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Abstract 

Generalised Beam Theory (GBT), intended to analyse the structural behaviour of prismatic thin-walled 
members and structural systems, expresses the member local and/or global deformed configuration as a 
combination of cross-section deformation modes multiplied by the corresponding longitudinal amplitude 
functions. The determination of the latter, usually the most computer-intensive step of the analysis, is almost 
always performed by means of GBT-based conventional 1D (beam) finite elements, using Hermite cubic 
polynomials as shape functions. This paper presents the formulation, implementation and application of 
a new GBT-based exact element, developed in the context of member (linear) buckling analyses. This exact 
element, originally proposed by Eisenberger (1990), approximates the modal longitudinal amplitude 
functions by means of power series, whose coefficients are obtained by means of a recursive formula – 
since the higher-order coefficients tend to vanish, the method has the potential to become exact (up to computer 
precision). The buckling load parameters are the solutions of the (highly) non-linear characteristic equation 
associated with the buckling eigenvalue problem. A few numerical illustrative examples are presented, focusing 
mainly on the comparison between the combined accuracy and computational effort associated with the 
determination of buckling solutions with the exact and standard GBT-based (finite) elements. This comparison 
provides evidence that the exact element leads to equally accurate results with less degrees of freedom and, 

moreover, without the need to define a (longitudinal) mesh  the relative efficiency of the exact element 
is higher when the buckling modes exhibit larger half-wave numbers. 
 
1. Introduction 

Generalised Beam Theory (GBT) is a one-dimensional thin-walled bar theory that is able to capture in-
plane and out-of-plane deformations of the member walls, namely local, distortional, shear and transverse 

extension deformations (e.g., [1-4])  in other words, it is a one-dimensional theory exhibiting the same capabilities 
as shell finite element models (but involving much smaller numbers of degrees of freedom). Moreover, 
GBT differs from other numerical techniques commonly used to analyse thin-walled members, such as the 
finite strip or shell finite element methods, in the fact that it involves unique modal decomposition features5 – 
to be more precise, it expresses the member displacement field as a combination of products involving pre-
determined cross-section deformation modes (with clear structural meanings) and the corresponding 
longitudinal amplitude functions (the problem unknowns). 
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5 It is worth noting that the so-called “constrained finite strip method”, developed a few years ago by Ádány and Schafer 

(e.g., [5]), also has modal decomposition capabilities that are similar (but not identical) to those exhibited by GBT 

 indeed, it may be argued that the latter “provided the inspiration” for the former. 
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The performance of a GBT analysis involves two main steps, namely (i) a cross-section analysis, leading to 
the mechanical/mathematical definition of the cross-section deformation modes and associated modal 
mechanical properties, and (ii) a one-dimensional member analysis, consisting of solving the differential 
(static or dynamic) equilibrium equation system governing the structural problem under consideration. Recent 
progress concerning the cross-section analysis has made GBT applicable in the context of members exhibiting 
arbitrary flat-walled cross-sections [6-7] or circular/elliptical tubular cross-sections [8-10]. Concerning the member 
analysis, formulations/studies have been reported for various types of structural analysis, namely first-order [11, 
12], buckling [3, 13-16], vibration [17-19], post-buckling [20-22] and dynamic [23] analyses involving elastic members 
(mostly), frames and trusses. Recently, the second version of GBTUL [24], a GBT-based freeware code which 
performs linear buckling and vibration analyses of general thin-walled bars, has been released online [25]. 
 
The member analysis can be performed either analytically (e.g., for vibration analysis of simply supported 
members) or numerically, which has been usually done by means of conventional “GBT-based finite elements” 
(e.g., [26]), i.e., beam finite elements using cubic polynomials (Hermite or Lagrange) as shape functions to 
approximate the deformation modes longitudinal amplitude functions (the problem degrees of freedom are the 
displacements and/or derivatives of those functions at the finite element nodes). While uniform longitudinal 
discretisations involving 6-10 beam finite elements often provide sufficiently accurate solutions, in some buckling 
or vibration problems, characterised by solutions involving large longitudinal half-wave numbers (e.g., local or localized 
buckling problems), a much finer finite element mesh (and, therefore, a significantly higher computational 
effort) is required to achieve similarly accurate results. The aim of this work is to explore an alternative 
GBT-based approach that is intended to reduce the above computational effort, by drastically reducing the 
number of degrees of freedom associated with the problem solution. Moreover, unlike the standard GBT-
based finite element approach, the proposed one does not require a priori knowledge about the number of half-
waves involved in the sought buckling solution in order to obtain highly accurate results. Indeed, the use 
of the exact element automatically ensures high accuracy without the need of additional degrees of 
freedom, i.e., “exact” results will be obtained regardless of the buckling mode nature (local, distortional, 
global or “mixed”). 
 
This work derives the formulation, presents the numerical implementation, illustrates the application and 
assesses the computational efficiency of a GBT-based exact (up to the computer accuracy) element 
intended to perform buckling analyses of prismatic thin-walled members6. This finite element is based on the 
technique originally developed by Eisenberger (e.g., [28-30]) and already successfully employed to solve first-
order [31-32], buckling [33-34] and vibration [35-36]) problems involving prismatic and tapered thin-walled 
members7. The exact element is employed to solve GBT fourth order differential equilibrium equation system and 
associated boundary conditions, characterising the strong formulation of the buckling eigenvalue problem. Each 
deformation mode amplitude function is approximated by means of an infinite power series, whose coefficients 
are obtained by means of a systematic recursive procedure. After presenting the mathematical formulation of the 
exact element technique, its application to analyse the buckling behaviour of thin-walled columns (axially 
compressed members) is presented and discussed. The illustrative numerical examples concern thin-walled 
lipped channel columns with several support conditions and consist of the evaluation of their buckling loads and 
the determination of the associated buckling mode shapes. The accuracy and computational efficiency of the 
proposed exact element approach are assessed through the comparison with the buckling results obtained 
with the conventional GBT-based beam finite elements. 

                                                      
6 Although there have been some attempts to apply GBT to tapered members (e.g., [27]), the bulk of the research 

work dealing with this methodology to perform numerical structural analysis concerns prismatic members. 
7 It is worth noting that, in parallel with this study, the authors have also been working on the application of this 

same technique to vibration problems [37]. 
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2. GBT Fundamental Concepts 

2.1 Differential Equilibrium Equations 

Consider the prismatic thin-walled member depicted in Figure 1(a), with a supposedly arbitrary cross-
section and a global coordinate system 𝑋 − 𝑌 − 𝑍. Local coordinate systems 𝑥 − 𝑠 − 𝑧 are adopted in each wall, 
as indicated in Fig. 1(b), where 𝑥 (parallel to member longitudinal axis 𝑋) and 𝑠 define the wall mid-plane, 
and 𝑧 is measured along the wall thickness 𝑡. When expressed in this coordinate system, the displacement 
field components are termed 𝑈𝑥, 𝑈𝑠 and 𝑈𝑧.  
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Figure 1: (a) Prismatic thin-walled member with a supposedly arbitrary cross-section and global coordinate system, 
and (b) infinitesimal wall element with its local coordinate system and displacement components. 

 
Adopting Kirchhoff’s hypothesis, which states that straight line segments/fibres normal to the mid-plane remain 
straight, inextensible and normal to the wall mid-plane after deformation (휀𝑧𝑧 = 𝛾𝑥𝑧 = 𝛾𝑧𝑥 = 𝛾𝑠𝑧 = 𝛾𝑧𝑠  = 0), 

the displacement vector of an arbitrary point of the member, �⃗⃗� (𝑥, 𝑠, 𝑧), is expressed as  
 

 �⃗⃗� = {

𝑈𝑥

𝑈𝑠

𝑈𝑧

} = {
𝑢 − 𝑧𝑤,𝑥

𝑣 − 𝑧𝑤,𝑠

𝑤
} (1) 

where (i) 𝑢(𝑥, 𝑠), 𝑣(𝑥, 𝑠) and 𝑤(𝑥, 𝑠) are the mid-plane (𝑧 = 0) displacement field components, and (ii) (∙),𝑥 =
𝜕 𝜕𝑥⁄ . The first terms of the in-plane displacement components (𝑈𝑥  and 𝑈𝑠) stand for membrane displacements 
within the wall mid-plane, while the three remaining ones represent flexural displacements. In accordance 
with the classical thin-walled bar theory [38], the mid-plane displacement field can be conveniently expressed as 
(summation convention applies to subscript 𝑘) 
 

