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Abstract 
  

The plant cell wall is constituted by recalcitrant polysaccharides with diverse sequences that 

comprise an abundant source of terrestrial biomass. To efficiently degrade plant cell wall 

polysaccharides, some cellulolytic bacterial organisms, such as Clostridium thermocellum and 

Ruminococcus flavefaciens, have an extracellular multi-enzyme complex with catalytic and non-

catalytic carbohydrate-binding modules (CBMs). CBMs play a crucial role in enhancing the catalytic 

efficiency of the enzymes by proximity effect, cell attachment or targeting and disruptive function. The 

Carbohydrate Active enZymes database (CAZy) organizes the identified CBMs by sequence similarity 

into different families. Deposition of CBM sequences in the CAZy database is continually growing for 

which characterization and structure-function analysis is required.  

In this study we aim to characterize the carbohydrate ligand specificities of C. thermocellum ATCC 

27405 and R. flavefaciens FD-1 CBMs assigned to different families in the CAZy database. We 

performed carbohydrate microarray screening analysis for ligand discovery and crystallization 

screenings aiming to solve the 3D structures of the CBM-ligand complexes by X-ray crystallography. 

To complement the information provided by these methodologies we also performed ITC (Isothermal 

Titration Calorimetry), MST (Microscale Thermophoresis) and affinity gel electrophoresis. With the 

implementation of this approach it was possible to elucidate different carbohydrate binding specificities 

for biotechnologically relevant CBMs.  The results from the initial carbohydrate microarray screening 

constitute a functional start point to target CBMs for structural-functional analysis of carbohydrate-

recognition. C. thermocellum family 50 (CtCBM50) reveals to be a novel chitin binding LysM domain 

and binding with insoluble chitin and a β-(1-4)-GlcNAc chitin oligosaccharide was identified. R. 

flavefaciens FD-1 family 62 CBM (RfCBM62) reveals to be highly specific for a pectic polysaccharide 

for which the structure is being investigated and binding to galacturonan DP4 was observed. In the scope 

of this thesis, and as the structural characterization was not achieved in due time, the sequence similarity 

to known structures inspired the attempt to computationally produce similarity models for the two 

CBMs. The (hypothetical) conservation of the secondary structures revealed some structural features of 

the proteins under study.  

An important outcome from this integrative study is the possibility to understand the versatility of 

plant and fungal saccharide sequences and their recognition by the different CBM families. The different 

binding patterns observed could reflect adaptive pressures of the microorganisms to their respective 

ecological niches, translating in divergent evolution of the proteome.  

 

Keywords: Plant cell wall degradation, carbohydrate microarray, crystallization, ITC, MST, affinity 

gel electrophoresis. 
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Resumo 
 

A parede celular vegetal é constituída por polissacáridos com diversas sequências e que constituem 

uma fonte abundante de biomassa terrestre. Para degradar de forma eficiente os polissacáridos da parede 

celular vegetal, alguns organismos celulolíticos bacterianos, tais como o Clostridium thermocellum e o 

Ruminococcus flavefaciens, desenvolveram um sistema extracellular multienzimático complexo com 

módulos catalíticos e módulos não catalíticos de ligação a hidratos de carbono (CBMs). Estes CBMs 

têm um papel crucial em aumentar a eficiência catalítica de algumas enzimas pela sua avidez para o 

substrato. A base de dados Carbohydrate Active enZymes (CAZy) organiza os CBMs pela similaridade 

de sequências primárias em diferentes famílias. A deposição de CBMs na CAZy está continuamente a 

crescer, sendo que a caracterização e análise da estrutura-função destes módulos é necessária. 

Este estudo teve como objetivo caracterizar a especificidade para hidratos de carbono de CBMs 

atribuídos a diferentes famílias na CAZy, pertencentes às bactérias C. thermocellum ATCC 2745 and R. 

flavefaciens FD-1. Foram realizados ensaios com a tecnologia de microarrays de hidratos de carbono 

de forma a identificar ligandos para os diferentes CBMs e ensaios de cristalização com o objectivo de 

resolver a estrutura tridimensional de complexos CBM-ligando por cristalografia de raios-X. Foram 

aplicados também outros métodos biofísicos para o estudo da interacção CBM-ligando tais como ITC 

(Isothermal Titration Calorimetry) e MST (Microscale thermophoresis) e ensaios de electroforese de 

afinidade. Com a implementação desta abordagem foi possível elucidar a especificidade de CBMs para 

hidratos de carbono que são biologicamente relevantes. A análise nos microarrays constitui uma base 

funcional para seleccionar CBMs para estudos de estrutura-função de reconhecimento a hidratos de 

carbono. O CtCBM50 de C. thermocellum revelou ser um um novo dominio LysM que liga a chitina 

insolúvel e a interacção com o oligossacárido de quitina (β-(1-4)-GlcNAc) foi identificada. O 

RfCBM62-de R. flavefaciens FD-1 revelou ser altamente específico para um polissacárido de pectina, 

cuja estrutura está a ser elucidada, e a interacção com  um oligossacárido derivado de pectina, 

galacturonan DP4, foi observada. No âmbito desta tese, e sendo que não foi conseguida a caracterização 

estrutural, a semelhança com estruturas conhecidas inspirou a produção de modelos de similaridade para 

os dois CBMs computacionalmente. A conservação (hipotética) da estrutura secundária sugeriu 

características estruturais e interacção com o ligando para os CBMs em estudo. 

Este estudo integrativo permitiu aferir sobre a verstatilidade do reconhecimento de hidratos de 

carbono de plantas e fungos por diferentes famílias de CBMs, que poderão resultar da adaptação 

selectiva das bactérias aos seus nichos ecológicos respectivos, resultando na evolução divergente dos 

seus proteomas.   

Palavras-chave: Degradação da parede celular vegetal, microarrays de hidratos de carbono, 

cristalização, ITC, MST, electroforese de afinidade.  
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1.1 Overview of the plant cell wall 

The plant cells are surrounded by a relatively thin but strong and rigid wall. This wall has a functional 

role in plant growth, development and reproduction by contributing to structural integrity, cell adhesion, 

and mediation of defense responses (Varner et al. 1989).  

In the biotechnology field, plant cell walls are an important source of renewable energy and biomass, 

as they fix carbon that is then integrated into cell wall polymers. Plant cell wall material is also important 

for human economics as a natural source of fibers for the production of textile, paper-based products 

and wood products (Taiz & Zeiger 2002). The organic substances that create humus in the soil and 

improve its fertility are also derived from the plant cell walls (Taiz & Zeiger 2002). 

The architecture of the plant cell wall and its composition is introduced in this section. 

 

1.1.1 Plant cell wall morphology 

The plant cell wall is a complex extracellular matrix that is present at the surface of the plasma 

membrane. The cell wall acts as an exoskeleton, conferring resistance to the cell, flexibility to resist to 

cell disruption and permeability to allow the intercellular transport. The structure and composition of 

plant cell walls is not uniform; factors such as plant tax, tissue, age, cell type and cell layer have 

influence on their composition (Taiz & Zeiger 2002). Morphologically, it is possible to differentiate 

three zones: middle lamella, primary wall and secondary wall (Figure 1.1).  

 The most external layer is the middle lamella, a thin layer of material that is deposited just after cell 

division and can usually be seen at the junction between the walls of neighboring cells, acting as a sort 

of separating panel (Harris & Stone 2008). It is the first zone to be formed and it is constituted almost 

totally by pectic polysaccharides (Heredia et al. 1995). 

Over the middle lamella is the primary wall that controls the growth of the cell and forms the 

structural basis of the plant. It is composed of approximately 25% cellulose, 25% hemicelluloses, and 

35% pectins, with 1 to 8% structural protein (Taiz & Zeiger 2002). These components form three 

essential networks: 1) cellulose microfibrils linked to each other by different glucans, 2) gel-forming 

network of pectin linked by calcium ion bridges and 3) structural proteins that are covalently bound to 

each other and to other cell wall components. Some cells are formed only by middle lamella and primary 

wall, but specialized cells have another component, the secondary wall (Heredia et al. 1995). When the 

secondary wall is formed some changes occur in the middle lamella and primary wall, for example 

lignification, a complex process in which lignins are deposited on the extracellular polysaccharide 

matrix and the main function is to strengthen the plant vascular body. 

After the cell growth terminates or when the cells differentiate, secondary walls are formed between 

the plasma membrane and the primary cell wall. The secondary wall contains cellulose (in higher content 

than primary wall) (Taiz & Zeiger, 2002), hemicellulose and lignin (Sticklen 2008). Secondary walls 

can be divided into three layers (from the outside to the inside): S1, S2 and S3, which differ in the 

orientation of the cellulose microfibrils (Figure 1.1).  
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1.1.2 Plant cell wall composition 

1.1.2.1 Cellulose 

Cellulose is the major component of the plant cell wall and represents the most abundant organic 

polymer on Earth (Overmann 2006). Cellulose is a polysaccharide with approximately 7000 to 15000 

D-glucose units that are linked by β-(1-4) glycosidic bonds. The disaccharide cellobiose (Figure 1.2) 

constitutes the structural repeating unit.  

 

Cellulose molecules are aligned parallel to each other and linked by hydrogen bonds and van der 

Waals interactions to form elementary fibrils. These elementary fibrils make a highly ordered insoluble 

(crystalline) ribbon that excludes water and is relatively inaccessible to enzymatic attack.  

Elementary fibrils are packed into microfibrils that contribute to the strength and structural basis of 

the plant cell (Figure 1.3) (Taiz & Zeiger 2002).  The cellulose microfibrils include both crystalline and 

amorphous regions, in ratios dependent on the degree of polymerization (DP), the extent of hydrogen 

bonding and the source of cellulose (Bayer et al., 2000). The microfibrils are then assembled into 

cellulose fibers, which are packed together by both intra- and inter-fiber hydrogen bonds (Heredia et al. 

1995). Adjacent sheets overlie one another and are held together by weak van der Waals forces. This 

crystalline structure is tight enough to prevent chemical and biological degradation and the diffusion of 

small molecules such as water. 

Figure 1.1 – Illustration of the different layers of the plant cell wall. Adapted from Plomion et al. 

Figure 1.2 – Cellobiose structure. Adapted from Taiz & Zeiger 2002. 
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1.1.2.2 Non-cellulosic major components  

Most important non-cellulosic polysaccharides are divided into two groups: Pectic polysaccharides 

and hemicelluloses or “cross-linking glycans”.  

Pectic polysaccharides contain galacturonic acid and can be divided into: 1) galacturonans, which 

are composed of a linear chain of α-(1-4)-linked D-galacturonic acids; 2) rhamnogalacturonan I, which 

consists of a backbone of alternating α-(1-4)-linked galacturonic acid and α-(1-2)-linked rhamnose units 

with side branches that contain other pectin domains (primarily α-(1-5)-linked arabinan and β-(1-4)-

linked galactan side chains); and 3) rhamnogalacturonan II that is smaller than rhamnogalacturonan I 

but has a more complex structure, it comprises an α-(1-4)-homogalacturonan backbone of seven to nine 

residues substituted by up to five side chains comprising 12 monosaccharides bound by 20 linkages 

(Gorshkova et al. 2010). Pectins form a hydrated gel phase in which the cellulose-hemicellulose network 

is surrounded; acting as an hydrophilic filler they prevent aggregation and collapse of the cellulose 

network (Taiz & Zeiger, 2002).   

Hemicelluloses are also designated “cross-linking glycans” because they can be bound to cellulose 

microfibrils. Hemicelluloses are polysaccharides that have β-(1-4)-linked backbones with an equatorial 

configuration in which are included xyloglucans, xylans, mannans, glucomannans, and mixed-linked β-

(1-3;1-4)-glucans and that can be decorated with a diverse range of carbohydrate side-chains. The main 

characteristic of hemicelluloses is their capacity of strengthening the cell wall by interaction with 

cellulose and, in some cases, with lignin (Scheller & Ulvskov 2010). 

Figure 1.3 –Representation of the plant cell wall and cellulose structure. Adapted from Stiklen 2008 and 

www.joostdvree.nlshmlscellulose.sthm, last acess 22.09.2016 

http://www.joostdvree.nlshmlscellulose.sthm/
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Besides these two groups of non-cellulosic polysaccharides, the cell wall also contains structural 

proteins, enzymes and lignin. Lignin is the generic term for cross-linked phenolic polymers. Due to its 

structure and association with cellulose and hemicellulose, lignin is important to prevent the degradation 

of these plant polysaccharides (Vanholme et al., 2010). 

 

1.1.3 Plant cell wall degradation  

The degradation of the plant cell wall by microorganisms is a fundamental biological process that is 

of considerable industrial importance, as plant cell wall polysaccharides are a major reservoir of carbon 

and energy. However, the plant cell wall is very complex and is composed by a variety of carbohydrates 

that are recalcitrant to the enzymatic attack. Only a restricted number of microorganisms have acquired 

the ability to deconstruct these structural carbohydrates (Fontes & Gilbert, 2010).  

To achieve total or partial degradation of these carbohydrates a consortium of enzymes, free or in 

complex, is required. The extracellular plant cell wall degrading machinery is different for anaerobic 

and aerobic microorganisms as these use different strategies to target the polysaccharides (Bayer et al. 

2004). 

Aerobic microorganisms secrete free extracellular enzymes, such as endoglucanases, exoglucanases 

and β-glucosidases, which act individually in the degradation of plant cell wall and are considered as 

non-integrating systems. As example of aerobic microorganisms are bacterium from Bacillus, 

Micromonospora, Cellvibrio and Pseudomonas (Lynd, 2002) and fungi of genera Aspergillus (de Vries 

et al., 2001). 

The most anaerobic microorganisms have plant cell wall degrading enzymes associated in a 

supramolecular complex (molecular weight >3 MDa), termed the ‘cellulosome’ and are considered as 

integrating systems. As example of anaerobic microorganisms are bacterium of the genera Clostridium, 

Ruminococcus, Thermotoga (Bergquist et al., 1999) and fungi of the genera Neocallimastix, Piromyces 

and Orpinomyces (Fontes & Gilbert, 2010). Anaerobic bacteria and fungi in the rumen have developed 

a wide array of multimodular cellulases and hemicellulases that can act individually or as organized 

cellulosomes for the hydrolysis of plant cell wall polysaccharides to soluble sugars. Many of anaerobic 

microorganisms are found in the digestive track of invertebrate and vertebrate, as well as other specific 

ecosystems, such as soils, sediments and water bodies. 

 

1.2 The bacterial Cellulosome: identification and organization 

Anaerobe microorganisms such as Clostridia and rumen bacterium organize cellulases and 

hemicellulases into a large multienzyme complex termed the cellulosome (Bayer et al., 2004). It is likely 

that anaerobic environments impose selective pressures that have directed to the formation of 

cellulosomes. However, the evolutionary drivers that directed to the formation of these enzyme 

complexes are still currently unclear (Fontes & Gilbert, 2010). 

https://en.wikipedia.org/wiki/Phenols
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In this Section, the two bacterium subject of this Thesis, Clostridium thermocellum and 

Ruminococcus flavefaciens, and their respective cellulosomes are described. The C. thermocellum 

cellulosome was the first to be identified and characterized in the 80’s while R. flavefaciens cellulossome 

was only recently identified and is not as well characterized. 

 

1.2.1 The highly efficient cellulose-degrading bacterium Clostridium thermocellum  

C. thermocellum is an anaerobic, rod shaped and gram-positive thermophile. This bacterium has 

gained research interest due to its cellulolytic and ethanologenic capabilities as it can convert biomass 

into energy. The ecological niche of C. thermocellum is abundant in soil worldwide (Freier et al., 1988), 

however, it can also be found in water bodies and digestive flora of animals (Clostridium thermocellum, 

www.microbewiki.kenyon.edu last acessed 16.09.2016) 

 In the 1980, Bayer & Lamed and their colleagues identified and characterized the first cellulosome, 

on the basis of studies of the cellulolytic system expressed by the anaerobic thermophilic bacterium C. 

thermocellum (Lamed et al., 1983). Through the 80´s and 90´s there was an effort to elucidate the 

molecular mechanism for the assembly of C. thermocellum cellulosome, enabling the identification of 

its different structural components and how it is presented at the surface of the bacterium. In Figure 1.4 

the cellulosomes are presented in the form of protuberances (Fontes & Gilbert, 2010).  

C. thermocellum has one of the highest rates of cellulose utilization known, and the cellulosome of 

this bacterium is described as display a specific activity against crystalline cellulose (about 50 times 

more than Trichoderma) which may have been evolutionary imposed by the anaerobic environment 

(Fontes & Gilbert, 2010). 

 

 

The main structural component of the cellulosome is a scaffoldin subunit termed CipA (Figure 1.5). 

This component is a large non-catalytic enzyme-integrating protein that contains nine highly conserved 

modules, cohesin type I modules, which allow the incorporation of different Carbohydrate-Active 

enZymes (CAZymes) and associated carbohydrate-binding modules (CBMs). The cohesins have a 

complementary non-catalytic module, the dockerin type I, which binds to the cohesin type I modules of 

Figure 1.4 – Cellulosomes at the surface of Clostridium thermocellum in form of protuberances. Adapted from Fontes & 

Gilbert 2010. 
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the scaffoldin subunit. The type I cohesin – dockerin interactions allow the integration of the hydrolytic 

enzymes into the complex and potentiates the stability and organization of the cellulossome (Bayer et 

al. 2004).  To lead the scaffoldin subunit to the surface of the bacterium cell, membrane-associated 

proteins are bound to a type II cohesin. The type II cohesin-dockerin interactions support the anchoring 

of cellulosomes into cell surfaces. The scaffoldins containing type II cohesins are termed anchoring 

scaffoldins, while those containing type I are termed primary scaffoldins. Primary scaffoldins usually 

have a CBM3a that recognizes and binds to the recalcitrant cellulosic substrate and thus play a key role 

in bringing the cellulosome into close proximity with the plant cell wall. 

 

1.2.2 Ruminococcus flavefaciens  

The cellulosome of C. thermocellum is one of the best characterized and one expressing the highest 

rates of cellulose hydrolysis. Recently, a range of anaerobic bacteria were shown to produce cellulosome 

systems similar to those of C. thermocellum, such as Ruminococcus flavefaciens. 

R. flavefaciens are cellulosic Gram-positive cocci of the order “Clostridiales”, an anaerobic 

bacterium that inhabits the rumen community. They are responsible for the digestion of plant cell wall 

polysaccharides in the large intestine of herbivorous mammals and humans (Berg Miller et al. 2009).  

In the past years, the sequencing of the genome of R. flavefaciens FD1 unraveled the complexity and 

diversity of this rumen bacterial cellulosome, revealing information about enzymatic and structural 

components of the cellulosome (Berg Miller et al. 2009). Also, the discovery of cellulases and other 

proteins involved in plant cell wall degradation was important to understand how the host organisms 

extract energy from their diet. The large number of protein-encoding sequences identified containing 

dockerin modules dictates that R. flavefaciens FD-1 has the largest collection of cellulosome-associated 

proteins of any known fiber-degrading bacterium thus far described. 

Figure 1.5 – The Clostridium thermocellum cellulosome. Representation of the plant cell wall degradation by the 

Clostridium thermocellum cellulosome. Adapted from Fontes & Gilbert 2010. 
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This cellulossome is considered as the most intricate and potentially versatile multienzyme complex 

described (Figure 1.6), with a genome that encodes 275 dockerins (in comparison with the 76 from C. 

thermocellum) that are likely to integrate the multienzyme complex (Berg Miller et al. 2009). The 

enzymes with homology for glycosyde hydrolases, carbohydrate esterases and polysaccharide lyases of 

known function constitute a diverse potential of substrate specificity (Fontes & Gilbert 2010). As the 

aim of several scientific groups is to elucidate the mechanism for the complete deconstruction of 

structural polysaccharides, R. flavefaciens cellulosome plays an important role in the discovery of new 

CAZymes and CBMs and thus to clarify their functions. 

Althougth less is known about the R. flavefaciens cellulosome, it is evident that this cellulosome has 

a different organization from the C. thermocellum cellulosome. Several studies have suggested sequence 

and structural differences between the cohesins and dockerins of C. thermocellum and R. flavefaciens 

(Fontes & Gilbert 2010).  

In Figure 1.6, the R. flavefaciens cellulosome, the single cell-anchoring scaffoldin (ScaE) may bind 

a protein termed CttA, which carries two putative CBMs that mediate the primary anchorage to the plant 

cell wall. In addition, ScaE cohesin binds to the C-terminal dockerin of the primary scaffoldin (ScaB) 

which contains nine cohesins with two different specificities: four cohesins (Figure 1.6 in red) recognize 

the dockerin of the catalytic subunits or ScaC; five cohesins (Figure 1.6 in dark blue) bind to ScaA, 

which functions as an adaptor and primary scaffoldin. ScaA contains two cohesins that bind the 

cellulosomal catalytic subunit (presenting a similar specificity to the cohesins of ScaB, Figure 1.6 in 

red) and thus amplifies the number of enzymes in R. flavefaciens cellulosome. ScaC, an adaptor 

scaffoldin, can bind to ScaA and ScaB due to the specificity of the catalytic subunits (Fontes & Gilbert 

2010).  

Cellulosome structural organization varies between different strains of R. flavefaciens, which may 

reflect the complexity and diversity of substrates found in the rumen. 

Figure 1.6 – The Ruminococcus flavefaciens FD-1 cellulosome. Representation of the pant cell wall degradation complexity. 

Coesins colored in red have different specificities than coesins colored in dark blue. Adapted from Fontes & Gilbert 2010. 
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1.3 The modular organization and recognition mechanisms of Carbohydrate-Active 

enZymes  

Microorganisms that degrade plant-cell carbohydrates produce a high variety of polysaccharide-

degrading enzymes, such as glycoside hydrolases, polysaccharide lyases, carbohydrate esterases and 

polysaccharide oxidases (Gilbert 2010). Many of these enzymes are part of the cellulosome to increase 

the efficiency for degrading the substrate. These enzymes are multimodular and often contain non-

catalytic carbohydrate-binding modules (CBMs), which are connected through highly flexible linker 

sequences.  

CAZymes represent these classes of enzymes that are involved in assembly and 

modification/cleavage of polysaccharides. CAZymes and CBMs have been classified over 25 years into 

sequence-based families in the CAZy database (www.CAZy.org) (Davies & Henrissat 2013). Since 

September 1998 CAZy is dedicated to the display and analysis of genomic, structural and biochemical 

information on the carbohydrate-active enzymes and associated CBMs involved in the synthesis and 

degradation of complex carbohydrates (Cantarel et al. 2009). Currently there are numerous different 

CAZymes and CBM families identified: 135 for glycoside hydrolases, 100 for glycosyl transferases, 24 

for polysaccharide lyases, 14 for carbohydrate estereases and 80 for CBMs. In addition, CAZy also 

displays available PDB codes for those proteins that have been structurally characterized. 

 

1.3.2 Carbohydrate-binding modules  

As stated in the previous section, glycoside hydrolases involved in biodegradation of the plant cell 

wall are normally modular and have appended non-catalytic modules, CBMs. CBMs are defined as a 

contiguous sequence of 30 to 200 amino acids, that are normally appended to the associated catalytic 

module by a flexible linker for the recognition of the plant cell wall polysaccharides and to help increase 

the enzyme activity (Gilbert et al. 2013). CBMs are not always appended to a catalytic module and they 

can be present in isolated or tandem forms not coupled with an enzyme (Cantarel et al. 2009). 

Lectins share some structural similarities with CBMs and they can bind to their target ligand through 

similar mechanisms, however, CBMs are normally found in enzymes that are degrading complex 

carbohydrates primarily to provide nutrients. This functionality distinguishes CBMs from lectins into a 

separated protein group (Gilbert et al. 2013). CBMs were initially classified as cellulose-binding 

domains (CBDs) based on the initial discovery of several modules that bound cellulose as primary 

ligand (Boraston et al. 2004). However, the term evolved to carbohydrate-binding modules due to the 

diverse ligand specificity exhibited. 

 

1.3.2.1 Classification of CBMs 

There are currently 80 CBM families in CAZy database, in which the major part contains members 

that target plant cell walls. They are divided into 7 different-fold families based on the conservation of 

http://www.cazy.org/
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protein fold (Boraston et al. 2004). Although there are 7 different-fold families, the majority of CBMs 

identified to date are included in the β-sandwich fold family (Table 1.1).   

 

Table 2.1 – Typical ‘fold families’ identified for CBMs and examples of CBM families with these folds. Adapted 

from Boraston et al. 2004 and www.CAZy.org, last acess at 14.09.20016. 

Fold Family Fold CBM families 

1 β-Sandwich 2,3,4,6,9,15,17,22,27,28,29,32,34,36,,47,51,70 

2 β-Trefoil 13,42 

3 Cystein knot 1 

4 Unique 5,12 

5 OB fold 10 

6 Hevein fold 18 

7 Unique; contains hevein-like fold 14 

 

To provide additional functional relevance to the CBM classification these modules have been 

grouped into three types: A, B, and C according to its interaction with the carbohydrate. These three 

types define CBMs that bind crystalline surfaces, oligosaccharide sequences, or short 

oligosaccharide/monosaccharides, respectively. 

CBMs from Type A have a planar hydrophobic surface composed by aromatic residues. This planar 

configuration in the active site interacts with flat crystalline polysaccharides, such as chitin or cellulose 

(Boraston et al. 2004). The properties of this CBM-type differ significantly from the other types of 

carbohydrate-binding proteins.  

Recently, the crystal structure of a CBM63-containing Bacillus expansin (proteins that disrupt the 

cellulose–hemicellulose interface) in complex with cellohexaose was determined. A typical Type A, 

CBM63 contains a planar surface comprising three aromatic residues that make parallel π/C-H contact 

with the ligand (Figure1.7) (Georgelis et al. 2012). 

Another study showed that a cohort of type A CBMs that belong to families 2 and 3 bind not only to 

crystalline cellulose but also to xyloglucan (Hernandez-Gomez et al. 2015).  

 

Figure 1.7 – The crystallographic dimer of CBM63 from Bacillus subtilis (PDB code 4FER) shown in complex with 

cellohexaose (blue sticks). Surface contributed by aromatic amino acids shown in purple. Adapted from Gilbert et al. 2013. 

http://www.cazy.org/
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CBMs from Type B or endo-type are classified as CBMs that bind to internal oligosaccharide 

sequences (Gilbert et al. 2013). This type of CBMs display a cleft arrangement in which the binding site 

accommodates longer glycan chains with four or more monosaccharide units (Figure 1.8). This type of 

CBMs have clearly evolved a binding site for the interaction with individual glycan chains rather than 

crystalline surfaces (Boraston et al. 2004). 

 

CBMs from Type C or exo-type are classified as CBMs that bind the termini of an oligosaccharide 

sequence (Gilbert et al. 2013). This type of CBMs, also described as ‘lectin-like’ CBMs, have the 

property of binding in an optimal way to mono-, di- or tri-saccharides, due to steric restriction in the 

binding site (Boraston et al. 2004). Unlike the Type B CBMs, Type C do not contain the extended 

grooves on binding-sites. One example of this CBM type is the family 6 CBM from Bacillus halodurans 

in complex with lamirarihexaose (Figure 1.9). 

Figure 1.8 – The X-ray crystal structure of the family 29 CBM from Piromyces equii in complex with mannohexaose 

(PDB code 1GWL). The secondary structures are shown as colored ramped cartoons with relevant amino acid side chains 

involved in carbohydrate binding shown as sticks. Solvent accessible surfaces are shown in gray with the surfaces contributed 

by the aromatic residues colored purple. Adapted from Gilbert et al. 2013. 

Figure 1.9 – The X-ray crystal structure of the family 6 CBM from Bacillus halodurans in complex with 

lamirarihexaose (PBD code 1W9W). The CBM specifically recognizes the non-reducing end of the sugar. The secondary 

structures are shown as colored ramped cartoons with relevant amino acid side chains involved in carbohydrate binding shown 

as sticks. Solvent accessible surfaces are shown in gray with the surfaces contributed by the aromatic residues colored purple. 

Adapted from Gilbert et al. 2013  
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1.3.2.2 Functional roles of CBMs 

In general, CBMs contribute in the binding of the target substrates to carbohydrate degrading 

enzymes. According to experiments in the field reviewed by  Boraston et al. 2004 and Gilbert et al. 

2013, CBMs have four major roles: Proximity effect, targeting function, disruptive function and cell 

attachment. 

 

Targeting function  

As described in the previous section, CBMs are classified into different types according to the 

architecture of the binding site. Depending on this architecture, CBMs can target the enzyme to distinct 

regions within a larger macromolecular polysaccharide substrate. In general, there is a tight correlation 

between the ligands recognized by bacterial CBMs and the substrate specificity of the appended catalytic 

modules. As an example, CtCBM11 recognizes mixed-linked β-(1-3;1-4) glucans and is associated to 

the enzymes GH5 and GH6, endoglucanases with catalytic activity for  β-(1-3) and β-(1-3;1-4) glucans, 

respectively (Carvalho et al. 2004).  

Another study (Najmudin et al. 2006) shows that the function of CBM44 from C. thermocellum 

Cel44A is associated with the targeting of Cel44A to its substrates. Cel44A is a typical endoglucanase 

that is capable of cleaving a variety of glucan-based plant cell wall polysaccharides such as cellulose, 

β-glucans, xyloglucans, and glucomannans. To mediate efficient targeting, ligand recognition by 

CBM44 needs to mirror the substrate specificity of Cel44A; this study showed that this promiscuity in 

carbohydrate recognition is intrinsic to CBM44. 

 

 

Proximity effect 

CBMs increase the concentration of enzyme in close proximity to its polysaccharide substrate, which 

will lead to a rapid and efficient degradation. The proximity between the enzyme and the substrate 

potentiates the degradation of the polysaccharide (Herve et al. 2010). Herve and colleagues showed that 

CBMs can potentiate the action of a similar catalytic module toward polysaccharides in intact cell walls 

through the recognition of non-substrate polysaccharides. The targeting actions of CBMs therefore have 

strong proximity effects within cell wall structures, explaining why cellulose-directed CBMs are 

appended to many non-cellulase cell wall hydrolases (Herve et al. 2010).  

 

Disruption of polysaccharide structure 

Some CBMs have showed the capacity to disrupt the surface of packed polysaccharide structure, 

such as cellulose fibers and starch granules. This disruptive effect causes the substrate to release and 

become more exposed to the catalytic module and thus enhance its degradation capacity.  
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This function was first documented for the N-terminal family 2a CBM of Cel6A from Cellulomonas 

fimi (Din et al. 1994) that appeared to mediate non-catalytic disruption of the crystalline structure of 

cellulose; furthermore, this disruptive effect enhanced the degradative capacity of the catalytic module. 

 

Cell attachment  

CBMs have been shown to adhere enzymes onto the surface of bacterial cell wall components while 

exhibiting catalytic activity on an external neighboring carbohydrate substrate. A family 35 CBM 

module has been shown to interact with the surface of glucuronic acid containing sugars in the cell wall 

of Amycolatopsis orientalis, while the catalytic module is active on external chitosan. This study shows 

that the biological role of CBM35s is not dictated solely by their carbohydrate specificities but also by 

the context of their target ligands (Montanier et al. 2009). 

A unique family of carbohydrate-binding modules (CBM37) of Ruminococcus albus, located at the 

C-terminus of different glycoside hydrolases, appears to be responsible both for anchoring these 

enzymes to the bacterial cell surface and for substrate binding (Ezer et al. 2008). 

 

1.3.2.3 Biotechnological applications of CBMs 

The practical uses for CBMs in different fields of biotechnology are constantly on rise. CBMs have 

three properties that make them perfect candidates for different applications: (i) CBMs are usually 

independently folded units and therefore can function autonomously in chimeric proteins; (ii) the 

attachment matrices are abundant and inexpensive and have excellent chemical and physical properties; 

and (iii) the binding specificities can be controlled (Shoseyov et al. 2006). 

