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Abstract  

 

Colorectal cancer is the third most common cause of mortality worldwide. Given the growth and 

increasing life expectancy of the world’s population, as well as the acquisition of unhealthy lifestyle 

habits, the global burden of colorectal cancer is estimated to increase in the next years. Despite the 

efforts made so far, its treatment is still very challenging due to cancer recurrence usually associated 

with prevalence of cancer stem cells (CSCs) after treatment. Hence, it is imperative to seek new 

therapeutic strategies that target colorectal CSCs.  

Epidemiological data have reported a positive correlation between cruciferous vegetables intake and 

decreased risk of colorectal cancer. Their chemo-preventive effect is mainly due to their high content 

in glucosinolates, the precursors of isothiocyanates (ITCs) that are known to modulate and target 

several aspects of carcinogenesis. 

Hence, by recurring to a green and sustainable high pressure extraction process to recover ITCs from 

cruciferous vegetables, namely watercress and broccoli, we intended to explore the anticancer 

mechanisms of Brassicaceae vegetables and respective ITCs in a tri-dimensional (3D) cell model of 

colorectal cancer (i.e. in cell spheroids), since this approach resembles best with the tumor 

microenvironment in comparison with the conventional two-dimensional (2D) cells models. Our results 

revealed that Brassicaceae extracts and ITCs have the potential to prevent cell proliferation and 

chemo-resistance, to induce apoptosis, and to target colorectal CSC population and its self-renewal 

ability. Therefore, our research provides new insights on colorectal cancer therapy using 

nutraceuticals derived from cruciferous vegetables. 

 

 

 

Keywords: Colorectal cancer, cancer stem cells, isothiocyanates, cruciferous vegetables, 

Brassicaceae extracts  
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Resumo  

 

O cancro colorrectal é a terceira causa mais comum de morte a nível mundial. Dado o aumento do 

crescimento e esperança média de vida da população mundial, bem como a aquisição e hábitos 

alimentares pouco saudáveis, estima-se que a taxa de cancro colorrectal aumente nos próximos 

anos. Apesar dos esforços feitos até agora, o seu tratamento é ainda muito desafiante devido à 

recidiva da doença que usualmente está associada à prevalência das células estaminais tumorais 

(CET) após o tratamento. Desta forma, é crucial desvendar novas estratégias terapêuticas com 

seletividade para as CETs. 

Dados epidemiológicos têm reportado uma correlação positiva entre o consumo de vegetais 

crucíferos e menor risco de cancro colorrectal. O seu efeito quimio-terapêutico deve-se 

maioritariamente ao seu elevado teor em glucosinolatos, precursores dos isotiocianatos (ITCs) 

conhecidos por modularem e atingirem diversos aspetos do desenvolvimento tumoral. 

Assim, ao recorrer a um processo “verde” e “sustentável” de extração a alta pressão para 

recuperação de ITCs a partir de vegetais crucíferos, nomeadamente de agrião e brócolos, nós 

pretendemos explorar os efeitos anti tumorais dos vegetais Brassicaceae e respetivos ITCs num 

modelo tri-dimensional (3D) de cancro colorrectal (i.e. em esferoídes celulares), uma vez que esta 

abordagem assemelha-se melhor ao microambiente tumoral em comparação com os convencionais 

modelos celulares bi-dimensionais (2D). Os nossos resultados revelaram que os extratos de 

Brassicaceae e ITCs têm o potencial de prevenir a proliferação e quimio-resistência, de induzir a 

apoptose e actuar na sob-população das CET e na sua capacidade de autorrenovação. Assim, a 

nossa pesquisa fornece novas perspetivas na terapia do cancro colorrectal usando nutracêuticos 

derivados de vegetais crucíferos.  

 

 

Termos-chave: Cancro colorrectal, células estaminais tumorais, isotiocianatos, vegetais crucíferos, 

extratos de Brassicaceae 
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1. Introduction 

 

1.1. Large Intestine: anatomy and physiology in brief 

 

The large intestine is part of the gastrointestinal system and comprises the colon, a muscular tube with 

approximately 5 feet long responsible for the absorption of water and nutrients during digestion, and 

the rectum, a final extension of the large intestine with about 6 inches through which the fecal matter 

resultant from digestion is excreted from the anus, see Figure 1.1.A. The colon is sectioned into four 

main regions named: the ascending, transverse, descending and sigmoid colon, with the latter 

connecting the colon to the anus, as depicted in Figure 1.1.A. The colon region comprising collectively 

the ascending and transverse regions is denominated as the proximal colon, whereas the region 

involving the descending and sigmoid colon is designated as the distal colon (American Cancer 

Society., 2014).  

 

 

Figure 1.1. Illustration of the large intestine sections. (A) Proximal region comprises the ascending and 

transverse colon, while distal region englobes the descending and sigmoid colon. (B) Colon wall architecture, with 

colonic crypts embedded in the mucosa layer. (C) Colonic crypt with stem cell population residing at the base of 

the crypt and progenitor cells migrating and differentiating in the upward direction, towards the intestinal lumen. 

Adapted from (Degirolamo et al., 2011; Hepatology., 2016; National Institutes of Health, 2016). 

 

As part of the gastrointestinal tract, its wall’s architecture encompasses four layers, namely: the 

serosa, the muscularis, the submucosa and the mucosa. This latter layer is then subdivided in three 

sublayers: the muscularis mucosa, the lamina propria and the epithelium, as shown in Figure 1.1.B. In 

turn, the epithelium, consisting in a single layer of columnar epithelial cells (including enterocytes, 

goblet cells and endocrine cells), folds into finger-like invaginations so-called the colonic crypts, as 

depicted in Figure 1.1.B-C. (Fredericks, 2015; Humphries and Wright, 2008; Vaiopoulos et al., 2012). 

In the bottom of these crypts resides a subpopulation of intestinal stem cells responsible for the 

renewal of the epithelium (Fredericks, 2015; Humphries and Wright, 2008; Vaiopoulos et al., 2012). 

The intestinal stem cells perform asymmetric division, undergoing self-renewal alongside with 

generation of a population of progenitor cells that migrate upwardly in the crypt, proliferate and 

differentiate into goblet, columnar, among other cell types (Boman and Huang, 2008; Vaiopoulos et 

al., 2012). However, due to their high proliferation rate, both stem cells and progenitor cells are prone 
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to acquire mutations and undergo malignant transformation towards colorectal cancer (Huels and 

Sansom, 2015). 

 

 

 

1.2.  Epidemiologic scenario: incidence and mortality of colorectal cancer 

 

Colorectal cancer is classified as the third most common cause of mortality worldwide and the fourth 

leading cause in the ranking of the cancer-related deaths. The incidence of this pathology rises with 

increasing age, being the age range from 40 to 50years the most critical for colorectal cancer 

incidence. Notwithstanding, there is a significant difference in incidence between genders, having 

males the highest incidence rate of colorectal cancer in comparison to females (Ait Ouakrim et al., 

2015; Favoriti et al., 2016). 

 

Figure 1.2. Worldwide colorectal cancer incidence and mortality rates in age-standardized rate (ASR), per 

100.000 individuals of the world standard population, estimated in 2012. (A) Colorectal cancer incidence. (B) 

Colorectal cancer mortality. Adapted from (GLOBOCAN, 2012). 
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The disparity in the geographical distribution of colorectal cancer burden can be correlated with the 

human development index of the countries, with the more developed countries accounting for more 

than two-thirds of diagnosed cases (Arnold et al., 2016). Moreover, this discrepancy can also be 

associated not only with the environmental exposure and different dietary habits inherent to the 

geographic area, but also with the genetic background and/or higher genetic susceptibility (Favoriti et 

al., 2016). Nonetheless, there has been an increasing trend in the incidence of colorectal cancer in the 

developing countries that can be correlated with the acquisition of western lifestyle habits (Arnold et 

al., 2016; Favoriti et al., 2016).  

Given the growth and increasing life expectancy of the world’s population, as well as the acquisition of 

unhealthy lifestyle habits, the global burden of colorectal cancer is estimated to increase to almost 2.5 

million cases and 1.3 million deaths by 2035 (Favoriti et al., 2016; GLOBOCAN, 2012). 

 

 

 

1.3.  Colorectal cancer etiology  

 

Colorectal cancer derives from the imbalance between normal cell growth and death in colonic 

epithelium. It can be described as the progression from a normal to dysplastic epithelium, to adenoma 

which then evolves towards a carcinoma and, eventually, to metastases. This stepwise progression 

known as “adenoma-carcinoma sequence”, depicted in Figure 1.3, arises from the accumulation of 

genetic alterations. The adenoma-carcinoma sequence accounts for about 90% of all sporadic 

colorectal cancers, while the remaining 10% are attributed to the “serrated neoplasia pathway” 

(Fredericks, 2015).  

 

 

Figure 1.3. Adenoma-carcinoma sequence in colorectal cancer onset. Evolution from a normal mucosa to 

hyperplasia, followed by adenoma development (benign polyp) that culminates in the establishment of a 

carcinoma that, upon accumulation of mutations in critical genes, may metastasize to other organs. Adapted from 

(Rajagopalan et al., 2003). 

 

Genomic instability driving colorectal cancer can be attributed to two major genetic phenomena: 

chromosomal instability (CIN) that accounts for up to almost 85% of colorectal cancers, and 

microsatellite instability (MSI) (Fredericks, 2015). In the most likely scenario of genetic instability, the 

CIN pathway, the colonic adenomas arise from mutations in the APC (Adenomatous polyposis coli) 
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tumor suppressor gene that lead to formation of dysplastic crypts  (Cappell, 2008; Lamprecht and 

Fich, 2015) – Figure 1.3.  

Mutations leading to dysfunctional APC protein consequently drive the deregulation of Wnt/β-catenin 

signaling pathway (Fredericks, 2015; Huels and Sansom, 2015). In this context, APC loss results in 

the translocation of β-catenin towards cell nuclei where it accumulates and binds to T-cell factor 

(TCF), prompting unrestrained transcription of target genes that control cell growth, proliferation and 

invasion (namely Axin2, Cyclin D1 and CD44) (Fredericks, 2015) – see Figure 1.4.  

 

 

Figure 1.4. Wnt signaling pathway. In the absence of Wnt receptor ligands, β-catenin is phosphorylated and 

routed for proteasome degradation upon interaction with a multimeric complex composed by Axin, APC and 

Glycogen synthase kinase-3β (GSK-3β). Contrary, upon stimulation of Wnt receptors or in the case of mutated 

APC, β-catenin translocates towards cell nuclei where it interacts with TCF, activating the transcriptional 

expression of target genes. Adapted from (Fredericks, 2015). 

 

 

Afterwards, the resultant mutant clone population can further acquire a more aggressive phenotype 

towards adenoma establishment upon additional mutations affecting oncogenes, like KRAS (Kirsten 

Ras), and tumor suppressor genes, like TP53 (tumor protein p53) and DCC (Deleted in Colorectal 

Carcinoma) (Fredericks, 2015; Huels and Sansom, 2015; Humphries and Wright, 2008). 

Notwithstanding, epigenetic alterations, namely those prompted by deoxyribonucleic acid (DNA) 

methylation, can also contribute to the genetic instability of intestinal cells and to tumorigenesis, as 

proposed for the serrated neoplasia pathway (Jass et al., 2002). 

Although normally adenomas remain benign, the accumulation of genetic alterations can drive them 

towards malignant transformation, i.e. to establishment of carcinomas (Cappell, 2008). In fact, every 

normal cell (either stem, progenitor or differentiated cell) has the potential to become the cancer cell of 

origin, as the result of successive mutations (Vaiopoulos et al., 2012). Thereby, two possible models 

of colorectal carcinogenesis have been suggested: the “top-down” and the “bottom-up” models (Huels 

and Sansom, 2015).  



 
 

5 
 

 

Figure 1.5. Proposed mechanisms for colorectal tumorigenesis. (A) “Bottom-up” model assumes that genetic 

instability affects the intestinal stem cell niche. (B) “Top-down” model assumes that more differentiated cells 

affected by genetic mutations can propagate the mutated clones. Adapted from (McDonald et al., 2006). 

 

The “top-down” model assumes that tumor begins at the top of the colonic crypt, with mutations 

affecting the differentiated or progenitor intestinal cells, resulting in tumor propagation in the lateral 

directions and downwards toward the crypt base (Huels and Sansom, 2015) - see Figure 1.5-B.  

However, due to the rapid turnover of the colonic epithelial cells (in approximately 4-5 days these cells 

are shed from the colonic epithelium), the stem cell niche at the base of the crypt appears to be the 

most likely cancer cell origin in colorectal carcinogenesis. In this context, the “bottom-up” model 

assumes that intestinal stem cells upon malignant transformation become the trigger for tumor onset, 

and spreading of mutant clone occurs upwards the crypt (Huels and Sansom, 2015), as represented in 

Figure 1.5-A. The propagation of the stem cell mutant clone eventually begins by replacing the normal 

cells inside the intestinal stem cell niche, a phenomena called niche succession. This event can then 

be followed by monoclonal conversion when the mutant stem cells take control of the crypt and end up 

filling the entire colonic crypt with their offspring (Humphries and Wright, 2008).  

Several markers of the colorectal CSCs have been discovered. For instance, LGR5 (Leucine-rich 

repeat-containing G-protein coupled receptor 5) has demonstrated to modulate proliferation, migration 

and colony formation in vitro and to provide tumorigenic potential in vivo (Hirsch et al., 2014; Lin et al., 

2015). Content of LGR5
+ 

cells also proved to correlate positively with invasiveness, lymph node and 

distant metastasis (Wu et al., 2012), as well as with resistance to common therapeutic agents (Liu et 

al., 2013b). Besides CD44 (CD44 molecule - Indian blood group), CD133 (Prominin-1) has also been 

proposed as a putative colorectal CSC marker, with application in clinical prognosis (Ren et al., 2013; 

Schneider et al., 2012; Wang et al., 2012). 
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Nonetheless, colorectal cancer can be classified based on its level of invasiveness. One of the most 

well-known classification scales is the Dukes’ classification that stages colorectal cancer from A 

through D, as illustrated in Figure 1.6. In stage A, colorectal cancer penetrates beyond the muscularis 

layer into the submucosa. At initial stage B (B1) it crosses submucosa layer into the muscularis layer, 

and further progression beyond muscularis into serosa is classified as late stage B (B2). Upon 

reaching regional lymph node, colorectal cancer now in its metastatic phase, is rated as stage C. 

Further progression with establishment of metastases at distant organs (e.g. liver and lungs) is 

devised as stage D. More recently this classification system was upgraded to the “Tumor, Node, 

Metastases” (TNM) system, in which stage A and B1 correlate with stage I of TNM scale, and stage 

B2 and C correspond to stage II and stage III, respectively. The worst case scenario characterized by 

distant metastases in Dukes’ D stage corresponds to TNM stage IV (Cappell, 2008). 

 

Figure 1.6. Colorectal cancer staging by Dukes’ stratification. Adapted from (University., 2015). 

 

 

 

1.3.1. Hallmarks underlying tumor development and progression 

 

Regardless of the genetic instability pathway that drives tumorigenesis, there is a general consensus 

that all cancers are characterized by a plethora of molecular and cellular processes, so-called 

hallmarks, that sustain the malignant phenotype, summarized in Figure 1.7. These functional 

capabilities of cancer cells that endow them with an enhanced fitness encompass: sustained 

proliferation signaling, replicative immortality and evasion of growth suppressors (overall, eliciting 

unrestrained proliferation and tumor growth); evasion of immune destruction and apoptosis; activation 

of invasion and metastasis; angiogenesis induction and deregulation of cellular energetics (Hanahan 

and Weinberg, 2011).  
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Figure 1.7. Cancer hallmarks. Adapted from (Hanahan and Weinberg, 2011). 

 

 

To note that, due to their intrinsic self-renewal capability and plasticity, colorectal CSCs can contribute 

to all of cancer hallmarks, and hence to tumor establishment and progression (Mathonnet et al., 2014; 

Vaiopoulos et al., 2012; Zeuner et al., 2014). 

 

 

 

1.3.2. Deregulation of signaling pathways in colorectal CSCs  

 

The intestinal homeostasis, resultant from the balance between cell proliferation, differentiation, 

migration and self-renewal, is tightly controlled by a complex crosstalk network involving several 

signaling pathways, namely Wnt/β-catenin, Hedgehog and Notch pathways. However, in colorectal 

cancer the genetic instability imposed to precursor cancer cells may prompt the deregulation of these 

intricate signaling networks, with consequent unrestrained cell growth (Beachy et al., 2004).  

 

 

Wnt/β-catenin signaling pathway 

As already mentioned above, the Wnt/β-catenin signaling pathway modulates several crucial events in 

colorectal cancer onset by enhancing the expression of tumorigenesis “driver” genes, an event elicited 

by the accumulation of β-catenin in the presence of a dysfunctional APC protein (please review Figure 

1.4.). Upon stimulation of Wnt ligand receptors, β-catenin is no longer degraded by proteasomes and 

accumulates in cytosol. After shuttling towards nucleus, β-catenin interacts with TCF forming a 

complex that functions as a transcriptional activator of Wnt target genes, such as CD44, Axin2, cyclin 

D1 and c-myc (Brabletz et al., 2005; Krausova and Korinek, 2014). 
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Additionally, Wnt/β-catenin signaling pathway has been linked to epithelial-to-mesenchymal transition 

(EMT), in which cells lose their intercellular contact and become more “motile”, events that facilitate 

cell migration. β-catenin is generally associated to membranous E-cadherin, a known adhesion 

molecule. Translocation of β-catenin towards cell nuclei leads to the loss of membranous E-cadherin, 

as well as to downregulation of its expression, which decreases the epithelial cell phenotype and 

favors a more mesenchymal and motile one (Brabletz et al., 2005; Nelson and Nusse, 2004). 

Moreover, intra-nuclear β-catenin increases survivin expression, an anti-apoptotic protein that also 

induces cell proliferation (Salama and Platell, 2009). 

