

Cláudia Cristina de Oliveira Luís Nunes Barata

Licenciada em Ciências de Engenharia Física

Desenho e Dimensionamento de um Sistema de Detecção de Metais de Desgaste em Lubrificantes Automóveis, Navais e Aeronáuticos

Dissertação para obtenção do Grau de Mestre em Engenharia Física

Orientador: Doutor Mauro Guerra, Prof. Auxiliar Convidado, Faculdade de Ciência e Tecnologia da UNL Co-orientador: Doutor Pedro Amaro, Prof. Auxiliar Convidado, Faculdade de Ciência e Tecnologia da UNL

Júri:

Presidente: Doutora Maria Isabel Simões Catarino, Professora Auxiliar da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

Vogais: Doutor Mauro António Moreira Guerra, Professor Auxiliar da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

> Doutor Jorge Miguel de Brito Almeida Sampaio, Professor Auxiliar da Faculdade de Ciências da Universidade de Lisboa

FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISBOA

Setembro, 2016

Desenho e Dimensionamento de um Sistema de Detecção de Metais de Desgaste em Lubrificantes Automóveis, Navais e Aeronáuticos

Copyright © Cláudia Cristina de Oliveira Luís Nunes Barata, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.

Dedico esta tese aos meus pais.

À minha mãe que me apoia incondicionalmente.

Ao meu pai que todas as criticas que me aponta têm só um objectivo,

tornar-me melhor em tudo o que faço.

Agradecimentos

Agradeço a todos os que me ajudaram e apoiaram durante a elaboração da presente dissertação.

Ao meu orientador, professor Mauro Guerra, agradeço as sugestões e críticas sempre pertinentes e importantes para que este trabalho chegasse a bom porto.

Ao meu co-orientador, professor Pedro Amaro, agradeço toda a ajuda a nível das simulações realizadas.

À professora Ana Cristina Silva, que foi incansável em ajudar-me na parte teórica desta dissertação.

Um agradecimento especial a todas as oficinas que se disponibilizaram na árdua tarefa de recolha de óleo lubrificante, nomeadamente, a Oficina Midas Aguiar, Euro Master Areeiro, Garagem 59, Norauto Alfragide, AutoCare, Bosch Car Service, I.S.Car Sacavém – Concessionário OPEL. Um agradecimento ao Engenheiro Vitor Cruz que se disponibilizou para esclarecer as minhas dúvidas relativamente à lubrificação automóvel.

Agradeço à Marinha Portuguesa, nomeadamente ao Engenheiro Gonçalo Sousa, Engenheiro Ramos Brito, e especialmente ao Engenheiro Pereira da Fonte que me proporcionou uma visita guiada pela base Naval do Alfeite na qual obtive as quatro amostras de óleo lubrificante naval.

Agradeço também, à Força Aérea Portuguesa, nomeadamente à 1º Sargento Mecânico Material Aéreo Magda Tavares, que me forneceu a amostra de óleo do avião A18 juntamente com a análise feita na Base Aérea Nº1.

O meu agradecimento à empresa Saint-Gobain Crystals que forneceu a informação pedida sobre os cristais, nomeadamente ao gestor de produtos Phillipe Derouineau.

Por último, mas não menos importante, agradeço ao meu pai, Carlos Nunes Barata, que com toda a sua genialidade, me ajudou a dar uma terceira dimensão a este protótipo. Agradeço, também a todos os familiares e amigos pelo apoio constante.

Resumo

Em qualquer motor, um dos principais componentes para o seu bom desempenho é a utilização de um lubrificante em boas condições. A sua contribuição para ajudar a diminuir o atrito entre as diferentes partes móveis é extremamente importante para prevenir possíveis danos nos motores. Contudo, mesmo com a utilização de um bom lubrificante, o funcionamento do motor vai provocando desgaste nas peças de metal, sendo necessário proceder à sua troca com alguma regularidade. Este desgaste também pode ser indicativo da condição de determinadas peças constituintes dos motores, e a sua troca atempada pode resultar numa longevidade maior do motor.

Por este motivo, torna-se essencial quantificar os metais presentes no lubrificante para se poder avaliar a sua qualidade. Embora a substituição do óleo lubrificante seja relativamente barata no caso dos automóveis, o mesmo não acontece para um motor de maiores dimensões, como o de um avião ou barco. Assim, torna-se importante estudar em cada um destes sistemas, qual o desgaste real de modo a poder-se programar as mudanças de óleo e/ou peças de uma forma mais eficiente, tanto técnica como financeiramente.

Com esta tese pretende-se estudar os elementos de desgaste presentes no óleo lubrificante através de um sistema de fluorescência de raios-X dispersivo em energia (EDXRF), para avaliar quais os metais predominantes na análise. E consequentemente, simular um sistema de fluorescência de raios-X dispersivo em comprimento de onda (WDXRF), com a melhor resolução possível de modo a quantificar os elementos medidos anteriormente, sendo então desenhado um protótipo optimizado, para uma futura construção.

O grande desafio deste projecto foi proposto pela NineSigma, e pretende que este sistema, além de um baixo custo (cerca de 100\$ por cada montagem, numa construção em série), tenha sensibilidade para medir acima de 600 ppm de Na, Mg, Al, Si, P, K, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn e Pb.

Palavra-chave: Metais de desgaste, Fluorescência de raio-X, WDXRF, Óleo Lubrificante.

Abstract

In any engine, one of the major factors required for its good performance is the use of a lubricant in good conditions. Its contribution for reducing the friction between the various moving parts is extremely important to prevent possible damage to the engines. However, even with the use of a good lubricant, the operation of the engine induces some wear on metal parts; hence, it is necessary to exchange it with some regularity. This metal wearing can be indicative of the condition of several engine components, and its monitoring can result in a longer engine life.

For this reason, it is essential that we quantify the metals present in the lubricant to be able to assess its quality. Although the substitution of lubricating oil is relatively cheap in the case of automobiles, the same is not true for an engine of larger dimensions, like that of an airplane or boat. Thus, it becomes important to study, in each one of these systems, the real profile of engine parts wear with time, in order to schedule oil changes more efficiently, both technically and financially.

In this thesis, we intended to study the wear elements present in the lubricating oil through an energy dispersive fluorescence x-ray system (EDXRF), to assess what are the predominant metals in the lubricant and hence simulate a fluorescence X-ray dispersive system wavelength (WDXRF) with the best possible resolution in order to quantify the above mentioned elements, thus designing an optimized prototype for future construction.

The challenge of this project was proposed by NineSigma, who wanted this system, to be constructed with a very low cost (around 100\$ for each assembly, for mass construction), and should have the sensitivity to measure above 600 ppm of Na, Mg, Al, Si, P, K, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn and Pb.

Key words: Wear metals, X-ray fluorescence, WDRXF, Lubrificant Oil.

Conteúdo

INTRODUÇÃO1						
FUNDA	FUNDAMENTOS TEÓRICOS DE FLUORESCÊNCIA DE RAIOS-X4					
2.1	Os Raios-X					
2.2	Fluorescência de Raios-X	5				
2.2	2.1 Dispersiva em Comprimento de Onda	7				
2.2	2.2 Dispersiva em Energia					
2.3	Absorção da Radiação	9				
3.1	TIPOS DE LUBRIFICANTES					
3.	1.1 Óleos Lubrificantes Minerais					
3.	1.2 Óleos Lubrificantes Sintéticos					
3.	1.3 Óleos Lubrificantes Semi-Sintéticos					
3.2	PROPRIEDADES DOS LUBRIFICANTES					
3.2	2.1 Viscosidade					
3.2	2.3 Densidade					
3.2	2.4 Ponto de Fulgor					
3.3	ADITIVOS					
3.4	DEGRADAÇÃO E CONTAMINAÇÃO					
3.5	LUBRIFICAÇÃO NOS AUTOMÓVEIS					
3	3.5.1 Classificação de Óleo Lubrificante Automóvel					
3.6	LUBRIFICAÇÃO NOS NAVIOS					
3.7	LUBRIFICAÇÃO NOS AVIÕES	21				
3.1	7.1 Classificação de Óleo Lubrificante para a Aviação	22				
4.2	DETECTOR AMPTEK XR-100 SDD					
4.3	Amostra	24				
4.4	ANÁLISE DE ÓLEOS E FILTROS POR EDXRF					
4.4	4.1 Amostras de Óleos de Automóveis					
4.4.2 Amostras de Filtros de Automóveis34						
4.4.3 Amostras de Óleo de Navios35						
4.4.4 Amostra de Óleo de Avião36						
5.1 SIMULAÇÃO DO PROTÓTIPO						

5	5.2 DIMENSIONAMENTO DO PROTÓTIPO41		
	5.2.1	Características do Cristal	41
	5.2.1.1 Â	ngulo do Cristal	41
	5.2.1.2 E	Espessura do Cristal	42
	5.2.2	Resolução espacial do protótipo	43
	5.2.3	Características do Colimador	44
	5.2.4	Escala de Energia	49
	5.2.5	Blindagem e Atenuação dos Raios-X	49
	5.2.6	Desenho do Protótipo	50
	5.2.7	Custos Associados	53
	Apêndice	e 1- Tabelas de Amostras Recolhidas	61
	Apêndice	e 2- Tabelas com Quantificação das Partículas de Desgaste, Contan	ninantes
	e Aditivo	S	66
Apêndice 3- Projecções Ortogonais Suporte de Amostras Liquidas			

Lista de Figuras

Figura 1.1. Esquema ilustrativo do sistema pretendido (adaptado de [2])	2
Figura 2.1. Representações do espectro electromagnético, em que os comprimentos de ond	a estão
em metros (m), na região visível do espectro, na escala de baixo os comprimentos d	e onda
estão em nanómetros (nm) e as frequências em Hertz (Hz) (adaptado de [5])	
Figura 2.2. Esquema de raios-X característicos emitidos por um átomo (adaptado de [6])	5
Figura 2.3. Representação do sistema de espectroscopia de fluorescência de raios-X dispers	siva em
comprimento de onda (WDXRF) (adaptado de [9][11])	
Figura 2.4. Representação do sistema de espectroscopia de fluorescência de raios-X dispers	siva em
energia (EDXRF) (adaptado de [9][11])	9
Figura 2.5. Absorção de Raios-X pela matéria	9
Figura 3.1. Esquema de Lubrificação no Motor de Automóvel (adaptado de [28])	16
Figura 3.2. Classificação de óleo lubrificante da SAE (adaptada de [31])	17
Figura 3.3. Motor Pielstick de 16 cilindros, do Navio Bérrio da Marinha Portuguesa à es	querda
encontram-se as diferentes cabeças dos 8 cilindoros, à direita é possível observar a	a parte
inferior do motor (estão presentes os dois motores do navio)	19
Figura 3.4. Cilindro do motor Pielstick	20
Figura 3.5. Motor MTU de 12 cilindros, do Navio Cacine da Marinha Portuguesa	20
Figura 3.6. Esquema de Lubrificação por Salpique (adaptado de [33])	21
Figura 3.7. Esquema de Lubrificação por Pressão (adaptado de [30])	21
Figura 4.1. Tubo de Raios-X Amptek- ECLIPSE II	23
Figura 4.2. Detector Amptek XR-100 SDD	24
Figura 4.3. Utensílios utilizados para a recolha das amostras de óleo. A- Seringa grad	uada e
esterilizada; B-Frasco para amostras de óleo; C- Caixa de Petri, para análise do óleo	25
Figura 4.4. Etiqueta colocada na zona lateral do frasco, para obtenção de toda a info	rmação
relativa à amostra de óleo lubrificante	25
Figura 4.5. Desenho de suporte para as amostras liquidas, em SOLIDWORKS	
Figura 4.6. Suporte para as amostras de óleo	
Figura 4.7. Montagem completa para análise de amostras de óleo, à esquerda sem a amo	stra de
óleo; à direita com amostra de óleo	
Figura 4.8. Suporte para as amostras sólidas	27
Figura 4.9. Montagem para análise de amostras sólidas	27
Figura 4.10. Comparação de quantificações de partículas do óleo lubrificante de carros da	mesma
marca (Mercedes) e movidos a diesel	
Figura 4.11. Comparação de quantificações de partículas do óleo lubrificante de carros da	mesma
marca (Opel), com o mesmo tipo de óleo lubrificante (5W30), movidos a diesel	e com
aproximadamente 100.000km	29

Figura 4.12. Comparação de quantificações de partículas do óleo lubrificante de carros da m marca , com o mesmo tipo de óleo lubrificante (10W40) e com aproximadamente 10000	iesma)0km. 20
Figura 4.13. Comparação de quantificações de partículas do óleo lubrificante de carros c mesmo tipo de óleo lubrificante (10W40) e com aproximadamente 200.000km	30 om o 30
Figura 4.14. Comparação de quantificações de partículas do óleo lubrificante de carros da m	esma
década (90) e movidos a gasolina.	31
Figura 4.15. Comparação de quantificações de partículas do óleo lubrificante de carros da m	iesma
década (2000) e movidos a gasolina.	32
Figura 4.16. Comparação de quantificações de partículas do óleo lubrificante de carros da m	esma
marca (Opel), da mesma década (2010) e movidos a <i>diesel</i>	32
Figura 4.17. Comparação de quantificações de partículas do óleo lubrificante do mesmo carro 190000km e 200000km	com 33
Figura 4.18. Comparação de quantificações de partículas do óleo lubrificante e do correspondente, para dois carros diferentes, nomeadamente o #O53 e #O88	filtro 34
Figura 4.19. Amostra de filtro de automóvel danificada	35
Figura 4.20. Análise de óleos lubrificantes das embarcações Bérrio, Cacine, Figueira da Foz e	Corte
Real	35
Figura 4.21. Espectros de amostras de óleo de automóvel, navio e aeronave	36
Figura 4.22. Análise de óleo da aeronave A18 e de óleo lubrificante para aeronaves novo Figura 5.1. Representação do sistema de detecção dos contaminantes nos óleos lubrificantes	37
Figura 5.2. Representação das distâncias entre os componentes	39
Figura 5.5. Consola onde se electuam as anerações das variaveis para cada simulação Figura 5.4. Resultados reproduzidos pela simulação do protótipo	40
Figura 5.5. Espectro com os elementos seleccionados numa simulação	40
Figura 5.6. Representação do protótipo e ângulos de difracção, com representação de espectro	para
duas energias	43
Figura 5.7. Gráfico da largura a meia altura de quatro energias em função do diâmetro da fon	te. 44
Figura 5.8. Representação das variáveis presentes na distância entre o colimador e o cristal	45
Figura 5. 9. Gráfico que relaciona as variáveis que caracterizam o colimador	48
Figura 5.10. Gráfico da posição no detector de cada pico de energia	49
Figura 5.11. Protótipo que será implementado no interior do cárter	51
Figura 5.12. Esquema de localização do protótipo no cárter.	51 52
Figura 5.14. Vista em corte do sistema de análise.	52

Lista de Tabelas

Tabela 3.1. Fontes e elementos de desgaste. [14][16] 12
Tabela 3.2. Valores limites para elementos de desgaste, contaminação e aditivos, para um óleo
lubrificante de motor Diesel. ^[29] 16
Tabela 3.3. Navios da Marinha Portuguesa e a sua capacidade de óleo lubrificante. Fonte:
Engenheiro Pereira da Fonte, da Marinha Portuguesa19
Tabela 3.4. Classificação de Óleo Lubrificante para a Aviação
Tabela 5.1. Variáveis de Entrada da Simulação41
Tabela 5.2. Espessura do cristal para diferentes materiais42
Tabela 5.3. Informação sobre a atenuação do Chumbo, Tântalo e Tungsténio
Tabela 5.4. Valores de espessura e massa para diferentes materiais
Tabela 5.5. Custos associados a cristais de Silício e Quartzo de várias espessuras, informação
fornecida pela Saint-Gobain Crystals53
Tabela 8.1.1. Amostras de óleo lubrificante usado de automóveis
Tabela 8.1.2. Amostras de óleo lubrificante novo64
Tabela 8.1.3. Amostras de filtro de óleo automóvel. 65
Tabela 8.1.4. Amostras de óleo lubrificante usado de barco65
Tabela 8.1.5. Amostra de óleo lubrificante de avião65
Tabela 8.2.1. Quantificações de partículas nas amostras de óleo lubrificante de motor de
automóveis, usado
Tabela 8.2.2. Quantificações de partículas nas amostras de óleo lubrificante novo
Tabela 8.2.3. Quantificações de partículas nos filtros de óleo.
Tabela 8.2.4. Quantificações de partículas nas amostras de óleo lubrificante de navios
Tabela 8.2.5. Quantificações de partículas nas amostras de óleo lubrificante de avião (#OA1) 80

Lista de Acrónimos e Símbolos

API	American Petroleum Institute	
CCD	Charge-Coupled Device	
E	Energia	
EDXRF	Energy Dispersive X-ray Fluorescence	
Ge(Li)	Gremânio(Litio)	
MTU	Motor and Turbine Union	
NaI(Tl)	Iodeto de Sódio(Telúrio)	
ppm	Partes por Milhão	
SAE	Society of Automotive Engineers	
SDD	Silicon Drift Detector	
Si(Li)	Silício(Litio)	
WDXRF	Wavelength Dispersive X-ray Fluorescence	
XRF	X-ray Fluorescence	
n	Número Quântico do Nível Electrónico	
n'	Número de Ordem	
ρ	Densidade	
μ(E)	Coeficiente de Atenuação	
$\mu_{m}(E)$	Coeficiente de Atenuação Mássico	
λ	Comprimento de Onda	

1

Introdução

Um bom lubrificante pode aumentar a vida útil de cada motor e uma cuidada análise pode prevenir substituições desnecessárias. Uma das questões principais prende-se com o facto de conseguirmos saber se, em determinado momento, o óleo já se encontra contaminado com partículas de desgaste, e se será necessário proceder à sua troca.

Se por um lado, as mudanças do óleo em intervalos de tempo reduzidos traduzem-se em prejuízos financeiros, uma vez que desperdiçamos parte do lubrificante que ainda apresentava boas condições. Por outro lado, as mudanças retardadas levam à deterioração dos lubrificantes e provocam um prejuízo ao nível da duração dos componentes do motor.

Vários testes, efectuados a óleos lubrificantes usados nos motores, indicam que a contaminação e degradação são as principais causas de prejuízo à sua eficiência. Esta, tende a diminuir ao longo do tempo, tornando-se indispensável uma análise regular para a obtenção de um bom desempenho do lubrificante e, consequentemente, do motor.

Existem dois objectivos principais para esta análise, a identificação das condições do óleo e a identificação de possíveis falhas do equipamento. Se os objectivos anteriores forem cumpridos, é possível garantir uma redução nos custos de manutenção e a protecção do equipamento.

Este projecto pretende solucionar estas questões, tendo como objectivo o desenvolvimento de um sistema que detecta partículas de desgaste que se depositam nos lubrificantes dos motores, com um baixo custo, menor que 100€ (quando fabricado em grande quantidade) e que pode ser instalado directamente no motor. Este sistema recorre à técnica de fluorescência de raios-X, uma técnica desenvolvida desde a década de 60, que já provou ser

eficaz na detecção e quantificação de elementos presentes em vários tipos de amostras analisadas.^[1]

No âmbito desta tese de mestrado vamos explorar uma solução baseado no metodo de fluorescência de raios-X dispersivo em comprimento de onda. Para esse fim, foi projectado um protótipo com recurso a simulação. O sistema de detecção proposto é constituído por uma fonte de raios-X, um cristal dispersivo, filtros e colimadores com o objectivo de colimar e filtrar a radiação proveniente quer da fonte, quer da amostra e um detector, estando este sistema (esquema ilustrativo na Figura 1.1^[2]) descrito no próximo capítulo.

Figura 1.1. Esquema ilustrativo do sistema pretendido (adaptado de [2]).

Este protótipo será construido com um sistema de fluorescência de raios-X dispersivos em comprimento de onda, pois torna-se uma melhor solução em relação ao dispersivo em energia, uma vez que se consegue um sistema com uma melhor resolução em relação às condições indicadas e é possível conseguir um sistema mais barato, se conseguirmos um bom preço em relação aos cristais e detectores, produzidos em grande escala.

O grande desafio deste trabalho consiste na criação de um sistema que possa ser instalado directamente no motor (mais concretamente no cárter), dando informação, em tempo real, do estado do lubrificante do motor. Tal como dito anteriormente, este desafio foi proposto pela empresa *NineSigma*. Esta empresa promove a ligação entre organizações com recursos de inovação externos, de modo a acelerar a inovação nos sectores privados, públicos e sociais.^[3]

A *NineSigma* permite que os seus clientes consigam resolver os constantes desafios, integrando novos conhecimentos e capacidades nas suas organizações. Desde a sua criação, foi

parceira de cerca de 500 empresas em praticamente todos os sectores industriais, como a indústria aeroespacial, indústria automóvel e inclusivamente na área da saúde ^[4]. Com base na experiência de vários anos em espectroscopia de raios-X, o nosso grupo aceitou este desafio e a tese que se segue é parte deste projecto industrial.

2

Fundamentos Teóricos de Fluorescência de Raios-X

2.1 Os Raios-X

Os raios-X são ondas electromagnéticas de alta energia, com comprimento de onda compreendidos entre 10^{-8} e 10^{-11} m, que correspondem a frequências entre 10^{17} e 10^{21} Hz. O espectro de raios-X constitui apenas uma pequena porção de todo o espectro electromagnético, como é possível observar na figura 2.1.

Figura 2.1. Representações do espectro electromagnético, em que os comprimentos de onda estão em metros (m), na região visível do espectro, na escala de baixo os comprimentos de onda estão em nanómetros (nm) e as frequências em Hertz (Hz) (adaptado de [5]).

Cada fotão é descrito em termos do seu comprimento de onda (λ) ou da sua frequência (v), ou, consequentemente, da sua energia *E*.

2.2 Fluorescência de Raios-X

Quando um elemento de uma amostra é ionizado por um fotão de raios-X, os electrões dos níveis menos ligados realizam um processo de cascata, como mostra a figura 2.2.

Ao realizar este processo de cascata podem ser emitidos raios-X, que contêm informação específica do comprimento de onda de certas transições para cada elemento que foi ionizado. Assim, pode ser realizada uma análise qualitativa dos elementos presentes numa amostra através do comprimento de onda dos raios-X detectados. A intensidade de cada risca espectral está relacionada, de uma forma não linear, com a concentração de um dado elemento na amostra, que pode ser inferida através do uso de parâmetros fundamentais de raios-X como o redimento de fluorescência, secções eficazes de fotoionização, etc, que se encontram tabelados, e das propriedades do aparelho, como a eficiência do detector, o espectro de excitação proveniente do tubo, a geometria, etc.^[6]

Cada transição electrónica constitui uma perda de energia para o átomo inicialmente com uma lacuna numa camada interna, sendo esta energia emitida na forma de um fotão de raios-X, de energia característica bem definida para cada elemento e para cada transição.

Para haver fluorescência de raios-X, há necessidade de se retirar electrões localizados nas camadas mais internas dos átomos, ou seja nas camadas K, L ou M, tipicamente. Assim, a energia mínima do feixe incidente tem que ser superior à energia de ligação do electrão nessa camada.

