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Resumo 

 
Os poli(hidroxialcanoatos) (PHAs) são uma classe de poliésteres biodegradáveis e 

biocompatíveis com possíveis aplicações em biomedicina (Sodian et al., 2000). Os PHAs são 

produzidos em forma de grânulos dentro das células bacterianas, como compostos de armazenamento 

de carbono e energia. Existem três tipos diferentes de polímeros de PHA dependendo do tamanho dos 

seus monómeros, nomeadamente, os PHAs de cadeia curta (scl-PHA), os PHAs de cadeia média (mcl-

PHA) e os PHAs de cadeia longa (lcl-PHA). Estes polímeros são formados durante o processo de 

fermentação, onde as bactérias crescem em condições limitantes, com carência de um ou vários 

elementos (por exemplo, limitação de fósforo, azoto, micronutrientes e/ou oxigénio), mas com um 

excesso de uma fonte de carbono adequada (Lee, 1996; Zinn and Hany, 2005). Contudo, o uso de uma 

fonte de carbono eficiente para a produção de PHA representa um custo elevado no processo de 

fermentação (Cruz et al., 2016). Por esta razão, para reduzir substancialmente os custos de produção, 

é importante o uso de resíduos ou sub-produtos como fonte de carbono, como por exemplo o glicerol, 

gerado pela indústria do biodiesel (Muhr et al., 2013). Neste trabalho, foi estudado um grupo conhecido 

de bactérias acumuladoras de mcl-PHA, com o intuito de observar a acumulação de mcl-PHA usando 

glicerol da indústria do biodiesel como única fonte de carbono. A estirpe Pseudomonas chlororaphis foi 

selecionada para a produção de mcl-PHA a partir de glicerol, por ter atingido uma concentração final 

de biomassa seca de 3,28 g/L, superior às restantes estirpes testadas, e por produzir um polímero 

composto por monómeros de hidroxihexanoato (HHx), hidroxioctanoato (HO), hidroxidecanoato (HD) e 

hidroxidodecanoato (HDd). 

A bactéria Pseudomonas chlororaphis foi estuda em ensaios em bioreactor, em três modos de 

cultivo diferentes, nomeadamente, batch, batch alimentado por pulsos e batch repetido onde foram 

obtidas as produtividades de 0,026, 0,023 e 0,025 g/L h, respetivamente. O polímero foi recuperado 

das células bacterianas por extração em Soxhlet com clorofórmio. Para o processo de purificação, foi 

utilizado um método modelo com redissolução do mcl-PHA em clorofórmio seguido de precipitação em 

etanol gelado. Contudo, o clorofórmio é um solvente perigoso e não pode ser usado em produções 

industriais. Sendo assim, foram estudados métodos extração alternativos usando solventes menos 

prejudiciais, cujos valores mais altos de pureza foram atingidos usando acetona, etil-acetato e hexano 

como solventes.  

 Os mcl-PHA têm propriedades mecânicas únicas, que foram estudadas realizando testes de 

tensão axial num filme de mcl-PHA produzido pela bactéria Pseudomonas chlororaphis. Neste ensaio, 

foi alcançada uma tensão de rutura entre os 2,91 e os 4,89 MPa, em quatro réplicas, juntamente com 

uma elongação entre os 212,39 e os 296,87% com um módulo de Young de 6 a 9 MPa. 
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 Uma vez que o objetivo principal deste trabalho seria desenvolver um novo adesivo totalmente 

natural para poder ser utilizado em aplicações na área da medicina, o mcl-PHA, devido às suas 

propriedades adesivas, apresenta-se como o candidato perfeito para esta questão. Por esta razão, 

foram feitos alguns testes de adesividade, usando o mcl-PHA e pele de porco como substrato modelo. 

Foi realizado um teste de tensão, em três réplicas, onde foram obtidos valores tensão de separação 

entre os 45,02 e os 90,13 kPa. Foi feito também testes de tensão de cisalhamento, em três réplicas 

onde foram obtidos valores tensão de separação entre os 10,02 e os 12,87 kPa. 
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Abstract 

 

Poly(hydroxyalkanoates) (PHAs) are a class of biodegradable and biocompatible polyesters with 

potential applications in biomedicine (Sodian et al., 2000). PHA are produced inside bacterial cells in 

the form of granules as carbon and energy storage compounds. There are three different PHA polymers, 

namely, short-chain-length PHAs (scl-PHA), medium-chain-length PHAs (mcl-PHA) and long-chain-

length PHAs (lcl-PHA), depending on the size of their monomers. These polymers are formed during 

fermentation processes where bacteria grow with some defiant conditions (i.e. limitation in phosphorus, 

nitrogen, trace elements and/or oxygen), but with an excess supply of a suitable carbon source (Lee, 

1996; Zinn and Hany, 2005). However, the use of effective carbon sources for production of PHA 

represent high costs to the fermentation process (Cruz et al., 2016). Therefore, the use of wastes or by-

products as carbon sources, such as waste glycerol generated by the biodiesel industry, is important to 

reduce substantially the production costs of mcl-PHA (Muhr et al., 2013). In this work, a group of known 

mcl-PHA-accumulating bacteria, was studied for the accumulation of mcl-PHA using waste glycerol, 

from the biodiesel industry as the sole carbon source. Pseudomonas chlororaphis was found to be the 

most suitable candidate to produce mcl-PHA from glycerol, with a final CDW concentration of 3.28 g/L, 

among the tested strains, and with a polymer composed by hydroxyhexanoate (HHx), hydroxyoctanoate 

(HO), hydroxydecanoate (HD) and hydroxydodecanoate (HDd) monomers. 

Pseudomonas chlororaphis was studied in bioreactor cultivation experiments, in three different 

cultivation modes, namely, batch, pulse feeding and repeated batch and productivities of 0.026, 0.023 

and 0.025 g/L h, respectively, were achieved. The polymer was recovered from the bacterial cells by 

Soxhlet extraction with chloroform. For the purification process, a standard technique with the re-

dissolution of the mcl-PHA in chloroform followed by precipitation in ice cold ethanol was used. However, 

chloroform is a hazard solvent and cannot be used for industrial production. Hence, alternative recovery 

methods were also studied, using less hazardous solvents and the highest purity values were achieved 

by acetone, ethyl acetate and hexane solvents. 

Mcl-PHAs have unique mechanical properties that were studied by preforming an axial tensile test 

in a mcl-PHA film. In this assay, a tension at break values between 2.91 to 4.89 MPa were achieved in 

four replicates, together with an elongation at break of 212.39 to 296.87% and a Young modulus of 0.60 

to 0.90 MPa. 

Since the main objective in this work was to develop a new fully natural bio-based adhesive to be 

used in medical applications, mcl-PHA, due to his tacky behaviour, presents its self as perfect candidate 

for this issue. So for that purpose some adhesion tests, using mcl-PHA and porcine skin as a model 

substrate, were made. It was performed a tension test, in three replicates, where it was attained values 
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of tension at separation between 45.02 and 90.13 kPa. It was also made some shear tests, in three 

replicates and a tension at separation values of 10.02 to 12.87 kPa were achieved.  



xiii 
 

List of Contents 

  
1. Introduction .................................................................................................................................... 1 

1.1. Poly(Hydroxyalkanoate) (PHA)............................................................................................. 1 

1.2. Medium-Chain-Length Poly(Hidroxyalkanoate) ................................................................. 2 

1.2.1. Fermentative production .............................................................................................. 2 

1.2.2. Glycerol waste used as carbon source ....................................................................... 3 

1.2.3. PHA Recovery Methods ................................................................................................ 4 

1.2.4. Purification of PHA ........................................................................................................ 5 

1.3. Material properties ................................................................................................................ 5 

1.4. Poly(Hidroxyalkanoates) in Biomedicine ............................................................................ 6 

2. Motivation ....................................................................................................................................... 7 

3. Materials and Methods .................................................................................................................. 9 

3.1. Glycerol waste characterization .......................................................................................... 9 

3.2. Microbial cultivation experiments ....................................................................................... 9 

3.2.1. Screening Assay ............................................................................................................ 9 

3.2.2. Shake flask Assays ....................................................................................................... 9 

3.2.3. Bioreactors Assays ..................................................................................................... 10 

3.2.3.1. Inoculum ............................................................................................................... 10 

3.2.3.2. Batch Fermentation ............................................................................................. 10 

3.2.3.3. Pulse Feeding Fermentation .............................................................................. 10 

3.2.3.4. Repeated Batch Fermentation ............................................................................ 11 

3.3. Analytical Techniques ..................................................................................................... 11 

3.3.1. Determination of Cell Growth ..................................................................................... 11 

3.3.2. Glycerol Quantification ............................................................................................... 11 

3.3.3. Ammonium Quantification .......................................................................................... 11 

3.3.4. Mcl-PHA Concentration and Composition ................................................................ 12 

3.3.5. Production Calculus ................................................................................................ 12 

3.4. Polymer extraction and characterization .......................................................................... 12 

3.4.1. Polymer extraction method tests ............................................................................... 13 

3.4.1.1. Solvent Testing .................................................................................................... 13 

3.4.1.2. Osmotic Shock Testing ....................................................................................... 13 

3.4.2. Mcl-PHA films ............................................................................................................... 14 

3.4.2.1. Film preparation by Solvent Casting ................................................................. 14 

3.4.2.2. Mechanical properties ......................................................................................... 14 

3.5. Adhesive Tests .................................................................................................................... 15 

3.5.1. Tension Tests ............................................................................................................... 15 

3.5.2. Shear Tests .................................................................................................................. 15 

3.5.3. Adhesive Tests Calculus ............................................................................................ 16 

3.5.4. In vivo peeling tests .................................................................................................... 17 

4. Results and Discussion .............................................................................................................. 19 



xiv 
 

4.1. Screening Assay .................................................................................................................. 19 

4.2. Mcl-PHA Production by P. chlororaphis ........................................................................... 23 

4.2.1. Batch Fermentation ..................................................................................................... 23 

4.2.2. Pulse Feeding Fermentation ...................................................................................... 24 

4.2.3. Repeated Batch Fermentation .................................................................................... 26 

4.3. Recovery Methods ............................................................................................................... 28 

4.4. Mcl-PHA Film Mechanical Tests ........................................................................................ 33 

4.5. Adhesion evaluation ........................................................................................................... 35 

4.5.1. Tension Tests ............................................................................................................... 35 

4.5.2. Shear Tests .................................................................................................................. 36 

4.5.3. Peeling Tests ................................................................................................................ 38 

5. Conclusions and Future Work ................................................................................................... 39 

6. References ................................................................................................................................... 41 

7. Appendices .................................................................................................................................. 45 

  



xv 
 

List of Figures 

 
Figure 1.1 - General chemical structure of poly([R]-hydroxyalkanoate) (PHA), where R is the side 

chain of each monomer (it might contain functional groups) and n is the number of monomers. .......... 1 

 

Figure 3.1 - Schematic assembly for the tension tests. ........................................................................ 15 

 

Figure 3.2 - Schematic assembly for the shear tests ............................................................................ 16 

 

Figure 3.3 - Schematic assembly for the peeling test ........................................................................... 17 

 

Figure 3.4 - Peeling test assay .............................................................................................................. 17 

 

Figure 4.1 - Growth profile of the different strains of bacteria in raw glycerol (a biodiesel by-product). 19 

 

Figure 4.2 - Visualization of the bacterial cells under the optical microscope (100x) for samples 

collected from shake flasks screening assay, at 24 and 72 hours after inoculation, under phase 

contrast and with fluorescence after Nile blue staining. ........................................................................ 21 

 

Figure 4.3 - Cultivation profile of the batch bioreactor fermentation of P. chlororaphis DSM 19603 

using glycerol by-product as sole carbon source. ................................................................................. 23 

 

Figure 4.4 - Pulse feeding fermentation of P. chlororaphis DSM 19603 in a 10 L biorector. ................ 25 