 𝑢(𝑥, 𝑠) = ∑ �̅�𝑘(𝑥, 𝑠)
𝑁𝑑
𝑘=1 = 𝑢𝑘(𝑠)𝜑𝑘,𝑥(𝑥) (2a) 

 𝑣(𝑥, 𝑠) = ∑ �̅�𝑘(𝑥, 𝑠)
𝑁𝑑
𝑘=1 = 𝑣𝑘(𝑠)𝜑𝑘(𝑥) (2b) 

 𝑤(𝑥, 𝑠) = ∑ �̅�𝑘(𝑥, 𝑠)
𝑁𝑑
𝑘=1 = 𝑤𝑘(𝑠)𝜑𝑘(𝑥) (2c) 

where (i) 𝑢𝑘(𝑠), 𝑣𝑘(𝑠) and 𝑤𝑘(𝑠) are the mid-line functions defining cross-section deformation mode 𝑘 (or “GBT 
mode 𝑘”), (ii) 𝜑𝑘(𝑥) or 𝜑𝑘,𝑥(𝑥) are the amplitude functions describing their variation along the member length, 

(iii) �̅�𝑘(𝑥, 𝑠), �̅�𝑘(𝑥, 𝑠) and �̅�𝑘(𝑥, 𝑠) define the contribution of mode 𝑘 to the mid-plane displacement field 
and (iv) 1 ≤ 𝑘 ≤ 𝑁𝑑, where 𝑁𝑑 is the total number of deformation modes included in the analysis. Therefore, 
the member deformed configuration can be expressed as a sum of contributions from the 𝑁𝑑  deformation 

modes  Eqs. (2a)-(2c) can also be written in matrix form as 
 
 𝑢 = 𝐮𝑇𝛗,𝑥 𝑣 = 𝐯𝑇𝛗 𝑤 = 𝐰𝑇𝛗 (3) 



 4 

where (i) u, v and w are vectors containing the 𝑢𝑘(𝑠), 𝑣𝑘(𝑠) and 𝑤𝑘(𝑠) functions, respectively, and (ii) 𝛗 is a 
vector containing the corresponding amplitude functions 𝜑𝑘(𝑥) or 𝜑𝑘,𝑥(𝑥). Note that, for given deformation 
mode configurations, the longitudinal amplitude functions 𝜑𝑘(𝑥) fully define the member displacement field, 
comprising both the membrane and flexural components. 
 
For a linear elastic material, following Hooke’s law for plane stress states, the member total strain energy 
is given by (𝐿 is the member length) 
 

 𝑈 =
1

2
∫ (𝛗,𝑥𝑥

𝑇 𝐂𝛗,𝑥𝑥 + 𝛗,𝑥
𝑇 𝐃𝛗,𝑥 + 𝛗𝑇𝐁𝛗 + 𝛗,𝑥𝑥

𝑇 𝐄𝛗 + 𝛗𝑇𝐄𝑇𝛗,𝑥𝑥)𝑑𝑥
𝐿

 (4) 

where 𝐂, 𝐁, 𝐃 and 𝐄 are (𝑁𝑑 × 𝑁𝑑) linear stiffness matrices, associated with (i) primary/secondary warping, (ii) 
transverse extension/flexure, (iii) plate shear distortion/torsion and (iv) membrane/flexural Poisson effects, 
respectively – their components are given by the expressions included in Appendix A.  
 
The member is now considered subjected to a linear pre-buckling state, which is associated with a 
deformed configuration defined by the displacement components (see Eq. (3)) 
 
 𝑢0 = 𝐮𝑇𝛗,𝑥

0  𝑣0 = 𝐯𝑇𝛗0 𝑤0 = 𝐰𝑇𝛗0 (5) 

where 𝛗0(𝑥), contains the amplitude functions quantifying the contributions of each of the 𝑁𝑑  GBT 
modes to that same deformed configuration. The pre-buckling stress field components – 𝜎𝑥𝑥

0 (𝑥, 𝑠) , 
𝜎𝑠𝑠

0 (𝑥, 𝑠) and 𝜏𝑥𝑠
0 (𝑥, 𝑠) − can then be expressed in a modal fashion, on the basis of 𝛗0(𝑥). The non-linear 

(quadratic) term of the strain energy (𝑈0) can be obtained by the work performed by those stresses on the 
corresponding quadratic components of strain [14], leading to 
 

 𝑈0 =
1

2
∫ ∑

(

 

𝛗,𝑥
𝑇 [𝐗𝑗

σ−x𝜑𝑗,𝑥𝑥
0 + 𝐗𝑗

σ−xP𝜑𝑗
0]𝛗,𝑥 +

+𝛗𝑇[𝐗𝑗
σ−sP𝜑𝑗,𝑥𝑥

0 + 𝐗𝑗
σ−s𝜑𝑗

0]𝛗 +

+𝛗𝑇[𝐗𝑗
τ𝜑𝑗,𝑥

0 ]𝛗,𝑥 + 𝛗,𝑥
𝑇 [(𝐗𝑗

τ)
𝑇
𝜑𝑗,𝑥

0 ]𝛗)

 𝑁𝑑
𝑗=1 𝑑𝑥

𝐿
 (6) 

where the three lines in the integrand involve geometrical stiffness terms associated with the 𝜎𝑥𝑥
0 , 𝜎𝑠𝑠

0  and 

𝜏𝑥𝑠
0  pre-buckling stress components, respectively. This means that 𝐗𝑗

σ−x, 𝐗𝑗
σ−xP, 𝐗𝑗

σ−sP, 𝐗𝑗
σ−s and 𝐗𝑗

τ are 

cross-section geometrical stiffness matrices associated with (i) normal longitudinal (𝐗𝑗
σ−x and 𝐗𝑗

σ−xP), (ii) 

normal transverse (𝐗𝑗
σ−sP and 𝐗𝑗

σ−s) and (iii) shear (𝐗𝑗
τ) pre-buckling stresses8 – the analytical expressions 

providing these matrices are included in Annex A. 
 
To perform (linear) buckling analyses, the equilibrium equations can be obtained from the minimum total 
potential energy principle, which reads (𝛿 stands for an infinitesimal variation) 
 
 𝛿(𝑈 + 𝑈0) = 0 ⇔  

 ⇔ ∫

(

  
 

𝛿𝛗,𝑥𝑥
𝑇 𝐂𝛗,𝑥𝑥 + 𝛿𝛗,𝑥

𝑇 𝐃𝛗,𝑥 + 𝛿𝛗𝑇𝐁𝛗 + 𝛿𝛗,𝑥𝑥
𝑇 𝐄𝛗 + 𝛿𝛗𝑇𝐄𝑇𝛗,𝑥𝑥 +

+𝜆 ∑ {𝛿𝛗,𝑥
𝑇 [𝐗𝑗

σ−x𝜑𝑗,𝑥𝑥
0 + 𝐗𝑗

σ−xP𝜑𝑗
0]𝛗,𝑥 +

𝑁𝑑
𝑗=1

+𝛿𝛗𝑇[𝐗𝑗
σ−sP𝜑𝑗,𝑥𝑥

0 + 𝐗𝑗
σ−s𝜑𝑗

0]𝛗 +

+𝛿𝛗𝑇[𝐗𝑗
τ𝜑𝑗,𝑥

0 ]𝛗,𝑥 + 𝛿𝛗,𝑥
𝑇 [(𝐗𝑗

τ)
𝑇
𝜑𝑗,𝑥

0 ]𝛗} )

  
 

𝑑𝑥 = 0
𝐿

 (7) 

                                                      
8 Note that the components of the geometric stiffness matrices 𝐗(∙)P stem from Poisson effects. 
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where 𝜆 is the load parameter. Note that, at this stage, the 𝜑𝑗
0(𝑥) functions (components of 𝛗0) have 

already been obtained by means of a (preliminary) pre-buckling analysis, performed for the loading under 
consideration. If the loadings cause only longitudinally uniform pre-buckling stress distribution (i.e., 
𝜎𝑥𝑥

0 (𝑥, 𝑠) ≡ 𝜎(𝑠), 𝜎𝑠𝑠
0 = 𝜏𝑥𝑠

0 = 0), which is the case in this work, Eq. (7) becomes the weak form of 
classical GBT of equilibrium equation (e.g., [1]), 
 