Juntando a teoria atómica de Bohr e tecendo-se algumas considerações sobre as experiências de Moseley^[7], obtém-se a seguinte equação, que permite o cálculo aproximado dessa energia para electrões das camadas K e L, dos átomos de um determinado elemento.^[8]

$$E = \frac{m e^4 (Z - b)^2}{8\varepsilon_0^2 h^2 n^2} \qquad (2.1)$$

onde *E* é a energia de ligação, *m* é a massa do electrão, *e* é a carga do electrão, *Z* é o número atómico do elemento emissor de raio-X, *b* é a constante de Moseley, ε_0 é a permitividade no vácuo, *h* é a constante de Planck e *n* é o número quântico do nível electrónico. Da eq. (2.1) pode verificar-se que, a energia de uma determinada transição varia com o número atómico. É este facto que nos permite distinguir a presença de vários elementos numa mesma amostra quando analisada com fluorescência de raios-X dispersiva em comprimento de onda (WDXRF, tradução de *wavelength dispersive X-ray fluorescence*) ou fluorescência de raios-X dispersiva em energia (EDXRF, tradução de *energy dispersive X-ray fluorescence*).

Após ocorrer a ionização, o electrão da camada mais externa tende a ocupar a lacuna que foi criada, desse modo há emissão de raios-X, de energia característica, cujo valor depende da diferença de energia de ligação do electrão nos dois níveis quânticos (como mostra a equação 2.2).^[8]

$$E_x = E_{ni} - E_{nf} \qquad (2.2)$$

onde E_x é a energia do raio-X característico emitido, E_{ni} e E_{nf} são as energias dos níveis inicial e final, respectivamente, e podem ser obtidas num primeira aproximação pela equação de Moseley (2.1)

A análise por fluorescência de raios-X divide-se em duas fases: ionização dos elementos que constituem a amostra e/ou dispersão dos raios-X característicos emitidos pela amostra e detecção desses raios-X.

Actualmente, os instrumentos de fluorescência de raios-X podem ser divididos em duas classes, por um lado a técnica de WDXRF, por outro a técnica de EDXRF. Os equipamentos de fluorescência de raios-X que fazem uso de detectores semicondutores na detecção e separação dos raios-X emitidos pela amostra, são denominados de EDXRF. Em equipamentos que fazem uso da dispersão por comprimento de onda, é necessário conhecer a relação entre o comprimento de onda dos raios-X característicos e o número atómico do elemento a ser analisado, recorrendo-se à equação de *Planck*^{[8][9]} e Moseley^[7].

$$E = \frac{h c}{\lambda} \qquad (2.3)$$

onde *E* é a energia de ligação (J), *h* é a constante de Planck, *c* é a constante da luz no vácuo e λ é o comprimento de onda do elemento.

Ao incluir valores numéricos na equação (2.3) obtém-se a seguinte equação, que nos vai ser útil para futuros cálculos.

$$\lambda = \frac{12,394}{E} \qquad (2.4)$$

onde o comprimentos de onda (λ) vem em Å e a energia (*E*) em keV.

Das equações 2.1 e 2.3, tem-se que:

$$\lambda = \frac{8{\varepsilon_0}^2 h^2 n^2}{m e^4 (Z - b)^2}. \ hc \qquad (2.5)$$

Analisando a equação 2.5, pode-se concluir que o comprimento de onda (λ) do raio-X emitido é inversamente proporcional ao quadrado do número atómico Z do elemento excitado.

2.2.1 Dispersiva em Comprimento de Onda

Neste tipo de análise, a fluorescência de raios-X emitida pela amostra é dirigida para uma rede de difracção. A rede de difracção utilizada normalmente para raios-X é um cristal que pode ser monoelementar ou ser composto por mais de um elemento. Ao variar o ângulo de incidência e o correspondente ângulo de saída do cristal, existe uma selecção de comprimentos de onda com uma largura de banda muito restrita. Esses comprimentos de onda podem ser calculados pela equação de Bragg.^[10]

$$\lambda n' = 2 d \sin \theta$$
 (2.6)

onde λ é o comprimento de onda dos raios-X difractados, *d* é a distância interplanar do cristal difractor, θ é o ângulo entre a direcção do feixe de raios-X incidente e a superfície do cristal e *n*' é um número de ordem (número inteiro).

Sempre que se pretende seleccionar comprimentos de onda de outros elementos, o ângulo de incidência θ deve ser alterado.

Após a selecção do fotão desejado, é necessário que haja a sua detecção, para que isso aconteça é colocado um detector/contador na direcção do feixe de raio-X difractado. Na figura 2.3 é possível observar todos os constituintes deste sistema.^{[9][11]} No sistema mais usual, o feixe difractado forma um ângulo de 2θ em relação à direcção do feixe incidente no cristal e assim, deve haver uma rotação do cristal em sincronismo com a rotação do detector de raios-X.^[9]

Figura 2.3. Representação do sistema de espectroscopia de fluorescência de raios-X dispersiva em comprimento de onda (WDXRF) (adaptado de [9][11]).

Para o caso de sistemas onde as fontes e os cristais são fixos, existem detectores capazes de fazer a separação espacial dos fotões difractados pelo cristal, ou seja, capazes de medir qual o local onde o raio-X foi detectado. Entre estes encontram-se os extremamente comuns CCD's (*Charge-Coupled Device*), embora nos últimos anos os detectores gasosos tenham ganho preponderância devido ao seu baixo custo e capacidade de fabricar detectores com grandes áreas.^{[12][13]}

Na análise por dispersão por comprimento de onda são utilizados, além dos detectores contador proporcional e cintilador sólido, alguns componentes electrónicos. Assim, os pulsos produzidos por esses detectores são enviados a um medidor de taxa de contagem. Desse modo, obtêm-se um espectro, onde a altura do pico é proporcional à intensidade do raio X emitido por um elemento e este por sua vez, permite inferir a concentração do elemento na amostra.^[8]

2.2.2 Dispersiva em Energia

Dispersão de energia é o outro método analítico em fluorescência de raios-X, onde os raios-X são seleccionados através dos pulsos electrónicos produzidos num detector de estado sólido, sendo a intensidade destes pulsos directamente proporcional às energias dos raios-X. Os detectores mais utilizados são os cintiladores sólidos de NaI(Tl) e os semicondutores de Si(Li), Ge(Li) e, mais recentemente, os Silicon Drift Detectors (SDD).^[9]

Na figura 2.4 é possível observar o esquema de um espectrómetro de raios-X dispersivo em energia.^{[9][11]} É de notar que nesta técnica, ao contrário de WDXRF, não há necessidade de rotação síncrona entre o detector e o cristal de difracção, não havendo partes móveis.^[10]

Figura 2.4. Representação do sistema de espectroscopia de fluorescência de raios-X dispersiva em energia (EDXRF) (adaptado de [9][11]).

Na montagem dispersiva em energia utiliza-se um analisador de pulsos multicanal. Neste caso, a área sob o pico também é proporcional à intensidade do raio X emitido por um elemento e consequentemente está relacionado com a sua concentração na amostra.^[9]

2.3 Absorção da Radiação

Quando um dado material é atravessado por um feixe de Raios-X, ocorrem várias interacções, que fazem com que o feixe emergente (I) tenha uma intensidade menor que a do feixe incidente (I_0). Essa atenuação é dada pela Lei de Lambert-Beer que, relaciona a intensidade do feixe incidente proveniente do feixe de raios-X, com a intensidade do feixe emergente, através da espessura e coeficiente de atenuação do material, como mostra a figura 2.5.

Figura 2.5. Absorção de Raios-X pela matéria.

A lei de Lambert-Beer é dada pela seguinte equação.^[14]

$$I = I_0 e^{-\mu(E).x}$$
 (2.7)

onde *I* é a intensidade do feixe após atravessar uma espessura de material *x*, I_0 é a intensidade do feixe que sai do tubo de raio-X e μ é o coeficiente de atenuação linear, sendo este coeficiente válido apenas para uma única energia. Também se pode definir o coeficiente de atenuação mássico μ_m (em cm²g⁻¹), como mostra a equação (2.8).

$$\mu_m = \frac{\mu}{\rho} \qquad (2.8)$$

O coeficiente de absorção mássico é característico para cada substância e, descreve a probabilidade de um fotão ser absorvido ou disperso numa outra direcção por um determinado elemento.^[15] Assim, uma vez que, a radiação é atenuada ao passar pelo lubrificante, é necessário conhecer a densidade de cada lubrificante, de modo a poder quantificar a presença de cada elemento no óleo.

3

Caracteristicas e Finalidade de Lubrificantes em Motores de Combustão

Os óleos lubrificantes têm um papel fundamental para o bom funcionamento de um motor visto que são responsáveis pela **redução do atrito** entre peças e, consequentemente, pela redução do desgaste do motor.

Contudo, estes óleos não se destinam apenas à lubrificação dos diferentes componentes. Outra função importante do lubrificante é a **refrigeração**, sendo através do óleo lubrificante que se consegue extrair o calor gerado pelo contacto entre as superfícies em movimento. No caso dos motores de combustão interna, este calor é transferido para o óleo, que por sua vez passa por um sistema de arrefecimento.

Outra das funcionalidades é a capacidade de **vedar** a câmara de combustão, impedindo assim a saída de lubrificante e a entrada de contaminantes externos.

Por fim, mas não menos importante, vem a **limpeza** do motor, este óleo é também responsável por retirar as partículas resultantes do processo de combustão, mantendo-as em suspensão no óleo, evitando a sua deposição no fundo do cárter.

A Tabela 3.1 dá a conhecer alguns dos elementos das partículas em suspensão nos lubrificantes, normalmente presentes nos óleos lubrificantes, e as possíveis origens.

Elemento	Fontes Típicas
Alumínio	Pistões, mancais, espaçadores, calços e arruelas
Antimónio	Ligas próprias
Bário, Magnésio	Aditivos para lubrificantes
Boro	Vedação hidráulica
Cálcio	Aditivos para lubrificante e alguns mancais
Crómio	Cilindros, anéis, refrigerante, virabrequim, engranagens capas dos pristões
Cobre	Mancais, buchas, metal dos rolamentos anti-fricção e peças de bronze
Ferro	Cilindros, engrenagem, rolamentos, guias das válvulas, balacim, anéis dos pistões, mancais, ferrugem, virabrequim, entre outros
Chumbo	Mancais, gasolina e tintas
Manganês	Válvulas, bombas, sistema de exaustão
Molibdénio	Anéis dos pistões (apenas em motores Diesel), motores eléctricos e aditivos para lubrificante
Níquel	Eixos, anéis, ligas metálicas das válvulas, pás das turbinas e metais dos rolamentos
Silício	Aditivos anti-espumantes
Estanho	Solda e mancais
Titânio	Molas, válvulas e componentes de turbinas
Zinco	Aditivos, mancais e chapas galvanizadas

Tabela 3.1. Fontes e elementos de desgaste.^{[14][16]}

3.1 Tipos de Lubrificantes

Todos os lubrificantes têm as capacidades anteriormente descritas, porém não desempenham todos essas funções da mesma maneira.

3.1.1 Óleos Lubrificantes Minerais

Este tipo de óleo lubrificante é feito directamente a partir do petróleo combinado com outros minerais, é muito apelativo por ser o mais barato e comum no mercado. São indicados para os motores convencionais de qualquer tipo de cilindrada, têm uma viscosidade adaptada à
temperatura de funcionamento do motor, atingindo os principais pontos de lubrificação mesmo a baixas temperaturas. Um dos problemas deste tipo de óleo resulta do facto de, com o passar do tempo, provocar carbonização principalmente no cabeçote e na zona das válvulas, sendo necessário a utilização de aditivos para contornar esta situação.^[17]

3.1.2 Óleos Lubrificantes Sintéticos

O óleo lubrificante sintético vem responder às exigências dos motores modernos mais potentes, este tipo de óleo é criado em laboratório a partir de hidrocarbonetos que não estão presentes no petróleo. Os óleos sintéticos possuem uma curva de viscosidade quase constante, independentemente da temperatura, dentro das gamas de funcionamento do motor e um maior desempenho, garantindo uma melhor lubrificação do que a dos minerais. Os óleos sintéticos, regra geral mais caros, permitem uma maior lubrificação reduzindo as perdas de energia através de uma melhor dissipação de calor, aproveitando-as como energia mecânica proporcionando uma maior economia de combustível.^[18]

3.1.3 Óleos Lubrificantes Semi-Sintéticos

Neste caso tem-se uma mistura de lubrificante mineral com o sintético, com um desempenho e um custo associado intermediário entre um e o outro. Uma vez que tem menor quantidade de compostos de carbono, são recomendados para motores mais potentes que atingem um nível de rotação acima da média. Provocam menos carbonização nas câmaras de combustão, o que facilita a entrada e saída dos gases de admissão e escape. Outra vantagem deste tipo de óleo é a película protectora que consegue formar nas paredes dos cilindros, diminuindo o atrito entre as partes móveis durante o arranque.^[18]

3.2 Propriedades dos Lubrificantes

As principais propriedades físicas dos óleos lubrificantes são a viscosidade, o índice de viscosidade, a densidade e o ponto de fulgor.

3.2.1 Viscosidade

A viscosidade é a mais significativa e indica a dificuldade com que o óleo escoa. Quanto mais viscoso for um lubrificante, melhor será a sua capacidade de lubrificar as peças móveis, pois torna-se mais difícil de escorrer e dissipar-se. A viscosidade dos lubrificantes varia com a temperatura e com a pressão. Com o aumento da temperatura, a viscosidade tende a diminuir e o óleo escorre com maior facilidade.^[19] Por sua vez, quanto maior for a pressão, maior deve ser a viscosidade, para poder suportá-la, e assim evitar a ruptura da camada protectora formada pelo

lubrificante nas peças em movimento.^[20] Aplicando este conceito ao protótipo que irá ser construído, caso o sensor estiver completamente mergulhado no óleo a única coisa que verdadeiramente interessa para a nossa quantificação é a densidade, se estiver colocado numa parede, a viscosidade pode ser importante porque a camada de óleo que vai ficar na janela do espectrómetro pode ser mais ou menos espessa e alterar os resultados.

3.2.2 Índice de viscosidade

O índice de viscosidade exprime a variação da viscosidade com a temperatura, é um número adimensional que indica o efeito de mudança de temperatura sobre a viscosidade do óleo. Quanto mais elevado for este valor menor será a variação da viscosidade, quando o lubrificante for submetido a diferentes valores de temperatura.^{[19][21]}

3.2.3 Densidade

Em relação à densidade dos lubrificantes, esse é um parâmetro indicativo da contaminação presente no próprio lubrificante, facto que terá de ser tido em conta aquando do elaboração do algoritmo de quantificação dos metais de desgaste, uma vez que, com o aumento da densidade, a atenuação do feixe de raios-X também irá aumentar.^[22]

3.2.4 Ponto de Fulgor

O ponto de fulgor, ou ponto de inflamação, é a menor temperatura na qual um combustível liberta vapor em quantidade suficiente para formar uma mistura inflamável por uma fonte de calor externa.^[23] O conhecimento do ponto de fulgor permite avaliar as temperaturas de serviços que um óleo lubrificante pode suportar com segurança absoluta. Os óleos cujo ponto de fulgor é inferior a 150 °C não devem ser empregados para fins de lubrificação. Sabendo o ponto de fulgor do óleo lubrificante é possível avaliar o nível de contaminação por combustível no óleo.^[24] O ponto de fulgor para os óleos lubrificantes no geral é de 120° a 300°.^[25]

3.3 Aditivos

Para melhorar as propriedades dos lubrificantes estão presentes alguns aditivos, que consistem em compostos químicos especiais, cuja função é protegerem as superfícies metálicas lubrificadas.

Alguns destes compostos são:

- Os anticorrosivos^[22], que ajudam na defesa da superfície metálica contra o ataque químico provocado pela água ou outros contaminantes;

- Os anti-desgaste^[22], que formam um filme que protege as superfícies metálicas;

- Os anti-oxidantes, que têm como objectivo aumentar a resistência do lubrificante à oxidação^[22], estes aditivos são constituídos por compostos sulfurosos, fosfatos, fenóis, entre outros. Estes compostos conseguem atrasar essa reacção.^[21]

- Os detergentes, estes evitam que os produtos de oxidação do óleo e outros compostos insolúveis se aglomerem em partículas de grandes dimensões.^[21]

- Os estabilizadores do índice de viscosidade^[22], que evitam com que os óleos lubrificantes variem a sua viscosidade com alterações da temperatura;

Os metais mais comuns presentes nos aditivos de óleo lubrificante incluem Magnésio, Bário, Cálcio, Fósforo, Molibdénio e Zinco.^[26]

3.4 Degradação e Contaminação

A degradação define-se como a causa pela alteração das propriedades físicas e químicas do lubrificante, ou seja, a capacidade de lubrificar, limpar ou refrigerar diminui devido às diferentes condições a que é submetido dentro do motor, como por exemplo as altas temperaturas, os materiais corrosivos, contaminações externas, entre outros ^[14], uma vez que com o uso, as ligações dos hidrocarbonetos vão se dissociando.

Neste caso, os metais considerados de desgaste no óleo incluem Ferro, Crómio, Níquel, Alumínio, Cobre, Chumbo, Estanho, Cádmio, Prata, Titânio e Vanádio.^[26]

A contaminação é um dos motivos da degradação do óleo lubrificante e define-se como a presença de materiais estranhos presentes no óleo, como partículas metálicas, pó proveniente da admissão, combustível, entre outros.^[14]

Quando se trata de metais contaminantes, pode considerar-se o Silício, Boro e Potássio.^[26]

3.5 Lubrificação nos Automóveis

O sistema de lubrificação típico de um motor de automóvel é composto por diversos componentes que obrigam o óleo a circular por todas as peças móveis, controlam a pressão do mesmo e filtram-no de modo a que exista uma lubrificação adequada em todas as áreas de atrito.Os principais componentes deste sistema de lubrificação são: bomba de óleo, filtro de óleo, canais de lubrificação de mancais e bielas, entre outros.^[27]

Ao sistema onde se deposita grande parte do óleo lubrificante dá-se o nome de cárter. Situa-se na parte inferior do motor e é onde o óleo se encontra a uma temperatura mais baixa. A partir deste local, o óleo é sugado pela bomba de óleo, na qual existe um filtro de sucção para a retenção das partículas metálicas de maiores dimensões e outras impurezas que podem danificar a bomba.^[27] Por fim, o óleo passa por diversos canais, atingindo todos os componentes que necessitam de lubrificação. A figura 3.1 representa esse sistema, e mostra o caminho tomado pelo óleo lubrificante.

Para cada marca de automóvel existe um valor limite para as partículas de cada elemento, a tabela 3.2 mostra em média a quantidade desses limites.

Tabela 3.2. Valores limites para elementos de desgaste, contaminação e aditivos, para um óleo

lubrificante de motor Diesel. ^[25]					
Desgaste	e (ppm)	Contaminaçã	io (ppm)	Aditiva	ção (ppm)
Crómio	4 a 28	Alumínio	12 a 55	Bário	2 a 20

8				3 (III)	
Crómio	4 a 28	Alumínio	12 a 55	Bário	2 a 20
Cobre	25 a 60	Boro	10 a 500	Cálcio	600 a 5000
Ferro	80 a 180	Potássio	2 a 30	Magnésio	100 a 15000
Molibdénio	4 a 20	Sódio	5 a 30	Fósforo	600 a 2000
Níquel	1 a 3	Silício	15 a 30	Zinco	2000
Chumbo	10 a 30				
Estanho	12 a 24	•			
Titânio	1 a 3				

3.5.1 Classificação de Óleo Lubrificante Automóvel

A classificação dos lubrificantes surgiu da necessidade de padronizar os diferentes tipos de óleo de acordo com as suas funções, composições, características físicas, entre outros. Actualmente existem vários órgãos reguladores que classificam os óleos lubrificantes, sendo que os mais importantes são a *Society of Automotive Engineers* (SAE) e o *American Petroleum Institute* (API).^[22]

A classificação feita pela SAE é feita associando-se um número puro à viscosidade de cada óleo, determinada em laboratório. Quanto maior o número, maior será a viscosidade. Esta classificação só tem em conta a viscosidade, sendo que outras características não são consideradas.^[30] Nesta classificação os óleos são divididos em dois grupos, os óleos para climas com altas temperaturas, e óleos para climas com baixas temperaturas (óleos de grau de inverno),que são os menos viscosos. Os dois grupos com diferenças entre si, tem um só objectivo a protecção do motor. Os óleos para temperaturas mais baixas vêm identificados com a letra W (do inglês *Winter*), como por exemplo SAE 10W40.

Figura 3.2. Classificação de óleo lubrificante da SAE (adaptada de [31]).

Outro sistema de identificação é o API que, em conjunto com a ASTM (*American Society for Testing and Materials*), elaborou especificações que definem os níveis de desempenho dos óleos lubrificantes devem cumprir, isto é, tem em conta o tipo de serviço a que a máquina estará sujeita. Os óleos são classificados por duas letras, a primeira indica o tipo de combustível do motor e a segunda o tipo de serviço.^[22]

3.6 Lubrificação nos Navios

No caso dos navios a lubrificação do motor processa-se da mesma maneira que nos automóveis, sendo uma das grandes diferenças a quantidade de litros de óleo lubrificante que este tipo de motores leva. Dependendo do tipo de motor marítimo, este valor pode ir desde os 70 aos 7500 litros, para proceder a uma correcta lubrificação. Estamos perante um aumento de aproximadamente de 14 a 1000 vezes mais do que um motor automóvel, o que acarreta custos significativos associados à sua manutenção.

Um dos factores prejudiciais, que não existe nos automóveis nem nos aviões, é a presença da água salgada. Nos motores marítimos que têm circulação de água salgada nos pistões, podem levar com que esta escorra para o interior do cárter, onde evapora, devido á elevada temperatura, e deixa o sal no seu interior. Os tubos de certas articulações que têm mancais pequenos ficam entupidos pelo sal e desgastam-se rapidamente.^[32] Para que o óleo não perca as suas propriedades lubrificantes é necessário proceder à sua limpeza, por norma é utilizado um filtro de óleo.

Estes filtros são feitos de substâncias porosas, como estopa, feltro, flanela em que o óleo, antes de penetrar no filtro, passa num coador de tela fina onde deixa as impurezas mais grossas.^[32] Contudo, a manutenção do óleo é indispensável para o bom funcionamento do motor.

O intervalo de tempo para a manutenção do óleo lubrificante varia de acordo com as normas do fabricante do motor em questão, no entanto o procedimento utilizado a bordo dos navios de guerra implica um acompanhamento continuado da condição do óleo lubrificante através de análises periódicas. Estas análises podem ser efectuadas em ambiente laboratorial através do envio de amostras, ou efectuadas a bordo regularmente, onde é possível avaliar o nível de acumulação de resíduos carbonosos no lubrificante, presença de água e a diluição do combustível no lubrificante através da medição da sua viscosidade, com um analisador permanente essas análises periódicas deixavam de ser necessárias.

Os custos associados a esta manutenção são muito variados, especificamente os motores dos navios da Marinha Portuguesa têm um contrato de fornecimento com a empresa de combustíveis Galp, pelo que para além de responder às exigências do fabricante, o óleo mais utilizado é um monogrado GALP Galaxia 40, cujo custo de 205 litros pode rondar os 1128,87€^[18], custos estes que se podem reduzir com uma análise contínua do estado do óleo lubrificante.

Na tabela 3.3 é possível observar os diferentes navios utilizados pela Marinha Portuguesa e a respectiva capacidade de óleo lubrificante.

Tabela 3.3. Navios da Marinha Portuguesa e a sua capacidade de óleo lubrificante. Fonte: Engenheiro Pereira da Fonte, da Marinha Portuguesa.