 

Figure 4.5 - Repeated batch fermentation of P. chlororaphis DSM 19603 in a 10 L biorector. ............ 26 

 

Figure 4.6 - Extraction yield and mcl-PHA purity for different recovery methods tested. ..................... 29 

 

Figure 4.7 - Visualization of the bacterial cells under the optical microscope (100x) for samples 

collected after osmotic shock treatment, under phase contrast and with fluorescence after Nile blue 

staining .................................................................................................................................................. 32 

 

Figure 4.8 - Mcl-PHA film prepared by solvent casting. ........................................................................ 33 

 

Figure 4.9 - Mcl-PHA film elongation before (A) and after (B) mechanical test. ................................... 33 

 

Figure 4.10 - Adhesive test in Porcine Skin before (A) and after (B) tension test. ................................ 35 

 

Figure 4.11 - Adhesive test in Porcine Skin before (A) and after (B) shear test. .................................. 36 

 

Figure 4.12 - Mcl-PHA peel tests in vivo in arm skin. (A) Mcl-PHA adhered in arm skin; (B) Mcl-PHA 

adhered in a wrinkled skin; (C) Mcl-PHA being peeled out from the skin ............................................. 38 

 

Figure 7.1 - Glycerol clibration curve ..................................................................................................... 45 

 

Figure 7.2 - Glycerol clibration curve ..................................................................................................... 45 

 
Figure 7.3 - Tensile-Deformation curve of mcl-PHA films ..................................................................... 46 

 

Figure 7.4 - Young modulus of mcl-PHA films ...................................................................................... 46 

 

Figure 7.5 - Tension strength tests in porcine skin ............................................................................... 46 

 

Figure 7.6 - Shear strength tests in porcine skin ................................................................................... 46 

  

file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320053
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320053
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320054
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320055
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320056
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320057
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320058
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320060
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320060
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320061
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320062
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320063
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320065
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320066
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320067
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320068
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320069
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320069
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320070
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320071
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320072
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320073
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320074
file:///C:/Users/João%20Pereira/Downloads/Tese-filomena.docx%23_Toc462320075


xvi 
 

  



xvii 
 

List of tables 

 
Table 1.1 - Production of PHA by some bacteria. ................................................................................... 2 

 

Table 4.1 - Overall growth and PHA production, and composition of the polymer obtained in the 

screening assay, after 72 h batch shake flask cultivations on waste glycerol as the sole carbon source.

 ............................................................................................................................................................... 20 

 

Table 4.2 - Yields, productivity, mcl-PHA content and composition at the end of all fermentation 

processes .............................................................................................................................................. 28 

 

Table 4.3 - Different PHA recovery methods reported .......................................................................... 30 

 

Table 4.4 - Tensile properties of PHA ................................................................................................... 34 

 

Table 4.5 - Tension tests results made in porcine skin ......................................................................... 36 

 

Table 4.6 - Shear tests results made in porcine skin ............................................................................ 37 

  



xviii 
 

  



xix 
 

Abbreviations 

 
CDW – Cell Dry Weight (g/L)  

DO – Dissolved Oxygen (%)  

FCT – Faculdade de Ciências e Tecnologia  

GC – Gas Chromatography 

HB – HydroxyButirate 

HD – HydroxyDecanoate 

HDd – HydroxyDodecanoate 

HHx – HydroxyHexanoate 

HO – HydroxyOctanoate 

HPLC – High-Performance Liquid Chromatography  

HTd – HydroxyTetradecanoate 

Lcl-PHA – Long Chain Lengeth Polyhydroxyalkanoate 

LPS - LipoPolySaccharides 

Mcl-PHA – Medium Chain Lengeth Polyhydroxyalkanoate 

N – Normal unit  

n. a. – Data Not Available 

nm – Nanometers  

OD – Optical Density  

PHA – PolyHydroxyAlkanoate 

PHB – Poly HydroxyButirate 

PKO – Palm Kernel Oil 

rpm – rotation per minute  

Scl-PHA – Short Chain Lengeth Polyhydroxyalkanoate 

SFAE – Substrates derived From Animal Waste 

v/v – volume per volume  

vvm – volume of air per volume of reactor per minute  

YP/S – Yield of mcl-PHA on glycerol (g mcl-PHA/g glycerol)  

YX/S – Yield of biomass on glycerol (g cell/g glycerol) 



xx 
 

 



1 
 

1. Introduction 

1.1. Poly(Hydroxyalkanoate) (PHA) 

 

Poly([R]-hydroxyalkanoate) (Fig.1.1) is a class of biodegradable and biocompatible polyesters 

with potential applications in biomedicine (Sodian et al., 2000). PHAs are produced by some archae 

and eubacteria in aerobic and anaerobic habitats. These polyesters are formed inside bacterial cells 

and accumulated in the form of granules, as a reserve material during fermentation processes where 

bacteria grow with some defiant conditions (i.e. limitation in phosphorus, nitrogen, trace elements, 

or, more usually, oxygen), but with an excess supply of a suitable carbon source (Lee, 1996; Zinn 

and Hany, 2005).  

Depending on the selected bacterial species, the fermentation process, the growth conditions 

and the downstream processing, different types of polymers can be produced (Keshavarz et al., 

2010), namely, short-chain-length PHAs (scl-PHA), with monomers of 3-5 carbon atoms, medium-

chain-length PHAs (mcl-PHA), with monomers of 6-14 carbon atoms, or long-chain-length PHAs 

(lcl-PHA), with monomers of more than 14 carbon atoms (Ashby et al., 2008). These different types 

of PHA polymers have distinct properties. For example, most scl-PHAs are very rigid and brittle bio-

thermoplastics, due to their high crystallinity, while mcl-PHAs are more elastic and viscous 

materials, characterized by low crystallinity degrees and melting temperatures (Laycock et al., 2014; 

Rai et al., 2011). However, they all have some characteristics in common: biodegradability, low 

permeation to oxygen, water and oil, and most of them are likely to be biocompatible (Jacquel et al., 

2007). These properties make them suitable to a wide range of applications in different industries: 

like plastic industry (production of bioplastics), fine chemicals industry, medicine (e.g. implants) and 

fuel industry (production of biofuel) (Chen, 2009).  

  

Figure 1.1 - General chemical structure of poly([R]-hydroxyalkanoate) (PHA), where R is the 
side chain of each monomer (it might contain functional groups) and n is the number of 

monomers. 
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1.2. Medium-Chain-Length Poly(Hidroxyalkanoate)  

1.2.1. Fermentative production 

 

The production of mcl-PHA has been already studied in various bacterial species (Hoffmann 

and Rehm, 2004; Lee, 1995, 1996).  

 

Table 1.1 - Production of PHA by some bacteria. 

 

For mcl-PHA production, batch, fed-batch and continuous fed-batch fermentations have been 

studied. In fed-batch cultivations, the production of mcl-PHA is usually a two-step process, in which 

a high biomass concentration is first achieved, followed by PHA accumulation (Kim et al., 1997; 

Khanna et al., 2004). Batch fermentations, based on a single-step process, are quick and easy to 

operate. However, the production of PHA cannot be fully improved. On the other side, fed-batch 

fermentations are slow and sometimes difficult to operate, but high PHA concentrations can be 

achieved. Continuous fermentation has been studied for the production of mcl-PHA (Hartmann et 

Microorganism 
Carbon 

Source 

Type of 

PHA 

PHA 

content 

(%CDM) 

PHA 

productivity 

(g L-1 h-1) 

References 

Pseudomonas 

oleovorans NRRL B-

14682 

Olive oil 

distillate 
HB 19 0.02 

Cruz et al., 

2016 

Pseudomonas 

oleovorans 
n-octane 

3HHx-co-

3HO 
33 0.32 

Lee et al., 

1996 

Pseudomonas 

resinovorans NRRL 

B-2649 

Olive oil 

distillate 

HHx-HO-

HD-HDd 
31 0.05 

Cruz et al., 

2016 

Cupriavidus necator 

DSM 428 

Olive oil 

distillate 
HB 62 0.12 

Cruz et al., 

2016 

Pseudomonas 

citronellolis NRRL B-

2504 

Olive oil 

distillate 

HHx-HO-

HD-HDd 
10 0.01 

Cruz et al., 

2016 

Pseudomonas putida 

KT2440 
Glucose mcl-PHA 32 0.006 

Tan et al., 

2014 

Pseudomonas 

aeruginosa PAO1 

Oil and wax 

product from 

polyethylene 

pyrolysis 

mcl-PHA 25 - 
Tan et al., 

2014 

Pseudomonas 

chlororaphis DSM 

50083 

Waste 

glycerol 

HHx-HP-HO-

HN-HD-HDd 
29 0.14 

Muhr et al., 

2013 
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al., 2006; Prieto et al., 1999), but it has been shown that the PHA content decreased with increased 

growth. Since PHA is formed inside bacterial cells as a carbon and energy storage compound, the 

PHA content inside the cells and the carbon source concentrations during the fermentation process 

needs to be very well controlled in a continuous process, in order to avoid the accumulation of 

carbon source and polymer degradation by bacteria (Sun et al., 2007). Repeated batch 

fermentations joins the advantages of the batch and fed-batch processes by being a quick and easy 

way to reach a high concentration of PHA. The fermentation process is performed like a batch assay 

until a threshold point is achieved. Once that value is reached, the fermentation broth is removed 

and the bioreactor is replenished with fresh medium. The residual broth volume serves as inoculum 

for the following cycle. Usually, with the increasing number of cycles, the higher the PHA 

concentration (Bauer et al., 2005). 

Until now, in mcl-PHA fermentation processes many different substrates were tested, like 

alkanes, alkanoic acids, glucose, fructose and glycerol (Tan et al., 2014; Sun et al., 2007; Lee, 

1996). Alkanes and aliphatic acids (e.g. octanoic acid) are efficient carbon sources for mcl-PHA 

synthesis. However, some of those substrates are poorly water miscible and some other are even 

toxic to bacteria at relatively low concentrations (Sun et al., 2007). In order to use them as substrates 

for bacterial cultivation, their concentration needs to be well controlled. Sugars, like glucose and 

fructose, are effective carbon sources for use in mcl-PHA fermentation processes but their high 

price represents the majority of the expenses for the entire PHA production process (Cruz et al., 

2016). Therefore, the use of wastes or by-products as carbon sources, such as waste glycerol 

generated by the biodiesel industry, is important to reduce substantially the production costs of PHA 

(Muhr et al., 2013). 

For regulatory agencies to certify polymers for medical applications, very demanding 

specifications have to be fulfilled. The use of a waste as a carbon source in the fermentation process 

might be a big concern that has to be taken in account. If low grade wastes are used as substrates, 

more intensive downstream procedures have to be implemented to guaranty that high purity 

biopolymers are obtained. So, the choice of the most appropriate substrate must take into account 

the purity degree required for the biopolymer’s final application. A balance must be made 

considering the cost of the substrate and that of the downstream. 

 

1.2.2. Glycerol waste used as carbon source 

 

As described above, the costs associated with fermentation feedstocks reflect the majority of 

the expenses of the total PHA production costs. Many low cost by-products or wastes (i.e., glycerol 

from biodiesel production) have been studied as fermentation substrates (Solaiman et al., 2016). 

With the increasing production of biodiesel and, consequently, glycerol, as a by-product, it is 

important to find new applications for crude glycerol (Yang et al., 2012). One potential use of crude 

glycerol is in feedstocks for fermentation processes. Glycerol has a greater degree of reduction than 

sugars, offering a unique opportunity to obtain reduced chemicals like succinate, ethanol, xylitol and 
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propionate (Silva et al., 2009). Some studies even revealed the use of glycerol from biodiesel 

production for polyhydroxybutirate (PHB) and mcl-PHA production, using P. oleovorans and P. 

corrugata strains (Ashby et al., 2005). 

