

Guilherme Pinheiro Pereira

Licenciado em Ciências da Engenharia Física

Programa de aquisição para um espetrómetro de fotoeletrões de ultravioleta

Dissertação para obtenção do Grau de Mestre em

Engenharia Física

Orientador:	António Alberto Dias, Professor Auxiliar,
	Faculdade de Ciências e Tecnologia da Universidade
	Nova de Lisboa
Co-orientador:	José Luís Ferreira, Professor Auxiliar,
	Faculdade de Ciências e Tecnologia da Universidade
	Nova de Lisboa

Júri

Presidente: Doutora Maria Isabel Simões Catarino Arguente: Doutor Júlio Paulo dos Santos Duarte Vieira Henriques Vogal: Doutor António Alberto Dias

13 de Outubro, 2016

Programa de aquisição para um espetrómetro de fotoeletrões de ultravioleta

Copyright © Guilherme Pinheiro Pereira, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf) La EX, com base no template "unlthesis" [1] desenvolvido no Dep. Informática da FCT-NOVA [2]. [1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

Aos meus pais, aos meus avós e à Mariana

"We are Groot" - Groot

AGRADECIMENTOS

Em primeiro lugar gostava de agradecer ao Professor António Dias por todo o apoio, perseverança e paciência que disponibilizou durante o desenvolvimento deste projeto. Gostava ainda de lhe agradecer por todos estes anos que, enquanto meu mentor, me acompanhou no LIBPhys.

Ao Professor José Luís Ferreira agradeço a sua ajuda incondicional e as dicas dadas durante o desenvolvimento do programa de aquisição. Ao senhor Mesquita deixo a minha gratidão pelos ensinamentos dados relativamente aos trabalhos de brazagem. Deixo também um agradecimento especial à Professora Maria Luísa Carvalho, não só por se demonstrar sempre disponível a ajudar, mas também por ser o principal elemento que impulsionou o LIBPhys na FCT-UNL. Agradeço também aos membros do VICARTE que contribuíram para o desenvolvimento do sistema de introdução de amostras desenvolvido nesta tese. Ao Pedro Silva, meu colega e amigo, deixo um grande agradecimento, pois sem a sua preciosa ajuda, não seria possível realizar as tarefas de manutenção que tornaram o espetrómetro operacional. Ao João Lourenço, uma fonte inesgotável de conhecimento, obrigado por todas as conversas interessantes que proporcionou. Obrigado ao Henrique Pires, por me ter aberto as portas para o mundo da Física.

Aos meus "camaradas", António Barroso e Catarina Fonseca: obrigado por todas as aventuras e desventuras, que ao longo de 5 anos me acompanharam e que serão para sempre inesquecíveis, pois sem elas não seria a pessoa que hoje sou.

Ao Gonçalo Henriques, Rafael Pereira e António Bernardino, obrigado pelos anos de amizade e convivência que contribuíram para uma vida mais rica. À minha irmã, Beatriz Pereira, obrigado por todos os momentos de desabafos e de apoio.

Agradeço também aos meus pais e aos meus avós, por todo o apoio dado, e que com a sua presença contribuíram para a minha formação, educação e ética enquanto ser humano.

Obrigado à Mariana, que sempre me apoiou nos melhores e piores momentos que, quando me senti mais perdido me conseguiu orientar e fazer retomar o meu caminho.

Obrigado ao Departamento de Física da Faculdade de Ciências e Tecnologia da Universidade NOVA de Lisboa pela formação enquanto estudante de Engenharia Física. Um agradecimento ao LIBPhys, que durante estes anos todos me acolheu e que financiou este projeto.

Resumo

Este projeto tem como objetivo o desenvolvimento de um programa de aquisição em LabVIEW para o espetrómetro de fotoeletrões de ultravioleta existente no Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics - Laboratório de Instrumentação, Engenharia Biomédica e Física de Radiação (LIBPhys). O espetrómetro possui uma fonte de radiação capaz de emitir fotões a partir do HeI e com a compra de uma nova fonte de radiação capaz de emitir radiação do HeI ou do HeII, surgiu a necessidade do desenvolvimento de um novo programa de aquisição.

O programa, para adquirir um espetro, tem de efetuar um varrimento em tensões elétricas nos elétrodos hemisféricos de um analisador hemisférico, de forma a selecionar a energia cinética de fotoeletrões gerados através da ionização dos átomos ou moléculas de um gás. Em simultâneo, o programa tem de contar o número de fotoeletrões que, para cada energia cinética selecionada, chegam ao detetor. A eletrónica responsável pelo processamento do sinal proveniente do detetor gera um sinal TTL, onde cada impulso representa a chegada de um eletrão ao detetor. Para testar o programa, é simulado um sinal usando um gerador de funções no modo TTL com uma amplitude de 5 V. A alteração da frequência do sinal simulado representa a chegada de mais ou menos eletrões. É também utilizado um osciloscópio para visualizar o sinal gerado.

O programa possui funcionalidades adicionais, tais como, a possibilidade de efetuar a aquisição com uma energia fixa, selecionada pelo utilizador, de forma a ser possível visualizar, em tempo real, a alteração do número de contagens com a alteração de parâmetros operacionais do espetrómetro. Também é possível efetuar varrimentos consecutivos, sem intervenção do utilizador, com a acumulação do sinal registado.

Palavras-chave: Espectroscopia de fotoeletrões de ultravioleta, UPS, LabVIEW, Programa de aquisição.

Abstract

The project has as goal the development of an acquisition program in LabVIEW to the ultraviolet photoelectron spectrometer of the LIBPhys (Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics). The spectrometer has a radiation source capable of emitting photons from the HeI, and with the purchased of a new radiation source, capable of emitting radiation from the HeI or from the HeII the need to develop a new acquisition program arises.

The program, to acquire a spectrum, has to make a sweep in electric voltage on the plates of a hemispherical analyser, in order to select the kinetic energy of the photoelectrons ejected after the ionisation of atoms or molecules. At the same time, the program counts the number of photoelectrons that, for each selected kinetic energy, arrives to the detector. The electronic system, responsible for the signal processing of the detector, generates a TTL signal, where each impulse represents the arrival of a photoelectron to the detector. In order to test the program, the signal is simulated with a wave function generator in the TTL mode with an amplitude of 5 V. The frequency of the signal represents the arrival of more or less photoelectrons. An oscilloscope is also used visualize the signal.

The program will have additional functionalities, such has, the possibility to acquire the counts with a fix energy, selected by the user. This allows to see, in real time, how the changes of the operational parameters of the spectrometer alters the number of counts. It is also possible to perform consecutive sweep, without the intervention of the user, with the accumulation of the signal.

Keywords: Ultraviolet Photoelectron Spectroscopy, UPS, LabVIEW, Acquisition Program.

Índice

Li	sta do	e Figura	as	xv
Li	Lista de Tabelas xvii			
Gl	lossái	rio		xix
Si	glas			xxi
1	Intr	odução		1
	1.1	Objeti	vos	2
2	Esp	etrosco	pia de fotoeletrões de ultravioleta e instrumentação do espetró-	
	met	ro		3
	2.1	Espect	troscopia de fotoeletrões de ultravioleta	4
		2.1.1	Princípio de Franck-Condon	5
		2.1.2	Teorema de Koopmans	6
	2.2	Espetr	rómetro de fotoeletrões de ultravioleta	7
		2.2.1	Fonte de radiação	7
		2.2.2	Câmara de ionização	8
		2.2.3	Câmara do analisador	10
		2.2.4	Sistema de deteção de fotoeletrões	11
		2.2.5	Sistema de blindagem do campo magnético	12
		2.2.6	Sistema de vácuo	12
	2.3	Manu	tenção do espetrómetro	13
3 Sistema de aquisição de dados e control			aquisição de dados e controlo	15
	3.1	Funcio	onamento geral	15
		3.1.1	Aquisição de espetros	18
		3.1.2	Modo <i>Tune</i>	20
		3.1.3	Aquisição acumulada de espetros	22
		3.1.4	Função FWHM	22
	3.2	Funcio	onalidades adicionais	23
		3.2.1	Função Hold Mouse	23
		3.2.2	Registar e abrir espetros	24

