949

100 0.951 0.950 0.949 0.950 0.950 0.951 0.950 0.951
200 0.950 0.950 0.951 0.951 0.951 0.950 0.951 0.951

Table 4.3: Estimated coverage probability for vec(B), B and AB under Plug-in Sampling.

n
M = 1 M = 2 M = 5

B AB Reiter 1st Proc. 2nd Proc. Reiter 1st Proc. 2nd Proc.
vec(B) B(1) AB(1) B(2) AB(2) vec(B) B(1) AB(1) B(2) AB(2)

10 0.951 0.949 0.828 0.948 0.950 0.951 0.952 0.748 0.950 0.949 0.948 0.950
50 0.949 0.951 0.951 0.950 0.949 0.951 0.949 0.918 0.951 0.949 0.949 0.949

100 0.950 0.949 0.955 0.951 0.950 0.949 0.950 0.941 0.950 0.951 0.950 0.951
200 0.949 0.950 0.958 0.950 0.950 0.951 0.951 0.943 0.951 0.950 0.951 0.951

coverage probabilities fall short of the stipulated level of 0.95 for very small sam-

ple sizes, converging to the desired level when increasing the sample size, due to

the fact that Reiter’s combination rule is asymptotic in nature. Thus, with these

results we show that, in fact, the exact procedures developed in this thesis can be

applied to synthetic datasets even when the sample size is small.

4.2.2 Radius of the confidence sets when using PPS, FPPS and

Plug-in Sampling cases

The second objective of these simulations is to compare the radius of the con-

fidence sets when inference is made about B using the PPS, FPPS and Plug-in

Sampling methods. In the PPS case, considering M > 1, one faces a problem,

which is, as referred at the end of subsection 4.1.2 the impossibility to compute

the exact expectation of both χmax and χmin defined in (4.8) and (4.9). Therefore,

for the purpose of comparison of the radius between all the methods, for the PPS

case we will only use the average values of Υ †M,min and Υ †M,max simulated from the

synthetic data.

In Table 4.4 are presented the average of the simulated values of the radius
Υ •M , Υ ∗M , in (4.2) and (4.3), for the confidence sets ∆•M(C) and ∆∗M(C) (FPPS and

Plug-in first procedures) and for the confidence sets ∆•comb(C) and ∆∗comb(C) (FPPS

and Plug-in second procedures) with their corresponding expected values, when

taking A = Ip. Also in Table 4.4 are presented the average of the simulated values

of Υ †M,max and Υ †M,min, defined respectively in (4.8) and (4.9) for the confidence set
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ΨM(C) defined in (2.29), also taking A = Ip. Under the columns Orig are shown

the expected values of the radius concerning the original data. In Table 4.5 we

present the same quantities as in Table 4.4 but when taking C = AB with A =

(02×1| I2). These values are based on a Monte Carlo simulation with 105 iterations.

Table 4.4: Average values of the radius when using FPPS and Plug-in Sampling with the
corresponding expected values and the values of Υ †M,min and Υ †M,max defined in (4.9) and
(4.8) when using PPS, for the confidence set for B.

n Orig
M = 1 M = 2 M = 5

avg exp
1st Proc. 2nd Proc. 1st Proc. 2nd Proc.

avg exp avg exp avg exp avg exp
Plug-in Sampling

10 37.0 210.3 216.9 91.5 93.1 85.3 88.0 53.8 54.7 51.3 52.5
50 19.1 78.6 78.1 42.9 42.7 42.8 42.7 27.1 27.0 27.1 27.0

200 17.5 69.5 69.7 39.1 39.2 39.1 39.2 25.0 25.0 25.0 25.0
Fixed-Posterior Predictive Sampling

10 37.0 507.3 512.2 251.6 252.6 237.6 238.7 175.3 176.2 163.8 168.9
50 19.1 176.4 176.5 121.2 121.5 121.2 121.5 92.3 92.8 92.3 92.8

200 17.5 154.9 156.1 105.8 106.6 105.9 106.7 81.9 82.4 81.9 82.4
Posterior Predictive sampling

avg exp min max min max
10 37.0 507.3 512.2 206.9 728.8 78.5 1004.9
50 19.1 176.4 176.5 111.9 178.9 66.4 172.8

200 17.5 154.9 156.1 108.8 136.0 76.7 122.5

Table 4.5: Average values of the radius when using FPPS and Plug-in Sampling with the
corresponding expected values and the values of Υ †M,min and Υ †M,max defined in (4.9) and
(4.8) when using PPS, for the confidence set for C.

n Orig
M = 1 M = 2 M = 5

avg exp
1st Proc. 2nd Proc. 1st Proc. 2nd Proc.

avg exp avg exp avg exp avg exp
Plug-in Sampling

10 13.4 72.8 75.1 32.5 33.1 30.9 31.8 19.0 19.4 18.6 19.0
50 7.3 30.7 30.5 16.7 16.7 16.7 16.6 10.5 10.5 10.5 10.5

200 7.1 27.5 27.6 15.5 15.5 15.5 15.5 9.9 9.9 9.9 9.9
Fixed-Posterior Predictive Sampling

10 13.4 172.6 172.3 92.2 92.4 86.2 86.6 63.1 63.4 61.3 61.7
50 7.3 68.9 69.0 47.8 47.9 47.5 47.6 35.3 35.5 35.1 35.3

200 7.1 60.7 61.1 41.7 42.1 41.7 42.1 32.5 32.5 32.5 32.5
Posterior Predictive sampling

avg exp min max min max
10 13.4 172.6 172.3 73.2 257.7 28.8 368.5
50 7.3 68.9 69.0 46.4 74.2 27.1 70.6

200 7.1 60.7 61.1 47.8 59.8 32.5 51.9

Observing Tables 4.4 and 4.5 and comparing the entries for the FPPS and

for the Plug-in Sampling, we may see that when synthetic data are generated

under FPPS, larger radius are obtained, for the same sample sizes. In the singly
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imputed case, one can observe that the FPPS synthetic datasets will lead to a

radius that is approximately two and half times that of the radius under Plug-in

Sampling. Comparing the PPS bound values of Υ †M,min and Υ †M,max with the values

obtained when using FPPS, one may note that the ‘real’ PPS radius points out to be

indeed larger than the FPPS radius, by observing that the mean of the minimum

and maximum values is always larger than the FPPS radius, and that for some

cases the PPS minimum value is even larger than the FPPS radius. This may be

explained by the fact that with the proposed PPS statistic, which is the sum of

statistics associated to each single imputation data analysis used to perform the

multiple imputation data analysis, we are not collecting as much information

across the synthetic datasets as we do when we use the statistics in the FPPS and

Plug-in methods.

We may observe that, for M > 1, the values of the radius, for both procedures

in each FPPS and Plug-in methods become identical for larger sample sizes, as

theoretically predicted at the end of Chapters 2 and 3.