Navios	Cilindrada	Litros de Óleo Lubrificante
Pielstick	16 cilindros	7500 lts
Pielstick	12 cilindros	5000 lts
MTU	12 cilindros	2000 lts
MTU	8 cilindros	1000 lts
Motor Gerador	-	200 lts

A figura 3.3 diz respeito a um motor Pielstick de 16 cilindros do navio Bérrio, e mostra o tamanho do motor em questão. Este motor tem aproximadamente 3 metros de altura, sendo que o acesso à parte do primeiro bloco e ao cárter, faz-se por dois andares diferentes. Na figura 3.4 é possível observar um dos cilindros no motor, tendo como comparação a mão do engenheiro que segura a tampa da zona das válvulas.

Figura 3.3. Motor Pielstick de 16 cilindros, do Navio Bérrio da Marinha Portuguesa à esquerda encontram-se as diferentes cabeças dos 8 cilindoros, à direita é possível observar a parte inferior do motor (estão presentes os dois motores do navio).

Figura 3.4. Cilindro do motor Pielstick.

Na figura 3.5 temos um motor um pouco mais pequeno, um MTU de 12 cilindros, que se encontra no Navio Cacine.

Figura 3.5. Motor MTU de 12 cilindros, do Navio Cacine da Marinha Portuguesa.

3.7 Lubrificação nos Aviões

Para a lubrificação nos motores dos aviões existem dois sistemas distintos: a lubrificação por salpique e a lubrificação por pressão.^[33]

Lubrificação por Salpique

Trata-se de um sistema de lubrificação em que o óleo é espalhado dentro do motor devido ao movimento da biela, através do movimento do motor esta passa pelo óleo que se encontra no fundo do cárter, espalhando-o e lubrificando as peças no interior do motor. Este sistema evidencia-se pela simplicidade, contudo só se consegue lubrificar peças de difícil alcance com um tipo de lubrificação mais complexo.^[33]

Figura 3.6. Esquema de Lubrificação por Salpique (adaptado de [33]).

Lubrificação por Pressão

Neste tipo de sistema conta-se com o auxílio de uma bomba de óleo, que impulsiona o óleo lubrificante para as diversas partes do motor. De modo a efectuar-se a lubrificação do cilindro, faz-se o óleo entrar por um orifício no mancal, atravessar os canais dentro do eixo de manivelas e da biela, e finalmente chegar ao pistão, local de onde sai para o interior do cilindro. A figura 3.7 ilustra como se processa este tipo de lubrificação.^{[33][34]}

Figura 3.7. Esquema de Lubrificação por Pressão (adaptado de [30]).

Todas as partes do motor por onde o óleo passa é lubrificado, é um sistema muito eficiente mas muito complexo.

3.7.1 Classificação de Óleo Lubrificante para a Aviação

O óleo lubrificante de motores destinados à aviação tem uma classificação própria. A seguinte tabela (Tabela 3.4) mostra a correspondência desses valores com a classificação SAE.^{[33][34]}

Tabela 3.4. Classificação de Óleo Lubrificante para a Aviação.

Óleo para Aviação	SAE
65	30
80	40
100	50
120	60
140	70

4

Instrumentação e Análise de Amostras de Óleo por EDXRF

De modo a seleccionar as energias de interesse para o dimensionamento do espectrómetro que se pretende simular, foram realizadas medições num espectrómetro EDXRF de amostras reais de óleo lubrificante de automóveis, navios e aviões. Estas amostras, foram recolhidas em oficinas especializadas na manutenção de automóveis, na Base Naval do Alfeite e na Base Aérea Nº1. Com as análises às amostras de óleo, pretende-se perceber que quantidade de metais de desgaste o protótipo terá de ser capaz de medir.

4.1 Tubo de Raios-X Amptek- ECLIPSE II

O tubo de raio-X Amptek- ECLIPSE II é caracterizado por operar a baixa potência, no qual os valores máximos atingem os 30 kV e 50 μ A, não sendo preciso um arrefecimento externo. Contém uma janela de berílio com uma espessura de 12.5 μ m e um ânodo de Prata.^[35]

Figura 4.1. Tubo de Raios-X Amptek- ECLIPSE II.

4.2 Detector Amptek XR-100 SDD

O detector utilizado é o XR-100 SDD, sendo, uma versão melhorada dos detectores de raios-X com arrefecimento termoeléctrico da Amptek. É constituído por um detector de deriva de silício (SDD), ou seja, um fotodíodo de silício com um eléctrodo cuja configuração fornece uma capacitância muito baixa, obtendo assim, um ruído electrónico baixo, para frequências elevadas. . Esta configuração proporciona uma melhor resolução em energia e taxa de contagem, tendo uma resolução em energia de 5.9 keV, com uma largura de pico a meia altura de 125-140 eV.^[36]

Tal como se verifica com outros detectores XR-100 da Amptek, o fotodíodo é montado num sistema de arrefecimento termoeléctrico de duas fases, mantendo o detector e a sua entrada JFET, aproximadamente a -55 °C, reduzindo assim o ruído electrónico, sem que exista a necessidade de utilização de azoto líquido. Este tipo de arrefecimento possibilita uma alta performance deste equipamento, mantendo-o com pequenas dimensões, que tem sido um factor essencial para este tipo de espectrómetros XRF portáteis.^[36]

Figura 4.2. Detector Amptek XR-100 SDD.

4.3 Amostra

Para a realização das medições foram usadas diversas amostras de óleo lubrificante de automóvel (tabela 8.1.1), de barcos (tabela 8.1.4) e avião (tabela 8.1.5), presentes no anexo 1.

Todos os óleos presentes na tabela 8.1.1, foram obtidos em oficinas mecânicas de automóveis, que se disponibilizaram para colaborar neste trabalho. Os óleos descritos na tabela 8.1.4 e 8.1.5, foram fornecidos pela Marinha Portuguesa e pela Força Aérea Portuguesa, respectivamente.

Cada amostra foi recolhida dos motores e depositada num frasco igual ao presente na figura 4.3-B.

Figura 4.3. Utensílios utilizados para a recolha das amostras de óleo. A- Seringa graduada e esterilizada; B-Frasco para amostras de óleo; C- Caixa de Petri, para análise do óleo.

Todos os dados correspondentes aos automóveis, foram registados numa etiqueta colocada na zona lateral do frasco. Na figura 4.4, pode observar-se toda a informação recolhida em cada amostra de óleo.

FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISIDA	<u>Tese de Mestrado Integrado em</u> Engenharia Física				
MARCA AUTOMÓV	EL:; <i>DIESEL</i> GASOLINA				
TIPO DE ÓLEO: km ÓLEO:	; ANO AUTOMÓVEL:; ; km AUTOMÓVEL:;				
Cláudia Barata * 9	, 11910464 * cc.barata@campus.fct.unl.pt				

Figura 4.4. Etiqueta colocada na zona lateral do frasco, para obtenção de toda a informação relativa à amostra de óleo lubrificante.

Depois das amostras estarem no laboratório, foram retirados aproximadamente 12 ml de óleo, que por sua vez, foram colocados numa caixa de Petri (de plástico, cuja composição não interfere com a detecção dos metais de desgaste nos lubrificantes), como mostra a figura 4.3-C. Para que a quantidade de óleo a analisar fosse a mais rigorosa possível, utilizou-se uma seringa graduada e esterilizada para cada amostra, figura 4.3-A.

Para cada análise, posicionou-se o centro da amostra, coincidente com a intersecção do feixe emitido pelo tubo de raio-X e o centro do detector. Este alinhamento foi obtido utilizando dois *lasers*, que se encontram integrados na montagem.

Para que todas as amostras ficassem colocadas no local pretendido, efectuou-se o desenho e construção, de um suporte capaz de as fixar. Na figura 4.5 podemos visualizar o desenho do suporte, feito em *SOLIDWORKS* (no apêndice 3 é possível observar as projecções ortogonais). O suporte construído pode ser observado na figura 4.6.

Figura 4.5. Desenho de suporte para as amostras liquidas, em SOLIDWORKS.

Figura 4.6. Suporte para as amostras de óleo.

Na figura 4.7, é possível observar a montagem completa para as análises às amostras de óleo lubrificante.

Figura 4.7. Montagem completa para análise de amostras de óleo, à esquerda sem a amostra de óleo; à direita com amostra de óleo.

O espectrómetro utilizado é constituído, essencialmente, por uma fonte de raios-X e um detector, em que a fonte de raios-X foi operada com uma tensão de 30kV, uma corrente de 20µA e um tempo de aquisição de dados de 200s, sendo que a descrição geral destes elementos se encontram nas próximas subsecções.

No caso das amostras sólidas, nomeadamente, amostras do filtro de óleo, também analisadas, optou-se pelo uso de uma moldura de *slides*, como se pode observar na figura 4.8.

Figura 4.8. Suporte para as amostras sólidas.

Efectuou-se a rotação do sistema do tubo de raio-X e detector em 90°, e colocou-se a amostra verticalmente, desta vez sem o suporte de amostras líquidas. Mais uma vez, o alinhamento foi feito com o auxílio dos dois *lasers*. E a montagem pode ser observada na figura 4.9.

Figura 4.9. Montagem para análise de amostras sólidas.

4.4 Análise de Óleos e Filtros por EDXRF

4.4.1 Amostras de Óleos de Automóveis

Foram analisadas várias amostras de óleo de várias marcas de automóvel, de diferentes datas de fabrico, uns movidos a *diesel* e outros a gasolina. Estas medições serviram para ter uma noção da ordem de grandeza das concentrações dos metais de desgaste em situações normais de modo a poder desenhar o sistema tendo esses valores em conta. Foram medidos várias vezes os limites de detecção deste sistema e na região de interesse variam entre 5 e 50 ppm.^[37]

Para fazer as diferentes quantificações, como não existiam padrões comerciais no laboratótrio, tevesse que criar um padrão. Para isso utilizou-se o óleo que apresentava picos mais intensos (ou concentração aparente mais elevada). Este óleo foi embebido num filtro e foram efectuadas medições num espectrómetro de EDXRF, que não necessita de recurso a padrões e que está calibrado para matrizes leves (como é o caso do óleo lubrificante).

Foi possível fazer as quantificações dos diferentes elementos, tendo sido possível detectar 17 elementos diferentes, entre eles elementos de desgaste, contaminantes e aditivos.

Este estudo serviu unicamente para análise dos elementos presentes no óleo para projectar o protótipo, assim não se efectuou nenhum estudo estatistico desse elementos.

A figura 4.10 agrupa quatro amostras de óleo de automóvel todas elas da mesma marca (Mercedes) movidos a *diesel*, sendo os factores variantes o número de quilómetros de cada carro e o tipo de óleo utilizado no motor. Todos os valores quantitativos destas figuras estão presentes na tabela 8.1.1, no anexo 2.

Figura 4.10. Comparação de quantificações de partículas do óleo lubrificante de carros da mesma marca (Mercedes) e movidos a *diesel*.

28

É de notar que os valores do veículo #O43 ultrapassam em muito todos os outros. Ao verificar as características de cada amostra (tabela 8.1.1, no anexo 1), é de notar que esta é a única amostra do tipo 5W30 deste grupo, todos os outros são 10W40. O que levou a o estudo de amostras com o mesmo tipo de óleo, a mesma marca e o aproximadamente os mesmos quilómetros, com o objectivo de verificar se a elevada concentração dos elementos se deve ao tipo de óleo lubrificante utilizado.

Na figura 4.11 têm-se o agrupamento de três amostras de óleo todas elas do tipo 5W30, cujos veículos todos eles eram Opel movidos a *diesel* e tinham aproximadamente 100000km.

Contrariamente ao resultado obtido na análise da figura 4.10, a concentração das partículas neste conjunto de óleos, todos do tipo 5W30, foi muito baixa.

Fez-se então a análise para o agrupamento de três amostras de óleo do tipo 10W40, também elas cujos veículos eram Opel e tinham aproximadamente 100000km.

Figura 4.12. Comparação de quantificações de partículas do óleo lubrificante de carros da mesma marca , com o mesmo tipo de óleo lubrificante (10W40) e com aproximadamente 100000km.

Desta vez, obteve-se um elevado número de partículas, resultados, mais uma vez, contrários ao esperado pela análise da figura 4.10. Não sendo possível concluir que o elevado número de partículas se devesse ao tipo de óleo lubrificante.

Infelizmente neste agrupamento não se conseguiu reunir amostras de veículos todos eles movidos a *diesel*, porém os resultados da análise foram coerentes o que leva a pensar que os diferentes tipos de motor (gasolina ou *diesel*) não implica diferentes níveis de concentração de partículas.

Fez-se a análise para o mesmo tipo de óleo que o anterior (10W40) e todos eles movidos a *diesel*, porém variou-se a marca dos veículos e desta vez teriam aproximadamente 200000km.

Figura 4.13. Comparação de quantificações de partículas do óleo lubrificante de carros com o mesmo tipo de óleo lubrificante (10W40) e com aproximadamente 200.000km.

Mais uma vez, é difícil arranjar uma relação para a concentração de partículas visto que carros com aproximadamente os mesmos quilómetros e o mesmo tipo de óleo, mostram valores muito discrepantes com é o caso da amostra #O39 em comparação com as outras duas, talvez a marca do carro, e especialmente a marca do motor, possa ser a variável que mais se relaciona com a concentração das partículas

Aumentou-se o agrupamento para quatro amostras diferentes, e desta vez tentou-se relacionar o ano do carro com o tipo de motor. Na figura 4.14 estamos perante quatro veículos de 1993 (#O28), 1990 (#O30), 1990 (#O92) e 1997 (#O118), todos eles movidos a gasolina.

Figura 4.14. Comparação de quantificações de partículas do óleo lubrificante de carros da mesma década (90) e movidos a gasolina.

Obteve-se novamente um valor de concentração de partículas elevado, mas desta vez já foi mais coerente entre si, todos eles são muito próximos uns dos outros.

Seguidamente, fez-se uma nova análise para veículos movidos a gasolina mas desta vez todos eles da década de 2000, como mostra a figura 4.15, com veículos de 2007 (#O61), 2009 (#O112) e 2010 (#O75 e #O106).

Figura 4.15. Comparação de quantificações de partículas do óleo lubrificante de carros da mesma década (2000) e movidos a gasolina.

A grande diferença encontrada na análise do óleo lubrificante dos veículos da década de 2000 é que tem um decréscimo do Enxofre em relação às amostras dos veículos da década de 1990.

Uma vez que se tem a análise para veículos da década de 2000 a gasolina, fez-se também uma análise com quatro amostras de veículos um pouco mais recentes, mas a *diesel*, como se pode observar na figura 4.16, onde os veículos são de 2011 (#078), 2012 (#076), 2013 (#079) e 2014 (#077).

Figura 4.16. Comparação de quantificações de partículas do óleo lubrificante de carros da mesma marca (Opel), da mesma década (2010) e movidos a *diesel*.

Mais uma vez o grupo de veículos a *diesel* mostrou resultados muito diferentes, não se consegue obter uma relação para a quantidade de partículas e as características do veículo, uma vez que por coincidência todas as amostras da figura 4.16 têm o mesmo tipo de óleo lubrificante (5W30), logo pelo tipo de óleo não se pode tirar qualquer tipo de relação. Outro elemento a analisar seria o tempo que o óleo teria no motor desde a última revisão, porém apenas a amostra #O78 tinha 3000km no óleo, todas as outras tinham 10000km, existindo a mesma discrepância. Mais uma vez poderia analisar os quilómetros do veículo mas as amostras #O76 e #O79 tinham aproximadamente o mesmo valor, abaixo dos 100000km, e mesmo assim a quantidade de partículas tem valores completamente diferentes. Não sendo possível obter qualquer tipo de relação para as partículas presentes no óleo com os diferentes factores, quer o ano, quer as quilometragens, quer o tipo de óleo utilizado.

Das diferentes amostras, uma delas, necessitou de um estudo mais aprofundado, uma vez que os limites das partículas de desgaste, de acordo com a tabela 3.2, eram ultrapassados em uma ordem de grandeza, como era o caso dos níveis de Alumínio, do Cobre, do Ferro e do Níquel. Após esta análise o dono do veículo foi informado dos resultados e as mudanças de óleo passaram a ser mais regulares para que o motor não sofresse qualquer tipo de dano. Depois da reparação do motor e de algum tempo de funcionamento o óleo lubrificante foi novamente analisado, como mostra a figura 4.17.

Figura 4.17. Comparação de quantificações de partículas do óleo lubrificante do mesmo carro com 190000km e 200000km.

Observa-se que houve uma descida na quantidade de partículas de desgaste, o que faz com que o motor possa ter um maior desempenho.

Esta análise foi feita apenas para o caso do Nissan Qashqai de 2008 (#O53), pois foi o único automóvel ao qual se conseguiu extrair duas amostras diferentes, a primeira aos 190000km e a segunda os 200000km.

Assim, este caso, mostra que este método pode ser usado para prever falhas no motor antes de estas se tornarem catastróficas.

4.4.2 Amostras de Filtros de Automóveis

Para cada amostra de óleo foi pedido o filtro de óleo correspondente, uma vez que quando se troca óleo do motor, troca-se também o filtro. Porém, raramente foi possível juntar estas duas análises. Em termos que análise ao filtro de óleo, os resultados obtidos eram muito semelhantes aos da análise de óleo, sendo que se observou uma maior quantidade de partículas no filtro do que no óleo, uma vez que é este o local onde estas ficam retidas. Essas diferenças podem ser observadas na figura 4.18, em que se faz a comparação entre as partículas existentes no filtro e no óleo, com dois veículos diferentes, onde #F2 é o filtro correspondente à amostra de óleo lubrificante #O53 e #F4 é o filtro correspondente à amostra de óleo lubrificante #O88.

Juntamente com a amostra de óleo #O53, presente na tabela 8.1.1, no anexo 1, foi possível obter a análise do filtro (#F2, presente na tabela 8.1.3 do anexo 1). Era de esperar que a sua análise acusasse partículas de desgaste em excesso, uma vez que os valores de Cobre e Ferro que se destacam a grande escala na figura 4.18, poderia supor-se que tivesse existido um erro na análise, porém esses valores são absolutamente explicáveis, uma vez que essas partículas eram visíveis a "olho nu", como é possível observar na figura 4.19.

Figura 4.19. Amostra de filtro de automóvel danificada.

A justificação encontrada para esta contaminação, deve-se ao facto desta série de motor, ter sido construída com uma deficiência nas capas das bielas, estas encontram-se descoladas das bielas, desgastando-se muito facilmente com os movimentos do motor. Uma vez encontrado o problema, o proprietário foi informado e uma reparação do motor foi efectuada, onde se confirmou o diagnóstico.

4.4.3 Amostras de Óleo de Navios

Com a quantificação das amostras de óleo dos navios, os resultados obtidos foram muito similares entre si, uma vez que o número de amostras era muito reduzido, comparativamente com o número de amostras para os automóveis.

Por outro lado, tratando-se de embarcações da Marinha Portuguesa, a regularidade de troca de óleo e de manutenção das embarcações é maior do que num barco ou automóvel civil.

A seguinte figura apresenta a quantificação para os quatro óleos, das quatro embarcações, Bérrio, Cacine, Figueira da Foz e Corte Real.

Figura 4.20. Análise de óleos lubrificantes das embarcações Bérrio, Cacine, Figueira da Foz e Corte Real.

Comparativamente às quantificações de óleo de automóvel (presentes na tabela 8.2.1 no anexo 2) é possível concluir que os valores do Cálcio, Silício, Enxofre e Zinco, são bastante mais elevados, o que se justifica com o facto do óleo lubrificante náutico conter mais aditivos, de modo a que os resíduos carbonosos, presença de água e combustível, seja em menor quantidade possível.

4.4.4 Amostra de Óleo de Avião

No caso da análise feita ao óleo de avião, pode observar-se um pico muito elevado de chumbo, quando comparada com o óleo de automóvel ou navio, como se pode observar nos diferentes espectros da figura 4.21, retirados do programa WinAxil, onde foram feitos os fits de cada espectro.

Figura 4.21. Espectros de amostras de óleo de automóvel, navio e aeronave.

Este valor tão elevado deve-se ao facto dos motores de avião terem uma potência muito elevada, e quando se dá a combustão parte do combustível fica na rede de lubrificação, também se pode observar esta "contaminação" quando comparando o valor de Chumbo na análise ao óleo novo (#ONA1) de 11±5 ppm com a análise ao óleo usado (#OA1) de 1600±600 ppm, estes e outros valores da análise estão representados na figura 4.22, e os valores numéricos desta quantificação estão presentes na tabela 8.2.5, no anexo 2.

Figura 4.22. Análise de óleo da aeronave A18 e de óleo lubrificante para aeronaves novo.

S

Protótipo WDXRF

5.1 Simulação do Protótipo

A simulação do protótipo tem por base o estudo da melhor solução das posições e dimensões dos diversos componentes do espectrómetro para uma região de energias de interesse. Deste modo, o objectivo é convergir para uma montagem experimental que favoreça as condições de análise, isto é, que contenha as diversas energias das linhas mais intensas dos principais elementos de desgaste com uma boa razão pico-fundo, e simultaneamente obtidos em tempos de aquisição razoáveis.

Para a simulação das diversas componentes geométricas e físicas recorreu-se a um programa de simulação de Monte-Carlo, que simula o trajecto dos raios-X tendo em conta a refelctividade dos cristais obtidos do programa XOP (*X-ray oriented programs*).^[38] Este programa foi desenvolvido para a simulação de um duplo cristal e foi recentemente alterado pelo nosso grupo.^[39] Com este programa é possível variar a posição e dimensões de todos os componentes que constituem o espectrómetro de fluorescência de raios-X dispersivo em comprimento de onda, bem como inserir múltiplas energias e tipos de cristais. No momento restringimos a um cristal de silício puro com corte (111) (índices de Miller).

A figura 5.1 ilustra o sistema WDXRF que se vai simular, com os respectivos componentes, nomeadamente a fonte de raios-X, o cristal, o detector e os colimadores. Na figura 5.2 é possível observar as variáveis presentes na simulação. Essas variáveis são alteradas na consola que surge quando se corre o programa, ilustrada na figura 5.3.

Como se observa na figura 5.1 a fonte emissora de raios-X está localizada junto ao óleo a analisar e têm como propósito provocar a florescência nas partículas de metal presentes no óleo.

Através da fluorescência de raios-X, cada elemento vai emitir fotões com a sua energia característica, que por sua vez vão interagir com o cristal. Nesses pontos da superfície, apenas os fotões com o ângulo de Bragg, associado ao seu comprimento de onda, que seja igual ao ângulo entre o raio e os planos cristalográficos têm interferência construtiva, e passam através do cristal, sendo que a configuração que se está a usar é a de difracção de Bragg em transmissão. Como cada fotão está restrito a uma região de ângulos definido pelo colimador, fotões de diferentes energias vão ter interferência construtiva em locais diferentes do cristal, o que corresponde a ângulos de incidência diferentes, cada um identificado por um certo comprimentos de onda (ou energia). Por fim, um detector sensível à posição, localizado logo a seguir ao cristal, contabiliza o número de fotões que chegam para uma dada posição do detector. Deste modo, a posição do detector é a variável proporcional à energia. Um espectro produzido tem portanto de ser calibrado com fontes de raios X de energia conhecida.

Figura 5.1. Representação do sistema de detecção dos contaminantes nos óleos lubrificantes.

Figura 5.2. Representação das distâncias entre os componentes.