CBMs are used to enhance bioprocessing enzymes in biomass degradation for industrial uses in 

biofuel production. A study demonstrates that the fusion of a CBM to the wild type cellulases Cel9A 

and Cel5A enhanced their activity as much as three fold on two insoluble lignocellulosic substrates 

(Reyes-Ortiz et al. 2013). 

CBMs are also used for purification of biomolecules in immobilized affinity ligand technology. They 

act as affinity support for enzyme immobilization with high capacity, while retaining enzymatic activity 

and in some cases increased enzymatic activity is reported (Shoseyov et al. 2006). Studies demonstrate 

that CBMs can be utilized as biosensors; an example is a CBM that was used for glucose sensing in 

bioreactors (Verma et al. 2015). 

Cellulose is a major component of numerous commercial products, several of which are capable of 

being recycled. Therefore, CBMs can also be used for the targeting of functional molecules to materials 

containing cellulose. The commercial potential of CBMs in this context was first realized for denim 

stonewashing, where cellulases were used as an alternative to the original abrasive stones (Shoseyov et 

al. 2006). 

Cell immobilization is another application of CBMs. This technique was explored for whole cell 

immobilization by cellulosic material (Verma et al. 2015) and for bioremediation. Another property that 
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has been demonstrated for CBMs is that they can modify the characteristics of some enzymes. Replacing 

or adding a CBM can improve the hydrolytic activity, for example the addition of a CBM derived from 

cellohydrolase II of Trichoderma reesei to Trichoderma harzianum chitinase resulted in increased 

hydrolytic activity of insoluble substrates (Shoseyov et al. 2006). 

 

1.4 Overview of the methodologies to study CBM-carbohydrate interactions 

Carbohydrates play an intriguing role inside and at the surface of the cell. Carbohydrates occur as 

mono- and polysaccharides but are also part of glycan structures such as glycoproteins, glycolipids, 

peptidoglycans. Over the last decade, evidence has accumulated indicating that interactions between 

carbohydrates and particular proteins that recognize them play critical roles not only in the context of 

polysaccharide utilization and biotechnological applications but also in many other biological processes 

in health and disease, such as cell adhesion, signal transduction, host-pathogen interactions and 

inflammation processes (Park et al. 2008; Liu et al. 2009; De Schutter & Van Damme 2015). In many 

cases, the protein-carbohydrate interaction is only a first step in a series of events, often leading to a 

complex recognition process or signaling cascade. To fully understand the protein-carbohydrate 

interaction, different techniques for its characterization are required. 

Biophysical methods such as carbohydrate microarray technology, Microscale Thermophoresis 

(MST), Isothermal Titration Calorimetry (ITC) and Surface Plasmon Resonance (SPR) and also 

structural methods such as X-ray crystallography and Saturation Transfer Difference NMR (STD-NMR) 

are used to study the protein-carbohydrate interactions. 

In this Section these methods are briefly described giving more emphasis to the carbohydrate 

microarray technology and X-ray crystallography. 

1.4.1 Carbohydrate microarray technology 

The development of the carbohydrate (or glycan) microarrays in the beginning of the twenty-first 

century addressed the need for high-throughput methods that systematically array glycan libraries and 

identify glycan binding proteins (GBPs) to enable the investigation of their biological roles. Since their 

introduction in 2002, applications of the glycan microarrays have grown exponentially (Rillahan & 

Paulson 2011; Palma et al. 2014; Palma et al. 2015) 

Carbohydrate microarray technologies are novel tools that allow the studies of carbohydrate-proteins 

interactions and elucidation of carbohydrate ligands involved in different biological contexts. 

Carbohydrate microarray technology allows to study a wide range of carbohydrate sequences that are 

immobilized on solid matrices using only minute amounts of sample (minute spots). This wide range of 

immobilized carbohydrates on a solid surface allows to mimic at some extent the cell surface and at the 

same time it is ideal to detect low affinity interactions. In general, there are two categories for 

carbohydrate microarrays: polysaccharide (or glycoconjugate) microarrays and oligosaccharide 

microarrays (Liu et al. 2009). 
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1.4.1.1 Carbohydrate probe libraries and immobilization methods 

The first step in the construction of a carbohydrate microarray is to obtain pure and characterised 

carbohydrates, either from isolation from natural sources or from chemical or chemoenzymatic 

synthesis, and prepare these as suitable carbohydrate probes for the microarrays. 

The oligosaccharides obtained from natural sources can include those derived from glycoproteins 

and glycolipids of different sources (mammalian, non-mammalian), bacterial-, fungal- and plant 

polysaccharides obtained through acid/alkaline hydrolysis and enzymatic degradation or 

depolymerization, as well as free-oligosaccharides isolated from mammalian milk and urine (Feizi 

2003). The isolation of pure compounds, assignment of their structures and their immobilization on the 

array surface are challenges of using glycans from natural sources.  

The polysaccharides or glycoconjugates, such as glycoproteins or glycolipids, can be directly 

immobilized on solid matrices by hydrophobic physical adsorption (Pedersen et al. 2012; Palma et al. 

2015b) or charge-based interaction in the case of polysaccharides (Shipp & Hsieh-Wilson 2007). 

Polysaccharide or glycoconjugate microarrays are valuable for comparative antigenicity analysis and 

for ligand-discovery microarray projects.  

The oligosaccharide microarrays are required for assignment of the carbohydrate ligand specificity 

of a given recognition system and are thus key tools to provide detailed information on structure-activity 

relationships in carbohydrate recognition (Liu et al. 2009). The oligosaccharide immobilization 

normally requires derivatization processes before arraying, due to their hydrophilic nature. Many 

different methodologies have been developed for immobilizing oligosaccharides. One of the approaches 

is to conjugate natural or chemically synthesized oligosaccharides to lipid by reductive amination or 

oxyme ligation to generate neoglycolipid (NGL) probes with amphipathic properties for efficient 

immobilization on nitrocellulose membranes  (Liu et al. 2012; Palma et al. 2014). The advantage is that 

natural and synthetic glycans can be combined to generate diverse libraries, the strategy is to derivatize 

glycans from both sources with the same lipid tag for the immobilization. Most other mono- or 

oligosaccharide probes generated for printing have been de novo synthesized chemically or chemo-

enzymatically, defining  structures that incorporate specific functional groups for covalent attachment 

to solid matrices (Rillahan & Paulson 2011). Chemical synthesis has the advantage over natural isolation 

in that large quantities of relatively pure carbohydrates can be produced while the yield of the natural 

glycans is usually low, requiring deconvolution due to the heterogeneity of isolated mixtures (Horlacher 

& Seeberger 2008). However, achievement of glycan diversity offers a challenge and methods have 

been developed to prepare ‘designer’ or ‘shot-gun’ microarrays from a natural glycome source (Palma 

et al. 2015b; Song et al. 2011) 

Over the past years, different surfaces and methodologies for the immobilization of glycans on 

microarray surfaces have emerged (Park et al. 2008). These methodologies can be categorized into 

covalent or non-covalent immobilization. The solid surfaces for the immobilization that are used include 

glass slides, gold- or nitrocellulose membranes. The covalent immobilization involves coupling of a 
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functional group on carbohydrates and a reactive group on the surface through several reactions. The 

majority of this methods use thiol and amine chemistries (Rillahan & Paulson 2011). The non-covalent 

immobilization methods rely on non-covalent interactions, such as electrostatic and hydrophobic 

interactions. It has been shown that polysaccharides, proteoglycans and neoglycoproteins can be 

efficiently immobilized in membranes of nitrocellulose or oxidized polystyrene (Rillahan & Paulson 

2011). Another example of the non-covalent immobilization is the work of Feizi and colleagues that 

have shown the noncovalent immobilization of neoglycolipids and glycolipids on nitrocellulose-coated 

glass slides (Liu et al. 2012).  

 

1.4.1.2 Neoglycolypid-based oligosaccharide technology 

The concept of NGL technology was introduced by Feizi and colleagues in 1985, as a novel approach 

for study the antigenicities and receptor functions of carbohydrate chains of glycoproteins (Tang et al. 

1985). In 2002 studies Wang and colleagues (Wang et al. 2002) showed that polysaccharides and 

glycoproteins can be immobilized on nitrocellulose by noncovalent interaction. After that, Feizi and 

colleagues adapted their NGL technology to generate the first microarray system for complex 

oligosaccharides (Fukui et al. 2002). The technology involves conjugating oligosaccharides by 

microscale lipid conjugation via reductive amination to an aminolipid, 1,2-dihexadecyl-sn-glycero- 3-

phosphoethanolamine (DHPE). The oxime ligation can also be used to conjugate the lipid with the 

oligosaccharide (Liu et al. 2007). The NGLs can be immobilized on solid matrices, such as nitrocellulose 

membranes and silica plates, and are also suitable for thin layer chromatography (TLC)-binding 

experiments in conjunction with mass spectrometry for deconvolution and structural characterization of 

the probes that are giving binding signals (Chai et al. 2003). 

The NGL-based microarrays comprise both NGL (prepared from natural or chemically synthetized 

oligosaccharides) and glycolipids (natural or synthetic) (Figure 10). These probes are robotically printed 

onto nitrocellulose-coated glass slides at low femtomol (fmol equivalent to 10-15 mol) levels in a 

liposome formulation in the presence of carrier lipids (Liu et al. 2012). This approach promotes a certain 

level of flexibility and movement of the oligosaccharide being presented to the protein, which could be 

essential for particular recognition systems. The NGL-technology allows the expansion of the library of 

probes by the “designer” microarray approach (Figure 1.10). The term “designer” microarray, refers to 

a microarray of oligosaccharide probes generated from ligand-bearing glycomes to reveal the 

oligosaccharide ligands they harbor, so that these can be isolated and characterized (Palma et al. 2012; 

Palma et al. 2014) 

 



Chapter 1 – Introduction and objectives  

18 

 

 

 

1.4.1.3 Biological Applications  

Carbohydrate microarrays have become a powerful tool to map out interactions involving 

carbohydrates in a high-throughput manner and gave a massive contribution to significant advances in 

glycomics. Nowadays, there are several applications for the carbohydrate microarray technology in 

health and disease (Palma et al. 2014) but this section is not an exhaustive description of all the 

applications, instead, will highlight 2 important examples in the context of this Thesis. 

The first one was the development of carbohydrate microarrays from plant polysaccharides and 

derived oligossacharides as a sensitive method for probing microbial CBMs and anti-plant antibodies 

important for plant biology (Pedersen et al. 2012). The second example was the implementation of the 

NGL-based microarrays, coupled with mass spectrometry for construction of “designer” microarrays 

from plant, fungal and bacterial glycomes (Palma et al. 2015). This microarray has been applied to 

identify and assign novel ligands for diverse carbohydrate recognition systems, including lectins on the 

immune system, therapeutic antibodies and CBMs with biological relevance. 

 The study of CBM-carbohydrate interactions allows the understanding of the divergent evolution of 

different microorganisms, as exemplified in this Thesis. It is also a means to create new strategies to 

improve the energy obtained by the microbial degradation of the plant cell wall carbohydrates, as well 

as understanding the symbiosis among these microorganisms.  

 

Figure 1.10 – Schematic representation of the NGL-based technology. Taken from Palma et al. 2014. 
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1.4.2 Other biophysical methods  

1.4.2.1 Microscale Thermophoresis 

Microscale Thermophoresis (MST) is a recently developed technique by NanoTemper (Germany) 

that is based on the directed movement of molecules in a temperature gradient (Jerabek-Willemsen et 

al. 2014). Thermophoresis strongly depends on a variety of molecular properties such as size, charge, 

hydration shell or conformation. This technique allows a precise quantification of molecular events, 

independent of the size or nature of the investigated sample, due to high sensitivity (measures 

dissociation constants down to 1 picomolar).  In a MST experiment, a microscopic temperature gradient 

is induced by an infrared laser, and the directed movement of molecules is detected and quantified using 

either covalently attached dyes, fluorescent fusion proteins or intrinsic tryptophan fluorescence 

(Jerabek-Willemsen et al. 2014). 

Besides providing a precise determination of binding constants, it can also be used to derive 

additional information about the molecular mechanism of the investigated interaction. For instance, 

MST can be used to discriminate between different binding modes, and can also be used to determine 

interaction stoichiometries. A study from Wong and colleagues showed interactions between a protein 

called LysM domain with bacterial cell wall fragments and chitin oligomers using MST (Wong et al. 

2014). 

A typical MST experiment requires: one fluorescent binding partner and one nonfluorescent binding 

partner (the ligand). The fluorescence can be provided by an extrinsic label (e.g. NT-647 dye) covalently 

attached to the molecule of interest. The concentration of the fluorescent molecule is kept constant. The 

non-fluorescence molecule is then varied and 16 samples prepared at different concentrations. This 

dilution can be done in microtiter plates and a multichannel pipette to prepare multiple dilutions at once. 

After mixing the interaction partners, the samples are left to reach the equilibrium. The capillaries load 

themselves through capillary action once placed in the sample and are then loaded into the capillary 

tray. 

The NanoTemper analysis software is used to calculate the binding parameters. After the Monolith 

has finished recording MST curves for each capillary the software automatically plots them on to a graph 

(Figure 1.11 A). The software then calculates the extent of binding by plotting the ratio between the 

fluorescence when the laser is on and the fluorescence before the laser is turned on. As each curve 

represents a different concentration of binding partner, these ratios are plotted as a function of binding 

partner concentration to give a binding curve (Figure 1.11 B). With the user instructions, the software 

automatically fits the data and provides a Kd. 
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1.4.2.2 Surface plasmon resonance  

Surface plasmon resonance (SPR) was first introduced in early 1990s and is a powerful technique to 

determine specificity, affinity and kinetic parameters during the binding event of macromolecules. SPR 

is an optical technique that measures the refractive index changes in the vicinity of thin metal layers, 

such as gold, in response to biomolecular interactions. For this approach it is necessary to first 

immobilize the probe on the surface of the SPR chip and then a solution with the testing samples flows 

across this surface. During binding, changes in the SPR angle can be determined by varying the 

incidence angle and recording the reflected light intensity (Nguyen et al. 2015).  

SPR technology has an important role in biomedical applications such as interaction analyses, 

conformational change studies, and mutation detection. SPR is widely used to study protein-

carbohydrate interactions, including CBM-carbohydrate interactions measuring affinity binding 

constants between the two molecules (Linman et al. 2009). 

 

1.4.2.3 Isothermal Titration Calorimetry  

Isothermal Titration Calorimetry (ITC) is a technique used in quantitative studies of a wide variety 

of biomolecular interactions. 

This technique works by directly measuring the heat that is either released or absorbed during a 

biomolecular binding event (Freire et al. 1990). The ITC instrument operates on the heat compensation 

principle where the instrumental response (measured signal) is the amount of power (micro calories per 

second) necessary to maintain the temperature difference between the reaction and reference cells. ITC 

is the only technique that can determine all binding parameters in a single experiment (Leavitt & Freire 

2001). Requiring no modification of binding partners, either with fluorescent tags or through 

immobilization, ITC measures the affinity of binding partners in their native states. 

A B 

Figure 1.11– Typical MST binding experiment. A) The thermophoretic movement of a fluorescence unbound molecule 

(black trace) changes upon binding to a non-fluorescent ligand (red trace), resulting in different traces. B) The change in 

thermophoresis is expressed as the change in the normalized fluorescence (∆Fnorm) which is defined as Fhot/Fcold. Titration 

of the non-fluorescent ligand results in a gradual change in thermophoresis, whih is plotted as ∆Fnorm to yield a binding curve 

that can be fitted to derive binding constants. Adapted from Jerabek-Willemsem et al. 2014. 
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The solution with the target biomolecule is placed in the sample cell, and a ligand solution in a 

corresponding buffer is placed in the syringe (Figure 1.12 A). When the ligand solution is injected into 

the cell, the ITC instrument detects heat that is released or absorbed as a result of the interaction (Figure 

1.12 B). Injections are performed constantly, and result in peaks that become smaller as the biomolecule 

becomes saturated. After titration is complete, the individual peaks are integrated by the instrument 

software (Figure 1.12 C). An appropriate binding model is chosen and the isotherm is fitted to yield the 

binding enthalpy ∆H, the Kd, and the stoichiometry, n. From these data, Gibb’s free energy, ∆G and 

entropy, ∆S are calculated (Isothermal titration calorimetry, www.malvern.com last access on 14.09.16). 

This provides a complete thermodynamic profile of the molecular interaction. 

 

1.4.3 Structural methods 

1.4.3.1 X-ray Crystallography 

X-ray Crystallography is one of the most useful methods for the determination of the three-

dimensional structure of a protein-carbohydrate complex. The history of crystallography has started in 

the year of 1895 when Wilhelm Röntgen discovered the X-ray radiation. Looking at the X-ray 

crystallography history one of the most important milestones was the first determination of a protein 

structure, myoglobin and hemoglobin, by Max Perutz and John Kendrew in the 60’s decade. In the last 

two decades the structures solved by X-ray crystallography increased exponentially, and developments 

such as new software and synchrotron radiation contributed to improve the quality and precision of 

structures. 

To obtain a three-dimensional protein structure it is necessary to go through several steps: Protein 

expression and purification (in case of recombinant proteins), crystallization, X-ray diffraction 

experiment, structure resolution and structure refinement and validation (Figure 1.13). 

C B A 

C

Figure 1.12 -  The ITC binding experiment. A: The ligand is titrated into the sample cell. B: Raw heat data of negative peaks 

from an exothermic reaction. C: Data is treated with a respective model and reported. Adapted from www.malvern.com, last 

access on 14.09.16. 

http://www.malvern.com/
http://www.malvern.com/
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Obtaining high quality crystals can be the most difficult step in the resolution of a crystallographic 

structure. The vapor diffusion principle can be explained by the analysis of the crystallization phase 

diagram (Figure 1.14 A). The crystallization of a protein occurs in two stages: nucleation and growth. 

Initially the protein present in the drop is in the undersaturation state where, typically, the drop contains 

a lower reagent (precipitant) concentration than the reservoir.  To achieve the equilibrium, water vapor 

leaves the drop and will induce the nucleation process. As water continues to leave the drop, the sample 

undergoes an increase in relative supersaturation. Both the sample and reagent increase in concentration 

as water leaves the drop to the reservoir. Equilibration is reached when the reagent concentration in the 

drop is approximately the same as that in the reservoir. The crystal growth process is slow and occurs 

in the metastable zone, by ordered and slow addition of new molecules and formation of the crystalline 

network (Rhodes 2006).  

In vapor diffusion, crystals are prepared either using the hanging or sitting drop systems (Figure 1.14 

B). Basically in the hanging drop method the crystallization drop is hanging on top of the precipitant 

while in the sitting drop method it is laying on top of a small bridge. 

Usually, protein crystallization is a challenging process dependent on the type of protein in study. 

Determination of the crystallization conditions usually requires testing different screenings, which are 

composed of precipitant solutions with different nature and concentration of salts, pH, additives and 

testing different temperatures. Among all precipitants, PEG (polyethylene glycols) with a low molecular 

weight (400-20000) is the most used (Romão 1996).  

Figure 1.13 - Schematic representation of the crucial steps to obtain a threedimensional structure with X-ray 

crystallography. From protein expression and purification to the final model. 
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After obtaining a single crystal for an X-ray experiment, an X-ray diffractometer is used to collect 

crystal data. This instrument is designed to collimate a monochromatic X-ray beam through a crystal, 

intercept the diffracted photons and record the intensity of the reflection. Once data collection is 

finished, the positions of the reflections are converted into h, k, l indices and the intensities of the 

reflections into amplitudes (Rhodes 2006).  This information, together with the estimated phase angles, 

allows to determine the atoms position. However, unlike the intensity of each reflection, the phase angle 

cannot be measured experimentally. This problem is commonly known as the Phase Problem in 

crystallography (Taylor 2003). 

Different methodologies are used to solve the phase problem, such as molecular replacement (MR), 

multiple isomorphous replacement (MIR) and multiple/ single wavelength anomalous dispersion 

(MAD/SAD). 

The MR method is used when a structure with a similar primary sequence is accessible. A sequence 

can be considered as similar and thus a potential model for MR method if the identity between the two 

sequences is superior to 25% (Taylor 2003). Patterson methods are usually used to obtain first the 

orientation of the model in the new unit cell and then the translation of the correctly oriented model 

relative to the origin of the new unit cell (Taylor 2003). 

When the MR method cannot be used to solve the phase problem, other methods as multiple 

isomorphous replacement (which requires a derivative dataset from a protein crystal with incorporated 

heavy atoms) or multiple/ single wavelength anomalous dispersion (where anomalous scattering of X-

rays according to the wavelength is used), have been developed. 

The determination of the initial phases allows the determination of the first map of electron density, 

which can provide the positions of all atoms in the crystal. 

Figure 1.14 -  Schematic representation of the vapor difusion method. A) Phase diagram representing the variation of 

protein and precipitanting agent in the protein crystallization process. B) Two techniques used for crystallization by vapor 

diffusion, sitting and hanging drop.  
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1.4.3.2 Saturation-Transfer Difference 

Apart from X-ray crystallography, NMR (nuclear magnetic resonance) spectroscopy is also a method 

of choice in the structural elucidation of macromolecules. Associated to NMR, Saturation Transfer 

Difference (STD)-NMR is one of the most popular ligand-based techniques for the study of protein-

ligand interactions. This technique is based on the Nuclear Overhauser effect and in the observation of 

the ligand resonance signals. This method has the following advantages 1) No need for NMR processing 

information about the receptor and 2) use of small quantities of the non-labeled macromolecule. The 

STD-NMR method is an indispensable tool in drug discovery as it identifies binding epitope(s) at the 

atomic resolution of small molecule ligands, while interacting with their receptors (Bhunia et al. 2012; 

Coelho et al. 2015). 

The STD experiment (Figure x) involves subtracting a spectrum in which the protein was selectively 

saturated (on-resonance spectrum) with signal intensities ISAT, from one recorded without protein 

saturation (off-resonance spectrum), with signal intensities I0. This subtraction gives rise to the 

difference spectrum (ISTD = I0 - ISAT) where only the signals of the ligand(s) that received saturation 

transfer from the protein (via spin diffusion) will remain (Figure 1.15).  

Compounds that do not bind to the receptor will not receive any saturation transfer and therefore no 

signals will appear in the difference spectrum. The difference in intensity as the difference between the 

intensities from the off-resonance spectrum and the intensities from the on-resonance spectrum (ISTD = 

I0 - ISAT) constitutes an indication of binding (Viegas et al. 2011).  

This technique was applied to study CBM-carbohydrate interactions as demonstrated by Viegas and 

colleagues with the study of CtCBM11 binding to cellohexaose (Viegas et al. 2008). 

 

1.5 Objectives of this Thesis 

An important step to understand efficient biodegradation of polysaccharides by cellulolytic 

microorganisms is to unravel the ligand specificities of the complex carbohydrate-degrading protein 

machinery within their genomes. The identification of the carbohydrate ligands/substrates and a full 

understanding of their structure-function relationships is extremely challenging. The GlycoLab group 

Figure 1.15 – Scheme of the STD-NMR experiment. The exchange between free and bound ligand allows transfer of 

magnetization from the receptor to the bound small molecule. Adapted from Viegas et al. 2011. 
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has been addressing this complexity by combining carbohydrate microarrays with X-ray crystallography 

and other complementar techiques to study carbohydrate-CBM interactions. The work developed on this 

Thesis reflects this effort and aims to elucidate ligand specificities of identified CBMs in the genomes 

of two cellulolytic bacteria: Ruminococcus flavefaciens FD-1 and Clostridium thermocellum 

ATCC27405. The specific objectives of Thesis can be summarized as follows: 

 

 To perform carbohydrate microarray screening analysis of 14 CAZY CBMs, including those 

from Ruminococcus flavefaciens FD-1 and Clostridium thermocellum ATCC27405, to 

characterize their carbohydrate ligand specificities. This is the subject of Chapter 2. 

 

 To compare two recombinant protein expression protocols to investigate the best conditions for 

for large-scale production of CBMs; to express and purify in large-scale two of the analyzed 

CBMs and to evaluate the protein stability. These are the subject of Chapter 3. 

 

 To explore the ligand specificity for chitin by a novel LysM domain (CtCBM50), by performing 

an Isothermal Titration Calorimetry experiment and assess the interaction with insoluble chitin; 

to perform crystallization assays in order to structurally characterize the protein-glycan ligand 

complex; to perform a similarity structure model for insight representation on the predicted 3D 

structure for the CtCBM50. These are the subject of Chapter 4.  

 

 To explore the binding and ligand specificity for pectins of R. flavefaciens family 62 by 

Microscale thermophoresis and affinity gel electrophoresis; to perform crystallization assays in 

order to structurally characterize the protein; to perform a similarity structure model for insight 

representation on the predicted RfCBM62-1 3D structure. These are the subject of Chapter 5. 

 

Due to the high number of samples involved, parts of the work were performed in a concerted team 

effort together with PhD student Diana Ribeiro, under the scope of her doctoral studies.  

 

 
The results obtained throughout this Thesis were presented as poster communications in 2 Meetings 

as indicate below. The posters presented are included in Supplementary information 3.  

 

2016-June, D. Ribeiro, J.L.A. Brás, R. Costa, Y. Zhang, W. Chai, Y. Liu, J.A.M. Prates L.M.A. 

Ferreira, M.J. Romão, T. Feizi, C.M.G.A. Fontes, A.L. Carvalho& A.S. Palma. Unravelling 

carbohydrate binding soecifcities of CBMomes from two cellulolytic bacteria using an integrative 

high-throughput approach. Summer Course Glycosciences Groningen, Netherlands 
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2016-June, R.L. Costa, D. Ribeiro, J.L.A. Brás, M.J. Romão, T. Feizi, C.M.G.A. Fontes, A.L. 

Carvalho& A.S. Palma. Ligand discovery and structural-functional analysis of proteins involved in 

plant cell wall degradation. 5th Meeting of Portuguese Synchrotron Radiation Users, ITQB, Lisbon. 

 

The carbohydrate microarray results described in Chapter 2 will be included in the following 

manuscript: 

 

Diana Ribeiro, Joana Brás, Raquel Costa, Ana Luisa Carvalho, Angelina S. Palma et al. Cellulolytic 

bacteria express CBMomes that dictate their ecological niche polysaccharide utilization (in 

preparation).
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2.1 Introductory remarks 

Carbohydrate microarray screening analysis is a powerful means to identify interactions between 

proteins and carbohydrates and thus elucidate the carbohydrate ligands of a given protein and assign its 

specificity.  

In this chapter we applied the carbohydrate microarrays to characterize the different carbohydrate 

binding specificities of 14 CBMs assigned to different families in the CAZy database. The CBMs 

selected for this study are from two bacteria residing in different ecological niches: Clostridium 

thermocellum, an anaerobic, thermophilic soil bacterium (Cuív et al. 2013) and Ruminococcus 

flavefaciens, a specialist cellulolytic bacterial species characterized from the rumen, other herbivorous 

animals and humans (Brulc et al. 2011). In Table 2.1 is summarized the information about the CBMs 

analyzed, such as their modular organization, protein identification and assigned family. A more detailed 

description of each CBM is in the Supplementary Table 1 which includes in addiction the recombinant 

protein sequence, molecular weight and isoelectric point. 

 

Table 2.1 - Carbohydrate binding modules (CBMs) investigated for carbohydrate binding using carbohydrate 

microarrays and their modular organization. CBMs under study are highlighted in blue and respective protein identification 

and family are depicted. 

Microorganism Modular organization Protein ID Family 

C. thermocellum 

CBM3 Cthe_0059 3 

CBM4-GH9-CBM3-DOC1 Cthe_0413 4 

SLH-SLH-SLH-CBM54-GH16-CBM4-1-CBM4-2-CBM4-3-

CBM4-4 
Cthe_2809 4 

GH2-CBM6-DOC1 Cthe_2197 6 

CBM6-DOC1  Cthe_2195 6 

GH43-CBM13-DOC1  Cthe_0661 13 

CBM22-GH10-DOC1 Cthe_2590 22 

CBM25  Cthe_0956 25 

GH5-CBM32-DOC1  Cthe_0821 32 

CBM42  Cthe_1273 42 

CBM50  Cthe_0300 50 

R. flavefaciens 

CBM6-DOC1  3747 6 

GH43-CBM13-1-CBM13-2-DOC1  2115 13 

GH30-CBM62-1-CBM62-2-DOC1  3398 62 

 

2.2 Materials and methods 

2.2.1 DNA, bacterial strains and plasmids 

The protocol for cloning is property from NZYTech®. CBMs were cloned, expressed and purified 

by a confidential small-scale high-throughput method. For the cloning a plasmid that confers kanamycin 

resistance was used. This plasmid encodes for recombinant proteins containing an N-terminal tag with 

6 histidines with the following sequence: MGSSHHHHHHSSGPQQGLR. For the expression, the 

autoinduction protocol was used (described in more detail in Chapter 3/Section 3.2.4.2).  
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2.2.2 CBMs quantification and SDS-PAGE analysis 

The CBMs were delivered in a micro-well plate at a final volume of 180µl each in 50 mM HEPES 

at a pH of 7.5, 100 mM NaCl, 2 mM CaCl2 and 500 mM imidazole. For the carbohydrate microarray 

analysis, the CBMs were analyzed directly in this buffer without the need of further buffer-exchange or 

desalting (described in Section 2.2.3).  

The CBMs concentration was determined with a SpectraMax®190 Absorbance Plate Reader from 

Molecular Devices. Absorbance was measured at 280nm, which correspondes to the wavelength in 

which proteins absorb light due to their aromatic amino acid residues. As a control, the protein buffer 

(50 mM HEPES at a pH of 7.5, 100 mM NaCl, 2 mM CaCl2 and 500 mM imidazole) was used. 

Concentration was calculated by applying the Lambert-Beer equation:  𝐴 =  𝜀𝑐𝑙, considering the 

reading absorbance, the molar extinction coefficient and the pathlengh of the glass. 

The proteins were analysed by polyacrylamide gel electrophoresis in the presence of the anionic 

detergent sodium-dodecyl sulfate (SDS-PAGE) and a reducing agent β-mercaptoethanol (BME). SDS 

disrupts the protein structure to produce a linear polypeptide chain coated with a uniform layer of 

negatively charged SDS molecules. BME contributes to the protein denaturation by reducing all 

disulfide bonds. As a consequence, the proteins will be separated according to their molecular weight, 

without the influence of the intrinsic negative charge. The protocol followed was according to Roy & 

Kumar 2014 using resolving gel of 13 % acrylamide.  

The preparation of protein samples (15 µl) was carried out by mixing the respective CBM solution 

(at the desired concentration) with the sample buffer (4x Tris-HCl, 10 % SDS, 0.6 M DTT, 0.012 % 

bromophenol blue, 30 % glycerol) and boiling in a heatblock at 100 ºC for 10 minutes. After a fast 

spinning, the denatured protein sample was delivered to each well. The run paramters for the 

electrophoresis were setup to a fixed voltage of 150 V. 

 

2.2.3 Construction of the carbohydrate microarray 

The carbohydrate microarray constructed for the analysis of CBMs was designated Fungal and Plant 

PS set 1 and was comprised of a total of 64 different carbohydrate probes representative of major 

sequences found in fungal and plant cell walls (Supplementary table 2). Of these, 48 were soluble 

polysaccharides from different sources and 16 were oligosaccharides prepared as lipid-linked probes, 

neoglycolipids (NGLs).  

Among the polysaccharide samples were featuring 2 major groups of plant-related polysaccharides: 

1) the hemicelluloses and 2) the pectins. The hemicelluloses included were the following: glucans 

containing α-(1-4) and α-(1-6)-glucose, linear β-(1-3)-glucose, linear β-(1-6)-glucose, branched β-(1-

3)/(1-6) glucose or mixed linked β-(1-3;1-4)-glucose; xylans containing β-(1-4)-xylose; xyloglucans 

containing branched β-(1-4)-glucose;α-(1-6) xylose; arabinoxylans containing branched β-xylose;α-

arabinose; arabinogalactans containing β-galactose;α-arabinose; and galactomannans containing 

branched β-(1-4)-mannose;α-galactose. The collection of pectin samples were received from Prof. Berit 
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Smestad Paulsen (University of Oslo, Oslo) and were purified from the Malian medicinal tree 

Terminalia macroptera (Zou et al. 2015). The sequence for these pectin samples is under analysis.  