 

 

Hedgehog signaling pathway 

Another major signaling pathway involved in cancer growth, metastasis, CSC self-renewal and 

recurrence, is the Hedgehog pathway. In the absence of hedgehog ligands (Sonic Hedgehog, Desert 

Hedgehog and Indian Hedgehog) the respective transmembrane receptor Patched (Ptch) interacts 

with Smoothened (Smo) blocking its function. On the other hand, in the presence of the Hedgehog 

ligands the repression of Smo is relieved favoring the activation of Gli transcription factors that 

modulate the expression of cyclin D, EGF (Epidermal Growth Factor), among other genes (Hanna and 

Shevde, 2016), as illustrated in Figure 1.8.  

Furthermore, Hedgehog-Gli1 signaling axis has been associated with the acquisition of a metastatic 

phenotype via EMT in colorectal cancer, despite promoting cell growth, survival and CSC self-renewal 

(Varnat et al., 2009). 

 

Figure 1.8. Hedgehog signaling pathway. Upon stimulation by receptor Ptch ligands, Smo inhibition is 

attenuated with consequent transcription activation of target genes (related to CSC self-renewal and cancer 

metastasis) by Gli. Adapted from (Hanna and Shevde, 2016). 

 

 

Notch signaling pathway 

Briefly, this signaling pathway is activated by direct cell-to-cell contact between a Notch ligand and a 

Notch membrane receptors, Notch and Delta. This interaction leads to the proteolytic cleavage of the 

intracellular domain of Notch (NICD) that shuttles to cell nuclei, where it interacts with transcription 
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factors and modulates the expression of numerous genes controlling cell proliferation, differentiation, 

apoptosis - e.g. c-myc, EGFR (Epidermal Growth Factor Receptor), cyclin D1, p21 and Nuclear Factor 

kappa B (NF-kB) (Qiao and Wong, 2009) - and EMT (e.g. Snail and Slug) (Espinoza et al., 2013). 

 

 

 

1.4. Risk factors: lifestyle habits and genetic influence  

 

The striking numbers of the incidence and mortality rates that follow colorectal cancer are in part due 

to various risk factors of different natures, namely genetic predisposition, history of inflammatory bowel 

disease, family history of colorectal cancer and/or lifestyle habits, among others.  

A small portion of the colorectal cancer cases is derived from genetic syndromes. Individuals who 

suffer from inflammatory bowel disease, either ulcerative colitis or Crohn’s disease, are more prone to 

develop colorectal cancer, since inflammation is one of the hallmarks of cancer as previously 

described. In the other hand, individuals that have family history of colorectal cancer affecting at least 

one first-degree relative have increased risk to develop this pathology. The most common inherited 

forms of colorectal cancers are familial adenomatous polyposis (FAP, that is inherited in an autosomal 

dominant way) and hereditary nonpolyposis colorectal cancer (HNPCC) (Haggar and Boushey, 2009). 

One of the most critical factors that influence the development of colorectal cancer is diet. In fact, food 

consumption patterns are responsible for the majority of the colorectal cancer cases and, in this 

context, the adoption of a western diet (rich in animal derived-products and fats and poor in 

vegetables and fruits) has led to an increasing trend in the colorectal cancer incidence (Bishehsari et 

al., 2014). The high consumption of red and processed meats (e.g. beef and pork) has been 

associated to a higher risk of colorectal cancer, which can be resultant from the presence of potential 

mutagenic and carcinogenic compounds, namely N-nitroso compounds (NOCs), heterocyclicamines 

(HCAs), polycyclic aromatic hydrocarbons (PAHs) and heme iron. For instance, NOCs could be 

synthetized exogenously from nitrites, nitrates, amines or amides during meat processing (like it 

happens in bacon and sausages) (Aykan, 2015; Song et al., 2015). Moreover, NOCs can be also 

produced endogenously in the colon after consumption of these animal-derived products due to the 

presence of amines and amides in the colon originated from the amino acid decarboxylation 

performed by colon microflora. Additionally, HCAs and PAHs are produced from pyrolysis of meat 

during high temperature or open flame cooking (e.g. like grilling or barbecuing meat for too long) 

(Aykan, 2015). Red meats are highly rich in heme iron that is degraded in the small intestine. The 

resultant free ferrous iron can further promote carcinogenesis by intervening in endogenous 

production of NOCs, fat peroxidation, and oxidative stress which can subsequently induce genetic 

mutations and cytokines expression that incites inflammation (Aykan, 2015; Durko and Malecka-

Panas, 2014; Song et al., 2015). Nonetheless, colorectal cancer can also be prompted by infectious 

pathogens acquired via red meat consumption, like Fusobacterium nucleatum that promote reactive 

oxygen and nitrogen species (ROS and RNS, respectively) production leading to colon inflammation 

(zur Hausen, 2012).  
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Despite the inconsistency among epidemiologic studies, one could not exclude the possible 

correlation between high intake of saturated animal fats and increase in colorectal cancer incidence 

(Pericleous et al., 2013). Diets rich in fats may enhance intestinal excretion of bile acids and modulate 

colon flora composition towards a pro-oncogenic microenvironment (Song et al., 2015).  

Another risk factor is the regular consumption of alcohol whose metabolism leads to acetaldehyde 

production, a known carcinogenic agent that prompts DNA damage in a dose-dependent manner. 

Moreover, its regular consumption decreases the absorption of B vitamins, making cells more prone to 

oxidative stress (Durko and Malecka-Panas, 2014). 

Other lifestyle habits, such as tobacco smoking, can be associated with increased colorectal cancer 

risk. Tobacco contains a plethora of carcinogens, including aromatic amines, NOCs, HCAs and PAHs 

that, upon metabolism via cytochrome P450, can induce mutations in crucial genes - e.g. KRAS and 

BRAF (B-Raf) (Durko and Malecka-Panas, 2014). Additionally, a sedentary lifestyle and obesity, two 

risk factors that may co-exist, are convincingly associated with increased incidence of colorectal 

cancer (Haggar and Boushey, 2009).  

 

 

 

1.5.  Management of colorectal cancer: therapeutic guidelines, drawbacks and cancer 

recurrence  

 

Nowadays, colorectal cancer treatment is still very challenging due to cancer recurrence. The gold 

standard therapy for localized colorectal cancers (stage I and II) is surgical resection, but this 

approach often ends in tumor relapse within a few years after surgery.  Moreover, for patients that 

have stage III or IV and reduced long-term survival, an adjuvant therapy based on radiation or 

chemotherapy is applied before surgery (Cappell, 2008; Dent et al., 2016; Hellinger and Santiago, 

2006).  

One of the most currently used chemotherapeutic agents in colorectal cancer therapy is 5-Fluorouracil 

(5-Fu) (Subramaniam et al., 2010). This drug has the ability to be incorporated into DNA instead of 

thymidine, thus inhibiting DNA replication and favoring cell death (Hammond et al., 2016). However, 

drug’s biological effect may be counteracted due to drug efflux carried out by ATP-binding cassette 

transporters (ABC transporters) (Hlavata et al., 2012) and to Aldehyde Dehydrogenase (ALDH) 

activity, among other mechanisms (Abdullah and Chow, 2013). 

Despite the efforts made so far, CSCs can prevail even after chemotherapy, explaining why colorectal 

cancer eradication is so difficult to attain and often results in a high incidence of tumor relapse 

(Mertins, 2014; Subramaniam et al., 2010). This chemo-resistant profile of colorectal CSCs has been 

demonstrated in some reports (Colak et al., 2014; Dylla et al., 2008).  

Therefore, it is imperative to design therapeutic strategies targeting essential CSC-related processes, 

namely: developmental signaling pathways (like Wnt, Hedgehog and Notch); survival pathways (e.g. 

Phosphoinositide 3-kinase-Mammalian target of rapamycin axis, abbreviated PI3K-mTOR axis); 

evasion of apoptosis and chemo-resistance. Moreover, it seems also plausible to target components 
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involved in EMT, as well as surface CSC markers (Mertins, 2014; Vaiopoulos et al., 2012; Zeuner et 

al., 2014). 

In this context, and based on the epidemiological data retrieved from nutrition patterns, natural 

bioactive compounds present in fruits, vegetables and other natural sources, arise has one appealing 

strategy to target colorectal cancer, including CSC niche, self-renewal and metabolism (Pistollato et 

al., 2015).   

 

 

 

1.6. Natural compounds as potential therapeutic agents for colorectal cancer: lessons learned 

from the preventive role of nutrition 

 

As highlighted above, diet is one of the crucial determinants accounting for colorectal carcinogenesis. 

Inversely, various dietary factors have demonstrated to have protective qualities against this pathology 

(Durko and Malecka-Panas, 2014). Evidences from epidemiological studies have established a 

positive correlation between plant-based dietary patterns and a lower risk of colorectal cancer, as 

reviewed by (Lanou and Svenson, 2010). More recently, after a follow-up study of about 7years with 

nearly 80.000 participants with different dietary patterns (encompassing non-vegetarianism, vegan 

diet, lacto-ovo-vegetarianism, pesco-vegetarianism and semi-vegetarianism), it was determined that in 

overall vegetarian diets are associated with a lower risk to develop colorectal cancer comparing with 

non-vegetarianism, and that pesco-vegetarianism correlates with a decreased risk comparing with 

non-vegetarianism (Orlich et al., 2015), observations consistent with the association between red meat 

consumption and risk of developing this pathology.  

In fact, diets rich in vegetables, fruits, whole grains, spices and seeds have shown to counteract the 

incidence of colorectal cancer, and therefore naturally-occurring dietary compounds have been drawn 

attention due to their efficacy in colorectal cancer prevention and therapy (Lanou and Svenson, 2010; 

Pericleous et al., 2013; Song et al., 2015).  

Hence, several phytochemicals, so called nutraceuticals, have been identified in these natural sources 

with the purpose of decrease the colorectal cancer incidence and slow its progression by targeting 

critical aspects of carcinogenesis, namely cell proliferation, differentiation, apoptosis, inflammation, 

angiogenesis and metastasis (Kuppusamy et al., 2014; Pan et al., 2011). Furthermore, nutraceuticals 

stand out by their capacity to modulate gene expression in colorectal cancer by acting at the 

epigenetic level, either by influencing DNA methylation, histone modification (by acetylation, 

methylation or phosphorylation) or micro-ribonucleic acid (micro-RNA) expression. Their potential to 

reverse epigenetic deregulation, or in other words, to reprogram the epigenome, may unveil new 

targets for colorectal cancer therapy and therefore the possibility of new therapeutic outcomes (Chang 

and Yu, 2016; Chen and Xu, 2010). Lastly, but more importantly, phytochemicals also have gain 

widespread attention by showing their potential in targeting the CSC sob-population (Pistollato et al., 

2015).   
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In an oversimplified way, phytochemicals can be classified into: i) phenolics (including phenolic acids, 

flavonoids, stilbenes, coumarins and tannins); ii) carotenoids; iii) alkaloids; iv) nitrogen-containing 

compounds and v) organosulfur compounds (Liu, 2004), as depicted in Figure 1.9. 

 

 

Figure 1.9. Classification of phytochemicals. Phytochemicals comprise carotenoids, phenolic compounds, 

alkaloids, nitrogen-containing compounds and organosulfur compounds. Some examples are listed for some 

categories. Adapted from (Liu, 2004). 

 

Within the phytochemicals panel, phenolic compounds and carotenoids are the most well studied. 

Several phenolic compounds have been identified in numerous plant species and are resultant from 

plant metabolism. These plant secondary metabolites can be further subdivided in monophenolic or 

polyphenolic if they possess one or more aromatic rings in their structure, respectively, with one or 

more hydroxyl groups attached (Wahle et al., 2010). Among the natural sources of these compounds, 

apples, grapes, plums, cherries, strawberries and citrus fruits stand out due to their high content in 

phenolic compounds (Scalbert and Williamson, 2000).  

On the other hand, carotenoids are fat-soluble pigments naturally present in yellow/orange vegetables 

and fruits (such as carrots, pumpkins, tomatoes, papayas and oranges) (Liu, 2004; Pan et al., 2011). 

These phytochemicals possess a 40-carbon structure of isoprene units, being characterized by their 

long series of conjugated double bonds that constitute the central portion of the molecule, which in 

turn can me cyclized at one or both ends, in addition to other degrees of complexity at structural level 

(Liu, 2004). 

Last, but not least, organosulfur compounds are another main class of phytochemicals that is 

characterized by the presence of at least one atom of sulfur in their structure. These phytochemicals 

encompass allyl sulfur compounds (mostly present in garlic) and glucosinolates (typical of cruciferous 
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vegetables) (Gonzalez-Vallinas et al., 2013). The latter subclass will further be addressed in more 

detail in the following section.  

In overall, phytochemicals have been demonstrated to have the ability to block carcinogenesis and 

impair tumor progression by inducing several responses, namely: modulation of gene expression 

(inhibiting and prompting the expression of oncogenes and tumor suppressor genes, respectively),  

signal transduction pathways; metabolic and detoxification systems; induction of apoptosis and of cell 

cycle arrest; inhibition of cell proliferation, angiogenesis and metastasis, besides exerting anti-

inflammatory effects and counteracting oxidative stress (Araujo et al., 2011; Gonzalez-Vallinas et al., 

2013; Kuppusamy et al., 2014; Liu, 2004; Pan et al., 2011; Priyadarsini and Nagini, 2012). Table 1.1. 

summarizes some of the most representative nutraceuticals and their anticancer effects reported in 

colorectal cancer.  

 

 Table 1.1. Representative nutraceuticals and respective anticancer mechanisms exposed in colorectal 

cancer.  

 

 

 

1.6.1.  Cruciferous vegetables as natural sources of nutraceuticals 

 

Cruciferous vegetables can also be termed by Brassica vegetables, an ambiguity that derives from the 

fact that they descend from a family than can either be named Cruciferae or, alternatively, 

Brassicaceae (Higdon et al., 2007). This family englobes not only vegetables from the Brassica genus 

(e.g. broccoli, cauliflower, Brussels sprouts, cabbage, mustard, among others), but also watercress 

and wasabi, among other cruciferous vegetables belonging to others genus (Higdon et al., 2007; 

Kapusta-Duch et al., 2012).  

According to the parallelism between high consumption of plant-derived foods and a lower risk in 

colorectal cancer, as already mentioned, also the intake of cruciferous vegetables has been 

associated with a decreased risk of colorectal cancer (Higdon et al., 2007; Marshall, 2008; Verhoeven 

 Natural compound 
Proposed anticancer 

mechanism 
Cancer model Ref. 

P
h
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o
m

p
o

u
n

d
s
 Epigallocatechin Gallate 

(EGCG) 

G1 cell cycle arrest; cell 

proliferation; apoptosis 

HCT116, 

SW480 
(Du et al., 2012) 

Resveratrol 
G0/G1-S cell cycle arrest; cell 

proliferation; apoptosis 
HT29 

(Vanamala et al., 

2010) 

Fisetin apoptosis;  cell growth HT29 
(Suh et al., 

2009) 

Luteolin chemo-resistance to oxaliplatin SW480 (Qu et al., 2014) 

C
a
ro

te
n

o
id

s
 

Lycopene  cell growth; cell proliferation HT29 
(Tang et al., 

2008a) 
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et al., 1996) (Wu et al., 2013a). In fact, the same trend has also been reported in gastric (Wu et al., 

2013b), pancreatic (Li et al., 2015), bladder (Tang et al., 2008b), lung (Tang et al., 2010) and breast 

(Liu and Lv, 2013) cancers.  

The chemo-preventive and therapeutic potential of these vegetables can be attributed to their 

phytochemical composition in phenolic compounds (namely phenolic acids, flavonoids and other 

polyphenols) and in organosulfur compounds (glucosinolates and their derivatives) (Mann and 

Khanna, 2013).  

 

 

 

1.6.1.1. Phenolic compounds from cruciferous vegetables 

 

Numerous phenolic compounds have been identified in cruciferous vegetables, including anthocyanins 

(a pigment that assigns a reddish or purplish color to some cruciferous vegetables, like red cabbage 

and purple cauliflower), flavonols (such as quercetin and kaempferol, and their derivatives) and 

Hydroxyacinnamic acids (e.g. p-coumaric acid, ferulic acid, caffeic acid and 3-O-Caffeoylquinic acid) 

and their conjugates, revised by (Cartea et al., 2011). Some studies have asserted the anticancer 

mechanisms prompted by phenolic compounds in colorectal cancer. For instance, Cho and Park 

reported the potential antiproliferative effect of kaempferol in HT29 cells, in which treatment with this 

bioactive compound has demonstrated to arrest cell cycle at G1 and G2/M phases by decreasing the 

levels of CDK2 and CDK4, as well as those of cyclin A, D1 and E (Cho and Park, 2013). Moreover, 

kaempferol has also demonstrated to induce apoptosis in HCT116 cells by the ATM-p53-Bax pathway, 

involving activation of caspase-3 and decrease in Bcl-2 protein levels (Wu et al., 2009). Likewise, the 

pro-apoptotic activity of quercetin was also reported in colorectal cancer cells, which was verified by 

the inhibition of NF-kB pathway, upregulation of Bax levels and downregulation of Bcl-2 levels (Zhang 

et al., 2015). Additionally, quercetin has demonstrated to inhibit migration and invasion in Caco-2 cells 

by inhibiting Toll like receptor 4 (TLR4)/NF-kB pathway, confirmed by the downregulation of matrix 

metalloproteinase-2 and -9 (MMP-2 and MMP-9, respectively) and upregulation of E-cadherin (Han et 

al., 2016).  

 

 

 

1.6.1.2. Glucosinolates, the precursors of isothiocyanates (ITCs) 

 

Nonetheless, the chemo-protective effects of cruciferous vegetables are mainly resultant of their 

relatively high content of glucosinolates (Verhoeven et al., 1996). These compounds occur naturally in 

these plants being responsible for their natural defense against insects, as well as by their peculiar 

bitter taste to the consumer, which leads to some consumer’s resistance to include cruciferous 

vegetables in diet (Drewnowski and Gomez-Carneros, 2000).  

