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Abstract 

A potential strategy to produce safer and broadly protective influenza vaccines is to 

co-express, in the same cell host, multiple hemagglutinins (HA) with a matrix protein (M1) 

which self-assemble in virus-like particles (VLPs). This study demonstrates the suitability of 

combining stable expression and the baculovirus-expression vector system (BEVs) in insect 

Hi5 cells for production of such multi-HA Influenza VLPs. Stable pools of Hi5 cells 

expressing two HAs were generated and later infected with a M1-encoding baculovirus at 

two cell concentrations (CCIs; 2×106 cells/mL and 3×106 cells/mL). The HA concentration 

in culture supernatant was followed over time, with more productive infections observed at 

higher CCIs. To extend the culture time, a re-feed strategy was implemented based on the 

identification of key nutrients which were exhausted during cell growth. Afterwards, 

supplemented cultures infected at a CCI of 4×106 cells/mL allowed a 4-fold increase in HA 

concentration, at harvest, when compared to cultures infected at a CCI of 2×106 cells/mL. 

The production of multi-HA influenza VLPs using the aforementioned strategy could be 

successfully scaled-up to 2L bioreactor cultures with even higher volumetric (1.5-fold) HA 

yields. 

To surpass the unpredictability of gene expression promoted by the random 

integration strategy mentioned above, the recombinase-mediated cassette exchange (RMCE) 

technology was explored. The feasibility of having two cassettes flanked by distinct pairs of 

flippase recognition target sites (FRTs) was evaluated. Unfortunately, significant cross-

interaction was observed between the selected pairs. To circumvent this bottleneck, a backup 

strategy consisting in the co-expression of two genes from the same locus after 

implementation of one cassette system, in insect Sf9 cells, was attempted. However, the 

isolated clones showed low expression of both M1 and HA proteins. Ongoing work focuses 

on the isolation of clones tagged in high expression loci by fluorescence activated cell sorter 

technology. 

This work demonstrates how the versatility of insect cell expression technology can 

be explored to produce Influenza VLPs as vaccine candidates. 

Keywords: Influenza vaccines; virus-like particles (VLPs); multivalent HA vaccines; insect 

cells; BEVS; RMCE.  
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Resumo  

A co-expressão de várias hemaglutininas (HA) e proteína da matriz (M1), no mesmo 

hospedeiro, formando partículas semelhantes a vírus (VLPs), constitui uma importante 

estratégia para desenvolver vacinas contra o vírus da gripe. Este trabalho mostra a 

combinação de uma linha celular estável de células de insecto com o sistema de expressão 

mediada por baculovírus para a produção deste tipo de VLPs. Foram estabelecidas duas 

populações de células de insecto Hi5, expressando duas HAs, posteriormente infectadas com 

um baculovírus contendo a proteína M1, a duas concentrações celulares diferentes (CCI; 2 e 

3×106 cells/mL) sendo que a mais elevada demostrou ser a mais produtiva. De seguida, 

implementou-se uma estratégia baseada na adição de nutrientes específicos para prolongar o 

tempo de cultura. As culturas previamente suplementadas e infectadas a uma CCI de 4×106 

células/mL produziram 4x mais HA comparativamente às culturas infectadas a uma CCI de 

2×106 células/mL, não suplementadas. Esta estratégia foi também aplicada num biorreactor 

de 2L permitindo 1,5x mais produção, volumétrica, de HA comparativamente a experiências 

em pequena escala.  

De forma a ultrapassar a imprevisibilidade de uma integração aleatória, foi explorado 

o sistema de troca de cassete mediado por recombinase (RMCE). A viabilidade de um sistema 

com duas cassetes integradas flanqueadas por diferentes locais de reconhecimento (FRTs) 

foi avaliada, tendo sido observada a interação entre ambos os pares selecionados. Como 

segunda estratégia, foi implementado um sistema com uma cassete para co-expressão de dois 

genes em simultâneo, em células de insecto Sf9. Porém, os clones isolados mostram fraca 

expressão de M1 e HA, pelo que uma estratégia de isolamento de clones com expressão 

génica mais forte está em desenvolvimento utilizando uma tecnologia de sorteamento.  

Assim, este trabalho demonstra a versatilidade da tecnologia aplicada em células de 

insecto, que pode ser explorada para produzir VLPs multivalentes, com potencial para se 

tornar a próxima geração de vacinas para o vírus da gripe. 

 

Palavras-chave: Vacinas para a; partículas semelhantes a vírus (VLPs); vacinas de HA 

(hemaglutinina) multivalentes; células de insecto; sistema de expressão mediada por 

baculovírus; sistema de troca de cassete mediada por recombinase.  



vii 
 

Table of Contents 

Publications ........................................................................................................................... iii 

Acknowledgments ................................................................................................................. iv 

Abstract ................................................................................................................................... v 

Resumo .................................................................................................................................. vi 

Table of Contents ................................................................................................................. vii 

List of Figures ......................................................................................................................... x 

List of Tables ...................................................................................................................... xiii 

List of Acronyms ................................................................................................................. xiv 

1 Introduction ..................................................................................................................... 1 

1.1 Influenza virus .......................................................................................................... 1 

1.1.1 Egg-based influenza vaccines ........................................................................... 3 

1.1.2 Cell-based influenza vaccines ........................................................................... 4 

1.1.3 Subunit vaccines ............................................................................................... 5 

1.2 Insect cells .............................................................................................................. 10 

1.2.1 Baculovirus expression vector system (BEVS) .............................................. 10 

1.2.2 Advantages/disadvantages for production of Influenza vaccines ................... 13 

1.3 Cell line development ............................................................................................ 14 

1.3.1 Random integration ......................................................................................... 15 

1.3.2 Locus-specific integration ............................................................................... 15 

2 Materials and Methods .................................................................................................. 21 

2.1 Molecular Biology ................................................................................................. 21 

2.1.1 Plasmid design and construction ..................................................................... 21 

2.1.2 Techniques supporting plasmid construction ................................................. 22 

2.2 Cell line development ............................................................................................ 24 

2.2.1 Transfection .................................................................................................... 24 

2.2.2 Cassette-exchange ........................................................................................... 24 

2.2.3 Sorting procedures .......................................................................................... 25 

2.2.4 Cloning ............................................................................................................ 25 

2.3 Cell culture ............................................................................................................. 25 



viii 
 

2.3.1 Freezing and thawing cells ............................................................................. 26 

2.4 Baculovirus ............................................................................................................ 26 

2.4.1 Virus amplification ......................................................................................... 26 

2.4.2 Virus titration .................................................................................................. 26 

2.4.3 Infection of insect cells with baculovirus ....................................................... 27 

2.5 Production of influenza VLPs in 2L bioreactors .................................................... 27 

2.5.1 Downstream processing of influenza VLPs .................................................... 27 

2.6 Analytical methods ................................................................................................. 28 

2.6.1 Supplementation ............................................................................................. 28 

2.6.2 Negative staining transmission electron microscopy ...................................... 28 

2.6.3 Hemagglutination assay .................................................................................. 28 

2.6.4 Exometabolome analysis ................................................................................ 29 

2.6.5 Immunofluorescence ....................................................................................... 29 

2.6.6 Cell sonication ................................................................................................ 30 

2.6.7 Flow cytometry ............................................................................................... 30 

2.6.8 Western blot .................................................................................................... 30 

2.6.9 RNA extraction and RT-PCR ......................................................................... 31 

2.6.10 Genomic DNA extraction ............................................................................... 32 

3 Results ........................................................................................................................... 33 

3.1 Combining stable insect Hi5 cell line with the baculovirus expression system for 

production of multi-HA influenza VLPs .......................................................................... 33 

3.1.1 Establishment of stable insect cell lines by random integration ..................... 33 

3.1.2 Optimizing HA production in Hi5 pools ........................................................ 36 

3.1.3 Production of multi-HA influenza VLPs ........................................................ 39 

3.1.4 Scale-up production of multi-HA influenza VLPs ......................................... 41 

3.2 Establishing a double-RMCE insect cell platform ................................................. 43 

3.2.1 Vector design and FRT sites ........................................................................... 43 

3.2.2 Feasibility analysis: evaluation of target sites’ specificity ............................. 44 

3.3 Production of Influenza VLPs using RMCE .......................................................... 47 

3.3.1 Cell line development ..................................................................................... 47 



ix 
 

3.3.2 Clones’ characterization ................................................................................. 48 

3.3.3 Production of influenza VLPs in the same locus ............................................ 50 

4 Discussion and conclusions ........................................................................................... 52 

4.1 Dual strategy for production of Influenza VLPs .................................................... 52 

4.2 Suitability of RMCE for production of complex proteins ..................................... 55 

4.3 Conclusions and future work ................................................................................. 56 

5 References ..................................................................................................................... 58 

Appendix A ........................................................................................................................... 70 

A.1 Table of primers used in the construction of vectors needed in this work. ................ 70 

A.2 Primers used for cDNA detection. ............................................................................. 71 

A.3 Primers used for cDNA detection. Primers used for detection of tagging and target 

cassettes. ............................................................................................................................ 71 

 



x 
 

List of Figures 
Figure 1 - Replication cycle of Influenza virus (Nayak et al., 2004). .................................... 2 

Figure 2 - Wild-type baculovirus replication cycle (Monteiro et al., 2012). ........................ 11 

Figure 3 - RMCE principle: tagging a locus with a cassette flanked with heterospecific target 

sites into the genome and then exchanging it for the GOI.  Adapted from Turan et al. 2010.

 .............................................................................................................................................. 17 

Figure 4 – Aim of the thesis and strategies adopted. ............................................................ 20 

Figure 5 - Scheme of the two expression vectors used to transform parental cells. OpIE2 and 

OpIE1 promoters were selected to drive HA and zeocin resistance gene expression, 

respectively. .......................................................................................................................... 34 

Figure 6 - HA concentration in culture supernatant. Parental Hi5 and Sf9 cells transfected 

with construct #1 (Figure 5) were infected with a rBac containing three HA genes at a CCI 

of 2x106 cell/mL and MOI of 10 total viral particles/cell 48h (for Hi5 cells) and 72h (for Sf9 

cells) after transfection. Dpi means days post-infection. ...................................................... 34 

Figure 7 - Growth profiles of stable Hi5 pools expressing two HA genes, along passages. 35 

Figure 8 - Immunofluorescence detection of HA in the membrane of two stable Hi5 pools. 

Negative control (parental Hi5 cells) was added to evaluate unspecific binding of the 

antibody used. Secondary antibody was labelled with GFP. Scale bars indicate 100µm..... 36 

Figure 9 – Concentration of HA in cellular extracts along passages for two stable Hi5 pools.

 .............................................................................................................................................. 36 

Figure 10 – A) Growth profiles for infections at CCI 2x106 cells/mL and CCI 3x106 cells/mL 

for both pools. B) HA concentration in culture supernatant during infection for both CCIs 

and pools.  Dpi means days post-infection. .......................................................................... 37 

Figure 11 - A) Growth profiles of supplemented and non-supplemented cultures. Metabolites 

analysis by 1H-NMR: glucose (Glc), glutamine (Gln), glutamate (Glu), asparagine (Asn), 

aspartate (Asp) and lactate (Lac) before (B) and after supplementation (C). The arrows 

indicate the time of the re-feed. ............................................................................................ 39 

Figure 12 – Multi-HA VLP production in small-scale shake flask cultures. A) Cell 

concentration profiles for infections of pool 1 with rBac-3HA and rBac-M1 at CCIs 2x106 

cells/mL and 4x106 cells/mL. B) HA concentration in the supernatant for both baculovirus 

file:///E:/Tese/Escrita/Tese%20-08%20novembro.docx%23_Toc436661675
file:///E:/Tese/Escrita/Tese%20-08%20novembro.docx%23_Toc436661678


xi 
 

infections at CCI 2x106 cells/mL or 4x106 cells/mL (culture was supplemented 72h after 

inoculation, i.e 24h before infection).  Dpi means days post-infection. ............................... 40 

Figure 13 - Production of pentavalent VLPs in supplemented bioreactor culture by infection 

of Hi5 pool 1 at a CCI of 4x106 cells/mL. Comparison between shake flask and bioreactor 

experiments regarding A) cell concentration profiles and viability; B) lactate (lac) 

concentration during infection and C) HA concentration in supernatant during infection. D) 

Western blot of culture supernatant for detection of HA and M1 along infection.  Dpi stands 

for days post-infection. E) Electron microscopy analysis of VLPs by negative staining; scale 

bars represent 100nm. ........................................................................................................... 42 

Figure 14 - Scheme of tagged populations (A) and target vectors (B) used to address cross-

interaction between FwF5 and F13F14. .................................................................................... 44 

Figure 15 - Fluorescence intensity profiles of tagging pools at the day of transfection with 

target vectors. ........................................................................................................................ 44 

Figure 16 - Evaluation of cross-interaction between target sites Fw/F5 and F13/F14. (A) Flow 

cytometry and (B) fluorescence microscopy results 48 hours after transfection. Scale bars 

indicate 100µm. (C) eGFP positive cells (%) in different target populations after two weeks 

in selection with neomycin. Black bars represent the average of two experiments with cell 

passage at a high inoculum and grey bars are representative of a third experiment with cell 

passage at a lower inoculum. ................................................................................................ 46 

Figure 17 - A) Construct integrated in clones. B) Target vector encoding M1 and HA genes 

and C) Resulting population expressing M1 and HA from the same locus after RMCE. .... 47 

Figure 18 - Cell line development from tagging to cloning ................................................. 48 

Figure 19 - Characterization of Sf9 clones #3 and #4 according to the presence of (A) 

expression of tagging and target genes by mRNA analysis and (B) flow cytometry. Primers 

were constructed to anneal with specific regions of each gene in study; L-ladder (Quick-Load 

100bp); C) Identification of tagging cassette in clones. Genomic DNA was extracted and 

primers were located at OpIE2 and OpIE1 promoters amplifying 5,6kbp fragment in a target 

population and a 2,9kbp in a tagging population. Ladder used: NZY DNA ladder III. ....... 49 

Figure 20 - Detection of eGFP positive cells in population that was submitted to RMCE to 

M1-HA by (A) flow cytometry and (B) fluorescence microscopy (scale bars are in 100μm). 



xii 
 

(C) M1 and HA gene expression analysis. Parental cDNA was added as a negative control in 

a PCR with primers for M1 and HA amplification and 18S cDNA analysis was added as an 

endogenous control. Ladder used: Quick-load 100bp. (D) Comparison of fluorescence 

intensity between a population and clone #3 of Sf9. ............................................................ 51 



xiii 
 

List of Tables 
Table 1 - Insect-cell derived VLPs in preclinical studies (adapted from Krammmer et.al 

2010). ...................................................................................................................................... 9 

Table 2 - Most used SSR in mammalian cell lines. Adapted from (Wirth et al., 2007). ...... 19 



xiv 
 

List of Acronyms 

AcMNPV Autographa californica multicapsid nucleopolyhedrovirus 

Asn Asparagine 

BEVS Baculovirus expression vector system 

BVs Budded virions 

CCI Cell concentration at infection 

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats 

DSBs Double strand-breaks 

DSP Downstream processing 

ECL  Enhanced chemiluminescence 

eGFP Enhanced green fluorescent protein 

FBS Fetal bovine serum 

Flp Flippase 

FRT Flippase recognition target site 

Glc Glucose 

Gln Glutamine 

GOI Gene-of-interest 

HA Hemagglutinin 

hFlpe Humanized Flpe 

HR Homologous recombination 

HRP Horseradish peroxidase 

iFlp Insect cells codon-optimized flippase 

IR Illegitimate recombination 

MDCK Madin-Darby Canine Kidney cells 

MTT Thiazolyl blue tetrazolium bromide solution 

NA Neuraminidase 

NEP Nuclear export protein 

NP Nucleocapsid protein  

ODVs Occlusion-derived virions  
 



xv 
 

PBS Phosphate buffered saline 

PDT Population doubling time 

PTMs Post-translation modifications 

rBACs Recombinant baculovirus 

RBC Red blood cells 

RdRp RNA-dependent RNA polymerase complex 

recHA Recombinant hemagglutinin 

recNA Recombinant neuraminidase 

RMCE Recombinase-mediated cassette exchange 

SSR Site-specific recombinases 

TALENs Transcription activator-like effector nucleases 

TIVs Trivalent inactivated influenza vaccines 

TTBS Tween tris buffered saline 

VLPs Virus-like particles 

vRNPs Viral ribonucleoproteins 

ZFNs Zinc-finger nucleases 
 

  

 



1 

 

1 Introduction 

1.1 Influenza virus 

Influenza viruses are responsible for annual epidemics and, occasionally, pandemics, 

responsible for acute febrile respiratory tract disease commonly known as “flu”. They belong 

to Orthomyxoviridae family and are divided into three genera (A, B and C), being genus A 

the most threatening due to its potential to cause global pandemics (Lowen et al., 2007; 

Steinhauer and Skehel, 2002). Influenza A viruses are divided into several subtypes 

depending on their surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). 

Eighteen different HA subtypes and eleven different NA subtypes have been characterized 

so far, but only H1, H2, H3, N1 and N2 subtypes have been found to cause human pandemics 

(CDC, 2014). 

Influenza viruses are enveloped containing a segmented, negative single stranded 

RNA genome and bud from the apical domain of epithelial cells. They have a standard 

nomenclature which includes the virus type, the species from which it was isolated (if not 

human), respective location, strain number and year of isolation as well as the hemagglutinin 

(HA) and neuraminidase (NA) subtype in case of influenza A viruses. Subdivision can also 

be done into serotypes in terms of antibody responses. The genome contains 8 ssRNA 

segments, existing as ribonucleoproteins (vRNPs), that can code for 11 proteins, including 

the M1 matrix protein (bridge between the envelope and the viral core) and the surface 

glycoproteins HA and NA (virus envelope) (Nayak et al., 2004). The viral core also contains 

the nucleocapsid protein (NP), the nuclear export protein (NEP) and three different 

polymerase proteins, PB1, PB2 and PA forming the RNA-dependent RNA polymerase 

complex (RdRp). The envelope is also composed by M2 ion channel plus host cell’s lipids 

(Nayak et al., 2004).  