As the numberM of released synthetic datasets increases, the radius decreases

in all methods. Eventually for the FPPS case, one may need very large values of

M, in order to have values of the radius close to the value of the original data’s

radius. Although one may look at this fact as a drawback of the FPPS method, as

we will see in the next Chapter, FPPS is the method of generating synthetic data

that offers the highest level of privacy protection. We are indeed always dealing

with the inevitability of having to balance the quality of the generated synthetic

data and the level of disclosure risk.
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5
An application to Current

Population Survey (CPS) data and

Risk Level Comparison

5.1 CPS Application

To compare the original data inference with the inferential results obtained from

the methods developed in Chapters 2 and 3 for the cases where synthetic datasets

are generated via PPS, FPPS and Plug-in Sampling and also to compare these with

the inferential results obtained using Reiter’s adapted methodology, we provide

an application of these procedures to a public use data from the 2000 Current Pop-

ulation Survey (CPS) March supplement conducted by the Census for the Bureau

of Labor Statistics based on the civilian non-institutional population of the United

States. The full data are available online from http://www.census.gov/cps/.

These data was previously used by Reiter [31, 32] and Drechsler and Reiter [7]

to illustrate various properties of multiple imputation sampling. The complete

data comprises household, family and individual records, but for our study we

will focus solely on the household records.

Most of the content associated to the FPPS method in this Section is taken

from [25].

The CPS data file contains statistical records on 51,016 households and has a

set of seventeen categorical and numerical variables which are shown in Table 5.1.

For the application of our methods to the CPS data, three numerical variables I,

AP and PT were selected to form the vector y of response variables, which will be
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Table 5.1: Summary of CPS data variables.

Variable Label Range/Category Code
Row name RN Row Name
Household alimony payments AP Numerical (0 – 54,008)
Household child support payment CS Numerical (0 – 23,917)
Household property tax PT Numerical (0 – 99,997)
Household income I Numerical (-21,011 – 768,742)
Household ID number ID Numerical (1 – 64,994)
Household survey weight SW Numerical (98.5 – 12,904.7)
Number of people in household N Numerical (1 – 16)
Number of people in under 18 L Numerical (0 – 11)
Number of people married HM Numerical (0 – 8)
Child Support Payment for head CP Numerical (0 – 23,917)
Age (Years) A Numerical (0 – 90)

Highest Level of
Education attained

E 31 – Less than 1st grade
32 – 1st to 4th grade
33 – 5th or 6th grade
34 – 7th or 8th grade
35 – 9th grade
36 – 10th grade
37 – 11th grade
38 – 12th grade
39 – High School graduate
40 – Some college but no degree
41 – Associate degree in college

(occupation/vocation program)
42 – Associate degree in college

(academic program)
43 – Bachelor’s degree
44 – Master’s degree
45 – Professional school degree
46 – Doctorate degree

Marital status

M 1 – Married
2 – Married armed forces spouse present
3 – Married armed forces spouse absent
4 – Widowed
5 – Divorced
6 – Separated
7 – Single

Race

R 1 – White
2 – Black
3 – Native American
4 – Asian/Pacific Islander

Sex
S 1 – Male

2 – Female

Social Security Payments SS Numerical (0 – 50,000)
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considered the sensitive variables. The set of regression variables (N,L,A,E,M,R,S)

were selected as the non-sensitive variables. After deleting all entries where at

least one of the variables I, AP and PT is reported as 0, the sample size was

reduced to 141 households.

The assumption of the log-normality of the response variables is used instead

of normality and therefore the logarithm of the selected response variables is

used. To check the assumed multivariate normality of logarithm of the set of

response variables a set of a goodness of fit tests for the multivariate normality

was perfomed on the logarithm of the vector y of sensitive response variables,

using the software Mathematicar version 9. The p-values obtained when using

the Anderson-Darling, the Baringhaus-Henze, the Cramér-von Mises, the Jarque-

Bera ALM, the Kolmogorov-Smirnov, the Kuiper, the Mardia Kurtosis, the Pearson

χ2 and the WatsonU2 test statistics were larger than 0.05. When using the Mardia

Combined, the Mardia Skewness and the Shapiro-Wilk test statistics the p-values

obtained were smaller than 0.05, but if the goodness of fit test is computed for

the normality of the response variables I, AP and PT, considered separately, the

p-values obtained using those three test statistics will be larger than 0.05, except

the one obtained from the Shapiro-Wilk test statistic for the variable I, which

returned a p-value approximately equal to 0.024. Thus, with all these results in

mind, we decided to not reject the assumption that the logarithm of the vector of

response variables y comes from a multivariate normal distribution.

Even if these CPS data are public use data we will consider the values corre-

sponding to the variables I, AP and PT as the set of values that should not be

released to the general public.

In this application, x, the vector of regressor variables, will be defined as

x =
(
1,N,L,A,���

��I(E=31),���
��XXXXXI(E=32),���

��XXXXXI(E=33),I(E=34),I(E=35),I(E=36),I(E=37),���
��XXXXXI(E=38),

I(E=39),I(E=40),I(E=41),I(E=42),I(E=43),I(E=44),I(E=45),I(E=46),���
�I(M=1),

���
�XXXXI(M=2),I(M=3),I(M=4),I(M=5),I(M=6),I(M=7),����I(R=1),I(R=2),����XXXXI(R=3),I(R=4),

��
��I(S=1),I(S=2)

)′
, (5.1)

where I(E=31) will be the indicator variable for E=31, i.e., for individuals that

not have completed the 1st grade, I(E=32) will be the indicator variables for

E=32, i.e, for individuals that have completed the 1st to 4th grade, and so on,

and where the indicator variables for the first code present in the sample for

each variable,���
��I(E=31),���

�I(M=1),����I(R=1) and����I(S=1), are taken out in order to make

the model matrix full rank. The x-canceled indicator variables���
��XXXXXI(E=32),���

��XXXXXI(E=33),

��
���XXXXXI(E=38),���

�XXXXI(M=2) and����XXXXI(R=3) correspond to categories that were not found in the
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141 households sample, thus being also taken out. Therefore, the model matrix

X = [x1...xn] will have p = 24 rows and n = 141 columns, with rank equal to

24. Using the PPS and Plug-in sampling methods, a single synthetic dataset is

generated via each method, assuming α = 8 when using PPS method in order

to have S†1 as an UE of Σ (recalling that the FPPS method concurs with the PPS

method for singly imputed synthetic data). For each case, one has in expression

(5.2) the realizations of the UEs of Σ, S†1 and S∗1 for the two synthetic datasets

generated, and S for the original data, respectively denoted by S̃†1, S̃∗1 and S̃

S̃†1 =


1.58572 −0.20443 0.27981

−0.20443 1.61395 0.16089

0.27981 0.16089 0.34648

 , S̃∗1 =


1.2929 −0.2195 0.2518
−0.2195 1.3983 0.1176
0.2518 0.1176 0.4490

 ,

S̃ =


1.1980 −0.0375 0.2970
−0.0375 1.0699 0.1175
0.2970 0.1175 0.4045

 . (5.2)

In Table 5.2 are presented the realizations of the UEs of B, B†1 and B∗1 for the

synthetic datasets, and B̂ for the original data, respectively denoted by B̃†1, B̃∗1 and˜̂B.