 ⇔ ∫ (
𝛿𝛗,𝑥𝑥

𝑇 𝐂𝛗,𝑥𝑥 + 𝛿𝛗,𝑥
𝑇 𝐃𝛗,𝑥 + 𝛿𝛗𝑇𝐁𝛗 + 𝛿𝛗,𝑥𝑥

𝑇 𝐄𝛗 + 𝛿𝛗𝑇𝐄𝑇𝛗,𝑥𝑥 +

+𝜆 ∑ {𝑊𝑗𝛿𝛗,𝑥
𝑇 𝐗𝑗

σ−x𝛗,𝑥}
𝑁𝑑
𝑗=1

)𝑑𝑥 = 0
𝐿

 (8) 

where 𝑊𝑗  is the longitudinal normal stress resultant associated with mode 𝑗 – in accordance with the 

typical GBT mode numbering criterion (see next section), only the first four terms (𝑗 = 1,… ,4) are usually 
considered: (i) 𝑊1 ≡ 𝑁 (compressive axial force), (ii) 𝑊2 ≡ 𝑀𝑌 (major-axis bending moment), (iii) 𝑊3 ≡
 𝑀𝑍 (minor-axis bending moment) and (iii) 𝑊4 ≡ 𝑀𝜔 (torsion bi-moment). Carrying out integrations by 
parts in 𝑥 , and noting that 𝛿𝛗  is arbitrary, leads to the fourth-order differential equation system 
governing the linear eigenvalue buckling problem 
 

 𝐂𝛗,𝑥𝑥𝑥𝑥 − �̃�𝛗,𝑥𝑥 + 𝐁𝛗 − λ∑ {𝑊𝑗𝐗𝑗
σ−x𝛗,𝑥𝑥}

𝑁𝑑
𝑗=1 = 𝟎 (9) 

where �̃� = 𝐃 + (𝐄 + 𝐄𝑇). In order to solve the above differential equation system, it is necessary to 
consider the corresponding boundary conditions 
 

 𝑾𝛿𝛗,𝑥|0
𝐿
 with  𝑾 = 𝐂𝛗,𝑥𝑥 + 𝐄𝛗 (10a) 

 �̅̅̅�𝛿𝛗|0
𝐿 with  �̅̅̅� = −𝐂𝛗,𝑥𝑥𝑥 + (𝐃 − 𝐄 − 𝜆𝑊𝑗𝐗𝑗

σ−x)𝛗,𝑥 (10b) 

where 𝑾 and �̅̅̅� stand for the cross-section resultants of the longitudinal and shear stresses, respectively. The 
determination of the components of the aforementioned tensors is made on the basis of the cross-section 
deformation modes, i.e., functions 𝑢𝑘(𝑠), 𝑣𝑘(𝑠) and 𝑤𝑘(𝑠), which are still unknown at this stage. These 
deformation modes are determined systematically, by means of a set of procedures termed “cross-section 
analysis”, which will be briefly described in the next section. 
 
2.2 Cross-Section Analysis 

As mentioned earlier, the first step of a GBT structural analysis is the determination of the cross-section 
deformation modes (i.e., functions 𝑢𝑘(𝑠), 𝑣𝑘(𝑠) and 𝑤𝑘(𝑠)) and the evaluation of the associated modal 
mechanical properties (the components of the tensors defined in Section 2.1), tasks that are performed 
through a systematic procedure termed Cross-Section Analysis. This work is based on a recently developed 

version of this procedure, applicable to arbitrary flat-walled members and described in detail in [6-7]  
therefore, only a very brief overview is provided here. 
 
It is necessary to begin by defining the cross-section nodal discretisation, which involves (i) natural internal 

nodes, (ii) natural end nodes and (iii) intermediate nodes [7]  while the first two sets of nodes are 
compulsory, the last one is optional and user-defined9. Three elementary deformation modes are associated 
with each node, leading to a total of 𝑁𝑑 = 3 × 𝑁𝑛𝑜𝑑𝑒𝑠  elementary modes. Then, several linear stiffness 
matrices (𝐂, 𝐁, 𝐃 and 𝐄) are calculated, on the basis of the above elementary modes, and subsequently 
used to perform a series of simultaneous diagonalisation operations. Such operations make it possible (i) 
to identify/separate deformation modes from different mechanical families and (ii) to arrange them, within 

                                                      
9 The quality of the deformation modes obtained depends on the number of intermediate nodes considered. 
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each family, according to a given hierarchy – one is led to a new set of (modal) “coordinates”: the 𝑁𝑑 GBT 
deformation modes. The 3 main “mechanical families” involved are: (i) Vlasov modes, for which 𝛾𝑥𝑠 = 휀𝑠𝑠 =

0, (ii) Shear modes, for which 𝛾𝑥𝑠 ≠ 0; 휀𝑠𝑠 = 0, and (iii) Transverse Extension modes, for which 휀𝑠𝑠 ≠ 0  each 
of these families can be further subdivided into several “deformation mode sub-families”. 
 
For illustrative purposes, consider the lipped channel section displayed in Figure 2(a), which is discretised 
as shown in Figure 2(b). For the discretisation considered (involving 15 nodes), a total of 𝑁𝑑 = 3 × 15 =

45 deformation modes are obtained  the in-plane or out-of-plane configurations of the most relevant ones 
are depicted in Figure 3. They comprise: (i) the four classical rigid-body (or “global”) modes (axial extension (1), 
major- and minor-axis bending (2-3) and torsion (4)), (ii) two distortional modes, associated with quasi-rigid body 
flange-lip motions (5-6), (iii) a sequence of local modes, involving transverse plate bending with increasing 
curvature (7-17), (iv) five global shear modes (18-22), consisting of the warping components of the Vlasov 
modes 2-6, (v) a set of local shear modes, (23-31), (vi) five global transverse extension modes (32-36) and (vii) 
the local transverse extension modes (37-45). 
 
Depending on the particular problem under consideration, a selection of the GBT modes to be included in 

the structural analysis can be made, involving any sub-set of 𝑛𝑑  (1 ≤ 𝑛𝑑 ≤ 𝑁𝑑 )  the solution is based 
exclusively on these selected modes. This Modal Selection capability makes it possible to (i) reduce the 
number of degrees of freedom involved in solving a problem and (ii) specify the nature of the deformation 
pattern(s) to be considered. In this work, only Vlasov modes are considered, as they suffice to accurately 
obtain buckling solutions of members acted by longitudinally uniform pre-buckling stresses. 

3. GBT Member Analysis 

After knowing the cross-section deformation modes and modal mechanical properties, it is possible to 
perform the Member Analysis, which provides the solution of the buckling problem under consideration, 
namely the set of 𝜑𝑘(𝑥) functions (1 ≤ 𝑘 ≤ 𝑛𝑑) defining the member buckling mode shape.  
In simply supported members, Eqs. (9) have an exact sinusoidal solution, 
 

 𝛗(𝑥) = 𝒂𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥)  (11) 

where 𝒂 is a (𝑛𝑑-dimension) vector containing the amplitudes of each modal amplitude function. This 
“analytical solution” is usually used because it minimises the number of degrees of freedom. For other support 

conditions a “numerical solution” must be used  this is usually done by discretising the member longitudinally 
into a mesh of conventional GBT-based finite elements. 
 
3.1 GBT-based Conventional Finite Element 

The variational statement expressed by Eq. (8) can be used to formulate and implement computationally 
a GBT-based beam conventional finite element. The main steps involved in these formulation and numerical 
implementation are described next: 

(i) Approximate the longitudinal amplitude functions 𝜑𝑘(𝑥) (components of vector 𝛗(𝑥)) by means of 
linear combinations of cubic Hermite10 polynomials ℎ𝑖(𝜉), i.e., 

 

                                                      
10 While Hermite polynomials could be used to approximate all the 𝜑𝑘(𝑥) functions, it is usual to use cubic Lagrange 

polynomials for those modes involving only warping displacements, namely (i) the axial extension mode (1) and 
(ii) the global and local Shear modes (see footnote 1).  
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 (a)  (b) 

Figure 2: Lipped channel cross-section (a) geometry and (b) nodal discretization. 

      

      

      

      

      

Figure 3: Lipped channel cross-section GBT deformation modes: (i) Vlasov modes (global (1-4), distortional (5-6) 
and local (7-17)), (ii) Shear modes (global (18-22) and local (23-31)) and (iii) Transverse Extension modes (isotropic (32) 

and deviatoric (33-36) global, and local (37-45)). 