Included in the microarray were also polysaccharides typically present in fungal cell walls, such as 

mannans (α-mannose) and glucurono-xylomannan from Tremella fuciformi, which is a polysaccharide 

that contains α-(1-3)-linked mannose backbone and is branched with xylose, glucuronic acid and fucose.  

The oligosaccharides included that have defined sequences and degrees of polymerization (DP) 

comprised the following sequences: xylans (linear β-(1-4)-xylose DP5 and DP6), arabinans (linear α-

(1-5)-arabinone DP6, DP7, DP8 and DP9), mannans (β-(1-4)-mannose DP4 and DP6), xyloglucan 

(branched β-(1-4)-glucose;α-(1-6) xylose, DP7, which is designated XXXG motif) and chitin, β-(1-4)-

N-acetylglucosamine (DP5). Also included were oligosaccharide mixtures derived from chemical or 

enzymatic hydrolysis of xyloglucans (DP 7, DP8 and DP9) and galactomannans (DP6, DP7 and DP8). 

These were designated as Xylo-glucan DP8-AO (XXLG motif), Xylo-glucan DP9-AO (XLLG motif), 

galactomannan DP6, galactomannan DP7a, galactomannan DP7b and galactomannan DP8 (positions 57 

to 62, Supplementary Table 2). 

For the construction of the microarray, the probes were immobilized noncovalently onto 16-pad 

nitrocellulose-coated FASTTM glass slides (Z721158, Sigma), using a noncontact arrayer robot 

(Piezorray, Perkin Elmer, Sear Green, UK), with a spot delivery volume of approximately 330 pL.  

Each probe was printed in duplicate at two levels: polysaccharides at 0.1 and 0.5 mg (dry weight) 

/mL (30 and 150 pg/spot) and NGLs at 5 and 15 µM (aproximatly 2 and 5 fmol/spot). 

The NGLs were prepared by reductive amination with the amino lipid 1,2-dihexadecyl-sn-glycero-

3-phosphoethanolamine (DHPE), generating DH-NGLs, or by oxime ligation with an aminooxy (AO) 

functionalized DHPE (AOPE), generating AO-NGLs as described. For the noncovalent immobilization 

NGLs were prepared as liposomes for an efficient printing (Liu et al. 2012). The Cy3 fluorophore was 

included in the printing solution as a marker for quality control of sample delivery while arraying and 

spot visualization, as well as for quantitation analysis. The sample solutions were transferred into a 384-

well plate for robotic printing according to the planned microarray layout. This part of the work was 

carried out by my Supervisor Dr Angelina Palma in collaboration with the group of Prof. Ten Feizi at 

the Glycosciences Laboratory, Imperial College London. 

 

2.2.4 Carbohydrate microarray binding assay   

In this thesis, 14 CBMs were analyzed using the Fungal and Plant PS set1. In order to perform the 

quality control and to validate the microarray, different proteins with known carbohydrate-binding 

specificities were analyzed in parallel. These included 10 carbohydrate-directed monoclonal antibodies, 

4 CBMs and a lectin. The information on these and their reported specificities are presented in Table 

2.2. CBMs were tested at the concentration of 5 µg/ml, and ConA lectin at 2 µg/ml. The carbohydrate-

directed monoclonal antibodies from Plat Probes were probed at 1:10 ratio, as described by Moller et 

al. 2008, and from Biosuplies at 10 µg/ml.
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Table 2.2 – List of the antibodies, CBMs and the lectin and their reported specificities used for quality control of the microarray set.  

Monoclonal Antibodies Specificity Source Methods  Reference 

Anti-β-(1-3)-glucan (mouse 

IgG) 
-(1-3) oligosaccharide segments in -(1-3)-glucans.  Biosupplies ELISA (Meikle et al. 1991) 

Anti-β-(1-3;1-4)-glucan 

(mouse IgG) 
Linear -(1-3,1-4) oligosaccharide segments in -(1-3,1-4)-glucans.  Biosupplies ELISA (Meikle et al. 1994) 

Anti-Xyloglucan  

(rat IgM) 

Xyloglucan polysaccharides; XLLG, XXLG and XXXG oligosaccharides of 

xyloglucan. 
Plant probes Microarray (Pedersen et al. 2012). 

Anti-Xyloglucan 

(rat IgG) 
Xyloglucan polysaccharides; preferentially to the XLLG motif of xyloglucan.  Plant probes Microarray (Pedersen et al. 2012). 

Anti-Xylan 

(rat IgM) 

Unsubstituted and relatively low-substituted β-(1-4)-xylans. Can accommodate more 

extensive substitution of the xylan backbone with α-arabinose and binds strongly to 

wheat arabinoxylan.  

Plant probes 
Immunocytochemistry 

ELISA 
(McCartney et al. 2005) 

Anti-Xylan 

(rat IgG) 
Unsubstituted and relatively low-substituted β-(1-4)-xylans. Plant probes 

Immunocytochemistry 

ELISA 
(McCartney et al. 2005) 

Anti-α-(1-5)-arabinan 

(rat IgG) 

α-(1-5)- arabinan polysaccharides and α-(1-5)-arabinose oligosaccharides;  

α-(1-5)-arabinose residues found in the arabinan components of certain pectic 

polymers; 

arabinogalactan-proteins.   

Plant probes ELISA (Willats et al. 1998) 

Anti-Heteromannan 

 (rat IgM) 

β-(1-4)-linked mannan;  

Glucomannan and galactomannan polysaccharides; 

 β-(1-4)-manno-oligosaccharides (DP2 to DP5).  

Plant probes 

Immunocytochemistry 

ELISA 

Microarray 

(Marcus et al. 2010) 

Anti-(1-4)-β-D-mannan 

(mouse IgG) 
Linear -(1-4)-manno-oligosaccharides in -(1-4)-mannans and galactomannans.  Biosupplies ELISA (Pettolino et al. 2001) 
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Anti-β-(1-4)-Galactan  

(rat IgG) 

β-(1-4)-galactosyl residues found in the galactan components of certain pectic 

polymers.; 

Linear tetrasaccharide in β-(1-4)-galactan. 

Plant probes 
Immunodot 

ELISA 
(Jones et al. 1997) 

Lectin Specificity Source Methods Reference 

Concanavalin A 

(Con A) 

α-mannose-linked oligosaccharides  

α-(1-2)- and α-(1-3)-mannose oligosaccharides 

 

Vector 

(B-1005) 

X-ray crystallography  
(Naismith & Field 1996) 

 

Microarray (Wang et al. 2014) 

CBMs Specificity Source Methods Reference 

CtCBM11 
β-(1-4) and mixed-linked β-(1-3;1-4)-glucans Prepared in 

house 

ITC, X-ray 

crystallography 
(Carvalho et al. 2004). 

Barley-derived oligosaccharides Microarray (Palma et al. 2015) 

 

CmCBM6-2 

Linear β-(1-3) and β-(1-4)-glucans 

Mixed-linked β-(1-3;1-4)-glucans 

Linear β-(1-2)-gluco-oligosaccharides with DP-2 and longer 

Harry 

Gilbert 
Microarray (Palma et al. 2015) 

CtCBM30 
Insoluble and soluble cellulosic materials 

β-(1-3;1-4)-mixed glucans (lichenan and barley β-glucan) 

Prepared in 

house 
ITC (Arai et al. 2003) 

TmCBM41 

α-glucans  

Alisdair 

Boraston 

Microarrays, ITC 
(Lammerts Van Bueren 

et al. 2004). 

α-(1-4)-glucans 

linear α-(1,4) and α-(1-6)-linked oligosaccharides derived from pullulan 
Microarray (Palma et al. 2015) 
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Before the microarray binding assays each microarray slide was scanned for Cy3 (532nm) using 

GenePix® 4300A microarray scanner (Molecular Devices), for visualization of the printed probe spots. 

After scanning, each pad of a nitrocellulose-coated 16-pad glass slide was wetted with 150 µl of water. 

After blotting the inverted frame to remove the water, a blocking solution (100 L) was added to each 

pad and incubated for 1h at room temperature. The blocking solution was comprised of a protein solution 

such as 0.02% Casein with 1% BSA made in HEPES saline buffer (HBS): 5 mM HEPES pH 7.4, 150 

mM NaCl; or 3% BSA (w/v) also made in HBS. The stock solutions used to prepare the different 

blocking solutions were 30% (w/v) bovine serum albumin (BSA) (Sigma-Aldrich, A8577) and 1% 

Casein (Pierce, 37528). For some proteins that require calcium for interaction 5 mM CaCl2 was added 

to each solution during the entire protocol. 

After 1h incubation, the blocking solution was removed and the pads were washed once with HBS. 

After the HBS was removed, the protocol followed for CBMs, the lectin and the antibodies was different 

ans described below. 

For antibodies, 100 L of the primary antibody (prepared at the desired concentration in the blocking 

solution) was added to each pad and incubated for 1.30h at ambient temperature. After this period, 100 

L of biotinylated anti-species isotype secondary antibody (prepared at the desired concentration in the 

blocking solution) was added to the pad and incubated for 1h. 

The His-tagged CBMs were analyzed as above, but pre-complexed with the detection antibodies as 

follows: protein-antibody complexes were prepared by pre-incubating the primary detection antibody 

(mouse anti-his) with the secondary detection antibody (biotinylated anti mouse IgG) for 15 minutes at 

ambient temperature, followed by addition of protein for a further 15 minutes. After this period, the 

proteins-antibody complexes were diluted to a final volume of 100 µl with blocking solution and the 

pre-complexes solution was added to the pads (Figure 2.1) 

The biotinylated ConA was analyzed by one step, adding 100L onto the pad at the desired 

concentration (prepared in the blocking solution) and incubated for 1.30h.  

For the detection of binding signals, Alexa Fluor-647-labeled streptavidin (S-21374, Molecular 

Probes) (100 L at 1 g/mL in the respective blocker solution for each protein) was added to each pad 

and incubated for 45 minutes. 

Between incubations, each pad was washed four times with HBS buffer. After the last incubation the 

pads were washed four times with HBS buffer and two times with Mili-Q water and dryed in the dark. 

Each microarray slide was then scanned for Alexa Fluor-647 (647 nm) for detection of the binding 

event using the GenePix® 4300A microarray (Figure 2.1) and the Cy3 and Alexa Fluor-647 

fluorescence intensity for each spot was quantified using the GenePixPro7 Software (Molecular 

Devices).  
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Figure 2.1 - Overview of the carbohydrate microarray binding experiment for CBMs using slides of 16 pads. 

 

2.2.5 Carbohydrate microarray data analysis  

As mentioned in the previous section a scan of the fluorescence signal was made before each assay 

for the Cy3 fluorophore (532 nm) and after the binding assay for the Alexa Fluor 647 fluorophore (635 

nm). The first scan allows visualization and location of the probe spots and the second scan visualization 

of the binding event. Both scans are essential for the quantitation of the results. 

The program associated with the fluorescence scanner is the GenePixPro7 Software (Molecular 

Devices), a program for imaging analysis and quantitation. For scanning the slides, it is necessary to 

choose the following parameters: laser wavelength (532 nm for Cy3 and 635 nm for Alexa Fluor 647) 

and corresponding emission filters; photomultiplier (PMT) gain and laser power (%) according to the 

intensity of the fluorescence spot signals versus the background.  

After the image acquisition, the process for data analysis can be divided into three steps: 1) 

construction of the grid for each slide, which locates all the spots in each microarray pad referred to as 

block; 2) quantitation of the fluorescence intensity and 3) processing and presentation of the quantified 

data in form of charts, tables or matrices (heatmaps). 

The first step is to construct the grid that encompasses all the spots in the respective block. This grid 

is constructed using the Cy3 image scan as reference and then is adjusted to the Alexa Fluor 647 slide 

scan (Figure 2.2) for posterior quantitation of the results. 
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The grid is saved as a GenePix settings files (.gps) and allows the location and quantitation of the 

fluorescence intensity of the spots in each microarray block. The program calculates the fluorescence 

intensity associated to each spot and outside the spot, referred to as local background. The fluorescence 

intensity considered for each spot is with subtracted local background. After this analysis the program 

saves all the scanning parameters, raw images and the numerical values in a GenePix results file (.gpr). 

For processing of the microarray results a dedicated microarray software developed at the Glycosciences 

Laboratory, Imperial College London has been developed (Stoll & Feizi 2010). This is an integrative 

software composed of two components (Figure 2.3): 1) the ‘PiezoRay’, which is an input component of 

all the experimental data, such as the gpr file with the raw fluorescence intensity data, overlay sample 

name, tested concentration, batch analyzed, date of experiment, probe set used and blocking solution; 

2) the ‘DisplayArray’, which is an output component enabling retrieval, scrutiny and presentation of 

data as charts, tables and matrices (Palma et al. 2014). These two components communicate with a 

central microarray database, which holds all of the microarray metadata, the experimental conditions 

and information on carbohydrate probes and proteins. 

 

 

 

  

Figure 2.2 - Schematic representation of an array pad (block) spot visualization and grid construction using the 

GenePixPro7 Software (Molecular Devices). 
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2.3 Results and discussion 

2.3.1 CBMs quantification and SDS-PAGE analysis 

Before the carbohydrate microarray analysis, the 14 CBMs were quantified (Table 2.3) and analyzed 

by SDS-PAGE (Figure 2.4).  The concentration calculated varied for each CBM, but all CBMs were 

obtained in good amounts to perform the microarray analysis.  

 

Table 2.3 – Calculated concentration for each CBM 

CBM 
Concentration 

mg/ml  
CBM  

Concentration 

mg/ml  
CBM  

Concentration 

mg/ml 

CtCBM3 

(Cthe_0059) 
0.7 

CtCBM13 

(Cthe_0661) 
2.7 

CtCBM50 

(Cthe_0300) 
1 

 CtCBM4 

(Cthe_0413) 
2.3 

CtCBM22 

(Cthe_2590) 
6.7 

RfCBM13-1 

(2115) 

3.7 

CtCBM4-3 

(Cthe_2809) 
5.6 

CtCBM25 

(Cthe_0956) 
1.5 

RfCBM6 

(3747) 

8.3 

CtCBM6 

(Cthe_2197) 
4.2 

CtCBM32 

(Cthe_0821) 
5.6 

RfCBM62-1 

(3398) 

4.5 

CtCBM6 

(Cthe_2195) 
4.4 

CtCBM42 

(Cthe_1273) 
1.5  
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Glucurono-XyloMannan41 ou 42 1 741 912 855 798 969 627 ### ### ### 684 ### ### ### ### ### ### ### 0 ### 57 171 ### ### 114 228 285 342 399 456 513 570 α1-3 Man/β-Xyl/β-GlcA

Mannan 17 2 742 913 856 799 970 628 ### ### ### 685 ### ### ### ### ### ### ### 1 ### 58 172 ### ### 115 229 286 343 400 457 514 571

Mannoprotein (MP2)15 ou 19 3 743 914 857 800 971 629 ### ### ### 686 ### ### ### ### ### ### ### 2 ### 59 173 ### ### 116 230 287 344 401 458 515 572

Dextran 1 4 744 915 858 801 972 630 ### ### ### 687 ### ### ### ### ### ### ### 3 ### 60 174 ### ### 117 231 288 345 402 459 516 573

Pullulan Megazyme 2 5 745 916 859 802 973 631 ### ### ### 688 ### ### ### ### ### ### ### 4 ### 61 175 ### ### 118 232 289 346 403 460 517 574

Curdlan 3 6 746 917 860 803 974 632 ### ### ### 689 ### ### ### ### ### ### ### 5 ### 62 176 ### ### 119 233 290 347 404 461 518 575 β1-3 Glc

Pustulan 12 7 747 918 861 804 975 633 ### ### ### 690 ### ### ### ### ### ### ### 6 ### 63 177 ### ### 120 234 291 348 405 462 519 576 β1-6 Glc

NSG-β-glucan 4 8 748 919 862 805 976 634 ### ### ### 691 ### ### ### ### ### ### ### 7 ### 64 178 ### ### 121 235 292 349 406 463 520 577

PGG-β-glucan 5 9 749 920 863 806 977 635 ### ### ### 692 ### ### ### ### ### ### ### 8 ### 65 179 ### ### 122 236 293 350 407 464 521 578

Lentinan 6 10 750 921 864 807 978 636 ### ### ### 693 ### ### ### ### ### ### ### 9 ### 66 180 ### ### 123 237 294 351 408 465 522 579

Grifolan 7 11 751 922 865 808 979 637 ### ### ### 694 ### ### ### ### ### ### ### 10 ### 67 181 ### ### 124 238 295 352 409 466 523 580

Barley glucan 8 12 752 923 866 809 980 638 ### ### ### 695 ### ### ### ### ### ### ### 11 ### 68 182 ### ### 125 239 296 353 410 467 524 581

Oat β-glucan 10 13 753 924 867 810 981 639 ### ### ### 696 ### ### ### ### ### ### ### 12 ### 69 183 ### ### 126 240 297 354 411 468 525 582

Lichenan 48 14 754 925 868 811 982 640 ### ### ### 697 ### ### ### ### ### ### ### 13 ### 70 184 ### ### 127 241 298 355 412 469 526 583

Xylan 40 15 755 926 869 812 983 641 ### ### ### 698 ### ### ### ### ### ### ### 14 ### 71 185 ### ### 128 242 299 356 413 470 527 584

Xylan (X1) 13 16 756 927 870 813 984 642 ### ### ### 699 ### ### ### ### ### ### ### 15 ### 72 186 ### ### 129 243 300 357 414 471 528 585

Xylan (X2) 14 17 757 928 871 814 985 643 ### ### ### 700 ### ### ### ### ### ### ### 16 ### 73 187 ### ### 130 244 301 358 415 472 529 586

Xyl5(β4) 53 18 758 929 872 815 986 644 ### ### ### 701 ### ### ### ### ### ### ### 17 ### 74 188 ### ### 131 245 302 359 416 473 530 587

Xyl6(β4) 54 19 759 930 873 816 987 645 ### ### ### 702 ### ### ### ### ### ### ### 18 ### 75 189 ### ### 132 246 303 360 417 474 531 588

Xyloglucan (XG1)16 ou 20 20 760 931 874 817 988 646 ### ### ### 703 ### ### ### ### ### ### ### 19 ### 76 190 ### ### 133 247 304 361 418 475 532 589

Xyloglucan (XG2) 22 21 761 932 875 818 989 647 ### ### ### 704 ### ### ### ### ### ### ### 20 ### 77 191 ### ### 134 248 305 362 419 476 533 590

Xylo-glucan Fb.AO (TLC-3) 57 22 762 933 876 819 990 648 ### ### ### 705 ### ### ### ### ### ### ### 21 ### 78 192 ### ### 135 249 306 363 420 477 534 591

Xylo-glucan Fb.AO (TLC-1) 58 23 763 934 877 820 991 649 ### ### ### 706 ### ### ### ### ### ### ### 22 ### 79 193 ### ### 136 250 307 364 421 478 535 592

Xyl3Glc4 55 24 764 935 878 821 992 650 ### ### ### 707 ### ### ### ### ### ### ### 23 ### 80 194 ### ### 137 251 308 365 422 479 536 593

Arabinoxylan (AX1) 21 25 765 936 879 822 993 651 ### ### ### 708 ### ### ### ### ### ### ### 24 ### 81 195 ### ### 138 252 309 366 423 480 537 594

Arabinoxylan (AX2) 23 26 766 937 880 823 994 652 ### ### ### 709 ### ### ### ### ### ### ### 25 ### 82 196 ### ### 139 253 310 367 424 481 538 595

Arabinogalactan (AG1) 24 27 767 938 881 824 995 653 ### ### ### 710 ### ### ### ### ### ### ### 26 ### 83 197 ### ### 140 254 311 368 425 482 539 596 Branched β-Gal/α-Ara

Ara6(α5) 51 28 768 939 882 825 996 654 ### ### ### 711 ### ### ### ### ### ### ### 27 ### 84 198 ### ### 141 255 312 369 426 483 540 597

Ara7(α5) 52 29 769 940 883 826 997 655 ### ### ### 712 ### ### ### ### ### ### ### 28 ### 85 199 ### ### 142 256 313 370 427 484 541 598

Ara9(α) 63 30 770 941 884 827 998 656 ### ### ### 713 ### ### ### ### ### ### ### 29 ### 86 200 ### ### 143 257 314 371 428 485 542 599

Ara8(α) 64 31 771 942 885 828 999 657 ### ### ### 714 ### ### ### ### ### ### ### 30 ### 87 201 ### ### 144 258 315 372 429 486 543 600

Man4(β4) 49 32 772 943 886 829 ### 658 ### ### ### 715 ### ### ### ### ### ### ### 31 ### 88 202 ### ### 145 259 316 373 430 487 544 601

Man6(β4) 50 33 773 944 887 830 ### 659 ### ### ### 716 ### ### ### ### ### ### ### 32 ### 89 203 ### ### 146 260 317 374 431 488 545 602

Galactomannan (GM1) 25 34 774 945 888 831 ### 660 ### ### ### 717 ### ### ### ### ### ### ### 33 ### 90 204 ### ### 147 261 318 375 432 489 546 603

Galactomannan (GM2) 26 35 775 946 889 832 ### 661 ### ### ### 718 ### ### ### ### ### ### ### 34 ### 91 205 ### ### 148 262 319 376 433 490 547 604

Galactomannan Guar 43 36 776 947 890 833 ### 662 ### ### ### 719 ### ### ### ### ### ### ### 35 ### 92 206 ### ### 149 263 320 377 434 491 548 605

Galactomannan Carob 44 37 777 948 891 834 ### 663 ### ### ### 720 ### ### ### ### ### ### ### 36 ### 93 207 ### ### 150 264 321 378 435 492 549 606

Galactomannan Guar 45 38 778 949 892 835 ### 664 ### ### ### 721 ### ### ### ### ### ### ### 37 ### 94 208 ### ### 151 265 322 379 436 493 550 607

Galactomannan 46 39 779 950 893 836 ### 665 ### ### ### 722 ### ### ### ### ### ### ### 38 ### 95 209 ### ### 152 266 323 380 437 494 551 608

Galactomannan DP9.AO (TLC-2) 60 40 780 951 894 837 ### 666 ### ### ### 723 ### ### ### ### ### ### ### 39 ### 96 210 ### ### 153 267 324 381 438 495 552 609

Di-galactosyl-mannopenta.AO (TLC-2) 62 41 781 952 895 838 ### 667 ### ### ### 724 ### ### ### ### ### ### ### 40 ### 97 211 ### ### 154 268 325 382 439 496 553 610

Galactomannan DP9.AO (TLC-1) 59 42 782 953 896 839 ### 668 ### ### ### 725 ### ### ### ### ### ### ### 41 ### 98 212 ### ### 155 269 326 383 440 497 554 611

Di-galactosyl-mannopenta.AO (TLC-1) 61 43 783 954 897 840 ### 669 ### ### ### 726 ### ### ### ### ### ### ### 42 ### 99 213 ### ### 156 270 327 384 441 498 555 612

Pectin-1 27 44 784 955 898 841 ### 670 ### ### ### 727 ### ### ### ### ### ### ### 43 ### 100 214 ### ### 157 271 328 385 442 499 556 613

Pectin-2 28 45 785 956 899 842 ### 671 ### ### ### 728 ### ### ### ### ### ### ### 44 ### 101 215 ### ### 158 272 329 386 443 500 557 614

Pectin-3 29 46 786 957 900 843 ### 672 ### ### ### 729 ### ### ### ### ### ### ### 45 ### 102 216 ### ### 159 273 330 387 444 501 558 615

Pectin-4 30 47 787 958 901 844 ### 673 ### ### ### 730 ### ### ### ### ### ### ### 46 ### 103 217 ### ### 160 274 331 388 445 502 559 616

Pectin-5 31 48 788 959 902 845 ### 674 ### ### ### 731 ### ### ### ### ### ### ### 47 ### 104 218 ### ### 161 275 332 389 446 503 560 617

Pectin-6 32 49 789 960 903 846 ### 675 ### ### ### 732 ### ### ### ### ### ### ### 48 ### 105 219 ### ### 162 276 333 390 447 504 561 618

Pectin-7 33 50 790 961 904 847 ### 676 ### ### ### 733 ### ### ### ### ### ### ### 49 ### 106 220 ### ### 162 277 334 391 448 505 562 619

Pectin-8 34 51 791 962 905 848 ### 677 ### ### ### 734 ### ### ### ### ### ### ### 50 ### 107 221 ### ### 162 278 335 392 449 506 563 620

Pectin-9 35 52 792 963 906 849 ### 678 ### ### ### 735 ### ### ### ### ### ### ### 51 ### 108 222 ### ### 162 279 336 393 450 507 564 621

Pectin-10 36 53 793 964 907 850 ### 679 ### ### ### 736 ### ### ### ### ### ### ### 52 ### 109 223 ### ### 162 280 337 394 451 508 565 622

Pectin-11 37 54 794 965 908 851 ### 680 ### ### ### 737 ### ### ### ### ### ### ### 53 ### 110 224 ### ### 162 281 338 395 452 509 566 623

Pectin12 38 55 795 966 909 852 ### 681 ### ### ### 738 ### ### ### ### ### ### ### 54 ### 111 225 ### ### 162 282 339 396 453 510 567 624

Pectin-13 39 56 796 967 910 853 ### 682 ### ### ### 739 ### ### ### ### ### ### ### 55 ### 112 226 ### ### 162 283 340 397 454 511 568 625

GN5-AO* 56 57 797 968 911 854 ### 683 ### ### ### 740 ### ### ### ### ### ### ### 56 ### 113 227 ### ### 162 284 341 398 455 512 569 626 β1-4 GlcNAc

CAZY CBMs analysed Validation
Ct Rf Antibodies CBMs

4 6

α-Man

α-Glc

Branched β1-3/1-6 Glc

Mixed-linked β1-3,1-4 Glc

Pectin-related

β1-4 Xyl

Branched β1-4 Glc/α1-6 

Xyl

Branched β-Xyl/α-Ara

α1-5 Ara

β1-4 Man

Branched β1-4 Man/α-Gal

Position Probe Structure

1 Ara6(α5) Araα-5Araα-5Araα-5Araα-5Araα-5Ara-DH

2 Ara7(α5) Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Ara-DH

3 Xyl5(β4) Xylβ-4Xylβ-4Xylβ-4Xylβ-4Xyl-DH

4 Xyl6(β4) Xylβ-4Xylβ-4Xylβ-4Xylβ-4Xylβ-4Xyl-DH

5 Xyl3Glc4

      Xylα-6

           │

     Glcβ-4Glcβ-4Glcβ-4Glc-DH

     │           │

Xylα-6      Xylα-6

6 Barley glucan

7 Barley glucan Mixed-linked β1-3, β1-4 glucose 

8 Oat β-glucan Mixed-linked β1-3, β1-4 glucose

Figure 2.3 – Schematic representation of the integrated microarray data analysis: database and interactive software. 
Adapted from Palma et al. 2014. 
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The results of the SDS-PAGE analyses confirmed the predicted molecular weight for each CBM, the 

purity of the sample and that no significant degradation was occurring (Figure 2.4). 

 

 

 

2.3.2 Carbohydrate microarray quality control  

The quality control or validation of the carbohydrate microarray was carried out using 10 

carbohydrate-directed monoclonal antibodies, 4 CBMs and 1 lectin for which the carbohydrate-binding 

features have been described (Table 2.2, Section 2.2.4). The rationale for the selection of these was to 

cover the binding to most of the carbohydrates present in the microarray. The description of the 

microarray set as printed is in Supplementary Table 2. For the presentation and discussion of the 

microarray data the following modifications to the original printed microarray set were done: repeated 

probes were not included; the probes were sorted according to the nature of the sample and predominant 

oligosaccharide sequence; and the sequence-defined oligosaccharide NGLs were highlighted. The 

resulting arrangement is in Table 2.4. Therefore, in this section the probe position refers to the chart/heat 

map position. 

 

Table 2.4 -  List of all saccharide probes analyzed in the binding charts and in the matrix (heat-map). The microarray is 

comprised of polysaccharide samples from different sources, representative of major sequences found in fungal and plant cell 

walls, and a few selected sequence-defined oligosaccharides prepared as neoglycolipids (seoquence for these is depicted). The 

probes are grouped according their predominant oligosaccharide sequence and glycosidic linkage and correspond to the 

graph/Heatmap position. 

Probe  Pa Pb Predominant oligosaccharide sequence/ 
Monosaccharide composition 

Glucurono-
XyloMannan 

1 42 α-(1-3)-mannose branched with xylose, glucuronic acid & fucose 

Mannan  2 17 α-(1-6)- mannose 

Mannoprotein 3 19 Ara (1%), Xyl (0%), Man (65%), Glc (35%) 

Dextran  4 1 α-(1-6)-glucose 

Figure 2.4 - Representative SDS-PAGE (13% acrylamide) of the 14 CBMs analyzed. Gels were performed with a constant 

voltage of 150V. Visualization of CBMs molecular weight was assed by coloration with Comassie blue.  CBMs are identified 

by family and respective protein ID in each lane. M corresponds to Marker II from NZYTech®. 
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Pullulan  5 2 Mixed-linked α-(1-4;1-6)-glucose 

Curdlan  6 3 Linear β-(1-3)-glucose 

Pustulan  7 12 Linear β-(1-6)-glucose 

NSG-β-glucan 8 4 
Linear β-(1-3)-glucose backbone with occasional monoglucosyl β-(1-6)- 
glucose branches 

PGG-β-glucan 9 5 
Linear β-(1-3)-glucose backbone with occasional monoglucosyl β-(1-6)- 
glucose branches 

Lentinan 10 6 β-(1-3)-glucan with β-(1-6) branching 1:1 

Grifolan 11 7 
β-(1-3)-glucose backbone with highly ramified oligomeric β1-6 glucose 
branches 

Barley glucan 12 8 
Mixed-linked β-(1-3;1-4)-glucose. 
Also contains 2% arabinose and 0.2% xylose. 