Double crystal simulation			
Physical setting		Geometrical settings	
Energy (eV)	4999.730	Distance from source to aperture (cm)	3
Natural width FWMH (eV)	0.0000	Distance from aperture to crystal (cm)	7
Temperature on crystal in parallel scan (o	ieg.) 22.50	Distance from crystal to detector (cm)	0.10
Gaussian FWMH due to Doppler broaden	ing (eV) 0.0000	Diameter of apperture tube (cm)	1.50
		Diameter of source (cm)	0.10
Dist services		Length of crystals (cm)	4.7
-lot settings		Height of crystals (cm)	2.6
Angle scan range (deg.)	0.00001	Length of detector (cm)	5.00
Shift of display window (deg.)	0.0000	Height of detector (cm)	2.50
		Horizontal shift in tube at source (cm)	0.0
Number of bins of rotation	50	Horizontal shift in tube at aperture (cm)	0.0
Number of rays in Montecarlo simulation	1000000	Vertical shift in tube at source (cm)	0.0
Number of bins in detector	100	Vertical shift in tube at aperture(cm)	0.0
	100	Angle of crystal 1 (deg.)	18.01450
ок		Angle of table (deg.)	-36.0290
		Tilt angle in crystal (deg.)	0.00000

Figura 5.3. Consola onde se efectuam as alterações das variáveis para cada simulação.

Figura 5.4. Resultados reproduzidos pela simulação do protótipo.

Após cada simulação, são retiradas todas as informações sobre os elementos detectados, sendo possível obter um espectro como na figura 5.5, este espectro tem as energias com mais interesse na análise dos óleos.

Figura 5.5. Espectro com os elementos seleccionados numa simulação.

5.2 Dimensionamento do Protótipo

Tendo em conta as energias das transições, as simulações podem servir para modelar o espectrómetro de modo a medi-las com suficiente resolução em energia, bem como com a remoção dos várias fontes de incerteza sistemáticas inerentes do EDXRF.

Foram feitas centenas de simulações, até chegar ao protótipo que oferece o melhor desempenho possível para o nosso sistema. Além, de optimizar a resolução do espectrómetro, teve-se em atenção que este não poderia ter dimensões muito grandes, umas vez que, o objectivo será incorporá-lo no cárter dos motores. A tabela 5.1 mostra as dimensões (ilustradas na figura 5.2) com as quais os nosso protótipo teve melhor resposta, quer a nível da identificação individual das riscas de interesse, bem como da eficiência do mesmo.

Variáveis	Valores
Comprimento do Colimador [cm]	0,05
Distância do colimador ao Cristal [cm]	5,6
Distância do Cristal ao Detector [cm]	0,1
Diâmetro do Colimador [cm]	0,1
Diâmetro da Fonte [cm]	0,1
Comprimento do Cristal [cm]	5
Altura do Cristal [cm]	2,5
Comprimento do Detector [cm]	5
Altura do Detector [cm]	2,5
Ângulo do Cristal [º]	18,02
Número de Raios	10000000
Número de Bins no Detector	300

Tabela 5.1. Variáveis de Entrada da Simulação.

5.2.1 Características do Cristal

5.2.1.1 Ângulo do Cristal

Um dos primeiros parâmetros calculados nesta simulação foi o ângulo que o cristal iria ter em relação à montagem. Pelas análises feitas às diferentes amostras de óleo, verificou-se que a existência de ferro era comum a todas elas, tendo em conta que a energia deste elemento (6398 eV) se encontra na zona central de energias que queremos detectar, optou-se por colocar este elemento no centro do nosso detector, aquando a aquisição do espectro. Para tal, uma vez que estamos perante um sistema dispersivo em comprimento de onda, foi necessário o cálculo

do ângulo de Bragg deste elemento. Na simulação utilizou-se um cristal de silício cujo valor da distância entre planos atómicos (d) é $3,1349 \times 10^{-10}$ m.

Com o auxílio da equação 2.3, calculou-se o comprimento de onda para E = 6398 eV.

$$\lambda = \frac{4,13566743 \times 10^{-15} \times 3 \times 10^8}{6398} = 1,9392 \times 10^{-10} \ m = 0,19 \ nm$$

Em seguida, calculou-se o ângulo de Bragg para o Fe, utilizando a equação 2.6.

$$\theta_{B(Fe)} = \sin^{-1} \left(\frac{1,9392 \times 10^{-10}}{2 \times 3,1349 \times 10^{-10}} \right) = 18,02^{\circ}$$

Colocando o cristal a 18,02° em relação à saída do colimador permite que o pico de ferro seja seleccionado para aparecer no centro do espectro. Contudo, devido à disposição e dimensões de todos os outros componentes é possível observar também muitos outros elementos de interesse, nomeadamente, o Titânio, o Cobre, o Zinco, o Molibdénio.

5.2.1.2 Espessura do Cristal

A espessura que o cristal utilizado no protótipo deveria ter, foi calculada tendo em conta que pelo menos 70% dos raios-X característicos do Titânio (a linha de menor energia, e portanto com maior atenuação) chegassem ao detector. O material escolhido para o nosso cristal foi o Silício, no entanto, é possível escolher outros tipos de cristais, como o Quartzo ou o Germânio. Teremos apenas que ter em atenção que para ter a mesma percentagem de raios-X a chegar ao detector, a sua espessura vai sofrer alterações, uma vez que os coeficientes de atenuação variam consoante o material.

A seguinte tabela, mostra as diferentes espessuras que o cristal poderia ter para os materiais referidos anteriormente, essas espessuras foram calculadas com o auxílio da equação 2.7. Os valores do coeficiente de atenuação (μ/ρ) e a densidade (ρ) para cada material foram obtidos através do site do NIST.^[40]

	E [keV]	μ/ρ [cm²/g]	ρ [g/cm ³]	Espessura do Cristal [µ
Silício		452,9	2,330	337,8
Quartzo	4	452,5	2,332	338
Germânio		449.7	5.323	149

Tabela 5.2. Espessura do cristal para diferentes materiais.

Assim, o cristal utilizado no nosso protótipo teria no máximo 337,8µm.

5.2.2 Resolução espacial do protótipo

Na figura 5.6 encontra-se uma representação do protótipo com raios representativos de duas energias. Como se pode observar os raios que têm energias diferentes são difractados em locais diferentes do cristal. Isto é uma consequência da lei de Bragg. Enquanto os raios-X centrais contêm a energia associada ao ângulo de Bragg da linha K_{α} do Fe calculado anteriormente (θ_B), raios com uma maior energia só são difractados se tiverem um ângulo de Bragg superior, isto é $\theta_B+\phi$. O oposto ocorre para energias inferiores. É de notar que os raios-X que são difractados para a mesma energia encontram-se paralelos. Logo, verificamos que as variáveis que influenciam a resolução espacial do detector correspondem aos diâmetros dos colimadores.

Figura 5.6. Representação do protótipo e ângulos de difracção, com representação de espectro para duas energias.

Foram efectuadas simulações para a optimização do valor que o diâmetro da fonte de raios-X deverá tomar, ou por sua vez, o diâmetro do colimador. Simulou-se os seguinte diâmetros: 1.2 cm, 0.7cm, 0.5 cm, 0.3 cm e 0.1 cm e cujos valores obtidos da largura a meia altura (FWHM) se encontram na figura 5.7. Não só se simulou com a energia dos K_{α} do Ferro, Titânio e Molibdénio, mas também, para as energias da L_{α} do Chumbo. Como esperado quanto menor o diâmetro, mais finos serão os picos, numa relação linear.

Figura 5.7. Gráfico da largura a meia altura de quatro energias em função do diâmetro da fonte.

Da figura 5.7 observa-se, que o FWMH aumenta linearmente com o aumento do diâmetro da fonte para valores pequenos.

Assim, na simulação que optimiza o nosso protótipo foi considerado um colimador (tipo pin-hole) com 1 mm de diâmetro encostado à janela que delimita a zona onde se encontra o óleo. Um colimador com um diâmetro mais pequeno faz com que os picos no espectro obtido sejam mais finos, o que ajuda na resolução, fazendo com que os picos com energias próximas não se sobreponham, no entanto perde-se em intensidade. Este factor é importante visto que a reflectividade do cristal já é suficientemente baixa para que existam outras perdas de intensidade importantes.

5.2.3 Características do Colimador

Para o dimensionamento do colimador, para além do valor do seu diâmetro, que será igual ao da fonte, é necessário obter o valor da sua espessura e o valor da distância até ao cristal.

Depois de se ter calculado o diâmetro da fonte, no subcapítulo anterior, foi calculada a espessura mínima que o colimador deveria ter, de forma a atenuar 99,99% dos raios-X provenientes da fonte, fazendo com que apenas os que incidissem na abertura, passassem para o cristal.

Para tal, escolheu-se três materiais diferentes, o Chumbo, o Tântalo e o Tungsténio. A tabela 5.3, fornece a informação necessária para, com o auxílio da equação 2.7, se efectuar o cálculo da espessura do colimador, cujos valores são x_{Pb} , x_{Ta} e x_W .

	E [keV]	μ/ρ ^[40] [cm²/g]	ρ ^[40] [g/cm ³]	<i>x</i> [cm]
Chumbo		30,32	11,35	0,0134
Tântalo	30	21,87	16,65	0,0126
Tungsténio		22,73	19,25	0,0105

Tabela 5.3. Informação sobre a atenuação do Chumbo, Tântalo e Tungsténio.

Escolheu-se o Tungsténio, pois é o material que necessita de uma menor espessura para atenuar 99,99% dos raios-X, e consequentemente com menos custos associados.

Por último, para calcular a distância a que o cristal tem que estar do colimador, foram efectuadas algumas contas trigonométricas. Neste caso, temos três variáveis dependentes umas das outras, são elas, o diâmetro da fonte (ϕ), a espessura do colimador (x) e o ângulo total de radiação emitida (2 θ). Sendo possível observar essa dependência na figura 5.8.

Onde ϕ é o diâmetro do colimador; x a espessura do colimador; θ o ângulo gerado pela abertura do colimador e a sua espessura; d a distância entre o colimador e o cristal; a e b

constantes que auxiliam o cálculo de $d \in \varphi$ o ângulo que o cristal faz em relação ao plano horizontal.

A equação 5.1, expressa a relação que existe entre o diâmetro do colimador e a sua espessura.

$$\emptyset = \tan(\theta). x$$
 (5.1)

Para que os cálculos se tornem mais simples, o cristal foi dividido em duas partes iguais, e pretende-se que as linhas incidentes no início do cristal sejam a do Titânio e no final a do Molibdénio, de modo a garantir que o cristal é totalmente irradiado pelos raios-X característicos de uma amostra típica. A distância que o colimador vai estar do cristal será dada por duas expressões, para o caso em que se tem em conta a parte superior do cristal, é dada pela equação 5.2,

$$\tan(\theta) = \frac{a}{d-b} \qquad (5.2)$$

Por sua vez, para a parte inferior do cristal é dado pela equação 5.3,

$$\tan(\alpha) = \frac{a}{d+b} \qquad (5.3)$$

Uma vez que, φ é dado pela expressão 5.4,

$$\varphi = 90^{\circ} - \theta_{B(Fe)}$$
 (5.4)
 $\varphi = 90^{\circ} - 18,02^{\circ} = 71,98^{\circ}$

Sabendo que o cristal está centrado com o colimador, e com o auxilio da figura 5.8, é possível estabelecer as seguintes expressões trigonométricas para calcular as constantes a e b.

$$\sin(71,9834^\circ) = \frac{a}{2,5} \leftrightarrow a = 2,3377 \ cm$$

 $\cos(71,9834^\circ) = \frac{b}{2,5} \leftrightarrow b = 0,7732 \ cm$

Para se obter o valor de θ , de modo a caracterizar a recta que relaciona o diâmetro do colimador com a sua espessura, foi necessário calcular o ângulo de Bragg do Titânio ($\theta_{B(Ti)}$), sendo este o primeiro elemento com interesse na análise do óleo.

Para tal, utilizou-se a equação 2.5, sabendo que a energia do Titânio é de 4,508keV, obteve-se o seguinte comprimento de onda,

$$\lambda_{Ti} = \frac{12,394}{4,508} = 2,75 \text{ Å} = 2,75 \times 10^{-10} m$$

46

Sabendo o comprimento de onda do Titânio e com o auxílio da equação 2.6, calculou-se o respectivo ângulo de Bragg.

$$\theta_{B(Ti)} = 26,010^{\circ}$$

Recorrendo novamente à figura 5.8 é possível obter a relação entre os ângulos de Bragg dos dois elementos com o θ , uma vez que,

$$\theta = \theta_{B(Ti)} - \theta_{B(Fe)} = 26,01^{\circ} - 18,02^{\circ} = 8^{\circ}$$

Uma vez calculado o valor de θ , é possível calcular a que distância o cristal deve estar do colimador, de modo a que o Titânio seja o primeiro elemento a ser detectado e o Ferro seja o elemento que se situa no centro do detector.

Para tal, com o auxílio da equação 5.2, basta substituir as incógnitas já calculadas anteriormente.

$$\tan(7,9934^\circ) = \frac{2,377}{d - 0,7732} \leftrightarrow d = 17,7 \, cm$$

Sabendo que o cristal tem a sua rede cristalina bem definida e que a orientação dos seu planos de difracção é (111) (índices de Miller), para que o Titânio seja o primeiro elemento a aparecer no detector, a distância que o cristal deve estar do colimador é aproximadamente 17,7cm, como mostram os cálculos anteriormente efectuados.

Isto obriga a uma nova calibração do sistema cada vez que for necessário substituir o cristal e a orientação dos planos de difracção não seja a mesma.

Porém, quando se efectuou a simulação com este valor, observou-se que a energia mais elevada detectada era aproximadamente 11 keV, o que não abrange a gama de energias do Zircónio nem do Molibdénio.

Voltou-se a efectuar os mesmos cálculos para a distância entre o colimador e o cristal de modo a garantir que o Molibdénio fosse detectado.

Com o auxílio da figura 5.8, verificamos que os cálculos serão semelhantes aos efectuados anteriormente. Não se teve em conta a espessura do cristal, uma vez que é tão pequena que para os cálculos em questão seria aproximadamente zero.

Utilizou-se, novamente, a equação 2.5, sabendo que a energia K_{α} do Molibdénio é de 17,441keV, obteve-se o seguinte comprimento de onda,

$$\lambda_{Mo} = \frac{12,394}{17,441} = 0,71 \text{ Å} = 0,71 \times 10^{-10} m$$

47

Sabendo o comprimento de onda do Molibdénio e com o auxílio da equação 2.6, calculou-se o respectivo ângulo de Bragg.

$$\theta_{B(Mo)} = 6,5^{\circ}$$

Como se pretende que a energia do Ferro permaneça no centro do cristal, a relação entre os ângulos de Bragg dos dois elementos, vai ser dada pela seguinte expressão,

$$\theta = \theta_{B(Fe)} - \theta_{B(Mo)} = 18,02^{\circ} - 6,5^{\circ} = 11,5^{\circ}$$

Desta vez, com o auxilio da equação 5.3, basta substituir o $a \in b$, já calculados anteriormente, obtendo-se o seguinte valor para a nova distância do colimador ao cristal,

$$\tan(11,5166^\circ) = \frac{2,377}{d+0,7732} \iff d = 10,89 \, cm$$

Atribuindo 10,89 cm à variável da distância entre o colimador e o cristal, foi possível observar os elementos que se encontram entre o Titânio e o Molibdénio.

Porém, um dos factores preponderantes deste trabalho é conseguir dimensionar um protótipo de pequenas dimensões. Assim, e com base nas simulações, concluímos que a distância melhor para posicionar o cristal de modo a que todo o espectro de interesse pudesse ser observado com qualidade era de 5,6 cm. Assim, chegamos à equação 5.5, que estabelece a relação do diâmetro do colimador em função da sua espessura, presente na figura 5.8 como a "Relação de Bragg". $\emptyset = \tan(17,1^\circ).x$ (5.5)

Assim, com todas as variáveis do colimador calculadas, é possível construir um gráfico que estabelece a relação entre os diferentes valores para o diâmetro e a espessura do colimador, sem afectar negativamente a resolução do espectro. Na figura 5.9 é possível observar a região onde esses valores podem ser escolhidos (região azul claro).

Figura 5.9. Gráfico que relaciona as variáveis que caracterizam o colimador.
O ponto em que *Relação de Bragg* intersecta o valor da *Resolução Mínima*, significa que nesse momento o colimador estaria a limitar a detecção dos raios-X que surgem no início e no fim do cristal, uma vez que se o colimador tivesse essa combinação de espessura e diâmetro, o ângulo de aceitação seria restringido e os raios-X seriam atenuados pelas suas paredes. Como o valor escolhido para a espessura é muito inferior, o colimador nunca irá interferir na aquisição desses raios-X característicos, sendo as dimensões escolhidas para o protótipo de 0,05cm de espessura e 0,1cm de diâmetro, representados pelo ponto branco.

5.2.4 Escala de Energia

Para se obter uma relação entre as energias e a escala do detector, simulou-se o sistema, com todas as variáveis que o optimizam, e considerou-se uma gama de energias desde os 4 keV e os 20 keV, sabendo que o ferro (6,398 keV) ficaria no centro do detector. O valor de cada variável para esta simulação encontra-se representado na tabela 5.1.

Fazendo um gráfico da simulação (figura 5.10), obtém-se uma relação entre a posição no detector e a energia de cada pico.

Figura 5.10. Gráfico da posição no detector de cada pico de energia.

É possível observar que passando o centro do detector as energias tendem a aproximar-se, prejudicando a sua resolução. Para energias mais elevadas é mais difícil separar os picos dos diferentes elementos.

5.2.5 Blindagem e Atenuação dos Raios-X

Uma das preocupações na elaboração deste protótipo, foi sem dúvida eliminar a radiação proveniente da fonte para o exterior e saber qual a dose de radiação presente na superfície do protótipo. São vários os materiais capazes de blindar este sistema, variando apenas a espessura que o protótipo deverá ter para que se consiga ter uma atenuação da radiação de 99,999%, para o exterior.

Na tabela 5.4 estão representados os diferentes materiais, a espessura que as paredes do protótipo deveriam ter e a sua massa, uma vez que não nos interessa ter um protótipo muito pesado. Os valores das espessuras foram calculados com o auxílio da equação 2.7 de acordo com os valores tabelados na litratura para uma fonte de 30 keV.^[40] Os valores da massa, são calculados pelo programa *SOLIDWORKS*, onde foi desenhado e dimensionado o protótipo.

Material	Espessura [cm]	Massa [g] p/ 3mm de Espessura
Alumínio	2,27	286
Titânio	0,301	342
Tungsténio	0,02	2013
Chumbo	0,02	1166

Tabela 5.4. Valores de espessura e massa para diferentes materiais.

Como o uso de uma fonte radioactiva no carro é muito importante, após escolha da fonte de raios-X e sabendo todas as suas características, pode-se proceder aos cálculos do limite da dose.

Os limites de dose em vigor em Portugal são iguais aos definidos no ICRP103^[41], sendo que estes limites na dose efectiva correspondem à soma das doses efectivas relevantes de exposição externa no período de tempo especificado. Os limites de dose recomendada em situações de exposição planeada, para membros do público (considerados cidadãos, com excepção dos trabalhadores expostos e dos pacientes submetidos a radiação com carácter médico) é de 1mSv num ano.

Estes valores terão que ser calculados num próximo trabalho quando for feita a escolha da fonte de raios-X, uma vez que, este trabalho se focou mais na parte da detecção, contudo o cálculo da dose é de extrema importância.

5.2.6 Desenho do Protótipo

Depois estarem calculadas as medidas de todos os componentes, chega a vez de calcular as dimensões mínimas que o protótipo deve ter e proceder ao seu desenho. O protótipo em questão visa a colocação num espaço reduzido , como é o caso do cárter. Este sistema será implementado no seu interior, uma vez que é nesse local que se

encontra o maior número de partículas em suspensão, e garantimos a circulação de todo o óleo pelo nosso sistema de análise.

Figura 5.11. Protótipo que será implementado no interior do cárter.

Para adicionar este sistema no cárter de um carro é necessário fazer um simples furo, circular com 2,5cm de diâmetro, deste modo no lado exterior do cárter ficará a saída de dados, pela qual se descarregam os dados obtidos pelo sistema. Para evitar fugas de óleo para o exterior serão colocados dois *o-rings* de borracha, como é possível observar na figura 5.12, um do lado de fora do cárter e outro no seu interior, uma representação meramente ilustrativa.

Figura 5.12. Esquema de localização do protótipo no cárter.

No interior do cárter ficará o protótipo, cujas dimensões são 12,1cm de comprimento, 6,1cm de largura e 5,3cm de altura. Uma vez que o protótipo estará permanentemente banhado de óleo lubrificante, o sistema de vedação é muito importante, colocou-se, para a máxima estanquicidade, uma borracha vedante entre tampa e o corpo do mesmo, como é possível observar na figura 5.13.

Figura 5.13. Vista explodida do sistema de análise.

Através da figura 5.13 é possível observar todos os componentes dimensionados para este protótipo, sendo que a fonte de raios-X não se encontra representada, pois será objecto de estudo num próximo trabalho, o mesmo se aplica ao detector, no entanto está simbolicamente representado pela placa verde que se encontra nas figuras 5.13 e 5.14.

Figura 5.14. Vista em corte do sistema de análise.

Este modelo foi projectado com dimensões e distâncias entre componentes retiradas das simulações. O espaço existente para a colocação da fonte de raios-X pode sofrer alterações, após a escolha da mesma, sem comprometer a parte da análise do óleo. A figura 5.14 mostra o interior do protótipo, os componentes, bem como a posição que vão tomar no seu interior.

Uma vez que o feixe de raios-X tem que atravessar os vidros, por onde passa o óleo lubrificante, foi também calculada qual a espessura mínima que esse vidro teria que ter para que houvesse o mínimo de atenuação, ou seja para que passassem pelo menos 98% de raios-X característicos do Titânio. Utilizaram-se para o efeito, os dados do NIST^[39] novamente. Escolheu-se o Pyrex como material para esta divisão, uma vez que a densidade deste material é $\rho = 2,230 \text{ g/cm}^3$ e o coeficiente de atenuação linear é $\mu/\rho = 235,5 \text{ cm}^2/\text{g}$, utilizando a equação 2.7, tem-se que a espessura mínima é de 75 µm. Devido ao acoplamento desta janela ao colimador, que será feito de tungsténio com 0.5 mm de espessura, esta janela deverá aguentar com relativa facilidade a pressão dinâmica do óleo em movimento no cárter, pelo que a estanquicidade do protótipo deverá estar assegurada mesmo com uma janela de pirex tão fina.

5.2.7 Custos Associados

Para finalizar, fez-se um estudo dos custos associados a este protótipo. Uma vez que a fonte e o detector só serão escolhidos num próximo trabalho, os valores obtidos serão em relação ao cristal.

Para o custo do cristal foram contactadas várias empresas que fazem este tipo de trabalho, porém, somente a empresa Saint-Gobain Crystals^[42] forneceu a informação pedida.

Foi pedido um orçamento para um cristal de Si (111) (usado na simulação), Si (220), Quartzo (1010) e Quartzo (1011). A espessura que o nosso cristal deveria ter para que passassem 70% dos raios-X do K_{α} do Titânio, seria de 337,8µm, como calculado anteriormente.

Tabela 5.5. Custos associados a cristais de Silício e Quartzo de várias espessuras, informação fornecida pela Saint-Gobain Crystals.