The general structure of glucosilonates comprises a β-D-thioglucose group, a sulfonated oxime group 

and a variable side chain. Although these compounds are biologically inert, they can be converted into 
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more bioactive products – namely ITCs or indoles – by a hydrolysis reaction catalyzed by myrosinase 

(Cheung and Kong, 2010; Lynn et al., 2006), as depicted in Figure 1.10. In fact, ITCs are the main 

bioactive compounds in cruciferous vegetables that are responsible for their chemo-preventive activity 

in colorectal cancer (Lynn et al., 2006). Regardless of, since myrosinase and glucosinolates exist in 

different compartments of plant cells (i.e. in external surface of plant cell wall and in cytoplasm, 

respectively), the hydrolysis reaction only occurs when the plant tissue is disrupted (either by chewing 

or chopping cruciferous vegetables during culinary processing) (Cheung and Kong, 2010; Lynn et al., 

2006). However, ITCs absorption derived from the consumption of cruciferous vegetables can also be 

attained through the activity of the gut microflora, a reaction catalyzed by β-thioglucosidase (Navarro 

et al., 2011). In Figure 1.10. are represented the general conversion of glucosinolates into ITCs, as 

well as examples of the more representative ITCs, namely Phenethyl isothiocyanate (PEITC), 

Sulforaphane (SFN) and Allyl isothiocyanate (Allyl ITC). 

 

Figure 1.10. Conversion of glucosinolates into corresponding ITCs. Adapted from (Navarro et al., 2011). 

 

 

Once ingested or generated in the gut lumen, ITCs can cross the intestinal epithelial barrier and 

capillary endothelium by passive diffusion (Wu et al., 2009). Upon uptake by passive diffusion, ITCs 

are metabolized in vivo by the mercapturic acid pathway, in which they are initially conjugated with 

glutathione in a reaction that is catalyzed by glutathione-S-transferase (GST). Then, the resultant 

glutathione conjugates undergo consecutive enzymatic modifications that culminate in the generation 

of mercapturic acids, eventually excreted in urine (Lampe and Peterson, 2002; Wu et al., 2009; Zhang, 

2012). Due to their metabolism pathway, ITCs have been implicated in the modulation of the 

expression of biotransformation enzymes involved in xenobiotic metabolism - namely in the 
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upregulation of phase II enzymes, such as GST - by increasing the expression of genes that contain 

an antioxidant response element (ARE) (Higdon et al., 2007; Lampe and Peterson, 2002).  

Nonetheless, although ITCs have been implicated in the modulation of cellular processes in colorectal 

cancer, exemplified in Table 1.2., until today there is no evidence of ITCs biological effect in colorectal 

CSCs. However, some studies report SFN anticancer effect in CSCs of other solid tumors, namely in 

breast (Li et al., 2010b) and pancreatic cancer (Li et al., 2013).  

 

Table 1.2. Representative ITCs and respective anticancer mechanisms exposed in colorectal cancer. 

 

 

 

1.7.  Taking advantage from nature for colorectal cancer therapy: Therapeutic insights 

 

1.7.1.  Natural extracts and bioactive compounds in colorectal CSCs: quo vadis? 

 

Although dietary modification might be a promising preventive measure to reduce the global burden of 

this pathology, the intake of nutraceuticals in daily diet may not be sufficient to counteract the 

carcinogenesis process. Indeed, several factors can explain the limitations inherent to uptake and/or 

absorption of ITCs through diet, some of which are referred below. For instance, ITC content in 

cruciferous vegetables may decrease significantly during cooking due to the volatility of some ITCs 

that may experience hydrolysis at high temperatures (Wu et al., 2009). Moreover, myrosinase enzyme 

ITC 
Proposed anticancer 

mechanism 
Cancer model Ref. 

PEITC 

G1 cell cycle arrest  

[cyclin A, D, E – by p38/Mitogen-activated protein 

kinase (MAPK) activation] 

HT29 
(Cheung et al., 

2008) 

migration and invasion HT29 (Lai et al., 2010) 

apoptosis; tumor regression HCT116 (Roy et al., 2013) 

SFN 

DNA damage; Apoptosis HCT116 p53KO 
(Rudolf and 

Cervinka, 2011) 

Metaphase and subG1 cell cycle arrest;  

cell growth; apoptosis 

Primary cell lines 

of colon cancer; 

SCID mice 

(Chen et al., 2012) 

cell proliferation 
HT29, HCT116, 

LoVo, DLD-1 

(Baenas et al., 

2015) (Chung et 

al., 2015) 

cell growth and proliferation; apoptosis SW620 
(Andelova et al., 

2007) 

Histone deacetylase (HDAC) activity; cell growth HCT116 
(Myzak et al., 

2004) 

G2-M Cell cycle arrest (cyclin A and B1);  

 apoptosis 
HT29 

(Gamet-Payrastre 

et al., 2000) 

migration; angiogenesis HCT116 (Kim et al., 2015a) 

Allyl ITC invasion/migration  metastasis HT29 (Lai et al., 2014) 
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involved in glucosinolates hydrolysis can also be inactivated at high temperatures during some 

cooking procedures (Higdon et al., 2007). Another factor contributing to the bioavailability of ITCs is 

dependent on the individuals per se, since the conversion of glucosinolates into ITCs by the gut 

microflora might be dependent on interactions of the diurnal cycles of individual’s microbiota 

metabolism with daily cycling of human enzymes, which can explain the low efficiency of 

glucosinolates conversion into ITCs (Fahey et al., 2012). Besides the hydrolysis by colon microflora, 

as well as the amount of cruciferous vegetables intake, the inter-individual differences may also be 

influenced by the intensity/time of mastication and by individual’s genetic variations in enzymes 

involved in ITCs metabolism (e.g. in GST) (Lampe and Peterson, 2002). Therefore, individuals 

possessing GST polymorphisms rendering a reduced GST activity will have ITCs with longer half-lives 

in circulation and, hence, an enhanced chemo-protective effect (Lampe and Peterson, 2002). 

Overall, the possible conjunction of some or all the above-mentioned factors might not provide the 

attainment of a therapeutic concentration through the daily diet, capable of exercising anticancer 

effects.  

Therefore, to circumvent the limitations of ITCs natural uptake, there is an urgent need to develop new 

processes enabling the efficient and selective recovery of these valuable phytochemicals. Over time, 

several extraction techniques have been developed towards the generation of extracts from natural 

sources, like fruits and vegetables, namely solvent extraction, pressurized liquid extraction (PLE), 

supercritical fluid extraction (SFE), among other procedures, well revised in (Gil-Chávez, 2013). 

 

 

1.7.1.1. Extracting bioactive compounds from natural sources:  High-pressure extraction allied 

to “green” technology 

 

Conventional solvent extractions often offer several drawbacks, namely higher environmental 

pollution, long extraction periods and utilization of hazardous organic solvents, which is a limiting 

factor when considering food and pharmaceutical industries. This rises the need for developing 

alternative “green” technologies, in order to substitute the conventional extraction methods (Chemat et 

al., 2012; Herrero et al., 2013). 

In this context, high-pressure based technologies have been emerged towards the concept of a 

“green”-based technology, i.e. ensuring the generation and recovery of more “clean” bioactive 

compounds from natural matrices by reducing energy consumption (e.g. using moderate 

temperatures) and introducing the use of non-toxic solvents, while providing higher extraction yields, 

higher selectivity and shorter extraction periods (Chemat et al., 2012; Gil-Chávez, 2013; Herrero et al., 

2013; Pereira and Meireles, 2009).  

As a high-pressured based process, SFE has been applied in food, pharmaceutical and chemical 

industries for the extraction of natural compounds from plants and other natural matrices, since it can 

be an environmentally friendly technology (Chemat et al., 2012; da Silva et al., 2016; Gil-Chávez, 

2013; Pereira and Meireles, 2009). Briefly, this extraction process consists in the extraction of soluble 

compounds from a solid matrix using a supercritical solvent, followed by the separation of these 

compounds from the supercritical solvent after system decompression (da Silva et al., 2016; Pereira 
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and Meireles, 2009). This extraction methodology utilizes supercritical fluids, which above their critical 

point display both liquid and gas properties. One of the more widely used supercritical solvents is 

carbon dioxide (CO2) that offers less expensive and safer extractions, since it is recognized by EFSA 

(European Food Safety Authority) and by FDA (U.S. Food and Drug Administration) as a “generally 

recognized as safe” solvent (GRAS solvent). Besides, since it utilizes a moderate critical temperature 

(attained at 31.1ºC at a pressure of 7.39MPa) it ensures minimal alteration of the bioactive 

compounds, as well as of their functional properties. Moreover, since CO2 is a gas at room 

temperature and pressure, the recovery of the compounds is easier and solvent-free, upon system 

depressurization (da Silva et al., 2016; Gil-Chávez, 2013; Herrero et al., 2013). 

Although CO2 supercritical fluid is compatible with the extraction of lipophilic compounds (e.g. lipids 

and essential oils), due to CO2 low polarity the extraction of more polar compounds requires the 

utilization of a co-solvent, like ethanol, to increment and enrich the extracts with polar compounds 

(such as phenolic compounds) by modifying the solubility of the target compounds in the supercritical 

fluid (Gil-Chávez, 2013; Pereira and Meireles, 2009).  

Although still in its infancy, the application of high-pressure extraction to extract target compounds 

from cruciferous vegetables has gained attention in the last years. By applying SFE for the generation 

of broccoli leaves extracts from different cultivars, Arnaiz and co-workers were able to characterize 

and identify the fatty acid content of different varieties of broccoli (Arnáiz et al., 2011). Wu and 

colleagues also succeeded in extracting Allyl ITC from horseradish, using CO2 supercritical fluid 

extraction (Wu et al., 2009). It was also reported Allyl ITC CO2-supercritical fluid extraction from 

wasabi (Li et al., 2010a). Moreover, it was also reported the extraction of glucosinolates and phenols 

from rocket salad, using water as a co-solvent (Solana et al., 2016).  

Moreover, our group has recently developed a green and sustainable high-pressure extraction 

process to recover PEITC and/or phenolic compounds from watercress, while assuring high selectivity 

for ITCs and a high recovery yield. In vitro assays revealed promising antiproliferative effects of 

PEITC-rich watercress extracts in colorectal cancer cells, an effect that was further enhanced in the 

presence of phenolic compounds (Rodrigues et al., 2016).  

Until now, very few studies have explored the anticancer potential and mechanisms of ITCs in 

colorectal cancer, especially regarding their action in colorectal CSCs.  

 

 

 

1.8. Cell models for cancer research  

 

Drug development is a highly complex and stepwise process, englobing the identification of a potential 

therapeutic compound, its preclinical testing (recurring to in vitro and in vivo studies) and ultimately its 

clinical testing in humans (encompassing several stages of clinical trials). Besides the current efforts to 

attain effective chemotherapeutic agents, the rate of success is still very disappointing, due to lack of 

clinical efficacy in parallel with unacceptable toxicity. Clinical testing is one of the most time-consuming 

and expensive phases of the drug development process, raising the need to discard the less 
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promising compounds even prior to animal experimentation (Breslin and O'Driscoll, 2013; LaBarbera 

et al., 2012).  

Thus, preclinical testing arises as one of the most critical stages during drug development process. In 

fact, the development of in vitro cell models that best contribute to the understanding of the 

therapeutic response (in terms of pharmacokinetic, pharmacological and cytotoxic profile) is one of the 

goals of the pharmaceutical industry in the field of cancer research. In vitro studies play a crucial role 

in preclinical testing and the development of cell models that best mimic the target tissue, i.e. tumor 

microenvironment, has becoming an imperative need (Breslin and O'Driscoll, 2013).   

 

 

1.8.1.  Conventional in vitro cell models and their limitations 

 

Several human cell lines derived from colorectal cancers, at different cancer stages and with different 

genetic profiles, are commercially available for cancer research. Indeed, conventional experiments 

using colorectal cancer cell lines provide a powerful tool to elucidate the complex signaling network 

that its inherent to tumorigenesis (Golovko et al., 2015).  

Usually these cell lines are cultured in two-dimensional (2D) systems, i.e. by recurring to artificial 

plastic surfaces where cells attach and proliferate towards the formation of a cell monolayer (Amann et 

al., 2015; Breslin and O'Driscoll, 2013). Although 2D cell culture offers a convenient and less 

expensive approach for in vitro screening of the drug’s biological effect, this cell model presents 

several limitations that derive from the culture system itself. Indeed, the surrounding cell 

microenvironment strongly influences its cellular behavior in terms of proliferation, differentiation and 

metabolism (Amann et al., 2015; Golovko et al., 2015; Rimann and Graf-Hausner, 2012).  

Cells growing in monolayers fail one of the most characteristic features of solid tumors, since they do 

not generate a three-dimensional (3D) cellular structure (Hickman et al., 2014). Consequently, since 

monolayers do not translate the 3D architecture of the tumor, they do not recapitulate the functional, 

cellular and genetic heterogeneity of human solid cancers, a main feature when considering 

therapeutic resistance. Moreover, 2D systems do not allow to mimic the in vivo cellular morphology, 

polarity, receptor and oncogene expression, and also interaction with extracellular matrix (ECM) 

components and tumor stroma (Breslin and O'Driscoll, 2013; Golovko et al., 2015; Hickman et al., 

2014). 

On the other hand, it is also possible to culture human colon tissue samples (obtained by colonoscopy 

biopsy or surgical resection) in the form of 3D organoids (Golovko et al., 2015).  

 

 

1.8.2.  3D cell models 

 

More recently, efforts have been made towards the development and optimization of 3D cell models in 

an attempt to better recapitulate the in vivo tumor cellular and functional behavior, circumventing the 

limitations of 2D cell models, already described. In this context, multicellular tumor spheroids, 

hereinafter only called spheroids, have shown to be a promising in vitro 3D approach for cancer 
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research by allowing to study protein interactions, cellular signaling, gene expression and cellular 

processes (LaBarbera et al., 2012).  

By fulfilling several cellular and functional parameters, 3D cell models fill the gaps between in vitro and 

in vivo studies. For instance, cancer cells cultured under a 3D system may present differences in cell 

morphology, alignment and polarization, as well as in cell differentiation. Inversely to what happens in 

2D cell models in which monolayer-derived cells are more prone to apoptosis, cells grown in a 3D 

culture system present enhanced cell viability prompted by intercellular interaction (an important 

feature when considering cellular response to potential drugs). Moreover, cell’s response to stimuli 

(either drug treatment, radiation exposure or growth factor stimulation), cellular metabolism upon drug 

treatment, as well as gene expression and protein synthesis, can also be influenced depending on the 

cell culture approach (Gupta et al., 2016). 

Regarding tumor spheroids, all the prior characteristics can be derived from their specific architecture, 

encompassing complex cell-cell and cell-matrix interactions. When spheroids reach a mean diameter 

of 500µm a hierarchy of pathophysiological gradients (regarding oxygen and nutrients bioavailability 

and catabolites accumulation) is established, as depicted in Figure 1.11.A-B (Hirschhaeuser et al., 

2010; LaBarbera et al., 2012).  

 

 

Figure 1.11. Spheroid characterization. (A) Combinatory layout of a cell spheroid gathering analytical images of 

spheroid median sections obtained by different technologies (tunnel assay, bio-luminescence imaging and 

probing with oxygen microelectrodes). A concentric organization of cell proliferation, cell cycle staging and viability 

is possible to observe. (B) Spheroid hierarchy in terms of cell viability and proliferation, according to oxygen and 

nutrient bio-availability. Adapted from (Hirschhaeuser et al., 2010; LaBarbera et al., 2012). 

 

At this stage, tumor spheroids are composed by a central necrotic core, by an intermediate inner layer 

named quiescent zone and by an outer layer termed proliferating zone - Figure 1.11.B. These 

gradients reflect the in vivo tumor hierarchy, in which actively proliferating cells of the spheroid outer 

layer mimic the tumor cells adjacent to capillaries, whereas those of the spheroid quiescent zone 
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mimic the most inner tumor cells that eventually die via apoptosis, depending on the oxygen and 

nutrient bioavailability (Hirschhaeuser et al., 2010; LaBarbera et al., 2012).  

In an oversimplified way, the methods of 3D cell culture can be classified into four major categories: 

non-adherent surface method, stirred culture method, scaffolds or matrices, and microfluidic method 

(Breslin and O'Driscoll, 2013; Gupta et al., 2016).  

The non-adherent surface method, also known as liquid overlay technique, encompasses the forced-

floating and the hanging drop methods, in which the culture vessel is subject to a non-adherent 

coating (like the one promoted by agarose), in order to prevent cells attachment to the substrate 

(Breslin and O'Driscoll, 2013; Katt et al., 2016). In the hanging drop method (Figure 1.12-A), the plate 

is inverted after cell seeding and the small cell suspension volume turns into a hanging drop. Gravity 

leads cells to concentrate and to aggregate at the tip of the drop, where upon continuous proliferation 

a spheroid is formed. In the forced-floating method (Figure 1.12-B), cells are seeded and centrifuged 

to promote cell co-localization and cell-cell contacts, with subsequent cell aggregation and spheroid 

formation (Breslin and O'Driscoll, 2013; Gupta et al., 2016; Katt et al., 2016).  

 

 

Figure 1.12. Spheroid-forming methods in 3D cell culture (Gupta et al., 2016). 

 

In stirred culture (Figure 1.12-C), such as that promoted by spinner flask bioreactors and rotating 

bioreactors, cells are maintained in suspension through constant agitation that also provides nutrients 

and removal of waste products (Gupta et al., 2016). The main difference between the two is that, in 

the spinner vessels agitation is promoted by a spinner bar, whereas in the rotating bioreactors the 

whole container is subject to rotation leading to a lower sheer force. Stirred bioreactors have also 

been coupled to perfusion systems, allowing constant cell feeding with culture medium (Gupta et al., 

2016). 

In microfluidics-based culture (Figure 1.12-D) the microenvironment is controlled by a continuous 

perfusion system, i.e. by adjustment of fluid flow, and cell-cell interactions are prompted by micro-
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chamber arrays where cells remain trapped (Breslin and O'Driscoll, 2013; Hickman et al., 2014; Mehta 

et al., 2012). 

Finally, one of the most exciting features of stirred bioreactors it’s their capacity to couple another 

strategy of 3D cell culture that gives 3D support to cells, called scaffolds (Figure 1.12-E). In this case, 

scaffolds formed by hydrogels in the form of micro-carriers (whose pore size can be optimized) can be 

coated with substrates that promote cell adhesion (such as gelatin or collagen) (Breslin and O'Driscoll, 

2013; Hickman et al., 2014).  