 

1.2.3. PHA Recovery Methods 

 

Recovery processes of PHA from the bacterial biomass can be divided into two major 

categories: solvent extraction and chemical digestion of non-PHA biomass. For both processes, 

bacterial cells are first collected by centrifugation or filtration, being the cell-free supernatant usually 

discarded.  

Solvent extraction consists in the selective extraction of PHA from the biomass with an organic 

solvent, like chloroform, methyl ether, methylene chloride (Rameshwari et al., 2014). This extraction 

process usually involves three steps, which are: biomass pre-treatment, solvent extraction, and 

polymer purification. Pre-treating dry biomass with methanol can be effective to remove some of the 

lipids and colouring impurities, increasing the purity of the PHA after purification (Jiang et al., 2006; 

Koller et al., 2013). PHA is extracted from the dried biomass with an organic solvent under stirring 

and, in some cases, heating or even using a Soxhlet extraction. The resulting solution is filtered or 

centrifuged to remove remaining cell debris. Afterwards, PHA is either precipitated with a non-

solvent, or obtained by evaporation of the solvent. Usually, the precipitation and washing steps are 

repeated to achieve higher purity. For the extraction of PHB, the number of solvents that can be 

used is limited and in the majority of the cases they are toxic and dangerous, like chloroform, 

methylene chloride and 1.2-dichloroethane (Kunasundari et al., 2011; Fiorese et al., 2009). 

Therefore, other solvents, like propylene carbonate, have been studied in order to use less toxic 

solvents (Fiorese et al., 2009). On the other hand, for mcl-PHA extraction there is a larger number 

of solvents that can be used for the extraction procedure since those polymers are soluble in less 

hazardous solvents, like acetone, hexane, ethyl acetate (Rai et al., 2010; Jiang et al. 2006; Wampler 

et al 2010). For applications in the medical and pharmaceutical fields it is important to use less toxic 

solvents in the extraction process, since the presence of these kind impurities are not tolerated by 

regulatory agencies (Williams et al., 1999). 

In the methods based on the chemical digestion of non-PHA biomass, the biomass typically 

receives a heat treatment, an enzymatic solubilisation and/or a surfactant washing, followed by a 

filtration or centrifugation step, being then the PHA separated from the cell debris. These steps need 

to be repeated several times to achieve an acceptable purity (Jiang et al., 2006; Koller et al., 2013).  

Some methods can be used for disruption of the cell membrane, including the use of surfactants, 

the dissolution of non-PHA cell mass by acids, the use of bead mills or ultrasonication for the 

mechanical disruption of the cells, treatment with hypochlorite and even bursting the cells with 

osmotic pressure (Kunasundari et al., 2011; Rameshwari et al., 2014; Madkour et al., 2013; Koller 

et al., 2013).  
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1.2.4. Purification of PHA 

 

The presence of considerable amounts of impurities, in the final polymer, like proteins, 

surfactants and endotoxins, are not tolerated by regulatory agencies for applications in the medical 

and pharmaceutical fields. For PHA derived from fermentation of Gram-negative bacteria, 

contamination with endotoxins is a serious problem (Williams et al., 1999). 

For applications in the medical field, PHA of high purity is needed. This is one of the most 

important steps in the downstream processing. Biologically active contaminants, like proteins and 

lipopolysaccharides (LPS), have to be removed because they can produce some immunoreactions. 

LPS act as endotoxins, whereby trace quantities can have severe effects in contact with blood and 

trigger immunoreactions (Koller et al., 2013; Tan et al., 2014). LPS are part of the outer membrane 

of some bacteria. During cell lysis and product recovery, LPS are liberated from the outer membrane 

and can contaminate the PHA. Regulatory agencies accept only a very low content of proteins, 

surfactants and endotoxins. Therefore, PHA for use in the medical industry has to be carefully 

purified from such endotoxins (Koller et al., 2013; Tan et al., 2014; Kunasundari et al., 2011). 

The standard techniques used for the purification of PHA are re-dissolution, precipitation and 

washing with a non-solvent, usually methanol or ethanol. However, different non-solvents, like water 

and ether, have been used for the precipitation and washing steps (Tan et al., 2014; Kunasundari 

et al., 2011). Other techniques for purification of PHA include, for example, chromatography, 

treatments with chemical agents and filtration (Tan et al., 2014). For mcl-PHA other, less hazardous 

solvents can be used in the purification process. 

 

1.3. Material properties 

 

The fermentation process, recovery methods and purification steps may affect the size of PHA 

monomers in the polymer (Keshavarz et al., 2010; Koller et al., 2013), thereby affecting the physical 

properties of the polymer, such as the melting point, glass transition temperature and crystallinity, 

affecting the final application of the polymer (Rai et al., 2011). 

Interestingly, the monomers’ side-chain and the distance between the ester linkages in the 

backbone are strongly related with the material properties of the mcl-PHA. In general, mcl-PHA are 

water insoluble, biodegradable, biocompatible, have low crystallinity and melting points, are very 

elastomeric and have a rubber-like or sometimes glue-like behaviour (Rai et al., 2011; Cruz et al., 

2016). However, their properties largely depend on the functional groups of the side-chains. These 

functional groups can be adapted through chemical modification to improve the physical properties 

to different applications (Lu et al., 2009). Thereby, the field of possible applications is considerably 

extended. The polymer’s polarity and solubility in polar solvents could be drastically changed 

through the insertion of hydroxyl groups in the side-chains of mcl-PHA (Eroglu et al., 2005; Lee et 

al., 2000; Renard et al., 2005).  
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1.4. Poly(Hidroxyalkanoates) in Biomedicine  

 

To be used in biomedical industry, highly pure mcl-PHA, with a low contents of endotoxins are 

needed. With their physical properties, mcl-PHA can be used in many different biomedical areas, 

like wound management (e.g. as skin substitutes, wound dressing, sutures, adhesion barriers), 

vascular system (e.g. as cardiovascular patches), orthopaedic (e.g. orthopaedic pins, articular 

cartilage repair devices), dental (e.g. as a barrier material for guided tissue regeneration in 

periodontitis) and drug delivery (e.g. as a drug carrier) (Chen et al., 2005; Keshavarz et al., 2010). 

The glue-like behaviour of some mcl-PHA makes them suitable candidates as alternative 

materials for the development of new bio-based adhesives to replace the commercial 

petrochemical-derived adhesives and glues used in biomedicine (Cruz et al., 2016; Solaiman et al., 

2001). They can be used in wound management, as sutures and adhesives to wound closure, and 

drug delivery systems, like transdermal patches (Chen, 2009; Cruz et al., 2016; Keshavarz et al., 

2010). Solvent-based adhesives using epoxies, urethane and cyanoacrylate are used in many areas 

for medical application due to their good adhesion capacity to different materials, low price and fast 

curing times (Cruz et al., 2016). However, most of them are non-biodegradable and their use might 

cause an allergic reaction when in contact with biological tissues. In addition, their production might 

pose environmental and public health concerns (Kim et al., 2013; Kaur, 2011). PHAs, on the other 

hand, can easily overcome these problems due to their biodegradable and biocompatible properties, 

making possible the production of a fully natural bio-adhesive that could be used for medical 

applications. 
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2. Motivation 
 

Mcl-PHA, with a wide range of physical properties, are accessible through biosynthesis by 

bacteria. It was found that some bacteria can even accumulate mcl-PHA with high intracellular 

concentration during a fermentation process. Several of those bacteria belongs to the Pseudomonas 

Genus (Guo-Qiang Chen, 2009; Alexander Muhr et al., 2013). In this work, a group of known mcl-

PHA-accumulating bacteria, namely, Pseudomonas putida, P. resinovorans, P. chlororaphis, P. 

citronellolis and P. oleovorans, was studied for the accumulation of mcl-PHA using a glycerol waste 

as the sole carbon source.  

Pseudomonas chlororaphis was found to be the most suitable candidate to produce mcl-PHA. 

This strain is still understudied and there are only a few reports in literature on its ability to grow on 

glycerol. Therefore, this strain was studied in bioreactor cultivation experiments, in three different 

cultivation modes, namely, batch, pulse feeding and repeated batch. The polymer was recovered 

from the bacterial cells by Soxhlet extraction with chloroform. For the purification process, a standard 

technique with the re-dissolution of the mcl-PHA in chloroform followed by precipitation in ice cold 

ethanol was used.  

Chloroform was used as the standard solvent for extraction of the polymers. However, this 

solvent is hazardous and cannot be used for industrial production. Hence, alternative recovery 

methods were also studied, using less hazardous solvents, like acetone (Jiang et al., 2006), hexane 

(Rai et al., 2010), ethyl acetate (Wampler et al., 2010), propylene carbonate (Fiorese et al., 2009), 

hypochlorite (Tan et al., 2014), sodium hydroxide, hydrogen peroxide (Madkour et al., 2013) and 

different water-based extractions using osmotic shock for disrupting the bacterial cell walls (Koller 

et al 2013). For medical use a good downstream processing of the polymer is needed to achieve 

mcl-PHAs without contaminations. With improved recovery and purification methods, it is possible 

to obtain a polymer with relatively low concentration in bacterial cell compounds. 

The physical properties of mcl-PHAs makes them suitable candidates for several medical 

applications. Due to their inherent biocompatibility, biodegradability, rubber and glue-like behaviour, 

mcl-PHAs are being more considered as potential candidates to act like sustainable basic polymers 

for several applications (i.e. rubbers, smart latexes, basic materials for post-synthetic 

functionalization by chemical or enzymatic means, thermos-sensitive, glues and adhesives) (Chen, 

2010; Zinn, 2010). Solvent-based adhesives like epoxies, urethane and cyanoacrylate are used in 

many areas for medical application due to their good adhesion capacity to different materials, low 

price and fast curing times (Cruz et al., 2016). However, most of them are non-biodegradable and 

their use might cause an allergic reaction when in contact with biological tissues. In addition, their 

production might pose environmental and public health concerns (Kim et al., 2013; Kaur, 2011). In 

this study, it was taken the advantage of the unique properties of mcl-PHA to be used for developing 

a new fully natural bio-based adhesive to be used in medical applications. This properties were 

assessed, using porcine skin as a model substrate.  
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3. Materials and Methods 

3.1. Glycerol waste characterization 

 

The glycerol waste from biodiesel (SGC Energia, SGPS, SA, Portugal) production was analysed 

by HPLC for glycerol quantification. Glycerol concentration was determined by high-performance 

liquid chromatography (HPLC) with a VARIAN Metacarb column (BioRad) coupled to an infrared 

(IR) detector. The analyses were performed at 50˚C, with sulphuric acid (H2SO4 0.01 N) as eluent 

at a flow rate of 0.6 mL/min. Glycerol (ReagentPlus 86-88% w/w Scharlau) standards were prepared 

at a concentration of 1 g/L successively diluting them to the concentrations of 0.5 g/L, 0.1 g/L, 0.05 

g/L and 0.01 g/L (calibration curve in Appendix 1). 

 

3.2. Microbial cultivation experiments 

3.2.1. Screening Assay 

 

The bacterial cultures used in this assay were Pseudomonas oleovorans strains NRRL B-14682 

and NRRL B-14683, Pseudomonas resinovorans NRRL B-2649, Pseudomonas citronellolis NRRL 

B-2504, Cupriavidus necator DSM 428, Pseudomonas chlororaphis DSM 19603 and Pseudomonas 

putida KT2440. The cultures were reactivated by inoculation in Chromagar (CHROMagarTM) plates 

(solid medium) with a sample of the cryopreserved bacteria and incubated at 30˚C for 48 h. 

Afterwards, isolated colonies were inoculated into 50 mL liquid Luria Bertani (LB) medium (bacto 

tryptone, 10.0 g/L; yeast extract, 5.0 g/L; NaCl, 10.0 g/L), pH 7.0, and incubated in an orbital shaker 

at 200 rpm and 30˚C, for 24 h. This culture served as pre-inocula for shake flask and bioreactor 

experiments.  