 

𝑏𝑤 = 100 

𝑏𝑓 = 60 

𝑏𝑓 = 60 
𝑏𝑠 = 10 

(𝑡 = 2.0) 

 𝑚𝑚  

𝑏𝑠 = 10 

Nat. Internal Node 

Natural End Node 

Intermediate Node 



 8 

 𝛗(𝑥) = ℎ1(𝜉)𝒅1
𝑒 + ℎ2(𝜉)𝒅2

𝑒 + ℎ3(𝜉)𝒅3
𝑒 + ℎ4(𝜉)𝒅4

𝑒  (12) 

 where 𝜉 = 𝑥 𝐿𝑒⁄  (𝐿𝑒 is the element length) and the polynomials read 
 

ℎ1(𝜉) = 𝐿𝑒(𝜉
3 − 2𝜉2 + 𝜉) ℎ2(𝜉) = 2𝜉3 − 3𝜉2 + 1 

(13) 
ℎ3(𝜉) = 𝐿𝑒(𝜉

3 − 𝜉2) ℎ4(𝜉) = −2𝜉3 + 3𝜉2 

Vectors 𝒅𝑖
𝑒  contain the element degrees of freedom, i.e., the nodal values and derivatives of the 

amplitude functions: 𝒅1
𝑒 ≡ 𝛗,𝑥(0), 𝒅2

𝑒 ≡ 𝛗(0), 𝒅3
𝑒 ≡ 𝛗,𝑥(1) and 𝒅4

𝑒 ≡ 𝛗(1) – because there are 𝑛𝑑 
amplitude functions, the element exhibits a total of 4 × 𝑛𝑑 degrees of freedom. 

(ii) Incorporate Eqs. (12)-(13) into Eq. (8) and carry out the corresponding integrations (over 𝐿𝑒), in order to 
obtain the finite element linear and geometrical stiffness matrices 

 
 𝐊𝑒 = 𝐂 ⊗ 𝐤22

𝑒 + 𝐃 ⊗ 𝐤11
𝑒 + 𝐁 ⊗ 𝐤00

𝑒 + 𝐄 ⊗ 𝐤20
𝑒 + 𝐄𝑇 ⊗ 𝐤02

𝑒  (14) 

 𝐆𝑒 = ∑ {𝑊𝑗𝐗𝑗
σ−x}

𝑁𝑑
𝑗=1 ⊗ 𝐤11

𝑒  (15) 

where “⊗” denotes the tensor product and the 4 × 4 matrices 𝐤𝑖𝑗
𝑒  (𝑖 and 𝑗 are the orders of derivation of 

the two functions involved) are given by 
 

𝐤00
𝑒 =

𝐿𝑒

420

[
 
 
 

4𝐿𝑒
2 22𝐿𝑒 −3𝐿𝑒

2 13𝐿𝑒

22𝐿𝑒 156 −13𝐿𝑒 54

−3𝐿𝑒
2 −13𝐿𝑒 4𝐿𝑒

2 −22𝐿𝑒

13𝐿𝑒 54 −22𝐿𝑒 156 ]
 
 
 

  𝐤11
𝑒 =

1

30𝐿𝑒

[
 
 
 

4𝐿𝑒
2 3𝐿𝑒 −𝐿𝑒

2 −3𝐿𝑒

3𝐿𝑒 36 3𝐿𝑒 −36

−𝐿𝑒
2 3𝐿𝑒 4𝐿𝑒

2 −3𝐿𝑒

−3𝐿𝑒 −36 −3𝐿𝑒 36 ]
 
 
 
 (16a) 

𝐤22
𝑒 =

2

𝐿𝑒
3

[
 
 
 

2𝐿𝑒
2 3𝐿𝑒 𝐿𝑒

2 −3𝐿𝑒

3𝐿𝑒 6 3𝐿𝑒 −6

𝐿𝑒
2 3𝐿𝑒 2𝐿𝑒

2 −3𝐿𝑒

−3𝐿𝑒 6 −3𝐿𝑒 6 ]
 
 
 
  𝐤20

𝑒 =
1

30𝐿𝑒

[
 
 
 
−4𝐿𝑒

2 −33𝐿𝑒 𝐿𝑒
2 3𝐿𝑒

−3𝐿𝑒 −36 −3𝐿𝑒 36

𝐿𝑒
2 −3𝐿𝑒 −4𝐿𝑒

2 33𝐿𝑒

3𝐿𝑒 36 3𝐿𝑒 −36]
 
 
 
     𝐤02

𝑒 = (𝐤20
𝑒 )𝑇 (16b) 

(iii) Take into account the member end support conditions, expressed in terms of the GBT modal degrees 
of freedom, and assemble the finite element matrices to obtain the (discretised) eigensystem 

 
 (𝐊 − λ𝐆)𝐚 = 𝟎 (17) 

where 𝑲 , and 𝑮  denote the member overall linear and geometrical stiffness matrices, and 𝐚  (eigenvector) 
provides the buckling mode configuration expressed in terms of the finite element degrees of freedom. An 

upper bound on the system dimension is 2𝑛𝑑(𝑛𝑓𝑒 + 1), where 𝑛𝑓𝑒 is the number of finite elements. 

 
3.2 GBT-Based Exact Element Approach 

The implementation of the exact element is now presented. It involves two main steps: (i) expressing the modal 
amplitude functions as power series and finding their coefficients, and (ii) deriving the exact elementary non-linear 
stiffness matrix. 

3.2.1 Expression of 𝝋(𝑥) as a power series 

As a first step, GBT differential equilibrium equations system are normalized using 𝑥 = 𝜉𝐿 and, therefore, Eqs. 
(9) can be written as  
 

 𝛗,𝜉𝜉𝜉𝜉 − 𝐃𝛗,𝜉𝜉 + 𝐁𝛗 + λ𝐗𝛗,𝜉𝜉 = 𝟎 (18) 

with 
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 𝐃 = 𝐿2𝐂−1�̃�  (19a) 

 𝐁 = 𝐿4𝐂−1𝐁  (19b) 

 𝐗 = 𝐿2𝐂−1 ∑ {𝑊𝑗𝐗𝑗
σ−x}

𝑁𝑑
𝑗=1  (19c) 

It should be noted that matrix 𝐂 is always invertible in the modal space under consideration, since the 
conventional Vlasov modes always involve non-null primary and/or secondary warping stiffness. In 
addition, the above calculations need to be performed only once, because the matrices are constant 
throughout the process. Then, 𝛗(𝜉) (solution of the problem) can be written as a power series 
 

  𝛗(𝜉)  =  ∑ 𝒇𝑛
∞
𝑛=0 𝜉𝑛  (20) 

where {𝒇0, … , 𝒇∞} are the coefficient vectors (𝑛𝑑-dimension), and the substitution of Eq. (20) into Eq. (18) yields 
 

∑
(𝑛 + 4)!

𝑛!
𝒇𝑛+4

∞

𝑛=0

𝜉𝑛 − 𝐃 ∑
(𝑛 + 2)!

𝑛!
𝒇𝑛+2

∞

𝑛=0

𝜉𝑛 + 𝐁 ∑ 𝒇𝑛

∞

𝑛=0

𝜉𝑛 + 

+𝜆𝐗 ∑
(𝑛 + 2)!

𝑛!
𝒇𝑛+2

∞

𝑛=0

𝜉𝑛 = 𝟎 

 (21) 

This equation is satisfied for any value of 𝜉 if and only if all the terms with the same power 𝑛 are equal to zero, i.e., 
 

 
(𝑛+4)!

𝑛!
𝒇𝑛+4 −

(𝑛+2)!

𝑛!
𝐃𝒇𝑛+2 + 𝐁𝒇𝑛 + 𝜆𝐗

(𝑛+2)!

𝑛!
𝒇𝑛+2 = 𝟎  (22) 

which constitutes a linear homogeneous recursive formula: each term is dependent on the four preceding 
ones for each of the 𝑛𝑑 deformation modes. Finally, Eq. (22) can be simplified to read 
 

  𝒇𝑛+4 = 𝑎𝑛+2�̅�𝜆𝒇𝑛+2 − 𝑏𝑛𝐁𝒇𝑛  (23) 

where �̅�𝜆 is a non-linear stiffness matrix given by 
 

  �̅�𝜆 = 𝐃 − 𝜆𝐗  (24) 

and 𝑎𝑛 and 𝑏𝑛 are series given by 
 

 𝑎𝑛 =
𝑛!

(𝑛+2)!
 𝑏𝑛 =

𝑛!