Table 5.2: Estimates of the regressor coefficients from the synthetic data and from the
original data.

regress SyntheticData (B̃†) SyntheticData (B̃∗) OriginalData (˜̂B)
I AP PT I AP PT I AP PT

Interc 11.4996 3.3381 8.1713 10.1829 3.7094 10.9787 9.8339 4.6663 10.1095
N 0.2801 −0.2562 0.6317 −0.0938 0.1435 0.6189 0.0457 0.0375 0.4585
L −0.3996 0.4960 −0.6017 0.0812 0.0163 −0.5932 0.0186 0.1310 −0.3851
A −0.0061 0.0223 0.0018 0.0075 0.0285 −0.0097 0.0118 0.0181 −0.0020

I(E=34) −4.7732 0.3476 −0.4662 −6.6680 1.2055 −2.0664 −4.4348 0.5944 −1.2291
I(E=35) −5.5990 2.8081 1.9914 −1.2231 −0.0154 −0.7091 −1.4060 0.9188 −0.1468
I(E=36) −4.2467 2.2712 0.6907 −0.4478 2.1718 −0.9172 −2.3100 1.0416 −0.5002
I(E=37) −3.5281 0.7339 1.4653 −1.1547 1.3009 −1.0659 −2.0490 0.7410 0.2335
I(E=39) −3.3369 1.5590 1.0109 −2.5737 0.7234 −1.1346 −2.2208 0.4054 −0.4136
I(E=40) −2.8766 1.7608 1.2350 −1.8032 1.0617 −0.6940 −1.8834 0.8519 0.0852
I(E=41) −2.8266 2.7954 2.3165 −1.5615 1.6881 −0.0291 −1.9468 1.4222 0.1094
I(E=42) −3.5901 2.3990 0.7908 −2.4543 2.0378 −1.1494 −2.3381 1.3840 −0.0808
I(E=43) −1.9852 2.1149 1.9765 −1.7090 1.1722 −0.4341 −1.5057 1.0766 0.5309
I(E=44) −3.2012 2.0495 1.7665 −2.2668 1.5629 −0.2140 −1.8082 1.1301 0.4936
I(E=45) 0.1813 1.1103 1.7535 −1.8984 2.1024 −0.4636 −0.9893 0.7958 0.3057
I(E=46) 0.5791 2.3091 3.5534 0.4558 1.4836 1.1497 −0.6198 1.0766 1.0624
I(M=3) −2.3691 0.8545 −0.3594 −1.9077 −0.4988 −0.4836 −2.7258 0.0964 −0.2156
I(M=4) −4.4234 2.2640 −1.2282 −0.0088 0.5609 −0.2349 −0.0134 0.5887 0.3864
I(M=5) −1.0787 1.5611 0.1170 0.3767 0.6729 0.1184 0.1455 0.4770 0.1558
I(M=6) −0.8300 −0.2358 −0.2713 0.3948 −0.3092 −0.1046 −0.7122 −0.4448 −0.4025
I(M=7) −2.8242 2.9533 0.5456 1.0576 0.5476 0.5187 −0.1990 1.1750 0.6685
I(R=2) 0.3378 3.8443 1.4196 −1.0805 3.0078 −0.1619 −0.9205 1.3432 0.4696
I(R=4) 0.0340 1.9168 −0.4519 0.6883 −0.3211 0.3639 −0.7040 0.0975 −0.1618
I(S=2) 1.3582 −0.4793 −0.1588 0.0564 −0.2309 −0.2849 0.1236 −0.1355 −0.4025
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It can be observed, at a first glance, that the point estimates originated via

Plug-in Sampling seem to agree more with the original data point estimates than

the ones drawn from the PPS method. Nevertheless, this might be due just to a

matter of chance when generating the single synthetic dataset for each case. It

might have happened that one of the generated datasets resulted from a more

biased draw than the other synthetic datasets.

Thus, to be able to have a non-biased analysis of the inferential results ob-

tained for the several inferential procedures developed for the three sampling

methods, it is suggested that one conducts inferences on the regression coeffi-

cients based on multiple draws instead of one unique draw, thus having a set of

values gathered for each method which may help us understand and analyze the

differences between the methods proposed in this work. We have therefore de-

cided to generate 100 synthetic datasets for each sampling method and conducted

inference on each of these datasets.

Applying methodologies found in subsections 2.2.1, 2.2.2, 2.3.1, 2.3.2, 3.2.1,

3.2.2 and 3.2.3, inferential results on regression coefficients will be obtained,

under the form of p-values, with the purpose of analyzing singly and multiply

imputed synthetic datasets, considering M = 1, M = 2 and M = 5. The statistics

T †M , T •M , T •comb, T
∗
M and T ∗comb and corresponding empirical distributions, based on

simulations with 104 iterations, will be used to test the fit of the model and the

significance of some regressors. In each inference analysis, one will compute the

p-values as the fraction of values of the empirical distribution of the correspond-

ing statistic that are larger than the computed value of the statistic.

Regarding the test of fit of the model, for all values of M, the results found

in every draw of synthetic datasets lead all to the same conclusion, that is, the

explanatory variables in x have a significant role in determining the values of the

response variables in y, since the computed p-values were all approximately zero,

for all sampling methods developed in this work, for Reiter’s adaptations and as

well for the original data. As such, there is not much to compare methods and

inferential procedures concerning this test.

Remark 5.1.1. In Figures 5.1, 5.2 and 5.3, one may see the histograms associated with
the empirical distributions of T †M , T •M , T •comb, T

∗
M and T ∗comb for M = 1,2 and 5 (for

m = 3, p = 24, n = 141, α = 8 and 104 simulation sizes).
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0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

M = 2 M = 5

Figure 5.1: Histograms (with same vertical scale) of the empirical distributions of T †M for M = 2

and 5 (for m = 3, p = 24, n = 141, α = 8 and 104 simulation sizes).

0.2 0.4 0.6 0.8 1.0 1.2

M = 1
0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08

M = 2 (T •M - 1st procedure) M = 2(T •comb - 2nd procedure)

0.001 0.002 0.003 0.001 0.002 0.003

M = 5 (T •M - 1st procedure) M = 5 (T •comb - 2nd procedure)

Figure 5.2: Histograms (with same vertical scale for eachM) of the empirical distributions of both

T •M and T •comb for M = 1,2 and 5 (for m = 3, p = 24, n = 141, α = 8 and 104 simulation sizes).