	Espessura [mm]						
	3,0±0,2	2,0±0,2	0,075±0,005				
Si (111)	1.320€	1.080€	2.340 €				
Si (220)	1.320€	1.080€	2.340€				
Quartzo (10-10)	1.410€	1.150€	2.490€				
Quartzo (10-11)	1.410€	1.150€	2.490€				

Estes preços correspondem a peças unitárias, para encomendas com um número de peças mais elevado, o valor por cristal irá diminuir substancialmente.

6

Conclusão

Esta tese teve como objectivo projectar um elemento extra para os automóveis do século XXI, tendo como nome CCWDXRF, é um analisador de óleo lubrificante em tempo real.

Para isso, este trabalho foi dividido em duas partes, numa primeira fase foram recolhidas diversas mostras de óleo lubrificante de automóveis, barcos e avião, de modo a serem analisados através de fluorescência de raios-X dispersiva em energia.

Uma vez que os resultados foram satisfatórios, sendo possível a quantificação de diversos elementos de desgaste nos óleos, passou-se à fase de dimensionamento do sistema móvel que pudesse ser colocado no interior do motor.

Esse protótipo, faria a análise ao óleo através de um sistema de fluorescência de raios-X dispersivo em comprimento de onda.

Depois de várias simulações, obteve-se um sistema com uma resolução aceitável e com um intervalo de energias dos 4 keV aos 17 keV, sendo possível a identificação dos picos de energia dos elementos de maior interesse para o estudo, nomeadamente, Titânio, Crómio, Ferro, Níquel, Cobre, Zinco, Germânio, Chumbo, Brómio, Zircónio e Molibdénio.

Após vários dimensionamentos e redimensionamentos, optou-se por um protótipo com 12,1cm de comprimento, 6,1cm de largura e 5,3cm de altura, idealizado para que a sua colocação fosse feita no interior do cárter do motor.

Tanto a escolha da fonte de raios-X com a do detector será feita num próximo trabalho. E uma vez que os custos seriam um pouco elevados, seria mais viável a construção deste protótipo para a indústria naval ou aeronáutica, pois para a indústria automóvel seria um extra demasiado dispendioso. Contudo, no decorrer desta tese, e com as análises feitas às várias amostras de óleo, foi possível detectar uma anomalia num dos motores, o que reforça a ideia que para os estragos que este protótipo pode evitar, o seu custo pode não ser assim tão elevado, pois o motor de um carro topo de gama vale substancialmente mais.

Foi então possível o dimensionamento e desenho de um protótipo para a análise de óleo lubrificante através de fluorescência de raios-X dispersiva em comprimento de onda, com a esperança que a sua construção e futura comercialização esteja para breve.

7

Referências

[1] Elenir Souza Santos; Ednilton Moreira Gama; Robson Silva da França;
Anderson Santos Souza; Roberta Pereira Matos; ESPECTROMETRIA DE FLUORESCÊNCIA
DE RAIOS-X NA DETERMINAÇÃO DE ESPÉCIES QUÍMICAS, ENCICLOPÉDIA
BIOSFERA, Centro Científico Conhecer - Goiânia, v.9, n.17; p.3420 1 de Janeiro de 2013.

[2] Bichinho, K. M; Utilização da técnica de espectrometria de fluorescência de raio X para a determinação de resíduos catalíticos em polímeros comerciais, Tese de Doutoramento, Universidade Federal do Rio Grande do Sul, Dezembro 2008.

[3] en.wikipedia.org/wiki/NineSigma; Visitado em: 30 de Janeiro de 2015 12:19h.

[4] www.ninesigma.com/open-innovation-resources/open-innovation-case-studies; Visitado em: 30 de Janeiro de 2015 às 12:26h.

[5] http://dc261.4shared.com/doc/UnbZGGfa/preview.html; Visitado em 2 de Setembro de 2015 às 17:23h.

[6] SHIMADZU, Princípios e Recursos da espectrometria de fluorescência de raio-X: Princípio de geração da fluorescência de raio-X; Disponível em: http://www.shimadzu.com.br/analitica/produtos/elemental/raios_x/eds/edx7000_8000-1.shtml; Visitado em 3 de Setembro de 2015 às 20:23h.

[7] Moseley, Henry G. J. (1913); "The High Frequency Spectra of the Elements"; *Philosophical Magazine*: 1024.

[8] Filho, V. F. N.; Técnicas Analíticas de Fluorescência de Raios X por Dispersão de Energia (ED-XRF) e por Reflexão Total (TXRF), Departamento de Ciência Exactas/ESALQ, Lab. De Instrumentação Nuclear/CENA, Relatório de Estágio; Julho de 1999

[9] Gameiro, Rute Marlene Correia Vaz; "Desenvolvimento de métodos de análise aplicados a matrizes de lubrificante" (relatório de estágio); Tese de Mestrado em Tecnologia Química; Instituto Politécnico de Tomar; Outubro de 2013.

[10] *Bragg, W.H.*; *Bragg, W.L.* (1913). "The Reflexion of X-rays by Crystals". Proc R. Soc. Lond. A 88 (605): 428–38.

[11] http://www.machinerylubrication.com/Read/602/xrf-oil-analysis; Visitado em 11 de Março de 2015 às 01:11h.

[12] Silva, A.L.M.; Azevedo, C.D.R.; Oliveira, C.A.B.; Dos Santos, J.M.F.; Carvalho, M.L.; Veloso, J.F.C.A.; Characterization of an energy dispersive X-ray fluorescence imaging system based on a Micropattern Gaseous Detector, Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 66, pp. 308-313, 20 11.

[13] Veloso, J. F. C. A.; Silva, A. L. M.; Oliveira, C. A. B.; Gouvêa, A. L.; Azevedo, C. D. R.; Carramate, L.; Natal da Luz, H.; Santos, J.M.F; "Energy resolved X-ray fluorescence imaging based on a micropattern gas detector", Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 65, pp. 241-247, 2010.

[14] Gasparini, C.T.; Um modelo de laboratório econômico para análises de óleos lubrificantes; Revista da Associação dos Técnicos Açucareiros e Alcooleiros do Brasil, p. 38-42, 1983.

[15] Finn, E. J.; Alonso, M.; Física, Escola Editora, Janeiro de 2012

[16] Kimura, Rogério Katsuharu; "Uso da Técnica de Análise de Óleo Lubrificante em Motores Diesel Estacionários, Utilizando-se Misturas de Biodiesel e Diferentes Níveis de Contaminação do Lubrificante"; Dissertação de Mestrado; Universidade Estadual Paulista; Ilha Solteira; Fevereiro de 2010.

[17] Caterpillar, Análise de Fluidos SOS, Manual de Serviços de Manutenção, 1998, p.5

[18] www.macpecas.com/produtos/index.php?action=getDetalhe&id=53699;Visitado em 15 de Março de 2015 às 23:11h.

[19] http://www.norbat.pt/lubrificantes/index.php?action=lubsinfogeral; Visitado em 15 de Março de 2015 às 00:01h.

[20] INFOMOTOR, A Importância da Viscosidade de um Lubrificante Para o Motor; Disponivél em: http://www.infomotor.com.br/site/2009/03/667/

[21] Santos, J. F. Oliveira; "Lubrificação"; MODULFORM- Formação Modular; ISQ; Lisboa, Junho de 1998

[22] Bertinatto, R.; ANÁLISE DA CONTAMINAÇÃO E DEGRADAÇÃO DO ÓLEO LUBRIFICANTE E DESGASTE DE UM MOTOR OTTOLIZADO ALIMENTADO POR BIOGÁS, Tese de Mestrado, UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ, Fevereiro de 2014.

[23] https://pt.wikipedia.org/wiki/Ponto_de_fulgor; Visitado em: 18 de Setembro de 2016.

[24] Moura, C.R.; Carreteiro, R. P.; Lubrificantes e lubrificação; Rio de Janeiro; Livros Técnicos e Científicos; 1978; v.1.

[25] www.avatec.com.br/v3/m_perg_resp.asp?id=697&g=3; Visitado em: 18 de Setembro de 2016

[26] Test Oil; "Guia de Interpretação do Relatório"; Disponível em: www.testoil.com.br. Visitado em: 15 de Novembro de 2015.

[27] Tudo Sobre Automóveis (blog); Sistema de Lubrificação; Públicado em: 9 de
Maio de 2010; Disponível em : http://tudosobreautomoveis.blogs.sapo.pt/12687.html; Visitado
em: 23 de Setembro de 2015

[28] Repair Pal, "Auto Systems and Repair: Engine Oil"; Imagem cedida por ClearMechanic; Disponível em: www.repairpal.com/engine-oil; Visitado em: 3 de Maio de 2016

[29] OELCHECK, Typische Limitwerte fur Motorenole aus (nicht stationaren) Dieselmotoren, 2010; Disponível em: http://www.oelcheck.de/wissen-vona-z/uebersichten-und-tabellen/limitwerte/limitwerte-fuer-dieselmotorenoele; Visitado em: 20 de Maio de 2015

58

[30] COBENGE2004; "ENSINANDO O ESTUDO TÉCNICO E A AVERIGUAÇÃO DA VISCOSIDADE ROTULADA DE ÓLEOS LUBRIFICANTES COMERCIALMENTE DISPONÍVEIS: APLICAÇÃO EM MOTORES DE COMBUSTÃO INTERNA E COMPONENTES MÊCANICOS"; Brasília; 14 a 17 de Setembro de 2004

[31] http://blog.unicodono.com.br/wp-content/uploads/oleo-motor-viscosidade.jpg

[32] Vaccum Oil Company (EUA); "Lubrificação de Motores Diesel Fixos e Maritimos"; Gargoyle Lubrificantes; 1931.

[33] Furtado, Anderson; Sistema de Lubrificação; Aeronaves e Motores; Capítulo XV; Parte 1; 22 de Agosto de 2014; Disponível em: formacaopiloto.blogspot.pt/2014/08/aeronaves-e-motores-capitulo-xv-sistema.html. Visitado em: 23 de Setembro de 2015.

[34] Furtado, Anderson; Sistema de Lubrificação; Aeronaves e Motores; Capítulo XV; Parte 2; 25 de Agosto de 2014; Disponível em: formacaopiloto.blogspot.pt/2014/08/aeronaves-e-motores-capitulo-xv-sistema_25.html. Visitado em: 23 de Setembro de 2015.

[35]Amptek; "X-Ray System for Portable XRF, State-of-the-art "; X-Ray TubeECLIPSE-II;Disponívelhttps://www.fastcomtec.com/typo3temp/secure_downloads/265/0/b92111f1b9cd5acaa99ddfe1b435275ff3436f6a/eclipse.pdf; Visitado em: 10 de Janeiro de 2016

[36] Amptek; "Silicon Drift Detector (SDD), XR-100SDD and XR-123SDD"; Disponível em: www.amptek.com; Visitado em: 10 de Janeiro de 2016

[37] Pessanha, S.; Guilherme, A.; Carvalho, M. L.; "Comparison of matrix effects on portable and stationary XRF spectrometers for cultural heritage sample"; Applied Physics A, Materials Science & Processing; 2009.

[38] Sanchez del Rio, M.; & Dejus, R. J.; "Status of xop: an x-ray optics software toolkit", (pp.171-174); SPIE volume 5536; 2004.

[39] Marques, D. M.; "Implementação de um programa de simulação para um sistema de detecção de metais por fluorescência de raios X"; Programa de Introdução à

Investigação Científica em Engenharia Física (PIIC-UROP)-(10609) 2014-2015; Departamento de Física, 21 de Fevereiro de 2015

[40]J.H.Hubbell⁺ and S.M.Seltzer; "Tables of X-Ray Mass Attenuation Coefficientsand Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and48 Additional Substances of Dosimetric Interest"; Physical Measurement Laboratpry; RadiationPhysicsDivision, PML, NIST; 1989,1990, 1996; Disponível em:http://www.nist.gov/pml/data/xraycoef/index.cfm; Visitado em 20 de Junho de 2016

[41] Comissão Nacional de Energia Nuclear; "Diretrizes Básicas de Radioprotecção"; Resolução CNEN- 12/88; Publicação: D.O.U. de 01/08/88

[42] Disponível em: http://www.crystals.saint-gobain.com/; Visitado em 28 de Julho de 2016

Apêndices

Apêndice 1- Tabelas de Amostras Recolhidas

Tabela 8.1.1. Amostras de óleo lubrificante usado de automóveis.

VEÍCULO

AMOSTRA DE ÓLEO

Amostra	Marca	Modelo	Ano	Tipo Motor	km	Tipo de Óleo	km	Aditivos
#O1	AUDI	A6	1999	DIESEL	231754	5W40	15000	-
#O2	AUDI	A6	2000	DIESEL	104553	5W30	-	-
#O3	AUDI	-	2002	DIESEL	131256	5W30	-	-
#O4	BMW	-	2007	GASOLINA	139005	[BP]	20000	-
#O5	BMW	120D	2010	DIESEL	11552	5W30	10000	-
# O 6	BMW	740	2010	DIESEL	87413	5W30	20000	-
#O7	CITROEN	-	2005	DIESEL	130373	5W30	20000	-
#O8	CITROEN	-	2008	GASOLINA	90000	10W40	-	-
# O 9	CITROEN	C4	2007	DIESEL	184000	5W30	25000	-
#O10	CITROEN	C5	2008	DIESEL	100819	5W30	15000	-
#O11	CITROEN	C5	2009	DIESEL	148000	5W30	12300	-
#O12	CITROEN	BERLINGE	2006	DIESEL	357195	10W40	20000	-
#O13	CITROEN	SAXO	-	GASOLINA	135606	10W40	10000	-
#O14	CITROEN	XSARA PICASSO	2006	DIESEL	160000	5W40	20000	-
#O15	CITROEN	-	-	DIESEL	130353	-	-	-
#O16	CHEVROLET	AVEO	2013	DIESEL	60607	5W30	30000	-
#O17	CHEVROLET	CAPTIVIA	2011	DIESEL	179207	5W30	30000	-
#O18	CHEVROLET	CRUZE	2013	DIESEL	30417	5W30	30000	-
#O19	CHEVROLET	CRUZE	2013	DIESEL	97400	5W30	30000	-

#O20	FIAT	-	1999	GASOLINA	137000	10W40	10000	-
#O21	FIAT	LINEA	2008	DIESEL	65936	_	-	_
#O22	FIAT	PUNTO	-	GASOLINA	105053	-	-	-
#O23	FIAT	PUNTO	1998	DIESEL	232000	15W40	10000	-
#O24	FIAT	PUNTO	1999	DIESEL	93000	-	-	-
#O25	FIAT	PUNTO	2002	DIESEL	171985	5W40	-	-
#O26	FIAT	PUNTO	2010	DIESEL	137000	5W30	10000	-
#O27	FORD	-	1997	GASOLINA	79444	10W40	-	-
#O28	FORD	FIESTA	1993	GASOLINA	23000	15W40	10000	-
#O29	FORD	FIESTA	1998	GASOLINA	260776	10W40	5000	-
#O30	HONDA	-	1990	GASOLINA	249336	[GTX]	-	-
#O31	HONDA	-	1998	GASOLINA	62054	-	10000	-
#O32	HYUNDAI	-	-	DIESEL	-	10W40	10000	-
#O33	HYUNDAI	-	-	DIESEL	-	10W40	19000	-
#O34	HYUNDAI	-	1999	GASOLINA	88000	10W40	12000	-
#O35	HYUNDAI	I30	2000	DIESEL	54666	5W30	30000	-
#O36	JEEP	-	2009	DIESEL	172000	5W40	22000	-
#O37	KIA	CANIVAL	2000	DIESEL	199145	10W40	-	-
#O38	LAND ROVER	DEFENDER	-	DIESEL	76000	10W40	2000	-
#O39	LAND ROVER	DISCOVERY	1998	DIESEL	200000	10W40	10000	-
#O40	MERCEDES	-	-	GASOLINA	185933	5W30	30000	-
#O41	MERCEDES	-	-	DIESEL	246064	70 00	20000	-
#O42	MERCEDES	-	-	GASOLINA	247885	10W40	10000	-
#O43	MERCEDES	C220	2010	DIESEL	100482	5W30	-	-
#O44	MERCEDES	220 CDI	2011	DIESEL	162000	-	-	-
#O45	MERCEDES	D200	1993	DIESEL	483600	10W40	10000	-
#O46	MERCEDES	220D	1997	DIESEL	237000	10W40	15000	-
#O47	MERCEDES	E220	2002	DIESEL	244548	5W40	17613	-
#O48	MITSUBISHI	-	2001	DIESEL	188350	10W40	10000	-
#O49	MITSUBISHI	-	2004	GASOLINA	121366	5W40	15000	-
#O50	MITSUBISHI	-	-	DIESEL	247158	10W40	10000	-
#O51	MITSUBISHI	COLT	2001	GASOLINA	178699	-	11000	-
#O52	NISSAN	-	1999	GASOLINA	169095	50 00	10000	-
#O53	NISSAN	QASHQAI	2008	DIESEL	190491	5W30	-	-
#O54	NISSAN	QASHQAI	2010	DIESEL	65000	-	25000	-
#O55	NISSAN	TERRANO	2003	DIESEL	228000	10W40	15000	-
#O56	OPEL	-	1994	DIESEL	195587	10W40	10022	-
#O57	OPEL	AGILA	2009	DIESEL	71400	5W30	10000	OLEO GEL DEXUS2
# O 58	OPEL	ASTRA	1996	DIESEL [1.7 TDS]	-	-	-	OLEO QUEIMADO
#O59	OPEL	ASTRA	2005	GASOLINA	100475	10W40	-	-

#O60	OPEL	ASTRA	2006	DIESEL	102598	5W30	9500	_
#061	OPEL	ASTRA	2000	GASOLINA	96786	5W30	30000	_
#O62	OPEL	ASTRA	2007	DIESEL	105996	10W40	-	-
#O63	OPEL	ASTRA	2011	DIESEL	179390	5W30	30000	-
#O64	OPEL	ASTRA ECO FLEX	2012	DIESEL	101966	5W30	10000	-
#O65	OPEL	ASTRA	2012	DIESEL	147526	5W30	30000	-
#O66	OPEL	ASTRA	2013	DIESEL	16117	5W30	10000	-
#O67	OPEL	ASTRA	2013	DIESEL	86441	5W30	30000	-
#O68	OPEL	ASTRA	-	DIESEL	22092	-	5000	-
#O69	OPEL	COMBO	1996	DIESEL	294010	10W40	9855	-
#O70	OPEL	CORSA	-	DIESEL	1001077	10W40	10000	Mts Aditivos
# O 71	OPEL	CORSA	-	-	129642	5W40	25000	-
#O72	OPEL	CORSA	1999	GASOLINA	44760	-	10000	-
#O73	OPEL	CORSA	2000	GASOLINA	100000	10W40	-	-
# O 74	OPEL	CORSA	2001	GASOLINA	144478	10W40	10000	-
#O75	OPEL	CORSA	2010	GASOLINA	96638	5W30	30000	-
#O76	OPEL	CORSA	2012	DIESEL	78469	5W30	30000	-
#O77	OPEL	CORSA	2014	DIESEL	-	5W30	3000	-
# O 78	OPEL	INSIGNIA	2011	DIESEL	155300	5W30	30000	-
# O 79	OPEL	MERIVA	2013	DIESEL	23000	5W30	20000	-
#O80	PEUGEOT	106	1999	DIESEL	183000	10W40	15000	-
#O81	PEUGEOT	206	1998	GASOLINA	38544	10W40	20000	-
#O82	PEUGEOT	207	-	-	86000	-	20000	-
#O83	PEUGEOT	-	2001	GASOLINA	126818	10W40	20000	-
#O84	PEUGEOT	-	2003	DIESEL	96000	5W40	20000	-
#O85	PEUGEOT	-	-	DIESEL	140874	10W40	-	-
#O86	PEUGEOT	-	-	DIESEL	244187	-	5000	-
#O87	PEUGEOT	-	-	GASOLINA	60000	5W30	20000	-
#O88	RENAULT 2.1	-	-	GASOLINA	91210	10W40	10000	-
# O 89	RENAULT [TAXI]	-	-	DIESEL	336098	-	-	-
# O 90	RENAULT [TAXI]	-	-	DIESEL	305440	-	-	-
#O91	RENAULT [TAXI]	-	-	DIESEL	264397	-	-	-
#O92	RENAULT	-	1990	GASOLINA	261989	-	10000	-
#O93	RENAULT	-	2003	GASOLINA	-	10W40	10000	-
# O 94	RENAULT	-	2003	DIESEL	85342	5W40	15000	-
#O95	RENAULT	-	2006	DIESEL	232000	5W40	15000	-
#O96	RENAULT	CLIO	1999	GASOLINA		20W50	10000	-
# O 97	RENAULT	CLIO	2012	DIESEL	58164	5W30	20000	-
# O 98	RENAULT	LAGUNA	1999	DIESEL	131359	10W40	10000	-

# O 99	RENAULT	LAGUNA	2002	DIESEL	227987	5W40	20000	-
#O100	RENAULT	SCENIC	2004	DIESEL	183000	-	18600	-
#O101	SEAT	IBIZA	-	DIESEL	324555	-	10000	-
#O102	SEAT	LEON	2006	DIESEL	104587	5W30	-	-
#O103	SKODA	OCTAVIA	2001	DIESEL	217308	10W40	7000	-
#O104	SKODA [TAXI]	-	2013	DIESEL	147318	5W30	-	-
#O105	SMART	-	2008	GASOLINA	-	5W30	15000	-
#O106	SMART	-	2010	GASOLINA	60000	5W30	10000	-
#O107	SUZUKI	-	-	DIESEL	15000	5W40	5000	-
#O108	ΤΟΥΟΤΑ	-	-	DIESEL	231553	-	5000	-
#O109	ΤΟΥΟΤΑ	-	2000	DIESEL	280000	10W40	10000	-
#O110	ΤΟΥΟΤΑ	-	-	GASOLINA	166684	-	30000	-
#O111	ΤΟΥΟΤΑ	-	2008	GASOLINA	91000	5W40 C3	20000	-
#O112	ΤΟΥΟΤΑ	PRIUS	2009	GASOLINA	146439	5W30	-	-
#O113	VOLKSWAGEN	-	2000	DIESEL	220000	5W40	20000	-
#O114	VOLKSWAGEN	-	2000	DIESEL	221700	-	6000	-
#O115	VOLKSWAGEN	GOLF	2005	DIESEL	160000	5W40	10000	-
#O116	VOLKSWAGEN	GOLF	2007	DIESEL	111918	5W30	9500	-
#O117	VOLKSWAGEN	SHARAN	1999	DIESEL	182000	5W40	10000	-
#O118	VOLVO	940	1997	GASOLINA	147340	10W40	-	-
#O119	VOLVO	FM12	1999	DIESEL	230000	10W40	50000	-
#O120	VOLVO [CAMIÃO]	-	1999	DIESEL	300000	10W40	30000	-

Tabela 8.1.2. Amostras de óleo lubrificante novo.

ÓLEO NOVO

Amostra	Marca	Tipo de Óleo	Obs.
#ON1	BOSCH	5W40	-
#ON2	BOSCH	10W40	-
#ON3	CASTROL	5W40	-
#ON4	CASTROL	10W40	-
#ON5	CASTROL MARINE	15W40	Especifico para Barcos
#ON7	SASHA	10W40	-
#ON7	SEAT	5W30	-
#ON8	SEAT	10W40	-
#ON9	-	10W40	-
#ON10		15W50	Especifica para Aviões

Tabela 8.1.3. Amostras de filtro de óleo automóvel.