The replication cycle of influenza viruses begins with the viral recognition and 

subsequent binding to the N-acetylneuraminic (sialic) acids of host’s surface, preferentially 

α-2,3- or α-2,6-carbon linkages (Figure 1). After the binding step, internalization of virus 

particles occurs via receptor-mediated endocytosis. HA is cleaved by internal proteases and 



2 
 

in the acidic environment of the endosome, cleaved HA undergoes conformational changes 

leading to the fusion of viral and endosomal membranes (Steinhauer, 1999). M2 ion channel 

opens and allows the release of vRNPs from M1 into the cytoplasm. After this, eight vRNPs 

that include NP-nuclear transport signals are imported to the nucleus through nuclear pores 

(Neumann et al., 2000). 

 

After DNA replication and translation, 11 viral proteins are produced of which HA, 

NA and M2 undergo post-translation modifications (PTMs) in the cis-Golgi apparatus and 

rough endoplasmic reticulum (Nayak et al., 2004). These glycoproteins are then transported 

to the budding site together with eight vRNPs and other viral proteins in order to form virions. 

Budding occurs with the involvement of host and viral components, being HA, NA and M1 

key players in this process. M1 is responsible for the encapsidation of the vRNPs into the 

membrane and for the budding process. On the other hand, NA plays a critical role in the 

release of the viral particles due to its syalidase activity, cleaving the binding of HA to host 

sialic acids (Nayak et al., 2009). 

 

Figure 1 - Replication cycle of Influenza virus (Nayak et al., 2004). 
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In human respiratory epithelium, α-2,6-carbon linkages are more abundant than α-

2,3-carbon linkages. Due to the existence of α-2,3-carbon linkages in duck gut epithelium 

humans can be infected by avian influenza virus. When this transmission occurs, it leads to 

a more severe infection because α-2,3-linkages are more prevalent in the lower respiratory 

tract (e.g. lungs) (Couceiro et al., 1993; Matrosovich et al., 2004). Pigs contain both carbon 

linkages, meaning they can be infected by avian and human strains. In case such double 

infection occurs, strains may undergo reassortments and a novel strain capable of infecting 

humans is generated. On the other hand, different strains within the same subtype can also 

reassort and thus generate a new strain in a phenomenon named antigenic shift. The infections 

arising from such reassortments are usually severe because people are not immunized against 

the new strain, as it was the case of 2009 H1N1 pandemics (Steinhauer and Skehel, 2002). 

In addition, natural mutations can occur during viral genome replication due to errors in the 

RdRp polymerase enzymes leading to antigenic drift of a given strain (Steinhauer and Skehel, 

2002). This is very likely to occur in influenza viruses because their polymerase enzymes do 

not perform proofreading as they lack a 3’-5’ exonuclease activity that would enable them to 

repair small errors during DNA replication. Regardless of being minor changes, these 

mutations can lead to a loss of immunogenicity and thus are held responsible for the renewal 

of influenza vaccines annually (Steinhauer and Skehel, 2002). 

 

1.1.1  Egg-based influenza vaccines  

The market of Influenza vaccines were estimated at $2.9 billion in 2011 and thought 

to accomplish $3.8 billion by 2018 (Conferences series, 2015). 

The most commonly used platform for production of influenza vaccines is hen’s eggs. 

Production starts by infecting the allantoic fluid of the eggs with influenza viruses. After 

several rounds of replication, virions are harvested and chemically inactivated (e.g. with 

formaldehyde) or attenuated (e.g. serial passages at sub-optimal conditions). From this 

process, a whole virion preparation, a split vaccine or either a subunit vaccine can be achieved 

(Cox et al., 2008). Due to the fact that HA is the key surface glycoprotein in influenza viruses, 

triggering an immune response, its presence in a vaccine against influenza infection is 
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essential. Trivalent inactivated influenza vaccines (TIVs), composed by two influenza A 

viruses (H1N1 and H3N2) and one influenza B virus, are produced with this system. They 

are standardized in order to contain the same amount of HA of each virus strain, being the 

most commercialized influenza vaccine (Cox et al., 2008). However, this platform is very 

laborious, time consuming and costly, requiring large numbers of chicken eggs to produce 

one shot of vaccine and up to 9 months of production time. Besides this, the presence of eggs’ 

proteins can trigger allergies in humans which leads to an impairment of biosafety (Zeiger, 

2002). In addition, the ability of some strains to replicate to high yields in hen’s eggs is 

unpredictable and when dealing with a very pathogenic strain the embryos can be killed 

without producing any virus.  

 

1.1.2  Cell-based influenza vaccines 

Mammalian cell lines represent today a robust platform for influenza vaccine 

production. First results on the effectiveness of continuous cell lines, such as Madin-Darby 

Canine Kidney cells (MDCK) on influenza virus replication were reported 40 years ago 

(Meguro et al., 1979; Tobita et al., 1975), providing evidence that mammalian cells could 

represent a robust platform for influenza vaccine production. A few years later, an inactivated 

influenza vaccine produced in MDCK cells showed to be more efficient in neutralizing 

antibody induction in ferrets than egg-grown vaccine (Katz and Webster, 1989). This 

culminated with the recent FDA approval of Flucelvax (Novartis, 2015), a trivalent 

inactivated influenza vaccine manufactured using MDCK cell culture technology. 

Another continuous cell line used for influenza vaccines production is Vero cells. 

Vero cells are the most widely accepted continuous cell line by regulatory authorities and 

have been used for the production of viral vaccines such as for polio and rabies virus 

(Montagnon, 1989). They enable higher-titer growth of wild-type H5N1 strains (Barrett et 

al., 2009), which in case of a pandemic is of great importance particularly if a short supply 

of eggs occur or if the embryos are killed by the highly pathogenic virus strain. Although 

continuous cell lines like MDCK and Vero have raised some safety questions due to their 

potential oncogenic properties, regulatory authorities are becoming more receptive given the 
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improved screening technologies to analyse their biosafety. The use of cell-culture grown 

virus proved to be efficient for influenza vaccine production in a short period of time and 

with higher antigens yields as well as being capable of inducing neutralizing antibodies 

(Ehrlich et al., 2008; Kistner et al., 2007).  

Despite having several advantages over the egg-based platform, MDCK and Vero 

cells still have their downsides. They can be transformed over several passages, have 

oncogenic potential and require a solid matrix to support their growth in bioreactors. The 

human cell line – PER.C6 (derived from primary cultures of human fetal retinoblast)– has 

also been showing to be efficient in producing high titers of influenza virus of a variety of 

subtypes (Pau et al., 2001). The advantage of this cell line in relation to MDCK or Vero is 

its ability to grow to high cell densities in suspension culture without the need for serum or 

solid matrix. 

Overall, despite the advantages of the cell-based platform for production of influenza 

vaccines (e.g. higher titers of antigen in a short period of time), isolation of the virus is still 

required thus leading to the need for biosafety laboratory conditions. Besides this, 

inactivation or attenuation of the offspring also represents a major shortcoming. Furthermore, 

adaptation of the virus strains can occur during virus propagation, which can lead to a lower 

antigenicity of the vaccine. 

 

1.1.3 Subunit vaccines 

Recombinant influenza vaccines  

Given the downsides of egg-based and cell-based influenza vaccines, efforts have 

been conducted into the development of safer and more flexible vaccine candidates profiting 

from recombinant DNA technology.  

Recombinant hemagglutinins (recHA) have been shown to be highly immunogenic, 

inducing the production of broadly reactive neutralizing antibodies representing a potential 

vaccine candidate against influenza virus infection. One example is FluBlok (Protein 

Sciences Corporation), which contains three full-length recombinant HA proteins, two from 

influenza A virus (H1N1 and H3N2) and one from influenza B virus and it was the first 

recombinant protein based influenza vaccine, approved by FDA in 2013 (Corporation, 2015). 
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The strains included in this vaccine are updated on an annual basis so that it resembles as 

much as possible the circulating strains thus leading to a more efficient immunization. Also, 

it contains three times the amount of HA in the TIVs, thus inducing higher antibody titers 

and has proved to be immunogenic and well tolerated (Cox et al., 2008). Besides this, it is 

safer because it is a purified antigen free of host or other viral proteins (Cox et al., 2008; Cox 

and Anderson, 2007). More recently, it was shown that a specific region of hemagglutinin – 

the stem region – can be recognized by antibodies and is able to stimulate cross-reactive 

immunization leading to protection against many H1 subtype influenza strains in mice 

(Yassine et al., 2015).  

Neuraminidase, the second most abundant envelope glycoprotein of influenza 

viruses, naturally forms tetramers and helps in the release of virions from cells. However, 

after challenge with recombinant neuraminidase (recNA) in mice, immune protection was 

only shown when coupled with adjuvants, and clinical trials in humans showed no significant 

vaccination effect with this antigen (Cox, 2008). That being said, a recNA-based vaccine 

does not represent a good alternative on its own. 

 

Virus-like particles  

Virus-like particles (VLPs) are protein structures that self-assemble naturally, 

mimicking the structure of a native virion lacking the viral genome which is a major 

advantage in terms of biosafety for implementation as human vaccines. Consequently, 

several types of VLPs from enveloped and non-enveloped viruses have been explored to 

become vaccine candidates (Crisci et al., 2012; Kushnir et al., 2012).   

Numerous studies have addressed the immunogenicity of VLPs as vaccines reporting 

their efficacy in mice and in humans (Klausberger et al., 2014; Krammer and Grabherr, 

2010). VLPs can be a more effective strategy to induce immunity over inactivated virions 

(Bright et al., 2007) because during the inactivation process native epitopes lose their folding 

thus decreasing their ability to stimulate a strong immune response. For example, CervarixTM 

(GlaxoSmithKline) is a VLP-based vaccine approved by the FDA for vaccination of women 
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against cervical cancer (Monie et al., 2008). It is composed by two viral proteins of human 

papillomavirus and produced using the insect cells-baculovirus system.  

The use of influenza VLPs as vaccine candidates against influenza virus infection has 

been widely explored. Several reports exist today showing the efficacy of influenza VLPs in 

generating immune responses in mice after lethal virus challenges (Galarza et al., 2005; 

Pushko et al., 2005; Quan et al., 2007). Influenza VLPs are traditionally composed by the 

four major influenza proteins (HA, NA, M1 and M2) (Latham and Galarza, 2001) and their 

morphology resembles the native influenza virus with spikes on the surface and sizes between 

80-120nm (Pushko et al., 2005; Quan et al., 2007). However, it was found that HA and M1 

combined are sufficient to generate well assembled and functional VLPs with immunogenic 

properties (Quan et al., 2008). It was reported that M1 has the ability to colocalize with HA 

during its exocytic transport to the membrane and in the membrane (Ali et al., 2000; Barman 

et al., 2001) by association with its cytoplasmic tail and transmembrane domain (Chen et al., 

2007). This protein is involved in the budding as it accommodates beneath the lipid bilayer 

interacting with it, causing its asymmetry and bending, facilitating the initiation of the 

budding process. However, it was also suggested that it may take a certain amount of M1, 

like a threshold, for the budding to occur (Bourmakina and García-Sastre, 2005).  Depending 

on the diversity of proteins found in an influenza VLP, it can be monovalent or multivalent. 

Sometimes a monovalent VLP may not be enough to counteract a disease and there is the 

need for a multivalent  (Pushko et al., 2011). For example, authors showed that a bivalent 

influenza VLP induced immunity against two viral strains decreasing the viral titers in the 

lungs (Quan et al., 2008) demonstrating that VLPs are a flexible way of producing candidate 

vaccines for specific and correlated virus strains.  

One major concern when producing influenza VLPs is that protein post-translation 

modifications (PTMs) such as glycosylation and sialylation resemble as much as possible the 

in vivo pattern of the native product as they deeply affect biological functionality and 

antigenicity. It is known that insect cells do not have the same glycosylation pattern as 

humans cells (Marchal and Jarvis, 2001). Therefore, several studies have been conducted to 

address the functionality of influenza VLPs produced in insect cells (Bright et al., 2007; 

Pushko et al., 2005; Quan et al., 2007) and results are clearly positive suggesting that insect 
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cells can perform as good as mammalian cells. Several influenza VLPs produced in insect 

cells are already being subjected to preclinical trials (Table 1).  

The fact that well assembled and functional VLPs can be produced in insect cells, 

coupled with their efficiency in triggering immune responses and displaying antigens for a 

number of applications has significantly increased the popularity of these cells in the 

industrial field. 
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Influenza 

subtype 

Influenza 

proteins 

Animal 

model 
Results Comments Year 

H3N2 HA,NA,M1,M2   First report of Influenza VLPs 2001 

H3N2 HA,NA,M1,M2 Mice 
Protection 

from challenge 

Interleukin-12 tested as an 

adjuvant 
2005 

H9N2 HA,NA,M1 Mice 
Protection 

from challenge 
 2005 

H3N2 HA,NA,M1 
Mice and 

ferrets 

High HAI 

antibody titers 

Compared with inactivated 

whole virus and rHA 
2007 

H1N1 HA,M1 Mice 
Protection 

from challenge 

First report of a cytotoxic T-

cell responde 
2007 

H1N1 and 

H3N2 
HA,M1 Mice 

Protection 

from challenge 

Bivalent vaccine, comparison 

with inactivated whole virus 
2008 

H5N1 HA,NA,M1 Ferrets 
Protection 

from challenge 
 2008 

H5N1 HA,NA,M1 Mice 
Protection 

from challenge 

Bivalent vaccine, comparison 

with inactivated whole virus 
2008 

H5N1 HA,NA,M1 Mice 
Protection 

from challenge 
 2009 

H1N1 HA,M1 Mice 
Protection 

from challenge 

Focus on dose-dependence of 

protection, bacterial toxins 

tested as adjuvants 

2009 

H1N1 HA,NA,M1 
Mice and 

ferrets 

Protection 

from challenge 

VLPs from the 1918 pandemic 

strain 
2009 

H1N1, 

H3N2 and B 
HA,NA,M1 Mice 

Protection 

from challenge 

First trivalent approach, 

compared with split vaccine 

Fluarix 

2009 

H5N1 HA,NA,M1 Mice 
Protection 

from challenge 

Focus on long-term protective 

immune responses 
2009 

H1N1v HA, M1 Mice 
HAI titers of 

1:2048 

Alternative insect cell line, fast 

reaction to 2009 pandemic 
2010 

H1N1v HA, M1 Mice 
Protection 

from challenge 

Fast reaction to 2009 pandemic, 

single-shot strategy 
2010 

 

 

Table 1 - Insect-cell derived VLPs in preclinical studies (adapted from Krammmer et.al 2010). 
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1.2 Insect cells   

The increasing interest in insect cells led to the generation of a cell line from the 

ovarian tissues of the cabbage looper - Trichoplusia ni (Hink, 1970). From this cell line, BTI-

TN-5B1-4 clones were patented in 1994 (Granados et al., 1994) and Invitrogen then 

commercialized a more productive clone of this cell line under the name of High-Five™ cells 

(Hi5). The most important Spodoptera frugiperda insect cell lines - Sf9 and Sf21 -  were 

characterized in 1977 (Vaughn et al., 1977) and were derived from the pupal ovarian tissue 

of the fall armyworm Spodoptera frugiperda.  

Insect cells can be cultivated in static (e.g. T-flasks) and in suspension (e.g 

erlenmeyer, shake flasks and bioreactors) systems. They grow at 27ºC, in serum free media 

to high cell densities (Rhiel et al., 1997).  They can be sub-cultured for serial passages and 

do not require CO2 for growth. Besides this, insect cells are typically more resistant to 

temperature (Gerbal et al., 2000) and osmolarity (Yang et al., 1996) fluctuations than 

mammalian cells which constitutes a major advantage for their biotechnological application. 

It has been shown that insect cells are very efficient at producing recombinant 

proteins (Cox, 2012) and their scale-up has been successfully implemented and being 

improved (Bédard et al., 1997; Kioukia et al., 1996; Maranga et al., 2004). 

 

1.2.1 Baculovirus expression vector system (BEVS)  

The baculovirus expression vector system (BEVS) was firstly used in 1983 to produce 

a recombinant protein in insect cells (Smith et al., 1983a). Since then it has proved to be a 

reasonable platform to express recombinant proteins in insect cells and one of the great 

advantages of using this platform relies on the good yields of expression that can be achieved 

with similar eukaryotic PTMs (Harrison and Jarvis, 2007).  

The BEVS relies on the infection of insect cells by recombinant baculoviruses that 

were genetically modified to carry genes of interest. Baculovirus is a rod-shaped (30-60 nm 

×250–300 nm) with double-stranded DNA genome and infects insects and other arthropods 

(Jehle et al., 2006). The wild type baculovirus replication cycle is biphasic giving rise to two 

types of virions: occlusion-derived virions (ODVs) and budded virions (BVs), as shown in 
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Figure 2. Virus’s life cycle comprises three phases concerning gene expression: immediate 

early/early, late and very late (Passarelli and Guarino, 2007). In the very late phase of 

infection polyhedrin is expressed by a very strong promotor due to its importance in viral 

ODVs assembly (Volkman, 1997). Given that in biotechnological applications the infection 

is done with BVs there is no need for polyhedrin protein which gives the opportunity to 

change this gene for a gene-of-interest (GOI; recombinant protein) (Merrington et al., 1997). 

Thereby, this allows high productivities that can reach more than 25% of total cell proteins 

(Caron et al., 1990) although only at the very late stage of infection. Likewise, the p10 protein 

gene expression is also driven by a very late strong promoter (Smith et al., 1983b) and this 

gene can also be replaced by a GOI in recombinant baculoviruses not affecting the replication 

cycle. 

 

 

 

 

 

Figure 2 - Wild-type baculovirus replication cycle (Monteiro et al., 2012). 
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The most commonly used baculoviruses are Autographa californica multicapsid 

nucleopolyhedrovirus (AcMNPV) named after its ability to encapsidate multiple 

nucleocapsids in the occluded particle (polyhedron) and owns a genome of approximately 

134kbp (Ayres et al., 1994). It is widely used in lepidopteran derived insect cell lines 

mentioned above (Sf9, Sf21 and Hi5).  