An overview of the main advantages and disadvantages for each 3D cell culture method is 

summarized in Table 1.3. (Amann et al., 2015; Breslin and O'Driscoll, 2013; Gupta et al., 2016; Katt et 

al., 2016; LaBarbera et al., 2012; Mehta et al., 2012). 

 

 

Table 1.3. Advantages and limitations of different 3D cell models spheroid-forming methods. 

Culture method Advantages Limitations 

Hanging drop 

 Simple  

 Low-cost if using micro-well plates 

 Control of spheroid diameter 

 Uniformity in spheroid size 

 Enables co-culture with defined cellular 

composition 

 Limited long-term culture 

 Time-consuming 

 Low stability 

 Low efficiency 

 Low throughput 

Forced-floating 

 Simple  

 Low-cost 

 Ease sample recovery for analysis  

 High throughput 

 Heterogeneity in spheroid size and 

shape 

 Plate-coating 

Matrices and 

scaffolds 

 3D support that mimics in vivo 

 Possible inclusion of growth factors 

 Long-term culture 

 Uniformity in spheroid size 

 Spheroids immobilization  easy handling  

 High throughput 

 Difficult sample recovery for analysis 

 Expensive for scale-up production 

 Biocompatibility and biodegradability 

of scaffold materials 

Stirring-based 

 Simple 

 High throughput / easy large-scale production 

 Long-term culture 

 Ease sample recovery for analysis 

 Special equipment is required 

 High shear force for cells 

 Heterogeneity in spheroid size 

 No individual compartment for 

spheroids 

Microfluidic 

systems 

 Control of spheroid diameter and cellular 

composition 

 Quick spheroid formation 

 High throughput 

 Control of spheroid growth parameters 

 Continuous perfusion  long-term culture 

 Difficult sample recovery for analysis 

 Required technical training for 

customized devices 

 Limited long-term culture 
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Besides providing the establishment of intercellular and cell-ECM interactions in monoculture, 3D cell 

models also allow to perform co-cultures between different cell types. This enables to increment the 

complexity of the tumor spheroid and a better recapitulation of what occurs in the in vivo tumor 

microenvironment (Edmondson et al., 2014). In this field, in the last years several studies and 

approaches have been addressed in order to mimic the tumor stroma, by co-culturing colorectal 

cancer cells with fibroblasts in 3D cell spheroids (Dolznig et al., 2011; Jeong et al., 2016; Kim et al., 

2015b; Park et al., 2016).  
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2. Aim 

 

The present work was the conclusion of a project developed in the host lab (NutraBrass - 

Nutraceuticals from Brassicaceae: High Pressure Processing of Cruciferous food plants to recover 

biologically active ingredients with health promoting effects - PTDC/AGR-TEC/3790/2012, funded by 

FCT, Portugal) which aimed the production of extracts from cruciferous vegetables by high-pressure 

extraction processes with possible application in cancer therapy.  

Considering the pre-clinical and therapeutic gaps in the development of effective treatments towards 

colorectal cancer eradication, this work intended to explore the effect of natural extracts from 

cruciferous vegetables (namely watercress and broccoli), and respective ITCs, in a 3D colorectal 

cancer cell model that mimics the tumor in vivo and whose cells possess a CSC-like phenotype. The 

potential of these compounds to target CSCs will open the door for new therapeutic strategies, since 

until to date these cells are responsible for tumor relapse. For this purpose, after phytochemical 

characterization and screening of the biological effect of extracts and ITCs using a 2D cell model, 

colorectal cancer cell spheroids generated by a stirred-based 3D cell culture system (previously 

developed in the lab) were used to explore the anticancer effects of these phytochemicals in terms of 

cell proliferation, viability, chemo-resistance and CSC targeting. The main tasks of this work are 

summarized below in Figure 2.1. 

 
Figure 2.1. Illustration of the main tasks. This work was divided in 4 main tasks encompassing extracts 

production and phytochemical characterization, screening of their cytotoxic and antiproliferative effect in 2D cell 

models, cell models characterization (2D vs. 3D) and evaluation of the chemotherapeutic potential of extracts and 

ITCs in terms of preventing cell proliferation, inducing apoptosis, and targeting cell self-renewal and CSC sob-

population. Student authorship image (MSO-PPT Drawing Tools). 
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3. Materials and Methods 

 

3.1. Chemotherapeutic agents 

3.1.1. Brassicaceae natural extracts 

As raw materials for natural extracts production two different cruciferous vegetables were selected: 

watercress and broccoli. Watercress was kindly provided by the Vitacress® company of the RAR 

Group in the Fresh Produce Market, whereas broccoli was purchased by the host lab in an ordinary 

fresh market.   

Broccoli and watercress natural extracts were produced by Nutraceuticals and Delivery Group of IBET 

(Oeiras, Portugal), using high pressure technology-based extraction processes. Supercritical carbon 

dioxide (ScCO2) extraction was used to obtain a natural extract for each cruciferous vegetable. 

Additionally, a CO2 -expanded ethanol (CO2-expanded EtOH) high pressure extraction was performed 

to obtain another watercress natural extract. The conditioning and treatment of the raw material and 

both the extraction methodologies were performed as described previously by the host lab (Rodrigues 

et al., 2016). All the extracts were recovered in ethanol and quantified in terms of ITC equivalents by 

High-Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD), as described 

elsewhere (Rodrigues et al., 2016). To note that broccoli ScCO2 extract required an additional step of 

concentration using rotatory vapor. In Table 3.1. are summarized the settings applied in each 

extraction procedure for the production of cruciferous natural extracts, as well as concentration of 

each extract in respective ITC equivalents, i.e. in µM of the respective ITC (watercress extracts were 

quantified in terms of PEITC equivalents, whereas broccoli extract was quantified in terms of SFN 

equivalents).  

 

Table 3.1. Settings applied to high pressure extraction of natural bioactive compounds present in 

watercress and broccoli extracts. The main conditions established included the pretreatment of the raw 

material, pressure, temperature, time, flow rate and solvent.  

Extract Pretreatment 
Pressure 

(MPa) 

Temperature 

(ºC) 

Time 

(min.) 

Flow rate 

(g/min.) 

Solvent 

mixture 

Concentration 

(µM) 

Broccoli  

ScCO2 extract 

60 minutes at 

35ºC 
25 35 120 10 CO2 3410 

Watercress 

ScCO2 extract 

60 minutes at 

35ºC 
25 35 120 10 CO2 7314 

Watercress CO2-

expanded EtOH 

extract 

60 minutes at 

35ºC 
25 35 120 10 

60% CO2 

40%EtOH 
1229 
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Due to light sensibility, all the experiments and handling of extracts were performed under protection 

from light. Storage was made at 4ºC. 

 

3.1.2. Bioactive compounds and drugs 

As bioactive compounds representative of the class of ITCs naturally derived from cruciferous 

vegetables, two ITCs were selected: SFN (LKT Laboratories) and PEITC standard (99%) (Sigma). For 

biological testing purposes, a 10-30mM stock dilution was prepared for each ITC. SFN was diluted in 

Dimethyl Sulfoxide (DMSO) Hybri-Max™ grade, sterile-filtered bioreagent (Sigma) followed by storage 

at -20ºC, whereas PEITC was diluted in absolute ethanol for analysis (Sigma) followed by storage at 

4ºC. 5-Fu was used as chemotherapeutic agent and a stock dilution in sterile water was made at a 

final concentration of 50mM, followed by filtration with a 0.2µM cellulose filter and storage at -20ºC. 

Due to light sensibility, all the experiments with 5-Fu were also performed under light protection.  

 

 

3.2. Phytochemical characterization 

 

3.2.1. Total Phenolic Content quantification by Folin-Ciocalteau method 

The concentration of total phenolic compounds present in Brassicaceae extracts was determined 

according to the colorimetric method of Folin-Ciocalteau described by (Singleton and Rossi, 1965) and 

adapted by the host lab for readings in a microplate spectrophotometer. Briefly, in a non-sterile, clear 

96-well polystyrene microplate with flat bottom (Greiner), 3µL of the appropriate dilutions of samples in 

distilled water were added to 237µL of distilled water. Additionally, 3µL of water were added as blank 

and 3µL of gallic acid (Sigma) dilutions (with 50, 100, 200, 400, 600 and 800 mg/L of gallic acid in 

distilled water) were added as standard to perform a calibration curve. Then, 15µL of Folin-Ciocalteu’s 

Reagent for clinical diagnosis (PanReac AppliChem) were added to each well and after a brief 

incubation of a few seconds the reaction was neutralized by the addition of 45µL of a Sodium 

Carbonate solution (Na2CO3 from Sigma) at 200g/L in distilled water, followed by brief shaking in an 

Orbit™ 300 Multipurpose Digital Vortexer (Citomed). After incubating the plate at 40ºC for 30 minutes, 

sample absorbances were measured at 765nm using a Spark® 10M Multimode Microplate Reader 

(Tecan Trading AG). The results were expressed as means of independent triplicates in milligrams of 

Gallic Acid Equivalents (mg GAE) per liter of extract (mg GAE/L extract).  

 

3.2.2. Analysis of phenolic compounds by HLPC-DAD 

Identification of phenolic compounds present in watercress CO2-expanded EtOH extract was 

performed by HPLC-DAD by Nutraceuticals and Delivery Group of IBET (Oeiras, Portugal), using a 

Surveyor apparatus (Thermo Finnigan - Surveyor) with a photodiode-array detector coupled to an 
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Dionex ED40 electrochemical detector, as well detailed in (Rodrigues et al., 2016). This result was 

recently published by the group, serving only to contextualize the composition of the CO2-expanded 

EtOH extract used in this thesis. 

 

3.2.3. Gas Chromatography – Mass Spectrometry (GC-MS) analysis of ScCO2 extracts 

Identification of some compounds present in watercress and broccoli ScCO2 natural extracts was 

made by GC-MS by Nutraceuticals and Delivery Group of IBET (Oeiras, Portugal), using a Shimadzu-

QP2010 gas chromatograph (Shimadzu Corporation) with a quadrupole mass spectrometer coupled 

with an electronic impact source. A VF-5MS capillary column, 30m x 0.25mm I.D. and 0.25µm phase 

thickness was used in the separation of sample components under the conditions previously 

described by the host lab (Rodrigues et al., 2016). Data acquisition was performed by GCMS 

Solutions software and some of the extracts compounds were identified by comparison with mass 

spectra from a set of libraries (NIST21, NIST27, NIST107, NIST147 and WILEY229). Based on the 

highest degree of similarity of the potentially present compounds, it was carried out a survey in the 

literature to define some the most likely extract components. 

 

3.3. Cell culture 

3.3.1. Human cell lines 

The human colon cancer cell lines, Caco-2 and HT29, were obtained from Deutsche Sammlung von 

Microorganismen und Zellkulturen (Barunshweig, Germany) and from American Type Culture 

Collection (ATCC, USA), respectively. Both cells lines, derived from a colorectal adenocarcinoma, 

have an epithelial morphology and an adherent growth profile.  

 

3.3.2. Cell culture and maintenance 

Both cell lines were routinely cultured in 75 or 175cm
2
 ventilated t-flasks (Nunc, Thermo Scientific) in 

RPMI 1640 medium (Roswell Park Memorial Institute 1640; Gibco) supplemented with 10% (v/v) of 

heat-inactivated sterile filtered Fetal Bovine Serum (FBS; Biowest). Additionally, Caco-2 cells culture 

medium was supplemented with 1% (v/v) of penicillin and streptomycin (PenStrep). Cells were 

maintained in a controlled humidified atmosphere at 37ºC and 5% (v/v) CO2 in an autoflow CO2 water 

jackted incubator (Nuaire) and monitored daily (Olympus inverted microscope). 

Cell splitting was performed twice a week with a splitting ratio of 1:4 for Caco-2 cells and 1:3/1:6 for 

HT29 cells. Briefly, after discard the medium, cells were washed with pre-warm 0,25% Trypsin-EDTA 

(1x) (Gibco, Life Technologies), followed by incubation with 2.5mL of Trypsin at 37ºC for 3minutes for 

HT29 cells or 5minutes in the case of Caco-2 cells. Trypsin activity was neutralized by the addition of 

7.5mL of pre-warm culture medium. Cell sub-cultivation in the proper ratio was made considering a 
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final volume of 15mL in 75 cm
2
 t-flasks or 30mL in 175 cm

2
 t-flasks (e.g. for a splitting ratio of 1:4, 

2.5mL of cell suspension were added to 12.5mL of medium culture in a 75 cm
2
 t-flask), with further 

incubation in the previously mentioned conditions. The remaining cell suspension, whenever 

necessary, was used in the assays described below.  

For cell-based assays, cell counting was performed by trypan blue exclusion assay, which relies in the 

fact that only non-viable/dead cells with disrupted membranes are selectively marked in blue, in 

contrast with live/viable cells that appear bright white under the microscope.  After a proper dilution of 

cell suspension with Trypan Blue Stain (0.4%) (Gibco) previously diluted in 1:4 in distilled water – see 

Table 3.2. – both cameras of the hemocytometer were filled and 4quadrants per camera were 

counted.  

 

Table 3.2. Dilution factors applied in cell counting.  Each cell line and/or culture condition had associated a 

proper dilution factor to enable reliable cell counting. 

Cell Line Dilution Observations 

Caco-2 (in 75cm
2
 T-flask) 1:5 ----- 

HT29 (in 75cm
2
 T-flask) 1:20* ----- 

HT29 (in 175cm
2
 T-flask) 1:40* For 3D cell culture preparation 

Notes *It required a previous dilution of cell suspension in PBS. 

 

After cell counting, cell density was determined by Equation (1). 

(1)                 
     

  
   

                    

 
                          

 

3.3.3. Cell cryopreservation and defrosting 

For cell line cryopreservation, after inactivation of trypsin and cell counting, as previously described, 

the proper volume of cell suspension accounting for 5x10
6
 cells/mL was transferred to a 15mL Falcon 

tube, followed by centrifugation at 200g, 10minutes. After discarding the supernatant, the pellet was 

resuspended in 1mL of freezing solution (containing 95% v/v FBS + 5% v/v DMSO) and transferred to 

a cryovial further stored at -80ºC in a Mr. Frosty container for 1day, after that it was placed in liquid 

nitrogen (-180ºC) for long-term storage.  

Thawing of cells was performed at 37ºC and cell suspension was placed in a 15mL Falcon tube 

already containing 1mL of pre-warm medium culture. After centrifugation at 200g for 10minutes, the 

supernatant was removed and cells were resuspended in culture medium and placed in a 25cm
2
 t-

flask. After 2days in culture, total cell density was transferred to a 75cm
2
 t-flask, and thereafter cell 

passage was performed as already described.  
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3.3.4. 3D Cell model: Development and monitoring of tumor spheroids in stirred-tank culture 

system  

Generation of colorectal cancer spheroids in stirred-tank bioreactors was performed based on the 

conditions described in (Santo et al., 2016). Before culturing the spheroids, spinner bioreactors were 

subject to a pre-treatment, in order to prevent cell attachment to the spinner walls. Briefly, spinner-

vessel was incubated overnight with a cleaning solution (potassium hydroxide solution in ethanol) 

followed by a quick wash with distilled water. After drying, it was pre-coated with ~3-5mL of 

dimethyldichlorosilane (Merck) and washed with ~3-4mL of toluene (Merck), followed by air drying. 

Afterwards, spinner vessel was washed with distilled water, air dried and autoclaved.  

After trypsin inactivation and cell counting, as previously described, the proper volume of cell 

suspension accounting for 2.5x10
5
 cells/mL, towards a final volume of 100mL, was transferred to a 

15mL Falcon tube and centrifuged at 200g, 10minutes. After discarding the supernatant, the pellet 

was resuspended in 5mL of pre-warm medium culture and transferred to a 125mL spinner flask 

(Corning) already containing 55mL of culture medium, totaling 60% of the final volume.  

Initially, the spinner vessel was placed on a magnetic stirrer under 40rpm, in a humidified atmosphere 

with 5% CO2 at 37ºC, during 6hours post-inoculation, after which cell aggregation was evaluated to 

check the formation of aggregates with at least 3-5 cells. At this point, the spinner volume was filled up 

to 100mL by adding pre-warmed medium culture. At the time-point of 8hours and 28hours post-

inoculation the stirring rate was increased to 50rpm and to 60rpm, respectively. At day4 post-

inoculation it was initiated a daily procedure of medium renewal, replacing half of spinner flask 

medium with fresh pre-warmed medium culture. Spheroids were visualized in a Leica DM1RB inverted 

microscope equipped with a C295 camera (10x magnification) and average spheroid diameter was 

quantified using ImageJ software.  

 

 

3.4. Assessment of anticancer effects of phytochemicals using cell-based assays 

 

3.4.1. Cytotoxicity assay 

In vitro cytotoxicity assays were performed using Caco-2 cells as a model to mimic the human 

intestinal epithelium. Although derived from a human colon adenocarcinoma, under standard culture 

conditions and as soon as the monolayer reaches high confluency (attained at 7
th
 day of culture), 

these cells differentiate spontaneously towards an enterocyte-like phenotype. At this culture stage, 

Caco-2 cells present “brush borders” a morphological feature accomplished by cell polarization and 

the expression of several enzymes typically produced by enterocytes of the intestinal barrier, among 

other features (Grajek and Olejnik, 2004; Meunier et al., 1995; Rousset, 1986; Sambuy et al., 2005). 
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Cytotoxicity assays were performed for each extract and bioactive compound through the CellTiter 

96® AQueous One Solution Cell Proliferation Assay (Promega), a colorimetric method that allows the 

determination of the number of viable cells. Briefly, Caco-2 cells were seeded into 96-well culture 

plates at a density of 2x10
4
 cells/well, with a final volume of 100µL/well, and were allowed to grow for 

7days, with medium renewal every 48hours. After medium removal, cells were incubated with different 

concentrations of extracts, bioactive compounds and 5-Fu diluted in low-serum culture medium (RPMI 

medium with 0.5% v/v FBS). Two control samples were also prepared, one with cells incubated only 

with low-serum culture medium and other with cells incubated with the maximum %v/v of the solvent in 

which the extract/drug/bioactive compounds were dissolved, in order to guarantee that only the 

samples, and not the solvents, are responsible for cell cytotoxicity. After a 24h period incubation, cells 

were washed twice with Phosphate Buffered Saline (PBS, pH=7.4, Sigma) at 37ºC and incubated with 

MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner 

salt) diluted in low-serum culture medium for 3hours in a final concentration of 30µg/mL. Additionally, a 

blank was prepared by incubating the previous dilution in wells without cells, in order to subtract the 

background absorvance in all the readings. This cell viability reagent contains MTS, a tetrazolium 

compound, that in metabolically active cells is reduced through the activity of mitochondrial 

dehydrogenase enzymes into formazan, a colored compound soluble in culture medium which 

absorbs at 490 nm. Since the amount of formazan is proportional to the number of viable cells, by 

measuring the absorvance at 490 nm using a Spark® 10M Multimode Microplate Reader (Tecan 

Trading AG), cell viability was calculated relatively to control without treatment by Equation (2).  