 

3.2.2. Shake flask Assays 

 

The pre-inocula (20 mL) of the cultures were used as inoculum for the 200 mL shake flask 

cultivations in medium E*. The medium contained the following (per liter): (NH4)2HPO4, 3.3 g; 

K2HPO4, 5.8 g; KH2PO4, 3.7 g. 10 mL of a 100 mM MgSO4 solution and 1 mL of a microelement 

solution were added. The microelement solution contained the following (per liter of 1 N HCl): 

FeSO4- 7H2O, 2.78 g; MnCl 4H2O, 1.98 g; CoSO4 7H2O, 2.81 g; CaCl2 2H2O, 1.67 g; CuCl2 2H2O, 

0.17 g; ZnSO4 7H2O, 0.29 g (Brandl et al., 1988). It was supplemented with glycerol waste as the 

sole carbon source at a concentration of 40 g/L. The glycerol waste was autoclaved separately for 

20 minutes (at 121˚C and 1 bar) and then added to medium E*. In all shake flask experiments, the 

cultures were incubated in an orbital shaker at 200 rpm and 30˚C, for 72 h.  
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3.2.3. Bioreactors Assays 

3.2.3.1. Inoculum 

 

The bacterial culture used in these assays was P. chlororaphis DSM 19603. The pre-inoculum 

(20 mL) was transferred to a 500 mL shake flask with 200 mL medium E* supplemented with glycerol 

waste (concentration of 40 g/L) and incubated under the same conditions for 72 h. 

 

3.2.3.2. Batch Fermentation  

 

Batch cultivations were performed in a bioreactor (BioStat®B-Plus, Sartorius) with a working 

volume of 2 L. Medium E* with glycerol waste at a concentration of 40 g/L was used. The 

temperature and the pH were kept at 30 ± 0.1˚C and 7.0 ± 0.1, respectively. The pH was controlled 

by the automatic addition of 2 M NaOH and 2 M HCl solutions. A constant aeration rate (2 SLPM, 

standard liters per minute) was kept during all experiments. The dissolved oxygen concentration 

(DO) was controlled at 30% of air saturation by automatically adjusting the stirring speed between 

300 and 800 rpm. Foam formation was automatically suppressed by addition of Antifoam A 

(Sigma/VWR). Samples were periodically taken from the bioreactor for quantification of cell dry 

weight, PHA, ammonia and glycerol waste. For quantification of the cell dry weight (CDW), 

cultivation broth samples (15 mL) were centrifuged, the supernatant was recovered for glycerol and 

ammonia quantification and the pellet was lyophilized for biomass and mcl-PHA quantification.  

 

3.2.3.3. Pulse Feeding Fermentation 

 

Pulse feeding cultivation were performed in a bioreactor (BioStat®B-Plus, Sartorius) with a 

working volume 10 L., using medium E* supplemented with glycerol waste as the sole carbon source 

at a concentration of 40 g/L. After 21 h of cultivation, a pulse of carbon source was fed to give a 

concentration of 40 g/L. In this experiment, the temperature and the pH were kept at 30 ± 0.1˚C and 

7.0 ± 0.1, respectively. pH was controlled by the automatic addition of 2 M HCl and NH4OH (25%, 

v/v) solutions. The NH4OH solution also served as a nitrogen source. A constant aeration rate (2 

SLPM, standard liters per minute) was kept during the experiment. The dissolved oxygen 

concentration (DO) was controlled at 30% of air saturation by automatically adjusting the stirring 

speed between 300 and 800 rpm. Foam formation was automatically suppressed by addition of 

Antifoam A (VWR). Samples were periodically taken from the bioreactor for quantification of cell dry 

weight, PHA, ammonia and glycerol waste. For quantification of the cell dry weight (CDW), 

cultivation broth samples (20 mL) were centrifuged, the supernatant was recovered for glycerol and 

ammonia quantification and the pellet was lyophilized for biomass and mcl-PHA quantification.  
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3.2.3.4. Repeated Batch Fermentation 

 

Repeated batch cultivation experiments were performed in bioreactors (BioStat®B-Plus, 

Sartorius) with a working volume 2 L of E medium. In each cycle, glycerol waste was used as the 

only carbon source with an initial concentration of 40 g/L. The temperature and the pH were kept at 

30 ± 0.1˚C and 7.0 ± 0.1, respectively. pH was controlled by the automatic addition of 5 M NaOH 

and 2 M HCl solutions. A constant aeration rate (2 SLPM, standard liters per minute) was kept during 

the experiment. The dissolved oxygen concentration (DO) was controlled at 30% of air saturation 

by automatically adjusting the stirring speed between 300 and 800 rpm. Foam formation was 

automatically suppressed by addition of Antifoam A (VWR). Samples were periodically taken from 

the bioreactor for quantification of cell dry weight, PHA, ammonia and glycerol waste. For 

quantification of the cell dry weight (CDW), cultivation broth samples (15 mL) were centrifuged, the 

supernatant was recovered for glycerol and ammonia quantification and the pellet was lyophilized 

for biomass and mcl-PHA quantification. The repeated batch cycles were implemented by 

withdrawing 1.6 L, under aseptic conditions, of cultivation broth at the end of each cycle, and 

supplying fresh medium E*. The broth volume (0.3 L) remaining in the bioreactor at the end of each 

cycle served as the inoculum for the following cycle. 

 

3.3. Analytical Techniques 

3.3.1. Determination of Cell Growth  

  

The cell growth was determined by quantification of the cell dry weight (CDW) of each sample. 

The cell pellet was used for the gravimetric determination of the CDW, after washing once with 

deionized water (resuspension in water, and centrifugation at 8000 rpm, for 15 to 20 minutes at 

10˚C) the pellet was freeze-dried (ScanVac CoolSafeTM, LaboGene) at -110˚C for 48 h. 

 

3.3.2. Glycerol Quantification 

 

The cell-free supernatant was diluted (1:50) in sulphuric acid (SIGMA-ALDRICH) (H2SO4 0.01 

N) and filtered with Vectra Spin Micro Polysulfone filters (0.2 μm) (Whatman), at 3000 rpm for 10 

minutes. Glycerol was quantified by HPLC, as described above.  

 

3.3.3. Ammonium Quantification 

  

Ammonium concentration was determined by colorimetry, as implemented in a flow segmented 

analyser (Skalar 5100, Skalar Analytical, The Netherlands). Ammonium chloride (Sigma) was used 

as standard at concentrations between of 5 and 20 mg L-1. 

 The cell-free supernatant was diluted (1:200) in deionized water and analysed. 
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3.3.4. Mcl-PHA Concentration and Composition 

  

Mcl-PHA content and composition were determined after hydrolysis of dried cell samples (5 to 

10 mg) in 2 mL 20% (v/v) sulphuric acid (SIGMA-ALDRICH) in methanol (Fisher Chemical) and 2 

mL of benzoic acid in chloroform (1 g/L) (SIGMA-ALDRICH), on oil bath at 100˚C, for 4 h. Then, 1 

mL of water was added and the organic phase was recovered and analysed by GC (430-GC, Bruker) 

with a Restek column of 60m, 0.53 mmID, 1 µM df, Crossbond, Stabilwax. The injection volume was 

2.0 µL, with a running time of 32 min, a constant pressure of 14.50 psi and helium as carrier gas. 

The heating ramp was 0 to 3 min a rate of 20˚C/min until 100˚C, 3 to 21 min a rate of 3˚C/min until 

155˚C and 21 to 32 min a rate of 20˚C/min until 220˚C. Mcl-PHA (VersaMerTM PHAs, PolyFerm 

Canada) standards were prepared at 2 g/L and then diluted to give concentrations in the range 0.1 

and 1.75 g/L. 

 

3.3.5. Production Calculus  
 

The yields of biomass on substrate (𝑌𝑥/𝑠, g.g-1) and mcl-PHA on substrate (𝑌𝑝/𝑠, g.g-1) were 

determined using the following equations: 

𝑌𝑥/𝑠 =
xf−xi

𝑆𝑓−𝑆𝑖
         Eq. 3.1 

 𝑌𝑝/𝑠 =
𝑝𝑓−𝑝𝑖

𝑠𝑓−𝑠𝑖
         Eq. 3.2 

where xf and xi are the final and initial biomass concentration, 𝑆𝑓 and 𝑆𝑖 are the final and initial 

substrate, 𝑝𝑓 and 𝑠𝑖 are the final and initial mcl-PHA produced, respectively.  

The mcl-PHA volumetric productivity (𝑟𝑃, g L-1h-1) was determined by the following equation: 

𝑟𝑃 =  
𝑑𝑃

𝑑𝑡
          Eq. 3.3 

where 𝑃 is the mcl-PHA (g L-1) produced at time t (hours). 

 

3.4. Polymer extraction and characterization 

 

After centrifugation (8000 rpm for 15 minutes at 4˚C) of the cultivation broth recovered from the 

bioreactor experiments, the pellets were lyophilized and subjected to a Soxhlet (250 mL) extraction 

with chloroform (CARLO ERBA Reagents S.A.S.) at 80˚C for 24 - 48 h. The cellular debris were 

removed by filtration with syringe filters with a pore size of 0.45 µm (GxF, GHPmembrane, PALL) 

and the mcl-PHA was precipitated in ice-cold ethanol (CARLO ERBA Reagents S.A.S.) 

(chloroform/ethanol 1:10). The precipitate was then recovered in a pre-weighted flask and left at 

room temperature, in a fume hood, for solvent evaporation. The polymer’s composition was 

determined by GC, as described above.  
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3.4.1. Polymer extraction method tests 

  

Different extraction methods were tested, using either solvents or osmotic shock treatments.  

  

3.4.1.1. Solvent Testing 

 

In the solvent extraction tests, 1 g of biomass was mixed with 30 mL of each solvent: chloroform 

(CARLO ERBA Reagents S.A.S.), acetone (LABCHEM), hexane (JOSÉ MANUEL GOMES DOS 

SANTOS, LDA), ethyl acetate (CARLO ERBA Reagents S.A.S.), propylene carbonate (Fluka), 

hypochlorite (Auchan), sodium hydroxide (1 M) (eka) and hydrogen peroxide (Auchan). The 

samples were placed in an orbital shaker, at 200 rpm and 30˚C, overnight. The samples were 

centrifuged and the pellets or supernatants were collected depending on the solvent used. For 

chloroform, acetone, hexane, ethyl acetate and propylene carbonate solvents, the supernatant 

containing the solubilized polymer was recovered, filtered, precipitated in ice cold ethanol 

(solvent/ethanol 1:10) and dried at room temperature. For hypochlorite, sodium hydroxide and 

hydrogen peroxide, the pellets containing the polymer were separated from the aqueous soluble 

cell components, and sequentially washed with deionized water (30 mL) and ethanol (30 mL) and 

then freeze dried. The polymer’s composition and purity were determined by GC, as described 

above.  

 

3.4.1.2. Osmotic Shock Testing 

  

In these experiments, 3 different conditions of osmotic shocks were tested: hyper-osmotic shock 

with saturated solutions of sodium chloride or sucrose, and hypo-osmotic shock with deionized 

water. Another kind of hypo-osmotic shock treatment was also tested, by freezing the samples at -

80˚C and thawing them after 24h. For each test, a 0.5 g biomass sample was mixed with 20 mL of 

the appropriate solution. The samples were then placed at an orbital shaker, at 200 rpm and 30˚C, 

for 1h. Then, the samples were centrifuged (8000 rpm, for 10 minutes at 10˚C), the pellets were 

ressuspended in deionized water and placed, once again, in the shaker under the same conditions. 

The samples were observed under the optical microscope prior and after each treatment to check 

for cell disruption.  
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3.4.2. Mcl-PHA films 

3.4.2.1. Film preparation by Solvent Evaporation 

 

Mcl-PHA films were prepared by dissolving 0.85 g of polymer in 20 mL of chloroform (CARLO 

ERBA Reagents S.A.S.) and transferring the solution to a glass petri dish that was placed in the 

fume hood for evaporation of the solvent.  