0.1 0.2 0.3 0.4 0.5

M = 1
0.05 0.10 0.15 0.05 0.10 0.15

M = 2 (T ∗M - 1st procedure) M = 2 (T ∗comb - 2nd procedure)

0.04 0.08 0.12 0.04 0.08 0.12

M = 5 (T ∗M - 1st procedure) M = 5 (T ∗comb - 2nd procedure)

Figure 5.3: Histograms (with same vertical scale for eachM) of the empirical distributions of both

T ∗M and T ∗comb for M = 1,2 and 5 (for m = 3, p = 24, n = 141 and 104 simulation sizes).
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Remark 5.1.2. In Table 5.3 are presented the approximated values of the γ = 0.05 cut-
off points computed from the empirical distributions used in the test of fit of the model
for the PPS, FPPS and Plug-in Sampling imputed data (for M = 1, it was already
ascertained that T †M = T •M = T •comb and T ∗M = T ∗comb).

Table 5.3: Approximated values of the cut-off points computed from the empirical distri-
butions of T †M , T •M , T •comb, T

∗
M and T ∗comb respectively defined in subsections 2.2.2, 2.3.1,

2.3.2, 3.2.2 and 3.2.3, for γ = 0.05.

values of M PPS FPPS Plug-in

1
T •M T ∗M

5.04E-01 1.48E-01

2
T †M T •M T •comb T ∗M T ∗comb

8.69E-01 3.46E-02 2.57E-02 6.02E-02 4.39E-02

5
T †M T •M T •comb T ∗M T ∗comb

1.77E00 1.49E-03 9.35E-04 3.02E-02 1.92E-02

The study of two different cases is now proposed, that may enable a com-

parison between methods. Firstly, it is proposed the test of the significance of

regressor variables R and S and, secondly, the significance of regressor variables

A and E.

For the first case, we consider the 3× 24 matrix

A =
(

03×21 I3

)
that isolates the indicator regressor values corresponding to the variables R and

S. It is intended to test the hypothesis H0 : AB = C0, where C0 is a 3 × 3 matrix

consisting of only zeros. Performing the test with the original data using (1.5),

the p-value computed was approximately equal to 0.249.

We now generate 100 draws of M = 1, M = 2 and M = 5 synthetic datasets

via PPS, FPPS and Plug-in Sampling methods. For each draw the corresponding

p-values are computed using the empirical distributions of the statistics in (2.28),

(2.33), (2.41), (3.12) and (3.16) and also Reiter’s adapted procedures for the PPS

and Plug-in cases. In these latter cases of Reiter’s adapted procedures, for the pro-

cedure in subsection 2.2.1, vec(B†i ) is replaced by vec(AB†i ), vec(B) by vec(AB) and

we take Ui = S†i ⊗ (A(XX′)−1A′), while for procedure in subsection 3.2.1, vec(B∗i )
is replaced by vec(AB∗i ), vec(B) by vec(AB) and we take Ui = S∗i ⊗ (A(XX′)−1A′).
In Figure 5.4 are presented the box-plots of the referred p-values, with a line

marking the original data p-value 0.249.
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Figure 5.4: Box-plots of p-values obtained, when testing the joint significance of I(R=2), I(R=4)

and I(S=2), from 100 draws of synthetic datasets using PPS, FPPS and Plug-in Sampling method

as also when using Reiter’s adapted combination rule for M = 1, M = 2 and M = 5 .

Before making any observations of the results we should note that in general,

in cases where the p-value obtained from the original data is rather low, we expect

to obtain larger p-values for the synthetic data, given the inherent variability of

these synthetic data and the “need” of the inferential exact methods to preserve

the 1 − γ coverage level, and impossibility of compressing the synthetic data p-

values towards zero.

Observing Figure 5.4, note that for all procedures the p-values perform as

expected, that is, the majority of the p-values obtained from the synthetic data

are larger than the ones obtained from the original data. In this case, the esti-

mated coverage probability of Reiter’s adapted procedures when using PPS and

Plug-in generated data, are respectively approximately equal to 0.938 and to 0.94

leading to performances very similar to that of our procedures. For M = 1, where

only two box-plots are presented due to the concurrence of methods, the PPS and

FPPS methods, and because of the inapplicability of Reiter’s adapted procedures

to singly imputed synthetic datasets, the gathered p-values do not differ that

much from the ones obtained for M = 2. When comparing all methods developed

in this work we may observe that the spread of p-values is larger for the FPPS

method and smaller for the Plug-in method with the p-values obtained for the

PPS method having a spread of p-values in between. Using all developed methods

and Reiter’s adaptations, the majority of the p-values lead to similar conclusions

as those obtained from the original data for γ = 0.05, that is, to not reject that

variables R and S do not have significant influence on the response variables.
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For the case where we want to test the joint significance of variables A and E,

we consider the hypothesis H0 : AB = C0, where C0 is a 13× 13 matrix consisting

of only zeros, and

A =
(

013×3 I13 013×8

)
.

The p-value obtained for the original data, based on (1.5), was approximately

0.033, thus rejecting their non-significance for γ = 0.05, but not rejecting for

γ = 0.01. As in the previous case, in Figure 5.5 are presented the box-plots

obtained for the PPS, FPPS, Plug-in Sampling and Reiter’s adapted procedures

obtained by generating 100 draws of synthetic datasets, for M = 1, M = 2 and

M = 5. The vertical line represents again the original data p-value.
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Figure 5.5: Box-plots of p-values obtained, when testing the joint significance of A and E, from

100 draws of synthetic datasets using PPS, FPPS and Plug-in Sampling method as also when using

Reiter’s adapted combination rule, for M = 1, M = 2 and M = 5 .

From Figure 5.5, one may see clearer differences among all methods than for

the previous case. The spread of p-values is larger for the FPPS method than

for the PPS method, and this latter one has a larger spread of p-values than the

Plug-in method, mainly when M = 5 datasets are available.

In the M = 2 box-plots, if one considers the test for γ = 0.05, the obtained

p-values lead to split decisions, even so, leading in majority to the non-rejection

of the null hypothesis except for Reiter’s adapted procedures applied to Plug-in

Sampling that majorly would reject this null hypothesis. If one considers γ = 0.01,

the p-values obtained when using all inference procedures majorly lead to the

same conclusion as the original data p-value.

For the M = 5 box-plots, when using Reiter’s adapted procedures, the con-

clusions are in majority to reject the null hypothesis when all other procedures

majorly lead to the non-rejection, for γ = 0.05 or γ = 0.01.
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The different results found with Reiter’s adapted procedures, may be explained

by the fact that the estimated coverage probability, when considering γ = 0.05,

are approximately 0.932 for M = 5 synthetic datasets generated via PPS, and ap-

proximately 0.938 for M = 2 and 0.922 for M = 5 for synthetic datasets generated

via Plug-in Sampling, falling short of the stipulated level of 0.95. This may be

due to the fact that now a larger number of predictor variables is being used,

with a rather small sample size. The estimated coverage probability when Reiter’s

adapted procedures are applied to M = 2 synthetic datasets generated via PPS is

0.955, thus giving results closer to the ones obtained from the new procedures

developed in this work. We recall that for procedures with coverage probability

approximately equal to 0.95, for γ = 0.05, the p-values are expected to be majorly

larger than the original p-values.