		3.2.3	Indicadores e avisos	25
		3.2.4	Parametrização operacional da placa de aquisição	26
		3.2.5	Eficiência do programa	27
4	Resu	ıltados	e discussão	29
	4.1	Monta	gem experimental	30
	4.2	Espetr	os obtidos	31
		4.2.1	Análise das bandas de metanol	32
5	Con	clusões	e perspetivas futuras	35
	5.1	Conclu	1sões	35
	5.2	Perspe	tivas futuras	36
		5.2.1	Montagem proposta	37
Bil	bliog	rafia		39
A	Cust	o do pr	ograma de aquisição de dados e controlo	41
B	3 Resumo do poster 4			43
Ι	Especificações de NI PCI-6230 4			45
II	I Espetros 5			59

Lista de Figuras

2.1	Representação de alguns efeitos que podem ocorrer quando um fotão interage			
	com um átomo.	4		
2.2	Curvas de potencial de várias orbitais de uma molécula M	6		
2.3	Esquema do espetrómetro de fotoeletrões com os principais constituintes	7		
2.4	Esquema da fonte de radiação. A - entrada de hélio e cátodo; B - elétrodo; C -			
	ânodo, região onde se forma o plasma, em frente ao capilar de quartzo.[2]	8		
2.5	Representação da célula de reação presente na câmara de ionização. A amostra			
	é introduzida pelo zona superior da montagem.[2]	9		
2.6	Analisador hemisférico onde os fotoeletrões são analisados em energia. À es-			
	querda está presente a célula de reação e à direita a câmara do analisador. [1]			
		10		
2.7	Imagem do canaltrão utilizado.	11		
2.8	Sinal TTL produzido pelo sistema de eletrónica do detetor.	12		
2.9	Espetros obtidos após a manutenção do espetrómetro, antes (a) e depois (b) da			
	otimização	14		
3.1	Esquema de montagem da placa de aquisição com o conversor digital-analógico.	16		
3.2	Caixa de proteção do conversor digital-analógico e os pinos de conexão utili-			
	zados	16		
3.3	Funções adicionais implementadas.	17		
3.4	Fluxograma que representa a aquisição normal de espetros	18		
3.5	Gráfico que representa o tempo de aquisição de um espetro e o passo em			
	energia em função de vários passos de decremento, para o passo em energia e			
	o <i>TimeStep</i> considerados no texto	20		
3.6	Interface gráfica com as opções de utilização do eixo das abcissas assinaladas.	21		
3.7	Interface gráfica com as opções de utilização do tipo de radiação de ionização			
	assinaladas	21		
3.8	Aquisição feita com o modo <i>Tune</i>	22		
3.9	Exemplo da utilização da função FWMH	23		
3.10	Janela para guardar espetros com informações adicionais.	24		
3.11	Interface gráfica com os indicadores e avisos assinalados.	24		
3.12	Exemplo do ficheiro de texto gerado pelo programa	25		

3.13	Janela de aviso que surge caso a tensão utilizada, com a radiação do HeI, esteja	
	incorreta	26
3.14	Exemplo de tensões quando "Pos. Voltage Adjust $(10^{-4}V)$ " é utilizado com um	
	valor de 5	27
3.15	Função Elapsed Time.	27
3.16	Código de substituição da função Time Elapsed.	28
4.1	Sistema utilizado para a introdução de metanol no interior da câmara de ioni-	
	zação	30
4.2	Exemplo de um espetro de metanol adquirido sem tratamento analítico	31
4.3	Espetro da figura 4.2 calibrado em energia.	33
5.1	Esquema de montagem para controlo das bobinas por parte do Arduino	37
II.1	Espetro de Metanol obtido por Kimura[4]	59
II.2	Espetro de cloroetano (CH_3CH_2Cl) obtido por Kimura[4]	60
II.3	Espetro de bromoetano (CH_3 Br) obtido por Kimura[4]	61
II.4	Espetro de iodoetano (CH_3CH_2I) obtido por Kimura[4]	61

LISTA DE TABELAS

2.1	Linhas de emissão do HeI. Valores retirados do NIST	8
4.1	Energia dos picos de referência obtidos por Kimura utilizados na calibração	20
4.2	Energia dos picos de referência obtidos por Kimura e médias dos picos dos	52
	espetros calibrados com as respetivas incertezas.	32
A.1	Custo do desenvolvimento do programa de aquisição	41

Glossário

- $\Psi\,$ Função de onda do estado fundamental.
- $\Psi'\,$ Função de
onda de um estado ionizado.
- ΔV Diferença de potencial elétrico.
- ϵ_i Energia de um eletrão na orbital *i*.
- *E*_{cin} Energia cinética.
- E_i Energia de ligação.
- E_i Energia adiabática.
- *E_{rot}* Energia rotacional.
- E_{vib} Energia vibracional.
- IE_i Energia de ionização, correspondente à extração de um eletrão da orbital *i* de um átomo.
- *L* Intervalo em potencial elétrico, relativo ao intervalo de energia na aquisição de um espetro .
- P Probabilidade de transição entre dois estados.
- Passo Passo de decrementação em potencial elétrico.
- TimeStep Tempo de aquisição por ponto.
- V_{range} Amplitude de tensões da placa de aquisição.
- V_{res} Resolução em tensão da placa de aquisição.
- bits Quantidade de bits disponíveis da placa de aquisição.
- $h\nu$ Energia de um fotão com uma frequência ν .
- t_{total} Tempo total de aquisição de um espetro.

SIGLAS

- BNC Ligação de Bayonet Neill-Concelman.
- DAC Digital Analog Converter Conversor digital-analógico.
- FWHM Full Width at Half Maximum.
- **LIBPhys** Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics - Laboratório de Instrumentação, Engenharia Biomédica e Física de Radiação.
- NIMAX National Instruments Measurement & Automation Explorer.
- NIST National Institute of Standards and Technology.
- **PCI** Peripheral Component Interconnect Barramento de transmissão de dados do computador.
- PSAS Photoelectron Spectroscopy Acquisition System.
- TTL Transistor-transistor logic.
- **UPS** Ultraviolet Photoelectron Spectroscopy.
- VICARTE Vidro e Cerâmica para Artes.

C A P Í T U L O

Introdução

Nesta dissertação de mestrado, que se encontra dividida em 5 capítulos, estão descritas as características do programa de aquisição. O segundo capítulo explica a técnica e a instrumentação associada ao espetrómetro de fotoeletrões de ultravioleta. O terceiro capítulo descreve as funcionalidades e características do programa de aquisição desenvolvido e a forma como o programa adquire um espetro. No quarto capítulo é apresentado um estudo comparativo desenvolvido sobre uma molécula, o metanol. O quinto e último capítulo apresenta as conclusões e as perspetivas futuras que se podem desenvolver com o programa. As imagens e esquemas não referenciadas na bibliografia são da própria autoria.

Este projeto, realizado sob a orientação do Professor António Dias e do Professor José Luís Ferreira, teve o seu início durante o primeiro ano do mestrado. Foram realizadas diversas tarefas de diagnóstico ao espetrómetro, que contribuíram para uma aprendizagem mais profunda de Física Atómica e Molecular e de Tecnologias de Vácuo. Também foram realizadas tarefas como gestor de compras dos componentes necessários à manutenção do espetrómetro. O desenvolvimento do programa, sob a orientação do Professor José Luís Ferreira, resultou num nível de conhecimento mais alargado de programação em Lab-VIEW que não é possível alcançar durante a disciplina dedicada ao mesmo. Durante os períodos de semana aberta da FCT e visitas ao Departamento de Física por parte de alunos de outras escolas, foram realizadas várias apresentações de demonstração e explicação do funcionamento do espetrómetro.

O código do programa de aquisição não é explicado, mas pode ser consultado na plataforma GitHub, seguindo este link¹.

Desta tese resultou a apresentação de um *poster* na XX Conferência Nacional de Física e XXVI Encontro Ibérico para o Ensino da Física (resumo do *poster* no apêndice B).