The BEVS has become very popular in the biotechnology field, with numerous 

commercially available kits. For example, the MultiBacTM system is able to generate 

multiprotein co-expression which is an evolution over the polycistronic vectors. It was 

further optimized by eliminating the baculoviral genes v-cath and chiA that encode proteases, 

abrogating their function (Bieniossek et al., 2012). Subsequently to bacmid transfection, 

recombinant baculovirus are assembled and released from cells following infection and 

propagation of the viruses which also leads to recombinant protein production. 

To address a potential insect cell PTMs issue, the SweetBac™ system was designed 

to integrate N-acetylglucosaminyltransferase and β1,4-galactosyltransferase enzymes in the 

viral genome to generate humanized glycosylation patterns on recombinantly expressed 

proteins (Palmberger et al., 2012; Palmberger et al., 2015). Another issue is the accumulation 

of inactive forms in host cells and protein degradation by the ubiquitin proteasome pathway, 

for example. By co-expressing chaperones (e.g. calnexin and calreticulin chaperones) and 

folding factors  along with the desired protein, authors have managed to enhance the surface 

expression and protein folding in insect cells (Kato et al., 2005).   

In relation to baculovirus vector stability, it may be affected by tandem repetition of 

promoter sequences in polycistronic constructs (Belyaev and Roy, 1993) and to by-pass this 

problem identical promoters have been separated into different transcription directions.  

Moreover, improved stability can also be accomplished by producing a bicistronic mRNA 

including the GOI coupled to an essential baculoviral gene - gp64 – hence placing a positive 

selection pressure upon the entire mRNA, thereby ensuring the expression of the protein of 

interest (Pijlman et al., 2006).  

Comparing the two most used cell lines, Hi5 cells have shown to be better 

recombinant protein producers than Sf9 cells (Davis et al., 1993; Krammer et al., 2010) which 

are better at producing infectious viral particles (Monteiro et al., 2014). Both cell lines have 



13 
 

been proved to undergo oxidative stress during baculovirus infection, resulting in loss of cell 

viability and consequently cell death (Wang et al., 2001). Despite the popularity of BEVS, 

many things remain unclear concerning the impact of infection on the cell host, which is a 

critical subject when the aim is to scale-up the process as efficiently as possible (Maranga et 

al., 2004; Monteiro et al., 2014).  

Although BVs are considered safe because they cannot replicate in mammalian cells, 

its genome is able to integrate in the human genome (Merrihew et al., 2001) and the 

consequences of it still remains uncleared. Therefore, BVs and host’s cell DNA 

contamination are a concern when the goal is to generate a product for human use. Efforts to 

develop better purification processes have been conducted (Rueda et al., 2000; Vicente et al., 

2009) though it is very challenging because in this system virions are co-produced with the 

desired protein. In order to circumvent this issue, the Geneva Biotech’s ManuBac™ system 

is being developed which is a virion free protein production platform that uses an induction 

protocol to turn off virions production at the same time VLP production is turned on (Biotech, 

2015). Likewise, to eradicate the presence of baculovirions, a non-replicative baculovirus 

was engineered by removing the vp80 gene which is implicated in viral protein cleavage, 

maturation, assembly and release of virions from cells (Marek et al., 2011).     

 

1.2.2 Advantages/disadvantages for production of Influenza vaccines 

Considering influenza vaccines, BEVS-based production has proved to be as efficient 

as more traditional strategies like egg- and cell-based (Bright et al., 2008) with great 

cultivation benefits compared to mammalian hosts and easily scaled-up. Furthermore, the 

construction of recombinant baculoviruses (rBacs) is becoming more rapid and versatile, 

allowing to easily obtain multi-gene expression. Flexibility in rBac construction gives the 

opportunity of combining genes of different influenza strains, including the most prone to 

diverge and suffer mutations like HA, allowing the production of broader vaccines. Thus, it 

offers the great opportunity to renew a vaccine much more rapidly without the need of 

isolating the circulating influenza virus strain which holds its own biosafety and laborious 

issues. Hereupon, some shortcomings seen in other vaccines-platforms are overcome such as 
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the virus adaptation to cells, the inability of propagating more pathogenic strains that leads 

to host death, lack of proteins prone to cause allergies contained in eggs as well as being 

much more cost effective and faster.  

The main bottlenecks of the insect cells-baculovirus system for influenza VLPs 

production reside in the downstream processing (DSP) (unable to separate rBac from VLPs) 

and viral stock maintenance (infectious particles titer decreases with time). On top of that, 

for influenza VLP vaccine candidates that do not contain the M1 protein, a more complex 

purification process is needed to carefully extract the membrane-anchored HAs without 

comprising protein integrity.  

1.3 Cell line development  

The issues associated with BEVS lead to an increasing effort to develop stable 

systems to produce recombinant proteins in insect cells without the need of using viral 

infection. Cell line development consists on engineering cells to stably express the GOI and 

it should be a rapid and standardized process. Stable cell lines are obtained thanks to genetic 

modifications and one of the main goals is transcriptional efficiency of the GOI where strong 

promoters, enhancers elements and cis and trans-acting elements play key roles (Nehlsen et 

al., 2009; Nehlsen et al., 2011). Besides the amount of protein produced, its quality and 

maintenance of its functionality is very important.  

Stable cell lines can be obtained by allowing a GOI to integrate into the genome based 

on random integration or locus-specific integration. A number of options have been reported 

for the maintenance of a vector integrated in the genome and most frequently cells are 

positively selected with a drug (antibiotic for instance) (Fernandes et al., 2012). However, 

regarding industrial purposes, it is preferable if the process does not need a selection agent 

because it causes instability in cells and increases the cost of the process (Qiao et al., 2009; 

Schiedner et al., 2008).  

Although offering many advantages, the establishment of stable cell lines still 

encloses major shortcomings that need to be addressed such as (1) long timeline needed to 

generate stable, high expressing clones, (2) product yield and quality and (3) flexibility of 

the cell line.  
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1.3.1 Random integration  

Random integration requires a laborious screening process to identify stable and high 

expressing clones because expression of the GOI greatly depends on the chromosomal 

elements nearby the integration site, a phenomenon called “position effect”, which makes the 

integration process irreproducible (Nehlsen et al., 2011; Siegal and Hartl, 1998). 

Furthermore, random integration can i) lead to the interruption of cellular housekeeping 

genes, ii) give rise to epigenetic silencing, iii) affect cell’s stability and iv) induce mutagenic 

effects by inhibiting protective genes or causing gene mutations.  

Nevertheless, it offers an advantage over targeted integration as it does not requires 

knowledge of the genome sequence and chromosomal sites characterization which is not 

available for some transformed cell lines, being the case of Sf9 and Hi5 cells. 

 

1.3.2 Locus-specific integration 

Locus-specific integration is advantageous in the way that if good locus/loci have 

been previously identified it/they can be tagged and then exchanged for the GOI without the 

need of screening. When deep knowledge of the working cell line exists, characterized 

genomic sites can be exploited and reused by homologous recombination (HR) leading to a 

precise, predictable and reproducible process. Nevertheless, HR is quite inefficient due to 

dominance of illegitimate recombination (IR) with a ratio of HR/IR of 1:1000 which hampers 

its broader applicability in transformed cell lines (Turan et al., 2013). Due to this low 

efficiency, efforts have been made to develop methods capable of achieving higher site-

specific integration frequencies. 
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ZFNs, TALENs and CRISPRs 

Genome editing methods have expanded and artificial enzymes such as zinc-finger 

nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) have been 

designed to stimulate HR and they rely on the introduction of double strand-breaks (DSBs). 

Both enzymes have a nuclease activity and a customizable DNA-binding domain which 

enables to direct them to any target sequence (Mani et al., 2005; Vanamee et al., 2001). In 

order to broaden their applicability, efforts are being made to design more gene targets in 

different cell types and to improve the delivery method, targeting specificity and avoiding 

cytotoxicity. In addition, clustered regularly interspaced short palindromic repeats 

(CRISPRs) coupled with Cas endonucleases are being used in genome engineering and 

include programmable RNA-guided DNA endonucleases with ability to modify genomes 

(Mali et al., 2013; Ronda et al., 2014). 

Despite their advantages, concerns are related to potential unspecific cleavage of 

endogenous genes (Miller et al., 2007). Moreover, such systems rely on genome sequence 

knowledge of the working cell line. 

 

Recombinase-mediated cassette exchange (RMCE) 

RMCE was firstly introduced by Schalke and Bode (1994) and it is a process in which 

a tagging cassette, flanked by a pair of heterologous recombinase target sites, can be 

exchanged by a target vector after being integrated into the genome (Oumard et al., 2006). 

Not only these target sites have to be non-compatible so that the exchange process is accurate 

but they must also be the same in the tagging and target cassettes.  

Typically, the anchored cassette (tagging) encodes a reporter protein and a given 

selective marker (antibiotic resistance gene, for example), and then it is exchanged for a GOI 

by means of a site-specific recombinase (SSR), as depicted in Figure 3. The recombinase can 

be provided in the tagging, the target vector or in a separate vector.  

Even though after the tagging step an intensive screening of the best locus is required, 

the RMCE system enables the reuse of the same locus, decreasing the time spent in further 

screening  process (Gama-Norton et al., 2010; Nehlsen et al., 2009). Moreover, it has been 

shown that this method offers stable and high levels of gene expression (Coroadinha et al., 
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2006; Schucht et al., 2006). This system is flexible enough to be used in many applications 

ranging from the biotechnology field for the establishment of producer cell lines (Coroadinha 

et al., 2006; Rose et al., 2013), for antibody production (Wiberg et al., 2006) or in the genetic 

area by allowing a more efficient analysis of gene function in mice (Seibler et al., 1998).  

 

Site-specific recombinases (SSRs) 

The most commonly used site-specific recombinases belong to two distinct families 

according to the structure of their active site: the Tyr-class such as Cre and Flp (Nunes-düby 

et al., 1998) or the Ser-family like ΦC31 (Smith and Thorpe, 2002) (Table 2).  

Concerning ΦC31, it comes from Streptomyces bacteria where its role is to allow the 

integration of a phage into the bacterial chromosome which occurs via attP/attB sites (Smith 

and Thorpe, 2002). However, the system cannot be applied to RMCE neither to multiplexing 

protocols owing to the lack of recombinase efficiency of the enzyme over the integrase 

efficiency. The Cre enzyme (for “causes recombination”) is a bacteriophage (P1) encoded 

integrase and was firstly described in bacteria whose function relies on a target site called 

loxP (locus of crossover in P1). This site is a 34bp sequence that consists of two inverted 

13bp repeats separated by an 8bp spacer (Sternberg et al., 1986).  Since its discovery, this 

system has been applied in mammalian cells aiming to be a powerful tool for deeper 

 

Figure 3 - RMCE principle: tagging a locus with a cassette flanked with heterospecific target sites into the genome and 

then exchanging it for the GOI.  Adapted from Turan et al. 2010. 

Tagged genomic locus 

 

 

Donor plasmid 
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understanding of genomic phenomena in eukaryotes (Sauer and Henderson, 1988) and efforts 

have been made to improve its efficiency (Koresawa et al., 2000). Despite having some 

benefits, Cre-induced toxicity as well as impairment of the host’s DNA integrity have been 

reported (Fernandes et al., 2015; Schmidt et al., 2000). 

Flp was identified in the 2µm circle plasmid of Saccharomyces cerevisiae where it is 

involved in site-specific recombination (Andrew et al., 1985; Mcleod et al., 1986) and its use 

in mammalian cell lines was firstly reported by O’Gorman (O’Gorman et al., 1991). The Flp 

enzyme induces a double-reciprocal crossover between two pair of target sites (FRTs) each 

one consisting on an 8bp asymmetric spacer flanked by a 13pb repeat at one side and two 

13bp repeats on the other side, completing a 48bp FRT site. Although the spacer sequence 

determines the orientation of the site it does not contact directly with the enzyme (Turan et 

al., 2010). Even though in some cases the Flp/FRT system is less efficient than the Cre/loxP 

its use has been increasing significantly (Fernandes et al., 2012; Whiteson et al., 2007). 

Examples are the production of viral vectors for gene therapy (Coroadinha et al., 2006), study 

of genetic phenomena (Nehlsen et al., 2011; Seibler et al., 1998), recombinant protein 

production (Kim MS and Lee, 2008; Nehlsen et al., 2009; Wilke et al., 2011) or engineering 

strains (Cesari et al., 2004). There are various sets of flippase recognition target sites 

(Flp/FRTs) that were designed by mutagenesis (Schlake and Bode, 1994) and these have 

different recombination efficiencies and probability of cross-recombination events (Schlake 

and Bode, 1994; Turan et al., 2010). 

Given the need of using Flp enzyme in animal cells, there were several efforts into 

improving its efficiency. For instance, the wild type Flp (wt Flp) was extremely inefficient 

at 37ºC  because its optimum activity temperature is 30ºC (Buchholz et al., 1996) and efforts 

were made in order to improve this characteristic. Buchloz was able to construct Flpe 

successfully which is more termostable at 37ºC  (Buchholz et al., 1998). Later on, Flpe 

enzyme was mouse-codon optimized into Flpo (Raymond and Soriano, 2007) and hFlep 

(humanized Flpe) also with great success (Kondo et al., 2009).  So far toxicity of Flp has not 

been reported. 

Fernandes et al. developed a Sf9 master cell line making use of RMCE and flippase 

enzyme with the purpose of being a good alternative to BEVS. Firstly, the authors were able 
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to produce the same amount of enhanced green fluorescent protein (eGFP) as in the BEVS 

system (Fernandes et al., 2012) and then the same principle was successfully applied to the 

production of more complex proteins such as rotavirus-like particles (Fernandes et al., 2014). 

This resulted in increased quality and yield of production, which is often compromised in the 

baculovirus-expression system due to proteolysis in late stages of infection (Monteiro et al., 

2012).  Stable expression does not compromise the host at such a level as it is seen for BEVS 

and it can also be adapted to bioreactor strategies for industrial purposes. Thus, it is predicted 

that this system will be robust enough to outpace the BEVS once some difficulties are 

overcome like the longer period of time taken to have the product and the lack of 

chromosomal loci characterization in insect cells. 

 

SSRs RTs employed Cell lines 

Cre 

LoxP/Lox511 

MEL 

NIH3T3 

mES 

Fertilised mouse oocytes 

K562 

J558L 

LoxP/Lox2272 mES 

LoxP/Inverted LoxP mES 

Lox66/71 and Lox2272 mES 

Lox511/InvertedLox511 

 

MEL 

Mouse B hybridoma cells 

LoxP/LoxP257 
HeLa/CHO cells 

Primary MEF/mES cells 

LoxP/Lox5171 mES 

Flp 

FRT/FRT3 

BHK 

mES 

NIH3T3 

FRT/FRT5 

NIH3T3 

HEK293 

mES 

BHK 

ΦC31 attB and attP 

Primary epidermal progenitor 

cells 

mES 

Cre and Flp LoxP and FRT mES 

 

Table 2 - Most used SSR in mammalian cell lines. Adapted from (Wirth et al., 2007). 
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Aim of the thesis 

This thesis aims at developing robust insect cells based platforms for production of 

complex products such as Influenza virus-like particles (VLPs) as vaccine candidates.  

In order to achieve such goal two strategies have been designed (Figure 4). The first 

one consists in combining stable expression of two HAs in Hi5 cells, based on random 

integration of the GOIs, with baculovirus-mediated expression of M1 and additional HA 

proteins to produce multivalent VLPs. This approach minimizes the potential risk for 

instability caused by the addition of many genes in a single baculovirus vector, when 

developing a production process for multivalent HA VLPs. To by-pass the expression 

unpredictability of HA random integration, the second strategy consists in generating stable 

insect cell lines based on our in-house developed flippase-recombinase mediated cassette 

exchange (Flp-RMCE) platform, to be able to then re-use pre-characterized genomic loci to 

integrate multiple HA. The feasibility of having two genomic cassettes flanked by different 

pairs of flippase recognition target sites (FRTs) (double-RMCE platform) will be evaluated.  

 

  

Figure 4 – Aim of the thesis and strategies adopted. 
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2 Materials and Methods 

2.1 Molecular Biology 

2.1.1 Plasmid design and construction 

Primers sequences are listed in Appendix A.1. 

Stable HA expression  

pIZT/HA1,2 vector: HA1 and HA2 vectors were kindly provided by RedBiotech AG 

(Switzerland). Each HA gene was amplified by PCR and cloned into a KpnI or NotI 

(respectively) excised pIZT/V5-His (Invitrogen, Carlsbad, USA) resulting in pIZT/HA1 and 

pIZT/HA2 vectors. OpIE2 promoter and HA2 genes were amplified by PCR from pIZT/HA2 

vector and cloned into pIZT/HA1 vector opened by inverse PCR. 

pIZT/HA2,3 vector: HA3 vector was kindly provided by RedBiotech AG 

(Switzerland) and amplified by PCR into a SacI excised pIZT/V5-His (Invitrogen, Carlsbad, 

USA) resulting in pIZT/HA3 vector. OpIE2 promoter and HA2 genes were amplified by PCR 

from pIZT/HA2 vector and cloned into a ClaI excised pIZT/HA3 vector. 

 

Double-RMCE system associated vectors 

pTaggF13/F14: The tagging cassette based on the F13 and F14 FRT sites and containing 

OpIE2 and OpIE1 promoters (pTagg) was designed by us and synthetized by GenScript 

(USA). This cassette was then digested with NheI and PsiI. iCherry and hygromycin marker 

genes were amplified by PCR from an in-house vector and cloned in the previous excised 

vector.  

pTargetF13/F14: To construct the target vector, OpIE2 and OpIE1 promoters were 

eliminated from pTaggF13/F14. eGFP and neomycin marker genes were amplified by PCR 

from an in-house vector and cloned in the promoterless construct excised with NheI and NotI. 
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pOpIE2 M1/HA: an in-house vector containing Fw and F5 sites, eGFP and 

hygromycin resistance genes was opened by inverted PCR (peGFP/Hygro). OpIE2 promoter 

and HA genes were amplified by PCR from an in-house construct and cloned in the previous 

opened peGFP/Hygro vector (pOpIE2 M1/HA+eGFP). eGFP was then eliminated by 

digestion with BamHI and NotI and M1 (previously amplified by PCR from an in-house 

vector) was cloned in the excised site.  