For the two cases studied, the two FPPS multiple imputation procedures pre-

sented have very similar p-values, as well as the two Plug-in Sampling procedures.

As M increases the spread of the p-values from PPS, FPPS and Plug-in becomes

smaller and closer to the original data’s p-value, but the FPPS and PPS spread

of p-values becomes smaller at a smaller rate than that for the p-values from the

Plug-in Sampling.

Another way of illustrating the quality of every method analyzed that is by

estimating the power for a given test. For that purpose, let us consider the tests

H0 : B = B0(, 0) vs H1 : B = B1 (5.3)

and

H0 : AB = C0(, 0) vs H1 : AB = C1 (5.4)

for B0 equal to ˜̂B, rounded to two decimal places,

A =
(

012×4 I12 012×8

)
,

a 12× 12 matrix defined appropriately in order to isolate the indicator variables

associated with the variable E, and C1 = AB1 where B1 takes different values,

found in Tables 5.4 and 5.5, with D a p ×m matrix of 1’s. The power is then

simulated for the original data, for the synthetic data as well as the power for the

case when these synthetic datasets are treated as if they were the original data.

In Tables 5.4 and 5.5, these values are displayed except those for the power

when synthetic datasets are treated as if they were the original data, since in

these cases the estimated power obtained was always approximately equal to 1,

thus having no need to present it. This value is obviously misleading due to the
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fact that the estimated coverage probability for these cases will be approximately

equal to 0.0198 for testing B = B0 and 0.144 for testing AB = C0, when synthetic

datasets are generated via Plug-in method, and approximately equal to 0 for test-

ing B = B0 and 0.006 for testing AB = C0, when synthetic datasets are generated

via PPS method.

Table 5.4: Power for the test to the hypothesis (5.3), with B(1) and B(2) denoting the
first and second procedures developed in Chapters 2 and 3, for the FPPS, PPS (only
one procedure is available) and Plug-in methods, with vec(B) denoting Reiter’s adapted
procedures.

Power orig
Method

M=1 M=2 M=5

B1 = B B B(1) B(2) vec(B) B(1) B(2) vec(B)

B0 + 0.005D 0.537

PPS
0.215

0.259 0.433 0.455 0.697

FPPS 0.252 0.253 N/A 0.275 0.279 N/A

Plug 0.279 0.382 0.385 0.599 0.471 0.472 0.768

B0 ∗ 0.95 0.945

PPS
0.535

0.712 0.932 0.903 0.998

FPPS 0.634 0.637 N/A 0.700 0.700 N/A

Plug 0.679 0.840 0.841 0.988 0.906 0.909 0.999

Table 5.5: Power for the test to the hypothesis (5.4), with C(1) and C(2) denoting the
first and second procedures developed in Chapters 2 and 3, for the FPPS, PPS (only
one procedure is available) and Plug-in methods, with vec(C) denoting Reiter’s adapted
procedures.

Power orig
Method

M=1 M=2 M=5

C1 = C C C(1) C(2) vec(C) C(1) C(2) vec(C)

A(B0 + 3D) 0.465

PPS
0.185

0.236 0.388 0.402 0.602

FPPS 0.202 0.207 N/A 0.245 0.246 N/A

Plug 0.284 0.334 0.343 0.650 0.416 0.418 0.792

A(B0 ∗ 0.5) 0.393

PPS
0.136

0.175 0.265 0.314 0.424

FPPS 0.160 0.161 N/A 0.179 0.181 N/A

Plug 0.197 0.271 0.279 0.370 0.326 0.327 0.483
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From the power values in Tables 5.4 and 5.5 we may observe that tests based

on the synthetic data via FPPS show lower values for its power than the ones

based on PPS generation, and this latter show lower values than the ones based

on Plug-in generation, as expected, since multiple FPPS was supposed to generate

more perturbed data than multiple PPS, and PPS more perturbed data than Plug-

in Sampling, even in the single imputation case. These values increase along with

the value of M, but with a smaller rate for FPPS synthetic datasets. The huge

gains in power based on Reiter’s adapted procedures can be explained by the fact

that the estimated coverage probability for the tests (5.3) and (5.4) are, in fact,

for the PPS case respectively 0.912 and 0.938 for M = 2, and 0.912 and 0.925 for

M = 5, and for the Plug-in case respectively 0.906 and 0.932 for M = 2, and 0.908

and 0.921 forM = 5, never reaching the nominal value 0.95, being therefore again

misleading.

5.2 Privacy Protection of Singly and Multiply

Imputed Synthetic Data

After the comparison of ‘precision’ of all procedures present in this work it will

be also important to analyze the level of disclosure risk that each of the FPPS,

PPS and Plug-in methods of generating synthetic data offers. Most of the content

associated to the FPPS method in this Section is taken from [25].

It is anticipated that singly imputed synthetic data will offer bigger protection

than multiply imputed synthetic data and that synthetic data generated via FPPS

and PPS will offer bigger protection than synthetic data generated via Plug-in

Sampling, with a higher level of protection when using the FPPS method. In this

section, this evaluation of risk is estimated using the same CPS data used in the

previous section.

Let us consider Vl = (v1l , ...,vnl), (l = 1, ...,M), as the M synthetic datasets gen-

erated by any of the sampling methods, FPPS, PPS or Plug-in Sampling, where

vil = (v1il , ...,vmil)′, i = 1, ...,n. Assume that after having access to the released

synthetic data an ‘intruder’ tries to estimate the original values yi = (y1i , ..., ymi)′

by ŷi = 1
M

∑M
l=1 vil . Consequently, the following three criteria are proposed as

measures of the level of privacy protection

Γ1,ε =
1
mn

m∑
j=1

n∑
i=1

P r

[∣∣∣∣∣∣ ŷji − yjiyji

∣∣∣∣∣∣ < ε|Y
]

;
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Γ2,ε =
1
n

n∑
i=1

P r


√√√

1
m

m∑
j=1

(ŷji − yji)2

y2
ji

< ε|Y

 ;

Γ3,ε = P r

 1
mn

m∑
j=1

n∑
i=1

∣∣∣∣∣∣ ŷji − yjiyji

∣∣∣∣∣∣ < ε|Y
 ,

where lower values mean more privacy protection (less disclosure risk) and higher

values mean less privacy protection (more disclosure risk).

Let us also consider from M1,ε the following quantity, for i = 1, ...n and j =

1, ..,m,

D1,ε = P r
[∣∣∣∣∣∣ ŷji − yjiyji

∣∣∣∣∣∣ < ε|Y
]

and from M3,ε the

D3 =
1
mn

m∑
j=1

n∑
i=1

∣∣∣∣∣∣ ŷji − yjiyji

∣∣∣∣∣∣ .
One will use Monte Carlo simulations with 104 iterations to estimate all the

above measures for each of the n = 141 households in the CPS dataset.