	FILTRO							
Amostra	Automóvel Correspondente	Marca do Filtro	Tipo Motor	Tipo Óleo	km			
#F1	#O20	HYUNDAI	-	-	15156			
#F2	#O53	RENAULT	DIESEL	5W30	20000			
#F3	#O82	-			20000			
#F4	#O88	SOFIMA	GASOLINA	10W40	10000			
#F5	FILTRO NOVO	-	-	-	-			

Tabela 8.1.4. Amostras de óleo lubrificante usado de barco.

		BARCO			
Amostra	Marca	Modelo	Ano	Tipo	Horas
					Bom Bordo/Estibordo
#OB1	BÉRRIO	NAVIO APOIO	-	DIESEL	35247,5/35043,5
		LOGISTICO			
#OB2	CACINE	NAVIO	1969	DIESEL	-
		PATRULHA			
#OB3	FIGEUIRA	NAVIO	-	DIESEL	-
	DA FOZ	PATRULHA			
#OB4	CORTE	FRAGATA	-	DIESEL	-
	REAL				

Tabela 8.1.5. Amostra de óleo lubrificante de avião.

	AVIÃO							
Amostra	Marca	Modelo	Ano Tipo	Horas				
#OA1	A18	Aeronave	- DIESEL	-				

Apêndice 2- Tabelas com Quantificação das Partículas de Desgaste, Contaminantes e Aditivos

Tabela 8.2.1. Quantificações de partículas nas amostras de óleo lubrificante de motor de automóveis, usado.

	# O 1	# O 2	# O 3	# O 4	# O 5
Al (Ka)	60±30ppm	<2290 ppm	<2360 ppm	3000±2000 ppm	<2330 ppm
Br (Ka)	8±3ppm	17±5ppm	16±5ppm	17±5ppm	21±5ppm
Ca (Ka)	317±10ppm	3500±100 ppm	6400±200 ppm	8000±200 ppm	5800±200 ppm
Cl (Ka)	<7,6 ppm	<281,3 ppm	<278,9 ppm	<288,9 ppm	<281.5 ppm
Cr (Ka)	3±1ppm	50±10ppm	30±10ppm	40±10ppm	<22.5 ppm
Cu (Ka)	10±1ppm	92±6ppm	62±6ppm	70±6ppm	60±бррт
Fe (Ka)	51±3ppm	1300 ppm	370±20ppm	1200 ppm	400±20ppm
Mn (Ka)	<8,7 ppm	<66,0 ppm	70±20ppm	90±20ppm	100±30ppm
Mo (Ka)	<20,8 ppm	<13,9 ppm	17±5ppm	<14,1 ppm	<13.9 ppm
Ni (Ka)	2,1±0,5ppm	9±2ppm	6±2ppm	12±3ppm	9±2ppm
P (Ka)	22±6ppm	700±200ppm	1100±300 ppm	1400±400 ppm	700±200ppm
Pb (La)	4±2ppm	14±6ppm	10±4ppm	18±7ppm	11±5ppm
S (Ka)	41±2ppm	1330±100 ppm	2800±100 ppm	4300±200 ppm	2100±100 ppm
Si (Ka)	90±10ppm	3300±600 ppm	4700±700 ppm	3600±600 ppm	3500±600 ppm
Sr (Ka)	7±2ppm	<5,3 ppm	6±2ppm	8±3ppm	6±3ppm
Ti (Ka)	<2,0 ppm	<28,0 ppm	30±10ppm	<28,7 ppm	<27.8 ppm
Zn (Ka)	544±8ppm	1500 ppm	2200 ppm	2800 ppm	2400 ppm
	#O6	# O 7	# O 8	#O9	#O10
Al (Ka)	#O6 <45,1 ppm	# O7 50±30ppm	#O8 <2530 ppm	#O9 <2450 ppm	# O10 2000±1000 ppm
Al (Kα) Br (Kα)	#O6 <45,1 ppm 11±3ppm	# O7 50±30ppm <6,4 ppm	# O8 <2530 ppm 20±5ppm	#O9 <2450 ppm 24±5ppm	# O10 2000±1000 ppm 15±5ppm
Al (Kα) Br (Kα) Ca (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm	# O7 50±30ppm <6,4 ppm 209±7ppm	#O8 <2530 ppm 20±5ppm 7200±200 ppm	#O9 <2450 ppm 24±5ppm 6500±200 ppm	#O10 2000±1000 ppm 15±5ppm 6400±200 ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm	# O7 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm	#O8 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm	#O9 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm	#O10 2000±1000 ppm 15±5ppm 6400±200 ppm <273,6 ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα) Cr (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm <2,6 ppm	#O7 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm <2,3 ppm	#O8 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm 70±20ppm	#O9 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm 24±10ppm	#O10 2000±1000 ppm 15±5ppm 6400±200 ppm <273,6 ppm 40±10ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα) Cr (Kα) Cu (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm <2,6 ppm 11±1ppm	# 07 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm <2,3 ppm 11±1ppm	#O8 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm 70±20ppm 82±6ppm	#O9 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm 24±10ppm 64±6ppm	#O10 2000±1000 ppm 15±5ppm 6400±200 ppm <273,6 ppm 40±10ppm 66±6ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα) Cr (Kα) Cu (Kα) Fe (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm <2,6 ppm 11±1ppm 23±3ppm	#O7 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm <2,3 ppm 11±1ppm 77±3ppm	#O8 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm 70±20ppm 82±6ppm 1840±30 ppm	#O9 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm 24±10ppm 64±6ppm 890±20ppm	#O10 2000±1000 ppm 15±5ppm 6400±200 ppm <273,6 ppm 40±10ppm 66±6ppm 1100±30 ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα) Cr (Kα) Cu (Kα) Fe (Kα) Mn (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm <2,6 ppm 11±1ppm 23±3ppm <8,8 ppm	#O7 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm <2,3 ppm 11±1ppm 77±3ppm <7,7 ppm	#O8 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm 70±20ppm 82±6ppm 1840±30 ppm 140±30ppm	#O9 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm 24±10ppm 64±6ppm 890±20ppm <66.1 ppm	#O10 2000±1000 ppm 15±5ppm 6400±200 ppm <273,6 ppm 40±10ppm 66±6ppm 1100±30 ppm <65,7 ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα) Cr (Kα) Cu (Kα) Fe (Kα) Mn (Kα) Mo (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm <2,6 ppm 11±1ppm 23±3ppm <8,8 ppm <21,5 ppm	#O7 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm <2,3 ppm 11±1ppm 77±3ppm <7,7 ppm 28±7ppm	#O8 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm 70±20ppm 82±6ppm 1840±30 ppm 140±30ppm 29±5ppm	#O9 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm 24±10ppm 64±6ppm 890±20ppm <66.1 ppm <14.0 ppm	#O10 2000±1000 ppm 15±5ppm 6400±200 ppm <273,6 ppm 40±10ppm 66±6ppm 1100±30 ppm <65,7 ppm <13,9 ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα) Cr (Kα) Cu (Kα) Fe (Kα) Mn (Kα) No (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm <2,6 ppm 11±1ppm 23±3ppm <8,8 ppm <21,5 ppm 1,1±0,3ppm	#07 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm <2,3 ppm 11±1ppm 77±3ppm <7,7 ppm 28±7ppm 1,7±0,4ppm	#O8 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm 70±20ppm 82±6ppm 1840±30 ppm 140±30ppm 29±5ppm 13±3ppm	#O9 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm 24±10ppm 64±6ppm 890±20ppm <66.1 ppm <14.0 ppm 12±3ppm	#O10 2000±1000 ppm 15±5ppm 6400±200 ppm <273,6 ppm 40±10ppm 66±6ppm 1100±30 ppm <65,7 ppm <13,9 ppm 10±2 ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα) Cr (Kα) Cu (Kα) Fe (Kα) Mn (Kα) Ni (Kα) P (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm <2,6 ppm 11±1ppm 23±3ppm <8,8 ppm <21,5 ppm 1,1±0,3ppm 23±6ppm	#07 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm <2,3 ppm 11±1ppm 77±3ppm <7,7 ppm 28±7ppm 1,7±0,4ppm 12±4ppm	#O8 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm 70±20ppm 82±6ppm 1840±30 ppm 140±30ppm 29±5ppm 13±3ppm 1300±400 ppm	#O9 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm 24±10ppm 64±6ppm 64±6ppm <890±20ppm <66.1 ppm <14.0 ppm 12±3ppm 1300±400 ppm	#O10 2000±1000 ppm 15±5ppm 6400±200 ppm <273,6 ppm 40±10ppm 66±6ppm 1100±30 ppm <65,7 ppm <13,9 ppm 10±2 ppm 1100±300 ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα) Cr (Kα) Cu (Kα) Fe (Kα) Mn (Kα) Ni (Kα) P (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm <2,6 ppm 11±1ppm 23±3ppm <8,8 ppm <21,5 ppm 1,1±0,3ppm 23±6ppm <3,4 ppm	#07 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm <2,3 ppm 11±1ppm 77±3ppm <7,7 ppm 28±7ppm 1,7±0,4ppm 12±4ppm 4±2ppm	#O8 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm 70±20ppm 82±6ppm 1840±30 ppm 140±30ppm 29±5ppm 13±3ppm 1300±400 ppm 13±6ppm	#O9 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm 24±10ppm 64±6ppm 890±20ppm <66.1 ppm <14.0 ppm 12±3ppm 1300±400 ppm <7.8 ppm	#O10 2000±1000 ppm 15±5ppm 6400±200 ppm <273,6 ppm 40±10ppm 66±6ppm 1100±30 ppm <65,7 ppm <13,9 ppm 10±2 ppm 1100±300 ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα) Cr (Kα) Cu (Kα) Fe (Kα) Mn (Kα) Ni (Kα) P (Kα) S (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm <2,6 ppm 11±1ppm 23±3ppm <8,8 ppm <21,5 ppm 1,1±0,3ppm 23±6ppm <3,4 ppm 55±3ppm	#07 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm <2,3 ppm 11±1ppm 77±3ppm <7,7 ppm 28±7ppm 1,7±0,4ppm 12±4ppm 4±2ppm 56±3ppm	#08 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm 70±20ppm 82±6ppm 1840±30 ppm 140±30ppm 140±30ppm 1300±400 ppm 13±6ppm 3300±200 ppm	#09 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm 24±10ppm 64±6ppm 64±6ppm <890±20ppm <66.1 ppm <14.0 ppm 12±3ppm 1300±400 ppm <7.8 ppm 2600±100 ppm	#O10 2000±1000 ppm 15±5ppm 6400±200 ppm <273,6 ppm 40±10ppm 66±6ppm 1100±30 ppm <65,7 ppm 10±2 ppm 10±2 ppm 1100±300 ppm <7,8 ppm 2700±100 ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα) Cr (Kα) Cu (Kα) Fe (Kα) Mn (Kα) Ni (Kα) P (Kα) S (Kα) Si (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm <2,6 ppm 11±1ppm 23±3ppm <8,8 ppm <21,5 ppm 1,1±0,3ppm 23±6ppm <3,4 ppm 55±3ppm 80±10ppm	#07 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm <2,3 ppm 11±1ppm 77±3ppm <7,7 ppm 28±7ppm 1,7±0,4ppm 1,7±0,4ppm 12±4ppm 4±2ppm 56±3ppm 100±10ppm	#O8 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm 70±20ppm 82±6ppm 1840±30 ppm 140±30ppm 140±30ppm 13±3ppm 1300±400 ppm 3300±200 ppm 4000±700 ppm	#09 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm 24±10ppm 64±6ppm 890±20ppm <66.1 ppm <12±3ppm 1300±400 ppm <7.8 ppm 2600±100 ppm 3600±600 ppm	#010 2000±1000 ppm 15±5ppm 6400±200 ppm <273,6 ppm 40±10ppm 66±6ppm 1100±30 ppm <65,7 ppm 10±2 ppm 10±2 ppm 1100±300 ppm <7,8 ppm 2700±100 ppm 2800±600 ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα) Cr (Kα) Cu (Kα) Fe (Kα) Mn (Kα) Mo (Kα) Ni (Kα) P (Kα) S (Kα) Si (Kα) Sr (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm <2,6 ppm 11±1ppm 23±3ppm <8,8 ppm <21,5 ppm 1,1±0,3ppm 23±6ppm <3,4 ppm 55±3ppm 80±10ppm 7±3ppm	#07 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm <2,3 ppm 11±1ppm 77±3ppm <7,7 ppm 28±7ppm 1,7±0,4ppm 12±4ppm 4±2ppm 56±3ppm 100±10ppm 6±2ppm	#08 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm 70±20ppm 82±6ppm 1840±30 ppm 140±30ppm 140±30ppm 1300±400 ppm 13±6ppm 3300±200 ppm 4000±700 ppm	#09 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm 24±10ppm 64±6ppm 64±6ppm <414.0 ppm 12±3ppm 1300±400 ppm <7.8 ppm 2600±100 ppm 3600±600 ppm <5.2 ppm	#010 2000±1000 ppm 15±5ppm 6400±200 ppm <273,6 ppm 40±10ppm 66±6ppm 1100±30 ppm <65,7 ppm 10±2 ppm 10±2 ppm 1100±300 ppm <7,8 ppm 2700±100 ppm 6±2ppm
Al (Kα) Br (Kα) Ca (Kα) Cl (Kα) Cr (Kα) Cu (Kα) Fe (Kα) Mn (Kα) Mo (Kα) Ni (Kα) P (Kα) Si (Kα) Sr (Kα) Ti (Kα)	#O6 <45,1 ppm 11±3ppm 380±10ppm <7,7 ppm <2,6 ppm 11±1ppm 23±3ppm <8,8 ppm <21,5 ppm 1,1±0,3ppm 23±6ppm <3,4 ppm 55±3ppm 80±10ppm 7±3ppm 2,3±0,8ppm	#07 50±30ppm <6,4 ppm 209±7ppm <7,0 ppm <2,3 ppm 11±1ppm 77±3ppm <7,7 ppm 28±7ppm 1,7±0,4ppm 1,7±0,4ppm 12±4ppm 56±3ppm 100±10ppm 6±2ppm <1,9 ppm	#08 <2530 ppm 20±5ppm 7200±200 ppm <288,9 ppm 70±20ppm 82±6ppm 1840±30 ppm 140±30ppm 140±30ppm 130±5ppm 13±3ppm 1300±400 ppm 3300±200 ppm 4000±700 ppm 6±2ppm <28.6 ppm	#09 <2450 ppm 24±5ppm 6500±200 ppm <272,0 ppm 24±10ppm 64±6ppm 890±20ppm <66.1 ppm <14.0 ppm 12±3ppm 1300±400 ppm <7.8 ppm 2600±100 ppm 3600±600 ppm <5.2 ppm 29±10ppm	#010 2000±1000 ppm 15±5ppm 6400±200 ppm 6400±10ppm 40±10ppm 66±6ppm 1100±30 ppm <65,7 ppm 10±2 ppm 10±2 ppm 1100±300 ppm <7,8 ppm 2700±100 ppm 6±2ppm 40±10ppm

	# O 11	#O12	#O13	# O 14	#O15
Al (Ka)	3000±200 ppm	2000±1000 ppm	3000±200 ppm	2000±100 ppm	<2410 ppm
Br (Ka)	19±5 ppm	15±4ppm	19±5ppm	16±5ppm	18±5ppm
Ca (Ka)	3700±100 ppm	6000±200 ppm	7200±200 ppm	3500±100ppm	6600±200 ppm
Cl (Ka)	<283.5 ppm	<265.1 ppm	<282.3 ppm	<290.5 ppm	<280.4 ppm
Cr (Ka)	30±10 ppm	<20.3 ppm	<21.9 ppm	40±10ppm	<23.0 ppm
Cu (Ka)	48±6 ppm	6±60ppm	69±6ppm	60±6ppm	36±6ppm
Fe (Ka)	970±20 ppm	1090±20 ppm	300±20ppm	940±20ppm	260±20ppm
Mn (Ka)	<65.8 ppm	<58.0 ppm	<61,2 ppm	<65.7 ppm	<64.8 ppm
Mo (Ka)	<13.9 ppm	40±5ppm	<13.9 ppm	<14.0 ppm	85±6ppm
Ni (Ka)	9±2 ppm	11±2ppm	10±2ppm	7±2ppm	9±2ppm
Ρ (Ka)	<423.3 ppm	900±300ppm	1200±300 ppm	<438.9 ppm	1400±400 ppm
Pb (La)	10±5 ppm	13±5ppm	<7.7 ppm	8±4ppm	10±4ppm
S (Ka)	1610±100 ppm	2800±100 ppm	6500±300 ppm	1570±100ppm	2900±100 ppm
Si (Ka)	3300±600 ppm	3500±600 ppm	5100±700 ppm	3300±600 ppm	3800±600 ppm
Sr (Ka)	6±2 ppm	6±2ppm	<5.2 ppm	6±2ppm	8±3ppm
Ti (Kα)	70±10 ppm	<24.8 ppm	<27.8 ppm	70±10ppm	<28.3 ppm
Zn (Ka)	1210±20 ppm	2560±40 ppm	2510±40 ppm	1200±20 ppm	2430±30 ppm

	# O16	# O 17	# O18	#O19	#O20
Al (Ka)	<2440 ppm	<2410 ppm	<2290 ppm	40±20ppm	<41.6 ppm
Br (Ka)	14±5ppm	<13.3 ppm	17±5 ppm	8±2ppm	8±2ppm
Ca (Ka)	6300±200 ppm	6400±200 ppm	3500±100 ppm	180±6ppm	220±7ppm
Cl (Ka)	<277.4 ppm	<275.5 ppm	<281.3 ppm	<7.4 ppm	<7.7 ppm
Cr (Ka)	<22.9 ppm	30±10ppm	50±10 ppm	2,4±0,9ppm	3±1ppm
Cu (Ka)	38±6ppm	54±6ppm	92±6 ppm	8±1ppm	10±1ppm
Fe (Ka)	370±20ppm	320±20ppm	1290±30 ppm	17±2ppm	91±3ppm
Mn (Kα)	<66.1 ppm	<65.0 ppm	<66.0 ppm	<7.1 ppm	<7.8 ppm
Mo (Ka)	<13.6 ppm	<13.8 ppm	<13.9 ppm	<16.6 ppm	24±6ppm
Ni (Ka)	9±2ppm	11±2ppm	9±2 ppm	1,0±0,3ppm	1,6±0,4ppm
Ρ (Κα)	1100±300 ppm	700±200ppm	700±200 ppm	<6,9 ppm	13±4ppm
Pb (La)	<7.9 ppm	11±ppm	14±6 ppm	4±2ppm	4±2ppm
S (Ka)	2100±100 ppm	2300±1000 ppm	1330±100 ppm	19±1ppm	34±2ppm
Si (Ka)	4100±600 ppm	3300±600 ppm	3300±600 ppm	100±10ppm	90±10ppm
Sr (Ka)	5±2ppm	<5.2 ppm	<5.3 ppm	<3.5 ppm	5±2ppm
Ti (Kα)	<27.8 ppm	<28.9 ppm	<28.0 ppm	<1.7 ppm	<1.9 ppm
Zn (Ka)	1970±30 ppm	2030±30 ppm	1480±20 ppm	253±4ppm	387±6ppm

	# O21	#O22	#O23	# O 24	#O25
Al (Ka)	2000±1000 ppm	<2400 ppm	<2440 ppm	<2420 ppm	<2440 ppm
Br (Ka)	<13.0 ppm	16±5ppm	<12.7 ppm	17±5ppm	14±5ppm
Ca (Ka)	5300±200 ppm	10100±300 ppm	8600±200 ppm	7900±200 ppm	6700±200 ppm
Cl (Ka)	<283.6 ppm	<279.6 ppm	<300.5 ppm	<281.4 ppm	<289.2 ppm
Cr (Ka)	30±10ppm	<21.6 ppm	30±10ppm	24±9ppm	<23.0 ppm
Cu (Ka)	81±6ppm	155±7ppm	36±6ppm	44±6ppm	79±6ppm
Fe (Ka)	1400±30 ppm	450±20ppm	300±20ppm	1130±30 ppm	1220±30 ppm
Mn (Ka)	120±30ppm	<61.6 ppm	<61.5 ppm	<62.5 ppm	<64.4 ppm
Mo (Ka)	<13.5 ppm	38±5ppm	<13.7 ppm	<13.9 ppm	<14.0 ppm
Ni (Ka)	9±2ppm	10±2ppm	9±2ppm	8±2ppm	19±4ppm
Ρ (Ka)	900±300ppm	1200±300 ppm	2200±600 ppm	1700±500 ppm	1200±300 ppm
Pb (La)	18±7ppm	<7.4 ppm	<7.4 ppm	9±4ppm	13±5ppm
S (Ka)	2300±100 ppm	2900±100 ppm	8500±300 ppm	4700±200 ppm	2900±100 ppm
Si (Ka)	4300±600 ppm	4600±700 ppm	2700±600 ppm	3900±600 ppm	3200±600 ppm
Sr (Ka)	<5.1 ppm	5±2ppm	6±2ppm	5±2ppm	6±2ppm
Ti (Kα)	<28.8 ppm	<27.2 ppm	<27.2 ppm	<27.6 ppm	<27.3 ppm
Zn (Ka)	2250±30 ppm	25200±40 ppm	4420±100 ppm	2670±40 ppm	2580±20 ppm

	#O26	#O27	# O 28	#O29	#O30
Al (Ka)	<43.3 ppm	<1260 ppm	<2400 ppm	<2480 ppm	<2410 ppm
Br (Ka)	<6.7 ppm	7±2ppm	14±5ppm	19±5ppm	15±5ppm
Ca (Ka)	333±10 ppm	2000±100 ppm	6000±200 ppm	9900±300 ppm	7200±200 ppm
Cl (Ka)	<7.5 ppm	<144.2 ppm	<294.6 ppm	<274.4 ppm	<276.1 ppm
Cr (Ka)	3±1 ppm	<10.8 ppm	<22.2 ppm	<23.5 ppm	23±9ppm
Cu (Ka)	10±1ppm	11±3ppm	57±6ppm	47±6ppm	48±6ppm
Fe (Ka)	124±3ppm	31±7ppm	310±20ppm	80±20ppm	310±20ppm
Mn (Ka)	<8.1 ppm	<30.0 ppm	<63.0 ppm	<65.3 ppm	<61.6 ppm
Mo (Ka)	<20.0 ppm	<7.1 ppm	16±5ppm	45±6ppm	34±5ppm
Ni (Ka)	1.3±0.3ppm	<2.3 ppm	11±3ppm	10±3ppm	8±2ppm
Ρ (Ka)	12±4 ppm	400±100ppm	1100±300 ppm	1600±400 ppm	1200±300 ppm
Pb (La)	4±2 ppm	6±3ppm	9±4ppm	17±7ppm	8±4ppm
S (Ka)	72±3 ppm	2400±100 ppm	3800±200 ppm	3700±200 ppm	4800±200 ppm
Si (Ka)	80±10 ppm	<862.7 ppm	2400±600 ppm	2300±600 ppm	4100±700 ppm
Sr (Ka)	<4.2 ppm	4±2ppm	5±2ppm	<5.6 ppm	7±3ppm
Ti (Kα)	<1.9 ppm	<13.7 ppm	30±10ppm	<29.4 ppm	<26.9 ppm
Zn (Ka)	468±7 ppm	710±10ppm	2370±30 ppm	2850±40 ppm	2680±40 ppm