(𝑛+4)!
 (25) 

By assigning values to (i) parameter11 𝜆, and (ii) the first four coefficients {𝒇0, … , 𝒇3}, Eq. (22) makes it 
possible to find the remaining coefficients in the series, {𝒇4, … , 𝒇∞}, and therefore, obtain an exact solution 
to the differential equilibrium equation system – one that, in general, does not verify the member boundary 
conditions (Eqs. 9(a)-(b)). On the other hand, it is not practical to adopt coefficients {𝒇0, … , 𝒇3} as the 

element degrees of freedom (they do not have an obvious physical meaning)  instead, it is preferable to adopt 
the degrees of freedom of the conventional finite element, (nodal values and derivatives of the modal 
amplitude functions): 𝒅1

𝑒 ≡ 𝛗,𝑥(0), 𝒅2
𝑒 ≡ 𝛗(0), 𝒅3

𝑒 ≡ 𝛗,𝑥(1), 𝒅4
𝑒 ≡ 𝛗(1), which leads to (see Eq. (12)), 

                                                      
11 Obviously, at this point the buckling load parameter (𝜆) is yet unknown. As it will be explained at the end of section 

3.2.3, the process to solve the equilibrium equations involves the consideration of successive trial values for 
parameter 𝜆, until the one leading to a singular stiffness matrix is found. 
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 𝛗(𝑥) = 𝐄1(𝜉)𝒅1

𝑒 + 𝐄2(𝜉)𝒅2
𝑒 + 𝐄3(𝜉)𝒅3

𝑒 + 𝐄4(𝜉)𝒅4
𝑒  (26) 

where the four 𝐄𝑖(𝑛𝑑 × 𝑛𝑑) matrices contain the exact shape functions associated with the four types of degrees 
of freedom. A striking difference with respect to Eq. (12) is the fact that the shape functions must now be 
expressed by matrices, whose components are interpreted as follows: 

(i) The diagonal components,  𝐸𝑖(𝜉) 𝑗𝑗 = 𝑒𝑖.𝑗(𝜉), are directly associated with the imposed displacements – 

thus, 𝑒𝑖.𝑗(𝜉) is the shape function of the 𝑗-th mode stemming from imposing a unit value on its own 𝑖-th 

degree of freedom (displacement or derivative). Figures 4(a)-(b) show the 4 basic function types (𝑖 = 1,… ,4) 
for two solutions: one involving a single half-wave (𝑛ℎ = 1, see Fig. 4(a)) and the other involving five half-
waves (𝑛ℎ = 5, see Fig. 4(b)). 

 

 𝒏𝒉 = 𝟏 solution 𝒏𝒉 = 𝟓 solution 

𝒆𝟏.𝒋(𝝃) 

  

𝒆𝟐.𝒋(𝝃) 

  

𝒆𝟑.𝒋(𝝃) 

  

𝒆𝟒.𝒋(𝝃) 

  
 (a) (b) 

Figure 4: Exact finite element shape functions associated with the 4 degrees of freedom of a given deformation 
mode 𝑗 – solutions involving (a) a single half-wave (𝑛ℎ = 1) and (b) five half-waves (𝑛ℎ = 5). 

(ii) The off-diagonal components  𝐸𝑖(𝜉) 𝑗𝑘  (𝑗 ≠ 𝑘) are associated with the couplings between deformation 

modes, which are already present in the matrices appearing in Eq. (22) – for instance,  𝐄𝑖(𝜉) 𝑗𝑘 is the shape 

function associated with the 𝑗-th deformation mode due to imposing a unitary displacement or derivative on 
corresponding to the degree-of-freedom 𝑖 of the 𝑘-th deformation mode. All these “accompanying” shape 
functions involve null displacements and derivatives at both ends.  
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Hence, this exact finite element involves the same 4 × 𝑛𝑑 degrees of freedom as the conventional one. However, 

it also has 4 × 𝑛𝑑
2  exact shape functions (the components of the four 𝐄𝑖(𝜉)  matrices), which must be 

determined. In the next section, the systematic procedure adopted to determine these functions is addressed. 

3.2.2 Power Series and Boundary Values/Derivatives 

Before addressing the determination of the exact finite element shape functions and non-linear stiffness matrix, it 
is useful to investigate the mathematical relations between the power series terms and the values of the 
amplitude functions 𝛗(𝜉), and their derivatives, at the element ends/nodes (𝜉 = 0, 1). From Eq. (20) it 
follows that 
 

 𝛗(0) = ∑  𝒇𝑛𝜉𝑛

∞

𝑛=0

|

𝜉=0

= 𝒇0   (27) 

 𝛗(1) = ∑  𝒇𝑛𝜉𝑛

∞

𝑛=0

|

𝜉=1

= ∑  𝒇𝑛

∞

𝑛=0

   (28) 

As shown by Eq. (27), the value of the amplitude function at 𝜉 = 0 is equal to a single coefficient of the 
series (𝛗(0) ≡ 𝒇0 ), a statement that can be extended to its derivatives – i.e., for the 𝑚 -th order 
derivative, one has 
 

 𝛗(𝑚)(0) = 𝑚!𝒇𝑚  (29) 

On the other hand, Eq. (28) shows that the value of the amplitude function at 𝜉 = 1 is given as a sum 
involving all the terms of the series. However, since a linear fourth-order series is involved, all the terms depend, 
in this particular case, exclusively on the first four terms (𝒇0 to 𝒇3) and, therefore, 𝛗(1) can be more 
conveniently expressed as 
 
 𝛗(1) = 𝐀0

0𝒇0 + 𝐀1
0𝒇1 + 𝐀2

0𝒇2 + 𝐀3
0𝒇3  (30) 

where the (𝑛𝑑 × 𝑛𝑑) matrices 𝐀𝑘
0  can be obtained by means of 

 
 [𝐀𝑘

0 ]
𝑖𝑗

= ∑ [�̃�𝑛]
𝑖

∞
𝑛=0   (31) 

in which  ∙ 𝑖𝑗  stands for the (𝑖, 𝑗) tensorial component and �̃�𝑛 are the coefficients of an auxiliary power 

series obtained by using Eq. (22), with its first four terms (�̃�0 to �̃�3) being given by 
 
 [�̃�𝑙]𝑗 = 𝛿𝑘𝑙   (32) 

where 𝛿𝑘𝑙  is the Kronecker delta (𝑘, 𝑙 = 0,1,2,3 ). Then, for a given power series with coefficients 
{𝒇0, … , 𝒇∞}, Eq. (30) makes it possible to obtain the end displacement as a function of only the first four 
of them ({𝒇0, … , 𝒇3}). Note that the superscript “0” appearing in the above matrices indicates that the expression 
provides the end value of the 𝛗(𝜉) function – for the 𝑚-th order derivative, Eqs. (30)-(31) become 
 
 𝛗(𝑚)(1) = 𝐀0

𝑚𝒇0 + 𝐀1
𝑚𝒇1 + 𝐀2

𝑚𝒇2 + 𝐀3
𝑚𝒇3  (33) 

  𝐀𝑘
𝑚 𝑖𝑗 = ∑

(𝑛+𝑚)!

𝑛!
[�̃�𝑛+𝑚]

𝑖

∞
𝑛=0  (34) 
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while Eq. (32) still applies to provide {�̃�0, … , �̃�3}. Although the determination of the 16 matrices 𝐀𝑘
𝑚 

(𝑘,𝑚 = 0,1,2,3) is indispensable to carry out the procedure addressed in the next section, it can be performed 
beforehand and independently of it. 