(2)                        
                  

                  
         

All the assays were performed in triplicate, using three independent experiments, and the inhibitory 

concentration required to inhibit 50% of cell viability (IC50 value) for each compound was calculated 

using GraphPad Prism 6 software (GraphPad Software, Inc., La Jolla, CA).  

 

3.4.2. Antiproliferative assay using 2D cell model  

Antiproliferative assays were performed on HT29 cells grown in monolayer, as described elsewhere 

(Rodrigues et al., 2016; Serra et al., 2010). Briefly, HT29 cells were seeded into 96-well culture plates 

at a density of 1x10
4
 cells/well in a final volume of 100µL/well and allowed to adhere and grow until the 

next day, in the previous described culture conditions. After 24hours post-inoculation, the medium was 

removed and cells were incubated with different concentrations of natural extracts, bioactive 

compounds and 5-Fu diluted in low-serum culture medium. In similarity with cytotoxicity assays, two 

control samples were also prepared: i) cells incubated with low-serum culture medium and ii) cells 

incubated with the maximum %v/v of the solvent in which the extract/ITCs or 5-Fu were dissolved.  

After allow cell growth and proliferation for 24hours, cells were gently washed twice with warm PBS 

and cell viability was assessed by MTS colorimetric assay, as already described for Cytotoxicity 

Assays. Cell viability was calculated relatively to control of cells incubated in low-serum culture 

medium by Equation (2) and results were expressed in terms of percentage of cellular viability.  
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All the experiments were performed in triplicate and the effective concentration required to decrease 

50% of cell viability (EC50) for each extract/ITC or drug was calculated using GraphPad Prism 6 

software (GraphPad Software, Inc., La Jolla, CA) fit, taking into account three independent 

experiments. 

 

3.4.3. Antiproliferative assay using 3D cell model  

Spheroids with an average diameter of 500µm collected at day6 were seeded at a density of 5 

spheroids/well in 96-well plates in a final volume of 100µL/well (to note that, for spheroid seeding it 

was necessary to cut tips, in order to avoid spheroid damage). A blank without spheroids and only with 

culture medium was considered. 

Cell viability of each well prior to treatment was assessed using PrestoBlue Cell Viability Reagent (Life 

Technologies). To accomplish this, 10µL of PrestoBlue were added per well followed by an incubation 

of 2hours, after which plates were centrifuged at 200g, 5minutes (Sigma 3K15, Sigma 

Laborzentrifugen). The supernatant of each well was carefully removed by pipetting and transferred to 

black 96-microwell polystyrene plates with non-treated flat bottom (Nunc, Thermo Scientific) for 

fluorescence intensity measurement in a Microplate Fluorimeter FLx800 (Bioteck Instruments) at an 

excitation and emission wavelengths of 580 nm and 595 nm, respectively. The blank of medium with 

PrestoBlue Reagent was used to subtract the background fluorescence to all readings. 

Natural ScCO2 extracts and bioactive compounds previously diluted in low-serum culture medium 

were added to each well and spheroids were incubated for 24hours to allow cell growth and 

proliferation. Afterwards, spheroids were gently washed with warm PBS and cell viability was 

assessed by MTS colorimetric assay. Due to higher cell density, compared to antiproliferative assays 

conducted in 2D cell model, a higher concentration of MTS was required. Hence, aggregates were 

incubated with MTS diluted in low-serum culture medium in a ratio of 1:10, followed by a 3-4hour 

incubation. Notwithstanding, a blank without cells and only with MTS diluted in culture medium was 

considered to subtract the background absorbance to all readings.  

Spheroid viability for each replicate was calculated relatively to control of spheroids incubated in low-

serum culture medium by Equation (3), considering cell viability of each well at time-point 0h 

previously assessed by fluorescence intensity measurement.   

(3)                            
                           

                           

                          
                         

         

Where FI 0h is the fluorescence intensity of spheroids prior to treatment (cell viability at time-point = 

0hours) and Abs 24h is the absorvance of spheroids 24h after treatment with extracts and ITCs (cell 

viability at time-point = 24hours). All the experiments were performed using 6replicates and EC50 

values for each extract/ITC were calculated using GraphPad Prism 6 software fit, taking into account 

at least three independent experiments. 
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3.4.4. Cell cycle arrest analysis  

Cell cycle was analyzed by Fluorescence Activated Cell Sorting (FACS) based on the DNA content at 

each cell cycle phase in a given cell population. By using a fluorescence dye, such as Propidium 

Iodide (PI), that stoichiometrically binds to DNA, it is possible to distinguish the different cell cycle 

phases according to the fluorescence intensity signal that dependents on the number of DNA copies. 

Hence, G2 phase-arrested cells presenting 2 copies of DNA will present twice the fluorescence 

intensity comparing with G1 phase-arrested cells that contain only 1 copy of DNA, whereas S phase-

arrested cells with presence an intermediate fluorescence signal (Darzynkiewicz et al., 2010). 

Spheroids collected from spinner vessel at day6 of culture were seeded at a density of 100 

spheroids/well in 12-well plates, in a final volume of 800µL/well.  The colonospheres were incubated 

for 24hours with the concentration of natural extracts and bioactive compounds that corresponds to 

the EC30 value, i.e. with the dose that grants 30% of antiproliferative effect in 3D cell model. All the 

dilutions were made in low-serum culture medium (RPMI medium with 0.5% v/v FBS). Spheroids 

incubated only in low-serum culture medium and in medium with the maximum %v/v of the solvent in 

which the extract/ITCs were dissolved, were considered as controls. After allow a complete cycle of 

cell growth and proliferation, spheroids were collected to eppendorfs and centrifuged at 200g, 

10minutes. The supernatant was discarded and the pellet washed with PBS, followed by centrifugation 

in the abovementioned conditions. Colonospheres were disaggregated with 200µL of trypsin for 3-

4minutes followed by enzyme inactivation with 800µL of complete medium (RPMI + 10%FBS). Then, 

the volume equivalent to 1x10
6
 cells was centrifuged at 200g, 10minutes. The supernatant was 

discarded and cells were washed with cold PBS, with subsequent centrifugation in the previous 

conditions. After supernatant removal, cells were incubated with 1mL of a staining solution containing 

0.05mg/mL of PI (Sigma), 1.5%v/v of Triton X-100 (Sigma), 0.7U/mL of DNase/protease-free 

Ribonuclease (RNase) A (Thermo Scientific) and 0.01M of Sodium Chloride (NaCl). Following 2hours’ 

incubation in the dark at room temperature, samples were stored at 4ºC until further reading. Analysis 

of the fluorescence intensity signal was performed using a CyFlow Space flow cytometer (Partec) with 

a blue laser as excitation source. To avoid the presence of cell clumps and doublets, all the samples 

were filtered (Partec) prior to reading. Data acquisition was performed by reading 30.000 events per 

sample at a flow rate of 350-500 events/second whenever possible. For cell cycle analysis, it was 

defined a gate excluding cell debris and doublets and another gate defining the singlets population. 

Results were analyzed by FlowMax Software (Partec), using the mathematical model “Fit One Cycle”. 

 

3.4.5. Soft agar assay  

To analyze anchorage-independent cell growth in semi-solid matrices, a hallmark of cell 

transformation and unrestrained cell growth, the Soft Agar Assay was performed. This experiment is 

advantageous over monolayer cell models, since cell growth in a 3D system resembles best with the 

in vivo tumor microenvironment. The tumorigenic potential is evaluated by the ability of cells to 

proliferate and form colonies in suspension within a semisolid milieu. In this context, normal epithelial 
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cells are incapable to proliferate in the absence of anchorage to the ECM and undergo anoikis, a 

programmed cell death driven by the loss of contact with ECM. Contrary, cancer cells are able to 

evade this apoptotic process and grow and form colonies within a semi-solid environment, such as 

that provided by the soft agar. By counting colonies and/or measuring the colony dimension, this 

assay enables to assess the efficacy of a certain compound in the decline of the tumorigenic potential 

of cancer cells.   

The soft agar assay was performed in 6-well plates containing two layers of low-melting agarose 

(Lonza). Prior to experiments, two stock solutions of agarose were made: i) a stock solution of 

agarose at 1.2% w/v in distilled water and ii) a stock solution of agarose at 0.6% w/v in PBS, both with 

subsequent autoclaving, in order to melt agarose and for sterilization. Until further use, both agarose 

stock solutions were kept in an incubator at 60ºC to prevent agarose solidification.  

For bottom layer preparation, a mix of a 1:1 ratio was made with agarose 1.2% in water and 2x RPMI 

medium supplemented with 20% v/v FBS, to obtain a final solution with 0.6% w/v agarose in 1x RPMI 

medium with 10%FBS. After swirl the solution, 2mL of this were added carefully to each well to 

prevent air bubble formation and allowed to solidify at room temperature in a sterile laminar flow 

chamber.   

In the meanwhile, for top layer preparation, a mix of a 1:1 ratio was made with PBS and agarose 0.6% 

in PBS to make a final solution with 0.3% w/v agarose in PBS that was kept in a water bath at 37ºC 

until use. Then, 1mL of spheroids was collected from the spinner vessel at 7
th
 day of culture and cells 

were centrifuged at 200g for 5minutes, washed with 500µL of PBS and trypsinized for 3-4minutes at 

37ºC, as already described for other assays. The 200µL of trypsin were inactivated with 800µL of 

RPMI medium with 10%FBS. After cell counting, cells were centrifuged in the abovementioned 

conditions and the pellet was resuspended in pre-warmed PBS. 

The top layer of each condition was prepared in 15mL sterile falcon tubes by mixing 0.3% w/v agarose 

in PBS, with the volume of cell suspension that yields a concentration of 1000cells/mL and the volume 

of extract/ITC whose concentration one wants to test (1, 3 and 5µM). Then, after homogenization, the 

bottom layers of each well were carefully overlaid with 2mL of this preparation, avoiding bubble 

formation. Each test condition was prepared and plated one at a time to prevent premature setting of 

agarose. Additionally, a set of controls was prepared: i) a control with cells without any treatment; ii) 

with the maximum %v/v of ethanol used in the tested conditions; iii) with the maximum %v/v of DMSO 

used in the highest SFN concentration tested; and iv) a control with cells derived from 2D cell culture 

without any treatment, to compare the tumorigenic potential between 2D and 3D cell model. After 

allowing a brief solidification of the top layer at room temperature, cells were grown for 15 days in a 

humidified atmosphere with 5% CO2 at 37ºC, with addition of 150µL of RPMI medium with 10%FBS 2-

3 times per week to hydrate the exposed agar and feed the cells.  

At the end of the incubation period, colonies with diameters greater than 50µm were counted visually 

in each well, and colony density was calculated by Equation (4): 
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(4)                     
                                  

                          
        

Colonies were photographed under a light microscope (10x magnification) and analyzed by ImageJ 

software. All the experiments were performed in duplicates with at least two independent experiments, 

and results were expressed as mean ± SD. 

 

3.4.6. Caspase-3 activity detection  

The apoptotic profile of spheroids incubated with different concentrations of natural extracts and ITCs 

was assessed by NucView488
TM

 and MitoView633
 TM

 Apoptosis Assay Kit (Biotium), a fluorescence-

based method that allows the differentiation of healthy and apoptotic cells based on the fluorescence 

tone and intensity. MitoView633
TM

 is a far-red fluorescent dye that specifically accumulates in the 

mitochondrial lipid moiety in a manner that is dependent on the membrane potential, staining healthy 

cells with bright red. In contrast, NucView488
TM

, has a dual staining action: upon entering cell’s 

cytosol, functions as a caspase-3/7 substrate and, once cleaved, it gains DNA-binding properties and 

migrates towards cell nuclei. Therefore, this dye stains with bright green not only the intracellular 

caspase-3/7 activity, but also the nucleus’s morphological changes resultant from the apoptotic 

process (Biotium, 2012).  

Colonospheres collected at 7
th
 day of spinner vessel culture were seeded at a density of 50 

spheroids/well in 12-well plates and incubated with the concentrations of natural extracts and bioactive 

compounds that correspond to the EC50 value and half of the EC50 value obtained in the 

antiproliferative assay, in a final volume of 500µL/well. Spheroids incubated only in low-serum culture 

medium and in medium with the maximum %v/v of the solvent used, were considered as controls. 

Twenty-four hours later, the medium was removed and cells were incubated with 200µL of low-serum 

culture medium containing 1µL of NucView488
TM

 and 1µL of MitoView633
TM

 for 2hours, to allow 

proper spheroid staining. After centrifuging the plates at 200g for 5minutes, the aggregates were 

washed with PBS and further resuspended in the same buffer. Then, spheroids were placed into µ-

slide 8-well glass bottom plates (Ibidi) and covered with 200µL of 1.2% agarose w/v in distilled water. 

After agarose solidification, each well was hydrated with 15µL of PBS. Aggregates were observed and 

photographed in an Andor spinning-disk confocal fluorescence microscope (10x magnification). 

Assessment of average spheroid diameter and image treatment were performed using ImageJ 

software.  

 

3.4.7. ALDH activity detection  

The CSC-like phenotype of spheroids was evaluated by ALDEFLUOR
TM

 Assay Kit (Stem Cell 

Technologies), a fluorescence-based method that detects the enzymatic activity of the ALDH1 

isoform. This approach relies on the passive diffusion of BODIPY-aminoacetaldehyde (BAAA or 

ALDEFLUOR
TM

 reagent) into viable cells, where it serves as a subtract for ALDH1. Once converted 
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into the negatively-charged fluorescent product BODIPY-aminoacate (BAA-) that is retained inside 

cells, ALDH1
positive(+)

 cells became fluorescent, being the fluorescence intensity signal proportional to 

the ALDH1 activity and feasible to be measured by flow cytometry. To prevent the efflux of BAAA 

and/or BAA- mediated by ABC transporters, this assay resorts to the utilization of a cold buffer that 

contains efflux inhibitors in order to avoid samples’ fluorescence quenching. The control of 

fluorescence background is achieved by preparing a negative control for each sample, using 

diethylaminobenzaldehyde (DEAB) as a specific inhibitor of ALDH1 activity that prevents cells to 

become fluorescent (STEMCELL Technologies, 2011; STEMCELL Technologies, 2016). 

Spheroids collected between day 6 and day 7 of spinner vessel culture were seeded at a density of 50 

spheroids/well in 6-well plates and incubated with natural extracts and bioactive compounds, in a final 

volume of 2mL/well. Aggregates incubated only in low-serum culture medium and in medium with the 

maximum %v/v of the solvent used, were considered as controls. Then, 24hours post-incubation, 

colonospheres were collected to eppendorfs, centrifuged at 200g for 5minutes and the supernatant 

was removed. The pellet was washed with PBS and cells were centrifuged in the abovementioned 

conditions. After supernatant removal, spheroids were dissociated with trypsin and enzyme 

inactivation was done by addition of complete medium, as previously described.  

The volume equivalent to 5x10
5
 cells/mL was centrifuged at 200g for 5minutes, the supernatant was 

removed and cells were washed with PBS, with subsequent centrifugation in the former conditions. 

Cells were resuspended in 500µL of ALDEFLUOR
TM

 Assay Buffer. A new set of eppendorfs was 

settled and 2.5µL of ALDEFLUOR
TM

 DEAB Reagent were added to each tube, followed by immediate 

tube closure due to DEAB high volatility. Immediately, 2.5µL of ALDEFLUOR
TM

 Reagent was added to 

each tube containing cells in ALDEFLUOR
TM

 Assay Buffer, followed by quick homogenization and 

transfer of half of the volume to the respective tube containing ALDEFLUOR
TM

 DEAB Reagent 

followed by quick homogenization (each sample was treated individually). All the positive and 

negatives controls of each sample were incubated at 37ºC for 30-40minutes, after which samples 

were centrifuged at 200g for 5minutes, with subsequent supernatant removal and pellet resuspension 

in 250µL of ALDEFLUOR
TM

 Assay Buffer. Samples were kept in ice until further reading. 

Data acquisition was performed by reading 10.000 events per sample at flow rate of 200-350 

events/second, considering a R1 gating region that includes nucleated cells and excludes cell debris 

and a R2 region that encompasses the ALDH1
+
 population (sorting gates were drawn relative to 

background fluorescence of DEAB-treated samples, according to manufacturer’s instructions). 

 

3.4.8. Gene expression assessment 

 

3.4.8.1. Sample collection and RNA extraction  

For RNA extraction from colorectal cancer spheroids it was used the RNeasy® Mini Kit (QIAGEN) 

according to the manufacturer’s instructions, with some modifications. This method relies on cell lysis 

in the presence of a highly denaturing buffer containing guanidine-thiocyanate that inactivates RNases 
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and on subsequent ethanol addition to afford appropriate binding conditions of RNA to a silica-based 

membrane of spin columns, being the contaminants washed away (QIAGEN, 2012). 