	#O31	#O32	#O33	#O34	#O35
Al (Ka)	<2400 ppm	<43.4 ppm	<46,4 ppm	<2400 ppm	<40.9 ppm
Br (Ka)	19±5ppm	<7.4 ppm	10±3ppm	15±5ppm	10±3ppm
Ca (Ka)	7300±200 ppm	299±9ppm	290±9ppm	9200±200 ppm	226±7ppm
Cl (Ka)	<287,4 ppm	<7.3 ppm	<7,6 ppm	<285.1 ppm	<8.0 ppm
Cr (Ka)	<22,1 ppm	3±1ppm	<2,5 ppm	25±10ppm	3±1ppm
Cu (Ka)	45±6ppm	19±1ppm	15±1ppm	67±6ppm	9±1ppm
Fe (Ka)	300±20ppm	92±3ppm	96±3ppm	730±20ppm	109±3ppm
Mn (Ka)	<62,4 ppm	<8.6 ppm	<8,6 ppm	<64.3 ppm	<8.1 ppm
Mo (Ka)	38±5ppm	37±7ppm	38±7ppm	<13.8 ppm	21±7ppm
Ni (Ka)	8±2ppm	2.0±0.4ppm	1,8±0,4ppm	10±2ppm	1.8±0.4ppm
Ρ (Ka)	1000±300 ppm	17±5ppm	11±4ppm	1100±300 ppm	9±3ppm
Pb (La)	11±5ppm	5±2ppm	5±2ppm	156±ppm	3±2ppm
S (Ka)	4300±200 ppm	92±4ppm	85±4ppm	2900±100 ppm	27±2ppm
Si (Ka)	3300±600 ppm	110±10ppm	90±10ppm	2000±500 ppm	70±10ppm
Sr (Ka)	7±3ppm	5±2ppm	6±2ppm	<5.2 ppm	5±2ppm
Ti (Kα)	<27,9 ppm	<1.9 ppm	2,5±0,7ppm	<27.6 ppm	2.0±0.7ppm
Zn (Ka)	2600±30 ppm	568±8ppm	558±8ppm	2770±40 ppm	409±6ppm

	#O36	#O37	#O38	#O39	#O40
Al (Ka)	<2400 ppm	<2460 ppm	<2490 ppm	<43.6 ppm	<2450 ppm
Br (Ka)	20±5ppm	24±5ppm	17±5ppm	12±3ppm	30±6ppm
Ca (Ka)	9200±200 ppm	8900±200 ppm	10800±300 ppm	530±10ppm	6700±200 ppm
Cl (Ka)	<268,0 ppm	<298.5 ppm	<289.4 ppm	<7.5 ppm	<295.2 ppm
Cr (Ka)	26±10ppm	<21.8 ppm	25±9ppm	2±1ppm	<23.6 ppm
Cu (Ka)	63±6ppm	51±6ppm	46±5ppm	11±1ppm	71±6ppm
Fe (Ka)	700±20ppm	800±20ppm	330±20ppm	28±3ppm	420±20ppm
Mn (Ka)	<62.9 ppm	<61.0 ppm	<58.6 ppm	<8.4 ppm	<67.4 ppm
Mo (Ka)	<13.8 ppm	<13.6 ppm	<13.3 ppm	53±8ppm	16±5ppm
Ni (Ka)	8±2ppm	12±3ppm	6±2ppm	1.8±0.4ppm	10±2ppm
P (Ka)	1500±400 ppm	1900±500 ppm	1700±500 ppm	25±7ppm	1400±400 ppm
Pb (La)	16±7ppm	10±4ppm	<7.2 ppm	4±2ppm	12±5ppm
S (Ka)	2900±100 ppm	7800±300 ppm	9000±400 ppm	1020±400ppm	2800±100 ppm
Si (Ka)	3200±600 ppm	3200±600 ppm	2100±600 ppm	70±10ppm	3100±600 ppm
Sr (Ka)	6±2ppm	5±2ppm	6±2ppm	<4.6 ppm	8±3ppm
Ti (Ka)	<27.5 ppm	<26.9 ppm	<25.5 ppm	<2.0 ppm	<29.3 ppm
Zn (Ka)	2800±20 ppm	4100±100 ppm	2720±40 ppm	644±9ppm	3100±30 ppm

	#O41	#O42	# O 43	#O44	#O45
Al (Ka)	<42.3 ppm	<41.2 ppm	3000±200 ppm	<42.4 ppm	60±30ppm
Br (Ka)	12±3ppm	8±2ppm	16±5ppm	9±3ppm	8±3ppm
Ca (Ka)	289±9ppm	139±5ppm	4500±100 ppm	274±9ppm	450±10ppm
Cl (Ka)	<6.9 ppm	<7.4 ppm	<286.6 ppm	<7.7 ppm	<7.7 ppm
Cr (Ka)	<2.5 ppm	<2.1 ppm	<23.4 ppm	3±1ppm	4±1ppm
Cu (Ka)	18±1ppm	13±1ppm	50±6ppm	10±1ppm	7±1ppm
Fe (Ka)	97±3ppm	74±3ppm	190±20ppm	45±3ppm	39±3ppm
Mn (Ka)	<8.7 ppm	<7.2 ppm	<66.0 ppm	<8.5 ppm	<8.6 ppm
Mo (Ka)	32±7ppm	40±6ppm	<13.0 ppm	<20.0 ppm	66±8ppm
Ni (Ka)	1.9±0.4ppm	1.3±0.3ppm	8±2ppm	1.7±0.4ppm	1.9±0.4ppm
Ρ (Ka)	17±5ppm	11±4ppm	600±200ppm	16±5ppm	24±7ppm
Pb (La)	4±2ppm	5±2ppm	9±4ppm	<3.2 ppm	5±2ppm
S (Ka)	96±4ppm	79±4ppm	1830±100 ppm	38±2ppm	109±5ppm
Si (Ka)	80±10ppm	70±10ppm	3500±600 ppm	80±10ppm	90±10ppm
Sr (Ka)	<4.6 ppm	4±2ppm	<5.0 ppm	5±2ppm	6±2ppm
Ti (Kα)	<2.0 ppm	<1.8 ppm	<28.4 ppm	<2.0 ppm	<1.9 ppm
Zn (Ka)	592±8ppm	304±5ppm	1350±20 ppm	484±7ppm	694±10ppm

	#O46	#O47	#O48	# O 49	# O 50
Al (Ka)	60±30ppm	<45.8 ppm	<2450 ppm	<2520 ppm	3000±500 ppm
Br (Ka)	8±2ppm	11±3ppm	13±4ppm	<13.2 ppm	15±5 ppm
Ca (Ka)	420±10ppm	390±10ppm	6600±200 ppm	7300±200 ppm	6100±200 ppm
Cl (Ka)	<7.6 ppm	<8.2 ppm	<285.9 ppm	<289.1 ppm	<284.0 ppm
Cr (Ka)	<2.3 ppm	4±1ppm	26±10ppm	30±10ppm	<23.6 ppm
Cu (Ka)	7±1ppm	12±1ppm	62±6ppm	84±6ppm	65±6 ppm
Fe (Ka)	18±2ppm	75±3ppm	360±20ppm	150±20ppm	690±20 ppm
Mn (Ka)	<7.7 ppm	<9.6 ppm	<61.4 ppm	<64.2 ppm	<66.2 ppm
Mo (Ka)	<20.1 ppm	<22.2 ppm	33±5ppm	17±5ppm	29±5ppm
Ni (Ka)	1.8±0.4ppm	1.6±0.4ppm	9±2ppm	10±2ppm	12±3 ppm
Ρ (Κα)	20±6ppm	23±7ppm	700±200ppm	1000±300ppm	1300±400 ppm
Pb (La)	4±2ppm	5±2ppm	11±5ppm	<7.9 ppm	16±6 ppm
S (Ka)	157±7ppm	50±3ppm	3200±100 ppm	2900±100 ppm	2300±100ppm
Si (Ka)	80±10ppm	80±10ppm	3000±600 ppm	2700±600 ppm	3500±600 ppm
Sr (Ka)	6±2ppm	5±2ppm	6±2ppm	<5.2 ppm	<5.3 ppm
Ti (Kα)	<1.9 ppm	<2.1 ppm	<26.9 ppm	<27.9 ppm	<27.9 ppm
Zn (Ka)	658±9ppm	678±10ppm	2000±30 ppm	2600±20 ppm	2340±30 ppm

	#O51	#O52	# O 53	# O 54	#O55
Al (Ka)	<2540 ppm	<44.4 ppm	<2420 ppm	<2370 ppm	<2520 ppm
Br (Ka)	16±5ppm	7±2ppm	14±5ppm	20±5 ppm	20±5ppm
Ca (Ka)	7700±200 ppm	216±7ppm	7300±200 ppm	4500±100 ppm	7100±200 ppm
Cl (Ka)	<284,8 ppm	<7,5 ppm	<290,0 ppm	<278,1 ppm	<297,9 ppm
Cr (Ka)	40±10ppm	<2.2 ppm	40±10ppm	30±10 ppm	26±10ppm
Cu (Ka)	47±6ppm	18±1ppm	267±8ppm	49±6ppm	520±10ppm
Fe (Ka)	110±10ppm	72±3ppm	2000±30 ppm	410±20 ppm	740±20ppm
Mn (Ka)	<63.2 ppm	<7.8 ppm	<63.5 ppm	<65.8 ppm	<62.5 ppm
Mo (Ka)	<13.9 ppm	39±7ppm	<13.4 ppm	<14.0 ppm	33±5ppm
Ni (Ka)	8±2ppm	1.6±0.4ppm	11±3ppm	10±2 ppm	9±2ppm
Ρ (Ka)	1200±400 ppm	15±5ppm	1000±300 ppm	700±200 ppm	1200±300 ppm
Pb (La)	10±4ppm	3±1ppm	40±20ppm	<8.0 ppm	40±10ppm
S (Ka)	5700±200 ppm	122±5ppm	2600±100 ppm	2200±100 ppm	5200±200 ppm
Si (Ka)	2800±600 ppm	80±10ppm	3500±600 ppm	3300±600 ppm	3100±600 ppm
Sr (Ka)	6±2ppm	5±2ppm	<5,0 ppm	6±3ppm	<5.1 ppm
Ti (Kα)	<27.0 ppm	1.9±0.7ppm	<28,2 ppm	100±20 ppm	<27.0 ppm
Zn (Ka)	2200±30 ppm	453±7ppm	2600±40 ppm	1510±20 ppm	2400±30 ppm

	#O56	#O57	#O58	# O 59	# O60
Al (Ka)	<2500 ppm	<2440 ppm	<2470 ppm	<2470 ppm	<45.0 ppm
Br (Ka)	18±5ppm	17±5ppm	15±4ppm	25±5ppm	8±3ppm
Ca (Ka)	1010±300 ppm	5500±200 ppm	5800±200 ppm	6200±200 ppm	298±9ppm
Cl (Ka)	<274.4 ppm	<287.6 ppm	<293.4 ppm	<291.7 ppm	<7.8 ppm
Cr (Ka)	<23.1 ppm	<22.1 ppm	70±20ppm	50±10ppm	4±1ppm
Cu (Ka)	32±6ppm	45±6ppm	167±7ppm	152±7ppm	9±1ppm
Fe (Ka)	150±20ppm	430±20ppm	2300±20 ppm	2000±40 ppm	76±3ppm
Mn (Ka)	<65.4 ppm	<64.4 ppm	<60.6 ppm	<65.3 ppm	<8.6 ppm
Mo (Ka)	44±5ppm	20±5ppm	21±20ppm	14±5ppm	32p±7pm
Ni (Ka)	7±2ppm	6±2ppm	10±2ppm	7±2ppm	1.6±0.4ppm
Ρ (Κα)	1400±400 ppm	900±300ppm	2100±500 ppm	1400±400 ppm	15±5ppm
Pb (La)	11±5ppm	12±5ppm	18±7ppm	<7.6 ppm	<3.3 ppm
S (Ka)	3400±200 ppm	2600±100 ppm	5900±200 ppm	5300±200 ppm	48±2ppm
Si (Ka)	4100±700 ppm	3200±600 ppm	3600±600 ppm	3900±600 ppm	60±10ppm
Sr (Ka)	6±3ppm	6±3ppm	6±2ppm	<5.1 ppm	6±2ppm
Ti (Ka)	<27.9 ppm	<27.3 ppm	<27.4 ppm	30±10ppm	<2.0 ppm
Zn (Ka)	2510±40 ppm	2100±30 ppm	2500±20 ppm	2470±30 ppm	539±8ppm

	#O61	#O62	#O63	# O64	#O65
Al (Kα)	<2280 ppm	<2480 ppm	2000±1000 ppm	<38.5 ppm	<43.5 ppm
Br (Ka)	18±5ppm	16±5ppm	15±4 ppm	<5.3 ppm	<7.4 ppm
Ca (Ka)	6100±200 ppm	5500±200 ppm	6000±200 ppm	178±6ppm	370±10ppm
Cl (Ka)	<275.0 ppm	<289.2 ppm	<265.1 ppm	<7.7 ppm	<7.8 ppm
Cr (Ka)	<22.3 ppm	<23.6 ppm	<20.3 ppm	3±1ppm	3±1ppm
Cu (Ka)	57±6ppm	65±6ppm	60±6 ppm	6.0±1,0ppm	8±1ppm
Fe (Ka)	470±20ppm	390±20ppm	1090±20 ppm	60±2ppm	167±4ppm
Mn (Kα)	<63.3 ppm	<66.9 ppm	<58.0 ppm	<6.8 ppm	<9.2 ppm
Μο (Κα)	18±5ppm	16±5ppm	40±5 ppm	26±5ppm	22±7ppm
Ni (Kα)	11±2ppm	7±2ppm	11±2 ppm	1.0±0.3ppm	1.7±0,4ppm
Ρ (Κα)	900±300ppm	1000±300ppm	900±300 ppm	<7.4 ppm	19±5ppm
Pb (La)	9±4ppm	<8.1 ppm	13±5 ppm	3±1ppm	4±2ppm
S (Ka)	2500±100 ppm	2300±100 ppm	2800±100 ppm	15±1ppm	44±2ppm
Si (Ka)	3800±600 ppm	3100±600 ppm	3500±600 ppm	60±10ppm	80±10ppm
Sr (Ka)	6±2ppm	6±2ppm	6±2 ppm	4±2ppm	6±2ppm
Τί (Κα)	<26.9 ppm	<28.6 ppm	<24.8 ppm	<1.7 ppm	<2.0 ppm
Zn (Ka)	2200±20 ppm	2400±30 ppm	2560±40 ppm	286±5ppm	581±8ppm

	#O66	#O67	#O68	#O69	# O70
Al (Ka)	50±20ppm	<2510 ppm	<2450 ppm	50±30ppm	<2540 ppm
Br (Ka)	<6.1 ppm	20±5ppm	15±5ppm	8±2ppm	13±5ppm
Ca (Ka)	211±7ppm	7100±200 ppm	9100±200 ppm	400±10ppm	7100±200 ppm
Cl (Ka)	<7.3 ppm	<288.0 ppm	<282.5 ppm	<7.5 ppm	<305.7 ppm
Cr (Ka)	<2.2 ppm	<22.3 ppm	<22.4 ppm	<2.3 ppm	23±9ppm
Cu (Ka)	13±1ppm	68±6ppm	45±6ppm	7±1ppm	37±6ppm
Fe (Ka)	15±2ppm	400±20ppm	380±20ppm	41±3ppm	470±20ppm
Mn (Ka)	<7.5 ppm	<64.5 ppm	<63.8 ppm	<8.0 ppm	70±20ppm
Mo (Ka)	<17.3 ppm	32±5ppm	41±5ppm	<20.1 ppm	30±5ppm
Ni (Ka)	0.9±0.3ppm	113ppm	7±2ppm	1.2±0,3ppm	8±2ppm
Ρ (Ka)	9±3ppm	1100±300 ppm	1000±300ppm	17±5ppm	1700±500 ppm
Pb (La)	4±6ppm	11±5ppm	<7.8 ppm	<3.0 ppm	30±10ppm
S (Ka)	20±1ppm	4600±200 ppm	3500±200 ppm	141±6ppm	6900±300 ppm
Si (Ka)	70±10ppm	3900±600 ppm	4000±600 ppm	130±20ppm	3500±600 ppm
Sr (Ka)	<3.8 ppm	<5.2 ppm	8±3ppm	<4.3 ppm	<5.1 ppm
Ti (Kα)	<1.8 ppm	<26.5 ppm	<27.8 ppm	<1.9 ppm	<27.8 ppm
Zn (Kα)	343±5ppm	2600±30 ppm	2400±20 ppm	637±9ppm	3800±100 ppm

	#O71	#O72	#O73	#O74	#O75
Al (Ka)	<2380 ppm	<2580 ppm	3000±200 ppm	<2500 ppm	<2370 ppm
Br (Ka)	19±5ppm	15±5ppm	19±5ppm	15±5ppm	15ppm
Ca (Ka)	6200±200 ppm	7800±200 ppm	6800±200 ppm	9100±200 ppm	6400±200 ppm
Cl (Ka)	<286.5 ppm	<281.8 ppm	<299.9 ppm	<299.5 ppm	<284.5 ppm
Cr (Ka)	30±10ppm	<21.1 ppm	<22.3 ppm	<22.7 ppm	<23.0 ppm
Cu (Ka)	44±6ppm	49±6ppm	74±6ppm	59±6ppm	73±6ppm
Fe (Ka)	1500±30 ppm	80±10ppm	250±20ppm	300±20ppm	230±20ppm
Mn (Ka)	<66.1 ppm	<59.5 ppm	<63.9 ppm	<64.3 ppm	<64.8 ppm
Mo (Ka)	<13.6 ppm	<13.6 ppm	<14.2 ppm	26±5ppm	<13.9 ppm
Ni (Ka)	8±2ppm	11±2ppm	13±3ppm	11±3ppm	9±2ppm
Ρ (Ka)	1200±300 ppm	1900±500 ppm	1300±400 ppm	1600±400 ppm	800±200ppm
Pb (La)	<7.8 ppm	14±6ppm	12±5ppm	10±5ppm	<7.9 ppm
S (Ka)	1800±100 ppm	9700±400 ppm	7500±300 ppm	5500±200 ppm	2100±100 ppm
Si (Ka)	2200±500 ppm	2700±600 ppm	3400±600 ppm	4500±700 ppm	3500±600 ppm
Sr (Ka)	<5.1 ppm	<4.9 ppm	<5.2 ppm	6±2ppm	6ppm
Ti (Kα)	<27.8 ppm	<26.3 ppm	<26.6 ppm	<28.3 ppm	<28.3 ppm
Zn (Ka)	2300±20 ppm	3950±100 ppm	2600±20 ppm	3000±40 ppm	2000±30 ppm

	# O 76	# O77	#O78	# O 79	# O 80
Al (Ka)	<2420 ppm	<39.2 ppm	<2380 ppm	<40.2 ppm	3000±200 ppm
Br (Ka)	28±6ppm	<5.9 ppm	18±5ppm	<6.4 ppm	25±6ppm
Ca (Ka)	7300±200 ppm	177±6ppm	6000±200 ppm	231±8ppm	2200±100 ppm
Cl (Ka)	<273.1 ppm	<7.5 ppm	<290.9 ppm	<7.9 ppm	<292.7 ppm
Cr (Ka)	30±10ppm	3±1ppm	23±9ppm	3±1ppm	<23.0 ppm
Cu (Ka)	66±6ppm	12±1ppm	45±6ppm	14±1ppm	92±6ppm
Fe (Ka)	1800±30 ppm	143±4ppm	180±20ppm	21ppm	260±20ppm
Mn (Ka)	<64.6 ppm	<7.6 ppm	<65.8 ppm	<7.9 ppm	<67.2 ppm
Mo (Ka)	<13.8 ppm	<17.3 ppm	15±5ppm	<18.5 ppm	<14.0 ppm
Ni (Ka)	10±2ppm	1.4±0.3ppm	8±2ppm	1.6±0.4ppm	12±3ppm
Ρ (Ka)	900±300ppm	8±3ppm	1200±300 ppm	<7.5 ppm	700±200ppm
Pb (La)	8±4ppm	3±2ppm	12±5ppm	4±2ppm	11±5ppm
S (Ka)	2300±100 ppm	16±1ppm	2200±100 ppm	26±2ppm	2500±100 ppm
Si (Ka)	2500±600 ppm	70±10ppm	3900±600 ppm	60±10ppm	3500±600 ppm
Sr (Ka)	<5.2 ppm	4±2ppm	<5.2 ppm	<4.0 ppm	6±3ppm
Ti (Kα)	<28.6 ppm	<1.7 ppm	<28.0 ppm	<1.9 ppm	<28.6 ppm
Zn (Ka)	2500±30 ppm	283±5ppm	2210±30 ppm	366±6ppm	880±20ppm

	#O81	#O82	#O83	#O84	#O85
Al (Ka)	50±30ppm	<2300 ppm	3000±200 ppm	<44.2 ppm	<2390 ppm
Br (Ka)	9±3ppm	16±5ppm	21±5ppm	9±2ppm	15±5ppm
Ca (Ka)	262±8ppm	6400±200 ppm	7900±200 ppm	308±9ppm	10000±300 ppm
Cl (Ka)	<7.4 ppm	<280.5 ppm	<282.0 ppm	<7.4 ppm	<275.4 ppm
Cr (Ka)	2±1ppm	<22.2 ppm	<23.0 ppm	2.4±0.9ppm	24±9ppm
Cu (Ka)	8±1ppm	76±6ppm	61±6ppm	19±1ppm	60±6ppm
Fe (Ka)	15±2ppm	260±20ppm	90±10ppm	50±3ppm	440±20ppm
Mn (Ka)	<8.4 ppm	<63.1 ppm	<65.7 ppm	<7.6 ppm	<63.6 ppm
Mo (Ka)	<20.6 ppm	20±4ppm	26±5ppm	65±7ppm	40±5ppm
Ni (Ka)	1.7±0.4ppm	8±2ppm	14±3ppm	1.5±0.4ppm	10±2ppm
Ρ (Ka)	17±5ppm	1300±400 ppm	1500±400 ppm	13±4ppm	1400±400 ppm
Pb (La)	5±2ppm	<7.5 ppm	9±4ppm	5±2ppm	<7.7 ppm
S (Ka)	60±3ppm	2800±100 ppm	6400±300 ppm	105±5ppm	3500±200 ppm
Si (Ka)	80±10ppm	2900±600 ppm	4300±700 ppm	90±10ppm	4000±600 ppm
Sr (Ka)	5±2ppm	8±3 ppm	<5.4 ppm	5±2ppm	7±3ppm
Ti (Kα)	2.1±0.7ppm	40±10 ppm	30±10ppm	<1.9 ppm	<27.2 ppm
Zn (Ka)	515±8ppm	2400±20 ppm	2600±20 ppm	532±8ppm	2500±30 ppm