In Table 5.6, are shown the values of Γ1,0.01 and Γ2,0.01 and forD1,ε its minimum,

1st quartile (Q1), median, 3rd quartile (Q3) and maximum. In Table 5.7, are shown

for the values of Γ3,0.01, Γ3,0.1 and the minimum, Q1, median, Q3 and maximum of

D3.

Table 5.6: Values of Γ1,0.01, Γ2,0.01 and a summary of the distribution of D1,0.01.
M Method Γ1,0.01 Γ2,0.01 Min Q1 Median Q3 Max

M = 1
PPS 0.0602 0.0005 0 0.0385 0.0507 0.0784 0.1455

Plug-in 0.0631 0.0006 0 0.0398 0.0552 0.0854 0.1491

M = 2
PPS 0.0724 0.0009 0 0.0353 0.0649 0.0911 0.2000

FPPS 0.0702 0.0009 0 0.0357 0.0624 0.0910 0.1945

Plug-in 0.0754 0.0010 0 0.0331 0.0697 0.0954 0.2134

M = 5
PPS 0.0853 0.0015 0 0.0136 0.0776 0.1268 0.2983

FPPS 0.0797 0.0012 0 0.0214 0.0711 0.1136 0.2785

Plug-in 0.0879 0.0018 0 0.0110 0.0792 0.1284 0.3279

Looking at Tables 5.6 and 5.7, one observes that the values of the measures Γ1,ε,

Γ2,ε and Γ3,ε increase as M increases, showing that the disclosure risk increases

with the increase in the number of released synthetic datasets. It is also observed

that even for M = 5, the maximum value of D1,0.01 is 0.3279 when synthetic data

has provenience from Plug-in Sampling, thus already indicating a substantial
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Table 5.7: Values of Γ3,0.1 and a summary of the distribution of D3.
M Method Γ3,0.1 Min Q1 Median Q3 Max

M = 1
PPS 0 0.1091 0.1248 0.1287 0.1325 0.1544

Plug-in 0 0.1050 0.1202 0.1233 0.1264 0.1379

M = 2
PPS 0.0104 0.0906 0.1060 0.1084 0.1110 0.1253

FPPS 0.0021 0.0960 0.1088 0.1116 0.1145 0.1324

Plug-in 0.0694 0.0948 0.1026 0.1051 0.1072 0.1159

M = 5
PPS 0.9934 0.0840 0.0922 0.0939 0.0956 0.1050

FPPS 0.5008 0.0896 0.0980 0.1000 0.1020 0.1131

Plug-in 1 0.0846 0.0905 0.0920 0.0936 0.0992

disclosure risk compared to 0.1455 from the singly imputed case when synthetic

data is originated from PPS. Likewise, we may observe that from Table 5.7, one

has Γ3,ε = 0 forM = 1 in both Sampling methods but Γ3,ε = 1 forM = 5 in the Plug-

in case, the worst case scenario. When looking to the values of Γ3,ε for the different

cases, we may note that when using FPPS and the measure Γ3,ε one can maintain

the level of disclosure risk at approximately equal to Γ3,ε = 0.5008 while with the

other two methods this valuable may reach approximately 1.0000. Concluding,

the FPPS method of generating synthetic data offers the lowest level of disclosure

risk and the Plug-in method the highest level, with the PPS method offering a level

of disclosure that is in between of the levels of the other two Sampling methods,

nevertheless getting nearer to the values obtained for the Plug-in method as the

number of synthetic datasets available increases.

76



C
h
a
p
t
e
r

6
Final Remarks

The generation of imputed datasets as a Statistical Disclosure Control technique

is a relatively recent technique, but it has rapidly become more and more popular

and data dissemination agencies already started to use this technique in order to

protect and release data. Being a rather recent technique, there is still the need

of fulfilling some gaps in the existing literature. One existing problem is the

nonexistence of inferential procedures for the analysis of singly imputed datasets,

namely under the Multivariate Linear Regression Model. With the intent of solv-

ing this problem, we developed a likelihood-based exact inference procedure for

the regression coefficients matrix when only one partially synthetic dataset gener-

ated via PPS is released, under the MLR model. This way, if agencies require the

release of only one synthetic data, perhaps due to privacy concerns, inferential

procedures are now made available to analyze this dataset, thus satisfying even

the most demanding agencies.

One other issue in the existing literature is that of the inapplicability of the

available procedures to samples with rather small size, due to the asymptotic

nature of this procedures. It was with this issue in mind, that a likelihood-based

exact inference procedure for the usual PPS multiple imputation case was also

developed based on our inferential procedure for the single imputation case. Since

this procedure was developed based on an exact distribution, it is then possible to

apply it even when the synthetic datasets sample size is very small, overcoming

the problem that usual procedures face.

With the purpose of simplifying the process of generating datasets, and the

inferential analysis of these datasets and to offer a higher level of privacy, in this
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thesis, we introduced a new method of synthesizing the datasets from the original

data, the FPPS method, and developed two exact inferential procedures to draw

inference about the matrix of regression coefficients, under the MLR model. When

applying this FPPS method, instead of using a set of different posterior predictive

estimators each time a synthetic dataset is generated as in the PPS method, we

draw just one set and held it fixed, generating all multiple imputed datasets from

the same generating model. The estimators that are used in the generating model

of both PPS and FPPS methods are drawn from the same Posterior Predictive

distributions, thus, for the single imputation case where only one set of these

estimators is needed, these two methods coincide.

The use of the Plug-in Sampling method to generate synthetic data from the

original data instead of the PPS method is a very recent multiple imputation

technique of generating data for disclosure control purpose. Even if the Plug-in

Sampling method has shown to be a very good alternative to the PPS method, it

still faces the same problems of the latter, which are the nonexistence of infer-

ential procedures for the single imputation case and the fact that the available

inferential procedures for the multiple imputation case are not adequate for the

analysis of synthetic datasets with small sample sizes. As such, we also developed

likelihood-based exact inference procedures for the single and multiple imputa-

tion cases when the partially synthetic datasets released are generated via the

Plug-in Sampling method, under the MLR model. One of the advantages of this

technique when compared with the FPPS and PPS methods is that the original

data estimators are used directly in the generating model and therefore in order

to generate partially synthesized datasets via this method one does not need to

any knowledge about Bayesian statistics, as it happens when the PPS or the FPPS

methods are used, making this method the easiest multiple imputation generation

method to use when generating synthetic data.

Regarding the complexity and expertise needed to make inferential analysis

from released synthetic datasets, we may note that all procedures developed in

this thesis to draw inference for the regression coefficient matrix, considering

any of the three methods of generating datasets, are very easy to implement.

For instance, to employ the second procedure developed for the FPPS case or

the second procedure developed for the Plug-in case, one just needs the point

estimates of the regression coefficients matrix and of the covariance matrix which

can be easily computed as the usual point estimates considering all multiple

synthetic datasets as a unique big dataset.