Oat β-glucan 13 9 Mixed-linked β-(1-3;1-4)-glucose 

Lichenan 14 48 Mixed-linked β-(1-3;1-4)-glucose 

Xylan 15 40 Mixed-linked β1-3/β1-4-D-xylose 1:4 

Xylan (X1) 16 13 
Rha (3%), Fuc (2%), Ara (11%), Xyl (67%), Man (0%), Gal (6%), Glc (5%), 
Ur Ac (6%) 

Xylan (X2) 17 14 
Rha (3%), Fuc (3%), Ara (12%), Xyl (73%), Man (0%), Gal (0%), Glc (4%), 
Ur Ac (5%) 

Xyl5(β4)-DH 18 53 Xylβ1-4Xylβ1-4Xylβ1-4Xylβ1-4Xyl-DH 

Xyl6(β4)-DH 19 54 Xylβ1-4Xylβ1-4Xylβ1-4Xylβ1-4Xylβ1-4Xyl-DH 

Xyloglucan (XG1) 20 16 
Rha (2%), Fuc (5%), Ara (5%), Xyl (40%), Man (6%), Gal (13%), Glc (24%), 
Ur Ac (6%) 

Xyloglucan (XG2) 21 22 
Rha (2%), Fuc (5%), Ara (5%), Xyl (40%), Man (6%), Gal (13%), Glc (24%), 
Ur Ac (6%) 

Xyl-glucan DP8-AO 22 57 

Major component DP8 (contains small % of DP7, XXXG motif)                
 
                  Galβ1-2 
                             │ 
Xylα1-6             Xylα1-6 
          │                       │ 
          Glcβ1-4Glcβ1-4Glcβ1-4Glc-AO                     (designated as XXLG 
motif) 
                        │ 
              Xylα1-6 

Xyl-glucan DP9-AO 23 58 

               Galβ-2 
                         │ 
Xylα1-6             Xylα1-6 
          │                       │ 
          Glcβ1-4Glcβ1-4Glcβ1-4Glc-AO                     (designated as XLLG 
motif) 
                        │ 
              Xylα1-6 
                  │ 
         Galβ-2                       

Xyl3Glc4-DH 24 55 

    Xylα1-6          Xylα1-6 
              │                    │ 
          Glcβ1-4Glcβ1-4Glcβ1-4Glc-DH                     (designated as XXXG 
motif) 
                       │                          
             Xylα1-6                

Arabinoxylan (AX1) 25 21 Ara (40%), Xyl (54%), Man (0%), Gal (3%), Glc (3%) 

Arabinoxylan (AX2) 26 23 Ara (25%), Xyl (46%), Man (1%), Gal (3%), Glc (25%) 

Arabinogalactan 
(AG1) 

27 24 Ara (5%), Man (29%), Gal (64%), Glc (1%) 

Ara6(α5)-DH 28 51 Araα1-5Araα1-5Araα1-5Araα1-5Araα1-5Ara-DH 

Ara7(α5)-DH 29 52 Araα1-5Araα1-5Araα1-5Araα1-5Araα1-5Araα1-5Ara-DH 

Ara8(α)-AO 30 64 Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Ara-AO 

Ara9(α)-AO 31 63 Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Ara-AO 

Man4(β4)-DH 32 49 Manβ1-4Manβ1-4Manβ1-4Man-DH 
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Man6(β4)-DH 33 50 Manβ1-4Manβ1-4Manβ1-4Manβ1-4Manβ1-4Man-DH 

Galactomannan 
(GM1) 

34 25 Ara (5%), Man (62%), Gal (31%), Glc (2%) 

Galactomannan 
(GM2) 

35 26 Ara (2%), Man (87%), Gal (10%), Glc (2%) 

Galactomannan 
Guar 

36 43 Galactose: Mannose ratio = 38:62 

Galactomannan 
Carob 

37 44 Galactose: Mannose ratio = 21:79 

Galactomannan 
Guar– Gal depleted 

38 45 Galactose: Mannose ratio = 21:79 

Galactomannan 
hydrolysed 

39 46 Under analysis  

Gal-Mannan DP6-AO 40 60 
DP6  
Mixture of β-(1-4) linked D-mannose oligosaccharides.  
Average Man/Gal Ratio range ~4-7 

Gal-Mannan DP7a-
AO 

41 59 
DP7  
Mixture of β-(1-4) linked D-mannose oligosaccharides.  
Average Man/Gal Ratio range ~4-7 

Gal-Mannan DP7b-
AO 

42 62 

DP7  
Prepared by controlled enzymatic hydrolysis of carob galactomannan 
 
    Galβ-2     Galβ-2 
              │             │ 
Manβ1-4Manβ1-4Manβ1-4Manβ1-4Man-AO 

Gal-Mannan DP8-AO 43 61 

DP8  
Prepared by controlled enzymatic hydrolysis of carob galactomannan 
 
    Galβ-2     Galβ-2    Galβ-2 
              │             │            │ 
Manβ1-4Manβ1-4Manβ1-4Manβ1-4Man-AO 

Pectin-1 44 27 Under analysis 

Pectin-2 45 28 Under analysis 

Pectin-3 46 29 Under analysis 

Pectin-4 47 30 Under analysis 

Pectin-5 48 31 Under analysis 

Pectin-6 49 32 Under analysis 

Pectin-7 50 33 Under analysis 

Pectin-8 51 34 Under analysis 

Pectin-9 52 35 Under analysis 

Pectin-10 53 36 Under analysis 

Pectin-11 54 37 Under analysis 

Pectin12 55 38 Under analysis 

Pectin-13 56 39 Under analysis 

GN5-AO 57 56 GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAc-AO 

 

a Position matching the graph/Heatmap. 

b Position matching the original microarray set. 
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Carbohydrate-directed monoclonal antibodies   

The anti-β-(1-3)-glucan (mouse IgG) showed binding for the β-(1-3)-glucans curdlan, NSG-β-

glucan and PGG-β-glucan  (Figure 2.5 and 2.6, position 6, 8, 9 respectively), which is in accord with 

the reported specificity for this antibody (Meikle et al. 1991). 

Figure 2.5 – Carbohydrate microarray data analysis of carbohydrate-directed monoclonal antibodies for quality 

control of the microarray set. The antibodies names are depicted on top of each graph and each recognize different epitopes 

and have different specificities (Table 2.2). Carbohydrate sequence information of the probes included in the microarray is in 

Table 2.4. The binding signals are depicted as means of fluorescence intensities of duplicate spots of probe arrayed (with error 

bars). Each probe was printed in duplicate at two levels: polysaccharides at 0.1 and 0.5 mg (dry weight)/Ml (30 and 150 

pg/spot) and NGLs at 5 and 15 µM (aproximatly 2 and 5 fmol/spot). Quantified fluorescence intensity is plotted on the y-axis. 

Carbohydrate probes are plotted on the x-axis. 
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Figure 2.6 - Microarray screening analysis of CBMs from C. thermocellum and R. flavefaciens. High level heat-map of 

the relative binding intensities represented as a percentage of the fluorescence signal intensity relative to the probe that binds 

more strongly to each CBM. Sequence-defined NGLs are depicted left. 

 

In the microarrays there was also binding detected to the mannoprotein extracted from S. cerevisiae, 

designated MP2 (Figure 2.5 and 2.6, position 3), and xyloglucan, designated as XG2 (Figure 2.5 and 

2.6, position 21), extracted from plum. This could be explained by the presence of minor β1-3-linked 

glucose residues in these preparations. 

The anti-β-(1-3;1-4)-glucan (mouse IgG) is described as an antibody that recognizes specifically  

β(1-3/1-4)-glucans and in particular the heptasaccharide sequence Glc(1-3)-Glc(1-4)-Glc(1-4)-Glc(1-

3)-Glc(1-4)-Glc(1-4)-Glc (Meikle et al. 1994). In the microarray this antibody bound strongly to barley 

glucan and oat β-glucan (Figure 2.5 and 2.7 position 12, 13 respectively), both mixed linked β-(1-3/1-

4) glucans, thus confirming the specificity. This antibody also bound, albeit less strongly, to 

arabinoxylan designated AX2 (Figure 2.5 and 2.7, position 26). This could probably be due to the 

presence of β-(1-4) glucose residues in this polysaccharide sample, as the content of glucose is relatively 

high (25%) (Table 2.4).  
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The anti-xyloglucan (rat IgM) showed strong binding to the xyloglucan polysaccharides included 

in the microarray and also to all the xyloglucan NGL probes (Figure 2.5 and 2.7, position 16, 17, 20, 21, 

25, 26 and Figure 2.5 and 2.6, position 22, 23, 24 respectively). In comparison, the anti-xyloglucan (rat 

IgG) showed a more restricted binding to two of the NGLs, strongly to xylo-glucan DP9, which contains 

substitution of the β-(1-4)-linked-glucose tetrasaccharide backbone by xylose and galactose (XLLG 

motif), and less to xylo-glucan DP8 that is one residue less substituted with galactose (XXLG) (Figure 

2.5 and 2.7, position 22, 23 respectively). The heptasaccharide Xyl3Glc4 (XXXG motif) (position 24) 

with no galactose substitutuion was not bound by this antibody.  These results are in agreement with the 

reported specificities for these two antibodies (Pedersen et al. 2012) which show anti-xyloglucan (rat 

IgG) is more specific for binding with xyloglucans with XLLG motif than anti-xyloglucan (rat IgM) 

that recognizes substituted and low substituted motifs (XLLG, XXLG and XXXG). Thus, the different 

binding profiles of two anti-xyloglucan antibodies gave us information about the degree of substitution 

of the different xyloglucan probes included in the microarray. Only the anti-xyloglucan (rat IgM) 

Figure 2.7 - Microarray screening analysis of CBMs from C. thermocellum and R. flavefaciens. Low level heat-map of 

the relative binding intensities represented as a percentage of the fluorescence signal intensity relative to the probe that binds 

more strongly to each CBM. Sequence-defined NGLs are depicted left. 
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showed binding to the xylan polysaccharides X1 and X2 (Figure 2.5 and 2.7, position 16, 17, 

respectively), this could be explained by the common xylose-oligosaccharide motif recognized by this 

antibody.  

The anti-xylan (rat IgM) and anti-xylan (rat IgG) showed a binding profile according to what is 

reported on literature (McCartney et al. 2005). Both antibodies have the ability to bind unsubstituted 

and relatively low-substituted xylans, which was confirmed in the microarray analysis by the strong 

binding to the unsubstituted β-(1-4)-linked xylose penta- and hexasaccharide NGL probes (Figure 2.5 

and 2.6, position 18, 19, respectively).  However, the anti-xylan (rat IgM) can accommodate a more 

extensive and complex carbohydrate chain, which was confirmed by the strong binding to the xylan 

polysaccharide and albeit binding to arabinoxylan AX1 and AX2 (Figure 2.5 and 2.7, position 15, 25, 

26 respectively), and also corroborated by the monosaccharide composition analysis (Table 2.4).  

The anti-α-(1-5)-arabinan (rat IgG) showed resctricted binding to linear α-(1-5)-arabino 

oligosaccharides (Figure 2.5 and 2.6, position 28, 29, 30, 31). This is in conformity with this antibody 

being highly specific for  this type of oligosaccharides (Willats et al. 1998). 

The reported specificity of anti-heteromannan (rat IgM) (Marcus et al. 2010) was also confirmed 

in this microarray, the antibody interacts with galactomannan polysaccharides (Figure 2.5 and 2.7, 

position 36-39), galactomannan oligossacharides with DP6 and DP7 (Figure 2.5 and 2.6, position 40,41) 

that have only galactose and mannose and with linear hexa β-(1-4)-mannose NGL. In this experimental 

condition binding was also observed to pectin-8 (sequence under analysis). Binding to this pectin sample 

could be explained by the occurrence of β-(1-4)-galactosyl residues that have been identified in pectic 

galactan domanains. 

In this experiment the anti-β-(1-4)-mannan (mouse IgG) recognizes galactomannans which is in 

accordance with what was described in the literature (Pettolino et al. 2001) . This antibody should also 

recognize linear (1-4)--manno-oligosaccharides in (1-4)--mannans and galactomannans. However, 

recognition for linear β-(1-4)-mannose NGLs was not observed for this experimental condition. In 

addition, strong binding for galactomannan carob and galactomannan guar was observed. The two 

polysaccharides have the same galactose:mannose ratio (21:79) which is consistent with the results 

(Figure 2.5 and 2.7, position 37, 38). Also, there was a weaker binding for the galactomannan and for 

the galactomannan guar with a different galactose:mannose ratio (38:62) (Figure 2.5 and 2.7, position 

36, 39). 

Anti-β(1-4)-galactan (rat IgG) reported specificity pointed to binding with (1-4)-β-D-galactosyl 

residues found in the galactan components of certain pectic polymers (Jones et al. 1997). The anti-(1-

4)-β-D-galactan tested in the microarray is highly specific for the pectin-8 and presents a weaker 

interaction with xylan (X1) that contains galactose residues (Figure 2.5 and 2.6, position 51, 16 

respectively). The results are consistent with the reported literature. There are some evidences that 

pectin-8 may have (1-4)-β-D-galactosyl residues in its composition.  
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Model carbohydrate-binding modules 

The carbohydrate binding specificity of CtCBM11 for β-(1-3;1-4)-mixed linked glucans has been 

extensively analysed by different methods, including ITC, STD-NMR, carbohydrate microarrays and 

X-ray crystallography (Carvalho et al. 2004; Palma et al. 2015, unpublished data). In this microarray 

analysis, CtCBM11 showed strong binding to barley- and oat-β-glucan (Figure 2.7 and 2.8, position 12, 

13, respectively), which is consistent with the reported specificity. CtCBM11 also bound, although less 

strongly, to xylan and arabinoxylan (AX2) (Figure 2.7 and 2.8, position 15, 26, respectively). Binding 

to arabinoxylan (AX2) could be probably due to the presence of β-(1-4) glucose residues in this 

polysaccharide sample, as the content of glucose is relatively high (25%).  

 

Figure 2.8 – Carbohydrate microarray data analysis of model carbohydrate-binding modules from different families 

and a plant lectin for quality control of the microarray set. The protein names are depicted on top of each graph and each 

recognize different epitopes and have different specificities. Carbohydrate sequence information of the probes included in the 

microarray is in Table 2.4. The binding signals are depicted as means of fluorescence intensities of duplicate spots of probe 

arrayed (with error bars). Each probe was printed in duplicate at two levels: polysaccharides at 0.1 and 0.5 mg (dry weight)/Ml 

(30 and 150 pg/spot) and NGLs at 5 and 15 µM (aproximatly 2 and 5 fmol/spot). Quantified fluorescence intensity is plotted 

on the y-axis. Carbohydrate probes are plotted on the x-axis. 
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CmCBM6-2 showed a broad range of interaction, mostly in agreement with the reported binding for 

this CBM (Henshaw et al. 2004; Palma et al. 2015) which contains two binding clefts with different 

specificities for glucose and xylose oligosaccharides. In addition to binding with mixed-linked β-(1-3;1-

4) glucans barley and oat-β-glucan, CmCBM6-2 showed interaction with branched β-(1-3)/(1-6) glucans 

such as curdlan, PGG-β-glucan, lentinan and grifolan (Figure 2.6 and 2.8, position 5,  9,  10,  11 

respectively), and to arabinoxylans AX1 and AX2 (Figure 2.6 and 2.8, position 25, 26, respectively). 

CtCBM30 is characterized by strongly binding to mixed linked β-(1,3-1,4)-glucans (Arai et al. 

2003). Our results are concordant with the literature as CtCBM30 showed binding to barley and oat-β-

glucan (Figure 2.6 and 2.8, position 12, 13, respectively). 

CmCBM32-2 showed binding to lentinan and grifolan (Figure 2.6 and 2.8, position 10, 11, 

respectively), both are linear β-(1-3) glucose with branched β-(1-6) but the second probe is more 

ramified. CmCBM32-2 reported specificity is characterized by interaction with branched β-(1-3)/(1-6) 

gluco-oligosaccharides (Palma et al. 2015) which is consistent with our results. 

The results observed for TmCBM41 are consistent with the reported specificity (Palma et al. 2015) 

as the TmCBM41 is highly specific for α-glucans, in this case for a mixed-linked α-1-4;1-6 glucose, 

pullulan (Figure 2.6 and 2.8, position 5). 

 

Plant lectin 

It is well established that Concanavalin A is highly specific for α-mannose-linked oligosaccharides 

(α-(1-2) and α-(1-3)-mannose) (Wang et al. 2014). The results of the microarray analysis showed a 

strong interaction with glucuro-xylomannan, mannan and mannoprotein (MP2) (Figure 2.6 and 2.8, 

position 1,2,3 respectively), in concordance with the presence of those motifs in these macromolecules 

(Table 2.4).  

 

In sum, the antibodies, CBMs and lectin showed different binding patterns, some exhibiting a broad 

binding, others highly restricted binding, and in overall the microarray results are in agreement with the 

reported specificities (Table 2.2). To test the reproducibility and validate the array the analyses were 

also carried out using a newly prepared carbohydrate microarray of similar composition. The 

comparative data confirmed the validation results. Thus, the carbohydrate microarray is functional and 

can be used for carbohydrate binding screening analysis of CAZy CBMs, and the quality control data 

will be useful to interpret the binding results obtained. 
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2.3.3 Carbohydrate microarray analysis of CAZy CBMs 

The 14 CBMs analyzed belong to 12 different CAZy families. The CBM families showed different 

binding patterns which reflects the diversity of recognition systems as described below.  

 

 

Figure 2.9 -  Carbohydrate microarray data analysis of CAZy CBMs. A) CBM families analyzed from Clostridium 

thermocellum. B) CBM families analyzed from Ruminococcus flavefaciens FD-1. The binding signals are depicted as means 

of fluorescence intensities of duplicate spots of probe arrayed (with error bars). Each probe was printed in duplicate at two 

levels: polysaccharides at 0.1 and 0.5 mg (dry weight)/ml (30 and 150 pg/spot) and NGLs at 5 and 15 µM (approximatly 2 and 

5 fmol/spot). Quantified fluorescence intensity is plotted on the y-axis. Carbohydrate probes are plotted on the x-axis. 
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CtCBM3 displayed a highly specific binding for xyloglucan polysaccharides XG1 and XG2 (Figure 

2.7 and 2.9, position 20, 21 respectively). CBMs 3 are usually associated with both cellulosomal 

scaffoldins and family 9 glycoside hydrolases (GH9s), which are multi-modular enzymes that act on 

insoluble cellulosic substrates. The solved X-ray crystal structures of these modules have established a 

cellulose-binding mechanism based on stacking interactions between the monosaccharide residues of 

cellulose and a planar array of aromatic residues located at the CBM3 surface (Yaniv et al. 2014). In 

this particular case, CtCBM3 is not associated to a GH. As cellulose is an insoluble polysaccharide it 

was not included in the carbohydrate microarray, however the binding to xyloglucans can be explained 

by the β-(1-4)-glucose chain which is the target for CBM3s. The fact that this CBM could not bind to 

the xyloglucan NGLs, in contrast to the anti-xyloglucan (rat IgM), imply that a longer backbone chain 

than the tetrasaccharide might be required for binding. The CtCBM3 also showed binding to xylan X1 

and arabinoxylans AX1 and AX2, at the high level of the polysaccharide (Figure 2.6 and 2.9, position 

16, 25, 26 respectively). These results could be explained by the presence of a β-linked glucose oligomer 

in these samples, as they contain glucose in their composition and the binding to AX2, which has a 

higher percentage of glucose, was stronger (Table 2.4).  

The two CtCBMs from family 4 showed a similar binding profile in which both bound strongly to 

the mixed-linked β-(1-3;1-4) glucans barley-glucan and oat-β-glucan (Figure 2.5 and 2.7, position 12,13 

respectively). Binding was also detected to xyloglucan XG1 and XG2, arabinoxylan AX1 and AX2 

(Figure 2.7 and 2.9, position 20, 21, 25, 26 respectively) stronger for CtCBM4 (Cthe_0413) then to 

CtCBM4-3 (Cthe_2809). CtCBM4 (Cthe_0413) is associated to a GH9, a glucanase, and CtCBM4-3 

(Cthe_2809) is associated to a GH16, glucan endo-beta-1,3-D-glucosidase. Different studies reported in 

the literature showed a diverse range of specificities for this CtCBM family, including binding to 

crystalline and amorphous cellulose, xylans, β-glucans, α-glucans, chitin and chitosan (Alahuhta et al. 

2011). 

The two CtCBMs from family 6 displayed strong binding to arabinoxylans AX1 and AX2 (Figure 

2.7 and 2.9, position 25, 26, respectively). These CBMs also showed a significant interaction with linear 

β-(1-4)-linked xylose NGLs (Figure 2.6 and 2.9, position 18, 19) and with glucan polysaccharides 

glucurono-xylomannan, lentinan, and oat-β-glucan (Figure 2.7 and 2.9, position 1, 10, 13 respectively). 

The reported specificity for this family pinpoints the nonreducing termini of xylo- and gluco-

oligosaccharides (Correia et al. 2011) and xylose oligosaccharides (Griffiths & Sánchez-serrano 2001) 

as recognition features.  The recognition for xylo- and gluco-oligosaccharides is reflected in this 

microarray as well as the recognition for xylose residues in arabinoxylans AX1 and AX2 and in the 

complex fungal polysaccharide glucurono-xylomannan. The family 6 CBMs from R. flavefaciens FD-

1 (RfCBM6 3747) showed strong binding exclusively to the arabinoxylans AX1 and AX2 (Figure 2.6 

and 2.9, position 25,26, respectively). There were no previously reported CBMs characterized in this 

RfCBMs family and these microarray analyses first identified its specificity. The specificity appears to 
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be more restricted for arabinoxylan polysaccharides than for CtCBMs investigated, as binding to glucan 

polysaccharides was not observed.  

CtCBM13 bound strongly to polysaccharides that possess different major sequences: xyloglucans 

XG1 and XG2, pectin-8, arabinogalactan AG1 and lentinan (Figure 2.6 and 2.9, position 20, 21, 51, 27, 

10, respectively). In the literature, a CtCBM13 is reported as to bind to galactose and galactose-

containing oligosaccharides (galactobiose, galactotriose and lactose) (Jiang et al. 2012). The microarray 

binding pattern for this CBM may be explained by the presence of a common galactose sequence in the 

xyloglucans XG1 and XG2 and arabinogalactan (Table 2.4), and possibly in pectin-8 as this pectin was 

strongly bound by the anti-β-(1-4)-D-galactan (Figure 2.6 and 2.9, position 51).  Comparatively, 

RfCBM13-1 displayed the same strong binding to the pectin-8 probe but also showed binding to α-(1-

5)-linked arabinose NGLs (DP 6 to DP9) (Figure 2.6 and 2.9, position 28-31, respectively), revealing a 

novel specificity for this microorganism CBM family. Bindind to xylan X1 and arabinoxylan AX1 

(Figure 2.6 and 2.9, position 16, 25) was revealed. Also binding to galactomannan guar with different 

galactose:mannose ratios was detected (Figure 2.6 and 2.9,  position 36, 38). 

As reported in the literature  family 22 CtCBMs bind preferentially to xylans and to 

xylooligosaccharides (Charnock et al. 2000). This CtCBM22 is normally associated to a GH10, which 

exibits a β-xylanase activity. Often CBMs that are associated with xylanases, bind to xylans and to 

xylooligosacharides. The CtCBM22 analyzed in the microarray bound strongly to xylan, arabinoxylans 

AX1 and AX2 (Figure 2.7 and 2.9, position 15, 25, 26, respectively), which is consistent with the 

reported binding for this CBM family. However, this CBM also bound to mixed-linked β-(1-3/1-4)- 

glucans, barley and oat β-glucan (Figure 2.7 and 2.9, position 12, 13, respectively).   

CtCBM25 showed strong binding to mannoprotein MP2 and pullulan, binding less strongly to 

glucurono-xylomannan (Figure 2.6 and 2.9, position 3, 5, 1, respectively).  This CBM is not yet 

characterized and there are no reports on the binding specificity for members of CtCBM25. However, 

Boraston and colleagues  reported a study on the recognition of granular starch from starch corn 

(branched α-(1,4)/(1-6) glucose) and α-glucooligosaccharide recognition, specially those containing α-

1-6-linkages by a CBM25 from Bacillus halodurans (Boraston et al. 2006). This specificity is in accord 

with the CtCBM25 binding in the microarrays to pullulan, which is a mixed-linked α-(1-4/1-6) glucan 

polysaccharide (Table 2.4). 

CtCBM32 exhibited strong binding to glucan polysaccharides pullulan, lentinan and grifolan (Figure 

2.7 and 2.9, position 5, 10, 11, respectively). This CBM is appended to GH5, a catalytic module that 

displays endomannanase activity, and this CBM family from C. thermocellum shows binding affinity 

for nonreducing ends of β-1,4-mannooligosaccharides and β-1,4-gluco-oligossaccharides (Mizutani et 

al. 2012). According with this reported specificity, the CtCBM32 also showed good binding to β1-4-

linked mannose oligosaccharides with DP5 and DP6 (Figure 2.6 and 2.9, position 32, 33, respectively). 

Thus, the specificity of this CBM needs to be further explored to understand the binding to the glucan 

polysaccharides.   
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CtCBM42 showed strong binding to arabinoxylan (AX1), arabinogalactan (AG1), α-(1-5)-arabinose 

NGLs and pectin-8 (Figure 2.6 and 2.9, position 25, 26, 28, 29, 30, 31 and 51, respectively). In the 

literature, three CtCBMs from family 42 are described appended to GH43 (putative 

arabinofuranosidases) and these CBMs display similar ligand specificities binding preferentially to 

arabinoxylans and arabinan (Ribeiro et al. 2010). Although this CBM is not appended to a GH, the 

specificity is similar to what is reported on the literature.  

CtCBM50 showed a strong and very specific binding to the pentasaccharide of β-(1-4)-linked N-

acetylglucosamine (GlcNAc), derived from chitin (Figure 2.6 and 2.9, position 57). CtCBM50 sequence 

is a LysM (Lysin Motif) domain. Lysins, also known as endolysins or murein hydrolases, are highly 

evolved hydrolytic enzymes produced by bacteriophage to digest the bacterial cell wall peptidoglycan 

for phage progeny release. The motif typically ranges in length from 43 to 50 amino acid residues and 

recognizes the N-acetylglucosamine (GlcNAc) moieties of peptidoglycan and chitin (Buist et al. 2008). 

Thus the microarray results support that CtCBM50 is a functional LysM domain.  

RfCBM62-1 was the CBM that showed the most restricted binding in the microarray analysis as it 

bound to one probe only, the pectin sample designated as pectin-8 (Figure 2.6 and 2.9, position 51). This 

pectin sample is among a group of pectins (designated here pectin-1 to pectin-13) that were isolated 

from African plants for which structure is currently being evaluated. The fact that the pectin-8 was 

strongly bound by the anti-β-(1-4)-galactan, leads us to hypothesize that this pectin contains a β1-4-

linked galactan domain, and that this could be the recognition motif for the RfCBM62-1. Of interest is 

that in the literature there is only one reference for a characterized CBM62 family from C. thermocellum. 

In this study the authors revealed a novel CBM family from C. thermocellum  that recognizes xyloglucan 

and galactomannan-derived oligosaccharides (Montanier et al. 2011). Thus further studies will be 

required to access the specificity of the RfCBM62-1 and of this CBM62 family in R. flavefaciens.  

 

2.4 Conclusions 

An important outcome from the carbohydrate microarray analysis was the possibility to understand 

the versatility of plant and fungal saccharide sequences and their recognition by different CBM families. 

The Fungal and Plant PS set1 microarray was proven to be an effective, sensitive and high-

throughput tool for screening newly identified CBMs or CBMs assigned to known families in the CAZy 

database for carbohydrate binding. These features enabled that CBMs from two different organisms 

could be simultaneously probed and compared.  For the analyzed CAZy CBMs, it was observed that 

CBMs from the same family and organism could display a similar specificity. However, when the same 

CBM family is compared in different organisms the specificity could be considerably different. An 

important conclusion is that CBMs from R. flavefaciens FD1 revealed to be more specific with a binding 

pattern less broad than CBMs from C. thermocellum. These different binding patterns on the microarray 

could reflect adaptive pressures that the microorganisms suffered in their respective ecological niches, 

translating in divergent evolution of the proteome. The ruminants have diet rich in xylans/arabinoxylans 
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which is translated in a high content of GHs from family 11, endo-β-1-4 and endo-β-1-3 xylanases, and 

CBMs from family 22, with xylan binding function, in the R. flavefaciens FD-1 genome (Berg Miller et 

al. 2009).  

The results from this initial carbohydrate microarray screening constitute a functional starting point 

to: 1) target and select CBMs for assignment of carbohydrate-ligand specificities; 2) develop sequence-

defined designer oligosaccharide microarrays; and 3) structurally characterize novel CBM-

oligosaccharide complexes.  
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Chapter 3 – Expression, purification and 
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3.1 Introductory remarks 

The objectives of the work described in this chapter were two-fold: 1) to investigate the best 

conditions for large-scale recombinant expression of the analyzed CBMs and their purification and 2) 

to evaluate the protein stability in different buffers. 

The initial strategy consisted of small-scale expression tests for the 14 CBMs presented in Table 2.1 

(Chapter 2, Section 2.1). The information about the recombinant protein sequence, modular 

organization, protein identification, family, molecular weight and isoelectric point of the 14 CBMs are 

presented in Supplementary Table 1. After this, large-scale production of two CBMs was performed 

using the best identified conditions. The recombinant DNAs used coded for an N-terminal tag with 6 

histidines and antibiotic (kanamycin) resistance (Chapter 2, Section 2.2.1). 

 

3.2 Materials and methods 

3.2.1 Preparation of competent cells  

Without competence, cells do not have the ability to take up extracellular DNA, hence cells have to 

be treated to make them transiently permeable to DNA. The initial stock of Escherichia coli BL21(DE3) 

and Escherichia coli DH5α cells were aquired from NZYTech®.  

The solutions used for the preparation of competent cells are in Supplementar material 1.  

 

Preparation of DH5α competent cells 

In Day 1, 50 µL of DH5α  cells were uniformly spread in Luria-Bertani (LB) agar plates (overnight). 

In Day 2 one colony was picked from the plate and inoculated in 5 ml LB and kept at 37 ºC, at 100 rpm, 

overnight (Orbital ShakerIncubator ES-20, from Grant.bio). 1ml of this pre-inoculum was used to 

inoculate 200 ml of super optimal broth (SOB) medium and subsequently incubated at 18 ºC and 200 

rpm until optical density at 600 nm (OD600nm) reached 0.4-0.5. The OD600nm of bacterial cells is measured 

at 600 nm and 0.5 is the value where microbial growth is at the exponential phase. 

The cell culture was kept on ice for 10 to 15 minutes. After that, it was centrifuged in cold centrifuge 

tubes (previously autoclaved) at 2500 x g for 10 minutes at 4 ºC. The supernatant was rejected and the 

cell pellet resuspended in 80 ml of cold transformation buffer (TB). The resuspension was kept on ice 

for 30 minutes and then centrifuged at 2500 x g for 10 minutes at 4ºC. The new pellet was resuspended 

in 18.6 ml of cold TB and 1.4 ml of dimethyl sulfoxide (DMSO) was slowly added. After 15 minutes 

on ice the cells were distributed into autoclaved cold 1.5 ml microcentrifuge tubes and stored 

immediately at -80 ºC.   

 

Preparation of BL21 competent cells 

In Day 1, 50 µL of BL21(DE3) cells were uniformly spread in LB agar plates (overnight). In Day 2 

one colony was picked from the plate to inoculate 5ml LB (previously autoclaved) that was kept at 37 
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ºC, at 100 rpm, overnight (Orbital ShakerIncubator ES-20, from Grant.bio). 1ml of this pre-inoculum 

was used to inoculate 200 ml of LB (previously autoclaved) and added 20 mM MgSO4 (filtrated), which 

was subsequently incubated at 37 ºC at 200 rpm until OD600nm reached 0.4-0.5. The cell culture was kept 

on ice for 10 to 15 minutes. After that, it was centrifuged in cold and previously autoclaved centrifuge 

tubes for 4000 x g for 5 minutes at 4 ºC. The supernatant was rejected and cell pellet was resuspended 

in 60 ml of cold transformation buffer 1 (TBF1). The resuspension was kept on ice for 90 minutes 

(shaking occasionaly) and then centrifuged for 4000 x g for 5 minutes at 4 ºC. The new pellet was 

resuspended in 8 ml of cold transformation buffer 2 (TBF2) and distributed in autoclaved cold 1.5 ml 

microcentrifuge tubes, and stored immediately at -80 ºC. All the procedures were carried out in a sterile 

environment. 

 

3.2.2 Transformation 

The transformation of DH5α competent cells used for cloning and of BL21(DE3) cells used for 

expression was performed in a sterile environment. For the transformation process, 2 μl of each CBM 

DNA was added to 50 μl of competent cells. The cells were kept on ice for 30 minutes, then heated at 

42 ºC on a heatblock for 1 minute and thenincubation on ice for 10 minutes. Afterwords, the cells were 

re-suspended in 1 ml of LB medium and incubated at 37 ºC at 200 rpm for about 1:30 h (Orbital 

ShakerIncubator ES-20, from Grant.bio). The cell suspension was centrifuged for 1 minute at 8.6 rpm 

and 1 ml of supernatant was discarded. The cells were re-suspended in the remaining medium and spread 

in LB-agar plate with kanamycin antibiotic at 50 μg/ml. The DNA plasmid contains a gene with 

kanamycin resistance and consequently only cells that contain the plasmid will be able to grow/divide 

and form colonies.   