¹https://github.com/gpinpereira/PSAS-2016

1.1 Objetivos

O objetivo desta dissertação de mestrado consiste no desenvolvimento de um programa de aquisição para um espetrómetro de fotoeletrões de ultravioleta. Este espetrómetro é constituído por uma câmara de ionização, onde se dá a fotoionização de átomos ou moléculas em fase gasosa. Os fotoeletrões gerados são analisados em energia num analisador de energia que possui dois elétrodos hemisféricos de diferentes dimensões. Os fotoeletrões analisados são detetados num multiplicador de eletrões e, com um préamplificador e um amplificador, é gerado um sinal TTL em que cada pulso representa a chegada de um fotoeletrão ao detetor.

Este programa terá de efetuar um varrimento em tensão nos elétrodos hemisféricos do analisador de energia, e terá de analisar, em frequência, o sinal TTL, para obter um espetro com o número de contagens em função da tensão elétrica aplicada, que está relacionada com a energia cinética dos fotoeletrões.

A necessidade do desenvolvimento advém da compra de uma nova fonte de radiação. A fonte de radiação anterior permite a emissão de fotões do HeI, com uma energia de 21,22 eV, e a nova fonte de radiação permite ionizar átomos ou moléculas com fotões do HeII com uma energia de 40,81 eV ou com fotões do HeI. Como tal, o programa de aquisição tem de ser implementado de forma a adquirir espetros consoante o tipo de radiação utilizado. Também serão implementadas funcionalidades que permitem auxiliar o utilizador durante o processo de otimização do espetrómetro.

Espetroscopia de fotoeletrões de ultravioleta e instrumentação do espetrómetro

A espetroscopia de fotoeletrões de ultravioleta, do inglês Ultraviolet Photoelectron Spectroscopy (UPS), foi desenvolvida na década de 60 do séc. XX por David W. Turner. Esta, é uma modificação da espectroscopia de fotoelectrões de raios-X desenvolvida por Kai Siegbanh em meados dos anos 50. A principal diferença entre as duas técnicas consiste na fonte de radiação. O UPS usa, como radiação ionizante, fotões com energia entre 3 e 124 eV [1], enquanto que a espectroscopia de fotoeletrões de raios-X utiliza, como o próprio nome indica, raios-x, como radiação ionizante. Estas duas técnicas permitem, por efeito fotoelétrico, estudar a energia de ligação de materiais não-metálicos. A espectroscopia de fotoeletrões de raios-X concentra-se no estudo de eletrões que se encontrem em níveis de energia mais internos. A UPS estuda eletrões que se encontram na última camada eletrónica que é responsável pelas ligações entre os átomos de uma molécula. Neste capítulo é descrita a espetroscopia de fotoeletrões de ultravioleta e o espetrómetro de fotoeletrões de ultravioleta existente no LIBPhys, que permite estudar átomos e moléculas no estado gasoso.

2.1 Espectroscopia de fotoeletrões de ultravioleta

Quando um fotão interage com um eletrão de uma molécula, podem ocorrer vários processos que alteram a sua distribuição eletrónica, tais como a fotoionização, a excitação, a fluorescência e o efeito de Auger (figura 2.1).

Figura 2.1: Representação de alguns efeitos que podem ocorrer quando um fotão interage com um átomo.

A fotoionização consiste na ejeção de um eletrão ligado quando este interage com um fotão. Após a sua ejeção, o eletrão adquire uma energia cinética que é igual, por conservação de energia, à diferença entre a energia do fotão e a energia do eletrão na orbital atómica ou molecular. No entanto, se a energia do fotão não for suficiente para ionizar a molécula ou átomo, o eletrão pode ser promovido para um nível de energia superior (exitação) podendo, posteriormente, desexitar para um nível inferior e libertar um fotão com uma energia igual à diferença de energia entre os níveis (fluorescência).

A ejeção de um eletrão de uma camada interna origina ao aparecimento de uma lacuna, que será ocupada com a desexitação de um eletrão que se encontra num nível superior de energia. Este, ao contrário da fluorescência, liberta energia que irá ejetar um segundo eletrão. A este processo dá-se o nome de efeito de *Auger*.

A espetroscopia de fotoeletrões de ultravioleta tem como base a fotoionização da camada de valência de uma molécula ou de um átomo. A energia cinética, E_{cin} , de um

eletrão ejetado de uma orbital com uma energia, E_i , quando este interage com um fotão com uma energia, h ν , é traduzida através do efeito fotoelétrico (equação 2.1).

$$E_{cin} = h\nu - E_i \tag{2.1}$$

A energia de ligação de eletrões de moléculas, é constituída por 3 componentes, de acordo com a equação 2.2.

$$E_i = E_j + E_{vib} + E_{rot} \tag{2.2}$$

Onde E_j , representa a energia mínima para remover um eletrão do seu estado fundamental (energia adiabática), E_{vib} e E_{rot} representam, a energia vibracional e a energia rotacional do ião criado após a ionização. Só em casos específicos e com uma resolução elevada, é possível obter a energia rotacional, pelo que esta técnica cinge-se ao estudo da energia adiabática e da energia vibracional dos vários estados ionizados acessíveis com um tipo de radiação ionizante.

2.1.1 Princípio de Franck-Condon

A probabilidade de transição, *P*, entre o estado fundamental representado pela a função de onda, Ψ , e um estado ionizado representado pela função de onda, Ψ' , é, como o princípio de Frank-Condon sugere, proporcional ao módulo da sobreposição entre as duas funções de onda num espaço internuclear R (equação 2.3).

$$P \propto \int \Psi \Psi' dR \tag{2.3}$$

Na figura 2.2, está representado o princípio de Franck-Condon. Onde uma molécula no estado fundamental, M, é ionizada e transita para um estado ionizado, M^+ . Como esta transição tem uma curta duração, os estados que são acessíveis com uma pequena variação nas distâncias entre os átomos apresentam uma maior probabilidade e como tal, apresentam uma maior intensidade num espetro, como se pode ver no eixo "Energia de ionização" da figura 2.2. Os eletrões podem ser classificados consoantes a variação das distâncias internuclares. Um eletrão denomina-se não-ligante ($M^+(a)$, figura 2.3) se a sua remoção não provocar uma alteração significativa nas distâncias internucleares, apresentando uma elevada intensidade no espetro.

Quando ocorre a remoção de um eletrão ligante, presente em $M^+(b)$ da figura 2.3, as distâncias internuclares aumentam, deslocando o poço de potencial correspondente para a direita. Estando as funções de onda, inicial e final, menos sobrepostas, a probabilidade de ionização deste eletrão é bastante inferior à do eletrão não-ligante. Por vezes, um eletrão pode apresentar um caráter anti-ligante ($M^+(c)$ da figura 2.3), ou seja, este contribui para um afastamento entre os átomos de uma molécula. Com a remoção de um eletrão com esta natureza, as distâncias internucleares diminuirão, provocando um deslocamento do poço de potencial para a esquerda.

CAPÍTULO 2. ESPETROSCOPIA DE FOTOELETRÕES DE ULTRAVIOLETA E INSTRUMENTAÇÃO DO ESPETRÓMETRO

Figura 2.2: Curvas de potencial de várias orbitais de uma molécula M.

2.1.2 Teorema de Koopmans

O teorema de Koopmans permite, para sistemas de camada fechada, afirmar que a energia de ionização relativa à extração de um eletrão numa orbital *i* de um átomo ou molécula (IE_i) é, num sistema atómico ou molecular, aproximadamente igual ao módulo da energia do eletrão ligado na orbital correspondente (ϵ_i). Esta aproximação permite facilitar a atribuição das energias de ionização às orbitais moleculares.

$$IE_i \approx |-\epsilon_i| \tag{2.4}$$

2.2 Espetrómetro de fotoeletrões de ultravioleta

O espetrómetro de fotoeletrões de ultravioleta do laboratório LIBPhys, é constituído por diversas partes, que estão identificadas na figura 2.3.

Figura 2.3: Esquema do espetrómetro de fotoeletrões com os principais constituintes.