 

2.1.2 Techniques supporting plasmid construction 

General PCR-protocol  

The oligonucleotides used for PCR were custom-made by Sigma Aldrich (St.Louis, 

USA). A typical PCR-reaction included 4µl of 5x polymerase buffer (Thermo Scientific), 

0.4μl of 10mM dNTPs (NZYTech), 0.4μl of 25μM primers (Sigma), 20ng of template DNA 

and 1 to 5 U of Phusion® High-Fidelity DNa polymerase (Thermo Scientific). RNAse-free 

water (Sigma) was also added to the final volume of 20μl. The PCR-amplification program 

started with a 30s denaturation step at 98ºC, followed by 30 cycles of 10sec denaturation at 

98ºC, primer annealing for 30s performed up to 5ºC below the melting point of the primer, 

and extension at 72ºC according to the fragment size. The next step in the cycle was final 

extension at 72ºC for 10 min.  

 

Agarose gel electrophoresis  

Agarose gel electrophoresis was performed to separate DNA-fragments. The 

concentration of each gel varied according on the size of the fragments in question. Agarose 

(Lonza) was melted in 1x TAE buffer (Promega) and stained with GelRed or RedSafe 

(Biotium; iNtRON Biotechnology). Before loading, samples were mixed with loading buffer 

(NEB; #B7024S) and a standard ladder was used according to the range of fragment sizes 

expected. For purification of bands, when needed, Illustra GFX kit (GE Healthcare) was used. 

Gels were photographed using GelDocTM system (Bio-Rad) and DNA quantification was 

used using Nanodrop ND-2000c (Thermo Scientific).  

 



23 
 

 

Transformation and vector isolation 

Competent E.coli cells were transformed according to the manufacturer’s protocol 

(NZYTech, ref. MB00401 or Clontech, ref. 636763). Transformed cultures were spread on 

LB-agar plates containing ampicillin or zeocin and grown overnight at 37 °C. The next day, 

several isolated colonies were picked and grown separately, in falcon tubes, using 5mL of 

TB antibiotic supplemented culture medium at 37ºC and 190rpm. After 16-18h, 2mL of cell 

culture was harvested by centrifugation and DNA was extracted and purified with the 

miniprep kit (Thermo Scientific) following the manufacturer’s protocol.  

To identify whether transformants contained the gene of interest, PCR screening and 

vector digestion were followed by agarose gel electrophoresis analysis. 

 

Digestion of DNA  

DNA-digestion of PCR-fragments or vector-DNA was performed with the 

appropriate restriction endonucleases according to the manufacturer’s specifications (NEB). 

When digestion of a vector was desired, further excision and purification from agarose gel 

was performed with Illustra GFX purification kit (GE Heathcare). 

 

Ligation with In-Fusion   

For the ligation of DNA-fragments the In-Fusion® HD Cloning kit was used 

following the instructions of the manufacturer (Clontech; ref. 638910). The ligated vector-

DNA mix was used to transform bacterial cells, as previously described.  
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2.2 Cell line development 

 

2.2.1 Transfection  

Foreign DNA was inserted into cells using lipotransfection based on Cellfectin® II 

reagent (Invitrogen). 8l of Cellfectin and 100ul of Grace’s Insect Medium (Gibco) were 

used to 1x106 cells (unit of transfection, UT). Transfections were conducted in 125mL shake 

flasks in 10mL working volume. 

For the tagging step in the RMCE strategy, parental Hi5 and Sf9 were transfected at 

cell concentrations of 0.3x106 cells/mL and 0.5x106 cells/mL, respectively, using 0.3µg/UT 

of DNA. Selection was performed with hygromycin (0.2mg/mL; Invivogen) or zeocin 

(0.1mg/mL; Invivogen) depending on the expression vector resistance marker.  

For the establishment of stable Hi5 pools expressing HA genes, parental Hi5 cells 

were transfected at 0.5x106 cells/mL and selection was performed with zeocin (0.1mg/mL; 

Invivogen). 

 

2.2.2 Cassette-exchange 

To perform RMCE, 0,1µg/UT of target cassette and 0,3µg/UT of iFlp-expressing 

vector were used and selection was performed with hygromycin (Invivogen) or neomycin 

(Invivogen) depending on the expression vector resistance marker. Cassette-exchange was 

performed at a cell density of 1x106 cells/mL for Sf9 cells. When viabilities dropped to 50%, 

cells were transferred to T-flasks (75cm2). After 24h, the medium was replaced by 

conditioned medium supplemented with 10% (v/v) fetal bovine serum (FBS) (Gibco) and the 

respective antibiotic, and then changed every four to five days. Fluorescence intensity and 

cell colonies’ growth were evaluated by visual inspection (DMI 6000, Leica). When 

confluent, cells were transferred back to suspension and cultured with the routinely used 

medium plus antibiotic. 

 

 



25 
 

2.2.3 Sorting procedures  

Cells were sorted in a MoFlo high speed cell sorter (BeckmanCoulter) equipped with 

a 488 nm laser (200 mWair-cooled Sapphire, Coherent) for scatter measurements and a 

561nm laser (50 mW DPSS, CrystaLaser) for iCherry excitation. iCherry was detected using 

a 630/75 nm bandpass emission filter. As a special requirement for insect cells, cells were 

resuspended in phosphate buffer saline (PBS) supplemented with Pluronic acid F-68 (PF68; 

Sigma) (Vidigal et al., 2013). PBS was used as sheath fluid and run at a constant pressure of 

207 kPa with a 100µm nozzle and a frequency of drop formation of approximately 30 kHz. 

Cells were collected into 1 mL of PBS, also supplemented with PF68, and maintained at 4ºC. 

After sorting, cells were pelleted (200g for 10 min) and seeded in 6-well plates. They were 

kept for one week in culture medium with antibiotics–antimycotics (Invitrogen). 

 

2.2.4 Cloning  

Cloning by limiting dilution is a procedure to separate cells through serially dilutions 

of the culture suspension until the amount of 1 cell in 100 μl of final solution is reached. The 

medium is composed by 50% conditioned (the supernatant of exponentially growing parental 

cells) and 50% fresh medium and G418 (an analogous of neomycin). Then, 100 μl of this 

mixture was transferred into a separate 96-wells plate so each well receives one cell. When 

confluency was achieved, each clone was transferred to a 48-well, 24-well, 12-well and then 

to a 6-well and finally to 10mL suspension culture. From one cell per well to suspension 

cultures it took about 2-3 months. 

 

2.3 Cell culture  

Sf9 cells were purchased from Invitrogen and Hi5 cells were kindly provided by 

RedBiotech. For suspension cultures, cells were routinely cultured in 125mL or 500 shake 

flasks (working volume of 10-20mL or 30-50mL, respectively) at 27ºC in orbital shakers at 

100rpm. Sf900 II serum-free medium (Gibco) and Insect X-press (Lonza) were used for Sf9 

and Hi5 cultures, respectively. Cells were sub-cultured every 3-4 days when cell density 

reached 2-3x106 cells/mL. Hi5 cells expressing HA genes were supplemented with lipids 

when needed (Chemically Defined Lipid Concentrate; ref. 11905-031) (Gibco). Cell 
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concentration and viability were calculated by haemocytometer counting (Brand, Wertheim, 

Germany) using trypan blue exclusion dye (Merck, Darmstadt, Germany). For adherent 

cultures, cell cultivation was maintained in T-flasks (75cm2) with conditioned medium 

supplemented with 10% (v/v) of FBS (Gibco) and sub-cultured when confluency was 

reached.  

 

2.3.1 Freezing and thawing cells 

Cells at exponential growth phase (2-3x106 cells/mL) were centrifuged at 200g, 4ºC 

for 10min, and cell pellets were ressuspended in cryopreservation media (CryoStor®, Sigma) 

to obtain a concentration of 1-2x107 cells/mL. Aliquots were frozen using a freezing 

container (Mr. Frosty) (Thermo Fisher Scientific) and stored at -80ºC until further use. 

Thawing was performed by centrifuging cells with 12mL of fresh medium at 200g for 10 

min to eliminate cryo preservation medium. After this, the cell pellet was re-suspended in 

medium, according the volume to the cell density desired. Suspension culture was then 

performed in standard conditions. 

 

2.4 Baculovirus 

2.4.1 Virus amplification 

Recombinant baculoviruses were kindly provided by RedBiotech AG (Switzerland) 

and virus titters determined using the Virocyt virus counter (Virocyt, USA). Whenever 

needed, virus amplification was performed by infecting Sf9 cells at a CCI of 1x106 cells/mL 

using a virus (V0 stock) dilution of 1:500, in 2L shake flasks with 300mL of working volume. 

After reaching a viability of 70-80%, cultures were harvested by centrifuging at 200g and 

4ºC for 10 min and supernatant was collected and stored at 4ºC in the dark until further use.  

 

2.4.2 Virus titration 

Virus titration was performed using the MTT method (Mena et al., 2003; Roldão et 

al., 2009). Briefly, 100 µL of 0.5x106 cells/mL of Sf9 cells were seeded into 96-well plates 

(Nunc, Roskilde, Denmark) and allowed to attach to the plate for at least one hour at 27°C in 

the dark. Then, culture supernatant was removed and cells were infected with serial dilutions 
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of baculovirus. Both positive (non diluted baculovirus stock) and negative (virus free culture 

media) controls were added to the assay. Plates were incubated for 6 days at 27ºC in the dark. 

After this period, 10µl of 0.5 mg/mL MTT solution was added to each well and plates were 

incubated for 4h at 27ºC. After removing the supernatant, the formazan crystals were 

solubilized with dimethyl sulfoxide (Sigma–Aldrich) (150µl/well) and incubated for 

additional 20min under constant shaking. The absorbance (570/690nm wavelength) was 

measured using a plate reader (Tecan, Switzerland). The collected data was analyzed using 

GraphPad Prism 4 (Graph-Pad Software, Inc., La Jolla, CA).  

 

2.4.3 Infection of insect cells with baculovirus 

Hi5 cells were inoculated at 0.3x106 cells/mL and were allowed to grow until the time 

of the infection. Infections were performed at different CCIs of 2, 3 and 4x106 cells/mL 

though always with the same MOI of 10 total viral particles/cell. 

 

2.5 Production of influenza VLPs in 2L bioreactors  

Bioreactor culture was performed in BIOSTAT® B-DCU 2L vessels (Sartorius, 

Goettingen, DE). The pH, temperature and dissolved oxygen were monitored on-line. The 

dissolved oxygen was set to 30% of air saturation and was maintained by automated stirring 

and air/oxygen supply on demand. The gas flow rate was set to 0.02 L/min. The inoculum 

was 0.5x106 cells/mL and 40h later a supplement mixture was added, as described above. 

Infection was performed when cells reached a concentration of 4x106 cells/mL with a MOI 

of 10 total viral particles/cell. Samples were taken daily to analyze cell viability and density 

as well as the HA titer. Medium additions and sampling proceedings were performed 

aseptically in a moveable flow chamber (Cruma 670 FL, Spain).  

 

2.5.1 Downstream processing of influenza VLPs 

After cells reached viabilities around 50-60%, the bioreactor bulk was centrifuged at 

200g, for 10min at 4ºC. Supernatant was collected and then supplemented with 50 U/mL of 

benzonase (Merck Millipore, Germany) for 15min at room temperature to digest any host 

and/or viral DNA in solution. Supernatant was then filtered using a Sartopore 2 membrane 
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capsule (Sartorius Stedim Biotech, Germany) comprising a 0.45µm prefilter and a 0.2µm 

filter. Influenza VLPs were purified using anion-exchange chromatography with a SartoBind 

Q capsule (Sartorius Stedim Biotech, Germany) and concentrated using 

ultrafiltration/diafiltration by tangential flow filtration (300kDa cassette regenerated 

cellulose). This solution was sterile filtered using a Whatman cellulose regenerated 

membrane filter and stored in aliquots at −80ºC.  

2.6 Analytical methods 

2.6.1 Supplementation 

A mixture containing Insect Medium Supplement 10x, 5mM glutamine, 10mM 

asparagine (all from Sigma-Aldrich) and 20mM glucose (Merck, Millipore) was added to 

small-scale experiments and bioreactor, corresponding to 10% of the working volume. This 

mixture was added when cell density reached 2x106 cells/mL. 

 

2.6.2 Negative staining transmission electron microscopy 

The morphology and size of influenza VLPs were evaluated by negative staining 

transmission electron microscopy (TEM). Briefly, 10µl of sample were fixed for 1min in a 

copper grid coated with Formvar-carbon (Electron Microscopy Sciences, Ft. Washington, 

PA, USA). After this, the grids were washed with H2O and then stained with 1% uranyl 

acetate for 2min and left to air dry. Samples were then observed in a Hitachi H-7650 

Transmission Electron Microscope (JEOL, Tokyo, Japan).  

 

2.6.3 Hemagglutination assay 

The assay used is a plate-based assay in which the concentration of HA in bulk and 

purified VLP samples can be determined by comparing the hemagglutination profile of these 

samples with that of a standard of known HA concentration. Briefly, samples were 2-fold 

serially diluted in PBS and incubated at 4ºC for 30min with 25μL of 1% chicken red blood 

cells (RBC) (Lohmann Tierzucht GMBH, Germany). Hemagglutination of RBC was 

identified by the formation of a network (lattice structure) of interconnected RBC and HA 
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(positive results); if there is not enough HA to bind to RBC, they settle to the bottom of the 

well (negative result). As standard, an influenza vaccine with a known HA concentration was 

added to each assay experiment. The HA titer of a sample was determined by calculating the 

maximum dilution that gave a positive outcome and comparing it to the one obtained for the 

standard.  

 

2.6.4 Exometabolome analysis 

1H-NMR was performed in a 500MHz Avance spectrometer (Bruker, Billerica, MA) 

equipped with a 5-mm QXI inversed probe. Spectra were acquired using a NOESY-based 

pulse sequence with water presaturation, performing 256 scans with 4s acquisition time, 1s 

relaxation delay and 100 ms mixing time at 25ºC. DSS-d6 (Cat.No. 613150, Isotec, Sigma-

Aldrich) was used as internal standard for metabolite quantification in all samples. In order 

to maintain a constant pH between samples, these were mixed with phosphate buffer (pH 

7.4) prepared in DH2O (Cat.No. 151882, Sigma-Aldrich) at a 2:1 ratio. Before spectra 

acquisition, the spectrometer was calibrated by determining the 90º pulse and the water 

chemical shift center of each sample. Each spectrum was phased, baseline corrected and 

integrated using Chenomx NMR Suite 7.1 (Chenomx, Inc.). Most metabolites are defined by 

several clusters at different chemical shifts, which in some cases may overlap or be affected 

by the damping effect caused by water suppression, inducing an underestimation of their 

concentrations. Therefore, after automatic fitting of each metabolite, the best resolved and 

farthest peak from the water region was chosen for manual adjustment and metabolite 

quantification.  

In bioreactor culture, lactate concentrations were routinely determined using an YSI 

7100 Multiparameter Bioanalytical System (YSI Life Sciences, Dayton, OH). 

 

2.6.5 Immunofluorescence  

In order to detect HA in Hi5 cells membrane, a protocol of immunofluorescence was 

performed. Briefly, 2x106 cells of each population were centrifuged at 300g for 5min, cell 

pellets were collected and washed with PBS twice before incubation with 50µl of anti-HA 

antibody solution (dilution 1:20 in PBS) for 1h at 4ºC in the dark. After this, samples were 
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centrifuged and washed twice with PBS and incubated with 50µl of secondary antibody 

(dilution 1:200 - ref.A11015; Thermo Fisher Scientific) for 30min at 4ºC in the dark. This 

secondary antibody was labelled with GFP. After two washing steps with PBS, samples were 

ressuspended in 0.5mL of PBS and fluorescence microscopy analysis was conducted to 

detect eGFP (DMI 6000, Leica). 

2.6.6 Cell sonication 

After centrifugation, buffer containing 50mM Hepes, 300mM NaCl and 15% 

trehalose was added to cellular extracts to a final concentration of 4x106 cells/mL. Cells were 

then sonicated on ice during 1min with 10% amplitude 15s-On-15s-Off pulses (Branson 

Digital Sonifier). The sonicated cells were centrifuged at 10 000g at 4ºC for 10-15 min, after 

which the supernatant was collected and used in further experiments. 

 

2.6.7 Flow cytometry 

CyFlow® space (Partec GmbH) was used to evaluate recombination efficiencies as 

well as to characterize tagging and target populations and clones in terms of eGFP or iCherry 

fluorescence intensity and percentage. Samples were collected and diluted in PBS. eGFP was 

detected using FL1 channel (emission filter: 520 ± 5 nm) and iCherry by using the FL4 

channel (emission filter 590 ± 50 nm). Analysis from 30 000 events per sample was done 

using FlowJo software.  

 

2.6.8 Western blot 

Samples were denatured with a reducing agent (Novex® NuPAGE®, USA), heated 

to 70ºC for 10min, and loaded on a NuPAGE® Novex® 4-12% Bis-Tris Gel 1.0mm (Thermo 

Fisher Scientific) for protein separation through gel electrophoresis using MOPS running 

buffer (50min at 200V). Molecular weight markers SeeBlue®Plus 2 prestained standard 1x 

(Invitrogen) and Magic mark (Magic mark XP western protein standard, Novex, USA) were 

used. Proteins were then transferred to a nitrocellulose membrane using iBlot® Transfer 

Stack (Thermo Fisher Scientific). The membrane was blocked for 1 hour at room temperature 

using a solution consisting of 5% skim milk (Merck) in tris buffered saline pH 8.0 (Sigma-
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Aldrich, USA) with Tween 20 (Merck, USA) (TTBS). Incubation with primary antibodies 

was done overnight at room temperature; for the secondary antibodies only 1h was used. 