 

3.2.3 DNA amplification, isolation and sequencing 

The plates from DNA transformation with DH5α were incubated overnight at 37 ºC and then stored 

at 4 ºC. One colony was picked from plates and inoculated in 10 ml LB medium with 50 μg/ml 

kanamycin. DNA amplification was carried out at 37 ºC at 130 rpm (Orbital Shaker-Incubator ES-20, 

from Grant.bio) until OD600nm reached 0.5.  

A miniprep protocol from NZYTech® (NZYMiniprep, MB01002) was performed for extraction and 

isolation of the DNA. This protocol is designed for rapid and small-scale preparation of highly pure 

plasmid DNA from recombinant E. coli strains. 

The isolated DNA was sent for sequencing (STAB VIDA, FCT-NOVA) to confirm the protein 

sequence of the 14 CBM DNAs and to identify possible mutations, insertions or deletions. The primers 

used were the T7 (forward primer) and pET24a (reverse primer) (Table 3.1).  
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Table 3.1 – Primers sequences used to confirm the DNA sequence of the 14 CBMs. 

 

 

 

 

3.2.4 Small and large-scale expression of CBMs 

In order to obtain the most favorable expression condition for each CBM, small-scale expression 

tests were performed using two expression protocols (Table 3.2). One protocol referred to as IPTG-

induction and the other as Auto-induction. The main differences between the two procedures are: 1) 

different cell culture medium, 2) the use of isopropyl β-D-1-thiogalactopyranoside (IPTG) for inducing 

the expression and 3) the temperature of expression. 

 

Table 3.2 – Main differences in the IPTG-induction and auto-induction protocols for protein expression 

Protocol Cell culture medium IPTG Temperature (ºC) Period (Hours) 

IPTG-induction LBa Yes 
19ºC  15   

37ºC 5 

Auto-induction Auto-inductionb No 25ºC 15 

 

a LB – Luria-Bertani medium culture (composition in Supplementary material 2) 

b Auto-induction medium from NZYTech® (composition in Supplementary material 2) 

 

3.2.4.1 Protocol for expression with IPTG-induction 

The first step was to follow the protocol of transformation described in Section 3.3.2 using the E. 

coli strain BL21(DE3). After transformation, one colony was pre-inoculated in 5 ml (10 ml for large 

scale) LB medium with 50 μg/ml kanamycin. The pre-inoculum was incubated at 37 ºC at 200 rpm for 

15 hours (overnight) (Orbital Shaker- Incubator ES-20, Grant.bio).  In the following day, 1 ml from the 

pre-inoculum was added to 50 ml (600 ml for large scale) of LB medium with 50 μg/ml kanamycin. 

Each cell culture was incubated at 37 ºC at 200 rpm (Shaker IS-971R from Lab Companion) until 

OD600nm reached 0.6-0.8. Once cell culture reached this density, 1 mM of IPTG was added and the 

incubation was carried out at the desired temperature and period of induction at 160 rpm.  

Large-scale expression was performed using the condition that yielded the most soluble protein 

fraction for each CBM.  

 

3.2.4.2 Protocol for expression with auto-induction  

The protocol for transformation is the same as described in Section 3.2.2. One colony was picked up 

from LB plates and incubated in 50 ml of auto-induction medium with 50 μg/ml kanamycin. Each cell 

Primer Sequence 

T7 forward TAATACGACTCACTATAGGG 

pET24a reverse GGGTTATGCTAGTTATTGCTCAG 
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culture was incubated at 37 ºC and 200 rpm (Shaker IS-971R from Lab Companion) until OD600nm 

reached 1.5 and furtherincubated at 25 ºC at 160 rpm for protein expression. 

 

3.2.5 Cell harvesting and lysis 

The cells were harvested by centrifugation at 5.000 x g for 20 minutes (JA-10 rotor, Avanti J-26 XPI 

from Beckman Coulter). After discarding the supernatant, the cells were re suspended in buffer 

containing 50 mM Hepes pH 7.5, 100 mM NaCl, 2 mM CaCl2 and 10 mM imidazole (10 ml per gram 

of cell pellet).  

Cells were disrupted using a sonicator (UP100H, from Hielsher) with 3-5 cycles of 1 minute. This 

method was used to disrupt cell membranes and release cellular content.  The soluble fraction was 

clarified by centrifugation (Rotor JA-10, Avanti J-26 XPI from Beckman Coulter) at 5000 x g and 4 ºC 

for 30 minutes and continued to purification protocol.  

 

3.2.6 Purification of CBMs by affinity chromatography 

An efficient method to purify the CBMs from other bacterial proteins is the immobilized-metal 

affinity chromatography (IMAC), and that is the reason for including an N-terminal His-tag (Chapter 2, 

Section 2.2.1) in the CBM constructs. 

Immobilized-metal affinity chromatography (IMAC) is based on the strong affinity and selectivity 

that transition bivalent metal ions such as Zn2+, Cu2+, Ni2+, and Co2+ have to bind histidine and cysteine 

residues in aqueous solutions. These metals are immobilized in the chromatography column and bind to 

his-tagged and cys-tagged proteins (Block et al. 2009).  

 

3.2.6.1 Purification with ÄKTA START 

For large-scale purification each CBM was submitted to an IMAC using a His TrapTM column of 5 

ml Ni2+, which is coupled to the chromatograph ÄKTA START, both from GE-Healthcare. The protocol 

was performed together with the UNICORNTM start 1.0 control software, and always applying a pressure 

under 0.5 MPa. 

In this protocol two different buffer solutions were used for the concentration gradient: Buffer A – 

50 mM HEPES, 1 M NaCl, 2 mM CaCl2 and 10 mM at a final pH of 7.5; Buffer B - 50mM HEPES at 

pH 7.5,1M NaCl, 2 mM CaCl2 and 300 mM imidazole at a final pH of 7.5. The column was first washed 

with approximately 50 mL of Milli-Q water and subsequently equilibrated with 20 ml of buffer A. The 

cell extract (soluble fraction) was then loaded into the column. A first wash with 15% with buffer B was 

applied in order to separate the constituents with low affinity for nickel. Afterwords, aconcentration 

gradient of imidazole, from 15% to 100% of 100 ml of buffer B, was setup in order to collect the 

respective CBM. The collected fractions were subsequently analyzed by SDS-PAGE and Native PAGE 
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(when possible, due to the proteins isoelectric point) electrophoresis for confirmation of the purity and 

stability of the protein.  

 

3.2.6.2 Affinity purification with His GravitrapTM columns  

His GraviTrapTM (GE Healthcare) is a prepared, single-use column for purification of histidine-

tagged proteins by IMAC, that allows fast and simple gravity-flow purifications without any need for a 

purification system like ÄKTA START. 

This purification can be divided into four steps: equilibration, sample application, washing and 

elution. For this purification 3 different buffers were used: Buffer A - 50mM HEPES, 1 M NaCl, 2 mM 

CaCl2 and 10 mM at a final pH of 7.5; Buffer B - 50 mM HEPES at pH 7.5 ,1 M NaCl, 2 mM CaCl2 

and 60 mM imidazole at a final pH of 7.5; Buffer C - 50 mM HEPES at pH 7.5 ,1 M NaCl, 2 mM CaCl2 

and 500 mM imidazole at a final pH of 7.5. 

First the columns were washed with 10 ml of Milli-Q water to remove the ethanol. After this, the 

columns were equilibrated in buffer A. The extracted sample was then loaded into the column and the 

His-tag from the protein binds to the Ni2+ of the column. In order to wash E. coli proteins, and thus 

prevent contamination of our sample, 10 ml of buffer A and then another 10 ml of buffer B were loaded. 

The CBM was eluted with 6 ml of buffer C. The fractions were eluted in separate: one fraction of 3 ml 

and three fractions of 1 ml each for posterior analysis in SDS-PAGE and Native PAGE electrophoresis. 

 

3.2.7 Analysis by polyacrylamide gel electrophoresis  

In this work two different types of polyacrylamide gel electrophoresis were performed: in non-

denaturing conditions, Native PAGE, and in denaturing conditions in the presence of sodium-dodecyl 

sulfate (SDS), SDS-PAGE. The protocol for SDS-PAGE was performed as described in Section 2.2.2 

from Chapter 2. 

In the Native PAGE proteins are analysed in their native state. In the native state, the mobility of 

each protein during electrophoresis is influenced by the respective size and charge, which will depend 

on the primary aminoacid sequence of the protein (and consequently its isoelectric point) and the pH 

during electrophoresis. 

Native gels were performed using 12.5% acrylamide. The protein samples were mixed with the 

sample buffer (4x Tris-HCl, 0.012 % bromophenol blue, 30 % glycerol) at a final volume of 20 µl with 

5 µg protein. The running buffer used for the electrophoreis was 1.5 M Tris-HCl at a pH of 8.8. The run 

paramters for the electrophoresis were setup to a fixed voltage of 150 V. 

 

3.2.8 Protein thermal shift assay 

Thermal shift assay (TSA) or Thermofluor experiment is a rapid, temperature-based assay to screen 

suitable conditions that maximize protein stability (Boivin et al. 2013). TSA induces protein 
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denaturation that is monitored by a fluorophore, such as SYPRO® Orange. The fluorescence of the dye 

increases proportionally to the hydrophobicity of the protein in each well. This is dictated by the amount 

of protein in each well and the state of folding. If a protein is properly folded, in its native state, the 

hydrophobic residues are buried within the protein, which means that are not exposed to the dye and do 

not emit fluorescence. When a protein is submitted to high temperatures, denaturation occurs and the 

protein unfolds. With the unfolding, the buried hydrophobic residues are exposed to the dye and 

fluorescence occurs. The monitoring of the temperature and fluorescence is done by using a Real Time 

PCR instrument (StepOnePlusTM system from Applied Biosystems). 

The Protein Thermal ShiftTM software will input the raw fluorescence data from all 96-wells during 

the qPCR machine’s thermal melt program. After collecting the raw data, the fluorescence melt curves 

are plotted showing noise-reduced fluorescence data from the protein melt curve run. The temperature 

representing the midpoint of protein unfolding or melting transition (Tm) is a quantifiable value of the 

thermal stability of the protein.  

 

3.3 Results and discussion 

3.3.1 DNA sequencing of CBMs   

As described in Section 3.2.3, the DNA was amplified and purified by using a miniprep protocol 

from NZYTech® (NZYMiniprep, MB01002). The 14 CBMs were sent for sequencing (STAB VIDA, 

FCT-NOVA) and the analysis could confirm that, with one exception, all the CBM’s DNA sequences 

were correct.  The exception was CtCBM3 (Cthe_0059) for which an insertion of an adenine was found, 

resulting in frame shifting and, consequently, in the wrong protein sequence. Thus, it was decided to not 

continue with the recombinant expression of this CBM. For the microarray analysis (Chapter 2) this 

protein was provided by NZYTech® and was confirmed to be functional. Further studies for this protein 

are required in order to perceive the origin of the DNA insertion, however this is not within the scope 

of this thesis work. 

Figure 3.1 - Agarose gel electrophoresis of 14 DNA sequences from CBMs of different families. Wells from left to right 

are identified by organism and CBM family and protein ID brackets follows: 1-CtCBM13 (Cthe_0661), 2-CtCBM3 

(Cthe_0059), 3-CtCBM4 (Cthe_0413), 4-CtCBM32 (Cthe_0821), 5-CtCBM42 (Cthe_1273), 6- CtCBM6 (Cthe_2197), 7–

CtCBM6 (Cthe_2195), 8-CtCBM22 (Cthe_2590), 9-CtCBM4 (Cthe_2809), 10-CtCBM50 (Cthe_0300), 11- CtCBM25 

(Cthe_0956), 12-RfCBM62 (3398), 13- RfCBM13 (2115), 14 – RfCBM6 (3747). The photograph was provided by STAB 

VIDA. 
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3.3.2 Small-scale expression tests 

As mentioned in Section 3.2.4, several expression tests were performed for each CBM. Two 

protocols for expression were tested: auto-induction (Panel A) and IPTG-induction (Panel B) (Figure 

3.2).  The auto-induction protocol from NZYTech® was tested in order to follow the conditions in which 

the proteins, that were previously analyzed in the microarrays (Chapter 2), were expressed. 

 

 

Figure 3.2 - SDS-PAGE (10% acrylamide) analysis showing the expression levels of the 13 CBMs using two expression 

protocols. The CBMs are identified by family and protein ID. A.) Levels of expression of 13 CBMs were tested when E. 

coli BL21 strains were grown in auto-induction medium following the NZYTech® protocol, inducing expression at 25ºC, 

overnight at 160 rpm. B.) Levels of expression of 13 CBMs were tested when E. coli BL21 strains were grown in LB medium, 

inducing expression with IPTG at 19ºC, overnight at 160 rpm. The respective protein lanes are identified by a blue line. P- 

Pellet (insoluble fraction); S-Supernatant (soluble fraction); M- Marker II from NZYTech®. 
  

A 

 

B 
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For each condition, the expression of the CBMs was monitored using SDS–PAGE analysis. Figure 

3.1 shows soluble and insoluble fraction of each CBM after expression with the two protocols. 

The SDS-PAGE analysis showed that, in general, the expression of the CBMs was much lower using 

the auto-induction protocol in comparison with IPTG-induction. 

In order to confirm the expression of the desired proteins, affinity purification using His-GraviTrapTM 

columns (Supplementary Figure 1) was carried out. However, even after the purification step, the 

detection of CBM protein bands was very weak, confirming low levels of protein expression, not 

desirable to proceed to large scale production of the CBMs using this protocol. 

The analysis of soluble fractions showed that, with the exception of CtCBM50, there was a high level 

of expression of the CBMs using the IPTG-induction protocol (Figure 3.2). Despite this, there was a 

high level of all CBMs retained in the insoluble fractions, thus further optimization studies were 

performed, and described in the next section.  

For CtCBM50 the SDS-PAGE analysis showed that it was mainly retained in the insoluble fraction 

when expressed using the IPTG-induction protocol, suggesting that an improvement for expression 

conditions was also needed.  

In face of these results, the next studies were performed using the IPTG-induction protocol. 

 

3.3.3 CBMs expression optimization tests  

With the aim to optimize the expression conditions for CtCBM50 mainly, but also for the other 

CBMs, an optimization study was performed using the IPTG-induction protocol, at two different 

temperatures (19 ºC and 37 ºC) and two different induction periods (5 and 15 hours) for each CBM.  

For these studies, we selected four proteins, of which two were  chosen for the large-scale production 

required for the follow-up biophysical and structural studies. The four CBMs chosen were: CtCBM50, 

CtCBM25, RfCBM62-1 and RfCBM6. 

The procedure, up to the stage of the induction of the expression, was the same as described before 

(Section 3.2.4.1). The expression of CBMs was evaluated using two different conditions: 19 ºC for 15 

hours (overnight) and 37 ºC for 5 hours, both at 160 rpm. After expression, cells were harvested and 

lysed and the CBMs were purified using His GraviTrapTM columns, in order to obtain high quantity of 

pure protein. The results from the optimization tests and further purification are presented in Figures 3.3 

and 3.4 respectively. 
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Figure 3.3 -  SDS-PAGE (10% acrylamide) results showing expression levels of CBMs from different families. The CBMs 

are identified by family and protein ID. Levels of expression of 4 CBMs were tested with IPTG-induction protocol at two 

different conditions: 19ºC for 15 hours (overnight) and 37ºC for 5 hours, both at 160 rpm. Respective protein lanes are identified 

by a blue line. P- Pellet (insoluble fraction); S-Supernatant (soluble fraction); M- Marker II from NZYTech®. 

 

In Section 3.3.2, it was mentioned that CtCBM50 was in the insoluble fraction when expressed at 19 

ºC for 15 hours (overnight). After performing the optimization studies, we could identify a new condition 

in which CtCBM50 was expressed in good yields, in the soluble form. This corresponded to the 

expression condition at 37 ºC for 5 hours, and hence was selected to test the expression of CtCBM50 in 

large scale. 

For CtCBM25 a different behavior was observed as the expression at 37 ºC for 5 hours resulting in 

most of the protein to be in the insoluble fraction.  The best expression condition identified for CtCBM25 

was at 19 ºC for 15 hours.  

For RfCBM62-1 it was clear that the condition for the expression in large scale was at 37 ºC for 5 

hours, as it was the condition with the highest amount of soluble protein.  

For RfCBM6 both conditions tested for expression resulted in similar high levels of soluble protein. 

In this work, we selected the condition of 19 ºC for 15 hours, as a close observation of the gel confirmed 

that it resulted in a higher ratio of the CBM to contaminating host proteins. 

The soluble fractions of each CBM were purified by IMAC, in His GravitrapTM columns, following 

the protocol from Section 3.2.6.2. After the purification, the eluted fractions were analyzed by SDS- and 

Native-PAGE (Figure 3.4).  
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Figure 3.4 - SDS-PAGE (10% acrylamide) and native gel results showing purification of CBMs from different families. 
The CBMs are identified by family and protein ID. Respective protein lanes are identified by a blue line. Panel A.) Results of 

purification with His Gravitrap columns. CBMs were eluted with 6 ml of 50 mM HEPES at a pH of 7.5, 1M NaCl, 2 mM CaCl2 

and 500 mM imidazole.  The fractions were eluted and analyzed in separated: one fraction with 3 ml and three fractions with 

1 ml each. E1(Eluted fration 1) -  3ml; E2(Eluted fraction 2) -  1 ml; E3 (Eluted fraction 3) – 1ml; E3 (Eluted fraction 3) – 1ml. 

Panel B.) SDS-PAGE and native gel of combined eluted fractions 3 and 4 of each CBM. For both gels were used the respective 

concentrations: CtCBM50, CtCBM25 and RfCBM62-1 7.5µg; RfCBM6 – 6.5µg. P- Pellet (insoluble fraction); S-Supernatant 

(soluble fraction); For SDS-PAGE a Marker II from NZYTech® was used (M) and for native gel BSA was used as reference. 

 

Panel A shows that the eluted fractions that contained less contamination and higher amounts of 

protein were fractions 3 and 4. These two fractions were combined and analyzed by SDS- and Native- 

PAGE (Panel B) to confirm it purity and if the protein is well folded and not degraded.  

As CtCBM50 has an isoelectric point of 9.78, the migration in the gel occurs to the positive pole so 

it could not be analyzed in a regular native gel. A protocol for Native PAGE with basic proteins is 

described from Bio-Rad® (Bulletin 2376) and should be used for this CBM. The other proteins were 

apparently well folded but RfCBM6 needs to be analyzed in higher concentration to sharpen the protein 

band. 

 The combined fractions were stored at 4 ºC for posterior studies, upon the addition of 0.02 % sodium 

azide. The best conditions for large scale expression of the four selected CBMs are summarized in Table 

3.3. 

 A 

B 
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Table 3.3– Best conditions for large scale expression of the four CBMs 

 
aLB – Luria-Bertani medium culture (composition in Supplementary information 2) 
b IPTG - isopropyl β-D-1-thiogalactopyranoside  

 

3.3.4 Large-scale expression and purification 

In order to proceed to structural characterization studies, large-scale production of the CBMs was 

carried out. As mentioned in the previous section, four proteins were tested in order to choose two to 

proceed for the biophysical and structural studies. 

The CBMs selected were CBM50 from C. thermocellum and CBM62-1 from R. flavefaciens. We 

chose these two CBMs based on their unique specificities towards carbohydrate ligands revealed by the 

microarray analysis. CtCBM50 is a novel LysM chitin-binding domain. RfCBM62-1 revealed to be 

highly specific for a pectic polysaccharide, and on the other hand, for the R. flavefaciens FD-1 the CBM 

specificities are largely unknown. Although challenging, both CBMs revealed to be interesting 

candidates for structural characterization. The modular organization where the RfCBM62-1 is 

biologically integrated is represented in the Figure 3.5, together with the primary sequence of CtCBM50.  

The conditions for the large-scale expression have been presented in Table 3 from previous Section 

and the protocol for purification is described in Section 3.2.6.1. 

 
Figure 3.5 - Modular organization where the RfCBM62-1 is biologically integrated and respective primary sequence is 

represented, together with the primary sequence of CtCBM50. The N-terminal His-tag is depicted at yellow. 

 

 

Protein Medium culture IPTGb (mM) Induction temperature (ºC) Induction time (H) 

CtCBM50 LBa 1 37 5 

CtCBM25 LBa 1 19 15 (overnight) 

RfCBM62-1 LBa 1 37 5 

RfCBM6 LBa 1 19 15 (overnight) 
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Purification of CBMs was performed by IMAC in a HisTrapTM (GE- Healthcare) column of 5 mL 

coupled to an ÄKTASTART chromatograph. The buffers used in the purification are listed in Table 3.4. 

The purification chromatograms obtained for CtCBM50 and RfCBM62-1 are shown in Figures 3.6 and 

3.7, respectively. All collected fractions were analyzed by SDS-PAGE, allowing us to select those 

corresponding to the respective purified CBM (Figure 3.6 and 3.7 inset panels). These same fractions 

were then submitted to a desalting protocol and concentrated using concentrators Vivaspin® 3KD (GE 

Healthcare) for posterior structural studies.   

 

Table 3.4 – Buffers used in the IMAC purification of CtCBM50 and RfCBM62-1 

 

Buffer A 

 

 

50 mM HEPES, 1 M NaCl, 2 mM CaCl2 and 10 mM imidazole; pH=7.5 

 

Buffer B 

 

 

50 mM HEPES, 1 M NaCl, 2 mM CaCl2 and 300 mM imidazole; pH=7.5 

 

 

 

Figure 3.6 - Results from purification of CtCBM50: Chromatogram from IMAC and SDS-PAGE analysis with 13% 

acrylamide. FT- Flow trought; P – Peak; E- Elution; M- Marker II from NZYTech®. The blue line represents the volume as 

function of UV. The red line represents the volume as function of a gradient of the buffer B. Red rectangles in SDS-PAGE gel 

show the fractions that were collected and stored for posterior desalinization protocol. 
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Figure 3.7- Results from purification of RfCBM62-1: Chromatogram from IMAC and SDS-PAGE analysis with 13% 

acrylamide. FT- Flow trought; P – Peak; E- Elution; M- Marker II from NZYTech®.The blue line represents the volume as a 

function of UV. The red line represents the volume in function of a gradient of the buffer B. Red rectangles in SDS-PAGE gel 

show the fractions that were collected and stored for posterior desalinization protocol. 

 

After the expression in 2400 ml of LB medium, soluble extracts of 130 ml and 180 ml for CtCBM50 

and RfCBM62-1, respectively, were obtained and then submitted to purification. Ultimately, 50 ml and 

60 ml of CtCBM50 and RfCBM62-1 with a concentration of 1.3 mg/ml and 1.6 mg/ml, respectively, 

were obtained (Table 3.5).  

 

Table 3.5 - Summary of the purification yields for CtCBM50 and RfCBM62-1 

Protein 
Volume 

Medium culture 

Volume 

Expression extract 

Volume 

Purified protein 
Protein quantification 

CtCBM50 2400 ml 130 ml 50 ml 1.3 mg/ml 

RfCBM62-1 2400 ml 180 ml 65 ml 1.6 mg/ml 

 

3.3.5 Protein stability analysis  

One of the key issues for working with new proteins is to choose the appropriate buffer to use during 

protein purification, storage and for experimental assays. When proteins are produced in large scale it 

is necessary to optimize conditions that stabilize the protein. Proteins used in Chapter 2 of this thesis 

were provided by NZYTech® and were stable in 50 mM HEPES, 100 mM NaCl and 2 mM CaCl2 at a 

pH of 7.5 at the range of concentrations provided. However, when produced in large-scale the protein 

behavior in solution could change and the protein stability in different buffers needed to be assessed.  

Thermal Shift Assay (TSA) or Thermofluor experiment provides a comprehensive method to analyze 

buffers in order to determine those the condition that maximize protein stability. The ability to perform 
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Thermofluor experiments in a 96-well format provides the opportunity to test several buffers in a short 

time. The protocol used for the experiments is described in section 4.2.8. 

An initial study was made with different concentrations of each CBM in 50mM HEPES, 100 mM 

NaCl and 2 mM CaCl2 at a pH of 7.5 in order to search for a concentration to work in further studies. 

The results are shown in Table 3.6 and Figure 3.8 1) and 3.8 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 – Thermal denaturation assay using Thermofluor for CtCBM50 and RfCBM62-1.  (1) Thermal denaturation 

assay using Thermofluor for CtCBM50. A) Melting curves of RfCBM62-1 at a concentration of 2,4,6,8 and 10 µM in 50 mM 

HEPES, 100 mM NaCl and 2 mM CaCl2 at pH=7.5. B) Alternative representation of the melting curves using the first derivative 

– (dRFU)/dT of the raw data in which the minimum value corresponds to the Tm.  (2) Thermal denaturation assay using 

Thermofluor for RfCBM62-1. A) Melting curves of RfCBM62-1 at a concentration of 2, 4 and 8 µM in 50 mM HEPES, 1 M 

NaCl and 2 mM CaCl2 at  pH=7.5. B) Alternative representation of the melting curves using the first derivative – (dRFU)/dT 

of the raw data in which the minimum value corresponds to the Tm.   

 

Table 3.6 – Results from Thermofluor data analysis. 

Protein Concentration [µM] Derivative Tm (ºc) 

CtCBM50 2, 4, 6, 8, 10 - 

 

RfCBM62 

2 43.54 

4 42.53 

6 42.57 

 

 

The Figure 3.8 shows the fluorescence (1A and 2A) and derivative (1B and 2B) normalized melting 

curves for CBMs at different concentrations. The protein solutions were heated in the presence of a 

(2) 

A 

B 

A 

B 

(1) 
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hydrophobic dye (SYPRO Orange). Upon denaturation, the dye binds to the internal hydrophobic 

protein core increasing significantly the fluorescence. Maximal fluorescence intensity is obtained when 

the protein unfolds completely, then SYPRO Orange signal decreases corresponding to dye-protein 

dissociation. Residual signal from SYPRO Orange is explained by the interaction from the dye with 

aggregated protein. The inflection point corresponds to the melting temperature (Tm), at which 50 % of 

the protein is unfolded in the fluorescence graph, while in the derivative graph corresponds to the 

minimum value.  

For CtCBM50 there was no tendency associated with a melting curve, actually for concentrations of 

2, 4, 6 and 8 µM the line is flat, which could mean that the protein does not denature between 25 and 

95ºC. This can be related with the fact that this protein belongs to a thermophile organism, C. 

thermocellum. However, it can also be an indicator of protein misfolding or quickly changing between 

different folds. For the concentration of 10 µM the protein has a high initial fluorescence and does not 

present a typical sigmoidal shape.  Further studies are necessary to conclude about the stability of 

CtCBM50, ideally with an equipment capable to go to higher temperatures. In the meantime, we decided 

to continue with this protein for crystallographic studies in the same buffer. 

RfCBM62-1 showed a typical fluorescence melting curve, with low initial fluorescence that increases 

with the temperature increment, as a result of the protein unfolding. Also, there was an increment of 

fluorescence intensity with the increase of the concentration of the protein, which is coherent with the 

Thermofluor principles. For RfCBM62-1 it was possible to obtain a range of melting transitions between 

42 and 44 ºC. 

After this first initial screening with different concentrations for CtCBM50 and RfCBM62-1 in 

50mM HEPES, 100 mM NaCl and 2 mM CaCl2 at a pH of 7.5 buffer, we continued further studies with 

RfCBM62-1 at a concentration of 6 µM. With the intent to evaluate the protein stability in different 

buffers, a buffer screen was performed (Supplementary Figure 2). 

A screening of 96 conditions was made and analyzed. The results for the two most promising 

conditions are showed in Table 3.7 and Figure 3.9.  

 

Table 3.7 – Thermofluor data analysis for RfCBM62-1 

 

 

Well Buffer Derivative Tm (ºC) 

C1 50mM HEPES, 100 mM NaCl, 2 mM CaCl2  pH=7.5 43.31 

C5 2 mM CaCl2 44.77 
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Figure 3.9 - Thermal denaturation assay using Thermofluor for RfCBM62-1 in 50mM HEPES, 100 mM NaCl, 2 mM 

CaCl2  pH=7.5 (well C1) and in H2O with 2 mM CaCl2 (well C5). (A) Melting curve of RfCBM62-1 in 50mM HEPES, 100 

mM NaCl, 2 mM CaCl2  pH=7.5 (well C1) and in H2O with 2 mM CaCl2 (well C5).  (B) Alternative representation of the 

melting curve using the first derivative – (dRFU)/dT of the raw data in which the minimum value corresponds to the Tm. 

 

The melting transitions for this conditions confirmed the previous assay, which indicated melting 

transitions around 43 ºC.  Comparing both melting curves, the two conditions have a slightly difference 

in the melting transition of 1.4 ºC and also differ in the initial fluorescence value. These differences 

between the two conditions showed that the protein is more stable in the condition that contains only 2 

mM CaCl2. The protein showed melting curves with weak denaturation transition, which indicates that 

the protein is not highly stable. However, this protein was purified in buffer 50mM HEPES, 100 mM 

NaCl, 2 mM CaCl2 pH=7.5, concentrated and the buffer exchanged to 2 mM CaCl2 for crystallographic 

studies. 

  

B 

A 
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3.4 Conclusions 

The first step in any study of a particular protein begins at its expression and purification. This step 

is crucial to get an acceptable amount of pure protein to use in further studies. The efficient large-scale 

production of recombinant proteins depends on the careful conditioning of the protein as it is isolated 

and purified to homogeneity. Low protein stability leads to low purification yields as a result of protein 

degradation, precipitation and folding instability (Boivin et al. 2013). 

In the first part of this work we performed expression tests in small-scale in order to achieve the 

expression condition that would provide the higher amount of pure protein. 

Driven by the previous carbohydrate microarray results, two CBMs were chosen to express and 

purify in large-scale: CtCBM50 and RfCBM62-1. These CBMs presented higher expression levels when 

expressed for 5 hours at 37 ºC following the IPTG-induction protocol. After the affinity purification 

with IMAC, 50 ml at 1.4 mg/ml of CtCBM50 and 65 ml at 1.6 mg/ml of RfCBM62-1 were obtained, 

which were acceptable values of purified protein for posterior concentration.  

The second part of this work consisted in investigating the thermal stability of the two CBMs. It was 

not possible to obtain any conclusions about the Tm of CtCBM50, which could mean that the protein 

does not unfold with the respective temperature variation. Also, being a relatively small protein, the 

unfolding process (and consequent exposure of core residues) does not occur in a clear transition, which 

makes it difficult to follow by thermofluorescence assays. On the other hand, RfCBM62-1 exhibited a 

melting curve with an approximated Tm of 44.77ºC in buffer containing 2 mM CaCl2. 

In conclusion, this part of the work was the starting point for the biophysical characterization of 

CtCBM50 and RfCBM62-1. 
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4.1 Introductiory remarks 

Following the observations of the microarray analysis in Chapter 2, the ligand specificity of 

CtCBM50 LysM domain for chitin was explored in this chapter. The LysM domain is a highly conserved 

carbohydrate binding module found in proteins from virus, bacteria, fungi, plants and mammals. LysM 

modules consist of 43-50 amino acids with a βααβ-fold. These modules recognize polysaccharides with 

N-acetylglucosamine (GlcNAc) residues, such as peptidoglycan or chitin (components of bacterial and 

fungal cell wall, respectively) (Mesnage et al. 2014). 

In this chapter the following tasks were performed:  1) assessement of binding to insoluble chitin by 

SDS-PAGE electrophoresis; 2) ITC measurements to evaluate the CtCBM50 binding affinity to the β-

(1-4)-linked GlcNAc chitin pentasaccharide; 3) several crystallization screens aiming at solving the X-

ray structure; and 4) a similarity model produced computationally to evaluate the predicted 3D structure 

and the residues for interaction with the ligand. 

 

4.2 Materials and methods 

4.2.1 Analysis of interaction with insoluble polysaccharides 

The interaction with insoluble carbohydrates can be monitored by SDS-PAGE in a procedure where 

the CBM is incubated with the polysaccharide before being applyed to the gel. 