 

3.4.2.2. Mechanical properties 

 

The mcl-PHA film was cut into rectangular-shaped pieces with 3 samples of 3 x 1.5 cm2 and 

one sample of 2.5 x 1.5 cm2. The film samples were firmly attached to metal clamps of the testing 

holders. The elongation was measured in axial tension test at room temperature using a 

texturometer (TA.XT.plus Texture analyser, Stable Micro Systems) and a 5 Kg load cell. The film 

strained at a constant velocity of 0.5 mm/s until break. 

The section area (A, m2) was determined by using the following equation: 

𝐴 =  𝛿 ∗ 𝐿          Eq. 3.4 

Where δ is the thickness (m) and L is the wideness (m) of the mcl-PHA. 

The tension applied to the mcl-PHA biofilm (Ʈ, Pa) was determined by using the following 

equation: 

Ʈ =  
𝐹

𝐴
         Eq. 3.5 

Where F is the force applied to the mcl-PHA (N) and A is the section area (m2). 

The deformation (Ɛ, -) was determined by using the following equation: 

Ɛ =  
(𝑙−𝑙𝑖)

𝑙𝑖
         Eq. 3.6 

where l is the actual length (mm) and li is the initial length (mm) 

 The stiffness of the mcl-PHA was represented by the young modulus. It was determined by 

measuring the slope of a line tangent to the initial tension-deformation curve, in the linear part. 
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3.5. Adhesive Tests  

3.5.1. Tension Tests 

 

Porcine skin (purchased at a local butcher) was used as a soft tissue model. The porcine skin 

was cut into 2.5 x 2.5 cm2 square-shaped pieces and their dermis side was firmly attached to metal 

testing holders (figure 3.1). 

The mcl-PHA was melted at 45˚C and spread uniformly (100 – 190 mg) on the epidermis side 

of one porcine skin piece and immediately pressed against the epidermis side of other porcine skin 

piece by applying a 2.58 N load for 30 seconds, at room temperature. After 20 min, the bonding 

strength was measured in tension mode at room temperature using a texturometer (TA.XT.plus 

Texture analyser, Stable Micro Systems) and a 5 Kg load cell. The two parts of the joint were 

strained at a constant velocity of 0.5 m/s until separation was achieved.  

3.5.2. Shear Tests 

 

Porcine skin (purchased at a local butcher) was used as a soft tissue model. The porcine skin 

was cut into 6 x 2.5 cm2 rectangular-shaped pieces. Mcl-PHA melted at 45˚C (210 – 280 mg) were 

spread uniformly, in the contact area (2.5 x 2.5 cm2), on the epidermis side of one porcine skin piece 

which were immediately attached to the epidermis side of other porcine skin piece by applying a 

2.56 N load on the pieces for 30 seconds, at room temperature. After 20 min, the skin was then 

firmly attached to metal clamps of the testing holders and the bonding strength was measured in 

shear mode at room temperature using a texturometer (TA.XT.plus Texture analyser, Stable Micro 

Figure 3.1 - Schematic assembly for the tension tests. 
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Systems) and a 30 Kg load cell. The two parts of the joint were strained at a constant velocity of 0.5 

mm/s until separation was achieved (figure 3.2). 

 

3.5.3. Adhesive Tests Calculus 

 

The bonding strength was calculated on the all samples and was defined as the maximum force 

felted at separation divided by the bonding area (Eq. 3.5). 

  

Figure 3.2 - Schematic assembly for the shear tests 
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3.5.4. In vivo peeling tests 

 

In this experiment a human arm was used as soft tissue model. The mcl-PHA was melted at 

45˚C and spread uniformly through a rectangular-shaped plastic sheet (2 x 6 cm2), and left at room 

temperature to dry. After the polymer dried, the mcl-PHA was separated from the plastic sheet and 

applied to the skin (figure 3.3). 

 

 

 

 

 

 

 

 

 

After the polymer adhere to the skin, it was made a peeling assay. The mcl-PHA was separated 

from the skin by, simply, pulling the polymer until separation was achieved as showed in figure 3.4, 

 

  

Figure 3.3 – Schematic assembly for the peeling test 

Figure 3.4 - Peeling test assay 



18 
 

  



19 
 

4. Results and Discussion 

4.1. Screening Assay 

 

The screening assay was performed to see which bacteria would grow better by using only glycerol 

waste (a biodiesel by-product) as a carbon source. The ability of each strain to accumulate PHA, 

especially mcl-PHA, was also evaluated. With the increasing biodiesel production all over the world, it 

is important to find new applications for its cheap wastes or by-products. One of the possible applications 

is to use these by-products as substrates for mcl-PHA production, reducing drastically the production 

costs of those polymers. In this assay, group of well-known PHA accumulating bacteria, namely 

Pseudomonas putida, P. resinovorans, P. chlororaphis, P. citronellolis, P. oleovorans and C. necator, 

were studied for the ability of mcl-PHA accumulation, using glycerol waste as the sole carbon source. 

C. necator is a well-known producer of PHB, P. putida is a recognizable producer of mcl-PHA (Tan et 

al., 2014) and P. resinovorans, P. citronellolis and P. oleovorans have also been described to synthesize 

mcl-PHA from wastes including biodiesel co-products. (Morais et al., 2014). P. chlororaphis, on the other 

hand, a little is known about this strain and its ability to produce mcl-PHA in glycerol, until now it has 

been described to synthesize mcl-PHA from wastes (Muhr et al., 2013). These assays were carried out 

using shake flasks with 200 mL of Medium E* supplemented with glycerol waste as the sole carbon 

source (40 g/L). All assays took 72 h.  

By looking at the growth profile of the screening assay (Figure 4.1), it is possible to see that all 

cultures were able to grow on glycerol by-product, but the one with the highest growth was C. necator 

DSM 428 that reached an OD of 37.4 within 72 h of cultivation. Among the tested mcl-PHA producers, 

P. putida KT2440 and P. chlororaphis DSM 19603 had the highest cell growth, as shown by the OD 

attained (15.3 and 12.6, respectively). These results were confirmed by the gravimetric quantification of 
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Figure 4.1 - Growth profile of the different strains of bacteria in raw glycerol (a biodiesel by-product). 
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the CDW (table 4.1), in which the highest value was obtained for C. necator (9.69 g/L) and for the mcl-

PHA producers, P. putida (4.44 g/L) and P. chlororaphis (3.82 g/L).  

To verify the production of PHA inside the bacterial cells, Nile blue staining was made for samples 

collected from the shake flasks at 24 and 72 hours after the inoculation. The bacteria were observed 

under the microscope in phase contrast and using fluorescence, in order to visualize the bacteria and 

the PHA inside the cells, respectively. By looking at figure 4.2, it is possible to see that in all strains the 

concentration of bacterial cells increased between 24 and 72 hours, which reflects the bacterial growth. 

Looking at the fluorescence images (Figure 4.2), it is also visible that PHA was produced and 

accumulated by all bacterial strains. In figure 4.2 it remains clear that the strains of bacteria with higher 

cell growth and PHA accumulation were C. necator DSM 428, P. putida KT2440 and P. chlororaphis 

DSM 19603. 

Table 4.1 - Overall growth and PHA production, and composition of the polymer obtained in the screening assay, 
after 72 h batch shake flask cultivations on waste glycerol as the sole carbon source. 

  Bacteria Strain Biomass (g/L) Type of PHA Composition 

P. resinovorans NRRL B-
2649 

1.68 mcl-PHA HD-HDd 

P. citronellolis NRRL B-
2504 

1.21 mcl-PHA HD-HDd 

C. necator DSM 428 9.69 PHB HB 

P. putida KT2440 4.44 mcl-PHA HHx-HO-HD-HDd 

P. oleovorans NRRL B-
14683 

2.01 PHB HB 

P. oleovorans NRRL B-
14682 

1.60 PHB HB 

P. chlororaphis DSM 
19603 

3.82 mcl-PHA HHx-HO-HD-HDd 
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Bacteria Strain 
24 h after inoculation 72 h after inoculation 

Phase contrast Flourescence Phase contrast Flourescence 

P. resinovorans 
NRRL B-2649 

    

P. citronellolis 
NRRL B-2504 

    

C. necator DSM 
428 

    

P. putida 
KT2440 

    

P. oleovorans 
NRRL B-14683 

    

P. oleovorans 
NRRL B-14682 

    

P. chlororaphis 
DSM 19603 

    
Figure 4.2 - Visualization of the bacterial cells under the optical microscope (100x) for samples collected from 

shake flasks screening assay, at 24 and 72 hours after inoculation, under phase contrast and with fluorescence 
after Nile blue staining. 
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C. necator is a well-known PHB-producer able to grow on glycerol (Tan et al., 2014, Mothes et 

al., 2007) and was used in this study as a control. So, as expected, it only accumulate the 

hydroxybutyrate homopolymer (table 4.1). Both tested P. oleovorans strains also produced PHB (table 

4.1), which is in accordance with literature reports (Ashby et al., 2004, Yang et al., 2012). The other 

tested Pseudomonas strains synthesized mcl-PHA (table 4.1). The co-polymers produced by P. 

resinovorans and P. citronellolis were composed of HD and HDd monomers. On the other hand, P. 

putida KT2440 and P. chlororaphis DSM 19603 (table 4.1) produced polymers of HHx, HO, HD and HDd 

monomers. According with the literature for P. resinovorans and P. citronellolis, using oil substrates, it 

is possible to achieve mcl-PHA polymers with HHx, HO, HD and HDd monomers (Cruz et al., 2015), 

which are slightly different than the ones achieved in this assay. For P. chlororaphis it has only been 

showed that is possible to achieve a mcl-PHA polymer with a composition similar to the one attained in 

this experiment, by using different carbon sources (Muhr et al., 2013, Yun et al., 2003). It has also been 

reported that P. putida, in this substrate, produces mcl-PHA with the composition of HHx, HO, HD, HDd 

and HTd (Poblete-Castro et al., 2014), similar to the one attained in the screening assay. P. putida has 

been widely studied over the past few years, using different substrates for the production of mcl-PHA. 

However, yet much less is known about P. chlororaphis. So far, this strain has been studied for the 

production of mcl-PHA using substrates derived from animal waste (SFAE) and Palm Kernel Oil (PKO) 

as carbon sources (Muhr et al., 2013, Yun et al., 2003). So, in order to study and learn more about P. 

chlororaphis and its ability to produce mcl-PHA from glycerol, this strain was selected to proceed with 

the bioreactor assays for mcl-PHA production. 
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4.2. Mcl-PHA Production by P. chlororaphis 

 
To characterize the production of mcl-PHA by P. chlororaphis under controlled bioreactor conditions, 

three experiments were performed, under different cultivation modes: batch, pulse feeding and repeated 

batch. 

4.2.1. Batch Fermentation 

 

A batch fermentation was performed in a 2 L bioreactor with Medium E* and glycerol waste as 

carbon source for 28 hours. After a short lag phase (2 h), P. chlororaphis entered a growth phase that 

lasted around 17 hours (figure 4.3), after which the concentration of ammonium has become very low 

(0.08 g/L), limiting the growth of the bacteria. A CDW of 4.62 g/L was attained at 19 h of cultivation, 

when growth limiting conditions occurred. Afterwards, the CDW still increased to 5.57 g/L, which was 

mainly due to the intracellular polymer accumulation. During this assay it is possible to see that as the 

cell dry weight (CDW) and mcl-PHA concentrations increased, while glycerol concentration decreased. 