3.2.3 Derivation of the Exact Element Shape Functions and Non-Linear Stiffness Matrix 

For a GBT buckling analysis involving 𝑛𝑑  deformation modes, the exact element non-linear stiffness matrix has 
dimension 4𝑛𝑑 × 4𝑛𝑑, since the differential equilibrium equations include fourth-order derivatives. Its entries are 

the boundary term values, namely 𝑾𝑖(0), �̅̅̅�𝑖(0), 𝑾𝑖(1) and �̅̅̅�𝑖(1) (1 ≤ 𝑖 ≤ 𝑛𝑑, see Eqs. (10(a)-(b)), which are 
evaluated on the basis of the 4 × 𝑛𝑑 shape functions associated with the element degrees of freedom (amplitude 
function values and derivatives at the ends/nodes). This procedure involves the following steps: 

(i) For a GBT mode 𝑗, a unitary displacement or derivative is imposed to each of its degrees of freedom – in order 
to obtain the ensuing shape functions as power series, the first four coefficient vectors {𝒇0, … , 𝒇3} 
must be determined. While the first two (𝒇0 and 𝒇1) can be readily obtained from the boundary conditions 
(see Table 1), the remaining two (𝒇2 and 𝒇3) must be evaluated by solving the 2 × 𝑛𝑑 linear system 

 

 {
𝐀2

0𝒇2 + 𝐀3
0𝒇3 = 𝝋(1) − 𝐀0

0𝒇0 − 𝐀1
0𝒇1

𝐀2
1𝒇2 + 𝐀3

1𝒇3 = 𝝋,𝜉(1) − 𝐀1
1𝒇1

   (35) 

where 𝝋(1) and 𝝋,𝜉(1) are the values and derivatives of the shape functions at the end node, which 

can be straightforwardly obtained from the boundary conditions (see Table 1). The set of four 
coefficient vectors {𝒇0, … , 𝒇3} obtained, as described above, for the 𝑖-th degree of freedom of mode 
𝑗 make it possible to determine the 𝑗-th column of matrix 𝐄𝑖(𝜉) – repeating the procedure for all modes 
leads to the complete definition of the matrices appearing in Eq. (26). 
 

Table 1: Vectors 𝒇0, 𝒇1, 𝝋(1) and 𝝋,𝜉(1) for the various shape functions (vector {𝟏} has unit components). 

 𝒇
0
 𝒇

1
 𝝋(1) 𝝋

,𝜉
(1) 

𝑒1.𝑗(𝜉) 0 𝛿𝑗𝑘{𝟏} 0 0 

𝑒2.𝑗(𝜉) 𝛿𝑗𝑘{𝟏} 0 0 0 

𝑒3.𝑗(𝜉) 0 0 0 𝛿𝑗𝑘{𝟏} 

𝑒4.𝑗(𝜉) 0 0 𝛿𝑗𝑘{𝟏} 0 

 𝐄𝑖(𝜉) 𝑘𝑗 0 0 0 0 

(ii) The boundary forces (𝑾𝑖(0), �̅̅̅�𝑖(0), 𝑾𝑖(1), �̅̅̅�𝑖(1)) are determined using Eqs. (10(a)-(b)) on the 
basis of the shape functions, namely their first 4 coefficients. For terms involving higher-order 
derivatives (𝑚 = 2,3), Eq. (33) can be employed. 

 
This completes the computation of the non-linear stiffness matrix, at a given value of the buckling load 
parameter 𝜆. Next, it is necessary to look for the values of 𝜆 that make the member non-linear stiffness 
matrix (including the particular end restraints/support conditions) become singular. This can be done by 
means of a simple search technique, which involves increasing the trial value until the matrix determinant 
becomes null zero. In order to find higher-order buckling loads and modes, the search must be continued until 
all the required solutions are obtained. It is also possible to resort to the Wittrick-Williams algorithm [39], which 
makes it possible to expedite the search while ensuring that none of the sought buckling loads is missed 
(moreover, it also unveils the coincident eigenvalues). 
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4. Illustrative Examples 

The application and performance of the exact GBT-based finite element just presented are now 
considered. The numerical illustrative examples presented and discussed in the next subsections concern 
cold-formed steel lipped channel columns with the cross-section dimensions given in Figure 2(a) and 

material properties 𝐸 = 210𝐺𝑃𝑎 and 𝜈 = 0.3  since the loading consists of uniform axial compression 𝑁, one 

has ∑ {𝑊𝑗𝐗𝑗
σ−x}

𝑁𝑑
𝑗=1 ≡ 𝑁𝐗1

σ−x. The buckling behaviour of such columns is assessed by means of GBT analyses 

employing either “analytical solutions” (“AS”), conventional GBT-based finite elements (“CE”) or exact GBT-
based elements (“EE”), with the objective of comparing the three sets of results – note that the first two sets of 
results are obtained by means of program GBTUL [24], while the last one stems from a FORTRAN code written 
specifically to implement the “EE” approach. 
 

4.1 Simply Supported Columns  Validation 

In order to validate the numerical implementation of the exact finite element, the buckling behaviour of 
simply supported12 columns is first considered. Figure 5(a) depicts (i) a curve 𝜆 − 𝐿 providing the variation of 
the column critical buckling load with its length, obtained though GBT “analytical solutions”13 and (ii) eight buckling 
loads, obtained with exact (“EE”) GBT-based elements and identified by circles. The fact that the two sets of buckling 
loads values virtually coincide (differences below 0.05%), irrespective of column length and nature of the 
buckling mode, provides clear evidence that the GBT exact element was adequately implemented. As expected, 
a similar buckling load coincidence takes place when only fractions of the whole deformation mode 
 

Table 2: Comparison between similarly accurate “CE” and “EE” analyses: critical buckling loads (𝑃𝑐𝑟) and numbers 
of finite elements (𝑛𝑓𝑒) and degrees of freedom (𝑛𝑑𝑜𝑓) required to obtain them. 

𝑳 (𝒎𝒎) 
𝑷𝒄𝒓 

𝒏𝒉 
𝒏𝒇𝒆 𝒏𝒅𝒐𝒇 

“CE” “EE” “CE” “EE” “CE” “EE” 

160 193.7 192.5 2 3 

1 

36 

12 
600 163.7 163.1 2 4 48 

1000 158.6 157.7 3 5 60 

3000 32.4 32.2 1 2 24 

 

                                                      
12 In the GBT modal terminology, “simply supported” means that the deformation mode amplitude functions have null nodal 

values, while the corresponding derivatives are kept as degrees of freedom  i.e., 𝛗(0) = 𝛗(1) = 0. 
13 The critical buckling load is obtained by using the sinusoidal modal amplitude functions defined in Eq. (11) and varying the 

number of half-waves (𝑛ℎ) until a minimum buckling load is determined. 
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 (a) 

 

(b) 

 

(c)  

  

Figure 5: Simply supported members GBT buckling analysis: 𝜔𝑓 − 𝐿 curves for (a) all modes and (b) modes {7}, {5} 

and {2,4}, and (c) modal participation diagram (𝑃𝑖 − 𝐿). 
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 (a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

 

Figure 6: Lipped channel critical buckling mode fundamental shapes (depicted to the same longitudinal scale) and 
|𝐊𝜆| |𝐊0|⁄  vs. 𝜆 curves (indicating the first roots in the interval shown): (a) 𝐿 = 120𝑚𝑚, (b) 𝐿 = 600𝑚𝑚, (c) 𝐿 =

4000𝑚𝑚 and (d) 𝐿 = 7000𝑚𝑚 columns. 
 
set are included in the GBT analyses, as illustrated in Figure 5(b), showing the results of buckling analyses 

involving only modes {7}, {5}, {2, 4} and {3}  it should be pointed out that, due to numerical difficulties, addressed 
in Section 4.4, it was extremely hard to determine buckling loads for columns with 𝐿 > 1000𝑚𝑚 using the “EE” 
approach when only mode 7 was included in the analysis (very large half-wave numbers). Finally, Figure 
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5(c) displays the modal participation diagram, which shows the variation of the critical buckling mode 
nature with the column length. It can be observed that the column critical buckling mode is (i) local (mode 

7 prevails  see Fig. 6(a)), for 𝐿 ≤ 200𝑚𝑚, (ii) distortional (mode 5 prevails  see Fig. 6(b)), for 200 < 𝐿 <

1200𝑚𝑚, (iii) flexural-torsional (modes 2 and 4  see Fig. 6(c)) or (iv) flexural (mode 3  see Fig. 6(d)), for 𝐿 ≥
6000𝑚𝑚. The modal participation diagram agrees with Figure 5(b), in the sense that a few deformation modes 
suffice to obtain exact results in certain length ranges. 
 
Finally, Figures 6(a)-(d) show the buckling mode shapes mentioned in the previous paragraph and also 
curves depicting the variation of the normalised non-linear stiffness matrix determinant (|𝐊𝜆| |𝐊0|⁄ ) with the load 
parameter for 4 column lengths: 𝐿 = 120𝑚𝑚, 𝐿 = 600𝑚𝑚, 𝐿 = 4000𝑚𝑚 and 𝐿 = 7000𝑚𝑚, showing 
the first roots, providing the lower buckling load values and mode shapes of each column. 
 