In order to investigate the precision/accuracy provided by our inferential pro-

cedures we performed some simulation studies and also applied these procedures
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to the CPS data. From these studies and this application, we observed that the

second exact procedures provided for the analysis of data synthesized via FPPS

or Plug-in Sampling methods developed are more precise than the first exact pro-

cedures, mainly for smaller sample sizes and they become approximately equal

as the samples increase in size. When the same number of synthetic datasets is

considered, the synthetic datasets generated via the Plug-in Sampling method

present better quality than synthetic datasets created via the other two methods,

being the FPPS method the one where we will generate more perturbed datasets,

does giving a higher level of privacy protection. When the number of multiple

imputed datasets increases we also observe an increase of the analysis precision,

as one would expect. Nevertheless we should note that the precision obtained

from a single imputed dataset when applying our inferential procedures is not

that different than the one obtained from the inferential procedures applied when

two synthetic datasets are available. We also used the CPS data to investigate the

level of privacy offered when releasing replications of the original data created via

the FPPS, the PPS or the Plug-in Sampling methods and concluded that the FPPS

method is the one that offers more protection to respondents records, followed

by the PPS method. As the number of synthetic datasets increases we observe an

increase of the disclosure risk.

With the availability of three methods to generate synthetic data and with their

corresponding exact inferential procedures to analyze these synthetic datasets,

even for the single imputation case, agencies may choose the level of quality

versus the level of confidentiality of the data they want to release. If one agency

demands the highest level of privacy, disregarding the level of quality, the release

of a single synthetic dataset generated via PPS method should be the chosen

method. Nevertheless, one should note that if the Plug-in method were to be

used in the generation of the singly imputed dataset with the purpose of public

availability, the level of privacy would not decrease excessively, with an increase

of the data quality. On the other hand, if quality is the main focus of the data

disseminators one should release multiply imputed datasets generated via Plug-in

Sampling, since with this method one does not need to release a large number of

synthetic datasets to respect the data quality demanded by the statistical agency.

But, if it is demanded by the agencies the release of multiple imputed synthetic

datasets instead of just one single imputed synthetic dataset, the FPPS method is

the one that offers the highest protection of the respondents.

Despite the contributions made in this thesis, there is still margin for future

research. There is the need of developing an exact inferential procedure to use

when the number of tested regressors is smaller than the number of response
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variables, since for now Reiter’s adapted procedure is the only method to be

used in that case. There is also the need towards obtaining expressions for the

exact or approximate pdf’s and cdf’s of the statistics developed for the inferential

methods, in such a way that one would not need to resort to the use of empirical

distributions and Monte Carlo Simulations. One other research goal may be in the

direction of the development of exact inferential procedures to test the covariance

structure of the MLR model.

With the development of exact inferential procedures under the MLR model

for the PPS and Plug-in Sampling cases and by presenting a new method of gen-

erating synthetic datasets, the FPPS method, we are enriching, promoting and

making users, analysts and agencies less reluctant to choose the use of single and

multiple imputation as a disclosure control technique, by showing its potential-

ity and ease of application. By overcoming some of the obstacles existing in the

literature, the present work may help to call the attention of future researchers

towards this area and hopefully will help in expanding the use of single and

multiple imputation, making it one of the preferred SDC techniques worldwide.
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Appendices

A.1 On the distribution of the statistics based on

the original data

From the MLR model in (1.1), recall that

B̂ ∼N
(
B,Σ⊗ (XX′)−1

)
and that

(n− p)S ∼Wm(Σ,n− p).

By Theorem 2.4.1 in [22],

(
B̂−B

)′
(XX′)

(
B̂−B

)
∼Wm(Σ,p).

By considering,

H = Σ−1/2
(
B̂−B

)′
(XX′)

(
B̂−B

)
Σ−1/2 ∼Wm(Im,p)

and

G = Σ−1/2SΣ−1/2 ∼Wm(Im,n− p),

it is known that |H| will be a product of independent random chi-square variables

with p−i+1 degrees of freedom, and |G|will be a product of independent random

chi-square variables with n−p− i+1 degrees of freedom, for i = 1, ...,m. Therefore,
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TO =

∣∣∣∣(B̂−B
)′

(XX′)
(
B̂−B

)∣∣∣∣
|(n− p)S|

∼
m∏
i=1

p − i + 1
n− p − i + 1

Fi

where Fi are independent random variables whose distributions are Fp−i+1,n−p−i+1,

for i = 1, ...,m. Analogously, for any k×p matrix A with rank(A) = k ≤ p and k ≥m,

TO,C =

∣∣∣∣(AB̂−AB
)′

(A(XX′)A′)−1
(
AB̂−AB

)∣∣∣∣
|(n− p)S|

∼
m∏
i=1

k − i + 1
n− p − i + 1

Fk,i

where Fk,i are independent random variables whose distributions are

Fk−i+1,n−p−i+1, for i = 1, ...,m.

A.2 Important Identities

Result A.2.1: Considering A, B and C as three p ×m matrices, considering D as a

square p × p matrix and k ∈ N, we have that

k(A−B)′D(A−B) + (A−C)′D(A−C) =

= (k + 1)A′DA− kB′DA− kA′DB + kB′DB−A′DC−C′DA + C′DC

= (k + 1)A′DA−A′D(kB + C)− (kB + C)′DA + kB′DB + C′DC

= (k + 1)
[
A− 1

k + 1
(kB + C)

]′
D

[
A− 1

k + 1
(kB + C)

]
+ kB′DB + C′DC− 1

k + 1
(kB + C)′D(kB + C).

Since

kB′DB + C′DC− 1
k + 1

(kB + C)′D(kB + C)

= kB′DB + C′DC− k2

k + 1
B′DB− 1

k + 1
C′DC− k

k + 1
B′DC− k

k + 1
C′DB

=
k

k + 1
B′DB +

k
k + 1

C′DC− k
k + 1

BDC− k
k + 1

C′DB

=
k

k + 1
(B−C)′D(B−C) ,

we may write

k(A−B)′D(A−B) + (A−C)′D(A−C) =

= (k + 1)
[
A− 1

k + 1
(kB + C)

]′
D

[
A− 1

k + 1
(kB + C)

]
+

k
k + 1

(B−C)′D(B−C). (A.1)
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Result A.2.2: Considering C, D and X any three p ×m matrices and S and Σ
two m×m symmetric positive definite matrices we have that

(C−X)S−1(C−X)′ + (X−D)Σ−1(X−D)′

= (X−C)S−1(X−C)′ + (X−D)Σ−1(X−D)′

= X(S−1 +Σ−1)X′ −XS−1C′ −XΣ−1D′ −CS−1X′ −DΣ−1X′ + CS−1C′ + DΣ−1D′

= X(S−1 +Σ−1)X′ −X(S−1C′ +Σ−1D′)− (CS−1 + DΣ−1)X′ + CS−1C′ + DΣ−1D′

=
[
X− (CS−1 + DΣ−1)(S−1 +Σ−1)−1

]
(S−1 +Σ−1)

[
X− (CS−1 + DΣ−1)(S−1 +Σ−1)−1

]′
+ CS−1C′ + DΣ−1D′ − (CS−1 + DΣ−1)(S−1 +Σ−1)−1(CS−1 + DΣ−1)′ .