	#O86	#O87	#O88	# O 89	# O 90
Al (Ka)	<2300 ppm	3000±500 ppm	<2510 ppm	2000±100 ppm	<2460 ppm
Br (Ka)	17±5ppm	15±5 ppm	16±5ppm	16±5ppm	16±5ppm
Ca (Ka)	6200±200 ppm	6100±200 ppm	8000±200 ppm	6100±200 ppm	5300±200 ppm
Cl (Ka)	<282.8 ppm	<284.0 ppm	<277.5 ppm	<270.6 ppm	<285.6 ppm
Cr (Ka)	26±10ppm	<23.6 ppm	<21.2 ppm	<22.1 ppm	<22.2 ppm
Cu (Ka)	57±6ppm	65±6 ppm	55±6ppm	53±6ppm	49±6ppm
Fe (Ka)	590±20ppm	690±20 ppm	150±10ppm	360±20ppm	320±20ppm
Mn (Ka)	<63.2 ppm	<66.2 ppm	<60.3 ppm	<63.5 ppm	<65.0 ppm
Mo (Ka)	14±5ppm	29±5ppm	<13.6 ppm	15±5ppm	17±5ppm
Ni (Ka)	10±2ppm	12±3 ppm	10±2ppm	7±2ppm	8±2ppm
Ρ (Κα)	1100±300 ppm	1300±400 ppm	1300±400 ppm	1200±300 ppm	1000±300 ppm
Pb (Lα)	13±5ppm	16±6 ppm	18±7ppm	17±7ppm	9±4ppm
S (Ka)	2700±100 ppm	2300±100 ppm	7400±300 ppm	2600±100 ppm	2900±100 ppm
Si (Ka)	3200±600 ppm	3500±600 ppm	1900±600 ppm	3700±600 ppm	3200±600 ppm
Sr (Ka)	6±3ppm	<5.3 ppm	<5.0 ppm	6±2ppm	<5.2 ppm
Ti (Kα)	30±10ppm	<27.9 ppm	<25.6 ppm	<28.0 ppm	70±10ppm
Zn (Ka)	2100±30 ppm	2340±30 ppm	2500±20 ppm	2100±40 ppm	1700±30 ppm

	# O 91	#O92	# O 93	# O 94	# O 95
Al (Ka)	1400±300 ppm	<2470 ppm	<2440 ppm	4000±200 ppm	<2150 ppm
Br (Ka)	2200±100 ppm	17±5 ppm	<13.1 ppm	17±5ppm	15±4ppm
Ca (Ka)	4500±100 ppm	7200±200	7700±200 ppm	6000±200 ppm	5600±200 ppm
Cl (Ka)	6600±800 ppm	<290.8 ppm	<273.6 ppm	<286.6 ppm	<272.4 ppm
Cr (Ka)	<2510 ppm	<21.9 ppm	<22.5 ppm	<22.7 ppm	24±9ppm
Cu (Ka)	<14.0 ppm	62±6 ppm	49±6 ppm	50±6ppm	80±6ppm
Fe (Ka)	<293.9 ppm	620±20 ppm	150±10 ppm	210±20ppm	1000±40 ppm
Mn (Kα)	<5.5 ppm	<61.6 ppm	<63.0 ppm	<64.2 ppm	90±20ppm
Mo (Ka)	<69.0 ppm	32±5 ppm	28±5 ppm	<13.7 ppm	<11.8 ppm
Ni (Ka)	100±20ppm	7±2 ppm	11±2 ppm	8±2ppm	8±2ppm
Ρ (Κα)	10±5ppm	1400±400 ppm	1100±300 ppm	900±300ppm	800±200ppm
Pb (La)	17±5ppm	8±4 ppm	9±4 ppm	11±5ppm	11±5ppm
S (Ka)	180±20ppm	7500±300 ppm	4700±200 ppm	2900±100 ppm	3700±200 ppm
Si (Ka)	24±10ppm	3000±600 ppm	2600±600 ppm	2900±600 ppm	3500±600 ppm
Sr (Ka)	55±6ppm	7±3 ppm	<5.2 ppm	5±2ppm	<6ppm
Τί (Κα)	600±200ppm	<26.0 ppm	<27.9 ppm	<28.3 ppm	<28ppm
Zn (Ka)	9±2ppm	2760±40 ppm	2560±40 ppm	2400±20 ppm	1900±30 ppm

	# O 96	# O 97	# O 98	# O 99	#100
Al (Ka)	<2460 ppm	<45.7 ppm	<2500 ppm	<2430 ppm	<2340 ppm
Br (Ka)	18±5ppm	8±3ppm	16±5ppm	15±5ppm	15±4ppm
Ca (Ka)	7000±200 ppm	340±10ppm	8400±200 ppm	11100±300 ppm	11100±300 ppm
Cl (Ka)	<287.0 ppm	<8.5 ppm	<293.3 ppm	<273.8 ppm	<290.0 ppm
Cr (Ka)	30±10ppm	4±1ppm	<22.0 ppm	30±10ppm	21±9ppm
Cu (Ka)	75±6ppm	13±1ppm	37±6ppm	86±6ррт	52±5ppm
Fe (Ka)	430±20ppm	42±3ppm	300±20ppm	2700±40 ppm	310±20ppm
Mn (Ka)	<63.5 ppm	<9.2 ppm	<62.7 ppm	<59.1 ppm	<58.0 ppm
Mo (Ka)	34±5ppm	<21.3 ppm	<14.0 ppm	21±5ppm	<12.9 ppm
Ni (Ka)	12±3ppm	1.7±0.4ppm	8±2ppm	16±3ppm	10±2ppm
Ρ (Ka)	1400±400 ppm	15±5ppm	1300±400 ppm	1500±400 ppm	1800±500 ppm
Pb (La)	12±5ppm	4±2ppm	<7.8 ppm	16ppm	8±4ppm
S (Ka)	4700±200 ppm	50±3ppm	5800±200 ppm	5900±200 ppm	5600±200 ppm
Si (Ka)	2700±600 ppm	90±10ppm	3000±600 ppm	2900±600 ppm	3000±600 ppm
Sr (Ka)	<5.3 ppm	5±2ppm	<5.2 ppm	9±3ppm	5±2ppm
Ti (Ka)	<27.1 ppm	<2.1 ppm	<27.4 ppm	<26.4 ppm	27±9ppm
Zn (Ka)	2700±20 ppm	517±8ppm	2710±40 ppm	2800±30 ppm	3010±40 ppm

	#101	#102	#103	#104	#105
Al (Ka)	<2380 ppm	<2440 ppm%	3000±500 ppm	60±30ppm	<2270 ppm
Br (Ka)	17±4ppm	14±5ppm	16±5ppm	9±3ppm	16±4ppm
Ca (Ka)	8600±200 ppm	6600±200 ppm	8800±200 ppm	284±9ppm	7600±200 ppm
Cl (Ka)	<274.9 ppm	<293.1 ppm	<285.2 ppm	<7.5 ppm	<282.3 ppm
Cr (Ka)	<20.1 ppm	<22.9 ppm	24±9ppm	3±1ppm	<21.8 ppm
Cu (Ka)	34±5ppm	71±6ppm	49±5ppm	13±1ppm	49±6ppm
Fe (Ka)	300±20ppm	190±20ppm	320±20ppm	124±3ppm	470±20ppm
Mn (Ka)	<56.2 ppm	<65.2 ppm	<60.1 ppm	10±3ppm	<62.2 ppm
Μο (Κα)	<13.2 ppm	<13.9 ppm	<13.4 ppm	<20.7 ppm	<12.3 ppm
Ni (Ka)	7±2ppm	11±3ppm	11±2ppm	1.5±0.4ppm	9±2ppm
Ρ (Ka)	2200±600 ppm	1000±30 ppm	1700±500 ppm	18±5ppm	900±300ppm
Pb (La)	10±4ppm	11±5ppm	7±4ppm	<3.2 ppm	12±5ppm
S (Ka)	10500±400 ppm	2700±100 ppm	9100±400 ppm	50±3ppm	2300±100 ppm
Si (Ka)	2500±600 ppm	3400±600 ppm	3000±600 ppm	90±10ppm	3000±600 ppm
Sr (Ka)	<4.8 ppm	7±3ppm	бррт	<4.4 ppm	8±3ppm
Ti (Kα)	<25.5 ppm	<27.8 ppm	<26.0 ppm	<2.0 ppm	<26.9 ppm
Zn (Ka)	3500±100 ppm	2600±30 ppm	3300±100 ppm	483±7ppm	2220±30 ppm

_	#106	#107	#108	#109	#110
Al (Ka)	3000±20 ppm	<2410 ppm	<2410 ppm	<2410 ppm	<2540 ppm
Br (Ka)	<13.3 ppm	17±5ppm	15±5ppm	16±5 ppm	<12.4 ppm
Ca (Ka)	8200±200 ppm	7200+200 ppm	9300±200 ppm	5900±200 ppm	8300±200 ppm
Cl (Ka)	<295.6 ppm	<295.2 ppm	<271.0 ppm	<281.5 ppm	<299.1 ppm
Cr (Ka)	<23.1 ppm	<23.1 ppm	<21.6 ppm	24±9 ppm	<22.0 ppm
Cu (Ka)	94±6ppm	31±6ppm	26±6ppm	64±6 ppm	59±6ppm
Fe (Ka)	160±20ppm	100±10ppm	210±20ppm	620±20 ppm	90±10ppm
Mn (Kα)	<65.3 ppm	<64.8 ppm	<61.0 ppm	<63.2 ppm	<61.0 ppm
Mo (Ka)	<14.0 ppm	16±5ppm	45±5ppm	17±5 ppm	<13.7 ppm
Ni (Ka)	10±2ppm	7±2ppm	8±2ppm	8±2 ppm	10±2ppm
Ρ (Κα)	1300±400 ppm	1200±300 ppm	1200±300 ppm	1000±300 ppm	2100±500 ppm
Pb (La)	9±4ppm	8±4ppm	10±5ppm	10±5 ppm	8±4ppm
S (Ka)	2700±100 ppm	3600±200 ppm	3800±200 ppm	3900±200 ppm	7800±300 ppm
Si (Ka)	3900±600 ppm	2800±600 ppm	3100±600 ppm	3200±600 ppm	3400±600 ppm
Sr (Ka)	<5.2 ppm	<5.2 ppm	<5.1 ppm	6±2 ppm	<5.0 ppm
Ti (Kα)	<28.8 ppm	<28.4 ppm	<26.6 ppm	<27.7 ppm	<26.6 ppm
Zn (Ka)	2750±40 ppm	2800±300 ppm	2500±300 ppm	2310±30 ppm	4300±100 ppm

	#111	#112	#113	#114	#115
Al (Kα)	3000±100 ppm	<2400 ppm	<45.3 ppm	<2400 ppm	<2450 ppm
Br (Ka)	<13.0 ppm	61±9ppm	<6.8 ppm	19±5 ppm	14±5 ppm
Ca (Ka)	7900±200 ppm	2600±100 ppm	400±10ppm	5600±200 ppm	5300±200 ppm
Cl (Ka)	<292.1 ppm	1700±200 ppm	<7.5 ppm	<280.5 ppm	<275.3 ppm
Cr (Ka)	24±9ppm	27±10ppm	3±1ppm	40±10 ppm	30±10 ppm
Cu (Ka)	64±6ppm	86±6ppm	12±1ppm	71±6 ppm	71±6 ppm
Fe (Ka)	370±20ppm	1800±20 ppm	67±3ppm	890ppm	1120±30 ppm
Mn (Kα)	<63.7 ppm	<64.8 ppm	<8.0 ppm	<63.0 ppm	<64.0 ppm
Μο (Κα)	20±5ppm	50±5ppm	23±7ppm	21±5 ppm	24±5 ppm
Ni (Kα)	12±3ppm	12±3ppm	1.6±0.4ppm	11±3 ppm	12±3 ppm
Ρ (Κα)	1400±400 ppm	700±200ppm	22±6ppm	1100±300 ppm	1600±400 ppm
Pb (La)	<7.7 ppm	40ppm	<3.1 ppm	<7.7 ppm	9±4 ppm
S (Ka)	5800±200 ppm	1800±100 ppm	101±4ppm	4300±200 ppm	4900±20 ppm
Si (Ka)	5200±700 ppm	3100±600 ppm	100±10ppm	2200±600 ppm	3200±60 ppm
Sr (Ka)	8±3ppm	6±3ppm	6±2ppm	<5.1 ppm	<5.1 ppm
Ti (Kα)	<27.0 ppm	30±10ppm	<1.9 ppm	<27.8 ppm	<28.4 ppm
Zn (Ka)	2800±30 ppm	2700±30 ppm	730±10ppm	2120±50 ppm	1920±30 ppm

	#116	#117	#118	#119	#120
Al (Ka)	3000±100 ppm	<2200 ppm	<2550 ppm	<41.1 ppm	<44.4 ppm
Br (Ka)	<12.9 ppm	24±6ppm	17±5ppm	7±2ppm	10±3ppm
Ca (Kα)	9200±200 ppm	1500±100 ppm	8500±200 ppm	360±10ppm	480±10ppm
Cl (Ka)	<278.6 ppm	<294.1 ppm	<289.5 ppm	<7.7 ppm	<7.7 ppm
Cr (Ka)	<22.5 ppm	30±10ppm	<21.9 ppm	<2.1 ppm	<2.4 ppm
Cu (Ka)	66±6ppm	83±7ppm	96±6ppm	8±1ppm	10±1ppm
Fe (Ka)	740±20ppm	230±20ppm	250±20ppm	18±2ppm	22±2ppm
Mn (Ka)	<63.8 ppm	<73.3 ppm	<62.4 ppm	<7.4 ppm	<8.3 ppm
Mo (Ka)	<13.8 ppm	<15.2 ppm	43±5ppm	<18.3 ppm	<20.9 ppm
Ni (Ka)	10±2ppm	9±2ppm	10±2ppm	1.3±0.3ppm	1.6±0.4ppm
Ρ (Ka)	1600±400 ppm	600±200ppm	1500±400 ppm	20±6ppm	30±8ppm
Pb (La)	17±7ppm	11±5ppm	15±6ppm	<2.8 ppm	<3.2 ppm
S (Ka)	2900±100 ppm	2700±100 ppm	5700±200 ppm	103±4ppm	156±6ppm
Si (Ka)	3700±600 ppm	3600±600 ppm	3900±600 ppm	80±10ppm	100±10ppm
Sr (Ka)	7±3ppm	8±3ppm	<5.3 ppm	4±2ppm	<4.5 ppm
Ti (Kα)	<28.0 ppm	<29.2 ppm	<28.0 ppm	<1.8 ppm	<2.0 ppm
Zn (Ka)	2800±30 ppm	450±10ppm	2300±30 ppm	608±9ppm	780±10ppm

	#ON1	#ON2	#ON3	#ON4	#ON5
Al (Ka)	<2640 ppm	<2630 ppm	4000±2000 ppm	<2580 ppm	<2470 ppm
Br (Ka)	17±6ppm	18±5ppm	17±5ppm	16±5ppm	<12.6 ppm
Ca (Ka)	7900±200 ppm	10800±300 ppm	6600±200 ppm	8200±200 ppm	10200±300 ppm
Cl (Ka)	<293.6 ppm	<287.1 ppm	<283.3 ppm	<295.8 ppm	<293.0 ppm
Cr (Ka)	<24.6 ppm	<23.3 ppm	26±10ppm	<21.3 ppm	<21.5 ppm
Cu (Ka)	42±7ppm	53±6ppm	36±6ppm	36±6ppm	37±5ppm
Fe (Ka)	60±20ppm	80±20ppm	50±10ppm	50±10ppm	6010±ppm
Mn (Ka)	<69.8 ppm	<66.6 ppm	<66.4 ppm	<61.4 ppm	<60.7 ppm
Mo (Ka)	<16.4 ppm	44±6ppm	<14.1 ppm	33±5ppm	<13.7 ppm
Ni (Ka)	12±3ppm	11±3ppm	10±2ppm	9±2ppm	10±2ppm
Ρ (Ka)	1700±500 ppm	1100±300 ppm	1300±400 ppm	2300±600 ppm	1700±400 ppm
Pb (La)	12±5ppm	11±5ppm	10±5ppm	9±4ppm	7±4ppm
S (Ka)	3500±200 ppm	4000±200 ppm	2700±100 ppm	8900±400 ppm	7500±300 ppm
Si (Ka)	2800±600 ppm	3100±600 ppm	3500±600 ppm	3100±600 ppm	3300±600 ppm
Sr (Ka)	<6.1 ppm	7±3ppm	6±3ppm	<5.1 ppm	6±2ppm
Ti (Ka)	<30.6 ppm	<28.8 ppm	<28.8 ppm	28±10ppm	<26.9 ppm
Zn (Kα)	3090±40 ppm	2800±40 ppm	2570±40 ppm	4570±100 ppm	2980±40 ppm

Tabela 8.2.2. Quantificações de partículas nas amostras de óleo lubrificante novo.

	#ON6	#ON7	#ON8	#ON9	#ON10
Al (Ka)	<220 ppm	<2230 ppm	<2420 ppm	<2880 ppm	<2280 ppm
Br (Ka)	<10,8 ppm	13±5ppm	19±5ppm	15±5ppm	20±6ppm
Ca (Ka)	7000±200 ppm	5800±200 ppm	8500±200 ppm	11700±300 ppm	280±30ppm
Cl (Ka)	<277.1 ppm	<288.6 ppm	<298.7 ppm	<312.5 ppm	<256.6 ppm
Cr (Ka)	27±9ppm	<22.8 ppm	<21.7 ppm	30±10ppm	30±10ppm
Cu (Ka)	27±5ppm	33±6ppm	26±6ppm	50±6ppm	52±7ppm
Fe (Ka)	60±10ppm	70±10ppm	70±10ppm	70±10ppm	70±10ppm
Mn (Kα)	<55.2 ppm	<65.4 ppm	<61.9 ppm	<63.6 ppm	50±10ppm
Μο (Κα)	<11.4 ppm	<13.2 ppm	<13.4 ppm	<16.0 ppm	<15.0 ppm
Ni (Kα)	6±2ppm	10±2ppm	11±2ppm	10±2ppm	10±2ppm
Ρ (Κα)	600±200ppm	1000±300ppm	2500±600 ppm	1400±400 ppm	2600±700 ppm
Pb (La)	11±4ppm	10±5ppm	8±4ppm	10±4ppm	11±5ppm
S (Ka)	4200±200 ppm	1780±100 ppm	7800±300 ppm	9000±400 ppm	3900±200 ppm
Si (Ka)	3400±600 ppm	2900±600 ppm	3400±600 ppm	3100±700 ppm	2700±600 ppm
Sr (Ka)	5±2ppm	<5.1 ppm	8±3ppm	6±3ppm	9±3ppm
Ti (Kα)	<24.3 ppm	<26.5 ppm	<27.5 ppm	<28.2 ppm	<29.9 ppm
Zn (Ka)	1570±20 ppm	2220±30 ppm	4510±60 ppm	2980±40 ppm	3800±8ppm

	#F1	#F2	#F3	#F4	#F5
Al (Ka)	<1560 ppm	2000±1000 ppm	3000±2000 ppm	<1570 ppm	<1290 ppm
Br (Ka)	19±3ppm	<6.5 ppm	15±4ppm	7±2ppm	5±2ppm
Ca (Kα)	3200±100 ppm	8900±200 ppm	13600±300 ppm	7000±200 ppm	780±50ppm
Cl (Ka)	2000±200 ppm	<251.3 ppm	<296.0 ppm	1900±200 ppm	700±100ppm
Cr (Ka)	24±8ppm	180±40ppm	<23.2 ppm	27±9ppm	17±7ppm
Cu (Ka)	359±9ppm	2150±40 ppm	166±7ppm	39±4ppm	48±3ppm
Fe (Ka)	2880±40 ppm	19800±200 ppm	1900±30 ppm	550±20ppm	40±10ppm
Mn (Ka)	110±20ppm	180±30ppm	<63.4 ppm	<47.9 ppm	<46.9 ppm
Mo (Ka)	66±4ppm	<6.6 ppm	22±3ppm	<6.0 ppm	<5.3 ppm
Ni (Ka)	6±2ppm	26±5ppm	15±3ppm	6±1ppm	4±1ppm
Ρ (Ka)	400±100ppm	2900±700 ppm	2500±700 ppm	1000±300 ppm	3100±800 ppm
Pb (La)	<4.3 ppm	21±8ppm	<6.0 ppm	15±6ppm	<2.8 ppm
S (Ka)	1400±100 ppm	2300±100 ppm	5000±200 ppm	5000±200 ppm	190±30ppm
Si (Ka)	5400±600 ppm	4300±600 ppm	3500±500 ppm	3600±500 ppm	3200±500 ppm
Sr (Ka)	3±1ppm	<2.4 ppm	<3.5 ppm	<2.1 ppm	<1.6 ppm
Ti (Ka)	60±10ppm	110±20ppm	800±100ppm	34±9ppm	190±30ppm
Zn (Ka)	590±10ppm	1290±20 ppm	4750±60 ppm	810±10ppm	47±4ppm

Tabela 8.2.3. Quantificações de partículas nos filtros de óleo.

Tabela 8.2 4. Quantificações de partículas nas amostras de óleo lubrificante de navios.

	#OB1	#OB2	#OB3	# OB4
Al (Ka)	<2570 ppm	<2490 ppm	<2590 ppm	<2460 ppm
Br (Ka)	17±5ppm	<12.3 ppm	<12.6 ppm	20±5ppm
Ca (Ka)	10400±300 ppm	10400±300 ppm	14300±400 ppm	10700±300 ppm
Cl (Ka)	<306.5 ppm	<306.3 ppm	<271.8 ppm	<295.3 ppm
Cr (Ka)	<19.9 ppm	<21.1 ppm	<20.5 ppm	<20.2 ppm
Cu (Ka)	41±5ppm	51±6ppm	33±5ppm	80±6ppm
Fe (Ka)	90±10ppm	60±10ppm	80±10ppm	100±10ppm
Mn (Ka)	<56.2 ppm	<58.5 ppm	<60.0 ppm	<57.2 ppm
Mo (Ka)	<13.2 ppm	<13.5 ppm	<13.8 ppm	<13.2 ppm
Ni (Ka)	8±2ppm	11±2ppm	8±2ppm	8±2ppm
Ρ (Kα)	1100±300 ppm	1700±500 ppm	700±200ppm	1800±500 ppm
Pb (La)	9±4ppm	8±4ppm	10±4ppm	<7.0 ppm
S (Ka)	9600±400 ppm	9500±400 ppm	8300±300 ppm	9700±400 ppm
Si (Ka)	3200±600 ppm	3500±600 ppm	2200±600 ppm	2900±600 ppm
Sr (Ka)	7±3ppm	7±3ppm	7±3ppm	<4.8 ppm
Ti (Kα)	26±9ppm	<25.9 ppm	<25.7 ppm	<25.6 ppm
Zn (Ka)	2240±30 ppm	3000±40 ppm	1130±20 ppm	2990±40 ppm

	#OA1		
Al (Ka)	2690 ppm		
Br (Ka)	2400±300 ppm		
Ca (Ka)	240±50ppm		
Cl (Ka)	<317.5 ppm		
Cr (Ka)	25±10ppm		
Cu (Ka)	60±6ppm		
Fe (Ka)	120±10ppm		
Mn (Ka)	<63.2 ppm		
Mo (Ka)	15±4ppm		
Ni (Ka)	11±2ppm		
Ρ (Ka)	1800±500 ppm		
Pb (La)	1600±600 ppm		
S (Ka)	6200±300 ppm		
Si (Ka)	3100±700 ppm		
Sr (Ka)	6±2ppm		
Ti (Kα)	<27.4 ppm		
Zn (Ka)	37±7ppm		

Tabela 8.2.5. Quantificações de partículas nas amostras de óleo lubrificante de avião (#OA1).

Apêndice 3- Projecções Ortogonais Suporte de Amostras Liquidas