A amostra é introduzida no sistema de introdução de amostra, onde é transferida para a zona de fotoionização, local em que ocorre a interação com os fotões provenientes da fonte de radiação. Os fotoeletrões criados que entrem num ângulo de aceitação da fenda de entrada do analisador de energia, serão selecionados em energia e detetados num multiplicador de eletrões do tipo canaltrão. O sistema de eletrónica, constituído por um pré-amplificador e por um amplificador, converte e amplifica o sinal de fotoeletrões em sinal TTL. Este sinal é processado pelo programa de aquisição, que controla, em simultâneo o analisador de energia (ver figura 2.3).

2.2.1 Fonte de radiação

A fonte de radiação, esquematizada na figura 2.4, é uma fonte de descarga em hélio. Esta, é constituída por um capilar de quartzo com um diâmetro interno de 1 mm, o qual se encontra eletricamente isolado do resto da fonte e do espetrómetro, por um tubo de nitreto de boro.

Devido a uma diferença de potencial elétrico, aplicada entre o ânodo e o cátodo da fonte de radiação ,forma-se um plasma (região C da figura 2.4). Este plasma, provoca a excitação dos átomos de hélio que, ao regressarem ao estado fundamental, emitem fotões com comprimentos de onda bem definidos, conforme indicado na tabela 2.1. Estes fotões, colimados pela extremidade da fonte, viajam até à zona de fotoionização, na câmara de ionização.

CAPÍTULO 2. ESPETROSCOPIA DE FOTOELETRÕES DE ULTRAVIOLETA E INSTRUMENTAÇÃO DO ESPETRÓMETRO

Figura 2.4: Esquema da fonte de radiação. A - entrada de hélio e cátodo; B - elétrodo; C - ânodo, região onde se forma o plasma, em frente ao capilar de quartzo.[2]

Com uma pressão de hélio de 0,37 mbar, uma tensão de descarga de 650 V com 80 mA, a transição $1s2p({}^{1}P_{0}) \rightarrow 1s^{2}({}^{1}S_{0})$ do HeI apresenta um intensidade muito mais elevada que as outras transições, sendo responsável por 98% da radiação produzida. Como tal, a fonte de radiação não necessita de um monocromador. O que provocaria, uma redução da intensidade desta risca.

Gás	Energia (nm)	Energia (eV)	Intensidade	Transição
HeI _α	58,43	21,22	100	$1s2p(^1P_0) \rightarrow 1s^2(^1S_0)$
HeI _β	53,70	23,08	2	$1s3p(^1P_0) \rightarrow 1s^2(^1S_0)$
HeI _γ	52,22	23,74	0,5	$1s4p(^{1}P_{0}) \rightarrow 1s^{2}(^{1}S_{0})$
HeII	30,38	40,81	<1	$2\mathbf{p}(^2P_0) \to \mathbf{1s}(^2S_0)$
HeII	25,63	48,37	<1	$3p(^2P_0) \to 1s(^2S_0)$
HeII	24,30	51,01	<1	$4\mathrm{p}(^2P_0) \to 1s(^2S_0)$

Tabela 2.1: Linhas de emissão do HeI. Valores retirados do NIST.

A fonte de radiação tem um sistema de bombeamento diferencial em relação à câmara de ionização constituído por uma bomba rotatória. Esta é responsável por retirar os átomos de hélio do percurso dos fotões. Assim, os fotões produzidos não são absorvidos e a intensidade do feixe de radiação não é atenuada.

A fonte de radiação é arrefecida com um sistema de arrefecimento a água.

2.2.2 Câmara de ionização

É no interior da câmara de ionização que se dá a interação entre as moléculas ou átomos de uma amostra e os fotões da fonte de radiação. É também a partir desta que os

fotoeletrões entram numa fenda dupla situada na entrada do analisador de energia. Esta fenda tem a função de aumentar a resolução do espetrómetro, pois o sinal de fotoeletrões é colimado. A direção de introdução da amostra, a direção dos fotões e a direção de saída dos fotoeletrões estão orientadas segundo as direções ortogonais, como se pode ver na figura 2.5.

No interior desta câmara, está presente a célula de reação, que permite criar um aumento local de pressão, aumentando o número de fotoeletrões produzidos.

Figura 2.5: Representação da célula de reação presente na câmara de ionização. A amostra é introduzida pelo zona superior da montagem.[2]

Os fotoeletrões, emitidos isotropicamente, perdem energia cinética ao interagir com as paredes internas da célula de reação e podem entrar no analisador com uma energia cinética inferior à sua energia cinética após a interação com o fotão. Para contornar este problema a célula de reação é revestida com uma camada homogénea de grafite. Desta forma, os fotoeletrões ao colidirem com esta camada, são adsorvidos e não entram na câmara do analisador. A homogeneidade desta camada é vital para que não sejam criados potenciais locais que podem alterar a trajetória dos fotoeletrões.

Na figura 2.5 está presente um esquema do interior da célula de reação. A flange A suporta a célula de reação, que pode ser alinhada com a rotação dos suportes B e C.

A célula de reação está ligada à terra do aparelho para que os fotoeletrões não sintam a presença de campos elétricos. No entanto, a trajetória de fotoeletrões com energia cinética mais baixa é facilmente perturbada, pelo que orbitais com uma energia superior são dificilmente adquiridas. Com a aplicação de um potencial elétrico na célula de reação estes fotoeletrões, de baixa energia, são acelerados e ganham mais energia cinética, tornando a sua trajetória menos suscetível a campos elétricos locais.

2.2.3 Câmara do analisador

Após a ionização, os eletrões são colimados por uma dupla fenda e entram na câmara do analisador. Este é constituído por dois elétrodos hemisféricos com um ângulo de 150°, um externo com 220 mm de raio e outro interno com 180 mm de raio, como se pode ver pela figura 2.6.

Figura 2.6: Analisador hemisférico onde os fotoeletrões são analisados em energia. À esquerda está presente a célula de reação e à direita a câmara do analisador. [1]

No elétrodo hemisférico interno é aplicado um potencial elétrico positivo, que irá atrair os fotoeletrões e no elétrodo hemisférico externo é aplicado um potencial elétrico negativo que irá repelir os fotoeletrões. Os dois potenciais, com igual módulo, são incrementados de forma a ser efetuado um varrimento em energia cinética que pode ser relacionada com a diferença de potencial segundo a equação 2.5,

$$e\Delta V = E_{cin} \left(\frac{R_2}{R_1} - \frac{R_1}{R_2} \right)$$
(2.5)

onde, E_{cin} , é a energia cinética, *e* é a carga o eletrão, ΔV , a diferença de potencial elétrica aplicada, R_1 e R_2 representam, respetivamente, os raios dos elétrodos hemisféricos interno e externo.

Os dois elétrodos hemisféricos, à semelhança da célula de reação, estão revestidos com uma camada homogénea de grafite. Desta forma, reduz-se a presença de potenciais elétricos locais e não é promovida a ejeção de eletrões secundários quando os fotoeletrões colidem nas paredes interna dos elétrodos hemisféricos.

2.2.4 Sistema de deteção de fotoeletrões

O detetor de fotoeletrões é um multiplicador de eletrões do tipo canaltrão. Este detetor (figura 2.7) consiste num tubo de vidro em forma de caracol cuja superfície interior está revestida por uma camada de SiO_2 . Sempre que um eletrão colide com a parede interna são emitidos vários eletrões secundários, o que produz um aumento do número de eletrões no interior do canaltrão.

Figura 2.7: Imagem do canaltrão utilizado.

A aplicação de uma diferença de potencial de 3 kV entre o início e o fim do canaltrão encaminha os eletrões produzidos para a extremidade. Desta forma é criada uma cascata de eletrões que tem a função de criar um ganho de, aproximadamente, 10⁸ por cada fotoeletrão que entra no canaltrão. Os fotoeletrões são atraídos para o canaltrão devido a uma abertura de maiores dimensões que se encontra no início do canaltrão que está ligada a um potencial positivo.

O pico de corrente produzido pela cascata é processado e convertido num sinal TTL pelo pré-amplificador e amplificado pelo amplificador de forma a ser analisado em frequência pelo programa de aquisição.

Na figura 2.8 está presente um exemplo de um sinal TTL produzido, onde cada pulso representa a chegada de um fotoeletrão ao canaltrão. A frequência deste sinal representa o número de contagens adquiridas por segundo, pelo que para o sinal esquematizado seriam apresentadas 5000 contagens por segundo¹.