Taking the last three terms of the previous sum, we have the following equali-

ties

CS−1C′ + DΣ−1D′ − (CS−1 + DΣ−1)(S−1 +Σ−1)−1(CS−1 + DΣ−1)′

= CS−1C′ −CS−1(S−1 +Σ−1)−1S−1C′ + DΣ−1D′ −DΣ−1(S−1 +Σ−1)−1Σ−1D′

−CS−1(S−1 +Σ−1)−1Σ−1D′ −DΣ−1(S−1 +Σ−1)−1S−1C′

= C(S−1 −S−1(S−1 +Σ−1)−1S−1)C′ + D(Σ−1 −Σ−1(S−1 +Σ−1)−1Σ−1)D′

−CS−1(S−1 +Σ−1)−1Σ−1D′ −DΣ−1(S−1 +Σ−1)−1S−1C′ .

Considering the fact that for any two positive definite matrices A and B, we have

A−1(A−1 + B−1)−1B−1 + A−1(A−1 + B−1)−1A−1 = A−1(A−1 + B−1)−1(A−1 + B−1) = A−1 ,

then we may use the identity

A−1 −A−1(A−1 + B−1)−1A−1 = A−1(A−1 + B−1)−1B−1

to conclude that

CS−1C′ + DΣ−1D′ − (CS−1 + DΣ−1)(S−1 +Σ−1)−1(CS−1 + DΣ−1)′

= CS−1(S−1 +Σ−1)−1Σ−1C′ + DΣ−1(S−1 +Σ−1)−1S−1)D′

−CS−1(S−1 +Σ−1)−1Σ−1D′ −DΣ−1(S−1 +Σ−1)−1S−1C′

= CS−1(S−1 +Σ−1)−1(Σ−1C′ −Σ−1D′) + DΣ−1(S−1 +Σ−1)−1(S−1C′ −S−1D′)

= CS−1(S−1 +Σ−1)−1Σ−1(C′ −D′) + DΣ−1(S−1 +Σ−1)−1S−1(C′ −D′) .

Finally, if one considers the fact that, for any two positive definite matrices A
and B,

(A−1 + B−1)−1 =
(
A−1(Im + AB−1)−1

)−1
=

(
A−1(B + A)B−1

)−1
= B(B + A)−1B ,
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we end up having

CS−1C′ + DΣ−1D′ − (CS−1 + DΣ−1)(S−1 +Σ−1)−1(CS−1 + DΣ−1)′

= C(S +Σ)−1(C′ −D′) + D(S +Σ)−1(D′ −C′) = (C−D)(S +Σ)−1(C−D)′ .

Thus, in conclusion we have the following equality

(C−X)S−1(C−X)′ + (X−D)Σ−1(X−D)′ =[
X− (CS−1 + DΣ−1)(S−1 +Σ−1)−1

]
(S−1 +Σ−1)

[
X− (CS−1 + DΣ−1)(S−1 +Σ−1)−1

]′
+

(C−D)(S +Σ)−1(C−D)′ .

(A.2)

A.3 Mathematicar source codes for the empirical

distributions of T †M, T •M, T •comb, T
∗
M and T ∗comb

Listing A.1: Example of source code for the empirical distribution of T †M defined in (2.27) used in

the CPS application.

rfish[a_] := RandomVariate[FRatioDistribution[p - a, n - p - a]]*

(p - a)/(n - p - a);

Needs["MultivariateStatistics ‘"]

A1[M_] := RandomReal[WishartDistribution[M, n + alpha - p - m - 1]];

A2[M_] := RandomReal[WishartDistribution[M, n - p]];

M = 2;

m = 3;

p = 24;

alpha = 8;

n = 141;

sim = 10000;

Id = IdentityMatrix[m];

dist = ConstantArray[{1}, sim];

Timing[Do[AA1 = MatrixPower[A1[Id], 1/2];

dist[[i]] = (Product[rfish[a], {a, 0, m - 1}]*

Re[Det[AA1.Inverse[A2[Id]].AA1 + 2*Id]])

+ (Product[rfish[a], {a, 0, m - 1}]*

Re[Det[AA1.Inverse[A2[Id]].AA1 + 2*Id]]),

{i, sim}];]
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Listing A.2: Example of source code for the empirical distribution of T •M and T •comb respectively

defined in (2.32) and (2.40), used in the CPS application.

rfish1st[a_] := RandomVariate[

FRatioDistribution[p - a, M (n - p) - a]]*(p - a)/(M (n - p) - a);

rfish2nd[a_] := RandomVariate[

FRatioDistribution[p - a, M*n - p - a]]*(p - a)/(M*n - p - a);

Needs["MultivariateStatistics ‘"]

A1[M_] := RandomReal[WishartDistribution[M, n + alpha - p - m - 1]];

A2[M_] := RandomReal[WishartDistribution[M, n - p]];

M = 2;

m = 3;

p = 24;

alpha = 8;

n = 141;

sim = 10000;

Id = IdentityMatrix[m];

dist = ConstantArray[{1}, sim];

Timing[Do[AA1 = MatrixPower[A1[Id], 1/2];

dist[[i]] = Product[rfish1st[a], {a, 0, m - 1}]*

Re[Det[AA1.Inverse[A2[Id]].AA1 + (M + 1)/M*Id]],

{i, sim}];]

Timing[Do[AA1 = MatrixPower[A1[Id], 1/2];

dist[[i]] = Product[rfish2nd[a], {a, 0, m - 1}]*

Re[Det[AA1.Inverse[A2[Id]].AA1 + (M + 1)/M*Id]],

{i, sim}];]
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Listing A.3: Example of source code for the empirical distribution of T ∗M and T ∗comb respectively

defined in (3.11) and (3.15), used in the CPS application.

m = 3;

p = 24;

n = 141;

M= 2;

Needs["MultivariateStatistics ‘"]

Id = IdentityMatrix[m];

Invw[M_] := Inverse[RandomReal[WishartDistribution[M, n - p]]];

rfish21st[a_] := RandomVariate[FRatioDistribution[p - a,

M*(n - p) - a]]*(p - a)/(M*(n - p) - a);

rfish22nd[a_] := RandomVariate[FRatioDistribution[p - a,

M*n - p - a]]*(p - a)/(M*n - p - a);

sim = 10000;

dist21st = ConstantArray[{1}, sim];

dist22nd = ConstantArray[{1}, sim];

Timing[Do[

dist21st[[i]] = Product[rfish21st[i], {i, 0, m - 1}]*

Det[M*(n - p)*Invw[Id] + Id];

dist22nd[[i]] = Product[rfish22nd[i], {i, 0, m - 1}]*

Det[M*(n - p)*Invw[Id] + Id],

{i, sim}];];
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