In the protocol followed here, 50 µg of CBM was incubated with 2 % (w/v) of insoluble 

polysaccharide in 200 µl of buffer (50 mM HEPES pH 7.5, 100 mM NaCl and 2 mM CaCl2 at a pH 7.5) 

with gentle shaking each 10 minutes for 2 hours at room temperature. The mixture was centrifuged at 

13000 x g for 5 minutes and 160 µl of incubated supernatant (soluble fraction) was collected. The 

remaining mixture was resuspended with 160 µl of buffer (50 mM HEPES pH 7.5, 100 mM NaCl and 

2 mM CaCl2) and centrifuged again at 13000 x g for 5 minutes. This process was repeated twice 

(washes).  After the third wash, the mixture was re-suspended in the remaining buffer (insoluble 

fraction). All fractions were then analyzed by SDS–PAGE with 13 % acrylamide using a marker (Protein 

Marker II from NZYTech®) as reference and Coomassie blue to detect protein. 

Binding was assessed by visually comparing the amount of protein in the soluble fractions, washes 

and insoluble fraction.   

 

4.2.2 Isothermal titration calorimetry  

As stated previously in the Introduction (Section 1.4.2.3), isothermal titration calorimetry (ITC) 

measures the affinity of binding partners in their native states. The heat transfer in a binding event can 

be used to determine thermodynamic parameters (ΔG, ΔH and ΔS), binding constants (Kd) and reaction 

stoichiometry (n). This is a method of high value for the quantification of protein- carbohydrate 

interactions, as it allows to follow the titration of a carbohydrate to a protein (Freire et al. 1990). 



Chapter 4 - CtCBM50: A novel chitin binding LysM domain 

76 

 

ITC measurements were performed at 25ºC using a Nano ITC instrument from TA Instruments. 

During experiments, the stirrer-syringe was kept rotating at 300 rpm. The binding reaction was 

monitored by recording the heat released upon small additions of oligosaccharide solution to the protein 

solution.  

For ITC sample preparation, the CBM (40 µM) was equilibrated in a buffer containing 50 mM 

HEPES, 100 mM NaCl and 2 mM CaCl2 at a pH of 7.5 in the cell of the calorimeter, and subsequently, 

25 injections of 10 µl of 500 µM β-(1-4)-linked GlcNAc pentasaccharide solution were performed and 

the heat response recorded. After subtraction of the baseline, the integrated heat responses were fitted 

to an independent model using the NanoAnalyze software. 

 

4.2.3 Crystallization assays  

Crystallization screening assays were conducted using a crystallization robot, the Nano drop robot 

Oryx8 (from Douglas Instruments) using 96-well crystallization plates. In order to screen for 

crystallization conditions quickly and with the smallest amount of protein possible, as this is a newly 

identified CBM and no crystallization conditions are known, commercial and in house screens were 

tested (Suplementary Figures 3, 4, 5, 6, 7).  Before robot set ups, 50 µl of different crystallization 

solutions were pipetted to 96 reservoirs of the plate in a pre-established order. The robot is implemented 

with an informatic tool, Wasprun, which allows choosing the exact protein: precipitant ratio added into 

each well, which depends on the protein concentration. The crystallization sceenings used were 80!, 

PEG Ion 1 & 8k, JBS 1, 2, 3, 4 and EWI & EWII. 

For crystallization improvement, 24-well crystallizing plates were used. In this case, 700 µl of the 

respective crystallization solution was added into each of the 24 reservoirs. The protein and the 

precipitant were added into the lamella, which was then inverted over the reservoir with a grease on top. 

This procedure will seal up the system and the equilibrium between the drop and the reservoir will be 

established.  Unlike the screenings in the robot Oryx8, all the crystallization improvement process was 

made by hand.  

Crystallization assays were made using the vapor diffusion methods of the sitting drop for the robot 

Oryx8 and the hanging drop for crystallization in 24-well plates. All the crystallization assays were 

performed at 20 ºC and an Olympus SZ60 microscope was used for visualization of drops. 

 

4.2.4 Phyre2: A bioinformatic tool for 3D structure prediction 

Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and 

mutations (Kelly et al. 2015). Phyre2 provides a simple and intuitive interface to state-of-the-art protein 

bioinformatics tools. The server is available at www.sbg.bio.ic.ac.uk/phyre2. A typical structure 

prediction will be returned between 30 minutes and 2 h after submission. In the first stage (gathering 

homologous sequences), a query sequence is scanned against the protein sequence database with 
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HHblits. The profile calculated in stage 1, together with the predicted secondary structure with 

PSIPRED, is converted to a hidden Markov model (HMM). In stage 2 (fold library scanning) the 

calculated HMM is scanned against a database of HMMs of proteins of known structure. The top-scoring 

alignments from this search are used to construct crude backbone-only models with an alighnment 

algorithm called HHsearch. Stage 3 (loop modeling) consists in the correction of the insertions and 

deletions by loop modeling. The last step, stage 4 (side-chain placement), is where the amino acid side 

chains are added to generate the final Phyre2 model. 

 

4.3 Results and discussion 

4.3.1 CtCBM50 binding to insoluble chitin  

Qualitative binding experiments were carried out using 50 µg CtCBM50 and 2% (w/v) of respective 

insoluble polysaccharide. For the CtCBM50 binding analysis insoluble chitin from shrimp shells (C-

8908, Sigma-Aldrich) was used. The protocol followed for this experiment is presented in Section 5.2.1. 

The SDS-PAGE results showed that CtCBM50 binds tightly to insoluble chitin, as the protein band 

was visible in the insoluble fraction (polysaccharide fraction) and only a residual band was detected in 

the first wash fraction (Figure 4.1). This result suggests that not only this CBM have the ability to bind 

chitin-oligosaccharides, but also to chitin polysaccharides. This was supported by the microarray results 

and also opens the way to search for different chito-oligosaccharides as ligands. 

 

 
Figure 4.1 – Qualitative binding analysis of CtCBM50 with insoluble chitin by SDS-PAGE with 13% acrylamide. 

Binding analysis of CtCBM50 with 2% chitin. C – Control (50µg CtCBM50, without polysaccharide); SF – Soluble fraction; 

IF – Insoluble fraction; M- Marker II from NZYTech®. 
 

4.3.2 Binding affinity of CtCBM50 for the β-(1-4)-linked GlcNAc chitin pentasaccharide 

In order to obtain more detailed information on the binding abilities of CtCBM50 for 

oligosaccharides, an isothermal titration calorimetry experiment was performed (Figure 4.2) with the β-

(1-4)-linked GlcNAc pentasaccharide derived from chitin (O-CHI5, from Megazyme). The detailed 
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protocol used for the ITC experiment is presented in Section 4.2.2. The binding curve is shown in Figure 

4.2 as well as the data from ITC analysis in Table 4.1. 

 

Figure 4.2 – Isothermal titration calorimetry of β-(1-4)-linked GlcNAc pentasaccharide binding to CtCBM50. 40 µM of 

CtCBM50 was titrated with N-acetyl-chitopentaose injections of 500 µM at 25ºC. Data was fitted with NanoAnalyze software. 

The heat response was recorded and is shown in the top graph while fitted curve is shown in bottom graph. 

 

Table 4.1 - Data for the ITC analysis of CtCBM50 binding to β(1-4)-linked GlcNAc pentasaccharide at 25 °C 

 

 

n = Stoichiometry of binding 

 

Titration of the oligosaccharide against CtCBM50 produced an exothermic binding with a Kd value 

of 1.1 x 10-6 M and a ∆H of -12.73 kcal/mol. Also the data pointed to 1:1 stoichiometry as n is 

approximately 1. The Kd for binding of CtCBM50 to this type of ligand is in the micromolar range as 

described in the literature for bacterial (Mesnage et al. 2014) and plant (Ohnuma et al. 2009) LysM 

modules. 

A study (Mesnage et al. 2014) with bacterial LysM domains from Enterococcus faecalis AtlA, a 

peptidoglycan hydrolase, showed that Kd increases with DP of chito-oligosaccharide 

(GlcNAc6>GlcNAc5>GlcNAc4>GlcNAc3 >GlcNAc2). This study showed a Kd of approximately 1.23 x 

10-5 M for the bacterial LysM module binding with the pentasaccharide GlcNAc5. 

Another study (Ohnuma et al. 2009) showed that the ITC parameters for the binding affinity of a 

plant LysM domain from Pteris ryukyuensis Chitinase-A with GlcNAc5 were: n=1.1, ∆H=-8.7 kcal/mol, 

and a Kd of 1.88 x 10-4 M. Although both Kd from bacterial and plant LysM modules described before 

are in the micromolar range and ITC parameters from plant LysM module presented similarity to those 

obtained by our experiment, our LysM domain showed a higher affinity for this chitin oligosaccharide 

Kd (M) n ∆H (kcal/mol) ∆S (cal/mol.K) Ka (M-1) 

1.1 x 10-6 0.863 -12.73 -15.44 9.083 x 105 
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with a Kd of 1.1 x 10-6 M. No reported binding affinities for CBMs from family 50 from Clostridium 

thermocellum are described in the literature. 

Further studies with chitin-oligosaccharides of different DPs are required to conclude about the chain 

length dependency on the affinity of CtCBM50.  

 

4.3.3 Crystallization assays  

To crystallize CtCBM50 several commercial screens (Table 4.2) were tested in 96-well plates using 

the vapor diffusion method of the sitting drop. In the first attempt for crystallization two screens were 

used (80! and PEG Ion 1 & 8k) with CtCBM50 at a concentration of 2 mg/ml. Also other screenings 

(PEG Ion 1 & 8K; JBS 1, 2, 3, 4 and EWI & EWII) with CtCBM50 incubated with the β-(1-4)-linked 

GlcNAc pentasaccharide (as suggested from the microarray and ITC studies) at a concentration of 3.2 

mg/ml were made. 

As no crystals were obtained, other approach was tried. A new protein batch was incubated with 1 

% of maltose before concentration in order to help stabilize the protein. A concentration of 4.7 mg/ml 

was reached and four screens (80!, PEG ion 1 & 8k, JCSG  and JBS 1, 2, 3, 4) were tested. After 

approximately one month, a drop with four crystals was observed in the 80! screen (Well D6: 0.1M 

HEPES pH:7.5 and 1M Li2SO4) and crystals were tested in house with a D8 Venture X-ray 

diffractometer. 

 

Table 4.2 – Experimental conditions used in crystallization assays for CtCBM50 with an automated 

nanodrop dispensing equipment (known as crystallization robot). 

 

Buffer A: 50 mM HEPES pH=7.5, 100 mM NaCl and 2 mM CaCl2 

a
 β-(1-4)-linked GlcNAc pentasaccharide 

b Protein:precipitant ration 
c Final drop volume with protein+precipitant 

 

Two different solutions for handling the crystals are required, harvesting buffer and cryo-protector 

solution. The harvesting buffer is a stabilizing solution with the same composition of the precipitant 

solution except for a higher concentration of precipitating agent (Li2SO4) to avoid the crystal dissolution 

during handling. The cryo-protector solution is composed by harvesting buffer with a glycerol 

Sample Buffer 
Concentration 

(mg/ml) 

Drop 

ratiob 

Dropc 

(µl) 
Screens 

CtCBM50 

A 

2 2:1 1.5 
80!; PEG Ion 1 & 8 k 

 

CtCBM50  

+1%maltose 
4.7 2:1 1.5 

80!; PEG Ion 1 & 8k; JCSG and JBS 

1,2,3,4 

CtCBM50 

 + liganda 
3.2 2:1 1.5 

PEG Ion 1 and 8K; JBS 1,2,3,4 and 

EWI & EWII 
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percentage (10-30%) and prevents ice formation when the crystal is exposed to a cooled nitrogen gas 

stream (~100K).  

A multiple crystal of CtCBM50 presented a diffraction pattern (Supplementary Figure 8), however 

this crystal did not diffract well enough to provide good data. We proceeded for a scale-up optimization 

(Figure 4.3) by changing the protein:precipitant ratio in the crystallization drop. In order to confirm the 

reproducibility of the results and obtain good diffracting crystals, a CtCBM50 optimization study was 

made using the vapor diffusion method and the hanging drop technique in a 24-well plate. 

Each lamella was composed by four drops: three drops with different protein-precipitant ratios and 

one control drop (buffer and precipitant). After new purification and concentration with 1 % maltose, 

we were able to reach a concentration of 5.7 mg/ml of CtCBM50. The concentration of precipitant was 

varied between 0.5 M and 1.5 M and the protein-precipitant ratios were 2:1, 1:2 and 1:1, to a final 

volume of 2 µl. The control was made with a proportion of buffer-precipitant of 1:1.  

 

Figure 4.3 -  CtCBM50 optimization study from 80! Screen (Well D6: 0.1M HEPES pH:7.5 and 1M Li2SO4). 
Concentrations of the precipitant agent were varied from 0.5 M to 1.75 M. The ration 1:1, 2:1 and 1:2 are represented for grey 

circles. The control (buffer: precipitant) is represented as white circles. All drops were made with a CtCBM50 concentration 

of 5.7 mg/ml. 

 

No crystals were observed from this optimization, and in general, low precipitation was observed in 

the drops, which indicates that a higher concentration of protein is required. Overall, we observed that 

the protein was very unstable and precipitated when submitted to a concentration protocol. CtCBM50 

is a protein with 66 amino acid residues, in which 19 are part of the N-terminal His-tag. Normally, in 

small proteins, the terminal His-tag contributes for protein instability and may interfere with 

crystallization process. In this case a different protein-construct approach may be needed for future 

studies. 

 

4.3.4 CtCBM50 3D structure prediction  

The rice blast fungus Magnaporte oryzae’s genome encodes a hypothetical protein (MGG_03307) 

containing a type III CVNH lectin, in which a LysM domain is inserted between individual repeats of a 
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single CVNH domain, linked by two highly flexible seven-residue Gly-rich linkers. The structure of 

type III CVNH module (designated as MoCVNH-LysM) was solved by NMR spectroscopy (Koharudin 

et al. 2011).  CtCBM50 3D structure (Figure 4.4) was predicted by calculating a similarity model with 

MoCVNH-LysM (PDB code 2L9Y). 

 

Figure 4.4 – Ribbon representation of CtCBM50 similarity model and respective alignment with the template sequence. 
MoCVNH-LysM SS – Template secondary sctructure. In the secondary structure T corresponds to hydrogen bonded turn, G to 

3-turn helix and S to bend. A similarity model was calculated by Phyre2 using a type III CVNH lectin from Magnaporte oryzae 

(PDB code 2L9Y) as a template as well as the alignment. The program Chimera was used for visualization.  Rainbow ribbon 

spectrum from N-terminus (blue) to C-terminus (red). 

 

For the similarity model, 46 of 47 residues (98% of CtCBM50 sequence) were modelled with 99.6% 

confidence and 40% identity with the template sequence. With this bioinformatic tool it was possible to 

predict what the three-dimensional structure of CtCBM50 could be. According to the criteria of Chimera 

program our model has a βαααβ fold. Different programs have different criteria to conclude if a certain 

region of the protein is considered an alpha helix or a beta foil. In this case, the program considered a 

very small portion of the loop as an alpha helix, however it is very small and could be consider an 

artefact. Nevertheless, this is just a prediction and structural differences are expected in lower similarity 

stretches, in solvent exposed loops and possibly in the recognition site. In the literature, a βααβ-fold for 

the three-dimensional structure of  LysM domains is described (Buist et al. 2008; Gronenborn et al. 

2015; Mesnage et al. 2014).  

After exhaustive efforts to crystallize this protein, the authors designed a new construct in which they 

removed both linkers and the last two (TK) residues at the C-terminal end of the LysM domain and 

changed the proline to a glycin, resulted in crystals. This protein was named Mo0v and the structure for 

complex with GlcNAc3 and GlcNAc4 was solved (Gronenborn et al. 2015). 
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In order to compare our model with Mo0v in complex with GlcNAc4 (PDB code 5C8Q) and look at 

the residues involved in ligand binding, a superposition between our model and Mo0v structure was 

made (Figure 4.5). The 43 residue pairs were aligned with an RMSD of 0.967Ȧ for 38 pruned atom 

pairs.  

 

 

 

Figure 4.5 -  Representation of the superposition between CtCBM50 similarity model with Mo0v in complex with 

GlcNAc4 and respective residues involved in ligand binding. A) Representation of the superposition between CtCBM50   

similarity model and Mo0v in complex with GlcNAc4. Ribbon representation of CtCBM50 in cyan and Mo0v in tan. GlcNAc4 

is represented by sticks. B) Mo0v residues involved in hydrogen bonding with ligand are represented by grey sticks and labeled 

by three-letter code and number. Ribbon representation of CtCBM50 in cyan and Mo0v in tan. The GlcNAc4 is represented by 

sticks. The program Chimera was used for visualization. 

 

In the following discussion, the amino acid residue nomenclature adopted was the three-letter code 

and numbering according to the authors (Gronenborn et al. 2015). 

The amino acids that are involved in hydrogen bonding to the GlcNAc4 in the Mo0v structure are 

Gln62, Gly63, Thr65, Leu66, Arg67, Phe77, Glu89, Asp90, Leu91, Ile92, Tyr93.  With the sequence 

alignment option, the program allowed to check for the common residues between the binding site of 

Mo0v and our CtCBM50 homology model (Figure 4.6).  

Figure 4.6 - Structure-based sequence alignment between CtCBM50 and MoOv. Residues involved in Mo0v binding to 

GlcNAc4 and respective aligned residues from CtCBM50 are showed in blue rectangles. 

A B 
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The comparison between the binding site residues of Mo0v with the aligned residues of CtCBM50 

showed that 5 residues are conserved: Gly63, Thr65, Leu91, Ile92 and Tyr93. This could be an indication 

that CtCBM50 may have a similar mode of binding to GlcNAc oligosaccharides.  

 

4.4 Conclusions 

In this Chapter we continued to study the specificity of CtCBM50 based on the previous carbohydrate 

microarray results (Chapter 2).  

CtCBM50 revealed to be a novel chitin binding LysM domain, which was confirmed by binding to 

insoluble chitin. This study also allowed to obtain the binding affinity of CtCBM50 to the 

pentasaccharide derived from chitin with a Kd of 1.1x10-6 M. However, further studies are required to 

investigate the binding to β-(1-4)-linked GlcNAc oligosaccharides with different DP and other 

oligosaccharides to acertain specificity. 

Several crystallization screens were performed and a protein crystal was obtained in one condition, 

0.1 M HEPES pH 7.5 and 1 M LiSO4. However, optimization of this crystallizaytion condition was not 

successful and thus the screen should be repeated, as well as other screens, in order to achieve the 

conditions for protein crystallization. As CtCBM50 is a small protein, in further work, it is recommended 

the N-terminal His-tag removal after purification since it can cause protein instability and can interfere 

with the crystallization process. Also other approaches could be implemented, such as NMR solution 

studies. NMR is more suitable for structural studies of difficult to crystallize, highly dynamic, small 

proteins as it is not necessary to obtain crystals.  

Neverthless, a similarity model was made with the intention to predict the 3D structure of CtCBM50. 

Also using this similarity model, a superposition with a mutated LysM module was made in order to 

look at the residues involved in binding to chitin oligosaccharide, β-(1-4)-linked GlcNAc 

tetrasaccharide.. The superposition showed that 5 residues are conserved in the two structures (Glycine, 

Threonine, Leucine, Isoleucine and Tyrosine), which can be an indication that the mode of binding to 

GlcNAc oligosaccharides can be similar in the two LysM domains. 
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5.1 Introductiory remarks 

 The first CBM from family 62 was identified in 2011 (Montanier et al. 2011) from Clostridium 

thermocellum and is the only known crystallographic structure of a carbohydrate-binding module of 

family 62. Moreover, its structure has been solved in complex with xyloglucan and galactomannan-

derived oligosaccharides (Montanier et al. 2011). 

In R. flavefaciens this family of CBMs still lacks characterization and 3D structures of the apo and 

the liganded protein, that would provide information to understand the preference of this CBM for pectic 

polysaccharides. 

Following the observations of the microarray analysis in Chapter 2, the binding of RfCBM62-1 to 

pectin was explored in this chapter. 

In this chapter the following tasks were performed:  1) assessement of binding to insoluble pectin by 

SDS-PAGE electrophoresis; 2) affinity gel electrophoresis with soluble pectic polysaccharides; 3) 

Microscale thermophoresis (MST) to evaluate the interaction of RfCBM62-1 with galacturonan DP4 

oligosaccharide; 3) preliminary crystallization assays aiming at solving the X-ray structure; and 4) a 

similarity model produced computationally to evaluate the predicted structure and the residues involved 

in the binding. 

 

5.2 Materials and methods 

5.2.1 Analysis of interaction with insoluble polysaccharides 

The protocol for analysis of interaction with insoluble polysaccharides was performed as described 

in Section 4.2.1 from Chapter 4. 

 

5.2.2 Affinity gel electrophoresis with soluble polysaccharides 

Affinity gel electrophoresis consists in the preparation of a polyacrylamide matrix embedded with a 

soluble carbohydrate. The electrophoretic mobility is compared with a control native gel (without the 

polysaccharide) and the infused-carbohydrate gel. The interaction between the CBM and the 

carbohydrate results in a reduction of the CBM’s electrophoretic mobility, being indicative of its affinity 

towards the ligand. 

The protocol for the affinity gel electrophoresis encompasses the substitution of water for the solution 

with the carbohydrate in the native gel. In the described assays, we used 12.5% acrylamide gels 

polymerized with 0.1% (w/v) of the carbohydrate and a control gel in the absence of the carbohydrate. 

Bovine Serum Albumine (BSA) was included in the gels as a reference standard and a negative control. 

Electrophoresis was performed in a 20 ºC room and a native buffer (1.5M Tris-HCl pH 8.8) was used 

for the running, for approximately 1 hour and 30 minutes (Mini-PROTEAN® tetra system from Biorad) 

at a constant voltage of 150V. Coomassie blue was used as staining solution to detect protein. 
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Binding can be visualized or calculated by measuring the migration distances in the gel of the CBMs 

and the reference protein. Migration distances can be measured between the top of the gel and the solvent 

front for both CBMs and BSA. A relative mobility for each CBM can be calculated as the migration 

distance of the CBM divided by the migration distance of the reference which allows to infer about the 

affinities (Tomme et al. 2000). 

 

5.2.3 Microscale thermophoresis 

The MST experiment was performed during a demonstration of the Monolith NT.115 equipment 

(from NanoTemper) assisted by Dr Aileen Justes. It is a microscale thermophoresis equipment that 

measures thermophoresis of fluorescently labeled molecules (Chapter 1, Section 1.4.2.1).  

In this MST experiment a dilution series of up to 16 dilutions of non-labeled molecule (galacturonan 

DP4) was prepared. The concentration of the fluorescently labeled molecule was kept constant at 

estimated 20 µM and the concentration of the ligand was varied. Therefore, 20 µM of RfCBM62-1 was 

labeled with a fluorescent dye (NT-647) using Monolith NT™ Protein Labeling Kits. 10 µl of the serial 

dilution of the galacturonan DP4 were mixed with 10 µl of the diluted fluorescent RfCBM62-1. After 

mixing the interaction partners, the samples are left to reach the equilibrium for a couple of minutes. 

Mixed samples were loaded into glass capillaries and the MST analysis was performed using the 

Monolith NT.115. 

 

5.2.4 Crystallization assays  

Crystallization assays were performed as described in Section 5.2.3 from Chapter 5. 

 

6.2.5 Phyre2: A bioinformatic tool for 3D structure prediction 

Phyre2 procedure information is described in Section 5.2.4 from Chapter 5. 

 

5.3 Results and discussion 

5.3.1 RfCBM62-1 binding with pectin  

The carbohydrate microarrays results described in Section 2.3.3 in Chapter 2 showed that RfCBM62-

1 binds specifically to a pectic polysaccharide for which characterization is under analysis (pectin-8). 

With the intent to further understand the specificity of RfCBM62-1, we performed affinity gel 

electrophoresis with an insoluble pectin derived from apple (76282, from Sigma-Aldrich).  

Qualitative binding experiments were carried out with 50 µg of RfCBM62-1 and 2 % (w/v) of the 

respective insoluble polysaccharide. The detailed protocol used for this experiment is described in 

Section 5.2.1. 
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Figure 5.1– Qualitative binding analysis of RfCBM62-1 with pectin from apple by SDS-PAGE with 13% acrylamide. 
Binding analysis of RfCBM62-1 with 2% (w/v) insoluble pectin. C - Control (50µg of RfCBM62-1, without polysaccharide); 

SF – Soluble fraction; IF – Insoluble fraction; M – Marker II from NZYTech®. 

 

The SDS-PAGE results showed that RfCBM62-1 binds to this insoluble pectin from apple, as 

comparing the protein band and the insoluble fraction band (polysaccharide fraction), there was a 

singnificant percentage of protein that precipitated along with the pectin. 

The pectin-8, for which RfCBM62-1 revealed to be highly specific in the carbohydrate microarray 

experiment (Chapter 2), could have a similar structure or contain a similar epitope present in this pectin 

from apple. 

 

5.3.2 Binding affinity of RfCBM62-1 with galacturonan DP4 

  Following the results from previous Section, which showed RfCBM62-1 binding to pectin from 

apple, galacturonan DP4, α-(1-4)-galacturonic acid (GAT111, Elicityl), was tested in a MST equipment 

demonstration in our laboratory as described in Section 5.2.3. To perform this experiment with 

RfCBM62-1, a fluorescent label (NT-647) was covalently attached to the protein. In the MST experiment 

we have kept the concentration of NT-647 labeled RfCBM62-1 constant (20 µM), while the 

concentration of the non-labeled galacturonan DP4 was varied between 500 µM – 15 nM. The assay 

was performed in 50 mM HEPES, 100 mM NaCl and 2 mM CaCl2 at a pH of 7.5. 

After a short incubation the samples were loaded into MST NT.115 premium glass capillaries and 

the MST analysis was performed using the Monolith NT.115. A weak interaction of RfCBM62-1 with 

galacturonan DP4 was observed (Figure 5.2), with a predicted Kd in the µM range. However, the 

experiment should be repeated using higher ligand concentrations, to reach the saturation plateau and 

thus accurately calculate Kd. 
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Figure 5.2 - MST binding experiment curve of RfCBM62-1 with galacturonan DP4. The change in thermophoresis is 

expressed as the change in the normalized fluorescence. Ligand concentrations on the x-axis are plotted in nM. This graph was 

provided by Dr Ailen Justies (NanoTemper). 

 

5.3.3 RfCBM62-1 binding with pectin-related polysaccharides 

The results from the previous section showed that an interaction occurs in the micromolar range for 

RfCBM62-1 with galacturonan DP4. 

With the intent to further understand the specificity of RfCBM62-1, we performed affinity gel 

electrophoresis with 6 pectin-related polysaccharides. The polysaccharides tested were the following:  

1) Galacturonate low methylated from apple (GAT100); 2) galacturonate high methylated from apple 

(GAT101); 3) galacturonate low methylated from citrus (GAT102); 4) galacturonate high methylated 

from citrus (GAT103) 5) rhamnogalacturonan from soy bean (P-RHAGN) and 6) polygalacturonic acid 

(P-PGACT). The first four polysaccharides were purchased from Elicityl and the last two from 

Megazyme. The results are shown in Figure 5.3. 
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Figure 5.3 -  Affinity gel electrophoresis of RfCBM62-1 with pectin-related polysaccharides. Lane 1 – BSA; Lane 2 – 

RfCBM62-1 (5µg). The respective control for each polysaccharide gel is located in the left. Polyacrylamide gels were prepared 

with 12.5% acrylamide and 0.1% of polysaccharide. LM – Low methylated; HM – High methylated. Control gels do not have 

any percentage of polysaccharide.  

 

In the experimental conditions, no binding was observed to the different pectin-related 

polysaccharides.  
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 The binding for RfCBM62-1 observed in the carbohydrate microarray results (Chapter 3) showed 

high specificity for pectin-8, since 11 pectins more were included in the carbohydrate microarray set 

and no signal for those was observed. Also binding was detected for this pectin-8 by anti-β (1-4)-

galactan, carbohydrate-directed monoclonal antibody used for microarray validation. The reported 

binding of this antibody was described to the β-(1-4)-/3 pectic galactan from lupin, of which galactose 

constitutes 91%, and from tomato, which are composed of  > 60% galactose. The galactose percentage 

present in the rhamnogalacturonan from soy bean and polygalacturonic acid were 25 and 1% 

respectively. For the galacturonate polysaccharides from apple and citrus the percentage of galactose is 

not known. One hypothesis is that this pectin-8 has a higher percentage of galactose than these 

polysaccharides, however, further studies are needed before any conclusions. Studies with pectins from 

lupin and tomato are under way.  

The galacturonan DP4 used in MST experiment (Section 5.3.2) was derived from galacturonate LM 

from apple used in this affinity electrophoresis. Although they have a similar sequence, no binding was 

detected in this experiment, in contrast with the MST experiment. The fact that MST detects interactions 

with higher sensitivity than an affinity electrophoresis experiment can be an explanation for these 

results. The galacturonan DP4 may only present part of the motif that is being recognized by RfCBM62-

1. However, further analysis should be carried to understand the specificity of RfCBM62-1. 

 

5.3.4 Crystallization assays  

For crystallization assays of RfCBM62-2, several screens (Table 5.1) were tested in 96-well plates 

using the vapor diffusion method and sitting drop technique. In the first attempt for crystallization four 

screens were tested (80!; PEG ion 1 & 8k;  JCSG and JBS 1,2,3,4) with RfCBM62-1 at a concentration 

of 15.5 mg/ml. As no crystals were observed a different screen was tested, PEG Ion 1 and 2, known to 

have generated crystals for other CBM families. No crystals were obtained for this screen. With the 

amount of protein available, it was only possible to test these screens. However, other screens should be 

tested, considering the limiting amount of protein available. As it was not abundant, the screens should 

be tested by stages, following the results progressively. 

 

Table 5.1 – Experimental conditions used in crystallization assays for RfCBM62-1 with an automated 

nanodrop dispensing equipment (known as crystallization robot). 

 

 

Sample Buffer Concentration (mg/ml) Drop ratioa Dropb (µl) Screens 

RfCBM62-1 B 15.5 1:1 2 
80!; PEG Ion 1 & 8k; JCSG 

and JBS 1,2,3,4 

RfCBM62-1 A 11.4 1:1 2 PEG Ion 1 & 2 

Buffer A: 50 mM HEPES pH=7.5, 100 mM NaCl and 2 mM CaCl2 

Buffer B: H2O with 2 mM CaCl2 

a Protein:precipitant ration 
bFinal drop volume with protein+precipitant 

 

 

Buffer A: 50 mM Hepes pH=7.5, 100 Mm NaCl and 2 mM CaCl2 

Buffer B: H2O with 2 mM CaCl2 



Chapter 5 - RfCBM62-1: A highly specific CBM for pectins 

 

93 

 

5.3.5 RfCBM62-1 3D structure prediction  

In the absence of a 3D structure, ideally obtained using structural characterization methodologies 

such as X-ray crystallography or NMR, different bioinformatic tools are available that allow to infer on 

the expected polypeptide fold of a protein. The success of these calculations is strongly dependent on 

the number of possible similar 3D models of previously determined structures. This similarity is 

evaluated by the alignment of primary amino-acid sequences. 

CBM62 (PDB code 2YFZ) is within the large C. thermocellum cellulosomal protein Cthe_2193 

(defined as CtXyl5A) and is the only known structure of a CBM from family 62 (Montanier et al. 2011). 

Using this structural information, associated to a sequence similarity of 35% between the 2 proteins, 

it was possible to have a glance on a probable 3D structure for RfCBM62-1 (Figure 5.4). 