Colonospheres at the 7
th
 day of spinner vessel culture were collected and seeded in 6-well plates at a 

density of 50 spheroids/well and incubated with natural extracts and ITCs, in a final volume of 

2mL/well. Spheroids incubated in low-serum culture medium with the %v/v of the solvent used, were 

considered as controls. Twenty-four hours’ post-incubation, aggregates were transferred to 

eppendorfs and centrifuged at 200g for 5minutes, followed by supernatant removal. Cells were 

resuspended in 600µL of RTL buffer (QIAGEN) with 1% v/v of β-mercaptoethanol with previous 

mechanic dissociation of spheroids, first by up-and-down pipetting with clipped tips and then by 

syringe needle-based dissociation. Biological samples were stored at -80ºC until further use in the 

Portuguese Oncology Institute (IPO) facilities.  

After thawing samples on ice, 600µL of 70% v/v Ethanol in DEPC-treated water were added to each 

sample followed by homogenization. Then, 700µL of the sample were transferred to a RNeasy Mini 

spin column placed in a 2mL collection tube and centrifuged at 14.000 rpm for 30seconds (Centrifuge 

Eppendorf 5810R). The supernatant was discarded and the previous step was repeated with the 

remaining 500µL of each sample, reusing the same a RNeasy Mini spin column and collection tube. At 

this point, an additional step of on-column DNase digestion was made by adding per column 80µL of a 

solution containing 70µL of RDD buffer (QIAGEN) and 10µL of DNase I (with approximately 2727,3 

Kunitz units/mL in RNase-free water), followed by incubation for 15minutes at room temperature. The 

spin column was washed with 700µL of RW1 buffer followed by centrifugation at 14.000 rpm for 

30seconds, for DNase I removal. After discarding the flow-through of the collection tube, 500µL of 

RPE buffer were added to the spin column with subsequent centrifugation in the abovementioned 

conditions. The supernatant was removed from the collecting tube and the latter washing step with 

RPE buffer was repeated followed by centrifugation at 14.000 rpm for 2minutes. The old collection 

tube with the flow-through was discarded, and spin column was placed in a new collection tube 

followed by centrifugation at 14.000 rpm for 1minute to eliminate residual RPE buffer or supernatant 

traces outside the column. Then, to perform RNA elution the spin columns were placed in new 1.5mL 

RNase-free eppendorfs and 40µL of RNase-free water were added to each column membrane with 

subsequent centrifugation at 14.000 rpm for 1minute. To maximize the RNA extraction yield, the 

previous eluate was transferred back to the spin column membrane, followed by centrifugation in the 

previous conditions, with recover of the eluate RNA in the same collection eppendorf. Samples were 

kept on ice.  

Total RNA concentration was quantified by ultraviolet spectrophotometry at 260nm using a Nanodrop 

2000 Spectrophotometer (Thermo Scientific), considering that an absorbance reading of 1 at 260nm 

corresponds to approximately 40µg/mL of RNA. Total RNA samples were store at -80ºC until further 

use. 
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3.4.8.2. cDNA synthesis by reverse transcription  

RNA samples obtained previously were used as templates for the generation of complementary DNA 

(cDNA) by a reverse transcriptase enzyme, using random primers that hybridize with messenger RNA 

templates and nucleotides for DNA synthesis (dNTPs). Approximately 600ng of total RNA were 

reverse transcribed into cDNA in a final reaction volume of 20µL with a final concentration of 30ng/µL, 

under the conditions listed in Table 3.3.  

 

 

Table 3.3.   Conditions applied for cDNA synthesis by reverse transcription. Discrimination of the 

temperatures and times for the denaturation, annealing, amplification and enzyme inactivation phases of cDNA 

synthesis. 

Step Temperature (ºC) Time (minutes) 

Denaturation and Annealing 70 10 

Amplification 42 60 

Enzyme inactivation 70 15 

 

Briefly, in 0.2mL reaction tubes it was added the volume of total RNA corresponding to 600ng, 0.5µL 

of random primers at 3µg/µL and the volume of DEPC-treated nuclease-free water (Ambion) needed 

to make up a final volume of 7.75µL. This solution was incubated at 70ºC for 10minutes in a T3 

Thermocycler (Biometra). Afterwards, samples were chilled on ice and 12.25µL of a master mix 

containing 4µL of 5x First Strand Buffer (Invitrogen), 4µL of dNTPs, 2µL of 0.1M DTT (Invitrogen), 

0.75µL of RNase Out Recombinant Ribonuclease inhibitor 5.000U (40U/µL; Invitrogen), 1µL of 

Supercript II Reverse Transcriptase 10.000U (200 U/µL; Invitrogen) and 0.5µL of DEPC-treated 

nuclease-free water, were added to each reaction tube. The reverse transcription reaction was carried 

out at 42ºC for 1hour and stopped by heating for 10minutes at 70ºC. In the end, cDNA samples were 

store at -20ºC until further use. 

 

3.4.8.3. Real-time quantitative polymerase chain reaction (qPCR)  

The quantification of the expression of a targeted gene was accomplished by qPCR. In qPCR process 

each reaction cycle encompasses a melting phase with separation of the cDNA double-strand at a 

high temperature, followed by an annealing phase with primer binding to DNA templates and a 

polymerization phase carried out by a DNA polymerase enzyme, at a lower temperature. This method 

consists in the detection of the DNA quantity during the exponential phase of nucleic acid 

amplification, in the end of each cycle, based on the detection and quantification of the fluorescence 

intensity signal emitted by a fluorophore that intercalates with the resultant double-stranded 

amplification products. The fluorescence measurement is made above a given threshold (that 

excludes the background signal) and the number of cycles required for each sample to reach the 

threshold fluorescence is designated as the Ct (threshold cycle) value. Notwithstanding, samples in 
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which a certain target gene has increased expression will reach the threshold value faster than 

samples in which the target gene is less expressed and, hence, will present lower Ct values 

comparatively to the latter. 

cDNA samples obtained previously were used as templates for the amplification of target gene 

sequences by qPCR and subsequently gene expression quantification. Initially, all cDNA samples 

were diluted in 1:4.8 in sterile water, in order to obtain reasonable Ct values within the range covered 

by the calibration curves and to dilute remaining reagents of the cDNA synthesis which may interfere 

with qPCR process. All qPCR reactions were carried out in PCR 96-Microwell plates (Axygen 

Scientific) in a final volume of 15µL and were set up in triplicates. For each sample a master mix was 

prepared to a final volume of 13µL, considering the respective components and volumes listed in 

Table 3.4. 

 

Table 3.4. –  Required components for the preparation of qPCR Master Mixes. Discrimination of the volumes 

of reverse and forward primers, qPCR mix and water, as well as primers stock concentrations.  

 

In the end, 2µL of cDNA were added to the respective well and the plate was sealed with PlateMax 

ultra-clear sealing film (Corning Axygen), followed by centrifugation at 1200rpm for 1minute. The 

thermal cycling comprised an initial denaturation step at 95ºC for 10minutes, followed by 40cycles of 

denaturation at 95ºC for 15seconds and annealing and extension at 60ºC for 1minute. qPCR reactions 

were carried out in ABI PRISM 7000 Sequence Detection System (Applied Biosystems) and monitored 

in SDS Software (Applied Biosystems).  

All the analyzes were performed in triplicate for the obtainment of the average threshold cycle (Ct) 

value. The comparative Ct (2
-ΔΔCT

) method was applied to compare the expression of the target genes. 

The relative gene expression was quantified as 2
-ΔΔCT

, as outlined in Equations (5) and (6): 

Gene  

(marker) 

Primer stock 

concentration (µmol) 

Reaction Master Mix  

Primer volume Mix Water 

GAPDH 10 

0.75µL of 

reverse primer 

+ 

0.75µL of 

forward primer 

7.5µL of SYBR® Green PCR 

Master Mix (Applied Biosystems) 
4µL 

BIRC5 

(Survivin) 
5 

CTNNB1 

(β-Catenin) 
10 

AXIN2 3.5 

TCF7L2 7.5 

PROM1 

(CD133) 
3 7.5µL of Kapasyber® Fast qPCR 

Master Mix (2x) (Kapa Biosystems) 

+ 

0.3µL of Kapasyber® Fast Rox 

High (50x) (Kapa Biosystems) 

3.7µL 
LGR5 7.5 

P21 5 

CCNA2 

(Cyclin A2) 
5 
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(5)                                                                     

Wherein:  

(6)                                            

The expression of each target gene in each treatment with phytochemicals was normalized to the 

corresponding housekeeping gene levels, i.e. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

levels, to determine the overall variation in gene expression. 

 

 

3.5. Statistical analysis 

Statistical analysis of the results was performed using GraphPad Prism 6 software (GraphPad 

Software, Inc., La Jolla, CA). Comparisons between samples were made by One-way ANOVA 

analysis, whereas comparisons with more than two variables were performed by a Two-way ANOVA 

analysis, both following Tukey’s multiple comparison test. Values of p<0.05 were considered as 

statistically significant. 
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4. Results and Discussion 

 

4.1. Phytochemical characterization of Brassicaceae extracts 

The first task required for the prosecution of this dissertation was the development of natural extracts 

from two cruciferous vegetables - watercress and broccoli - using “environmentally friendly” high-

pressure extraction methods. Supercritical CO2 extraction was applied to both raw materials, whereas 

a CO2 -expanded ethanol high pressure extraction was only performed for watercress. This part of the 

work was not included in the dissertation and was performed by the host lab pilot unit. The selection of 

the operating conditions was based on a previous optimization study performed by our group, aiming 

the isolation of PEITC from watercress (Rodrigues et al., 2016). 

The obtained supercritical fluid extracts of watercress and broccoli presented an intense yellow and a 

light green color, respectively. Inversely, watercress extract obtained by CO2-expanded ethanol 

extraction presented a dark green color (data not shown).  

ITC quantification in all extracts was performed by the group, and extracts concentration was 

expressed as ITC equivalents (i.e. in µM of the respective main ITC). Concentrations of Brassicaceae 

extracts are displayed in Table 4.1. and, as we can see, lower PEITC content was obtained for 

watercress CO2-expanded ethanol extraction. Inversely, the watercress extract obtained by 

supercritical CO2 extraction presented an enhanced increment in PEITC concentration. In this way, 

this extraction method is more selective for PEITC isolation than the one that recurs to a co-solvent 

(ethanol), as already suggested (Rodrigues et al., 2016). Moreover, even after a concentration step, 

broccoli extract does not have shown high contents of SFN. 

 

Table 4.1. ITC content of Brassicaceae extracts  

Sample Solvent mixture ITC concentration (in µM) 

Watercress 

CO2-expanded EtOH extract 

60% CO2 

40%EtOH 
1229 µM of PEITC  

Watercress 

ScCO2 extract 
CO2 7314 µM of PEITC 

Broccoli 

ScCO2 extract 

(with additional concentration step) 

CO2 3410 µM of SFN 

 

Further phytochemical characterization by Folin-Ciocalteau method allowed to assess the total 

phenolic content of all extracts. Results showed a significant difference in the phenolic profiles of both 

watercress extracts, suggesting that the phenolic content of the extract is influenced by the extraction 
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method (Figure 4.1.). In fact, the CO2-expanded ethanol extraction enables almost a 33-fold increase 

in total phenolic content (TPC) in watercress extract (Table 4.2.).  

T P C  (m g  G A E /L  e x t r a c t )

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

W a te r c r e s s  S c C O 2  Ex tr a c t

B r o c c o li S c C O 2  Ex tr a c t

W a te r c r e s s  C O 2 -e x p a n d e d  EtO H  Ex tr a c t

W a te rc re s s  S c C O 2 E x tra c t

B ro c c o li S c C O 2 E x tra c t

W a te rc re s s  C O 2-e x p a n d e d  E tO H  E x tra c t
n s

* * *

Figure 4.1. Phenolic profile of watercress and broccoli extracts by Folin-Ciocalteau method. Results are 

expressed as mean of two independent experiments performed at least in duplicate ± SD. ***p-value<0.001 is 

relative to watercress ScCO2 extract. 

 

Regardless of, between ScCO2 extracts, broccoli extract appears to be more enriched in phenolic 

compounds than the watercress extract by the same method (Figure 4.1. and Table 4.2.). However, 

one could not discard the possibility of this be due to the concentration step of this extract after 

production.  

 

 Table 4.2. Phenolic content of ScCO2 and CO2-expanded EtOH Brassicaceae extracts 

 

 

 

 

 

HPLC and GC-MS analyses were further carried out by the host lab, in order to characterize the 

bioactive compounds in these extracts. These technical procedures were not part of the thesis 

experimental work, and were performed by the host lab pilot unit. 

The obtained chromatographic HPLC-DAD profiles of watercress extracts (Figure 4.2.) corroborate the 

results obtained for watercress extracts phenolic contents. Indeed, several phenolic compounds – 

such as caffeic acid, caffeoylmalate, coumaric acid and rutin (co-eluted), coumaroylmalate, 

feruloylmalate and sinapoylmalate – were identified in CO2-expanded EtOH watercress extract. 

Inversely, the prevalence of these phenolic compounds in the ScCO2 watercress extract was not so 

significant (Figure 4.1. and Table 4.2.), which can be explained by the low solubility of phenols in the 

Brassicaceae Extract 
Total Phenolic Content 

(TPC in mg GAE/L extract) 

Broccoli ScCO2 extract 103.8 ± 4.0 

Watercress ScCO2 extract 16.2 ± 3.1 

Watercress CO2-expanded EtOH extract 533.1 ± 44.0 



 
 

45 
 

supercritical fluid. That’s way extraction of phenolic compounds usually recurs to the use of a co-

solvent, like ethanol (Gil-Chávez, 2013; Pereira and Meireles, 2009). 

 

Figure 4.2. Chromatographic HPLC-DAD profiles of watercress extracts at 280nm (published work of the 

host lab, in (Rodrigues et al., 2016). Extract G correspond to supercritical CO2 extraction of freeze-dried 

watercress; Extracts M and Q correspond to CO2-expanded EtOH extraction with a CO2:H2O ratio of 60:40 using 

freeze-dried and fresh watercress, respectively. Legend: 1- Unidentified non-phenolic organic acid; 2 – Adenine; 3 

– Caffeic acid; 4 – Tryptophan; 5 – Caffeoylmalate; 6 – Coumaric acid and rutin (co-eluted); 7 – 

Coumaroylmalate; 8 – Feruloylmalate; 9 – Sinapoylmalate.  

 

Furthermore, the GC-MS chromatographic profile of watercress ScCO2 extract (Figure 4.3.) exhibited 

a single pick at retention time = 27minutes, that was further identified as PEITC. Therefore, one can 

assume that ScCO2 extraction was highly selective in ITC extraction from watercress matrices 

(Rodrigues et al., 2016).  

 

Figure 4.3. Chromatographic GC-MS profile of watercress extract obtained by ScCO2 extraction. Legend: 1 

– PEITC.  
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Figure 4.4. Chromatographic GC-MS profile of broccoli extract obtained by ScCO2 extraction. Legend: 1 - 

3-Butenyl isothiocyanate; 2- β-Phenylethyl isothiocyanate (β-PEITC); 3 – Sulforaphane (SFN); 4 - I-(+)-Asborbic 

acid 2,6-dihexadecanoate; 5 - Ethyl Linoleolate; 6 – Tetracontane; 7 - 1-Eicosanol; (*)-compound without 

correspondence in the GC-MS library.  

 

Contrary to watercress extract, the broccoli extract holds a more complex phytochemical composition, 

as depicted in Figure 4.4., encompassing not only SFN but also other ITCs and fatty acids (e.g. 

Tetracontane) and their derivatives. Fatty acids presence in broccoli extract was already reported 

using supercritical fluid extraction to extract compounds using broccoli leaves as raw material (Arnáiz 

et al., 2011). 

 

 

 

4.2. Characterization of 2D and 3D cell models of colorectal cancer 

 

Before performing the screening of the chemotherapeutic potential of natural extracts and bioactive 

compounds in colorectal cancer cells, it is important to perform the structural and functional 

characterization of 2D and 3D cell models (in terms of morphology, cell viability and phenotype). 

HT29 colorectal cancer cells cultured in T-flasks grow in two dimensions, forming a monolayer of cells, 

as depicted in Figure 4.5-A. In this 2D cell model, these epithelial cells grow adherently to the surface, 

a phenomena known as anchorage-dependent growth. In a stage of sub-confluent growth these cells 

tend to form islands (data not shown), and as they grow they become polarized (Figure 4.5-A).  
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Figure 4.5. Morphological and structural characterization of 2D and 3D cell models of colorectal cancer.  

Morphological characterization was carried out by light microscopy for observation of HT29 cell monolayer (A) 

and colorectal cancer cell spheroids recovered at 7
th

 day of spinner vessel culture (B). Cell viability within the 

spheroid was assessed by fluorescence confocal microscopy through detection of caspase-3 activity (C), showing 

a necrotic core within the spheroid (in green) and an outer layer composed of viable cells (in red). Scale bar of 

100µm. 

 

In the other hand, when HT29 cells are cultured in a spinner flask stirred bioreactor they have the 

ability to grow in the form of cell spheroids. Spheroid generation from HT29 cells is a gradual 

procedure that involves initial cell aggregation, followed by spheroid compaction and finally spheroid 

growth, during which a gradual increase in size occurs (Santo et al., 2016). Upon achieving complete 

aggregation, i.e. the establishment of compact spheroids, and after a daily medium renewal of the 

bioreactor system, it was possible to obtain at the 7
th
 day of culture colorectal cancer spheroids that 

presented an average diameter of 500µm (Figure 4.5.-B). 

To confirm the establishment of a structural hierarchy within these spheroids, the activity of caspase-3 

was assessed. As already explained in “Materials and Methods”, the NucView488
TM

 and 

MitoView633
TM

 Apoptosis Assay is a fluorescence-based method that allows to differentiate between 

healthy and apoptotic cells, by detecting bright red or bright green fluorescence, respectively. In this 

assay, apoptotic cells were identified based on the activity of caspase-3, one of the most well-known 

markers of apoptosis.  