This means that glycerol was consumed for bacterial growth and mcl-PHA accumulation. mcl-PHA 

production was only quantified starting at 19 h of cultivation. At that time, the culture had accumulated 

0.28 g/L of polymer (figure 4.3). At the end of the run the polymer content in the biomass was 13%, 

giving a final polymer concentration of 0.72 g/L (table 4.2). 
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Figure 4.3 - Cultivation profile of the batch bioreactor fermentation of P. chlororaphis DSM 
19603 using glycerol by-product as sole carbon source. 
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By looking at figure 4.3, it is possible to see that, in the first 19 hours the bacterial growth was 

responsible for the major consumption of glycerol (21.31 g/L). Starting at 19 hours the glycerol was 

being consumed mostly for PHA accumulation since the bacterial growth was limited by the absence of 

ammonia. For PHA accumulation, 4.53 g/L of glycerol were consumed making a total of 25.84 g/L 

throughout the whole assay. A yield of 0.20 and 0.028 for YX/S and YP/S were achieved, respectively.   

At the end of the assay, a CDW of 5.57 g/L was achieved, with a polymer content of 13% (table 

4.2). The final mcl-PHA concentration was 0.72 g/L, corresponding to a volumetric productivity (rp) of 

0.026 g L-1 h-1 (table 4.2).  

According with the literature (table 4.2), in other conditions, using SFAE as a carbon source, the 

values of CDW, yields and productivity are a higher than the ones achieved in this assay, however it is 

visible that the PHA content is within the range of values described in the literature. The composition of 

the polymer attained in this assay is a little bit different than the ones that have been reported, yet the 

polymer was obtained under different conditions and with different carbon sources. Although, it is visible 

that for both assays the polymer is manly composed by HO and HD, having minor concentrations of 

HHx and HDd monomers.   

In summary P. chlororaphis could use glycerol for bacterial growth, although the production 

wasn’t very high, there was some mcl-PHA accumulation (as described in the literature for SFEA 

substrate), with the composition different to the one found in the literature for this culture. 

 

4.2.2. Pulse Feeding Fermentation 

 
A pulse feeding fed-batch strategy was performed. This assay was carried out in a 10 L bioreactor 

with the same conditions as the batch assay. However, after 23 hours of cultivation, a pulse of glycerol, 

about 40 g/L, was given and the assay proceeded until 41 hours. After a lag phase of 6 hours, P. 

chlororaphis entered an exponential growth phase that lasted around 15 hours. The initial glycerol (39.24 

g/L) was totally consumed in the growth phase (23 h). In this experiment, ammonium hydroxide was 

used for pH control throughout the run, aiming at providing non-limiting conditions of nitrogen to promote 

a higher growth of the culture than in the previous batch experiment. Consequently, the glycerol that 

was added to the medium, afterwards, was consumed not only for bacterial growth but also for PHA 

synthesis. 
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As expected, at the end of the assay, a CDW concentration of 9.35 g/L was achieved. This value 

is considerably higher than that attained in the batch bioreactor cultivation (5.57 g/L). The biomass had 

a polymer content of 10% (table 4.2), this value is lower than the one achieved in the batch fermentation, 

which means that more bacterial cells were obtained but their PHA content was lower. The CDW 

concentration was much higher than the one achieved with the batch fermentation (table 4.2). Yet in this 

assay, 51.1 g/L of glycerol were consumed throughout the whole experiment. The yield values were 

higher than the ones attained in the previous batch fermentation (YX/S – 0.30 and YP/S – 0.030). This 

increase of YX/S is a result of not having limiting conditions for the cell growth, this means that more 

carbon was used for cell growth than in the previous batch assay, which was the main objective of this 

experiment. A final PHA production of 0.93 g/L was reached, with a productivity (rp) of 0.023 g L-1 h-1 

(table 4.2). This last value was lower than the one attained in the batch fermentation, possibly because 

of the over stimulation of the cell growth, meaning that the bacterial cells were consuming glycerol for 

growth instead of polymer accumulation, resulting in lower mcl-PHA content and productivity values.  

It has been reported in the literature that by using other carbon source (SFAE), with the same 

cultivation mode it is possible to achieve higher CDW, yield and productivity values (table 4.2), than the 

ones attained in this assay. However, the composition of the polymer attained in this fermentation is 

close to the one achieved in the previous batch experiment, meaning that this polymer is, still, a little bit 

different than the ones that have been reported (table 4.2). Although, it remains clear that for all assays 

the polymer is manly composed by HO and HD, having minor concentrations of HHx and HDd 

monomers.  
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Figure 4.4 - Pulse feeding fermentation of P. chlororaphis DSM 19603 in a 10 L biorector. 
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In short, in this experiment it was possible to, considerably, increase the biomass production, 

without affecting the production and the composition of the final mcl-PHA polymer. 

4.2.3. Repeated Batch Fermentation 

 
 To evaluate the ability of the culture to produce mcl-PHA in a repeated batch strategy, 3 

consecutive cycles were performed with P. chlororaphis. This assay was carried out in a 2 L bioreactor 

with the same conditions as the batch assay, namely, each cycle was initiated with a glycerol 

concentration of 35 to 37 g/L and the pH was controlled with NaOH. After approximately 22 hours, 1.6 

L of the culture broth was withdrawn from the bioreactor and it was replenished with fresh medium E* 

supplemented with glycerol. The remaining broth volume (0.3 L) served as inoculum to the following 

cycle. This fermentation strategy was never been attempted in a P. chlororaphis culture for production 

of mcl-PHA before, since that according with the literature the only approaches for this issue, was in 

shake flasks and pulse fed-batch fermentations (Muhr et al., 2013, Yun et al., 2003). 

 

 

  

1st Cycle 2nd Cycle 3rd Cycle 

Figure 4.5 - Repeated batch fermentation of P. chlororaphis DSM 
19603 in a 10 L biorector. 
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Through the observation of figure 4.5 it appears that all 3 cycles were very similar with each 

other, which is concomitant with table 4.2, showing the reproducibility of this assay. In all cycles as the 

glycerol concentration lowers, the CDW and PHA concentrations increased, which means that glycerol 

has been consumed for bacterial growth and PHA accumulation. In the first cycle it was consumed 17.67 

g/L of glycerol to achieve a CDW of 6.82 g/L with a final concentration of mcl-PHA of 0.77 (12%). In the 

second cycle it was consumed 18.78 g/L of glycerol to attain a CDW of 6.37 g/L with a final concentration 

of mcl-PHA of 0.72 (11%). In the third cycle it was consumed 19.11 g/L of glycerol to obtain a CDW of 

6.67 g/L with a final concentration of mcl-PHA of 0.80 (12%) (table 4.2). In this experiment, the results 

attained in all cycles are very similar with the batch experiment, with a slightly increase of CDW and, 

consequently, the YX/S value. Meaning that the CDW and yields values are lower than the ones attained 

in the previous pulse feeding fermentation, for the same reasons as described above. Once again, 

similar to what happens in the batch assay, the productivity and the mcl-PHA content values were higher 

than the pulse feeding experiment. 

 All cycles lasted approximately the same (22 hours), in order to avoid PHA degradation by the 

bacteria. Similar volumetric productivities (0.022 to 0.027 g/L h) and PHA content (11 to 12%) were 

attained in all cycles but the highest volumetric productivity (0.027 g/L h) and PHA content (12%) was 

achieved by the third cycle (table 4.2). This suggests that prolonging the experiment by performing more 

cycles might further improve the productivity. Additionally, the length of the cycles could also be 

extended so higher PHA production is reached in each cycle.  

Similar to what happens with the other two fermentation strategies the composition of the final 

polymer is similar with the one attained in the previous assay, although it has slightly difference with the 

composition observed in the literature. However, once again, it remains that for all this examples the 

polymer is manly composed by HO and HD, having minor concentrations of HHx and HDd monomers.  

After this assay it is clear that it is possible to keep a P. chlororaphis culture to produce mcl-

PHA for consecutive cycles. This cycles are reproducible and could be optimized to attain higher mcl-

PHA production.  

In table 4.2 it remains clear that in all the types of fermentation using P. chlororaphis and glycerol 

as sole carbon source, the composition of the mcl-PHA recovered in this assays was approximately the 

same. This shows that type of fermentation does not have a significant impact on the composition of the 

final mcl-PHA obtained. However the composition of the mcl-PHA obtained in the shake flask assay is 

a little bit different than the others this might be because in a bioreactor a more controlled environment 

can be achieved. 
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Table 4.2 - Yields, productivity, mcl-PHA content and composition at the end of all fermentation processes 

n. a. – data not available; 

SFAE - substrates derived from animal waste 

PKO - Palm Kernel Oil 

 

4.3. Recovery Methods 

 
The most commonly used solvents for PHA recovery are chlorinated hydrocarbons, such as 

chloroform. However, their use for extraction and purification of biopolymers from biomass are forbidden 

nowadays, since they are highly aggressive to the environment and to human health. On the other hand, 

for applications in the medical and pharmaceutical fields it is important to use less toxic solvents in the 

extraction process, since the presence of these kind of impurities are not tolerated by regulatory 

agencies. To try not to use chloroform in the recovery methods alternative recovery methods were 

studied using less hazardous solvents: acetone, hexane, ethyl acetate, propylene carbonate, 

hypochlorite, sodium hydroxide, hydrogen peroxide and different water-based extractions using osmotic 

shock for disrupting the bacterial cell wall. 

These experiments were performed using biomass produced in a bioreactor cultivation (different 

from the ones presented), using glycerol by-product as sole carbon source. The biomass has a polymer 

content of 22%. The efficiency of each extraction methods was determined by comparison of each 

recovery method with the Soxhlet extraction at 80˚C, using chloroform as solvent.  

 

  

Experiment 
CDW 
(g/L) 

mcl-PHA 
content 

(%) 

mcl-
PHA 
(g/L) 

Productivity 
rp (g/L h) 

Yx/s 
(g/g) 

Yp/s 
(g/g) 

mcl-PHA Composition 
References 

HHx HO HD HDd 

Batch 
Fermentation 

5.57 13 0.72 0.026 0.20 0.028 5.2 22.6 61.7 10.5 This study 

Pulse Feeding 
Fermentation 

9.35 10 0.93 0.023 0.30 0.030 6.1 26.9 54.1 13.0 This study 

Repeated 
batch 

Fermentation 
Cycle 1 
Cycle 2 
Cycle 3 

 
 
6.82 
6.37 
6.67 

 
 

12 
11 
12 

 
 
0.77 
0.72 
0.80 

 
 

0.025 
0.022 
0.027 

 
 
0.26 
0.21 
0.25 

 
 
0.031 
0.027 
0.031 

 
 

5.5 
5.8 
5.9 

 
 

23.5 
24.3 
24.6 

 
 

60.3 
59.2 
58.8 

 
 

10.7 
10.6 
10.7 

This study 

Batch – Shake 
Flask 

3.82 n. a. n. a. n. a. n. a. n. a. 6.8 34.3 45.0 13.8 This study 

Pulse Feeding 
Fermentation 

with SFAE 

30 
41.3 
41.2 

11.9 
10.0 
15.2 

n. a. 
n. a. 
n. a. 

0.071 
0.094 
0.138 

0.62 
0.73 
0.66 

0.075 
0.07 

0.101 

15.5 
14.6 
10.2 

50.6 
45.7 
47.9 

26.1 
27.3 
31.4 

5.0 
6.7 
6.2 

Muhr et al., 
2013 

Batch 
Fermentation 

with PKO 
3.3 45 1.49 n. a. 0.67 n. a.  4.7 34.7 32.5 1.4 

Yun et al., 
2003 
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By looking at figure 4.6 it is easy to understand that recovery process was successful using 

chloroform, ethyl acetate, acetone and hexane since it resulted on a polymer with high purity levels  

(above 90%). However, the efficiency of the extraction was different: with chloroform was attained more 

polymer (although it was a less pure polymer than the one attained with the ethyl acetate, acetone, 

hexane and Soxhlet extraction, this might be because of the conditions used in this assay). It is also 

visible that the content of at the end of this test is above 0.22 (which is the content of the cellular mcl-

PHA) this means that this chloroform sample at the end of the extraction had some impurities. With ethyl 

acetate, considering the conditions used in this assay, seems to be the one who had better result having 

a high purity polymer with a high yield. With acetone and hexane, although the polymer had high purity 

values, only a small portion of mcl-PHA was extracted (in this conditions not all of the polymer was 

extracted from the biomass) this was observed in the ethyl acetate sample too but in a minor percentage.  