¹5 pulsos por 1*ms* representam 5000 pulsos por 1 *s*.

Figura 2.8: Sinal TTL produzido pelo sistema de eletrónica do detetor.

2.2.5 Sistema de blindagem do campo magnético

Para que os fotoeletrões não tenham a sua trajetória afetada por campos magnéticos externos, como o campo magnético da Terra, o espetrómetro está equipado com um sistema constituído por 3 pares de bobinas de Helmholtz. Cada par está orientado segundo uma direção ortogonal. É a corrente de um par de bobinas que cancela o campo magnético paralelo à normal da secção de área desse mesmo par.

É através de três potenciómetros, que controlam individualmente um par de bobinas, que é possível ajustar a corrente das bobinas. Esta corrente tem valores entre 0,5 A e 1,2 A. As correntes são otimizadas ajustando os potenciómetros com o objetivo de se maximizar a quantidade de contagens registadas.

2.2.6 Sistema de vácuo

Os espetrómetro possui dois sistemas de vácuo, cada um constituído por uma bomba rotatória e por uma bomba difusora. Como já foi referido anteriormente, a fonte de radiação possui uma bomba rotatória que tem a função de retirar o hélio de forma a que os fotões produzidos não sejam reabsorvidos. As outras bombas rotatórias permitem reduzir a pressão até 10^{-3} *mbar* de forma a ser possível, com as bombas difusoras, gerar alto vácuo. Este vácuo é criado para aumentar o livre percurso médio dos fotoeletrões que são analisados na câmara do analisador. Também é crucial obter vácuo pois o canaltrão não pode operar à pressão atmosférica.

2.3 Manutenção do espetrómetro

No início do desenvolvimento deste projeto o espetrómetro apresentava problemas em obter um nível de vácuo que permitisse ligar o canaltrão. Uma das zonas de suspeita de fuga estava localizada nos *o´rings* das válvulas de borboleta das bombas difusoras, pelo que a primeira tarefa foi a substituição dos mesmos. No entanto, ao se retirar o veio da válvula de borboleta de uma das bombas difusoras verificou-se que este danificou o interior da bomba difusora na zona da interface entre o vácuo e a pressão atmosférica. A origem deste problema não foi detetada e apresentou graves problemas de funcionamento da própria bomba difusora. Mas foi resolvido ao lixar-se, com papel de lixa fino, as zonas danificadas e com a aplicação de alguma gordura para vácuo.

Como as bombas difusoras foram retiradas do espetrómetro aproveitou-se e procedeuse à sua desmontagem e limpeza. Com a substituição do óleo verificou-se que o *o ´ ring* de vedação do nível de óleo apresentava um carácter plástico, o que produzia uma fuga substancial.

A manutenção das bombas difusoras foi executada com sucesso pois foi possível obter níveis de vácuo ótimos para o funcionamento do espetrómetro (2,3 x 10^{-6} mbar).

O analisador hemisférico foi repintado várias vezes com uma mistura de álcool isopropílico e grafite coloidal² com o objetivo de se obter um funcionamento perfeito do analisador. A aplicação de uma nova camada de grafite aliada à aplicação de um potencial de aceleração na célula de reação provou ser crucial para o funcionamento do espetrómetro.

Na figura 2.9 estão presentes dois espetros que mostram a diferença entre o primeiro espetro adquirido após a manutenção (2.9a), e o espetro adquirido após a optimização de todos os parâmetros do espetrómetro, como a corrente de descarga da fonte de radiação, as correntes das bobinas de Helmholtz, e a tensão aplicada no canaltrão (2.9b). O eixo do XX apresenta valores dispares pois em 2.9a está representada a energia cinética e em 2.9b está representada a energia de ionização.

²DAG 500

CAPÍTULO 2. ESPETROSCOPIA DE FOTOELETRÕES DE ULTRAVIOLETA E INSTRUMENTAÇÃO DO ESPETRÓMETRO

Figura 2.9: Espetros obtidos após a manutenção do espetrómetro, antes (a) e depois (b) da otimização.
CAPÍTULO

Sistema de aquisição de dados e controlo

A linguagem de programação utilizada para o desenvolvimento deste programa de aquisição de dados e controlo foi o LabVIEW ¹. Esta linguagem, desenvolvida pela *National Instruments*, foi concebida para ser implementada em sistemas de instrumentação pois permite criar, com grande facilidade, interfaces gráficas e integrar o funcionamento do programa com uma placa de aquisição desenvolvida pela própria empresa. Esta placa, com a denominação "NI PCI-6230", com uma resolução de 16 bits e uma amplitude de $\pm 10,0$ V, permite aplicar tensões com uma resolução de 0,31 mV em dois canais controlados separadamente (ver anexo I). O ambiente NIMAX permite atribuir tarefas específicas a cada canal do conversor digital-analógico. São aplicadas tensões com uma diferença de 4,0 mV, o que permite obter um passo em energia de 20 meV.

Neste capítulo é descrito o algoritmo implementado no programa de aquisição de dados e controlo, as funcionalidades adicionais e algumas características do código implementado.

3.1 Funcionamento geral

O programa de aquisição interage com 3 módulos: o computador, a placa de aquisição e o conversor digital-analógico. A placa de aquisição é ligada diretamente no barramento de dados PCI do computador, que por sua vez está ligada ao conversor digital-analógico. Este converte sinais digitais em tensões analógicas que serão aplicadas nos elétrodos hemisféricos do analisador hemisférico e converte um sinal TTL em sinal digital de forma a ser interpretado por um contador de pulsos da placa de aquisição (ver figura 3.1).

¹NI LabVIEW 2013, versão 13.0.0

Figura 3.1: Esquema de montagem da placa de aquisição com o conversor digitalanalógico.

Os fios de ligação dos canais do conversor foram soldados a entradas BNC com uma massa comum ligada à massa do conversor e este foi fechado numa caixa de proteção. Para o controlo das tensões foram utilizados os pinos "AO1" e "AO2" e para a recepção do sinal TTL é utilizado o canal "PFI 0/P0.0 (Input)" que no ambiente NIMAX aparece sob o nome "crt0" (figura 3.2).

Figura 3.2: Caixa de proteção do conversor digital-analógico e os pinos de conexão utilizados

Durante o desenvolvimento do programa, de forma a simular a aquisição de dados, a entrada BNC responsável pela contagem de pulsos foi conectada a um gerador de funções no modo TTL. Alterando a frequência do sinal gerado foi possível simular os pulsos

criados pelo amplificador do canaltrão².

Neste programa foi utilizada uma biblioteca específica da placa de aquisição (NI-DAQmx). Desta biblioteca foram utilizadas as seguintes funções:

- *DAQmx Create Virtual Channel* cria canais virtuais na placa de aquisição que estão relacionados com o conversor digital-analógico;
- DAQmx Read lê o valor do canal virtual criado pela função DAQmx Create Virtual Channel;
- *DAQmx Write* aplica um valor, correspondente a uma tensão, no canal virtual correspondente ao canal do conversor digital-analógico que gera tensões elétricas;
- DAQmx Start Task inicia a tarefa programada em DAQmx Create Virtual Channel;
- DAQmx Stop Task para a tarefa programada em DAQmx Create Virtual Channel.

Para que o programa funcione é obrigatório a instalação da biblioteca NI-DAQmx. Foram criadas outra funções que permitem simplificar a leitura do código. Estas

funções e a sua hierarquia no próprio programa estão exemplificadas na figura 3.3.

Figura 3.3: Funções adicionais implementadas.

O bloco PSAS, do inglês *Photoelectron Spectroscopy Acquisition System*, representa o programa. A função *Signal Generator* é responsável por aplicar tensões nos canais de saída do conversor digital-analógico. É nesta função que está presente a função *DAQmx Write*.

A função *Alerts* é responsável por gerir janelas de avisos que são apresentadas durante a utilização do programa.

Se o utilizador gravar um espetro obtido é chamada a função *Data to txt*, que converte os valores obtidos num ficheiro de texto. Durante este processo é também apresentada uma interface gráfica que permite ao utilizador acrescentar mais informação ao ficheiro de texto.