Detection was performed with the enhanced chemiluminescence detection system (ECL) 

(Amersham Biosciences). 

 

Analysis of samples from bioreactor by western blot 

To detect HA and M1 protein in bulk samples by western blot, culture samples were 

centrifuged at 200g for 10min and the supernatant was collected. For HA detection the 

primary antibody was diluted 1:1000 whereas for anti-M1 a 1:2000 dilution was used. 

Secondary IgG antibodies used were conjugated with horseradish peroxidase-labeling 

(HRP). For HA detection, a 1:5000 dilution secondary antibody was used (Ref sc-2473; Santa 

Cruz Biotechnology) whereas for M1 a dilution of 1:200 (ref. 81-1620; Life Technologies) 

was used.  

 

Detection of M1 in Sf9 clones 

To detect M1 by western blot, samples were centrifuged at 200g for 10min and pellets 

and supernatants were collected. Pellets from 2x106 cells/mL were sonicated to allow 

extraction of M1. A monoclonal IgG1-mouse antibody (ref. ab22396; Abcam) was used in a 

dilution of 1:500 and polyclonal secondary antibody linked to HRP was used in a dilution of 

1:5000 (ref. NA931; GE Healthcare).  

 

2.6.9 RNA extraction and RT-PCR  

For evaluation of gene expression mRNA levels were assessed by PCR. RNA was 

extracted from 8x106 cells using the RNeasy kit (Qiagen) and quantified using Nanodrop 

ND-2000c (Thermo Scientific).1µg was converted to cDNA which was synthetized using the 

First Strand cDNA Synthesis kit (Roche Diagnostics, Manheim, Germany). PCR was 

executed using 20ng of cDNA and amplification was performed as described above with 

primer annealing at 69ºC and extension step at 72ºC for 13 sec. Agarose gel electrophoresis 

was performed in a 2% agarose concentration for 1h at 90V and the Quick-Load® 100 bp 

DNA ladder was used (ref.N0467G). Primers sequences are listed in Appendix A.2. 
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2.6.10 Genomic DNA extraction 

To confirm the presence of the tagging cassette in clones, genomic DNA was 

extracted using an in-house protocol. Briefly, 8x106 cells were pelleted and then added to a 

solution of 1mL of Bradley’s solution, 5µl of proteinase K and 2 µl of RNase, followed by 

overnight incubation at 55ºC. Bradley’s solution is composed by 10mM Tris/HCl (pH 7.5), 

2mM EDTA, 10mM NaCl and 0.5% SDS. The next day, 250µl of 5mM NaCl was added for 

5min on ice and the solution centrifuged for 15min at 10 000 rpm. Isopropanol was added to 

the resulting supernatant to precipitate DNA. After centrifugation at 10 000 rpm for 10min, 

supernatant was discarded, the pellet was washed with 1.2mL of 70% cold ethanol and 

allowed to air-dry. Pellet was dissolved in nuclease-free water. 

PCR was performed using 100ng of DNA and amplification was done as described 

above with primer annealing at 69ºC and extension step at 72ºC for 2min and 51s. Primers 

sequences are listed in Appendix A.3. Agarose gel electrophoresis was performed in a 0.7% 

agarose concentration for 1h at 90V and the NZY DNA Ladder III (NZYTech; ref. 

MB04402) was used.  
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3 Results  

3.1 Combining stable insect Hi5 cell line with the baculovirus expression 

system for production of multi-HA influenza VLPs 

There are two main strategies to produce recombinant proteins in insect cells: i) 

infection of parental cells with baculovirus, which results in transient expression, and ii) 

transfection of parental cells with a plasmid harbouring the GOI, which leads to stable and 

continuous production after appropriate selection. Also, transient expression after 

transfection (before selection) is also a platform in stable production. However, both systems 

enclose a major limitation that is the number of genes one can express in the same virus or 

plasmid without compromising their stability. By using a stable cell line in combination with 

a virus-based expression system one can rationally modulate the number of genes to express 

in each building block (cells and virus) and thus mitigate such risk. This strategy will be 

herein used to generate multi-HA influenza VLPs.  

3.1.1 Establishment of stable insect cell lines by random integration 

An initial screening of insect cell lines (Sf9 and Hi5) was performed in order to 

identify the most suitable for stable expression of HA protein(s). Parental Sf9 and Hi5 cell 

lines were transfected with a plasmid harbouring two HA genes, represented by construct #1 

in Figure 5. The weaker OpIE1 promoter was used to drive expression of the zeocin 

resistance gene and the best promoter was chosen to drive expression of HA genes. Then, 

48h (for Hi5 cells) and 72h (for Sf9 cells) after transfection, cells were infected with a rBac 

encompassing three HA genes (being expressed by the polyhedrin promoter) using a CCI of 

2x106 cells/mL and MOI of 10 virus/cell, and the concentration of HA in culture supernatant 

was followed for two days (Figure 6). Authors have shown that Hi5 are better at recombinant 

protein production (Monteiro et al., 2014). In this work, results show that Hi5 cells are able 

to secrete more HA protein than Sf9 at the end of day 2 post-infection, with a 4-fold increase 

in HA concentration. Based on these results, Hi5 cells were selected for the establishment of 

a stable insect cell line (by random integration) that could assist the production of (multi-

HA) influenza VLPs. 
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Two stable insect Hi5 cell pools were established by transfecting parental cells with 

the two constructs represented in Figure 5. Upon two to three weeks in zeocin selection cells 

achieved lower and stable duplication times and stable pools were obtained with cell 

viabilities above 90% and population duplication times (PDT) around 23h in shake flask 

cultures. These PDT are slightly higher than those of parental Hi5 cells (18h-20h), as 

expected. Cell growth and protein production profiles for both pools were followed along 

passages as represented in Figure 7. For pool 1, there are no significant differences between 

passages in terms of cell growth kinetics and PDT (data not shown) until passage 27. Only 

at passage 30, cells start decreasing their growth rate so this cell passage was not used for 

further experiments. For pool 2, a lipid supplementation helped on the growth kinetics of 

cells, with PDT around 21h instead of 24h, and to extend the peak of cell density from 2.4x106 

 

Figure 5 - Scheme of the two expression vectors used to transform parental cells. OpIE2 and OpIE1 promoters were 

selected to drive HA and zeocin resistance gene expression, respectively. 

 

Figure 6 - HA concentration in culture supernatant. Parental Hi5 and Sf9 cells transfected with construct #1 (Figure 5) 

were infected with a rBac containing three HA genes at a CCI of 2x106 cell/mL and MOI of 10 total viral particles/cell 

48h (for Hi5 cells) and 72h (for Sf9 cells) after transfection. Dpi means days post-infection. 



35 
 

cells/mL to 3.7x106 cells/mL. Although expression of HA genes represent a burden to stable 

pools, the cell viability along passages was continuously above 90% up to the end of 

exponential growth phase (day 4 after passage) (data not shown). 

Immunofluorescence microscopy of cultured cells allowed the detection of HA 

protein in both pools and results show that it localizes at the cell membrane (Figure 8), as 

expected (Ali et al., 2000). Therefore, in order to evaluate if the expression of the target 

protein is impaired throughout the adaptation period, the concentration of HA in cellular 

extracts was assessed by hemagglutination assay (the same cell concentration was sonicated 

in all samples – 4x106 cells/mL). Results show that HA concentration in cell pellets did not 

vary significantly along passages for both pools (Figure 9), suggesting that protein expression 

is not negatively affected during the adaptation period.  

After the characterization of stable pools, both populations were further used in 

process optimization to enhance VLPs production. 

 

 

 

 

  

Figure 7 - Growth profiles of stable Hi5 pools expressing two HA genes, along passages. 
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Parental Pool 1 Pool 2 

 

Figure 8 - Immunofluorescence detection of HA in the membrane of two stable Hi5 pools. Negative control (parental 

Hi5 cells) was added to evaluate unspecific binding of the antibody used. Secondary antibody was labelled with GFP. 

Scale bars indicate 100µm. 

 

Figure 9 – Concentration of HA in cellular extracts along passages for two stable Hi5 pools. 

 

3.1.2 Optimizing HA production in Hi5 pools 

Aiming at increasing HA protein production, two strategies were followed: (1) re-

feed of key nutrients to the culture and (2) optimizing the CCI. 

In small-scale experiments, the maximum cell concentration one could reach for both 

stable Hi5 pools with the routinely culture medium used was around 3.5×106 cells/mL. Based 

on these results, it was decided to investigate the performance of both pools for HA 

production when infected at two different CCIs, 2x106 cells/mL as standard condition and 

3x106 cells/mL as alternative. Both stable pools were infected with a baculovirus encoding 

M1 at an MOI of 10 total viral particles/cell. Growth profiles during infection (Figure 10A) 
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and HA productivity levels (Figure 10B) were evaluated. For pool 1, although increasing the 

CCI had no effect on the maximum concentration of HA achieved in culture supernatant, it 

was achieved one day earlier compared to infection at a CCI of 2x106 cells/mL (Figure 10B). 

For pool 2, using a CCI of 3x106 cells/mL allowed a 4-fold increase in HA production when 

compared to CCI of 2x106 cells/mL (Figure 10B).  

 

The next step was to investigate the feasibility of increasing cell growth performance 

to allow infections at higher cell densities, which will potentially translate into enhanced 

protein production. A stable Hi5 pool was cultured in small shake flasks where a maximum 

cell density of 3.6x106 cells/mL was reached by 83h of culture and then cell viability started 

to decrease (Figure 11A).  Supernatant samples were collected along culture time and 

analysed by 1H-NMR (Figure 11B) in order to identify eventual exhaustion of key nutrients 

contributing for the onset of death phase. 1H-NMR data showed that these cells avidly 

 

Figure 10 – A) Growth profiles for infections at CCI 2x106 cells/mL and CCI 3x106 cells/mL for both pools. B) HA 

concentration in culture supernatant during infection for both CCIs and pools.  Dpi means days post-infection. 
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consume asparagine (Asn), exhausting the 8.5mM available at inoculation, in less than 48h 

(Figure 11B). However, Asn seems not to be essential for these cells as they continue to grow 

upon its exhaustion. At the same time, cells increase uptake rate of aspartate (Asp) most 

likely to compensate Asn depletion. Glutamine is the second most consumed amino acid, 

being completely exhausted by 130h of culture (Figure 11B). Interestingly, the small levels 

of accumulated lactate (5mM) started to decrease once glucose concentration was limiting 

(Figure 11C). Based on these results, a re-feed strategy was designed in order to supplement 

the culture 72h after inoculation with the three key nutrients identified above (Asn, Gln and 

Glc) plus a mixture of lipids, proteins and vitamins for insect cells (Fernandes et al., 2014). 

Glutamine and glucose concentrations were restored to values near those found at the 

inoculation time (Figure 11C). Asparagine concentration only increased to 3mM after the 

supplementation but rapidly became depleted again. Noteworthy is the increase in lactate 

concentration after glucose addition reaching values between 11-14mM (Figure 11C). 

Importantly, the strategy herein adopted led to an increase in the maximum cell concentration 

achieved (4.9×106cells/mL vs 3.6x106cells/mL in non-supplemented cultures) and in culture 

time (23h more than in non-supplemented cultures) without compromising cell viability 

(Figure 11A).  

That being said, in order to increase cell density, a re-feed strategy using Asn, Glc, 

Gln and a supplementation mixture will be used after 72h of inoculation. 
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3.1.3 Production of multi-HA influenza VLPs 

Afterwards, the goal was to implement this feeding strategy in shake flasks to increase 

the CCI and, probably, protein production.  

Hi5 pool 1 was infected with two different recombinant baculovirus, one enclosing 

the M1 gene (rBac-M1) and another enclosing three HA proteins (rBac-3HA). These two 

baculovirus were used to address if a possible HA enrichment in the supernatant with the 

highest CCI was due to improved stable production or a boost in HA from baculovirus 

replication. Cultures infected at a CCI of 4x106 cells/mL were supplemented 72h after 

inoculation and infected 24h after the supplementation. 

The same MOI of 10 total viral particles/cell was used in both experiments and growth 

profiles during infection (Figure 12A) and HA productivity levels (Figure 12B) were 

 

Figure 11 - A) Growth profiles of supplemented and non-supplemented cultures. Metabolites analysis by 1H-NMR: 

glucose (Glc), glutamine (Gln), glutamate (Glu), asparagine (Asn), aspartate (Asp) and lactate (Lac) before (B) and after 

supplementation (C). The arrows indicate the time of the re-feed. 
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evaluated. Infection at the highest CCI (around 4x106 cells/mL) resulted in a 4-fold increase 

in HA concentration in the supernatant with rBac-3HA and in a 2-fold increase when using 

rBac-M1, as shown in Figure 12B. Also, cell concentration profiles for both infections show 

a stronger impact in cells infected with a rBac-3HA where cells reached lower viabilities 

earlier (Figure 12A).  

 

 

  

 

Figure 12 – Multi-HA VLP production in small-scale shake flask cultures. A) Cell concentration profiles for infections 

of pool 1 with rBac-3HA and rBac-M1 at CCIs 2x106 cells/mL and 4x106 cells/mL. B) HA concentration in the 

supernatant for both baculovirus infections at CCI 2x106 cells/mL or 4x106 cells/mL (culture was supplemented 72h after 

inoculation, i.e 24h before infection).  Dpi means days post-infection. 
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3.1.4 Scale-up production of multi-HA influenza VLPs 

In order to prove the scalability of multi-HA influenza VLPs production with the best 

strategy studied, the same experiment was conducted in a 2L stirred-tank bioreactor with 

dissolved oxygen and temperature control. Once cells reached 2x106 cells/mL 

supplementation was performed. Infection was done with a rBac-3HA, to produce a 

pentavalent VLP, at a CCI of 4x106 cells/mL. Bioreactor culture conditions maintained cells 

with higher viability and total cell density during infection, extending it from 2 to 3 days 

compared to small scale experiments, as seen in Figure 13A. Lactate concentration was kept 

to lower levels (3.5mM) than in shake flask cultures (23mM) (Figure 13B) most likely due 

to oxygen supply. Together, these conditions allowed to increase the volumetric and specific 

productivity of HA by 1.5-fold at the end of infection (Figure 13C). Western blot shows the 

increase in HA (64kDa) and M1 (28kDa) in the supernatant with the course of infection 

(Figure 13D).  

To confirm VLPs production, negative staining transmission electron microscopy 

allowed the visualization of VLPs with the expected size range (80nm-120nm) (Figure 13E). 

Therefore, production of multi-HA influenza VLPs could be successfully scaled-up with 

increased HA titer and higher viabilities. 
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A  

B  
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D 

 

E 

 

Figure 13 - Production of pentavalent VLPs in supplemented bioreactor culture by infection of Hi5 pool 1 at a CCI of 

4x106 cells/mL. Comparison between shake flask and bioreactor experiments regarding A) cell concentration profiles 

and viability; B) lactate (lac) concentration during infection and C) HA concentration in supernatant during infection. 

D) Western blot of culture supernatant for detection of HA and M1 along infection.  Dpi stands for days post-infection. 

E) Electron microscopy analysis of VLPs by negative staining; scale bars represent 100nm.  
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3.2 Establishing a double-RMCE insect cell platform  

In this part of the work the goal was to develop a cell platform that could be re-used 

to express several genes simultaneously, allowing the production of multi-protein complexes, 

such as influenza VLPs. The strategy adopted consists in tagging parental cells with two 

expression cassettes flanked by different pairs of FRTs. This means that two genomic loci 

would be targetable and more genes of interest can be replaced at the same time, contributing 

to a more flexible stable cell platform. In addition, the cell platform could also be used to 

produce monomeric products by exploring the potential of having two loci for integration of 

multiple copies of the same gene, contributing to improved production yields.  

In order to make such system reliable and robust, some features need to be taken into 

consideration: i) the two pairs of target sites cannot cross-react with each other, keeping the 

system directional and predictable, and ii) two selective agents are needed in order to select 

cells that contain both constructs in the genome. In this section, the feasibility of such system 

will be addressed for Hi5 cells.  

 

3.2.1 Vector design and FRT sites  

A cassette system flanked by the pair of FRT sites wild-type (Fw) and mutant 5 (F5) 

was previously implemented in-house in insect Sf9 cells (Fernandes et al., 2012). The second 

pair of mutant FRT sites chosen was the F13F14, which showed to be successful at 

multiplexing RMCE and better at recombination than the Fw/F5 pair in mammalian cells 

(Turan et al., 2010).  

Two Hi5 cell pools were established by transfecting parental cells with one of two 

tagging cassettes, both encoding iCherry and hygromycin as marker genes driven by OpIE2 

and OpIE1 promoters, respectively, only differing in the flanking FRT sites (Figure 14A). 

The fluorescence intensity of each tagging population upon selection is represented in Figure 

15. In order to address the question of cross-interaction between both pairs of target sites, 

two promoterless target cassettes were constructed, both encoding eGFP and neomycin as 

reporter and resistance genes, respectively (Figure 14B). This cassette design allows the 

monitoring of RMCE efficiency using eGFP expression as readout, which only occurs if the 
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target cassette replaces the flanked region in the cell genome. In addition, only cells where 

cassettes have been exchanged will be resistant to G418 (an analogous of neomycin). 

 

Figure 14 - Scheme of tagged populations (A) and target vectors (B) used to address cross-interaction between FwF5 and 

F13F14. 

 

Figure 15 - Fluorescence intensity profiles of tagging pools at the day of transfection with target vectors. 