It is possible to see that for chloroform extractions the results attained are concomitant with the 

literature for PHB polymers, having high yield and purity values, even in different conditions. However, 

for HO extraction the yield was very low, but even though, this result was the best according with the 

experiments reported by Rai et al., 2011. For acetone, the results attained are, once again, according 

with the letter for PHB polymers. Although, for recovery of HO polymers the yield was again very low, 

but not too different from the chloroform results attained in the same conditions (Rai et al., 2011). 

For the extraction using ethyl acetate the results attained were completely different from the 

ones described in the literature having high purity and yield values, however the polymer, the bacteria 

0

20

40

60

80

100

0,0

0,2

0,4

0,6

0,8

1,0

P
u

ri
ty

 (
%

)

Ex
tr

ac
ti

o
n

 Y
ie

ld
 (

g_
p

o
ly

m
er

/g
_b

io
m

as
s)

Extraction Yield Purity

Figure 4.6 - Extraction yield and mcl-PHA purity for different recovery methods tested. 
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and the conditions were a little bit different from the ones used in this assay. Despite all of that, ethyl 

acetate showed some interestingly results for mcl-PHA extraction from P. chlororaphis. Similar to what 

happen with ethyl acetate, hexane results showed to be very different from the literature, once again, 

the conditions were not the same as used in this assay, but they still are interesting and promising 

results for mcl-PHA extraction from P. chlororaphis. 

To increase this yields and purity values it might be a good idea, performing a Soxhlet extraction 

using each one of these solvents (chloroform, acetone, ethyl acetate and hexane). 

 Table 4.3 - Different PHA recovery methods reported 

n. a. – Data Not Available 

Extraction 

Method 
Solvents Strain 

PHA 

Monomers 
Results Reference 

Solvent 

Extraction 

Chloroform 
Bacillus cereus 

SPV 
HB 

Yield: 

31% 

Purity: 

92% 

Valappil et 

al., 2007 

Chloroform 
C. necator DSM 

545 
HB 

Yield: 

96% 

Purity: 

95% Fiorese et 

al., 2009 Propylene 

carbonate 

Yield: 

95% 

Purity: 

84% 

Acetone P. putida GPo1 HO 
Yield: 

94% 

Purity: 

n. a. 

ELbahloul et 

al., 2009 

Ethyl acetate 
P. putida 

KT2440 
HO 

Yield: 

12 % 

Purity: 

n. a. 

Wampfler et 

al., 2010 

Acetone 

P. mendocina HO 

Yield: 

21.38% 

± 1.2% 

Purity: 

n. a. 

Rai et al., 

2011 
Chloroform 

Yield: 

23.04% 

± 2% 

Purity: 

n. a. 

Hexane 

Yield: 

8.83% 

± 2% 

Purity: 

n. a. 

Cell 

Disruption 

Hypochlorite 

C. necator HB 
Yield: 

n. a. 

Purity: 

86% Hahn et al., 

1995 Recombinant E. 

coli 
HB 

Yield: 

n. a. 

Purity: 

93% 

Hypochlorite-

Chlorofom 
C. necator HB 

Yield: 

91% 

Purity: 

97% 

Madkour et 

al., 2013 

Chelate-

Hydrogen 

Peroxide 

C. necator HB-co-HV 
Yield: 

n. a. 

Purity: 

99.5% 

Madkour et 

al., 2013 
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In this conditions, sodium hydroxide wasn’t a very efficient extraction method since the yield 

was very low (0.02), however it had a reasonable purity (73%) which means that in some other kind of 

applications this method could be used. Hypochlorite had a yield similar to the acetone or hexan, but 

the polymer attained with this recovery method was less pure, this means that some cell components 

(non-PHA mass) remained in the sample after the extraction. According with the literature a very pure 

PHB polymer can achieved using hypochlorite in the recovery process, although using different 

conditions. The use of sodium hydroxide and hypochlorite solvents, in this conditions, appear to be a 

not very efficient extraction method. 

So far, there was no recovery method using hydrogen peroxide as a solo solvent for the 

extraction of mcl-PHA. With this solvent a high yield extraction was achieved however the polymer 

attained with this method was very impure, which means that there was not an efficient separation of 

the polymer from the biomass, resulting in a sample with a high non-PHA material. 

Aiming to evaluate osmotic shock as a strategy to rupture the cells of P. chlororaphis, different 

treatments were performed. Hypo-osmotic shock was done by subjecting the cells to a hypotonic 

medium, namely, deionized water. This treatment could cause for bacterial cells to swell up and disrupt, 

exposing the inside of the cell (Koller et al 2013). Hyper-osmotic shock was performed by subjecting the 

cells to two different hypertonic media, namely, saturated solutions of NaCl or sucrose. This two 

solutions were selected to promote a salt shock and a sugar shock, respectively and in both of this 

treatments the bacterial cells tend to shrink. When re-suspended in a solution with low concentration 

NaCl or sucrose, the cell incorporates high amounts of water (by osmosis). This sudden changes causes 

the cell to burst because of the osmotic pressure, exposing the inside of the cells (Lang et al., 2005). In 

figure 4.7 it is possible the results of these extraction methods and it is visible that the bacterial cell are 

not intact. When compared with figure 4.2 (in the screening assay) it seems that, in phase contrast, the 

bacterial cells are bigger and have a different shape than the ones observed in figure 4.7. 

The cells exposed to deionized water seemed to be disrupt, since it is visible in figure 4.7 that 

bacterial cells are not intact. Once again, when compared with figure 4.2 it seems that, in phase contrast, 

the bacterial cells are bigger and have a different shape than the ones observed in figure 4.7. For this 

same reason, it seems that for all samples treated by osmotic shock there was disruption of the cell wall, 

however the separation of the polymer from the cell components wasn’t efficient resulting in a low purity 

polymer. 

The freeze/thaw test improved the cell wall rupture when compared with deionized water in 

figure 4.7  it becomes clear that the water crystals disrupted the cell wall when the sample was freezed, 

making it possible for the polymer to aggregate outside the cell when the sample was thawed.  

For almost all samples treated by osmotic shock, the recovery process wasn’t very efficient 

since, although it had very high extraction yields (0.21 to 1.02%), there were low purity values (18 to 

37%), which means that the polymers contained many impurities. So far there’s been reported that it is 

possible to extract mcl-PHA from the biomass using osmotic shock treatment (Koller et al., 2013), 

although no comparable data were found. The osmotic shock treatment methods were not very good to 
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recover mcl-PHA as a solo method, but they might be suitable as a pre-treatment for mcl-PHA extraction 

when coupled with other extraction methods. This type of extractions only use water and could be 

coupled with other non-hazardous solvents decreasing the recovery costs and making the extraction 

less hazardous for the environment and to workers. 

   

Figure 4.7 - Visualization of the bacterial cells under the optical microscope (100x) for samples collected after 
osmotic shock treatment, under phase contrast and with fluorescence after Nile blue staining 

Recovery method Phase contrast Fluorescence 

Hypoosmotic shock 

  

Hyperosmotic shock – Sucrose 

  

Hyperosmotic shock – NaCl 

  

Hypoosmotic shock – 
Freeze/Thaw 
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4.4. Mcl-PHA Film Mechanical Tests 

 

P. chlororaphis mcl-PHA films were prepared by solvent casting. They were elastic and translucid 

(figure 4.8). 

 

To measure the mechanical properties of mcl-PHA films, a tensile test was carried out. For this 

assay, the mcl-PHA film was cut into rectangular-shaped pieces and an axial tension was applied, at 

room temperature, using a texturometer, with a 5 kg load cell. The film was strained at a constant velocity 

until break (figure 4.9).  

  

Figure 4.8 – Mcl-PHA film prepared by solvent casting. 

Figure 4.9 - Mcl-PHA film elongation before (A) and after (B) mechanical test. 
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Through the observation of the stress and strain curve (appendix 2) and table 4.4 it is possible 

to see that P. chlororaphis mcl-PHA films have elongated more than twice their original length (3 cm), 

and had a high percentage of plastic deformation without breaking. Comparing P. chlororaphis mcl-PHA 

with the other PHA, namely, PHB, P(HB-co-HHx), PHA-L and PHA-LE, it is clear that the latter form 

films much more resistant to deformation, as shown by their higher Young Modulus and lower elongation 

at break. When mcl-PHA is compared with Tussicol films (or Tisseel is a synthetic fibrin sealant from 

Baxter Healthcare commercially used in surgery) it is possible to see that it has a similar elongation at 

break and a higher tensile strength at break, which means that P. chlororaphis mcl-PHA is more resistant 

than Tissucol. This suggests that P. chlororaphis mcl-PHA might have properties suitable for the 

replacement of the synthetic adhesive, Tissucol, in commercial applications. 

The Young Modulus is a physical parameter representing the resistance to deformation of a 

material (Ashby et al., 2000). It was determined by measuring the slope of a line tangent to the linear 

initial region of the tension-deformation curve. From table 4.4, it is possible to conclude that PHA-L, 

PHA-LE and Glubran2 films, having higher young modulus values (767.80 MPa, 510.60 MPa and 283.90 

MPa, respectively) and lower values of elongation at break, are more likely to be stiffer. On the other 

hand, mcl-PHAs and Tissucol have low young modulus values (8.00 MPa and 0.04 MPa, respectively) 

and higher elongation at break values, which means they are less stiff and more flexible, more prone to 

plastic deformations.  

These results show that P. chlororaphis mcl-PHA forms flexible, elastic and resistant films, 

which seems to suggest that this biodegradable and biocompatible biopolymer has potential for use as 

a material for wound management. Since mcl-PHA is a hydrophobic polymer, it will not dissolve when 

in contact with water, making it resistant to this kind of environments. 

 Table 4.4 - Tensile properties of PHA 

n. a. - data not available 

*mcl-PHA with 30 mm of initial length (Average of 3 Samples). Tensile-Deformation and Young modulus curves available in 

appendix 2 and 3, respectively 

*2mcl-PHA with 25 mm of initial length. Tensile-Deformation and Young modulus curves available in appendix 2 and 3, 

respectively 

*3PHA-L – mcl-PHA from linseed oil composed by HHx, HO, HD, HDd and HTd; PHA-LE – Epoxidized mcl-PHA from linseed oil 

composed by HHx, HO, HD, HDd and HTd. Measurements were made after the film aged for 100 days. 

*4Glubran2 is synthetic surgical glue composed of modified n-butyl-2-cyanoacrylate approved for internal and external use 

in Europe.  