Next, in order to make a first assessment of the degree of freedom economy associated with the use of the 
“exact element” approach, with respect to the “conventional element” one, the columns having lengths 𝐿 =
{160, 600, 1000, 3000} 𝑚𝑚 are also analysed by means of the “CE” approach, discretising the columns into 2 
to 5 finite elements, which are the lowest numbers required to achieve virtually exact results (i.e., 𝑃𝑐𝑟 differences 
below 1%). In both cases, the GBT analyses include modes {𝟐, 𝟒, 𝟓, 𝟔, 𝟕, 𝟗}. Table 2 shows a comparison 
between the results obtained with the “CE” and “EE” approaches, as well as the numbers of degrees of 
freedom involved in performing the two sets of GBT buckling analyses. Note that a single exact element involves 
𝑛𝑑𝑜𝑓 = 12  degrees of freedom14 , while equally accurate analyses using conventional finite elements require 

between 24 and 60 degrees of freedom, depending on the number of half-waves exhibited by buckling mode 
(𝑛ℎ): obviously, a higher 𝑛ℎ requires a finer “CE” mesh (i.e., more degrees of freedom) to provide results 
as accurate as those obtained with a single “EE”. 
 

4.2 Columns with Other Support Conditions 

Figure 7 provides 𝜆 − 𝐿 curves for columns other than simply supported, namely exhibiting the following 

end support conditions: (i) clamped-free15 (“C-F”  cantilever), (ii) clamped-simply supported (“C-S”) and (iii) 
clamped-clamped (“C-C”). They were obtained by means of the “CE” approach, including the same set of 
deformation modes considered earlier ({𝟐, 𝟒, 𝟓, 𝟔, 𝟕, 𝟗}) and discretising the columns into the minimum 
numbers of conventional finite elements required to obtain “exact” buckling results. 
 

The circles identify again the buckling loads determined with the “EE” approach  note that it was necessary to 
consider two exact finite elements in the C-C columns, due to the fact that a single finite element would have all its 
degrees of freedom fully constrained. It is observed that, once more, there is a virtual coincidence between the 
buckling loads provided by the “CE” and “EE” approaches – all the differences are below 0.02%. For 𝐿 =
{160, 600, 1000, 3000} 𝑚𝑚, Table 3 presents and compares the critical buckling loads 𝑃𝑐𝑟 provided by both 
methods and the numbers of finite elements and degrees of freedom required to obtain them. It is observed 
that, in order to achieve similar accuracy, the numbers of degrees of freedom required by the “CE” 
approach is 2 to 10 times larger than those associated with the use of the exact element method. 

                                                      
14 To be completely fair, it should be recalled that, unlike its conventional finite element counterpart, the exact element 

approach requires the a priori preliminary definition of the exact shape functions, i.e., the determination of the power series 
coefficients (Eq. (23)). The maximum number of coefficients (i.e., the power series order) that was necessary to 

obtain accurate buckling loads, up to the machine precision, was found to be usually in the 40-60 range  however, it can 
be over 100 is some (rare) cases. 

15 In the GBT modal terminology, “clamped” means null nodal values of the displacements and derivatives of the deformation 
mode amplitude functions: 𝛗(0) = 𝛗,𝜉(0) = 𝛗(1) = 𝛗,𝜉(1) = 0. 
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4.3 Conventional vs. Exact Elements: Comparison 

The performances of the exact and conventional (finite) elements are now compared. Figure 8 shows the 
variation of the buckling load ratio 𝜆𝐶𝐸 𝜆𝐸𝐸⁄  concerning a simply supported column with length 𝐿 = 400𝑚𝑚 
and buckling in pure symmetric distortional modes (i.e., only mode 5 is included in the GBT analyses) 
exhibiting between one and six half-waves (𝑁ℎ = 1,… ,6). In other words, they are the first six buckling modes 
of the above column when it is “restrained” to exhibit only symmetric distortional deformations. Naturally, the 
exact element approach provides the same buckling load regardless of the numbers of elements and buckling 
mode half-waves. Conversely, the buckling loads obtained by means of the conventional finite element approach 

decrease as the number of finite elements increases, for every buckling mode half-wave number  in general, 
exact buckling loads are reached when 2-3 conventional finite elements are considered per buckling mode half-
wave. Therefore, the “degree of freedom economy” associated with the use of the “EE” approach, with respect to 
the “CE” one, increases with the buckling mode half-wave number16. 
 
Similarly, Figure 9 plots 𝜆𝐶𝐸 𝜆𝐸𝐸⁄  against the number of finite elements, for 𝐿 = 1000𝑚𝑚 columns with the 
four different end support conditions dealt with in this work (S-S, C-F, C-C and C-S). It can be observed that 
the accuracy of the solution provided by the conventional finite element approach increases differently with 
the number of finite elements for the various columns (and the associated buckling mode natures). For instance, 
using a single conventional finite element leads to a strong overestimation of the C-S column buckling load 

(𝜆𝐶𝐸 𝜆𝐸𝐸⁄ ≈ 6)  indeed, it is necessary to consider 5 finite elements to obtain a virtually exact solution (error 
below 1%). As for the C-C column, which requires 2 exact elements to obtain the solution, it ends up being the 

one requiring the highest number of conventional finite elements to achieve accuracy  in the cantilevered 
column, 3 conventional finite elements are sufficient to attain that same goal. 
 
Another advantage of the exact element approach stems from the fact that the modal amplitude functions, 
as well as their derivatives, are provided (approximated) by single analytical expressions along the whole 

column/member length  instead of approximations by means of piecewise cubic (or of a lesser order) 
 

 
Figure 7: 𝜆 − 𝐿 curves for S-S, C-F, C-S and C-C columns. 

                                                      
16Recall that, as stated in footnote 9, a “fair comparison” must also consider the number of coefficients involved in the exact 

shape functions  this number tends to increase as the support conditions become “more restrained”. 
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Table 3: Comparison between the “CE” and “EE” analyses for C-F, C-C and C-S columns: critical buckling loads (𝑃𝑐𝑟) 
and numbers of finite elements (𝑛𝑓𝑒) and degrees of freedom (𝑛𝑑𝑜𝑓) required to obtain them. 

 𝑳 (𝒎𝒎) 
𝑷𝒄𝒓 𝒏𝒇𝒆 𝒏𝒅𝒐𝒇 

“CE” “EE” “CE” “EE” “CE” “EE” 

C-F 

160 94.8 94.3 2 

1 

24 

12 
600 82.1 81.7 4 48 

1000 59.4 59.4 3 36 

3000 13.8 13.8 3 36 

C-C 

160 244.3 242.5 5 

2 

48 

12 
600 198.3 197.7 7 72 

1000 184.9 183.9 6 60 

3000 100.6 99.8 3 24 

C-S 

160 197.6 196.6 4 

1 

42 

6 
600 180.8 179.7 4 42 

1000 165.8 164.6 5 54 

3000 55.6 55.4 6 66 

 
polynomials associated with the conventional finite element approach. In order to illustrate the above 
assertion, Figure 10 shows, for the column under consideration, the mode 5 amplitude functions (𝜑(𝑥)) and their 
second derivatives (𝜑,𝑥𝑥(𝑥)), required to determine the longitudinal stress distributions, concerning the 

“pure” distortional buckling modes with 1, 3 and 5 half-waves. The results presented were obtained using (i) 
1 exact element and (ii) 3 conventional finite elements – since the latter adopt cubic polynomials as approximation 
functions, the corresponding 𝜑,𝑥𝑥(𝑥) functions are piecewise linear. 

 

Figure 8: Variation of 𝜆𝐶𝐸 𝜆𝐸𝐸⁄  with the number of conventional and exact finite elements for the first six (𝑁ℎ = 1,… ,6) 
buckling modes of a 𝐿 = 400𝑚𝑚 simply supported column constrained to exhibit only distortional deformation (mode 5). 
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Figure 9: Variation of 𝜆𝐶𝐸 𝜆𝐸𝐸⁄  with the number of conventional and exact finite elements for the critical buckling mode 
of a 𝐿 = 1000𝑚𝑚 column for different support conditions: S-S, C-F, C-C and C-S. 