3.2.2 Feasibility analysis: evaluation of target sites’ specificity   

In order to address the feasibility of a double-tagged cell line, both Hi5 tagging 

populations previously established were independently submitted to cassette exchange with 

each target vector in the presence of a Flp-encoding plasmid. The flippase used in this work 

was codon-optimized for insect cells (iFlp), thus recombination efficiency was significantly 

higher than using Flpe (unpublished data). The presence of eGFP positive cells was assessed 

via flow cytometry and fluorescence microscopy (Figure 16A and B). Figure 16A shows 

results in a transient phase of expression (48h post-transfection) evidencing eGFP positive 

cells in tagging populations transfected with vectors that differed in target sites (0,31% in 

F13F14 × FwF5 and 0,27% in FwF5 × F13F14). In order to eliminate the hypothesis that eGFP 

expression could be the result of a random integration of the promoterless target vectors near 
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endogenous promoters, transfections were repeated without adding iFlp. Flow cytometry 

analysis in transient phase of expression shows the absence of eGFP positive cells in both 

transfections (Figure 16A), thus supporting the cross-reactivity of the two pairs of FRT sites. 

Two days post-transfection, G418 was added in order to initiate the selection process 

of cells that had exchanged cassettes to evaluate the potential use of F13F14 enriched 

populations in RMCE. Figure 16C shows flow cytometry analysis of all target populations 

after this period. Two different inoculums were tested trying to identify the best selection 

strategy to efficiently enrich these populations in eGFP positive cells. The selection with a 

lower inoculum was, sometimes, more efficient (Figure 16C). 

After two weeks in G418 selection, the presence of eGFP positive cells in F13F14 × 

FwF5 and FwF5 × F13F14 populations corroborated the data obtained in transient phase. Based 

on these results, it is proved the cross-interaction between FwF5 and F13F14 target sites making 

them inapplicable for the implementation of a double-locus system of RMCE.  
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A 

 

B 

 

C 

 

Figure 16 - Evaluation of cross-interaction between target sites Fw/F5 and F13/F14. (A) Flow cytometry and (B) 

fluorescence microscopy results 48 hours after transfection. Scale bars indicate 100µm. (C) eGFP positive cells (%) in 

different target populations after two weeks in selection with neomycin. Black bars represent the average of two 

experiments with cell passage at a high inoculum and grey bars are representative of a third experiment with cell passage 

at a lower inoculum. 
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3.3 Production of Influenza VLPs using RMCE 

The double-RMCE insect cell lines developed above (with two tagged loci using the 

FwF5 and F13F14 cassettes) showed to be unfeasible to express multi-gene products. Therefore, 

it was decided to evaluate the capacity of stable insect cell lines (Figure 17A) to produce 

influenza VLPs by co-expressing two influenza viral proteins – M1 and HA - from the same 

locus. As represented in Figure 17B, the same promoter was used to drive the expression of 

both proteins, OpIE2, the strongest insect cell promoter available for stable expression. 

 

Figure 17 - A) Construct integrated in clones. B) Target vector encoding M1 and HA genes and C) Resulting population 

expressing M1 and HA from the same locus after RMCE. 

3.3.1 Cell line development 

To generate RMCE cell platforms singly tagged in high expressing and exchangeable 

loci, with lower screening efforts, the sequence of steps outlined in Figure 18 were followed. 

Firstly, Sf9 parental cells were tagged with an iCherry-containing vector, then enriched with 

the 30% strongest iCherry-expressing cells by FACS, and finally submitted to RMCE to 

exchange for an eGFP reporter cassette. Promoters driving expression of the target genes 

were placed outside the region flanked by the FRTs (Figure 18) to allow a faster selection of 

cells that have exchanged cassettes. This occurs because the promoterless genes in the 

incoming cassette will only be expressed if it replaces the FRT flanking region in the cell 

genome. Upon selection with G418, the resulting population was sorted using FACS to select 

eGFP+/iCherry- cells. Once sorted, the cloning procedure was done to isolate cells containing 

strong and amenable to Flp-recombination loci. Noteworthy, the target cassette also 

contained iFlp coding-gene to avoid its addition in subsequent RMCE steps.  
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Figure 18 - Cell line development from tagging to cloning 

3.3.2 Clones’ characterization 

Before using the clones to produce the genes of interest, it is important to have them 

thoroughly characterized. Two isolated Sf9 cell clones (#3 and #4) were analysed for the 

potential expression of the tagging genes (iCherry and hygromycin). By using specific 

primers for each gene (products size of 206bp and 245bp) mRNA analysis confirmed that 

tagging genes were not expressed (Figure 19A) and flow cytometry data also supports these 

results (Figure 19B). Furthermore, relatively stronger eGFP gene expression in clone #3 was 

observed compared to clone #4 (Figure 19A). As expected, the resistance gene expression is 

much lower than the reporter’s gene due to the difference in promoter strength (OpIE2 vs 

OpIE1).  

To evaluate if the tagging cassette had been eliminated upon RMCE, genomic DNA 

of both Sf9 clones was extracted and primers were used in a PCR targeting for OpIE2 and 

OpIE1. The agarose gel electrophoresis represented in Figure 19C shows the amplification of 

a 5,6kbp band in clones and a 2,9kbp band for the tagging population and this size difference 

shows that tagging cassette was eliminated in the RMCE step. In addition, it is confirmed 
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that there is expression of iFlp in clones (Figure 19A), thus suggesting that addition of iFlp 

is not needed in further experiments of RMCE. In order to evaluate if this expression is 

enough to allow efficient cassette exchange, both cell clones were transfected with an 

iCherry-containing cassette in the presence/absence of an iFlp-containing vector. After 72 

hours post transfection, flow cytometry analysis showed 0,3% of iCherry positive cells when 

adding iFlp and 0% when the enzyme was not supplied (data not shown). Cultures were kept 

in selection with hygromycin and the same trend was observed over time as confirmed by 

fluorescence microscopy and flow cytometry. Therefore, although iFlp is being expressed it 

could not promote RMCE.  

 

A 

 

 

 

B 

 

C 

 

Figure 19 - Characterization of Sf9 clones #3 and #4 according to the presence of (A) expression of tagging and target 

genes by mRNA analysis and (B) flow cytometry. Primers were constructed to anneal with specific regions of each gene 

in study; L-ladder (Quick-Load 100bp); C) Identification of tagging cassette in clones. Genomic DNA was extracted and 

primers were located at OpIE2 and OpIE1 promoters amplifying 5,6kbp fragment in a target population and a 2,9kbp in 

a tagging population. Ladder used: NZY DNA ladder III. 
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3.3.3 Production of influenza VLPs in the same locus 

The Sf9 clone #3 was selected for the production of influenza VLPs due to the (1) 

absence of tagging cassette and expression of tagging genes and (2) enhanced eGFP 

expression when compared to Sf9 clone #4.  

 This clone was submitted to RMCE with a M1-HA encoding cassette as depicted in 

Figure 17B. After the selection process, resistant cells were transferred to suspension cultures 

and purity of this population was assessed by flow cytometry. Results showed that 31% of 

the cells were still eGFP positive (Figure 20A), also confirmed by fluorescence microscopy 

(Figure 20B). M1 and HA gene expression was evaluated by mRNA analysis. Although 

regulated by the same promoter (OpIE2), HA gene expression was considerably stronger than 

M1 (Figure 20C). The growth curve of this population was followed and the levels of HA 

assessed for culture supernatants (data not shown) in order to check if HA protein could be 

released from the cell. HA was detected after 165 h of culture but at a very low concentration 

(0,04μg/mL increasing to 0,08μg/mL at 187.5 h). Later, the amount of M1 (28kDa) in cellular 

extracts and supernatants was examined by western blot (data not shown) though its detection 

was not achieved even at the end of culture (187.5 h). This explains the low concentration of 

HA in the supernatant as M1 is very important for the secretion of HA. The lack of M1 

expression was not expected as gene expression was confirmed by mRNA analysis.  

Summing up, the inability to detect M1 production and the low concentration of HA 

in the supernatant may be the due to weak targeted locus in this Sf9 clone. Even though eGFP 

fluorescence intensity was acceptable, as shown in Figure 20D, this was not reproducible to 

a more complex multi-protein product. 
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A 

 

B 

 

C 

 

D 

 

Figure 20 - Detection of eGFP positive cells in population that was submitted to RMCE to M1-HA by (A) flow cytometry 

and (B) fluorescence microscopy (scale bars are in 100μm). (C) M1 and HA gene expression analysis. Parental cDNA 

was added as a negative control in a PCR with primers for M1 and HA amplification and 18S cDNA analysis was added 

as an endogenous control. Ladder used: Quick-load 100bp. (D) Comparison of fluorescence intensity between a 

population and clone #3 of Sf9. 
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4 Discussion and conclusions 

In this work, optimization of two different insect cells platforms for production of 

influenza VLPs was approached. A strategy for supporting baculovirus production of 

multiple proteins was designed and bioprocess optimization was conducted. Three major 

tasks were performed to achieve such goal: 1) identification of key nutrients during cell 

growth and their extra addition at a critical time of the culture to increase viable cell 

concentration with high viabilities; 2) apply this feeding strategy to increase the CCI and 

consequently protein production; 3) prove the scalability of the process. Then, preliminary 

work in establishing a double-locus flippase RMCE system was performed and Sf9 clones 

were generated to produce multimeric products.  

 

4.1 Dual strategy for production of Influenza VLPs 

To our knowledge this is the first time stable expression of HA was attempted in 

insect cells. Cell growth impairment due to genetic instability and/or protein-induced 

cytotoxicity is a potential bottleneck for stable/continuous cell cultures. Furthermore, product 

yield and/or quality must be maintained during several cell passages. The results presented 

in this thesis show that the growth performance of Hi5 cells is dependent on the HA proteins 

being produced, illustrated by the differences in early passages (below 14) between pool 1 

and pool 2. Also, it is shown that it is possible to obtain a similar growth performance over 

several sub-culture steps in a given population. Likewise, although not constant along 

passages, the HA expression levels were similar for both populations tested, thus 

corroborating the observation that insect cells are a competent platform for stable protein 

production, which has been previously shown by other authors (Fernandes et al., 2014). The 

PDT of both populations were slightly higher than those observed for non-transformed Hi5 

cells which might be explained by the competition between endogenous and heterologous 

genes for the cellular machinery.  

When using the insect cells-baculovirus system, the production of recombinant 

proteins as well as baculovirus is impaired at high CCIs (above 2x106 cells/mL) - the so 

called cell density effect (Carinhas et al., 2009; Caron et al., 1990). This phenomenon is not 
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well understood, but key factors implicated are the lack of nutrients and/or oxygen, and 

accumulation of toxic by-products (Bernal et al., 2009; Carinhas et al., 2010). In order to 

investigate this phenomenon, the HA production levels of the two stable Hi5 pools herein 

generated were assessed at two different CCIs (2x106 cells/mL and 3x106 cells/mL) using 

the same baculovirus. Results show that HA expression is independent of CCI for pool 1 but 

not for pool 2. However, maximum HA production was obtained one day earlier (day 2 post-

infection) for pool 1, at the highest CCI. From a bioprocess perspective, this encloses a major 

advantage: due to higher cell viabilities, less contaminants such as viral and host DNA are 

present in the culture supernatant, thus potentially reducing downstream processing time and 

cost. 

To cope with the cell density effect problem, a number of strategies ranging from 

improving medium composition, total or partial replenishing of medium at infection, nutrient 

supplementation schemes (Caron et al., 1990; Nguyen et al., 1993; Wang et al., 1993), fed-

batch processes and perfusion cultures have been used to improve protein production 

(Ikonomou et al., 2003). In this work, the consumption and production of metabolites in the 

supernatant was followed along culture time and identified the depletion of glucose and 

crucial amino acids, such as asparagine and glutamine (Mendonça et al., 1999; Monteiro et 

al., 2014). Then, by replenishing these nutrients together with a cocktail of lipids and 

vitamins (Fernandes et al., 2014), it was possible to increase the peak of cell density (from 

3.6x106 cells/mL to 4.9x106 cells/mL) and keep high viabilities during longer culture time. 

Performing infections at a CCI of 4x106 cells/mL, with two different baculovirus, using this 

supplementation scheme, enabled to increase HA titers up to 4-fold. Infection with a rBac-

M1 showed that the metabolic boost induced to the cells enabled the enrichment of culture 

supernatant in HA, showing once again that this re-feed strategy improved stable protein 

expression.  

Noteworthy, significant build-up of lactate in later stages of growth was observed, 

especially in supplemented cultures (up to 14mM). This issue has been reported by other 

authors and can be due to 1) limitations of oxygen supply experienced in shake flask cultures 

(Bédard et al., 1997; Rhiel and Murhammer, 1995) and/or (2) the high glucose concentration 

in the medium (Drugmand et al., 2005). In addition, Hi5 cells consume a great amount of 
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glucose during growth which when depleted can be “replaced” by lactate consumption thus 

explaining the decrease in lactate concentration by the end of the culture (Monteiro et al., 

2014). 

As a proof-of-concept, the scale-up process was performed from shake-flasks to 2L 

bioreactor. The high CCI used (4x106 cells/mL) for influenza VLPs production and the 

subsequent increase in cells specific O2 uptake rate after infection require high oxygen supply 

that only bioreactors can offer (Kioukia et al., 1995). Oxygen levels seem to be very 

important for product expression and its quality (Cruz and Peixoto, 1998). In addition, lactate 

concentrations above 5mM impair specific protein productivities (Drugmand et al., 2005). 

Although a rapid consumption of glucose was observed during infection (data not shown), 

this was not accompanied by an increase in lactate concentration. These results suggest that 

careful monitoring and control of oxygen supply in the bioreactor is essential to avoid build-

up of toxic compounds. That is probably why the infection process lasted longer in bioreactor 

than in small scale experiments (3 days instead of 2). Likewise, by allowing the culture to 

last longer, cells had more room for protein production before cell death occurred. These 

conditions allowed a 1.5-fold volumetric increase in HA production compared to shake 

flasks, proving that the scalability of the process could be successfully achieved. An increase 

was also seen in specific productivity, from 0,69 µg/106 cells to 1,08µg/106 cells.  

HA and M1 proteins accumulated during infection as a result of the successive viral 

replication. In addition, it is known that both proteins interact with each other and are more 

prone to be released from the cell when together (Enami, 1996; Gómez-puertas et al., 2000). 

The fact that HA is detected in the supernatant prior to infection and without expression of 

M1 can be due to changes in membrane permeability induced by influenza hemagglutinin, 

leading to leakage of contents from cells, a phenomenon reported in influenza virus infected 

cells (Blumenthal and Morris, 1999; Frolov et al., 2003). 
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4.2 Suitability of RMCE for production of complex proteins  

To further improve the flexibility of a RMCE-based platform, a double-tagged 

approach was designed to provide two loci for gene expression, hence higher copy numbers 

and accumulated gene expression, as well as to allow the production of multi-subunit 

products more easily.  However,  the cross-interaction between both pairs of target sites 

chosen was confirmed (Turan et al., 2010) making it unfeasible.  

The next step was to rationally develop a strong expresser cell line that could be pure 

concerning tagging genes/cassette due to RMCE, which was successfully accomplished, and 

robust in protein production.  The inclusion of iFlp gene aimed at eliminating the need of its 

further addition in subsequent steps, thus shortening cost in plasmid preparation and more 

unwanted DNA material integration. Despite this effort, iFlp gene expression was not 

sufficient to allow RMCE. This negative result was not expected and indicates that maybe it 

is a process dependent on the amount of enzyme provided. 

Clones were obtained by limiting dilution which is a technique that leads to a broad 

expression pattern of the selected clones. In this sense, characterization of two Sf9 clones 

was conducted to assess their potential usefulness for expression of complex proteins. Results 

revealed the absence of tagging genes and cassette in both clones, which means that RMCE 

was successful in eliminating previous tagged genes as already suggested in the literature 

(Fernandes et al., 2012). However, a more sensitive technique should be performed to 

confirm the absence of tagging cassette in the genome, such as Southern Blot. Regarding 

gene expression, a positive relation between tagging and target genes is suggested as a result 

of RMCE which may enable to predict levels of expression (Coroadinha et al., 2006; 

Fernandes et al., 2012; Qiao et al., 2009). Intensity profiles of the Sf9 population compared 

to clone #3 do not show an improvement in eGFP fluorescence intensity which lead to the 

conclusion that this was not a strong clone. The difference in levels of expression for eGFP 

and neomycin resistance gene was expected and are related to the strength of their respective 

promoters where OpIE2 can be, at least, 5-fold stronger than OpIE1 (Pfeifer et al., 1997). 

However, such a low expression of the resistance marker was not foreseen. 

For the production of influenza VLPs, the most important proteins – M1 and HA – 

were expressed under the control of the OpIE2 promoter. The relatively low abundance of 
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HA found in the supernatant can be due to the 32% of contamination with eGFP or a problem 

in M1 production. The fact that M1 identification was not possible by western blot but with 

gene expression detection leads to the speculation that the problem resides in a poor 

translation efficiency. Reports have been made on the existence of a threshold of M1 to more 

efficiently allow the release of HA from the cell (Bourmakina and García-Sastre, 2005). 

Thus, if M1 is not present in such a level to drive the release of HA, it explains the low 

amount of this protein in the supernatant. The presence of HA in the supernatant, if M1 is 

present in small amounts or not at all, can be explained by HA-membrane induced 

permeability as described for infected cells (Blumenthal and Morris, 1999; Frolov et al., 

2003). Comparison between M1 and HA gene expression revealed to be stronger for HA, a 

difference that was not expected as their expression is driven by the same promoter. Reports 

have been made on the influence of chromosomal context  and the vector construction in 

promoter strength (Nehlsen et al., 2009; Pfeifer et al., 1997). Thus, maybe the FRT settled 

between M1 and the promoter had a negative impact in gene expression and/or the 

transcriptional elements implicated in the targeted locus had different effects in both genes. 