The results showed a high activity of caspase-3 within the spheroids, which points to a high content of 

apoptotic cells in the core of the spheroid. In contrast, a high content of viable cells was detected in 

the outer/peripheral section of the spheroid (Figure 4.5.-C). Therefore, we can assume that at 7
th
 day 

of culture these spheroids comprised the presence of a necrotic center and a more peripheral 

proliferating zone. In the conditions, it is plausible that cells in these spheroids are subject to 

pathophysiological gradients (as explained in “Introduction”) with the most inner cells being subject to 

a lower bioavailability of nutrients and oxygen, whereas cells that comprise the spheroid periphery 

have easier access to nutrients and oxygen. Hence, these spheroids appear to be a reliable tool to be 

used in cancer research since they mimic the in vivo bioavailability of these factors (Hirschhaeuser et 

al., 2010; LaBarbera et al., 2012).  
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Additionally, the ability of this 3D cell culture method generate cells with a phenotype that best 

resembles the cancer cells in vivo was explored by through the ALDEFLUOR
 TM

 and soft agar assays.  

ALDH1 is a cytosolic detoxifying enzyme that oxidizes cellular aldehydes into carboxylic acids and 

confers resistance to alkylating chemotherapeutic agents, being considered as a putative CSC marker 

associated with tumor progression (Huang et al., 2009).  

The results demonstrated that spheroids have a more CSC-like phenotype in comparison with the 2D 

cell model (Figure 4.6-A). Cells derived from spheroids upon enzymatic dissociation (see “Materials 

and Methods” section) presented a higher ALDH1 activity, and therefore we can assume that 

spheroids have a higher subpopulation of ALDH 
positive/+

 cells comparing with the 2D cell model. In this 

context, spheroids will recapitulate best the in vivo tumor chemotherapeutic response since a higher 

ALDH1 activity can enhance tumor chemo-resistance (Abdullah and Chow, 2013). 

 

Figure 4.6. Phenotypical characterization of 2D and 3D cell models of colorectal cancer.  Phenotypical 

characterization was carried out by detection of ALDH1 activity (A) and cells ability to growth in an anchorage-

independent manner (soft agar assay) (B). Results are expressed as mean of at least two independent 

experiments performed in duplicate ± SD. In (A) *p-value<0.05 and ***p-value<0.001 are relative to the overall 

population; ɸɸp-value<0.01 relative to 2D cell model.  

 

The CSC-like phenotype of both models was also assessed by evaluating the ability of cells to form 

colonies in soft agar, a capacity that is related with anchorage-independent cell growth and with self-

renewal typical of CSCs (Ricci-Vitiani et al., 2007; Vermeulen et al., 2008). In this context, spheroid-

derived cells proved to be more efficient in forming colonies than monolayer-derived cells (Figure 4.6.-

B). This is extremely important when considering cancer metastasis, since in this event single cells 

must have the ability to grow in an anchorage-independent manner and have self-renewal potential to 

colonize the potential secondary tumor site (Mori et al., 2009; Xu et al., 2015). 

Overall, these results confirm that our 3D cell model of colorectal cancer recapitulates best the tumor 

microenvironment and its functional characteristics when comparing with the 2D cell model. Therefore, 

spheroids become a more reliable tool to perform assays with the aim to explore the anticancer effects 

of compounds of interest. Notwithstanding, the 2D cell model can be used to perform initial screening 

of the biological effect of these effects, since it is less time consuming.  



 
 

49 
 

4.3. Antiproliferative effects of natural extracts and bioactive compounds using 2D cell 

model of colorectal cancer 

The efficacy of natural extracts and respective ITCs in preventing cell proliferation was first assessed 

using 2D cell model of colorectal cancer. The results, shown in Figure 4.7. A-B, demonstrated that all 

samples have the potential to inhibit colorectal cancer cell proliferation. However, the most used 

chemotherapeutic agent, 5-Fu, was not so effective as natural extracts and ITCs when considering the 

same concentrations of the bioactive principle – Figure 4.7-C.  

 

 

Figure 4.7. Antiproliferative effect of natural extracts, ITCs and 5-Fu in 2D cell model of colorectal cancer. 

Dose-response profiles of the antiproliferative effect induced by Brassicaceae extracts, ITCs and 5-Fu after a 24h 

period of incubation. (A) Dose-response curve obtained for the antiproliferative effect of broccoli ScCO2 extract 

and its main ITC, SFN. (B) Dose-response profile of the antiproliferative effect of watercress ScCO2 extract, 

watercress CO2-expanded EtOH extract and PEITC. (C) Dose-response curve obtained for the antiproliferative 

effect of 5-Fu in HT29 cells. Results are means of 3 independent experiments performed in triplicate ± SD. Green 

stands for ScCO2 extracts of Brassicaceae, blue for watercress CO2-expanded EtOH extract, black for ITCs and 

grey for 5-Fu. 
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The dose-response prolife of HT29 cells treated with broccoli extract showed that this extract is more 

effective in preventing cell proliferation than SFN (Figure 4.7-A). This was further confirmed by 

comparing the respective EC50 values of both compounds, depicted in Figure 4.8. EC50 values showed 

that broccoli extract (EC50 ≈ 15µM) is more effective than SFN (EC50 ≈ 23µM) in inhibiting 50% of cell 

proliferation, although this was not statistically significant. Overall, this suggests that SFN is not the 

only compound in the broccoli extract responsible for its biological effect. This is in line with the 

complex phytochemical composition of this extract (Figure 4.4.). Hence, we can assume that other 

compounds in broccoli extract can synergize with SFN, rendering this extract with enhanced 

antiproliferative efficacy.  
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Figure 4.8. EC50 values obtained in the antiproliferative assay using 2D cell model of colorectal cancer. 

EC50 value (presented in µM of ITC) represents the concentration that renders a decrease of 50% in cell 

proliferation upon treatment with natural extracts and respective ITCs for 24h. Results are means of 3 

independent experiments performed in triplicate ± SD. **p-value<0.01 is relative to PEITC; ɸɸp-value<0.01 is 

relative to watercress ScCO2 extract. 

 

On the other hand, the dose-response profiles for watercress ScCO2 extract and PEITC were very 

similar (Figure 4.7.-B), which is further validated by their EC50 values. Between both samples, 

watercress ScCO2 extract showed a slightly higher EC50 value (≈33 µM) than PEITC (≈31 µM), 

although this was not statistically significant (Figure 4.8.). The similar antiproliferative effect of this 

extract in comparison with PEITC could be explained based on its phytochemical composition, in 

which PEITC was the only compound identified by GC-MS analysis along with the poor phenolic 

content (detected by the Folin-Ciocalteau method). Until now, few reports have confirmed the anti-

proliferative effect of PEITC in colorectal cancer cells. Nonetheless, it was demonstrated that in HT29 

cells this compound promotes G1 cell cycle arrest (Cheung et al., 2008). More recently, Liu and 

colleagues have reported that PEITC inhibits the proliferation of SW480 colon cancer cells in a dose- 

and time-dependent manner (Liu et al., 2013a). Hence, we can assume that the antiproliferative 

activity of watercress ScCO2 extract is almost entirely resultant from PEITC content. This is in line with 
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the highly selectivity of our CO2 supercritical extraction method for ITC recover from watercress 

(Rodrigues et al., 2016). 

Inversely, the CO2-expanded EtOH watercress extract showed a higher antiproliferative response in 

comparison with PEITC (Figure 4.7.- B). Accordingly, this extract presented a significantly lower EC50 

value (≈14 µM), comparing with PEITC. Similarly, this extract also showed a significantly lower EC50 

value in comparison with its counterpart obtained by supercritical CO2 extraction. This can be 

explained based on the high content in phenolic compounds (533.2 mg GAE/L extract) obtained for 

this extract (Figure 4.1), some of which were previously identified as being: Caffeic acid; 

Caffeoylmalate; Coumaric acid, rutin; Coumaroylmalate; Feruloylmalate and Sinapoylmalate (Figure 

4.2.). For instance, it was recently reported the anti-proliferative effect of caffeic acid derivatives in 

HCT116 and SW480 colorectal cancer cells in consequence of enhanced AMP-activated protein 

kinase (AMPK) activation that led to G0/G1 cell cycle arrest (Chiang et al., 2014). Therefore, the 

phenolic compounds present in the CO2-expanded EtOH watercress extract may synergize with 

PEITC, rendering an enhanced antiproliferative effect in colorectal cancer that is statistically more 

effective when comparing with watercress ScCO2 extract.   

Assumptions can also be made when comparing different Brassicaceae extracts obtained by the same 

high-pressure extraction method, i.e. supercritical CO2 extraction. By comparing both dose-response 

profiles for these extracts (Figure 4.7 – A and B) it appears that broccoli extract is more effective than 

watercress ScCO2 extract, a trend that is further corroborated when looking at EC50 values (Figure 

4.8). In fact, broccoli extract is statistically more effective in preventing colorectal cancer cells 

proliferation than watercress extract, an effect that could be resultant from the phytochemical 

composition of broccoli. Whereas in cells treated with watercress ScCO2 extract the antiproliferative 

effect is almost exclusively due to PEITC, in broccoli ScCO2 extract treated cells the antiproliferative 

effect can derive from the synergy between SFN and other compounds, namely phenolic compounds 

(103.8 mg GAE/L extract). To note that in watercress ScCO2 extract only a vestigial fraction of 

phenolic compounds was detected, as shown in Figure 4.1, an occurrence that can be explained by 

the low solubility of these compounds in the supercritical fluid (CO2), as already explained in 

“Introduction” section. 

Treatment with 5-Fu was not so effective in preventing cell proliferation, comparing with extracts and 

ITCs. As shown in Figure 4.7.-C, treatment with this chemotherapeutic agent rendered a more discrete 

dose-response profile in colorectal cancer cells, and a plateau in cell proliferation was reached after 

attaining an antiproliferative effect of 50% (EC50≈100µM, data not shown). With these results one can 

assume that natural bioactive compounds appear to be a more effective and promising strategy for 

colorectal cancer therapy rather than 5-Fu.  

Since the major goal of this dissertation was to explore the role of ITC-rich extracts in colorectal 

cancer therapy within the NutraBrass Project, the CO2-expanded EtOH watercress extract was past 

behind in detriment of the watercress ScCO2 extract. However, it will be interesting in a near future to 

test the potentially of the synergy between phenolic compounds and PEITC in colorectal cancer cells. 
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4.4. Antiproliferative effects of natural extracts and bioactive compounds using 3D cell 

model of colorectal cancer 

After confirming the potential antiproliferative effect of natural extracts and bioactive compounds using 

a 2D cell model, we performed the same experiments using the 3D cell model (previously 

characterized), in order to confirm if these compounds also exert anticancer effects in a more complex 

biological scenario. To note that due to cell density increase, inherent to the cellular structure of the 

spheroid per se, we tested higher concentrations than in 2D cell model.  

In resemblance with results obtained in 2D cell model, natural extracts and respective ITCs also 

induced an inhibitory effect in cell proliferation of colorectal cancer spheroids. The same trend in dose-

response profile was obtained for cells treated with broccoli ScCO2 extract and SFN – Figure 4.9-A. In 

this case, it was reinforced, once again, the higher antiproliferative effect of broccoli ScCO2 extract in 

comparison with SFN, as described for 2D cell model. In fact, broccoli ScCO2 presented a lower EC50 

value (50.9 µM) in comparison with SFN (128.7 µM) – Figure 4.10.  

 

Figure 4.9. Antiproliferative effect of natural extracts and ITCs in 3D cell model of colorectal cancer. Dose-

response profiles of the antiproliferative effect induced by Brassicaceae extracts and ITCs after a 24h period of 

incubation. (A) Dose-response curve obtained for the antiproliferative effect of broccoli ScCO2 extract and its 

main ITC, SFN. (B) Dose-response profile of the antiproliferative effect of watercress ScCO2 extract and PEITC. 

Results are means of at least 3 independent experiments performed in triplicate ± SD. Green stands for ScCO2 

extracts of Brassicaceae and black for ITCs. 

 

In contrast, watercress ScCO2 extract and PEITC dose-response profiles displayed a similar behavior, 

as noted for 2D cell model. In a similar way to 2D cell model, also in cell spheroids was observed a 
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slightly decrease in EC50 of watercress ScCO2 when comparing with PEITC (121.2 µM and 110.6 µM, 

respectively).  
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Figure 4.10. EC50 values obtained in the antiproliferative assay using 3D cell model of colorectal cancer. 

EC50 value (presented in µM of ITC) represents the concentration that renders a decrease of 50% in cell 

proliferation upon treatment with natural extracts and respective ITCs for 24h. Results are means of at least 3 

independent experiments performed in triplicate ± SD. ***p-values<0.001 and ****p-values<0.0001 are relative to 

the same extract/ITC between both cell models; ɸɸɸp-values<0.001 and ɸɸɸɸp-values<0.0001 relative broccoli 

ScCO2 extract. 

 

Overall, the EC50 values obtained for all samples were much higher than those obtained in 2D cell 

model (Figure 4.10). For watercress ScCO2 extract and PEITC an increase up to almost four times 

was attained in relation with 2D cell model. This fold increase was much more discrepant when 

comparing broccoli ScCO2 extract and SFN, with an increase up to almost three and six times, 

respectively. This discrepancy between the fold increase of EC50 values for extracts and ITCs 

relatively to 2D cell model may be explained by the establishment of gradients within the spheroid. As 

already mentioned above head, when spheroids reach a mean diameter of 500µm they become 

“stratified” in terms of cell viability and bio-availability of nutrients, oxygen, and other possible 

compounds (Hirschhaeuser et al., 2010; LaBarbera et al., 2012), which in turn could explain the 

chemo-resistant phenotype of these cells (Karlsson et al., 2012).  

 

Nonetheless, we then assessed the possible effects of these compounds in inducing cell cycle arrest, 

an analysis carried out by flow cytometry using a fluorescence marker that stoichiometrically binds to 

DNA. Therefore, it was possible to evaluated the different cell cycle phases considering the 

fluorescence intensity signal that was intrinsically dependent on the number of DNA copies. In this 

way, since G1 phase-arrested cells contain only 1 copy of DNA, G2 phase-arrested cells 2 copies of 
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DNA and S phase-arrested cells an intermediate DNA content, a gradient of fluorescence intensity can 

be reached according with the DNA content (Darzynkiewicz et al., 2010).  

To study the effect of these compounds in cell cycle arrest, we considered a dose treatment with the 

concentration of extracts that rendered 30% of antiproliferative effect in 3D cell model (ITCs were 

tested at the same concentration of the respective extract). After a 24hour incubation with natural 

extracts and ITCs, the results showed that all samples inhibit cell proliferation by inducing cell cycle 

arrest at phase G2/M, which translates the enrichment of cells in phase G2/M relatively to control 

(Figure 4.11.). This effect is in accordance with previous reports in colorectal cancer cells treated with 

PEITC and SFN (Chen et al., 2012; Cheung et al., 2008). 
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Figure 4.11. Cell cycle arrest induced by natural extracts and ITCs. Cell cycle distribution in HT29 cell 

spheroids after treatment with natural extracts and respective ITCs for 24h. Tested concentrations were based on 

the dose of extract that corresponds to a decrease of 30% in cell proliferation (the respective ITCs were tested at 

the same concentration of the extract). Results are means of two independent experiments performed in duplicate 

± SD. *p-values<0.05, **p-values<0.01, ***p-values<0.001 and ****p-values<0.0001 are relative to control. 

 

To further confirm these results, analysis of the expression of cell cycle-related genes was performed 

by qPCR. Our results (Figure 4.12) demonstrated a significantly higher p21 expression after a 24h 

treatment with 50µM of broccoli extract and SFN, pointing out cell cycle arrest at phase G1 (Harada 

and Ogden, 2000). Dissimilar gene expression behaviors were observed for watercress extract and 

PEITC when considering the same dose, although this was not significant. This result is not in line with 

the flow cytometry result, which suggests that different doses can induce cell cycle arrest at different 

stages (since in the flow cytometry assay the tested dose was the EC30, whereas in qPCR analysis the 

p21 increase occurred at the EC50 value for broccoli extract and same concentration of SFN, as well 

as at the EC50 value for SFN). 
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On the other hand, treatment with all samples led to an increase in Cyclin A2 expression, which do not 

suggest G2/M cell cycle arrest. This result is not in line with the result obtained by flow cytometry 

(Figure 4.11) confirming cell cycle arrest at G2/M in colorectal cancer spheroids upon treatment with 

ITCs and natural extracts. Cell cycle arrest at G2/M stage upon treatment with SFN was already 

reported in colorectal cancer cells of the same cell line with subsequent increase in Cyclin A2 

expression (Gamet-Payrastre et al., 2000). Therefore, one could not exclude that increased levels in 

this marker might be derived from DNA damage induced by ITCs, since these compounds can elicit 

ROS generation in cancer cells (Trachootham et al., 2006). 

 

Figure 4.12. Analysis of p21 and cyclin A2 expression in colorectal cancer spheroids. Antiproliferative effect 

of natural extracts and ITCs measured by p21 and cyclin A2 expression, upon a 24hour’s treatment. Results are 

expressed as mean of one experiment performed in triplicate ± SD. *p-value<0.05, **p-value<0.01, ***p-

value<0.001 and ****p-value<0.0001 are relative to control; ɸɸp-value<0.01 is relative to broccoli ScCO2 extract; 

ѰѰѰѰp-value <0.0001 relative to control PEITC.  

 

Further studies involving different incubation times and different time-points to assess cell cycle arrest 

should be carried out, in order to unveil the precise mechanisms of cell cycle arrest and if it is, or not, 

time- and dose- dependent. 

 

 

4.5. Apoptotic effects of natural extracts and bioactive compounds using 3D cell 

model of colorectal cancer 

The potential of Brassicaceae natural extracts and ITCs to induce cell death in colorectal cancer cell 

spheroids was explored by the detection of caspase-3 activity, one of the main effectors of apoptosis 

(Elmore, 2007).  