 
 𝝋(𝒙) 𝝋,𝒙𝒙(𝒙) 

(a) 

  

(b) 

  

(c) 

 
 

Figure 10: Comparison between the exact (sinusoidal) and approximate (3 conventional finite elements) 𝜑(𝑥) and 𝜑,𝑥𝑥(𝑥) 

functions for a 𝐿 = 400𝑚𝑚 S-S column buckling in distortional mode with (a) 1, (b) 3 and (c) 5 half-waves. 
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The plots on the left hand side conform what is well known: the 3 conventional elements provide quite 

good approximations of the exact (sinusoidal 17 ) amplitude functions  although the quality of the 
approximation decreases with 𝑁ℎ, it is fairly good even for 𝑁ℎ = 5. Conversely, the exact second derivatives 
of the above amplitude functions are approximated (linearly) in a much poorer fashion, regardless of the 
𝑁ℎ  value – for 𝑁ℎ = 3  and 𝑁ℎ = 5 , the maximum values are significantly under- and overestimated, 
respectively. This level of approximation can only be improved by increasing significantly the number of 
(conventional) finite elements. Since, as mentioned before, the longitudinal stress distributions associated with 
a given buckling mode, are proportional to 𝜑,𝑥𝑥(𝑥), accurate (multi-linear) representations of the stress field can 

only be achieved by adopting a very fine conventional finite element mesh  on the contrary, a single exact 
element leads to an excellent (smooth) approximation of both 𝜑,𝑥𝑥(𝑥) and the stress field. 

4.4 Exact Element Limitations 

It was found that the solution of buckling problems by means of the exact element approach may become 
numerically unstable for long columns (𝐿 > 800𝑚𝑚) buckling in local modes (e.g., modes {7,9}. This is due to 
the large half-wave numbers involved, which leads to polynomials with very high orders, and also to the fact 
that local modes exhibit very small warping stiffness (in comparison with those of global or distortional modes). 
The above two features are responsible for the fact that the recursive formula (Eq. (22)), which is based on the 
inversion of matrix 𝐂 (Eqs. (18a-c)), provides series of coefficients with reversing signs (𝑠𝑔𝑛(𝑓𝑛) = −𝑠𝑔𝑛(𝑓𝑛−1)) 
and very high values (prior to the vanishing of the corresponding absolute values). Figure 11 illustrates this assertion, 
by showing the absolute values of the coefficients defining the four exact element shape functions (plots |𝑓𝑛| vs. 𝑛) 
for simply supported columns with (i) 𝐿 = 400𝑚𝑚 and (ii) 𝐿 = 1000𝑚𝑚, which are “forced” to buckle in mode 
7. It is observed that, for the 𝐿 = 1000𝑚𝑚 column, it is 
 

 

Figure 11: Absolute values of the series coefficients defining the 4 exact element shape functions for the analysis of S-S 

columns with (i) 𝐿 = 400𝑚𝑚 and (ii) 𝐿 = 1000𝑚𝑚 and “forced” to buckle in mode 7  𝜆 = 159.9 𝑘𝑁. 

                                                      
17The polynomial approximations provided by the exact element approach are virtual “exact”, although, naturally, the number 

of coefficients that have to be considered grows fast with the number of buckling mode half-waves. 

𝐿 = 400𝑚𝑚 

𝐿 = 1000𝑚𝑚 
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necessary to calculate coefficients of orders higher than 100 (𝑛 > 100), which can exhibit absolute values above 

1018 (|𝑓𝑛| > 1018)  these values are many more and much higher than those concerning the 𝐿 = 400𝑚𝑚 
column (𝑛 < 50, |𝑓𝑛| < 108). This fact leads to a very error-prone situation, due to the inaccuracy of the stiffness 
matrix and an unstable (oscillating) determinant curve. This difficulty could possibly be circumvented 
either (i) by neglecting the warping stiffness all together (𝐂 ≈ 𝟎), which would lead to an alternative 
(second-order) form of the recursive formula and should not entail significant errors, or (ii) by considering 
more than one exact element. 

6. Conclusion 

This paper presented the formulation, implementation and application of an exact GBT-based beam 
element intended for the buckling analysis of thin-walled members, namely columns. This element, which is 
“exact” up to machine precision, approximates the modal longitudinal amplitude functions by means of 
power series whose coefficients are provide by a fourth-order recursive formula. The buckling loads, and 
corresponding mode shapes, are obtained by finding the roots of the determinant of the ensuing non-linear 
stiffness matrix (which is a function of the load parameter 𝜆). 
 
The performance quality of the exact element was investigated by means of a few illustrative numerical examples 
concerning lipped channel columns, which validated the implementation carried out and also compared the 
results obtained by means of the proposed approach with those provided by the conventional GBT-based finite 
element approach, which uses cubic Hermite polynomials as shape functions. This comparison showed that the 
exact element approach provides virtually “exact” results, thus validating its implementation, while 
minimising the number of degrees of freedom involved in the analysis and eliminating the need for a longitudinal 

mesh  the increased efficiency of the exact element approach, with respect to its conventional finite element 
counterpart, is naturally higher for columns buckling in modes exhibiting large half-wave numbers. On the other 
hand, it was also found that, in long columns buckling locally, numerical instabilities may prevent the proposed 

approach to provide accurate results  however, it seems that this difficulty can be fairly easily circumvented. 

Annex A 

The components of the GBT cross-section linear and geometrical stiffness matrices read 
 

 𝐶𝑖𝑘 = ∫
𝐸𝑡

1−𝜈2 𝑢𝑖𝑢𝑘𝑑𝑠
𝑆

+ ∫
𝐸𝑡3

12(1−𝜈2)
𝑤𝑖𝑤𝑘𝑑𝑠

𝑆
    (36a) 

 𝐵𝑖𝑘 = ∫
𝐸𝑡

1−𝜈2
𝑣𝑖,𝑠𝑣𝑘,𝑠𝑑𝑠

𝑆
+ ∫

𝐸𝑡3

12(1−𝜈2)
𝑤𝑖,𝑠𝑠𝑤𝑘,𝑠𝑠𝑑𝑠

𝑆
   (36b) 

 𝐷𝑖𝑘 = ∫ 𝐺𝑡(𝑢𝑖,𝑠 + 𝑣𝑖)(𝑢𝑘,𝑠 + 𝑣𝑘)𝑑𝑠
𝑆

+ ∫
𝐺𝑡3

3
𝑤𝑖,𝑠𝑤𝑘,𝑠𝑑𝑠

𝑆
    (36c) 

 𝐸𝑖𝑘 = ∫
𝜈𝐸𝑡

1−𝜈2
𝑢𝑖𝑣𝑘,𝑠𝑑𝑠

𝑆
+ ∫

𝜈𝐸𝑡3

12(1−𝜈2)
𝑤𝑖𝑤𝑘,𝑠𝑠𝑑𝑠

𝑆
    (36d) 

 𝑋𝑗𝑖𝑘
𝜎−𝑥 = ∫

𝐸𝑡

1−𝜈2
𝑢𝑗(𝑣𝑖𝑣𝑘 + 𝑤𝑖𝑤𝑘)𝑑𝑠

𝑆
   (36e) 

 𝑋𝑗𝑖𝑘
𝜎−𝑥𝑃 = ∫

𝜈𝐸𝑡

1−𝜈2 𝑣𝑗,𝑠(𝑣𝑖𝑣𝑘 + 𝑤𝑖𝑤𝑘)𝑑𝑠
𝑆

   (36f) 

 𝑋𝑗𝑖𝑘
𝜎−𝑠𝑃 = ∫

𝜈𝐸𝑡

1−𝜈2 𝑢𝑗𝑤𝑖,𝑠𝑤𝑘,𝑠𝑑𝑠
𝑆

    (36g) 

 𝑋𝑗𝑖𝑘
𝜎−𝑠 = ∫

𝐸𝑡

1−𝜈2
𝑣𝑗,𝑠𝑤𝑖,𝑠𝑤𝑘,𝑠𝑑𝑠

𝑆
    (36h) 
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 𝑋𝑗𝑖𝑘
𝜏 = ∫ 𝐺𝑡(𝑢𝑗,𝑠 + 𝑣𝑗)(𝑣𝑖,𝑠𝑣𝑘 + 𝑤𝑖,𝑠𝑤𝑘)𝑑𝑠

𝑆
    (36i) 

where 𝐸 , 𝐺 , 𝜈  and 𝜌  are the material Young’s modulus, shear modulus, Poisson’s ratio and volumetric mass, 
indexes 𝑖, 𝑗, 𝑘 span the deformation mode set (1, … ,𝑁𝑑) and 𝑆 stands for the cross-section mid-line domain. The 
first and second terms of Eqs. (36a)-(36i) are associated with membrane and bending properties, respectively. 
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