4.3 Conclusions and future work 

In this work, two different insect cells based platforms for production of influenza 

VLPs were designed and implemented. The first one consisted in combining stable 

expression of multiple HAs in Hi5 cells, based on random integration of the GOIs, with 

baculovirus-mediated expression to produce multi-HA influenza VLPs. Bioprocess 

optimization was conducted in order to enhance HA protein expression. It was shown that 

identification of key nutrients being exhausted during cell growth and their ensuing 

supplementation to the culture medium had a positive impact on viable cell concentration 

and, most importantly, on HA production via the increase of CCI. In addition, a proof-of-

concept scale-up experiment was performed in order to assess the potential of the strategy 

herein develop for rapid delivery of substantial amounts of influenza VLPs. Successful scale-

up was attained with enhanced HA protein levels observed between 2L bioreactors and shake 

flasks experiments. As future work, a comprehensive study of Hi5 cells metabolism before 

and upon baculovirus infection will be essential to design re-feed strategies capable of further 
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extending cell growth and CCI, thus potentially inducing higher HA expression. Likewise, a 

perfusion system in bioreactor can be designed to allow continuous feeding and removing 

spent media as a way to extend culture time. In order to take advantage of RMCE-based cell 

line development, stable expression can be translated into strong expresser clones, once 

isolated, to allow expression/production predictability, bypassing the unpredictability 

associated with random integration.  

The second insect cell based platform herein developed for the production of multi-

HA influenza VLPs was based in a RMCE approach. Efforts were conducted into developing 

a double-locus system though not successfully. Also, iFlp integration in the population did 

not allow RMCE to occur in clones, thus indicating that this is a process dependent on the 

amount of enzyme provided. In addition, the negligible expression of M1 and HA proteins 

in clone #3 combined with its low enrichment in fluorescence intensity when compared to a 

population of cells suggested that clone #3 is extremely weak regarding gene expression.  A 

more robust cloning method should be used (e.g. FACS) to enable the selection of high 

expressing cells based on their fluorescence intensity. In addition, a thorough evaluation of 

Sf9 and Hi5 clones and cell populations for HA protein production should be attempted to 

discriminate the best platform.  

 

 

 



58 
 

5 References 

Ali A, Avalos RT, Ponimaskin E, Nayak DP. 2000. Influenza Virus Assembly : Effect of 

Influenza Virus Glycoproteins on the Membrane Association of M1 Protein. J. Virol. 

74:8709–8719. 

Andrew BJ, Proteau GA, Beatty LG, Sadowski PD. 1985. The FLP Recombinase of the 2um 

Circle DNA of Yeast : Interaction with Its Target Sequences. Cell 40:795–803. 

Ayres M, Howard S, Kuzio J, Lopez-Ferber M, Possee R. 1994. The complete DNA sequence 

of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605. 

Barman S, Ali A, Hui EK, Adhikary L, Nayak DP. 2001. Transport of viral proteins to the 

apical membranes and interaction of matrix protein with glycoproteins in the assembly 

of influenza viruses. Virus Res. 77:61–9. 

Barrett PN, Mundt W, Howard MK. 2009. Vero cell platform in vaccine production : moving 

towards cell culture-based viral vaccines. Expert Rev Vaccines 8:607–618. 

Bédard C, Perret S, Kamen AA. 1997. Fed-batch culture of Sf-9 cells supports 3x10^7 cells 

per ml and improves baculovirus-expressed recombinant protein yields. Biotechnol. 

Lett. 19:629–632. 

Belyaev AS, Roy P. 1993. Development of baculovirus triple and quadruple expression 

vectors : co-expression of three or four bluetongue virus proteins and the synthesis of 

bluetongue virus-like particles in insect cells. Nucleic Acids Res. 21:1219–1223. 

Bernal V, Carinhas N, Yokomizo AY, Carrondo MJT, Alves PM. 2009. Cell density effect 

in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. 

Biotechnol. Bioeng. 104:162–80. 

Bieniossek C, Imasaki T, Takagi Y, Berger I. 2012. MultiBac: expanding the research 

toolbox for multiprotein complexes. Trends Biochem. Sci. 37:49–57. 

Biotech G. 2015. ManuBacTM. http://geneva-biotech.com/product_category/insect-cell-

expression/manubac/. Accessed on 13th October, 2015. 

Blumenthal R, Morris SJ. 1999. The influenza haemagglutinin-induced fusion cascade : 

effects of target membrane permeability changes. Mol. Membr. Biol. 16:43–47. 

Bourmakina S V, García-Sastre A. 2005. The Morphology and Composition of Influenza A 

Virus Particles Are Not Affected by Low Levels of M1 and M2 Proteins in Infected 

Cells. J. Virol. 79:7926–7932. 



59 
 

Bright RA, Carter DM, Crevar CJ, Toapanta FR, Steckbeck JD, Cole KS, Kumar NM, 

Pushko P, Smith G, Tumpey TM, Ross TM. 2008. Cross-clade protective immune 

responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-

like particle. PLoS One 3:e1501. 

Bright RA, Carter DM, Daniluk S, Toapanta FR, Ahmad A, Gavrilov V, Massare M, Pushko 

P, Mytle N, Rowe T, Smith G, Ross TM. 2007. Influenza virus-like particles elicit 

broader immune responses than whole virion inactivated influenza virus or recombinant 

hemagglutinin. Vaccine 25:3871–8. 

Buchholz F, Angrand P-O, Stewart FA. 1998. Improved properties of FLP recombinase 

evolved by cycling mutagenesis. Nature 16:657–662. 

Buchholz F, Ringrose L, Angrand P, Rossi F, Stewart AF. 1996. Different thermostabilities 

of FLP and Cre recombinases : implications for applied site-specific recombination. 

Nucleic Acids Res. 24:4256–4262. 

Carinhas N, Bernal V, Monteiro F, Carrondo MJT, Oliveira R, Alves PM. 2010. Improving 

baculovirus production at high cell density through manipulation of energy metabolism. 

Metab. Eng. 12:39–52. 

Carinhas N, Bernal V, Yokomizo AY, Carrondo MJT, Oliveira R, Alves PM. 2009. 

Baculovirus production for gene therapy: the role of cell density, multiplicity of 

infection and medium exchange. Appl. Microbiol. Biotechnol. 81:1041–9. 

Caron AW, Archarnbault J, Massie B. 1990. High-Level Recombinant Protein Production in 

Bioreactors Using the Baculovirus-Insect Cell Expression System. Biotechnol. Bioeng. 

36:1133–1140. 

CDC. 2014. Types of Influenza Viruses. http://www.cdc.gov/flu/about/viruses/types.htm. 

Accessed on 13th October, 2015. 

Cesari F, Rennekampff V, Vintersten K, Vuong LG, Seibler J, Bode J, Wiebel FF, Nordheim 

A. 2004. Elk-1 knock-out mice engineered by Flp recombinase-mediated cassette 

exchange. Genesis 38:87–92. 

Chen BJ, Leser GP, Morita E, Lamb RA. 2007. Influenza virus hemagglutinin and 

neuraminidase, but not the matrix protein, are required for assembly and budding of 

plasmid-derived virus-like particles. J. Virol. 81:7111–23. 

Conferences series F. 2015. Flu-2016. http://flu.conferenceseries.com/. Accessed on 13th 

October, 2015. 



60 
 

Coroadinha AS, Schucht R, Gama-Norton L, Wirth D, Hauser H, Carrondo MJT. 2006. The 

use of recombinase mediated cassette exchange in retroviral vector producer cell lines: 

predictability and efficiency by transgene exchange. J. Biotechnol. 124:457–68. 

Corporation PS. 2015. About Flublok. http://www.flublok.com/about-flublok/. Accessed on 

13th October, 2015. 

Couceiro J, Paulson J, Baum L. 1993. Virus sialyloligosaccharides on human respiratory 

epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. 

Virus Res. 29:155–165. 

Cox MMJ. 2012. Recombinant protein vaccines produced in insect cells. Vaccine 30:1759–

66. 

Cox MMJ, Anderson KD. 2007. Production of a novel influenza vaccine using insect cells: 

protection against drifted strains. Influenza Other Respi. Viruses 1:35–40. 

Cox MMJ, Patriarca PA, Treanor J. 2008. FluBlok, a recombinant hemagglutinin influenza 

vaccine. Influenza Other Respi. Viruses 2:211–9. 

Cox M. 2008. Progress on baculovirus-derived influenza vaccines. Curr. Opin. Mol. Ther. 

10:56–61. 

Crisci E, Bárcena J, Montoya M. 2012. Virus-like particles: the new frontier of vaccines for 

animal viral infections. Vet. Immunol. Immunopathol. 148:211–25. 

Cruz PE, Peixoto CC. 1998. Optimization of the Production of Virus-Like Particles in Insect 

Cells. Biotechnol. Bioeng. 60:408–418. 

Davis TR, Shuler ML, Granados RR, Wood HA. 1993. Comparison of oligosaccharide 

processing among various insect cell lines expressing a secreted glycoprotein. Vitr. Cell. 

Dev. Biol. - Anim. 29:842–846. 

Drugmand JC, Schneider YJ, Agathos SN. 2005. Environmental effetcs of lactate on High- 

FiveTM insect cell metabolism. In: . Anim. Cell Technol. meets Genomics, pp. 91–94. 

Ehrlich HJ, Müller M, Oh HML, Tambyah PA, Joukhadar C, Montomoli E, Fisher D, 

Berezuk G, Fritsch S, Löw-Baselli A, Vartian N, Bobrovsky R, Pavlova BG, Pöllabauer 

EM, Kistner O, Barrett PN. 2008. A clinical trial of a whole-virus H5N1 vaccine derived 

from cell culture. N. Engl. J. Med. 358:2573–84. 

Enami K. 1996. Influenza Virus Hemagglutinin and Neuraminidase Glycoproteins Stimulate 

the Membrane Association of the Matrix Protein. J. Virol. 70:6653–6657. 



61 
 

Fernandes F, Dias MM, Vidigal J, Sousa MFQ, Patrone M, Teixeira AP, Alves PM. 2014. 

Production of rotavirus core-like particles in Sf9 cells using recombinase-mediated 

cassette exchange. J. Biotechnol. 171:34–8. 

Fernandes F, Vidigal J, Dias MM, Prather KLJ, Coroadinha AS, Teixeira AP, Alves PM. 

2012. Flipase-mediated cassette exchange in Sf9 insect cells for stable gene expression. 

Biotechnol. Bioeng. 109:2836–44. 

Fernandes P, Almeida AI, Kremer EJ, Alves PM, Coroadinha AS. 2015. Canine helper-

dependent vectors production: implications of Cre activity and co-infection on 

adenovirus propagation. Sci. Rep. 5:9135. 

Frolov VA, Dunina-Barkovskaya AY, Samsonov A V, Zimmerberg J. 2003. Membrane 

permeability changes at early stages of influenza hemagglutinin-mediated fusion. 

Biophys. J. 85:1725–33. 

Galarza JM, Latham T, Cupo A. 2005. Protection against a Lethal Influenza Virus Challenge. 

Viral Immunol. 18:244–251. 

Gama-Norton L, Herrmann S, Schucht R, Coroadinha A, Löw R, Alves PM, Bartholomae 

CC, Schmidt M, Baum C, Schambach A, Hauser H, Wirth D. 2010. Retroviral vector 

performance in defined chromosomal Loci of modular packaging cell lines. Hum. Gene 

Ther. 21:979–91. 

Gerbal M, Fournier P, Barry P, Mariller M, Odier F, Devauchelle G, Duonor-cerutti M. 2000. 

Adaptation of an insect cell line of Spodoptera frugiperda to grow at 37oC : 

Characterization of an endodiploid clone. In Vitro Cell. Dev. Biol. Anim. 36:117–124. 

Gómez-puertas P, Albo C, Pe E. 2000. Influenza Virus Matrix Protein Is the Major Driving 

Force in Virus Budding. J. Virol. 74:11538–11547. 

Granados RR, Guoxun L, Derksen ACG, Kevin AM. 1994. A New Insect Cell Line from 

Trichoplusia ni ( BTI-Tn-5B1-4 ) Susceptible to Trichoplusia ni Single Enveloped 

Nuclear Polyhedrosis Virus. J. Invertebr. Pathol. 64:260–266. 

Harrison RL, Jarvis DL. 2007. Transforming Lepidopteran Insect Cells for Continuous 

Recombinant Protein Expression. Baculovirus Insect Cell Expr. Protoc. 338:299–315. 

Hink WF. 1970. Established Insect Cell Line from the Cabbage Looper, Trichoplusia ni. 

Nature 226:466–467. 

Ikonomou L, Schneider Y-J, Agathos SN. 2003. Insect cell culture for industrial production 

of recombinant proteins. Appl. Microbiol. Biotechnol. 62:1–20. 



62 
 

Kato T, Murata T, Usui T, Park EY. 2005. Improvement of the production of GFPuv-beta1,3-

N-acetylglucosaminyltransferase 2 fusion protein using a molecular chaperone-assisted 

insect-cell-based expression system. Biotechnol. Bioeng. 89:424–33. 

Katz JM, Webster RG. 1989. Efficacy of Inactivated Influenza A Virus ( H3N2 ) Vaccines 

Grown in Mammalian Cells or Embryonated Eggs. J. Infect. Dis. 160:191–198. 

Kim MS, Lee G. 2008. Use of Flp-mediated cassette exchange in the development of a CHO 

cell line stably producing erythropoietin. J. Microbiol. Biotechnol. 18:1342–1351. 

Kioukia N, Nienow AW, Emery AN. 1996. Influence of Agitation and Sparging on the 

Growth Rate and Infection of Insect Cells in Bioreactors and a Comparison with 

Hybridoma Culture. Biotechnol. Prog. 7938:779–785. 

Kistner O, Howard MK, Spruth M, Wodal W, Brühl P, Gerencer M, Crowe B a, Savidis-

Dacho H, Livey I, Reiter M, Mayerhofer I, Tauer C, Grillberger L, Mundt W, Falkner 

FG, Barrett PN. 2007. Cell culture (Vero) derived whole virus (H5N1) vaccine based 

on wild-type virus strain induces cross-protective immune responses. Vaccine 25:6028–

36. 

Klausberger M, Wilde M, Palmberger D, Hai R, Albrecht R a, Margine I, Hirsh A, García-

Sastre A, Grabherr R, Krammer F. 2014. One-shot vaccination with an insect cell-

derived low-dose influenza A H7 virus-like particle preparation protects mice against 

H7N9 challenge. Vaccine 32:355–62. 

Kondo S, Takata Y, Nakano M, Saito I, Kanegae Y. 2009. Activities of various FLP 

recombinases expressed by adenovirus vectors in mammalian cells. J. Mol. Biol. 

390:221–30. 

Koresawa Y, Miyagawa S, Ikawa, Masahito Matsunami, Katsuyoshi Yamada M, Shirakura, 

Ryota Okabeand M. 2000. Synthesis of a New Cre Recombinase Usage for Mammalian 

Based on Optimal Codon. J Biochem 127:367–372. 

Krammer F, Grabherr R. 2010. Alternative influenza vaccines made by insect cells. Trends 

Mol. Med. 16:313–20. 

Krammer F, Schinko T, Palmberger D, Tauer C, Messner P, Grabherr R. 2010. Trichoplusia 

ni cells (High Five) are highly efficient for the production of influenza A virus-like 

particles: a comparison of two insect cell lines as production platforms for influenza 

vaccines. Mol. Biotechnol. 45:226–34. 

Kushnir N, Streatfield SJ, Yusibov V. 2012. Virus-like particles as a highly efficient vaccine 

platform: diversity of targets and production systems and advances in clinical 

development. Vaccine 31:58–83. 



63 
 

Latham T, Galarza JM. 2001. Formation of Wild-Type and Chimeric Influenza Virus-Like 

Particles following Simultaneous Expression of Only Four Structural Proteins. J. Virol. 

75:6154–6165. 

Lowen AC, Mubareka S, Steel J, Palese P. 2007. Influenza virus transmission is dependent 

on relative humidity and temperature. PLoS Pathog. 3:1470–6. 

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. 2013. 

RNA-Guided Human Genome Engineering via Cas9. Science 339:823–6. 

Mani M, Smith J, Kandavelou K, Berg JM, Chandrasegaran S. 2005. Binding of two zinc 

finger nuclease monomers to two specific sites is required for effective double-strand 

DNA cleavage. Biochem. Biophys. Res. Commun. 334:1191–7. 

Maranga L, Cunha A, Clemente J, Cruz P, Carrondo MJT. 2004. Scale-up of virus-like 

particles production: effects of sparging, agitation and bioreactor scale on cell growth, 

infection kinetics and productivity. J. Biotechnol. 107:55–64. 

Marchal I, Jarvis DL. 2001. Glycoproteins from Insect Cells : Sialylated or Not ? Biol. Chem. 

382:151–159. 

Marek M, van Oers MM, Devaraj FF, Vlak JM, Merten O-W. 2011. Engineering of 

baculovirus vectors for the manufacture of virion-free biopharmaceuticals. Biotechnol. 

Bioeng. 108:1056–67. 

Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk H. 2004. Human and avian 

influenza viruses target different cell types in cultures of human airway epithelium. Proc 

Natl Acad Sci U S A 101:4620–4624. 

Mcleod M, Craft S, Broach JR. 1986. Identification of the Crossover Site during FLP-

Mediated Recombination in the Saccharomyces cerevisiae Plasmid 2um Circle. Mol. 

Cell. Biol. 6:3357–3367. 

Meguro H, Bryant JD, Torrence AE, Wright PF. 1979. Canine Kidney Cell Line for Isolation 

of Respiratory Viruses. J. Clin. Microbiol. 9:175–179. 

Mena J, Ramírez O, Palomares L. 2003. Titration of non-occluded baculovirus using a cell 

viability assay. Biotechniques 34:260–264. 

Mendonça RZ, Palomares LA, Ramı OT. 1999. An insight into insect cell metabolism 

through selective nutrient manipulation. J. Biotechnol. 72:61–75. 



64 
 

Merrihew R V, Clay WC, Condreay JP, Witherspoon SM, Dallas WS, Kost TA. 2001. 

Chromosomal Integration of Transduced Recombinant Baculovirus DNA in 

Mammalian Cells. J. Virol. 75:903–909. 

Merrington CL, Bailey MJ, Possee RD. 1997. Manipulation of baculovirus vectors. Mol. 