 

Figure 5.4 - Ribbon representation of RfCBM62-1 similarity model calculated with Phyre2 and CtCBM62 Chain A 

(PDB code 2YFZ) as a template. CtCBM62 SS – Secondary structure of the template sequence. In the template secondary 

structure T corresponds to hydrogen bonded turn, G to 3-turn helix, S to bend and B to residue in isolated β-bridge. The program 

Chimera was used for visualization.  Rainbow ribbon representation from N-terminus (blue) to C-terminus (red). 

 

For the similarity model, residues from 5 to 145 of the query sequence were aligned with the template 

with 96% coverage. The RfCBM62-1 homology model was modeled with 99.9% confidence and 35% 

identity with CtCBM62. With this bioinformatic tool it was possible to predict the RfCBM62-1 three-

dimensional structure. According to the criteria of program Chimera, RfCBM62-1 similarity model 

comprises 7 β-sheets and 3 α-helixes. Nevertheless, this is just a prediction and structural differences 

are expected in lower similarity stretches, in solvent exposed loops and possibly in the recognition site. 
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In order to compare our model with CtCBM62 in complex with 61-α-D-Galactosyl-mannotriose 

(PDB code: 2YB7) and look at the residues involved in ligand binding, a structural superposition was 

calculated (Figure 5.5). 98 pruned atom pairs were aligned with a RMSD of 0.293Ȧ.  

 

 

Figure 5.5 - Representation of the superposition between RfCBM62-1 similarity model and CtCBM62 with 61-α -D-

GalMan3 and respectively amino acid residues involved in ligand binding.  A) Representation of the superposition between 

RfCBM62-1 similarity model and CtCBM62 in complex with 61-α -D-GalMan3 and calcium (PDB code 2YB7). B) CtCBM62 

residues involved in hydrogen bonding with ligand are represented by grey sticks and labeled by three-letter code and number.  

Ribbon representation of RfCBM62-1 in cyan and CtCBM62 in tan. 61-α -D-GalMan3 is represented by sticks and calcium by 

a green sphere. The program Chimera was used for visualization. 

 

In the following discussion, the amino acid residue nomenclature adopted were three-letter code and 

numbering is according to the authors (Montanier et al. 2011). 

The amino acids involved in binding to 61-α-D-GalMan3 in the CtCBM62 structure are Trp754, Asp774, 

Arg803, Tyr806 and Arg809. The superposition between the RfCBM62-1 similarity model and 

CtCBM62 structure (Figure 5.6) allowed to identify common residues between the two. The comparison 

between the binding site residues of CtCBM62 with the aligned residues of RfCBM62-1 showed that 4 

of 5 residues are conserved: Trp754, Asp774, Tyr806 and Arg809.   

 

 

A B 
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Figure 5.6 - Structure-based sequence alignment between RfCBM62-1 and CtCBM62. Residues involved in CtCBM62 

binding to 61-α -D-GalMan3 and respective aligned residues from RfCBM62-1 are showed in blue rectangles. Residues involved 

in CtCBM62 binding to calcium and respective aligned residues from RfCBM62-1 are showed in yellow rectangles. 

 

The authors refer that CtCBM62 specificity is conferred through numerous interactions with the axial 

O4 of the target sugars, a feature that distinguishes galactose and arabinose from the other major sugars 

located in plant cell walls such as mannose, xylose, and glucose. 

Also an important feature is calcium-mediated oligomerization, a feature that is conserved in several 

other CBM families, resulting in avidity effects that confer selectivity for polysaccharides rather than 

monovalent oligosaccharides (Montanier et al. 2011).  The residues involved in calcium binding are 

Lys763, Asp766, Thr771, Ala888 and Glu869. These 5 residues are conserved in our model, which 

means that RfCBM62-1 may also bind to calcium to oligomerize. 

These results could be an indication that RfCBM62-1 may have a similar mode of binding to the axial 

O4 of D-galactose and L-arabinose residues of pectic polysaccharides and to calcium.  

 

5.4 Conclusions 

In this Chapter we continued to study the specificity of RfCBM62-1 based on the previous 

carbohydrate microarray results (Chapter 2). As the previous results showed that RfCBM62-1 binds to 

a yet an uncharacterized pectin, we performed an analysis of interaction with a pectin from apple. 

Effectively, binding was observed for pectin from apple, however, this experiment should be repeated 

in future work. 

A MST experiment was carried out with galacturonate DP4, a pectic oligosaccharide, and binding 

was observed with a Kd in the one digit µM range for the interaction. These results contributed to 

elucidate the structure of the pectin that binds to RfCBM62-1 in the microarrays. This result led us to 

test 6 pectin-related soluble polysaccharides, using affinity gel electrophoresis, in order to understand 

the possible sequence features for binding to pectin-8. However, in these experimental conditions no 

binding was observed for these polysaccharides. These experiments should be repeated in future work. 

Several crystallization screens were perfomed in order to structuraly characterize RfCBM62-1, 

however, no crystals were obtained. RfCBM62-1 is also a small protein, such as CtCBM50, and the 



Chapter 5 - RfCBM62-1: A highly specific CBM for pectins 

 

96 

 

suggestions for future work as in Chapter 4/Section 4.4 related to the removal of the N-terminal His-tag 

and NMR studies should also be considered for this protein. 

The calculated similarity model predicted a 3D structure for RfCBM62-1 comprised of 7 β-sheets 

and 3 α-helices. The superposition with a known structure of a CtCBM62 showed that 4 of the 5 residues 

involved in binding with an oligosaccharide, 61-α -D-GalMan3, were conserved. Also the 5 residues 

involved in calcium binding, an important feature that contributes for CBM oligomerization and 

stabilization, were conserved. 
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6. Integrative conclusions and future work 

The work developed in this thesis was focused on the study of proteins involved in plant cell-wall 

recognition and degradation (CBMs) from two microorganisms, C. thermocellum and R. flavefaciens 

FD-1.  

The carbohydrate microarray designated Fungal and Plant PS set1 used in this study has proven to 

be a valid tool for initial high-throughput screening of newly identified CBMs or CBMs assigned to 

known families in the CAZy database for carbohydrate binding. The results from this initial screening 

will be important to select CBMs to follow-up for ligand specificity assignments and structural 

characterization. The emerging conclusion is that CBMs from R. flavefaciens FD1 showed to be more 

specific for a particular carbohydrate with a binding pattern that is less broad than CBMs from C. 

thermocellum. This is in agreement with results from the analysis of a wide range of CBM sequences 

from both organisms (Ribeiro et al, manuscript in preparation). This could be a reflection of the adaptive 

pressures of the microorganisms to their respective ecological niches. The microarray used is comprised 

mainly of polysaccharides with sequences that are found in plant and fungal cell walls. However, 

polysaccharide samples extracted from biological sources are heterogeneous macromolecules and 

possess heterogeneous sequences. Furthermore, these macromolecules may also contain contaminants 

resulting from the extraction/purification protocol. For this reason, the validation of the array and the 

structural analysis of the probes printed in the array is highly important to ‘map’ the macromolecule and 

be able to make assertive conclusions of the results. To understand which are the glycan epitopes being 

recognized by the CBM and assign their specificity, the macromolecules need to be depolymerized as 

oligosaccharides and thus sequence-defined ‘designer’ microarrays could be prepared for probing with 

the CBMs.  To increase sequence-diversity some sequence-defined oligosaccharides or oligosaccharide 

mixtures were already included in the microarray analysed and enabled the assignment of a specific 

sequence specificity for certain CBMs. The designer microarrays are now under development to include 

an increased number and diversity of sequences and different degrees of polymerization of the 

carbohydrate chain. Future work will be implemented in order to identify the epitopes that are being 

recognized by CBMs.  

High-throughput methods for expression and purification of CBMs are implemented so that the 

smallest amounts of protein are used. These methods work well for the carbohydrate microarray 

analysis, as proteins are stable for the period of analysis and can be analysed directly in their elution 

buffer. However, to produce CBMs at a larger scale required for biophysical and structural analysis, an 

optimization of expression and purification should be considered. The work described here showed that 

the conditions for high-throughput expression (Autoinduction protocol) might be not appropriate to 

scale-up the CBMs production. For the CBMs targeted in this Thesis the IPTG-induction protocol 

reveals to be a better choice to produce protein in higher amounts, as levels of expression are high and 

low contamination is observed when compared with the Auto-induction protocol. After purification, 

attempts were made to increase the proteins concentration. However, both CtCBM50 and RfCBM62-1 
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show a tendency to precipitate at higher concentration levels after storage at 4ºC, which suggests a 

possible instability of the proteins. Many reasons could account for this, but the influence of the 

relatively long N-terminal His-tags should be investigated. In future work, one of the strategies could 

be the comparison of the protein behavior with and without the N-terminal His-tag in 

thermofluorescence assays. Oligomerization should also be assessed and this can be done by dynamic 

light scattering (DLS), a technique used to determine the size distribution profile of small particles in 

suspension, or NMR. 

The family 50 CBMs, or LysM domain, from Clostridium thermocellum still lacks structural 

characterization and the carbohydrate ligand specificities were not proven experimentally at the start of 

this thesis. We identified the CtCBM50 as a novel chitin binding domains, displaying strong binding to 

insoluble chitin and to a chitin oligosaccharide, the pentasaccharide with the sequence 

GlcNAcβ4GlcNAcβ4GlcNAcβ4GlcNAcβ4GlcNAc. Efforts to crystallize CtCBM50 for determination 

of its structure produced a preliminary crystallization condition with diffracting crystals. Unfortunately, 

the optimization assays were not successful.  

The degradative machinery R. flavefaciens is not well characterized and new insights are important 

to understand how this microorganism degrades plant cell wall carbohydrates. In the microarrays 

RfCBM62-1 showed to be highly specific for a pectin sample designated Pectin-8 (characterization is 

underway) that is part of a large collection isolated from a medicinal plant extract. In this thesis, weak 

binding with pectin from apple, analyzed by affinity gel electrophoresis, and a derived oligosaccharide 

(galacturonan DP4), analyzed by MST, was also observed. However, these results require further 

investigation. Crystallization assays for determination of RfCBM62-1 structure were unsuccessful to 

this date.  

It is known that the His-tag (or other tags) can interfere with the crystallization process, especially 

for small proteins. In future work, the removal of the N-terminal His-tag from CtCBM50 and RfCBM62-

1 should be considered. In addition, these proteins are excellent candidates for NMR studies, due to their 

small size, which should be considered as a method of choice for the structural characterization. In 

anticipation of this, a preliminary 1D 1H NMR spectrum was performed and confirmed that CtCBM50 

is folded. 

Trying to overcome the unsuccessful crystallization and in an attempt to derive relevant structural 

information, similarity models for both CBMs were made using Phyre2 and compared with known 

structures with >30% identity to analyze the residues at the binding site. For CtCBM50, 5 residues of 

the model from 11 of the known template structure residues were conserved. In contrast, RfCBM62-1 

model contains 4 of 5 residues of the known template structure. This could mean that, when compared 

to the template structures, these CBMs may have a similar mode of binding to oligosaccharides. 

The results described in this thesis contributed to increase the knowledge about ligand specificities 

of newly identified CAZY CBMs and open the way for the structural characterization of CBMs and 

CBM-ligand complexes. Understanding the versatility of plant and fungal saccharide sequences and 
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their recognition by different CBM families is of great importance. We hope to understand how these 

two cellulotic microorganisms evolved in different ecological niches. The adaptation of each 

microorganism is a reflection from their adaptive pressures to respective ecological niches, translating 

in divergent evolution of the proteome. These results are also important for biotechnological 

applications, such as production of biofuels and animal feed through the use of the multimodular 

complex cellulosome or modular enzymes. 
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Supplementary Table 1 - Carbohydrate binding modules (CBMs) investigated for carbohydrate binding using carbohydrate microarrays and their 

modular organization. CBMs under study are highlighted in bold and respective recombinant protein sequence, protein identification, family, molecular 

weight, base pairs, extinction coefficient and isoelectric point are depicted. N-terminal His-tag is highlighted at yellow. 

Microorganism Molecular Architecture Recombinant protein sequence Protein ID Family 
Molecular 

weight (KDa) 

Base 

pairs 

Extinction 

Coefficient (M-1) 

Isoeletri

c point 

C. 

thermocellum 

 

CBM3 

MGSSHHHHHHSSGPQQGLRQDGTKGLKIQYYSR

KPHDSAGIDFSFRMFNTGNEAIDLKDVKVRYYFK

EDVSIDEMNWAVYFYSLGSEKDVQCRFYELPGK

KEANKYLEITFKSGTLSPNDVMYITGEFYKNDWT

KFEQRDDYSYNPADSYSDWKRMTAYISNKLVW

GIEPN 

 

Cthe_0059 3 20,1 516 42860 
6.37 

 

CBM4-GH9-CBM3-

DOC1 

MGSSHHHHHHSSGPQQGLRPYKNDLLYERTFDE

GLCYPWHTCEDSGGKCSFDVVDVPGQPGNKAFA

VTVLDKGQNRWSVQMRHRGLTLEQGHTYRVRL

KIWADASCKVYIKIGQMGEPYAEYWNNKWSPY

TLTAGKVLEIDETFVMDKPTDDTCEFTFHLGGEL

AATPPYTVYLDDVSLYDPEY   

Cthe_0413 4 21,0 1031 45630 
5.62 

 

SLH-SLH-SLH-

CBM54-GH16-CBM4-

1-CBM4-2-CBM4-

CBM4 

MGSSHHHHHHSSGPQQGLRIYNGTFDQGPNRMG

FWNFVVDSTAKATYYIGSDVNERRFETRIEKGGT

SRGAIRLVQPGINIENGKTYKVSFEASAANTRTIE

VEIASNLHNSSIFATTFEISKESKIYEFEFTMDKDS

DKNGELRFNLGGSNVNVYIDNVVMKRVSTDEVE    

Cthe_2809 4 19,2 570 14440 6.16 

GH2-CBM6-DOC1 

MGSSHHHHHHSSGPQQGLRPVPRSAFTRIEAESY

DAQSGIQTEDCSEGGKDVGYIENGDFVVYKAIDF

GRGAASFKARVASATSGGNIELRIDSIDGPVVGIC

PVAGTGGWQEWADATCEVSDLKGVHDLYLKFT

GGSGYLLNVNWFTFVEGNSDED 

Cthe_2197 6 16,8 471 24075 4.82 

CBM6-DOC1 

MGSSHHHHHHSSGPQQGLREPRSAFTRIEAESYN

GQSGIQTENCSEGGMDVGYIENGDYVVYKNIDF

GKGAASFKARVASATSGGNIELRIDSIDGPVVGIC

PVAGSGGWQQWVDATCEVSGLKGVHDLYLKFT

GGSGYLLNINWFTFVEGNNDE 

Cthe_2195 6 16,6 465 25565 5.21 

GH43-CBM13-DOC1 

MGSSHHHHHHSSGPQQGLRTRYKLVNKNSGKV

LDVLDGSVDNAAQIVQWTDNGSLSQQWYLVDV

GGGYKKIVNVKSGRALDVKDESKEDGGVLIQYT

SNGGYNQHWKFTDIGDGYYKISSRHCGKLIDVR

KWSTEDGGIIQQWSDAGGTNQHWKLVLVSS 

Cthe_0661 13 17,8 480 43430 8.60 
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CBM22-GH10-DOC1 

MGSSHHHHHHSSGPQQGLRAEGNLLFNPGFELG

STEGWYPYGECTIEAVGTEAHSGNYSVFVTDRT

QDWNGVAQDMLDKLTVGMTYQVSAWVKVAG

TGSHQVKISMKKVETGKEPVYDNIASITVEGSEW

YRLSGPYSYTGTNVTNLELYIEGPQPGVSYYVDD

VTVTEVGSA 

Cthe_2590 22 18,9 519 38390 4.98 

CBM25 

MGSSHHHHHHSSGPQQGLRFRLVYSGILAKNNP

ENLYAVIGYGNNLAWEDIESYSMRKIGDQKYEL

LFPVKRPGNINIAFKDDADNWDNNSGMNYCFEN

HVYQGSH 

Cthe_0956 25 12,2 318 21430 6.42 

GH5-CBM32-DOC1 

MGSSHHHHHHSSGPQQGLRAGSIAQNKPVYASS

TEPGLGNTPEKAVDGNIATRWSSDYSDNQYIYV

DLLDEYEIERVYIEWEAAYARQYKIQVSNDAVT

WTDVYTEYNGDGDIDDIYLEARGRYVRIYCMQR

ATQYGNSIFELGVYPKGGIA 

Cthe_0821 32 17,2 456 38850 4.97 

CBM42 

MGSSHHHHHHSSGPQQGLRYGQFMKFESSNYRG

YYIRVKSFSGRIDPYVNPVEDSMFKIVPGLADPSC

ISFESKTYPGYYLKHENFRVILKKYEDTDLFREDA

TFRVVPGWADENMISFQSYNYPYRYIRHRDFELY

IENIKTDLDRKDATFIGIKVD 

Cthe_1273 42 18,8 474 26360 7.10 

CBM50 
MGSSHHHHHHSSGPQQGLRYTVKPGDTMWKIA

VKYQIGISEIIAANPQIKNPNLIYPGQKINIPNI 
Cthe_0300 50 7,4 198 9970 9.78 

R. flavefaciens 

 

CBM6-DOC1 

MGSSHHHHHHSSGPQQGLRGSGGSTDDIIEAEKY

DIQKGIQTENCSEGGSDVAYIENGDYIGFKNIDFG

SGTDSISFRIGSNGAEASIEVRLGAADGKLIGTLPV

KSTGGWQTWNTQTCAIENTSGRNDVYFVFKGG

DGYLFNINWWKPDKPSEPI 

3747 6 16,8 468 29575 5.08 

GH43-CBM13-CBM13-

DOC1 

MGSSHHHHHHSSGPQQGLRSGTELLSGVPYFITN

VNSGLSLDLPEGKLDNGTNIQQWDFNKLWAQQ

WRIISVDKEWCRIVSLGDEGKCIAVAKDTADDGT

NVELQTYTGADNQLFKFVKSGSSYGIVSKCSGGK

GALDVFEWSKENGGNVNQFAYNEYACQLWNIA

PV 

2115 13 18,5 504 40700 5.60 

GH30-CBM62-1-

CBM62-2-DOC1 

MGSSHHHHHHSSGPQQGLRTNKINVDAANVTGT

KSWKDSSDNYSKVFDGSTGTFFDGLENGWVQA

DLGQSYDISAIGFAPRSGYEYRCADGKFMVSDDG

ENWTTIYTINGKPATGMNYVSKFSASATGRYIRY

EIPAGAPNNEYNKDNVYNCNIAEIEVYGTPS 

3398 62 18,0 492 33015 5.59 
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Supplementary Table 2 - List of all saccharide probes included in the Fungal and Plant polysaccharide set 1. The microarray is comprised of polysaccharide samples from different sources, 

representative of major sequences found in fungal and plant cell walls, and a few selected sequence-defined oligosaccharides prepared as neoglycolipids (depicted in green). The probes are grouped 

according to the printing layout (set position). 

Posa Probe Sourceb 
Predominant oligosaccharide sequence/ 

Monosaccharide composition 

1 
Dextran  
 

Leuconostoc mesenteroides 
(Sigma, D4876) 

α-(1-6) glucose 

2 
Pullulan  
 

Pullularia pullulans 
(Megazyme, P-PULLN) 

Mixed-linked α-(1-4;1-6)-glucose 

3 Curdlan (50 mM NaOH) 
Agrobacterium sp.ATCC31749 
                      (IC) 

Linear β-(1-3)-glucose 

4 NSG-β-glucan 
Saccharomyces cerevisiae 

(Biothera) 
Linear β-(1-3)-glucose backbone with occasional monoglucosyl β1-6 glucose 
branches 

5 PGG-β-glucan 
Saccharomyces cerevisiae 

(Biothera) 
Linear β-(1-3)-glucose backbone with occasional monoglucosyl β1-6 glucose 
branches 

6 
Lentinan 
 

Lentinus edodes 

(IC) 
β-(1-3)-glucan with β-(1-6)-branching 1:1 

7 Grifolan 
Grifola frondosa 

(IC) 
β-(1-3)-glucose backbone with highly ramified oligomeric β-(1-6)-glucose 
branches 

8 Barley glucan 
Barley flour 

(Megazyme, B-BGBL) 
Mixed-linked β-(1-3;1-4)-glucose. 
Also contains 2% arabinose and 0.2% xylose. 

9* Barley glucan (Medium viscosity) 
Barley flour 

(Megazyme, B-BGBM) 
Mixed-linked β-(1-3;1-4)-glucose  
Also contains 2% arabinose and 0.2% xylose. 

10 Oat β-glucan (Medium viscosity) 
Oat flour 

(Megazyme, P-BGOM) 
Mixed-linked β-(1-3;1-4)-glucose 

11* Fucoidan  
Fucus vesiculosus 

(Sigma F-5631) 
Fucose-rich, sulfated polysaccharide 

12 
Pustulan  
 

Umbilicaria papullosa 
(Calbiochem) 

Linear β-(1-6)-glucose 

13 Xylan (X1) 
Plum 
(UA) 

Sample rich in xylans: 
 Rha (3%), Fuc (2%), Ara (11%), Xyl (67%), Man (0%), Gal (6%), Glc (5%), Ur Ac 
(6%) 

14 Xylan (X2) 
Plum  
(UA) 

Sample rich in xylans: 
 Rha (3%), Fuc (3%), Ara (12%), Xyl (73%), Man (0%), Gal (0%), Glc (4%), Ur Ac 
(5%) 

15* Mannoprotein (MP2) 
Saccharomyces cerevisiae 

 (UA) 
Yeast cell wall; sequential extraction 8M KOH 
 Ara (1%), Xyl (0%), Man (65%), Glc (35%) 

16 Xyloglucan (XG1) 
Plum  
(UA) 

Sample rich in xyloglucans: 
Rha (2%), Fuc (5%), Ara (5%), Xyl (40%), Man (6%), Gal (13%), Glc (24%), Ur Ac 
(6%) 
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17 Mannan  
Saccharomyces cerevisiae 

(Sigma, M7504) 
α-(1-6)-mannose 

18* Mannoprotein (MP1) 
Saccharomyces cerevisiae  

(UA) 
Yeast cell wall; sequential extraction 4M KOH 
 Ara (1%), Xyl (1%), Man (85%), Glc (13%) 

19 Mannoprotein (MP2) 
Saccharomyces cerevisiae  

(UA) 
Yeast cell wall; sequential extraction 8M KOH 
 Ara (1%), Xyl (0%), Man (65%), Glc (35%) 

20* Xyloglucan (XG1) 
Plum  
(UA) 

Sample rich in xyloglucans 
Rha (2%), Fuc (5%), Ara (5%), Xyl (40%), Man (6%), Gal (13%), Glc (24%), Ur Ac 
(6%) 

21 Arabinoxylan (AX1) 
Dreche 
 (UA) 

Sample rich in arabinoxylans; KOH 0.1 M (DP 41); Branching degree 0.57 
Ara (40%), Xyl (54%), Man (0%), Gal (3%), Glc (3%) 

22 Xyloglucan (XG2) 
Plum 
 (UA) 

Sample rich in xyloglucans 
Rha (2%), Fuc (6%), Ara (6%), Xyl (46%), Man (4%), Gal (14%), Glc (22%), Ur Ac 
(1%) 

23 Arabinoxylan (AX2) 
Dreche  

(UA) 
Sample rich in arabinoxylans (DP24); Branching degree 0.48 
 Ara (25%), Xyl (46%), Man (1%), Gal (3%), Glc (25%) 

24 Arabinogalactan (AG1) 
Coffee 
 (UA) 

Sample rich in arabinogalactans (High MW, M23pp) 
Ara (5%), Man (29%), Gal (64%), Glc (1%) 

25 Galactomannan (GM1) 
Coffee 
(UA) 

Sample rich in galactomannans (High MW);  
Ara (5%), Man (62%), Gal (31%), Glc (2%) 

26 Galactomannan (GM2) 
Coffee 
 (UA) 

Sample rich in galactomannans (High MW);  
Ara (2%), Man (87%), Gal (10%), Glc (2%) 

27 Pectin-1 
Malian medicinal tree 
Terminalia macroptera 

(IC) 
Under analysis 

28 Pectin-2 
Malian medicinal tree 
Terminalia macroptera 

(IC) 
Under analysis 

29 Pectin-3 
Malian medicinal tree 
Terminalia macroptera 

(IC) 
Under analysis 

30 Pectin-4 
Malian medicinal tree 
Terminalia macroptera 

(IC) 
Under analysis 

31 Pectin-5 
Malian medicinal tree 
Terminalia macroptera 

(IC) 
Under analysis 

32 Pectin-6 
Malian medicinal tree 
Terminalia macroptera 

(IC) 
Under analysis 

33 Pectin-7 
Malian medicinal tree 
Terminalia macroptera 

Under analysis 
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 (IC) 

34 Pectin-8 
Malian medicinal tree 
Terminalia macroptera 

 (IC) 
Under analysis 

35 Pectin-9 
Malian medicinal tree 
Terminalia macroptera 

 (IC) 
Under analysis 

36 Pectin-10 
Malian medicinal tree 
Terminalia macroptera 

 (IC) 
Under analysis 

37 Pectin-11 
Malian medicinal tree 
Terminalia macroptera 

 (IC) 
Under analysis 

38 Pectin12 
Malian medicinal tree 
Terminalia macroptera 

 (IC) 
Under analysis 

39 Pectin-13 
Malian medicinal tree 
Terminalia macroptera 

 (IC) 
Under analysis 

40 Xylan 
Palmaria palmata  
(Elicityl, XYL100) 

Mixed-linked β-(1-3;1-4)-D-xylose 1:4 

41* Glucurono-XyloMannan (125 mM NaCl)  
Tremella fuciformi  
(Elicityl, HGL200) 

α-(1-3)-mannose branched with xylose, glucuronic acid & fucose 

42 Glucurono-XyloMannan (250 mM NaCl) 
Tremella fuciformi  
(Elicityl, HGL200) 

α-(1-3)-mannose branched with xylose, glucuronic acid & fucose 

43 Galactomannan Guar 
Guar 

(Megazyme, P-GGMM) 
Galactose: Mannose ratio = 38:62 

44 
Galactomannan Carob  
(Low viscosity) 

Carob 
(Megazyme, P-GALML) 

Galactose: Mannose ratio = 21:79 

45 
Galactomannan Guar  
(Galactose depleted, high viscosity) 

Guar 
(Megazyme, P-GGM21) 

Galactose: Mannose ratio = 21:79 

46 Galactomannan (Hydrolysed) 
Coffee 
(UA) 

Under analysis 

47* Poly-ManU  
Algae 
(IC) 

Under analysis 

48 Lichenan 
Icelandic moss 

 (Megazyme, P-LICHN) 
Mixed-linked β-(1-3;1-4)-glucose 

49 Man4(β4)-DH 
Megazyme 

(OMTE) 
Manβ1-4Manβ1-4Manβ1-4Man-DH 

50 Man6(β4)-DH 
Megazyme 
(O-MHE) 

Manβ1-4Manβ1-4Manβ1-4Manβ1-4Manβ1-4Man-DH 

51 Ara6(α5)-DH Megazyme, O-AHE Araα1-5Araα1-5Araα1-5Araα1-5Araα1-5Ara-DH 
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52 Ara7(α5)-DH Megazyme, O-AHP Araα1-5Araα1-5Araα1-5Araα1-5Araα1-5Araα1-5Ara-DH 

53 Xyl5(β4)-DH  Megazyme, O-XPE Xylβ1-4Xylβ1-4Xylβ1-4Xylβ1-4Xyl-DH 

54 Xyl6(β4)-DH  Megazyme, O-XHE Xylβ1-4Xylβ1-4Xylβ1-4Xylβ1-4Xylβ1-4Xyl-DH 

55 Xyl3Glc4-DH Megazyme, O-XGHON 

    Xylα1-6          Xylα1-6 
              │                    │ 
          Glcβ1-4Glcβ1-4Glcβ1-4Glc-DH                  (designated as XXXG motif) 
                       │                         
             Xylα1-6                

56 GN5-AO Megazyme, O-CHI5 GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ1-4GlcNAc-AO 

57 
Xyl-glucan DP8-AO 
 

Megazyme, O-XGHON 

Major component  DP8 (contains small % of DP7, XXXG motif)                
 
                  Galβ1-2 
                             │ 
Xylα1-6             Xylα1-6 
          │                       │ 
          Glcβ1-4Glcβ1-4Glcβ1-4Glc-AO                     (designated as XXLG motif) 
                        │ 
              Xylα1-6 

58 Xyl-glucan DP9-AO Megazyme, O-XGHON 

                Galβ-2 
                         │ 
Xylα1-6             Xylα1-6 
          │                       │ 
          Glcβ1-4Glcβ1-4Glcβ1-4Glc-AO                     (designated as XLLG motif) 
                        │ 
              Xylα1-6 
                  │ 
         Galβ-2                        

59 Galactomannan DP7a-AO  Elicityl, Man219 
DP7 (TLC-1) 
Mixture of β(1-4) linked D-mannose oligosaccharides.  
Average Man/Gal Ratio range ~4-7 

60 
Galactomannan DP6-AO  
 

Elicityl, Man219 
DP6 (TLC-2) 
Mixture of β(1-4) linked D-mannose oligosaccharides.  
Average Man/Gal Ratio range ~4-7 

61 Galactomannan DP8-AO  Megazyme, O-GGM5 

DP8  
Prepared by controlled enzymatic hydrolysis of carob galactomannan 
 
    Galβ-2     Galβ-2    Galβ-2 
              │             │            │ 
Manβ1-4Manβ1-4Manβ1-4Manβ1-4Man-AO 

62 Galactomannan DP7b -AO  Megazyme, O-GGM5 
DP7  
Prepared by controlled enzymatic hydrolysis of carob galactomannan 
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    Galβ-2     Galβ-2 
              │             │ 
Manβ1-4Manβ1-4Manβ1-4Manβ1-4Man-AO 

63 
Ara9(α5)-AO 
 

Megazyme, O-AOC Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Ara-AO 

64 
Ara8(α5)-AO 
 

Megazyme, O-AOC Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Ara-AO 

 
a Position matching the original microarray set. 

b The sources are indicated for each carbohydrate. IC- Collection available at the carbohydrate microarray Facility at Imperial College London; UA – Collaboration with Prof. 

Manuel Coimbra, University of Aveiro. The collection of pectin samples were received from Prof. Berit and were purified from the Malian medicinal tree Terminalia macroptera 

(Zou et al. 2015).The sequence for these pectin samples is under analysis. The oligosaccharides were prepared as lipid-linked probes, neoglycolipids (NGLs); DH, NGLs 

prepared from reducing oligosaccharides by reductive amination with the amino lipid, 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) (Liu et al. 2012); AO, NGLs 

prepared from reducing oligosaccharides by oxime ligation with an aminooxy (AO) functionalized DHPE (Liu et al. 2007). 

*Probes excluded after a quality control analysis. 
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Supplementary information 1: 

 

Solutions for DH5α competent cells preparation 

SOB (Super optimal broth) medium 

2% peptone 

0.5% Yeast extract 

10 mM NaCl 

2.5 mM KCL 

Adjust the pH to 7.5 and autoclave  

Then add 10 mM MgCl2 and 10 mM MgSO4. 

 

TB (Transformation buffer) 

250 M KCL 

15 mM CaCl2.2H2O 

10 mM PIPES 

Dissolve the components and adjust the pH to 6.7. Then add: 

55 mM MnCl2 

Filter with a 0.45 µm sterile filter and store at 4ºC. 

 

Solutions for BL21(DE3) competent cells preparation 

LB (Luria-Bertani) medium 200ml:  

2 g Tryptone (Difco)  

1 g Yeast Extract (Difco) 

1 g NaCl  

Adjust with com 1N NaOH. 

 

TFBI (Transformation buffer I) 

30 mM KOAc  

100 mM RbCl  

10 mM CaCl2 + 50 mM MnCl215% glycerol  

Adjust to pH 5.8 with acetic acid and filter (0.45 µm) to sterilize.  