Durante a aquisição de um espetro, a diferença de potencial aplicada nos elétrodos hemisféricos da câmara do analisador tem de ser convertido para energia cinética ou para

²Uma simulação com 100 Hz, corresponde a uma aquisição com 100 contagens por segundo.

energia de ligação. Para isso foi criada a função *Convert Pot. to Energy* (Converter Potencial em Energia).

3.1.1 Aquisição de espetros

O programa aplica, nos elétrodos hemisféricos do analisador de energia, um potencial elétrico que é decrementado em 4,0 mV em intervalos de tempo regulares. Para cada potencial elétrico aplicado são contados os números de pulsos detetados no canaltrão. Todo o processo de aquisição está exemplificado no diagrama de blocos da figura 3.4.

Figura 3.4: Fluxograma que representa a aquisição normal de espetros.

A aquisição é iniciada com o botão *Start* existente na interface gráfica. O valor da tensão inicial (*Upper Voltage*) escolhido pelo utilizador é enviado para o conversor. Se a tensão aplicada (*Actual Voltage*) for inferior ou igual ao valor de tensão final (*Lower Voltage*) a aquisição é terminada, caso contrário o programa adquire, durante o tempo predefinido pelo utilizador, o número de pulsos que chegam ao detetor. Os valores da tensão aplicada e o número de contagens adquiridas são introduzidos em dois vetores que serão usados para apresentar o espetro num gráfico. A tensão aplicada é decrementada em 4,0 mV e o ciclo recomeça. O varrimento em tensão é efetuado da tensão mais elevada para a tensão mais baixa, desta forma são analisados primeiro os fotoeletrões com energia cinética maior, que são mais fáceis de serem analisados. A estrutura retangular a tracejado representa um bloco de programação que só é executado em intervalos de tempo

regulares, correspondentes ao tempo inserido. Este tempo, *Time Step*, tem unidades em ms.

É importante a minimização do tempo total de aquisição de um espetro, mas também é importante a minimização do passo em energia. Quanto menor for o passo em energia, maior será o tempo de aquisição. Na figura 3.5 está presente um gráfico que apresenta, o passo em energia para vários passos de decremento e o tempo de aquisição de um espetro consoante os mesmos passos de decremento. A correspondência entre o passo em energia e o passo de decremento foi calculado com a equação 2.5, por exemplo para um passo de 0,001 V temos que:

$$E = 2 \times V \times e \times 2,475 = 2 \times 0,001 \times 2,475 = 0,005 \, eV \tag{3.1}$$

A correspondência entre o passo de decremento da diferença de potencial em cada elétrodo e o tempo de aquisição total de um espetro, foi calculado considerando que está a ser adquirido um espetro num intervalo em energia de 7 eV (i.e para energias de ionização entre 10 eV e 17 eV), o que corresponde a um varrimento num intervalo em tensão de 1,41 V que, para efeitos de cálculo, é representado por *L*. A divisão de *L*, pelo passo de decremento escolhido, *Passo*, é igual ao número total de pontos adquiridos. O tempo total de aquisição de um espetro, t_{total} , é calculado multiplicando o número total de pontos, pelo tempo por ponto, *TimeStep*. Por exemplo, na equação 3.2 é exemplificado o cálculo do tempo total de aquisição para um *Time Step* de 0,4 *s*, num intervalo em tensão de 1,41 V, para um passo de decremento de 0,001 V temos que:

$$t_{total} = \frac{L}{Passo} \times TimeStep = \frac{1,41 \times 0,4}{0,001} = 564s$$
(3.2)

Na figura 3.5, os valores de "Tempo de aquisição (s)", correspondem ao eixo "Tempo total de aquisição (s)" e foram calculados considerando que o espetro é obtido num intervalo de 7 eV, com um tempo por ponto de 400 *ms*. O "Passo em energia (meV)" representa o passo em energia associado ao passo de decrementação, calculado com o método da equação 3.1.

Como já foi referido anteriormente, a placa de aquisição permite aplicar tensões com uma resolução de 0,31 mV. Esta tensão é calculada com base na equação 3.3,

$$V_{res} = \frac{V_{range}}{2^{bits} - 1} \tag{3.3}$$

em que V_{res} representa a resolução da placa de aquisição, V_{range} é a amplitude de tensões possíveis, e *bits* é o número de bits da placa de aquisição. A utilização de um passo de decremento de 0,31 mV representa um passo em energia de 1,5 meV. O que origina a espetros mais definidos mas o tempo de aquisição, para um espetro com as definições indicadas anteriormente, será de 1819 *s*.

Idealmente, em 30 meV têm de ser adquiridos 5 pontos, ou seja, têm de ser efetuados 4 decrementos. Assim, tem de ser utilizado um passo em energia de 7,5 meV, o que

corresponde a um passo em tensão de 1,5 mV para cada elétrodo hemisférico. Desta forma, o mesmo espetro é adquirido em 376 *s*.

Figura 3.5: Gráfico que representa o tempo de aquisição de um espetro e o passo em energia em função de vários passos de decremento, para o passo em energia e o *TimeStep* considerados no texto.

Após e antes da aquisição o eixo das abcissas pode ser apresentado em três modos diferentes: o modo *Voltage* para apresentar a diferença de potencial aplicada, o modo *Kinetic* para apresentar a energia cinética relacionada com esse potencial ou o modo *Binding* para apresentar a energia de ligação (figura 3.6). Embora apenas seja relevante estudar espetros com o número de contagens por segundo em função da energia de ionização, durante o processo de otimização do espetrómetro o eixo das abcissas é apresentado no modo *Voltage* (ver secção 3.1.2).

A fonte de radiação utilizada permite a emissão de radiação proveniente do HeI ou do HeII, com riscas de emissão mais intensas de 21,22 eV e de 40,82 eV, respetivamente. Como o cálculo da energia de ligação está relacionado com a radiação de ionização, o programa tem de estar preparado para funcionar em dois modos distintos dependendo do tipo de radiação utilizada. Como se pode ver na zona A na figura 3.7, é possível escolher um de dois tipos de radiação utilizada para que o programa converta a diferença de potencial aplicada em energia de ligação.

3.1.2 Modo Tune

A pressão do hélio introduzido na fonte de radiação, a corrente de descarga, o campo magnético produzido pelas bobinas de Helmholtz, entre outros parâmetros operacionais,

3.1. FUNCIONAMENTO GERAL

Figura 3.6: Interface gráfica com as opções de utilização do eixo das abcissas assinaladas.

Figura 3.7: Interface gráfica com as opções de utilização do tipo de radiação de ionização assinaladas.

quando alterados modificam as condições de aquisição, aumentando ou diminuindo as contagens adquiridas. O modo *Tune* permite a otimização destes parâmetros.

O pico mais intenso de um espetro de árgon é utilizado para diagnosticar o estado operacional do espetrómetro. Após a aquisição, este pico pode ser selecionado com a ferramenta de zoom própria dos gráficos do LabVIEW presente na zona B da figura 3.7. Com este zoom, o programa seleciona uma tensão que corresponde à média aritmética dos extremos da janela, o que equivale ao potencial médio do pico selecionado. A aquisição é executada sem o incremento deste potencial. Assim, e com o eixo das abcissas a apresentar o tempo decorrido, é possível observar em tempo real a forma como a alteração dos parâmetros altera a aquisição do número de contagens. Como o programa escolhe uma tensão intermédia, a aquisição inicial de um espetro de árgon tem de ser efetuada com o eixo dos XX no modo *Voltage*.

Na figura 3.8 observa-se uma aquisição adquirida com o modo *Tune*, onde estão representadas as contagens adquiridas no eixo das ordenadas e o tempo decorrido no eixo das abcissas.

Figura 3.8: Aquisição feita com o modo Tune.

A 2788 ms pode-se observar uma diminuição do número de contagens, que corresponde a um momento em que a aquisição foi efetuada com as bobinas de Helmholtz desligadas.