*5Tissucol or Tisseel is a synthetic fibrin sealant from Baxter Healthcare commercially used in surgery 

  

Film 
Thickness 

(mm) 

Tensile 
strength at 
break (MPa) 

Elongation at 
Break (%) 

Young 
modulus (MPa) 

Reference 

mcl-PHA* 0.16 ± 0.03 3.94 ± 0.69 272.65 ± 26.57 8.00 ± 8.17 This Study 

mcl-PHA*2 0.16 2.91 212.39 6.00 This Study 

PHB 0.3 27.80 15.00 n. a. Zhao et al., 2008 

P(HB-co-HHx) 0.3 14.20 212.00 n. a.  Zhao et al., 2008 

PHA-L*3 0.1 25.00 ± 1.70 4.40 ± 0.50 767.80 ± 78.70 Ashby et al., 2000 

PHA-LE*3 0.1 20.70 ± 1.50 29.20 ± 3.90 510.60 ± 21.50 Ashby et al., 2000 

Glubran2*4 n. a. 20.44 ± 2.83 13.21 ± 4.32 283.90 ± 30.50 Kull et al., 2009 

Tissucol*5  n. a. 0.14  ± 0.02 363.10 ± 30.58 0.04 ± 0.01 Kull et al., 2009 
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4.5. Adhesion evaluation 

4.5.1. Tension Tests 
 

To measure the adhesion properties of the mcl-PHA, tension tests were made using porcine skin 

as the model substrate. In this assay, pieces of porcine skin were cut into square-shaped pieces and 

their dermis side was attached to metal testing holders. The mcl-PHA was melted and spread uniformly 

on the epidermis side of one porcine skin piece and immediately pressed against the epidermis side of 

other porcine skin piece. The bonding strength was then, measured in tension mode at room 

temperature using a texturometer with a 5 kg load cell. The two parts of the joint were strained axially 

at a constant velocity until separation was achieved (figure 4.10).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Looking at table 4.5 it is easy to see that on tension tests in porcine skin, P. chlororaphis mcl-PHA 

performed better than all other adhesives tested with the exception of cyanoacrylate. The tension 

needed for skin separation with mcl-PHA was 61.13 kPa, while those with Glubran2 and Tissucol (which 

are commercially used glues in surgery) were only 21.00 kPa and 0.70 kPa respectively. Only 

cyanoacrylate conferred a higher tension at separation, however this is a synthetic adhesive present in 

many products for use in medicine for wound closure. Mcl-PHA is a raw polymer without any kind of 

treatment and already shows higher tension at separation values comparing with other natural 

adhesives. Hence, this natural material seems to be a promising candidate for the development of novel 

skin adhesives formulations to be used, for example, for wound closures in surgical applications. 

Figure 4.10 - Adhesive test in Porcine Skin before (A) and after (B) tension test. 
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 Table 4.5 - Tension tests results made in porcine skin 

n. a. - data not available 

*The mcl-PHA tension tests results were determined by an average of 3 samples, using 100-190 mg of melted mcl-
PHA (tension tests curve available in appendix 4)  
*2Gelatin concentration of 200 mg/mL and Alginate concentration of 60 mg/mL.;  

*3Gelatin - concentration of 200 mg/mL, Alginate concentration of 40 mg/mL and EDC concentration of 20 mg/mL; 

EDC – N-(3-dimethylaminopropyl)-N’-ethylcarbodiimidehydrochloride. 

*4Average values of 10 samples after 3h of curing time, using 300 mg of the adhesive material 

*5Average values of 8 samples after 3h of curing time, using 202 mg of the adhesive material 

*6Average values of 10 samples after 3h of curing time, using 200 mg of the adhesive material 

*7It was used 60 µL of glue amount and it was applied a 2 N load for 10 minutes 

 

4.5.2. Shear Tests 

 
To measure the adhesion properties of the mcl-PHA a shear test was also carried out. In this assay 

porcine skin was cut into rectangular-shaped pieces. Mcl-PHA was melted and spread, in the contact 

area, on the epidermis side of one porcine skin piece which were immediately attached to the epidermis 

side of other porcine skin. The skin was then attached to metal clamps of the testing holders and the 

bonding strength was measured in shear mode at room temperature using a texturometer with a 30 Kg 

load cell. The two parts of the joint were strained axially at a constant velocity until separation was 

achieved (figure 4.11). 

 

  

Material Tension at Separation (kPa) 
Contact Area  

(10-4 m2) 
Reference 

mcl-PHA* 61.13 ± 20.55 6.25 This Study 

Gelatin - Alginate*2 5.50 4.00 Shefy-Peleg et al., 2014 

Gelatin - Alginate - EDC*3 10.00 4.00 Shefy-Peleg et al., 2014 

Mussel Extract*4 40.00 3.43 Ninan et al., 2003 

Fibrin*5 40.00 3.06 Ninan et al., 2003 

Cyanoacrylate*6 990.00 2.92 Ninan et al., 2003 

Glubran2*7 21.00 ± 60 n. a. Kull et al., 2009 

Tissucol*7 0.70 ± 0.6 n. a. Kull et al., 2009 

Figure 4.11 - Adhesive test in Porcine Skin before (A) and after (B) shear test. 
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Table 4.6 - Shear tests results made in porcine skin 

n. a. - data not available 

*The mcl-PHA shear tests results were determined by an average of 3 samples, using 210-280 mg of melted mcl-
PHA (shear tests curve available in appendix 4)  
*2Was used 60 µL of glue amount and it was applied a 2 N load for 10 minutes 

*30.125 mL of the component was spread on the test surface 

*4Gelatin-mTG (microbial transglutaminase), different concentrations of gelatin were studied, it was used 0.15 mL 

of glue amount and it was applied a 47.5 ± 0.3 gm lead weight for 120 minutes 

*5Different concentrations of fibrin with the different gelation times were tested, 0.125 mL of the component was 

spread on the test surface 

 

According to table 4.6, it can be seen that regarding the shear tests in porcine skin, the mcl-PHA has 

a similar performance when comparing to some natural adhesives tested and reported in the literature. 

The tension at separation value of the mcl-PHA (12.72 kPa) was lower than Glubran2 (32.60 kPa) and 

fibrin-gelatin based sealent (up to 27.00 kPa). However the mcl-PHA values are within the range of that 

reported for gelatin-mTG and Tissucol (12.00-23.00 kPa and 2.20-17.60 kPa, respectively), this last 

being commercially used in surgery. Mcl-PHA had higher values, by far, than chitosan (3.00 kPa). Once 

again, cyanoacrylate had the highest tension at separation. 

With this assay mcl-PHA showed to be a promising candidate to act like an adhesive to be used for 

medical applications. Once again, it seems to be a promising candidate for the development of novel 

skin adhesives to be used, for example, for wound closures in surgical applications. 

  

Material Tension at Separation (kPa) 
Contact Area  

(10-4 m2) 
Reference 

mcl-PHA* 12.72 ± 2.14 6.25 This Study 

Glubran2*2 32.60 ± 89.00 n. a. Kull et al., 2009 

Tissucol*2 2.20 ± 1.30 n. a. Kull et al., 2009 

Tissucol*3 17.60 ± 2.10 6.25 Sierra et al., 1992 

Gelatin-mTG*4 12.00 – 23.00 0.90 ± 0.04 McDermott et al., 2004 

Chitosan 3.00 n. a. McDermott et al., 2004 

Cyanoacrylate 68.00 n. a. McDermott et al., 2004 

Fibrin-Gelatin 
based sealent*5 

Up to 27.00 ± 8.00 6.25 Sierra et al., 1992 
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4.5.3. Peeling Tests 

 

In this experiment a human arm was used as soft tissue model. The mcl-PHA was melted and 

spread uniformly through a rectangular-shaped plastic sheet and left at room temperature to solidify. 

After, the mcl-PHA was separated from the plastic sheet and applied to the skin (figure 4.12 A).   

 

In this assay it was not possible to evaluate quantitatively the adhesion in vivo, because the available 

equipment did not permit it. So the polymer was then applied to a human arm skin (figure 4.12 A) and 

pulled out to check the adhesion. The mcl-PHA had a good adhesion to the skin and that is visible in 

figure 4.12 B, where it is noticeable that the polymer adheres to every wrinkle in the skin when the skin 

was wrinkled. In figure 4.12 C, it is clear that when the polymer was peeled out from the skin, there was 

no harm done to the skin and there was no evidence of residue of mcl-PHA in the skin. 

Comparing with a commercial synthetic adhesive for wounds, like a bandage, the force used to take 

off the bandages is higher, however due to this strong adhesion in many cases the use of this bandages 

ends up harming the skin. The mcl-PHA provides a good and painless adhesion, making possible the 

production of a fully natural, biodegradable, biocompatible, bio-based adhesive.  

 In the previous assays (tension and shear tests) the final application was to use the mcl-PHA as a 

wound closure material (i.e. to be used in a surgery). With the peel tests it is clear that the main 

application changes a bit, since this test evaluates the capability of the mcl-PHA work as a wound 

dressing material (i.e. to be used in bandages) instead of a wound closure material. Thereby increasing 

the number of final applications that this polymer might have. 

  

Figure 4.12 – Mcl-PHA peel tests in vivo in arm skin. (A) Mcl-PHA adhered in arm skin; (B) Mcl-PHA 
adhered in a wrinkled skin; (C) Mcl-PHA being peeled out from the skin 
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5. Conclusions and Future Work 
  

 In this work, it stays clear that P. chlororaphis could use glycerol for bacterial growth and mcl-PHA 

production in batch mode. Although the production wasn’t very high, the mcl-PHA accumulation was 

similar to that described in the literature for SFEA substrate. The polymer was composed by HHx, HO, 

HD and HDd monomers. By performing a pulse feeding fermentation, it was possible to considerably 

increase the biomass production, without affecting the production and the composition of the final mcl-

PHA polymer. After a repeated batch fermentation, it was possible to keep a P. chlororaphis culture to 

produce mcl-PHA in consecutive and reproducible cycles. These results were already a great step 

towards the optimization of the production of mcl-PHA in P. chlororaphis. However, the bioprocess can 

still be considerably improved to reach maximum optimization of the mcl-PHA production. For instance, 

other bioreactor conditions need to be tested to see how long do the assays has to last and when is the 

right moment to give a pulse, or to start a feeding, or even, to change a base, these are all important 

issues that have to be taken in account to maximize the polymer production. 

In this work, alternative mcl-PHA recovery methods were also studied, using less hazardous 

solvents, since the use of chloroform is not permitted at industrial scale. In those experiments, the 

solvents that revealed to be better at recover mcl-PHA from the biomass were acetone, ethyl acetate 

and hexane. These methods should be further studied for the full optimization of the recovery process. 

Performing Soxhlet extractions using each one of these solvents (acetone, ethyl acetate and hexane) 

might reveal some interesting results in terms of yield and polymer purity. 

 It was also studied some recovery methods using water (Hypotonic, Hypertonic and Freezed/Thaw 

extractions). This type of recovery methods couldn’t separate the mcl-PHA polymer from the biomass 

as a solo method. Nevertheless, they showed some interesting results and might be coupled with other 

recovery methods, using non-hazardous solvents, decreasing the recovery costs and making the 

extraction less hazardous for the environment and to workers. 

In this thesis, it also remains clear that mcl-PHA forms flexible, elastic, resistant translucid films that 

have potential for use as a material for wound management. Since the mcl-PHAs are hydrophobic 

polymers, they will not dissolve when in contact with water, making them resistant to such kind of 

environments.  

The tension and shear tests revealed that mcl-PHA seems to be a promising candidate for the 

development of novel skin adhesives to be used, for example, for wound closures in surgical 

applications.  

The peel tests showed that the main application of the mcl-PHA could be changed, instead of wound 

closure adhesive mcl-PHA could also be used as a wound dressing material (i.e. to be used in 

bandages). Increasing the number of applications that this polymer might have. 

At the end of this thesis countless number of tests remain to be done, for fully explore all the possible 

applications of the mcl-PHAs. Toxicity tests, anti-bacterial tests, polymer modification (during and post 
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the fermentation process) these are just some examples that increase exponentially the mcl-PHA 

application area, showing the diversity of these polymer. 
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7. Appendices 

 

Appendix 1 – Glycerol calibration curve 
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Figure 7.2 - Glycerol clibration curve 

Figure 7.1 - Glycerol clibration curve 
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Appendix 2 – Tensile-deformation curve of the mcl-PHA film  
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Figure 7.1 - Tensile-Deformation curve of mcl-PHA films 
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Appendix 3 – Young modulus of the mcl-PHA film  
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Figure 7.2 - Tensile-Deformation curve 
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Appendix 4 – Adhesive tests in porcine skin 
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Figure 7.3 - Tension strength tests in porcine skin 

Figure 7.4 - Shear strength tests in porcine skin 
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