 

TFBII (Transformation buffer II) 

10 mM MOPS  

75 mM CaCl2  

10 mM RbCl  

15% glycerol  

Adjust pH to 6.5 with KOH and filter to sterilize. 
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Supplementary information 2: 

 

Luria Bertani and AutoInduction medium cultures used for the two protocols of expression 

 
Luria Bertani medium culture (1L) 

- 10g Tryptone (Sigma-Aldrich®); 

- 10g NaCl (Panreac®); 

- 5g Yeast (NZYeTch®); 

- Required volume of distilled water. 

 

Autoclave for 20 minutes at 120ºC. 

 

NZYTech® Autoinduction medium (1L) 

- 50g of NZY AutoInduction LB medium (powder); 

- 10 ml glycerol; 

- Required volume of distilled water. 

 

Autoclave for 15 minutes at 121ºC. 
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Supplementary Figure 1 - SDS-PAGE (10% acrylamide) showing IMAC purification of CBMs (expressed with 

Autoinduction protocol) from different families with His Gravitrap® columns. The CBMs are identified by family and 

protein ID. Respective protein lanes are identified by a blue line. CBMs were eluted with 6 ml of 50 mM HEPES at a pH  of 

7.5, 1M NaCl, 2 mM CaCl2 and 500 mM imidazole.  The fractions were eluted and analyzed in separated: one fraction with 3 

ml and three fractions with 1 ml each. E1(Eluted fration 1) -  3ml; E2(Eluted fraction 2) -  1 ml; E3 (Eluted fraction 3) – 1ml; 

E3 (Eluted fraction 3) – 1 ml. 
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Supplementary Figure 2 – Thermofluor screen (in house). All the buffers were made at 100  mM. 
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Supplementary Figure 3 – PEG Ion and PEG Ion2 commercial screens from Hampton Researh used in preliminary crystallization assays. A) PEG Ion screen. B) PEG Ion2 screen. 

Figure taken from www.hamptonresearch.com. 

 

Supplementary Figure 3 – PEG Ion and PEG Ion2 screens from Hampton Researh used in preliminary crystallization assays. A) PEG Ion screen. B) PEG Ion2 screen. Figure taken 

from www.hamptonresearch.com. 

 

Supplementary Figure 3 – PEG Ion and PEG Ion2 screens from Hampton Researh used in preliminary crystallization assays. A) PEG Ion screen. B) PEG Ion2 screen. Figure taken 

from www.hamptonresearch.com. 

http://www.hampton/
http://www.hampton/
http://www.hampton/
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Supplementary Figure 4– JSCG-plus HT96 commercial screen used for preliminary crystallization assays. Taken from www.moleculardimensions.com. 
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JBS 1 JBS 2 

Supplementary Figure 5 –JBS 1 and JBS 2 commercial  screens used in preliminary cristalization assays. Taken from www.jenabioscience.com 
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Supplementary Figure 6 –JBS 3 commercial screen used in preliminary cristalization assays. Taken from www.jenabioscience.com 
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Supplementary Figure 7 –JBS 4 commercial screen used in preliminary cristalization assays. Taken from www.jenabioscience.com 
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Supplementary Figure 8 – X-ray diffraction pattern from a CtCBM50 crystal. Crystal was tested in house in D8 Venture diffractometer. 
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Supplementary Table 3 – EWI and EWII screen used for preliminary crystallization assays. This screen was made in house and can be consulted in Macromolecular Cristallography 

laboratory with Cecilia Bonifácio. 

A1-EWI (1) 
0.1M CAPS 9.7 
20 % PEG 8K 

A2-EW (2) 
0.2 M NaCl 
0.1M HEPES7.5 
10 % Isopp 

A3-EWI (3) 
0.1 M CAPS 9.7 
15 % Etanol 

A4-EWI (4)  
0.2 M MgCl2 

0.1 M Imidaz 8 
35 % MPD 
 

A5-EWI (5) 
 0.1M CAPS 10.5 

30 % PEG 400 

A6-EWI (6)  
0.1M Citrato 5.5 

20 % PEG 3K 

A7-EWI (7) 
 0.2 M ActZn 
0.1 M MES 6 
10 % PEG 8K 
 

A8-EWI (8) 
 0.1 M Citrato 5.5 

2 M (NH4)2SO4 

A9-EWI (9)  
0.1M Acetato 4.5 

1 M NH4H2PO4 

A10-EWI (10) 
0.1 M TRIS 7 
20 % P2K MME 

A11-EWI (11)  
0.2 M Li2SO4 
0.1 M MES 6 
20 % Dioxan 
 

A12-EWI (12)  
0.2 M ActCa 
0.1 M Imidaz 8 
20 % PEG 1K 
 

B1-EWI (13) 
 0.1 M Cac 6.5 

  1.26M(NH4)2SO4 

B2-EWI (14)  
0.1 M Cac 6.5 
1 M CitratoNa3 
 

B3-EWI (15) 
 0.2 M Li2SO4 
 0.1 M Imidaz 8 
10 % PEG 3K 
 

B4-EWI (16)  
0.1 M Fosf 6.2 
2.5 M NaCl 

B5-EWI (17)  
0.2 M Li2SO4 
0.1 M Acetato 4.5 

30 % PEG 8K 
 

B6-EWI (18) 
 0.2 M NaCl 
 0.1 M Imidaz 8 
1 M Tartar K/Na 
 

B7-EWI (19) 
 0.1 M TRIS 7 
20 % PEG 1K 

B8-EW7 (20) 
 0.2 M NaCl 
 0.1 M Imidaz 8 
0.4 M FosfNa 
1.6 M FosfK 

B9-EWI (21)  
0.1M HEPES 7.5 
20 % PEG 8K 

B10-EWI (22)  
0.1 M TRIS 8.5 
10 % Isopropanol 

B11-EWI (23)  
0.2 M MgCl2 0.1 
M Imidaz 8 
15 % Etanol 
 

B12-EWI (24)  
0.2 M NaCl 0.1 
M TRIS 7 
35 % MPD 
 

C1-EWI (25) 
 0.2 M MgCl2 
 0.1 M TRIS 8.5 
30 % PEG 400 
 

C2-EWI (26) 
 0.1 M CAPS 9.7 
 10 % PEG 3K 
 

C3-EWI (27) 
 0.2 M Li2SO4 
0.1M CAPS 10.5 
1.2 M FosfNa 
0.8 M FosfK 

C4-EWI (28 ) 
0.2 M NaCl 
 0.1M HEPES7.5 
 20 % PEG 3K 
 

C5-EWI (29)  
0.2 M NaCl 0.1 
M CAPS 9.7 10 
% PEG 8K 
 

C6-EWI (30)  
0.2 M NaCl 
 0.1M Acetato 4.5 
1.26 M (NH4)2SO4 

 

C7-EWI (31)  
0.2 M NaCl 
 0.1M Fosf-Cit 4.2 

20 % PEG 8K 

 

C8-EWI (32)  
0.1 M Fosf 6.2 
10 % PEG 3K 
 

C9-EWI (33)  
0.2 M Li2SO4 

 0.1M CAPS10.5 
2 M (NH4)2SO4 
 

C10-EWI (34) 
 0.1 M Imidaz 8 
1 M NH4H2PO4 

C11-EWI (35) 
 0.1M Acetato 4.5 

 20 % Dioxan 

C12-EWI (36) 
 0.1 M Imidaz 8 
1 M CitratoNa3 

D1-EWI (37)  
0.1 M Imidaz 8 
2.5 M NaCl 
 

D2-EWI (38)  
0.2 M Li2SO4  
0.1 M CAPS 9.7  
1 M Tartar K/Na 
 

D3-EWI (39) 
 0.2 M Li2SO4 
0.1M Fos-Cit4.2 
20 % PEG 1K 
 

D4-EWI (40)  
0.2 M ActCa 
0.1 M MES 6 
10 % Isopropanol 

 

D5-EWI (41) 
 0.1 M CAPS 9.7 
 30 % MPD 

D6-EWI (42) 
 0.1 M TRIS 7 
15 % Etanol 

D7-EWI (43)  
0.1 M Fosf 6.2 
35 % MPD 

D8-EWI (44) 
 0.2 M ActCa 
 0.1M Acetato 4.5 

 30 % PEG 400 
 

D9-EWI (45)  
0.1M Acetato 4.5 

20 % PEG 3K 

D10-EWI (46)  
0.2 M ActCa 
 0.1 M Imidaz 8 
10 % PEG 8K 
 

D11-EWI (47)  
0.2 M Li2SO4 

 0.1 M TRIS 7 
1.26 M (NH4)2SO4 

 

D12-EWI (48)  
0.2 M ActZn 
 0.1M Acetato 4.5 

20 % PEG 1K 
 

E1-EWII (1)  
0.2M ActZn 
0.1M Acetato 4.5 
 10 % PEG 3K 
 

E2-EWII (2)  
0.2 M Li2SO4 
0.1 M MES 6 
35 % MPD 
 

E3-EWII (3)  
0.2 M MgCl2 
0.1 M TRIS 8 
 20 % PEG 8K 
 

E4-EWII (4)  
0.2 M NaCl 
0.1 M Cac 6.5 
2 M (NH4)2SO4 
 

E5-EWII (5) 
 0.2 M NaCl 
 0.1M HEPES7.5 
 20 % Dioxan 
 

E6-EWII (6)  
0.2 M Li2SO4 
0.1M Fos-Cit4.2 
10 % Isopropanol 

E7-EWII (7) 
 0.2 M NaCl 
 0.1 M TRIS 7 
 30 % PEG 3K 
 

E8-EWII (8) 
 0.2 M NaCl  
0.1 M Fosf  6.2 
 10 % PEG 8K 
 

E9-EWII (9) 
0.1M Fos-Cit4.2 
2 M (NH4)2SO4 

E10-EWII (10) 
 0.1 M TRIS 8.5 
 1 M NH4H2PO4 

E11-EWII (11)  
0.2 M ActZn 
 0.1 M Cac 6.5 
10 % Isopropanol 

 

E12-EWII (12) 
 0.2 M Li2SO4 
0.1 M Cac 6.5 
30 % PEG 400 
 

F1-EWII (13)  
0.2 M Li2SO4 
0.1M Citrato5.5 
 15 % Etanol 
 

F2-EWII (14)  
0.2 M NaCl 
 0.1 M Fosf 6.2 
20 % PEG 1K 
 

F3-EWII (15) 
 0.1M HEPES7.5 

1.26M(NH4)2SO4 

F4-EWII (16)  
0.1 M CAPS 9.7 
1 M CitratoNa3 

F5-EWII (17) 
 0.2 M MgCl2 
 0.1 M TRIS 7 
2.5 M NaCl 
 

F6-EWII (18)  
0.2 M ActCa  
0.1 M TRIS 7 
20 % PEG 3K 
 

F7-EWII (19) 
0.1M Fos-Cit4.2 
1.26 M Fosf Na 
0.4 M Fosf K 

F8-EWII (20)  
0.2 M ActZn  
0.1 M MES 6 
15 % Etanol 
 

F9-EWII (21)  
0.1M Acetato 4.5 

35 % MPD 

F10-EWII (22)  
0.1 M Imidaz 8 
10 % Isopropanol 

 

F11-EWII (23)  
0.2 M MgCl2 

 0.1M HEPES7.5 
 15 % Etanol 
 

F12-EWII (24) 
 0.2 M NaCl 
0.1M Imidaz 8 
30 % PEG 8K 
 

G1-EWII (25) 
0.2 M NaCl 
 0.1M HEPES7.5 
35 % MPD 
 

G2-EWII (26) 
0.1 M CAPS 9.7 
30 % PEG 400 

G3-EWII (27)  
0.2 M MgCl2 0.1 
M Cac 6.5 
 10 % PEG 3K 
 

G4-EWII (28)  
0.2 M ActCa 0.1 
M MES 6 
 20 % PEG 8K 
 

G5-EWII (29)  
0.2 M NaCl 0.1 
M CAPS 9.7 
1.26 M (NH4)2SO4 

 

G6-EWII (30)  
0.2 M ActZn 
 0.1 M Imidaz 8 
 20 % Dioxan 
 

G7-EWII (31)  
0.2 M NaCl  
0.1 M TRIS 7  
1 M CitratoNa3 
 

G8-EWII (32) 
 0.1 M TRIS 7 
 20 % PEG 1K 

G9-EWII (33)  
0.2 M NaCl 
0.1M Citrato5.5 
 1 M NH4H2PO4 

G10-EWII (34)  
0.1 M Imidaz 8 
10 % PEG 8K 

G11-EWII (35)  
0.1 M Acetato 4.5 

0.8 M Fosf Na 
1.2 M Fosf K 

G12-EWII (36)  
0.2 M NaCl 
0.1M Fos-Cit4.2 
10 % PEG 3K 
 

H1-EWII (37) 
 0.2 M Li2SO4 
0.1 M TRIS 7 
 1 M Tart K/Na 
 

H2-EWII (38)  
0.2 M Li2SO4 
0.1 M Acetato 4.5 

2.5 M NaCl 
 

H3-EWII (39) 
 0.2 M NaCl 
0.1M CAPS 10.5 
20 % PEG 8K 
 

H4-EWII (40)  
0.2 M ActZn 
0.1 M Imidaz 8 
20 % PEG 3K 
 

H5-EWII (41)  
0.2 M Li2SO4  
0.1 M TRIS 7 
 2 M (NH4)2SO4 
 

H6-EWII (42) 
 0.2 M NaCl 
0.1M HEPES 7.5 
30 % PEG 400 

H7-EWII (43)  
0.2 M MgCl2 0.1 
M TRIS 7 
10 % PEG 8K 
 

H8-EWII (44)  
0.2 M MgCl2 0.1 
M Cac 6.5 
20 % PEG 1K 
 

H9-EWII (45) 
 0.1 M MES 6 
1.26 M (NH4)2SO4 

H10-EWII (46)  
0.2 M NaCl 0.1 
M Imidaz 8 
1 M NH4H2PO2 
 

H11-EWII (47)  
0.2 M ActZn 0.1 
M Imidaz 8 
2.5 M NaCl 
 

H12-EWII (48)  
0.1M MES 6 1 
M Tart K/Na    
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Supplementary Table 4 – PEG Ion 1 and 8k screen used for preliminary crystallization assays. This screen was made in house and can be consulted in Macromolecular 

Cristallography laboratory with Cecilia Bonifácio. 

A1 PEG ION 
1- 
0.2M NaF 
20% P 4K 

A2 PEG ION 
2- 
0.2M KF 
20% P 4K 
 

A3 PEG ION 
3- 
0.2M NH4F 
20% P 4K 

A4 PEG ION 
4- 
0.2M LiCl 
20% P 4K 
 

A5 PEG ION 
5- 
0.2M MgCl2 
20% P 4K 

A6 PEG ION 
6- 
0.2M NaCl 
20% P 4K 

A7 PEG ION 
7- 
0.2M CaCl2 
20% P 4K 

A8 PEG ION 
8- 
0.2M KCl 
20% P 4K 

A9 PEG ION 
9- 
0.2M NH4Cl 
20% P 4K 

A10 PEG ION 
10- 
0.2M NaI 
20% P 4K 

A11 PEG ION 
11- 
0.2M KI 
20% P 4K 

A12 PEG ION 
12- 
0.2M NH4I 
20% P 4K 

B1 PEG ION 
13- 
0.2M NaSCN 
20% P 4K 

B2 PEG ION 
14- 
0.2M KSCN 
20% P 4K 
 

B3 PEG ION 
15- 
0.2M LiNO3 
20% P 4K 
 

B4 PEG ION 
16- 
0.2M Mg(NO3)2 
20% P 4K 
 

B5 PEG ION 
17- 
0.2M NaNO3 
20% P 4K 

B6 PEG ION 
18 
-0.2M KNO3 
20% P 4K 

B7 PEG ION 
19- 
0.2M NH4NO3 
20% P 4K 

B8 PEG ION 
20- 
0.2M FormMg 
20% P 4K 

B9 PEG ION 
21- 
0.2M FormNa 
20% P 4K 
 

B10 PEG ION 
22- 
0.2M FormK 
20% P 4K 
 

B11 PEG ION 
22- 
0.2M FormK 
20% P 4K 

B12 PEG ION 
24- 
0.2M ActLi 
20% P 4K 
 

C1 PEG ION 
25- 
0.2M ActMg 
20% P 4K 

C2 PEG ION 
26- 
0.2M ActZn 
20% P 4K 

C3 PEG ION 
27- 
0.2M ActNa 
20% P 4K 

C4 PEG ION 
28- 
0.2M ActCa 
20% P 4K 

C5 PEG ION 
29- 
0.2M ActK 
20% P 4K 

C6 PEG ION 
30- 
0.2M ActNH4 

20% P 4K 

C7 PEG ION 
31- 
0.2M  Li2SO4 
20% P 4K 

C8 PEG ION 
32- 
0.2M  MgSO4 
20% P 4K 

C9 PEG ION 
33- 
0.2M Na2SO4 
20% P 4K 

C10 PEG ION 
34- 
0.2M K2SO4 
20% P 4K 

C11 PEG ION 
35- 
0.2M S.A 

20% P 4K 

C12 PEG ION 
36- 
0.2M Tart Na2 
20% P 4K 

D1 PEG ION 
37- 
0.2M Tart Na/K 
20% P 4K 

D2 PEG ION 
38- 
0.2M Tart(NH4)2 
20% P 4K 

D3 PEG ION 
39- 
0.2M NaH2PO4 
20% P 4K 

D4 PEG ION 
40- 
0.2M Na2HPO4 
20% P 4K 

D5 PEG ION 
41- 
0.2M KH2PO4 
20% P 4K 

D6 PEG ION 
42- 
0.2M K2HPO4 
20% P 4K 

D7 PEG ION 
43- 
0.2M F.A. 
20% P 4K 

D8 PEG ION 
44- 
0.2M(NH4)2HPO4 

20% P 4K 

D9 PEG ION 
45- 
0.2M  Cit Li3 
20% P 4K 

D10 PEG ION 
46- 
0.2M Cit Na3 
20% P 4K 

D11 PEG ION 
47- 
0.2M Cit K3 
20% P 4K 
 

D12 PEG ION 
48- 
0.2M Cit(NH4)2 
20% P 4K 
 

E1 PEG ION 8K 
1- 
0.2M NaF 
20% P 8K 

E2 PEG ION 8K 
2- 
0.2M KF 
20% P 8K 

E3 PEG ION 8K 
3- 
0.2M NH4F 
20% P 8K 

E4 PEG ION 8K 
4- 
0.2M LiCl 
20% P 8K 

E5 PEG ION 8K 
5- 
0.2M MgCl2 
20% P 8K 

E6 PEG ION 8K 
6- 
0.2M NaCl 
20% P 8K 

E7 PEG ION 8K 
7- 
0.2M CaCl2 
20% P 8K 

E8 PEG ION 8K 
8- 
0.2M KCl 
20% P 8K 

E9 PEG ION 8K 
9- 
0.2M NH4Cl 
20% P 8K 

E10 PEG ION 8K 
10- 
0.2M NaI 
20% P 4K 

E11 PEG ION 8K 
11- 
0.2M KI 
20% P 8K 

E12 PEG ION 8K 
12- 
0.2M NH4I 
20% P 8K 

F1 PEG ION 8K 
13- 
0.2M NaSCN 
20% P 8K 

F2 PEG ION 8K 
14- 
0.2M KSCN 
20% P 8K 

F3 PEG ION 8K 
15- 
0.2M LiNO3 
20% P 8K 

F4 PEG ION 8K 
16- 
0.2M Mg(NO3)2 
20% P 8K 

F5 PEG ION 8K 
17- 
0.2M NaNO3 
20% P 8K 

F6 PEG ION 8K 
18- 
0.2M KNO3 
20% P 8K 

F7 PEG ION 8K 
19- 
0.2M NH4NO3 
20% P 8K 

F8 PEG ION 8K 
 20- 
0.2M FormMg 
20% P 8K 

F9 PEG ION 8K 
21- 
0.2M FormNa 
20% P 8K 

F10 PEG ION 8K 
22- 
0.2M FormK 
20% P 8K 

F11 PEG ION 8K 
22- 
0.2M FormK 
20% P 8K 

F12 PEG ION8K 
24- 
0.2M ActLi 
20% P 8K 

G1 PEG ION 8k 
25- 
0.2M ActMg 
20% P 8K 

G2 PEG ION 8k 
26- 
0.2M ActZn 
20% P 8K 

G3 PEG ION 8k 
27- 
0.2M ActNa 
20% P 8K 

G4 PEG ION 8k 
28- 
0.2M ActCa 
20% P 8K 

G5 PEG ION 8k 
29- 
0.2M ActK 
20% P 8K 

G6 PEG ION 8k 
30- 
0.2M ActNH4 
20% P 8K 

G7 PEG ION 8k 
31- 
0.2M  Li2SO4 
20% P 8K 

G8 PEG ION 8k 
32- 
0.2M  MgSO4 
20% P 8K 

G9 PEG ION 8k 
33- 
0.2M Na2SO4 
20% P 8K 

G10 PEG ION 8k 
34- 
0.2M K2SO3 
20% P 8K 

G11 PEG ION 8k 
35- 
0.2M S.A 
20% P 8K 

G12 PEG ION 8k 
36- 
0.2M Tart Na2 
20% P 8K 

H1 PEG ION 8k 
37- 
0.2M Tart Na/K 
20% P 8K 

H2 PEG ION 8k 
38- 
0.2M Tart(NH4)2 
20% P 8K 

H3 PEG ION 8k 
39- 
0.2M NaH2PO4 
20% P 8K 

H4 PEG ION 8k 
40- 
0.2M Na2HPO4 
20% P 8K 

H5 PEG ION 8K 
41- 
0.2M KH2PO4 
20% P 8K 

H6 PEG ION 8K 
42- 
0.2M K2HPO4 
20% P 8K 

H7 PEG ION 8K 
43- 
0.2M F.A. 
20% P 8K 

H8 PEG ION 8K 
44- 
0.2M(NH4)2 HPO4 

20% P 8K 

H9 PEG ION 8K 
45- 
0.2M  Cit Li3 
20% P 8K 

H10 PEG ION 8K 
46- 
0.2M Cit Na3 
20% P 8K 

H11 PEG ION 8K 
47- 
0.2M Cit K3 
20% P 8K 

H12 PEG ION 8K 
48- 
0.2M Cit(NH4)2 
20% P 8K 
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Supplementary Table 5 – 80! screen used for preliminary crystallization assays. This screen was made in house and can be consulted in Macromolecular Cristallography laboratory 

with Cecilia Bonifácio. 

A1 80! 

1- 0.2 M CaCl2 

0.1 M Act 4.5 
30 % MPD 

A2           80! 

2-  
1 M Tart K/Na 
0.1M MES 6.5 

A3            80! 

3- 0.4M F.A. 

A4            80! 

4-  
0.1M TRIS 8.5 
3M S.A. 

A5            80! 

5- 0.2M CitrNa3 
0.1MHEPES 7.5 
30 % MPD 

 

A6            80! 

6- 0.2 M MgCl2 

0.1 M Act 4.5 
30 % PEG 4K 

 

A7            80! 

7- 1.2M CitrNa3 
0.1MHEPES 7.5 

A8            80! 

8-0.2M CitrNa3 
2 M (NH4)2SO4 

 

A9            80! 

9-  
0.2 M ActNH4 

0.1 M Cit 5.5 
30 % PEG 400 

 

A10          80! 

10-  
0.1M Act4.5 
1.5 M F.A. 

A11          80! 

11- 
0.2M S.A. 

0.1MHEPES 7.5 
1.5 M K2HPO4 

1.5 M NaH2PO4 

A12  80! 

12- 
0.2 M CitNa3 
0.1 M TRIS 8.5 
20 % PEG 400 

 

B1            80! 

13- 0.2 M CaCl2 

0.1MHEPES 7.5 
25 % PEG 4K 

B2 80! 

14-0.1 M MgCl2 

0.1 M MES 6.5 
30 % PEG 8K 

B3 80! 

15- 0.2M Li2SO4 

0.1 M Cit 5.5 
30 % PEG 4K 

 

B4             80! 

16- 1 M Li2SO4 

0.1 M Act 4.5 

B5 80! 

17- 0.2 M F.A. 
0.1 M TRIS 7.5 
30 % MPD 

 

B6 80! 

18- 
0.2M ActNH4 

0.1 M TRIS 7.5 
1.5 M K2HPO4 
1.5 M NaH2PO4 

B7 80! 

19-  
0.1 M S.A. 
0.1 M Cit 5.5 
30 % PEG 8K 

B8            80! 

20-  
0.1M MES 6.5 
30 % MPD 

B9  80! 

21-0.2 M MgCl2 

0.1MHEPES 7.5 
30 % PEG 4K 

B10 80! 

22- 
0.2 M ActNa 
0.1 M TRIS 8.5 
30 % PEG 4K 

 

B11          80! 

23-  
0.1M TRIS 7.5 
1 M Tart K/Na 

B12          80! 

24- 0.2 M CaCl2 

0.1 M TRIS 8.5 

C1             80! 

25- 
0.5M ActNH4 

0.1 M Cit 5.5 
30 % MPD 

C2             80! 

26- 2 M ActNa 
0.1 M MES 6.5 

C3             80! 

27- 
0.2M Tart K/Na 
0.1 M MES 6.5 
30 % P 8K 

C4             80! 

28-  
1 M Tart K/Na 
0.1MHEPES 7.5 

C5   80! 

29- 0.2 M S.A. 
0.1 M Act 4.5 
30 % P 400 

C6 80! 

30- 0.1 M S.A 
0.1MHEPES 7.5 
20 % P 4K 

C7             80! 

31- 2 M S.A 
0.1 M MES 6.5 

C8 80! 

32- 0.2 M NaCl 
0.1 M MES 6.5 
30 % Etanol 

C9 80! 

33-0.2 M MgCl2 
0.1MHEPES 7.5 
30 % Etanol 

10 80! 

34-  
0.2 M ActNH4 
0.1 M TRIS 8.5 
30 % Etanol 

C11 80! 

35- 0.2 M CaCl2 
0.1 M Act 4.5 
30 % Etanol 

C12 80! 

36-  
0.2 M ActNa 
0.1MHEPES 7.5 
30 % Etanol 

D1 80! 

37-0.2 M MgCl2 
0.1MHEPES 7.5 
30 % Isopp 

D2            80! 

38-  
0.1 M Cac 6.5 
30 % MPD 

D3            80! 

39-  
0.1 M Act 4.5 
2 M FormNa 

D4 80! 

40- 
0.2M CitrNa3 
0.1 M Cac 6.5 
40 % Isopp 

D5            80! 

41-  
0.1MHEPES 7.5 
20 % PEG 400 
10 % Isopp 

D6            80! 

42-  
0.1MHEPES 7.5 
1 M Li2SO4 

D7   80! 

43-0.2 M Li2SO4 

0.1 M TRIS 8.5 
30 % PEG 4K 

D8  80! 

44- 0.2 M S.A. 
0.1 M Cac 6.5 
30 % PEG 6K 

D9            80! 

45-  
0.1M Act 4.5 
1.5 M ActNa 

D10  80! 

46-  
0.1M CitrNa3 
1 M NH4H2PO4 

 

D11          80! 

47-  
4 M FormNa 

D12          80! 

48-  
0.1MHEPES 7.5 
1.2 M CitNa3 

E1             80! 

49-  
0.4M Tart K/Na 

E2  80! 

50-0.2 M MgCl2 

0.1 M TRIS 8.5 
30 % PEG 4K 

E3             80! 

51-  
0.1 M Cac 6.5 
1.4 M ActNa 

E4             80! 

52- 
0.2M ActNH4 

0.1 M Cit 5.5 
30 % PEG 4K 

E5             80! 

53- 
0.2M ActNH4 

0.1 M Act 4.5 
30 % PEG 4K 

E6             80! 

54- 0.2 M CaCl2 

0.1MHEPES 7.5 
28 % PEG 400 

E780! 

55-0.2M S.A. 
0.1M Cac 6.5 
30 % PEG 8K 

E8  80! 

56- 
0.2M ActMg 
0.1 M Cac 6.5 
20 % PEG 8K 

E9 80! 

57-  
0.2M ActNH4 

0.1 M TRIS 8.5 
30% Isopp 

E10  80! 

58- 0.2 M S.A. 
0.1 M Act 4.5 
25 % PEG 4K 

E11 80! 

59-0.2M ActMg 
0.1 M Cac 6.5 
30 % MPD 

 

E12 80! 

60- 0.2 M CaCl2 

0.1 M Act 4.5 
20 % Isopp 

 

F1             80! 

61-  
0.1M Imid 7 
1 M ActNa 

F2 80! 

62-  
0.2 M CitraNa3 
0.1 M Cac  6.5 
20 % Isopp 

F3 80! 

63-  
0.2 M ActNa 
0.1 M Cac  6.5 
30 % PEG 8K 

F4 80! 

64- 0.2 M S.A 
30 % PEG 8K 

F5 80! 

65- 0.2 M S.A 
30 % PEG 4K 

F6             80! 

66- 
0.1MHEPES 7.5 
1.6 M K2HPO4 
1.6 M NaH2PO4 

F7             80! 

67-  
0.1 M TRIS 8.5 
8 % PEG 8K 

F8             80! 

68-  
0.1M Act4.5 
8 % PEG 4K 

F9             80! 

69-  
0.1MHEPES 7.5 
2 % PEG 400 
1.8 M F.A 

F10           80! 

70-  
0.1M Cit 5.5 
20 % Isopp 
20 % PEG 4K 

F11           80! 

71-  
0.05M K2HPO4 
20 % PEG 8K 

F12           80! 

72-  
30 % PEG 1K 

G1            80! 

73- 
 0.2 M FormMg 
 
 
 

G2            80! 

74- 0.2M ActZn 
0.1 M Cac  6.5 
18 % PEG 8K 

 

G3  80! 

75- 0.2M ActCa 
0.1 M Cac  6.5 
18 % PEG 8K 

 

G4            80! 

76-  
0.1 M Act 4.5 
2 M (NH4)2SO4 

G5            80! 

77- 
 0.1 M TRIS 8.5 
2 M (NH4)2SO4 

G6 80! 

78- 1 M Li2SO4 

2 % PEG 8K 

 

G7 80! 

79-  
0.5 M Li2SO4 
15 % PEG 8K 

 

G8 80! 

80-0.2M ctNH4 

0.1 M Cit 5.5 
20 % Isopp 
20 % PEG 4K 
 

G9         SaltRx1 
1- 0.1 M BTP 7 
1.8 M AcetNa 

G10       SaltRx1 
4- 0.1 M BTP 7 
1.5 M NH4Cl 

G11       SaltRx1 
6-  
0.1 M Act 4.5 
3.5 M NH4Cl 

G12       SaltRx1 
9-  
0.1 M Act 4.5 
2.2 M NaCl 
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H1         SaltRx1 
14-  
0.1 M TRIS 8.5 
3.2 M NaCl 
 

H2         SaltRx1 
17-  
0.1 M BTP 7 
1 M Cit(NH4)2 

H3         SaltRx1 
19-  
0.1 M BTP 7 
0.7 M CitNa3 

H4         SaltRx1 
26-  
0.1 M BTP 7 
0.7M FormMg 

H5         SaltRx1 
31-  
0.1 M BTP 7  
3.5 M FormNa 

H6         SaltRx1 
33-  
0.1 M BTP 7 
1.2M Malic Ac. 

H7         SaltRx1 
34-  
0.1 M BTP 7 
2.2M Malic Ac. 

H8         SaltRx1 
35-  
0.1 M BTP 7 
1.4 M MaltNa 

H9        SaltRx1 
43-  
0.1 M Act 4.5 
1.5M NaNO3 

 

H10       SaltRx1 
44-  
0.1 M BTP 7 
1.5 M NaNO3 
 

H11       SaltRx1 
46-  
0.1 M Act 4.5 
 4 M NaNaNO3 
 

H12       SaltRx1 
47-  
0.1 M BTP 7 
4 M NaNO3 
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Supplementary information 3: Poster communications 
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