3.1.3 Aquisição acumulada de espetros

O modo *Acumulate* funciona como o modo de aquisição normal mas a aquisição não é terminada automaticamente com a aplicação da tensão final. Neste modo, o programa retorna à tensão *Upper Voltage* e soma as novas contagens às contagens anteriores. Isto permite acentuar as intensidade relativas dos picos.

O programa ao adquirir o sinal registado guarda todos os valores num vetor com um comprimento fixo, que corresponde à diferença entre a tensão final e a inicial, divididas pelo passo de decremento. Este método pode criar um desvio no eixo das energias, pois o cálculo para o comprimento do vetor pode não produzir um valor inteiro e o arredondamento poderá originar um desvio de 20 meV. A introdução de gases de calibração durante a aquisição de um espetro permitem, com um software de tratamento de espetros, anular este desvio.

3.1.4 Função FWHM

Um bom indicador de que o espetrómetro está operacional é a largura a meia altura (em inglês, Full Width at Half Maximum (FWHM)) do pico mais intenso de um espetro de árgon. Durante o processo de otimização da resposta do espetrómetro é necessário medir esta largura repetidas vezes, sendo que o único método disponível é a observação direta. Este é um método impreciso e demorado por isso, para a otimização da medição, foi criada uma função que, quando ativa, apresenta dois cursores. Estes podem ser movidos de forma a coincidirem com a meia altura em ambos os lados do pico.

Figura 3.9: Exemplo da utilização da função FWMH.

O indicador "FWMH (eV)" apresenta, em energia, a distância entre os dois cursores. É também possível medir as intensidades através das posições dos cursores em relação ao eixo dos YY (ver figura 3.9).

3.2 Funcionalidades adicionais

O programa possui também algumas funcionalidades e características que não estão diretamente relacionadas com o espetrómetro. Estas permitem que o programa seja mais completo do ponto de vista do utilizador e do ponto de vista do código implementado.

3.2.1 Função Hold Mouse

Como já foi referido anteriormente, durante a implementação do algoritmo a aquisição foi simulada com um gerador de funções no modo TTL. Durante esta simulação foi detetado um fenómeno que prejudicava gravemente a aquisição: sempre que se movia o cursor do rato sobre um indicador ou botão do programa eram detetadas aquisições com um desvio considerável da aquisição simulada.

Este problema foi resolvido com o desenvolvimento da função *Hold Mouse* (Fixar Rato) que quando ativada/desativada fixa o rato sobre o próprio botão impossibilitando mover o rato acidentalmente.

Com a substituição do gerador de funções pelo amplificador do detetor verificou-se que o ruído não é produzido sendo a utilização da função opcional.

3.2.2 Registar e abrir espetros

Após a aquisição de um espetro é vital o registo da informação adquirida. Este registo é iniciado, quando a aquisição é terminada automaticamente, com uma janela que questiona o utilizador se este quer ou não guardar o espetro adquirido (figura 3.10). Em caso afirmativo é apresentada uma segunda janela com vários campos vazios, com caráter de preenchimento opcional, que permitem enunciar alguma informação sobre o espetro adquirido (figura 3.11).

Figura 3.10: Janela para guardar espetros com informações adicionais.

Também é possível terminar a aquisição com o botão *Stop* e guardar o espetro adquirido com o botão *Save*, resultando na apresentação da mesma segunda janela.

Figura 3.11: Interface gráfica com os indicadores e avisos assinalados.

O botão *Load* é utilizado para o carregamento de um espetro adquirido para o gráfico do programa de aquisição. Com a apresentação de um espetro previamente adquirido é possível efetuar uma análise primordial aos resultados.

Na figura 3.12, está presente o exemplo de um ficheiro de texto gerado pelo programa após o registo de um espetro adquirido. Durante o processo de carregamento do ficheiro o programa procura a linha com o símbolo # e apresenta os valores a partir dessa linha. Outra solução poderia ser pela limitação do número total de linha que o texto pode ter, e o programa apresentaria os valores a partir de uma linha numa posição fixa. Com a solução implementada, é possível escrever um texto com uma dimensão não limitada e a posição dos valores só depende da posição do símbolo. A única limitação imposta por este método, é que o utilizador não pode escrever o próprio símbolo.

Guilhe 1000 Energi Texto	rme a de ligação adicional	
Date:	13 de maio de	2016
Time:	14:59	
#	Energy (eV)	Counts/s
1	21.220000	0.00000
2	21.200200	3.000000
3	21.180400	3.000000
4	21.160600	3.000000
5	21.140800	4.000000
6	21.121000	3.000000
7	21.101200	2.000000
8	21,081400	4,000000

Figura 3.12: Exemplo do ficheiro de texto gerado pelo programa

3.2.3 Indicadores e avisos

Na área assinalada da figura 3.10 estão presentes vários indicadores numéricos que fornecem ao utilizador algumas informações sobre o espetro adquirido.

- Max. Peak (ev): indica a energia do pico com maior intensidade.
- Max. Peak Count/s: indica as contagens do pico com maior intensidade.
- Actual Potential: indica, em tempo real, a tensão que está a ser aplicada durante a aquisição.
- Number of Scans: este indicador só tem relevância durante a utilização da função *Acumulate*, pois este indica a quantidade de varrimentos que foram realizados.

Durante a utilização do programa podem surgir vários avisos que impedem a aquisição (figura 3.13). Na maioria dos casos estão relacionados com a escolha de tensões a aplicar. Com radiação produzida pelo HeI, apenas é possível produzir fotoeletrões com uma energia cinética inferior a 21,22 eV, como tal, com o uso deste tipo de radiação, apenas é possível utilizar tensões inferiores a 4,286 V (equações 2.1 e 2.5). Quando se utiliza radiação do HeII, o valor de tensão correspondente aos 40,80 eV é de 8,244 V.

Como já foi referido anteriormente, a placa de aquisição tem uma amplitude de tensões de ± 10 V, pelo que o programa não iniciará a aquisição se o intervalo de tensões for superior a esta amplitude.

O programa possui no canto superior direito uma caixa de texto e um indicador luminoso verde denominado "PCI 6230". A caixa de texto fornece informação sobre o estado de execução do programa e o indicador luminoso verde indica se a placa de aquisição está devidamente instalada no computador.

3.2.4 Parametrização operacional da placa de aquisição

Para a calibração das tensões enviada pela placa de aquisição foram criados dois controladores: "Pos. Voltage Adjust $(10^{-4}V)$ " e "Neg. Voltage Adjust $(10^{-4}V)$ ". Estes permitem deslocar, na vertical, a rampa de tensões aplicadas, ou seja, enquanto que o espetro é apresentado com uma certa janela de varrimento, na realidade é utilizada uma janela de varrimento com um pequeno desvio.

Na figura 3.14 estão apresentadas dois varrimentos de tensões. A "Tensão apresentada" é o varrimento em tensões que é apresentada ao utilizador durante a aquisição e "Tensão aplicada" é o varrimento em tensões que foi efetuado no analisador hemisférico.

Para que não se perca informação com o encerramento do programa, os valores de cada controlador são guardados num ficheiro de texto. Assim, quando o programa for novamente iniciado, o ficheiro de texto é lido e os controladores são apresentados com os respetivos valores.

Esta funcionalidade permite calibrar manualmente a placa de aquisição. No entanto, os valores de ajuste podem não operar dentro da resolução da placa de aquisição pelo que durante a calibração é aconselhado utilizar um multímetro de alta precisão.

Figura 3.14: Exemplo de tensões quando "Pos. Voltage Adjust $(10^{-4}V)$ " é utilizado com um valor de 5.

3.2.5 Eficiência do programa

O LabVIEW possui funções de alto nível que permitem simplificar a programação e a leitura do código. Uma destas funções está representada na figura 3.15 e permite que o controlo temporal do programa seja implementado com maior facilidade, prejudicando a velocidade de execução do programa (iterações por segundo). A função *Elapsed Time* retorna um valor *true* em *Time has Elapsed* em intervalos de tempo regulares. Em *Elapsed Time* (s) pode ser consultado o tempo decorrido entre cada valor *true* e em *Present* (s) é apresentado o tempo em milissegundos desde as 12:00 de 1 de Janeiro de 1904.

Figura 3.15: Função Elapsed Time.