For both extracts and ITCs the maximum tested concentration was an approximate value to their 

respective EC50 obtained in the antiproliferative assay performed in 3D cell model (120 µM for 

watercress ScCO2 extract, PEITC and SFN, and 50 µM for broccoli ScCO2 extract). Overall, results 

depicted in Figure 4.13. and 4.14. showed that the EC50 value obtained in 3D antiproliferative assay 

induces apoptosis in cell spheroids. In fact, apoptosis induction increased in a dose-dependent 
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manner, with this effect being more prominent in the spheroid periphery, as one can see in Figures 

4.13-E, F and Figure 4.14.-D, E, by the increase in apoptotic cells in the outer most layer of the 

spheroid. This apoptotic effect is in line with previous studies reporting apoptosis induction after 

treatment with PEITC and SFN in colorectal cancer cells (Andelova et al., 2007; Roy et al., 2013; 

Rudolf and Cervinka, 2011). 

The low content of apoptotic cells in the periphery of cell spheroids at low dose treatments (Figure 

4.13-B, C, D. and 4.14-B, C) could be due to low diffusion of natural extracts and ITCs towards 

spheroid inner milieu. Since spheroids at 7
th
 day of spinner culture have an average diameter of 

500µm and a necrotic core, as already described previously, this chemo-resistant phenotype could be 

derived from the spheroid cellular structure per se, that at this stage offers nutrient/oxygen input 

limitations, and therefore, phytochemical compounds input limitations (Hirschhaeuser et al., 2010; 

LaBarbera et al., 2012). 

 

Figure 4.13. Detection of caspase-3 activity in colorectal cancer spheroids treated with broccoli extract 

and SFN. Apoptosis assessment in HT29 cell spheroids incubated with SFN – (B) 25µM, (D) 50 µM and (F) 

120µM) and broccoli ScCO2 extract – (C) 25µM and (E) 50 µM -, for 24hours, was carried out by fluorescence 

confocal microscopy. (A) Control without treatment. Green stands for apoptotic cells (high caspase-3 activity) and 

red for viable cells (high mitochondrial activity). Scale bar of 100µm. 

 

To note that, at same concentrations, both extracts have a higher apoptotic effect in colorectal cancer 

spheroids than their respective ITCs. This increase in peripheral apoptotic cell content in spheroids 
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corroborates the existence of other potential compounds in ScCO2 extracts with possible apoptotic 

activity that may synergize with ITCs.  

 

Figure 4.14. Detection of caspase-3 activity in colorectal cancer spheroids treated with watercress extract 

and PEITC. Apoptosis assessment in HT29 cell spheroids incubated with PEITC – (B) 50µM and (D) 120 µM and 

watercress ScCO2 extract – (C) 50µM and (E) 120 µM -, for 24hours, was carried out by fluorescence confocal 

microscopy. (A) Control without treatment. Green stands for apoptotic cells (high caspase-3 activity) and red for 

viable cells (high mitochondrial activity). Scale bar of 100µm. 

 

Moreover, treatment with extracts and ITCs showed no significant influence the expression of survivin 

(Figure 4.15), an anti-apoptosis marker (Altieri, 2003).  However inconsistent results were obtained for 

50µM of SFN and for the highest concentration tested in watercress ScCO2 extract and PEITC. 

Overall, these results suggest that broccoli extract at the EC50 value induce less the expression of 

survivin and that, to avoid the expression of this marker, intermediate concentrations of watercress 

extract and PEITC should be used.  
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Figure 4.15. Analysis of survivin expression in colorectal cancer spheroids. Apoptotic effect of natural 

extracts and ITCs measured by survivin expression, upon a 24hour’s treatment. Results are expressed as mean 

of one experiment performed in triplicate ± SD. ***p-value<0.001 and ****p-value<0.0001 are relative to control; 

ɸɸɸp-value<0.001 is relative to broccoli ScCO2 extract; Ѱ<0.05 and ѰѰѰ<0.001 relative to PEITC at same 

concentration.  
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4.6. Targeting CSC-like features of colorectal cancer cell spheroids using natural 

extracts and bioactive compounds   

 

One of the most crucial aspects in colorectal cancer therapy is the prevalence of CSCs even after 

radio- and chemo-therapy (Saigusa et al., 2009; Saigusa et al., 2010). Therefore, is imperative to seek 

new therapeutic strategies to circumvent this issue. In this context, and according to epidemiological 

evidences pointing the chemo-preventive role of cruciferous vegetables, Brassicaceae-derived bio-

active compounds appear to be a promising strategy. In this part of the work, the biological effect of 

Brassicaceae extracts and their respective ITCs in CSC-like related cellular events/markers was 

further explored, in order to unveil their potential application in colorectal cancer therapy.  

 

 

4.6.1. Evaluation of anchorage-independent cell growth   

The effect of Brassicaceae extracts and respective ITCs in preventing anchorage-independent cell 

growth was explored by the soft agar assay, which allowed to explore the ability of cells to form 

colonies from a single cell within a semisolid milieu, like the one proportionated by agarose.  

Normal epithelial cells are unable to proliferate in the absence of anchorage to the ECM. In these cells 

the loss of contact with ECM components promote a form of programmed cell death named anoikis. In 

contrast, even in the absence of ECM components, cancer cells are able to evade this apoptotic 

process and have the potential to grow and proliferate, forming colonies (Guadamillas et al., 2011; 

Paoli et al., 2013). Anchorage-independent cell growth alongside with the self-renewal ability 

constitute one of the principal features related to CSCs (Ricci-Vitiani et al., 2007; Vermeulen et al., 

2008). 

Therefore, we intended to explore if the Brassicaceae extracts and respective ITCs have the ability to 

decrease the tumorigenic potential of colorectal cancer cells. To test the hypothesis, we performed the 

soft agar assay with single cells derived from the enzymatic dissociation of HT29 cell spheroids, since 

these cells have a more CSC-like phenotype compared with cells from a 2D system culture, as 

already discussed in section 4.2. (Figure 4.5. and Figure 4.6.). By counting colonies and measuring 

their average size, we tested the efficacy of extracts and ITCs in inhibiting the tumorigenic potential of 

these cells.  

Results showed that both extracts and ITCs inhibit colony formation in a dose-dependent manner 

(Figure 4.16.). Between all samples, broccoli ScCO2 extract and SFN were the most effective samples 

in inhibiting the formation of cell colonies with dose increase. In fact, the highest concentration of 

broccoli extract almost abolished completely the tumorigenic potential of these cells. Results 

demonstrated that with dose increase the anti-tumorigenic potential of broccoli extract became more 

accentuated.  
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Figure 4.16. Inhibitory effects of natural extracts and ITCs in anchorage-independent cell growth using 

cells derived from HT29 spheroids. Inhibition of anchorage-independent cell growth upon a 15day treatment 

with natural extracts and ITCs. Results are means of at least two independent experiments performed in duplicate 

± SD. **p-value<0.01 and ****p-value<0.0001 are relative to control; ɸp-value<0.05, ɸɸp-value<0.01, ɸɸɸɸp-

value<0.0001 are relative to the same compound; Ѱ<0.05 relative to broccoli ScCO2 extract. 

 

Besides affecting colony number, treatment with these natural compounds and respective ITCs also 

affected the average diameter of the colonies, as demonstrated for cells treated with SFN and broccoli 

extract in Figure 4.17 (data not shown for PEITC and watercress extract).  

 

Figure 4.17. Inhibitory effects of broccoli extract and SFN in mean size of colonies formed by anchorage-

independent cell growth and proliferation of spheroid-derived cells. Inhibition of anchorage-independent cell 

growth upon a 15day treatment with 1, 3 and 5µM of SFN (B, D, F) and broccoli extract (C, E, G). (A) Control 

without treatment. Scale bar = 100µm. 
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Also, the treatment with watercress ScCO2 extract and PEITC led to a significant decrease in the 

tumorigenic potential of colorectal cancer cells, in a dose-dependent manner, with a more pronounced 

effect at 5µM (Figure 4.16.). Moreover, both compounds exerted a similar response in these cells 

regardless of the dose increase (no statistically differences were observed between treatments with 1, 

3 or 5 µM of bioactive compound). The same trend was previously observed in the antiproliferative 

effect of these compounds in cell spheroids, that rendered a similar dose-response profile, as already 

mentioned.   

Overall, the results demonstrated that all Brassicaceae extracts and ITCs have the ability to induce 

anoikis in spheroid-derived cells and decreased their potential to grow in an anchorage-dependent 

manner. Therefore, one can assume that these samples decrease the metastatic and self-renewal 

potential of colorectal cancer cells with a CSC-like phenotype (Mori et al., 2009; Xu et al., 2015). 

 

 

4.6.2. Assessment of ALDH1 activity 

As already referred above, one of the dictating factors in the success of colorectal cancer therapy is 

the potential to successfully target and eradicate CSCs or even cells that undergo EMT.  

In order to determine whether Brassicaceae extracts and/or respective ITCs have the potential to 

circumvent the detoxifying action of ALDH1 and/or decrease its activity, the detection of ALDH1 

activity was carried out by flow cytometry using the ALDEFLUOR
TM

 Assay Kit.  

In this experiment, spheroids between the 6-7
th
 days of culture were incubated for 24hours with natural 

extracts and respective ITCs ate the same concentration. A rational for the tested concentrations was 

established based on the EC50 values obtained in the antiproliferative assay using 2D cell model, with 

the lower tested concentration being an approximation of the EC50 obtained in 2D cell model for each 

extract, and the higher concentration being the double of the EC50 value. With this, we intended to 

evaluate if natural extracts and ITCs were able to decrease ALDH1 activity even at “sub-therapeutic” 

doses comparing with other experiments in which higher doses were applied. For comparison 

between ITCs, SFN concentrations were extended up to 60µM.  

The results depicted in Figure 4.18. demonstrated that despite the dose of broccoli extract and SFN 

(15 and 30µM) these samples do not have the potential to target the ALDH
+
 subpopulation. However, 

to evaluate if this was a dose-dependent effect, or not, we increased the SFN concentration up to 

60µM, which rendered a significantly higher effect when comparing with lower SFN doses. So, its 

plausible to assume that increase in broccoli extract dose could also display more promising effects in 

decreasing ALDH1 activity, but already outside the “sub-therapeutic” dosage. 
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Figure 4.18. Inhibitory effect in ALDH1 activity by natural extracts and ITCs evaluated by ALDEFLUOR
TM

 

assay using cells derived from HT29 spheroids. Results are means of at least two independent experiments 

performed in duplicate ± SD. *p-value<0.05 and ****p-value<0.0001 are relative to control; ɸp-value<0.05 and 

ɸɸɸɸp-value<0.0001 are relative to the same compound. 

 

On the other hand, watercress extract and PEITC, at the highest concentration tested, led to a 

decrease in ALDH1 activity. Although both samples at 60 µM had the ability to decrease the ALDH
+
 

subpopulation, the effect of PEITC was more pronounced than that obtained in the case of watercress 

extract. So, it’s possible to assume that other compounds (not detected by GC-MS and HPLC) may 

exist in the watercress extract that could explain the difference in this behavior, contrary to the similar 

biological effects between watercress extract and PEITC observed in other assays.  

Notwithstanding, by observing the content of ALDH
+
 cells after treatment with 60µM of PEITC and 

SFN we can affirm that, between ITCs, PEITC was the most effective in targeting ALDH1 activity 

inherent to cells with CSC-like phenotype.  

In short, we can postulate that, among all samples, watercress extract and PEITC provide the highest 

effect in ALDH1 activity rendering a more effective decrease in the content of ALDH
+
 cells. Therefore, 

since ALDH1 is responsible for tumor chemo-resistance (Abdullah and Chow, 2013)  it can be 

assumed that these two samples are the more effective in CSCs eradication.  

 

 

4.6.3. Analysis of the expression of CSC and EMT associated markers 

Finally, the potential of these extracts and bioactive compounds to modulate several crucial events in 

tumorigenesis was further explored by the evaluation of gene expression of key target genes, namely 

putative CSC markers and genes related with several signaling pathways crucial to self-renewal and 

metastasis (Figure 4.19). 
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CD133 and LGR5 have been considered as colorectal CSC markers and correlated positively with 

metastasis and chemo-resistance (Liu et al., 2013b; Ren et al., 2013; Schneider et al., 2012; Wang et 

al., 2012; Wu et al., 2012). In general, Brassicaceae extracts showed the potential to promote the 

downregulation of CD133 and LGR5 markers (Figure 4.19), which suggests that these extracts have 

the capacity to target the CSC subpopulation. Considering the results for CD133, for watercress 

extract and PEITC this effect appears to be dose-dependent. A similar effect was seen for SFN, with 

exception of the highest concentration (120µM).  

The expression of β-catenin, Axin2 and TCF7L2 was also assessed to explore if the extracts and ITCs 

have influence on one of the major pathways in colorectal cancer carcinogenesis, more precisely in 

the β-catenin /TCF7L2 axis of the Wnt signaling.  

Normally, APC loss in colorectal cancer drives the deregulation of the Wnt pathway, with consequent 

translocation of β-catenin towards the nucleus where it accumulates and interacts with TCF7L2, 

resulting in unrestrained transcription of target genes, like CD44 involved in tumor progression 

(Fredericks, 2015; Huels and Sansom, 2015). 

Our results showed that, in overall, treatment with samples, especially watercress extract and PEITC, 

led to a decreased β-catenin expression (with exception of SFN, although this event was not 

statistically significant), which is relevant when considering the most upstream activating events of the 

adenoma-to-carcinoma sequence of the tumorigenic process. 

Attending that Axin2 functions as an oncogene in colorectal cancers with mutated APC (which is the 

case of HT29 cells) (Yochum, 2012) we can suggest that broccoli extract is the most promising 

compound for colorectal cancer therapy. In the other hand, when looking at TCFL2 expression that 

could be considered as a tumor suppressor gene (Angus-Hill et al., 2011), PEITC appears to be more 

effective in targeting tumorigenesis (at 50/120µM). However, the status of TCF7L2 as an oncogenic or 

tumor suppressor gene has been debatable (Angus-Hill et al., 2011).  

More studies need to be performed to explore other putative CSC markers, as well as other targets of 

signaling pathways inherent to CSCs.  
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Figure 4.19. Effects of natural extracts and ITCs in genes related with EMT, self-renewal and stemness. 

Results are expressed as mean of one experiment performed in triplicate ± SD. *p-value<0.05, **p-value<0.01, 

***p-value<0.001 and ****p-value<0.0001 are relative to control; ɸɸp-value<0.01 and ɸɸɸɸp-value<0.0001 relative 

to broccoli ScCO2 extract; Ѱp-value<0.05 and ѰѰѰѰp-value<0.0001 relative to PEITC.  

 

 

 

4.7. Cytotoxicity of natural extracts and ITCs 

The cytotoxic effect of natural extracts, ITCs and 5-Fu was tested using a Caco-2 cell model of the 

intestinal barrier. Results depicted in Figure 4.20 demonstrated that, excluding 5-Fu, all the samples 

exert cytotoxic effects in a dose-dependent manner. In Table 4.3. are summarized the IC50 values for 

each sample. 
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Figure 4.20. Cytotoxic effect of natural extracts, ITCs and 5-Fu in 2D cell model of intestinal barrier. Dose-

response profiles of the cytotoxic effect induced by Brassicaceae extracts, ITCs and 5-Fu in Caco-2 cells after a 

24h period of incubation. (A) Dose-response curve obtained for the cytotoxic effect of broccoli ScCO2 extract and 

its main ITC, SFN. (B) Dose-response profile of the cytotoxic effect of watercress ScCO2 extract, CO2-expanded 

EtOH watercress extract and PEITC. (C) Dose-response curve obtained for the cytotoxic effect of 5-Fu in Caco-2 

cells. Results are means of 3 independent experiments performed in triplicate ± SD. Green stands for ScCO2 

extracts of Brassicaceae, blue for CO2-expanded EtOH watercress extract, black for ITCs and grey for 5-Fu. 

 

Table 4.3. IC50 values obtained in the cytotoxicity assay.  

Sample IC50 (µM) 

Broccoli ScCO2 extract 35.73 ± 1.19 

SFN 64.89 ± 2.48 

Watercress ScCO2 extract 174.00 ± 35.87 

Watercress CO2-expanded EtOH extract > 53.60 

PEITC 124.70 ± 14.69 

5-Fu > 6400 
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Although most of all the concentrations used in the 3D-cell model assays are near the range of 

cytotoxicity, one cannot exclude the efficacy of these extracts and bioactive compounds in colorectal 

cancer therapy. Cytotoxicity issues can be circumvented by using delivery vectors that selectively 

target the colorectal cancer cells, more precisely the CSC niche. For instance, its plausible to design 

nanoparticles for extract/ITC delivery, with a coupled targeting moiety directed, for instance, to LGR5
+
 

or CD133
+
 subpopulation.  

More studies need to be addressed aiming at developing nano-carriers for these bioactive 

compounds, in order to couple their anticancer potential within a viable, non-toxic, therapeutic 

strategy.    
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5. Conclusions 

 
In the present work, natural extracts from cruciferous vegetables obtained by supercritical CO2 

extraction were applied to cancer research to unveil their chemotherapeutic potential in colorectal 

cancer, especially in the CSC subpopulation. 

The supercritical CO2 extraction developed by the host lab was highly selective in recovering PEITC 

from watercress matrices, but in the case of broccoli an enormous plethora of phytochemical 

compounds were recovered when applying the same method. Therefore, in an over-all way, the 

anticancer mechanisms of PEITC and watercress ScCO2 extract were similar, whereas broccoli 

extract and SFN displayed some discrepancies.  

Nonetheless, both extracts and ITCs stand out by their antiproliferative and pro-apoptotic effects, as 

well as in inhibiting chemo-resistance, anchorage-independent cell growth and self-renewal. These 

effects alongside with their capacity to target the LGR5
+
 and CD133

+
 subpopulation, and hence the 

CSC-like phenotype, turn these extracts in potential chemotherapeutic compounds towards colorectal 

cancer therapy.  

In our knowledge, this was the first work exploring the anticancer effects of cruciferous vegetables, as 

well as their respective ITCs, in colorectal cancer spheroids, which unveils an exciting start-point in 

this field, since the used 3D-cell model recapitulates best the tumor microenvironment in vivo.  

Further studies are required namely in exploring other stemness markers, as well as other cellular 

phenotypes in terms of migration, as well as exosomes release, for instance, important aspects of 

metastasis. Additionally, a better characterization of these extracts will be required to understand if 

more compounds are involved in the anticancer effects of these natural extracts. 
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