Biotechnol. 8:283–297. 

Miller JC, Holmes MC, Wang J, Guschin DY, Lee Y-L, Rupniewski I, Beausejour CM, 

Waite AJ, Wang NS, Kim K a, Gregory PD, Pabo CO, Rebar EJ. 2007. An improved 

zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 

25:778–85. 

Monie A, Hung C-F, Roden R, Wu T-C. 2008. Cervarix: a vaccine for the prevention of HPV 

16, 18-associated cervical cancer. Biologics 2:97–105. 

Montagnon B. 1989. Polio and rabies vaccines produced in continuous cell lines: a reality 

for Vero cell line. Dev. Biol. Stand. 70:27–47. 

Monteiro F, Bernal V, Saelens X, Lozano AB, Bernal C, Sevilla A, Carrondo MJT, Alves 

PM. 2014. Metabolic profiling of insect cell lines: Unveiling cell line determinants 

behind system’s productivity. Biotechnol. Bioeng. 111:816–28. 

Monteiro F, Carinhas N, Carrondo MJT, Bernal V, Alves PM. 2012. Toward system-level 

understanding of baculovirus-host cell interactions: from molecular fundamental studies 

to large-scale proteomics approaches. Front. Microbiol. 3:391. 

Nayak DP, Balogun R a, Yamada H, Zhou ZH, Barman S. 2009. Influenza virus 

morphogenesis and budding. Virus Res. 143:147–61. 

Nayak DP, Hui EK-W, Barman S. 2004. Assembly and budding of influenza virus. Virus 

Res. 106:147–65. 

Nehlsen K, da Gama-Norton L, Schucht R, Hauser H, Wirth D. 2011. Towards rational 

engineering of cells: Recombinant gene expression in defined chromosomal loci. BMC 

Proc. 5:O6. 

Nehlsen K, Schucht R, da Gama-Norton L, Krömer W, Baer A, Cayli A, Hauser H, Wirth D. 

2009. Recombinant protein expression by targeting pre-selected chromosomal loci. 

BMC Biotechnol. 9:100. 

Neumann G, Hughes MT, Kawaoka Y. 2000. Influenza A virus NS2 protein mediates vRNP 

nuclear export through NES-independent interaction with hCRM1. EMBO J. 19:6751–

6758. 



65 
 

Nguyen B, Jarnagin K, Williams S, Barnett J. 1993. Fed-batch culture of insect cells : a 

method to increase the yield of recombinant human nerve growth factor (rhNGF) in the 

baculovirus expression system. J. Biotechnol. 31:205–217. 

Novartis. 2015. Flucelvax, About Flucelvax. http://www.flu.novartis.com/flucelvax/about-

flucelvax.html. Accessed on 13th October, 2015. 

Nunes-düby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A. 1998. Similarities and 

differences among 105 members of the Int family of site-specific recombinases. Nucleic 

Acids Res. 26:391–406. 

O’Gorman S, Fox D, Wahl G. 1991. Recombinase-mediated gene activation and site-specific 

integration in mammalian cells. Science 251:1351–1355. 

Oumard A, Qiao J, Jostock T, Li J, Bode J. 2006. Recommended Method for Chromosome 

Exploitation: RMCE-based Cassette-exchange Systems in Animal Cell Biotechnology. 

Cytotechnology 50:93–108. 

Palmberger D, Klausberger M, Berger I, Grabherr R. 2015. MultiBac turns sweet. 

Bioengineered 4:78–83. 

Palmberger D, Wilson IBH, Berger I, Grabherr R, Rendic D. 2012. SweetBac: a new 

approach for the production of mammalianised glycoproteins in insect cells. PLoS One 

7:e34226. 

Passarelli AL, Guarino LA. 2007. Baculovirus late and very late gene regulation. In: . Curr. 

Drug Targets 8th ed. Bentham Science Publishers, pp. 1103–1115. 

Pau MG, Ophorst C, Koldijk MH, Schouten G, Mehtali M, Uytdehaag F. 2001. The human 

cell line PER . C6 provides a new manufacturing system for the production of influenza 

vaccines. Vaccine 19:2716–2721. 

Pfeifer TA, Hegedus DD, Grigliatti TA, Theilmann DA. 1997. Baculovirus immediate-early 

promoter-mediated expression of the Zeocin resistance gene for use as a dominant 

selectable marker in Dipteran and Lepidopteran insect cell lines. Gene 188:183–190. 

Pijlman GP, Roode EC, Fan X, Roberts LO, Belsham GJ, Vlak JM, van Oers MM. 2006. 

Stabilized baculovirus vector expressing a heterologous gene and GP64 from a single 

bicistronic transcript. J. Biotechnol. 123:13–21. 

Pushko P, Pearce MB, Ahmad A, Tretyakova I, Smith G, Belser J a, Tumpey TM. 2011. 

Influenza virus-like particle can accommodate multiple subtypes of hemagglutinin and 

protect from multiple influenza types and subtypes. Vaccine 29:5911–8. 



66 
 

Pushko P, Tumpey TM, Bu F, Knell J, Robinson R, Smith G. 2005. Influenza virus-like 

particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce 

protective immune responses in BALB/c mice. Vaccine 23:5751–9. 

Qiao J, Oumard A, Wegloehner W, Bode J. 2009. Novel tag-and-exchange (RMCE) 

strategies generate master cell clones with predictable and stable transgene expression 

properties. J. Mol. Biol. 390:579–94. 

Quan FS, Steinhauer D, Huang C, Ross TM, Compans RW, Kang S-M. 2008. A bivalent 

influenza VLP vaccine confers complete inhibition of virus replication in lungs. Vaccine 

26:3352–61. 

Quan F-S, Huang C, Compans RW, Kang S-M. 2007. Virus-like particle vaccine induces 

protective immunity against homologous and heterologous strains of influenza virus. J. 

Virol. 81:3514–24. 

Raymond CS, Soriano P. 2007. High-efficiency FLP and PhiC31 site-specific recombination 

in mammalian cells. PLoS One 2:e162. 

Rhiel M, Mitchell-Logean CM, Murhammer DW. 1997. Comparison of Trichoplusia ni BTI-

Tn-5B1-4 (high five) and Spodoptera frugiperda Sf-9 insect cell line metabolism in 

suspension cultures. Biotechnol. Bioeng. 55:909–20. 

Rhiel M, Murhammer DW. 1995. The Effect of Oscillating Dissolved Oxygen 

Concentrations on the Metabolism of a Spodoptera frugiperda IPLB-Sf21 -AE Clonal 

Isolate. Biotechnol. Bioeng. 47:640–650. 

Roldão A, Oliveira R, Carrondo MJT, Alves PM. 2009. Error assessment in recombinant 

baculovirus titration: Evaluation of different methods. J. Virol. Methods 159:69–80. 

Ronda C, Pedersen LE, Hansen HG, Kallehauge TB, Betenbaugh MJ, Nielsen AT, 

Kildegaard HF. 2014. Accelerating genome editing in CHO cells using CRISPR Cas9 

and CRISPy, a web-based target finding tool. Biotechnol. Bioeng. 111:1604–16. 

Rose T, Knabe A, Berthold R, Höwing K, Furthmann A, Winkler K, Sandig V. 2013. A 

robust RMCE system based on a CHO-DG44 platform enables efficient evaluation of 

complex biological drug candidates. BMC Proc. 7:P66. 

Rueda P, Fominaya J, Langeveld JP., Bruschke C, Vela C, Casal JI. 2000. Effect of different 

baculovirus inactivation procedures on the integrity and immunogenicity of porcine 

parvovirus-like particles. Vaccine 19:726–734. 

Sauer B, Henderson N. 1988. Site-specific DNA recombination in mammalian cells by the 

Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. U. S. A. 85:5166–5170. 



67 
 

Schiedner G, Hertel S, Bialek C, Kewes H, Waschütza G, Volpers C. 2008. Efficient and 

reproducible generation of high-expressing, stable human cell lines without need for 

antibiotic selection. BMC Biotechnol. 8:13. 

Schlake T, Bode J. 1994. Use of mutated FLP recognition target (FRT) sites for the exchange 

of expression cassettes at defined chromosomal loci. Biochemistry 33:12746–51. 

Schmidt EE, Taylor DS, Prigge JR, Barnett S, Capecchi MR. 2000. Illegitimate Cre-

dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl. 

Acad. Sci. 97:13702–7. 

Schucht R, Coroadinha AS, Zanta-Boussif MA, Verhoeyen E, Carrondo MJT, Hauser H, 

Wirth D. 2006. A New Generation of Retroviral Producer Cells: Predictable and Stable 

Virus Production by Flp-Mediated Site-Specific Integration of Retroviral Vectors. Mol. 

Ther. 14:285–292. 

Seibler J, Schübeler D, Fiering S, Groudine M, Bode J. 1998. DNA Cassette Exchange in ES 

Cells Mediated by FLP Recombinase: An Efficient Strategy for Repeated Modification 

of Tagged Loci by Marker-Free Constructs. Biochemistry 37:6229–6234. 

Siegal ML, Hartl DL. 1998. An experimental test for lineage-specific position effects on 

alcohol dehydrogenase (Adh) genes in Drosophila. Proc. Natl. Acad. Sci. 95:15513–

15518. 

Smith GE, Summers MD, Fraser MJ. 1983a. Production of human beta interferon in insect 

cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3:2156–2165. 

Smith GE, Vlak JM, Summers MAXD. 1983b. Physical Analysis of Autographa californica 

Nuclear Polyhedrosis Virus Transcripts for Polyhedrin and 10 , 000- Molecular-Weight 

Protein. J. Virol. 45:215–225. 

Smith MCM, Thorpe HM. 2002. Diversity in the serine recombinases. Mol. Microbiol. 

44:299–307. 

Steinhauer DA. 1999. Role of Hemagglutinin Cleavage for the Pathogenicity of Influenza 

Virus. Virology 258:1–20. 

Steinhauer D a., Skehel JJ. 2002. Genetics of Influenza viruses. Annu. Rev. Genet. 36:305–

332. 

Sternberg N, Sauer B, Hoess R, Abremski K. 1986. Bacteriophage P1 cre gene and its 

regulatory region. J. Mol. Biol. 187:197–212. 



68 
 

Tobita K, Sugiura A, Enomoto C, Furuyama M. 1975. Plaque assay and primary isolation of 

influenza a viruses in an established line of canine kidney cells (MDCK) in the presence 

of trypsin. Med. Microbiol. Immunol. 162:9–14. 

Turan S, Kuehle J, Schambach A, Baum C, Bode J. 2010. Multiplexing RMCE: versatile 

extensions of the Flp-recombinase-mediated cassette-exchange technology. J. Mol. 

Biol. 402:52–69. 

Turan S, Zehe C, Kuehle J, Qiao J, Bode J. 2013. Recombinase-mediated cassette exchange 

(RMCE) - a rapidly-expanding toolbox for targeted genomic modifications. Gene 

515:1–27. 

Vanamee ES, Santagata S, Aggarwal a K. 2001. FokI requires two specific DNA sites for 

cleavage. J. Mol. Biol. 309:69–78. 

Vaughn JL, Goodwin RH, Tompkins GJ, McCawley P. 1977. The establishment of two cell 

lines from the insect spodoptera frugiperda (lepidoptera; noctuidae). In Vitro 13:213–

217. 

Vicente T, Peixoto C, Carrondo MJT, Alves PM. 2009. Purification of recombinant 

baculoviruses for gene therapy using membrane processes. Gene Ther. 16:766–75. 

Vidigal J, Dias MM, Fernandes F, Patrone M, Bispo C, Andrade C, Gardner R, Carrondo 

MJT, Alves PM, Teixeira AP. 2013. A cell sorting protocol for selecting high-producing 

sub-populations of Sf9 and High FiveTM cells. J. Biotechnol. 168:436–9. 

Volkman LE. 1997. Nucleopolyhedrovirus interactions with their insect hosts. Adv. Virus 

Res. 48:313–348. 

Wang MY, Kwong S, Bentley WE. 1993. Effects of oxygen/glucose/glutamine feeding on 

insect cell baculovirus protein expression: a study on epoxide hydrolase production. 

Biotechnol. Prog. 9:355–61. 

Wang Y, Berley LW, Murhammer DW. 2001. Evidence of oxidative stress following the 

viral infection. Free Radic. Biol. Med. 31:1448–1455. 

Whiteson KL, Chen Y, Chopra N, Raymond AC, Rice P a. 2007. Identification of a potential 

general acid/base in the reversible phosphoryl transfer reactions catalyzed by tyrosine 

recombinases: Flp H305. Chem. Biol. 14:121–9. 

Wiberg FC, Rasmussen SK, Frandsen TP, Rasmussen LK, Tengbjerg K, Coljee VW, Sharon 

J, Yang C, Bregenholt S, Nielsen LS, Haurum JS, Tolstrup AB. 2006. Production of 

target-specific recombinant human polyclonal antibodies in mammalian cells. 

Biotechnol. Bioeng. 94:396–405. 



69 
 

Wilke S, Groebe L, Maffenbeier V, Jäger V, Gossen M, Josewski J, Duda A, Polle L, Owens 

RJ, Wirth D, Heinz DW, van den Heuvel J, Büssow K. 2011. Streamlining 

homogeneous glycoprotein production for biophysical and structural applications by 

targeted cell line development. PLoS One 6:e27829. 

Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H. 2007. Road to 

precision: recombinase-based targeting technologies for genome engineering. Curr. 

Opin. Biotechnol. 18:411–9. 

Yang J, Gecik P, Collins A, Czarnecki S, Hsu H, Lasdun A, Sundaram R, Muthukumar G, 

Silberklangs M. 1996. Rational scale-up of a baculovirus-insect cell batch process based 

on medium nutritional depth. Biotechnol. Bioeng. 52:696–706. 

Yassine HM, Boyington JC, McTamney PM, Wei C-J, Kanekiyo M, Kong W-P, Gallagher 

JR, Wang L, Zhang Y, Joyce MG, Lingwood D, Moin SM, Andersen H, Okuno Y, Rao 

SS, Harris AK, Kwong PD, Mascola JR, Nabel GJ, Graham BS. 2015. Flipase-mediated 

cassette exchange in Sf9 insect cells for stable gene expression. Nat. Med. 21:1065–70. 

Zeiger RS. 2002. Current issues with influenza vaccination in egg allergy. J. Allergy Clin. 

Immunol. 110:834–840. 



70 

 

Appendix A 

A.1 Table of primers used in the construction of vectors needed in this work. 

Amplified 

gene(s) 
Fw primer Rv primer 

Receiving 

vector 
Final vector 

HA1 CGAATTTAAAGCTTGAAACTCGTCAAAGCCACCATGA GTGGATCCGAGCTCGGACGCCAGAAAGGGGATTAGATAC pIZT/V5-His pIZT/HA1 

HA2 AGCACAGTGGCGGCCAAACTCGTCAAAGCCACCATGA TAGACTCGAGCGGCCGACGCCAGAAAGGGGATTAGATAC pIZT/V5-His pIZT/HA2 

OpIE2 and HA2 TCGATGCTCACTCAAGATCATGATGATAAACAATGTATGG ACATGTTCTTTCCTGCCTGATTCTGTGGATAACCGTATTA pIZT/HA1 pIZT/HA1,2 

HA3 GCTTGGTACCGAGCTCAAACTCGTCAAAGCCACCATG GGACTAGTGGATCCGTGATCCTTAGACGCCAGAAAGG pIZT/V5-His pIZT/HA3 

OpIE2 and HA2 TCAAGCGCGTGGGATGATCATGATGATAAACAATGTATGG TTTGAGTGAGCATCGCCTGATTCTGTGGATAACCGTATTA pIZT/HA3 pIZT/HA2,3 

iCherry + 

hygromycin 
CGGCCGCCATGGTTAGCTTCTACCATGGTGTCCAA TTGCGAATTCGCTAGCATGAAGAAACCTGAACTGAC pTagg pTaggF13/F14 

eGFP + neomycin TCCGAAGTTCCTAGCCGATTTAGGTGACACTATAGAACTC TTGCGAATTCGCTAGTGGATGATTGAACAAGATGG 
Promoterless 

pTaggF13/F14 
pTargetF13/F14 

OpIE2 + HA TCAAGCGCGTGGGATGGGGCATGCGGATCATGATG GTATGGGCTAGCTCACTGGTTCTTTCCGCCTCAGAAG peGFP/Hygro 
pOpIE2 

M1/HA+eGFP 

M1 TAGGAACTTCGGATCGTTACAGGGGTCAATTCAGAGG GCTAGCTTTGCGGCCATGAGCGGAAATTGAGGAGAAGC 
pOpIE2 

M1/HA+eGFP 
pOpIE2 M1/HA 
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A.2 Primers used for cDNA detection. 

Amplified cDNA Fw primer Rv primer Fragment size (bp) 

iCherry CCCCCCAGTTCATGTACGGTTC AGGGGAAGTTGGTACCACGCAG 206 

Hygromycin CTGCAGTGATTCTGCCATTGTCTGT GATTTGGTCCTTTTGGTCCCCA 245 

eGFP CCCTCGTGACCACCCTGACCTA GTTCTTCTGCTTGTCGGCCATG 301 

Neomycin CCTTGAGCCTGGCGAACAGTTC ACTGGCTGCTATTGGGCGAAGT 257 

Flippase GACATCGTGTCCCGTCTGCA CTCGGAGTTGCGCAGGAACT 408 

M1 AGACCAATCCTGTCACCTCTGACT TCGATCCAGCCATTTGCTCCAT 442 

HA CCAACCACACCGTAACCGGAGT GGTGTTTGACACTTCGCATCAC 472 

18S AGGGTGTTGGACGCAGATAC CTTCTGCCTGTTGAGGAACC 163 

A.3 Primers used for cDNA detection. Primers used for detection of tagging and target cassettes. 

Annealing site Primer 

OpIE2 promoter Fw: GCCGCGCGTTATCTCATGCGC 

OpIE1 promoter Rv: GCCGTTGGTGGCGTGAGGCATGTAA 

 