Um ciclo *while* vazio, é capaz de processar 10^7 ciclos por segundo, mas com a função *Time Elapsed* presente no código, esta velocidade é reduzida para 7×10^4 ciclos por segundo. Esta redução, para programas mais elementares pode não apresentar problemas, mas para programas mais complexos pode prejudicar a aquisição.

Para substituir a função Time Elapsed foi implementada uma função sem nenhum

elemento de alto nível (ver figura 3.16), o que permite obter uma velocidade de execução 600 vezes superior à da função original.

Figura 3.16: Código de substituição da função Time Elapsed.

O indicador "*Time has elapsed*" da função da figura 3.16 apresenta um valor booleano *true* em intervalos de tempo correspondente ao tempo inserido em "*Elapsed Time*".

Embora tenham sido implementadas várias soluções para não prejudicar gravemente a velocidade de processamento, durante a aquisição o programa executa 3000 ciclos por segundo, o que demonstrou ser adequado para o tipo de operações executadas.

Resultados e discussão

Neste capítulo são apresentados e discutidos testes desenvolvidos com o programa de aquisição de dados e controlo. Nestes testes foram obtidos 10 espetros de metanol (CH_3OH) no espetrómetro de fotoeletrões de ultravioleta com o programa de aquisição de dados e controlo. Como gás calibrante foi utilizado árgon por possuir duas energias de ionização bem conhecidas [4]. Todos os espetros adquiridos apresentam um pico de água residual, que também é utilizado para calibrar o espetro, permitindo obter uma calibração com três pontos.

Para o tratamento de resultados foi utilizado um programa de análise de dados, o *OriginPro 2015*¹.

¹Origin (OriginLab, Northampton, MA)

4.1 Montagem experimental

Com o espetrómetro de fotoeletrões de ultravioleta do *LIBPhys* apenas é possível o estudo de amostras no estado gasoso, pelo que foi escolhido o metanol, que é um líquido à temperatura ambiente, que tem uma pressão de vapor de 152 mbar a 296,17 K [5], mais elevada que a água (28,1 mbar @ 296,17 K) [6].

Figura 4.1: Sistema utilizado para a introdução de metanol no interior da câmara de ionização.

O sistema de introdução de metanol, presente na figura 4.1, construido pela unidade de Vidro e Cerâmica para as Artes (VICARTE), foi adaptado de um sistema anterior que não possuía reservatório. O sistema foi submetido a ciclos de alta temperatura para uniformizar tensões mecânicas criadas durante o seu fabrico. Desta forma o reservatório pode ser submetido a grandes diferenças de temperatura sem se fragmentar.

A zona do reservatório que possui metanol no seu interior é mergulhada em azoto líquido. O metanol, com uma temperatura de fusão de 176 *K*, ao ser submetido a 77 *K* do azoto líquido, congela e fica preso no interior do reservatório sendo possível evacuar a tubagem de ligação com a câmara de ionização sem perda significativa de amostra.

4.2 Espetros obtidos

A aquisição dos espetros foi realizada com pressões parciais de metanol e de árgon de 6×10^{-5} mbar e de 2×10^{-6} , respetivamente. A pressão de árgon é significativamente inferior à pressão de metanol pois os picos deste são mais intensos e sobrepõe-se com o espetro de metanol quando são utilizadas pressões mais elevadas.

A fonte de radiação foi operada com uma pressão de hélio de 0,37 mbar e uma tensão descarga de 650 V com uma corrente de 80 mA. Os espetros foram obtidos com tensões compreendidas num intervalo de 0,2 V e 2,2 V (20,23 eV e 10,33 eV) com um tempo por ponto (*Time step*) de 1 *s*.

No espetro da figura 4.2 observam-se dois picos de árgon em A1 e A2, um pico de água residual em H e as bandas do metanol em A, B, C e D. Este espetro, quando comparado com o trabalho desenvolvido em [4], apresentado em anexo na figura II.1, apresenta diferenças consideráveis nas intensidades das bandas devido às diferentes funções de transmissão dos dois espetrómetros.

Figura 4.2: Exemplo de um espetro de metanol adquirido sem tratamento analítico.

O espetrómetro possui condições experimentais que são alteradas ao longo da sua utilização, o que pode provocar desvios de energias entre cada espetro adquirido. Como

tal, cada espetro foi calibrado com uma reta de calibração própria. Esta reta é uma regressão linear entre os valores em energia dos picos de árgon e de água obtidos em [4] e os respetivos valores obtidos em cada espetro. Os valores das energias dos picos de calibração podem ser consultados na tabela 4.1.

Os espetros não foram submetidos a nenhum alisamento (*smooth*) pois o elevado número de contagens e a escolha de um *Time step* de 1 *s* permitem obter espetros com picos bem definidos.

Tabela 4.1: Energia dos picos de referência obtidos por Kimura utilizados na calibração dos espetros.

Banda	Gás	Transição	Energia de ionização (eV)[4]
Н	Água	$1b_1$	12,620
A1	Árgon	$^{2}P_{1/2}$	15,759
A2	Árgon	$^{2}P_{1/2}$	15,937

Na tabela 4.2 estão apresentadas energias dos picos de metanol obtidos por Kimura, e as médias das energias dos picos obtidos após a calibração de cada espetro adquirido. É possível observar que as energias das bandas C e D apresentam um valor desviado do valor de referência o que pode estar relacionado com o fato de estas energias serem medidas a partir de fotoeletrões com energias cinéticas mais baixas, que interagem mais fortemente com potenciais elétricos locais provocados pela deposição de iões de metanol nas paredes internas do espetrómetro.

Tabela 4.2: Energia dos picos de referência obtidos por Kimura e médias dos picos dos espetros calibrados com as respetivas incertezas.

Banda	Energia de ionização (eV) [4]	Média das energias de ionização (eV)
А	10,94	$10,84 \pm 0,02$
В	12,68	$12,68 \pm 0,03$
С	15,19	$15,12 \pm 0,02$
D	17,50	$17,64 \pm 0,02$

A banda A apresenta um valor desviado quando comparado com Kimura, mas segundo o NIST o metanol apresenta um energia de ionização mínima de $10,84 \pm 0,01$ eV [7], o que está em concordância com o valor obtido.

4.2.1 Análise das bandas de metanol

A figura 4.3 representa o espetro da figura 4.2 após a calibração em energia. Nela estão presentes 4 bandas de metanol, mas segundo Eland deviam ser resolvidas 5 bandas o que sugere uma sobreposição entre duas bandas [8]. Esta sobreposição ocorre na banda C que apresenta uma largura significativa tendo, por isso, um caráter ligante. Espetros obtidos por Kimura, de moléculas que possuem o radical CH_3 , como o cloroetano (CH_3CH_2CI), o

bromometano (CH_3Br) e o iodoetano (CH_3CH_2I) sugerem que estas bandas sobrepostas em C devem-se a este radical (ver figuras II.2, II.3, II.4).

Figura 4.3: Espetro da figura 4.2 calibrado em energia.

A banda A, com uma estrutura estreita e uma energia vibracional resolvida sugere um orbital não-ligante, que é atribuída à orbital 2p do oxigénio. Os dois picos de maior intensidade desta banda são diferentes dos dois picos da banda resolvida por Kimura, mas Eland apresenta um espetro de metanol que possui uma banda igual à banda resolvida na figura 4.3 [8].

A banda B, com uma estrutura larga sugere uma estrutura de uma banda ligante, no entanto em [8] esta banda é associada à ligação deslocalizada de hidrogénio, oxigénio e carbono. Por isso, esta banda não pode ser tratada como uma ligação de uma molécula diatómica.

A última banda, D, apresenta um caráter ligante pois tem uma estrutura vibracional larga, que representa uma alteração significativa das distâncias internuclares quando um eletrão é removido da orbital correspondente.

Conclusões e perspetivas futuras

5.1 Conclusões

Com este projeto foi possível desenvolver um programa de aquisição de dados e controlo para a aquisição de espetros e otimização de um espetrómetro de fotoeletrões de ultravioleta. Uma aquisição consiste na execução de duas tarefas simultâneas: um varrimento em tensões elétricas para analisar a energia cinética dos fotoeletrões e a análise em frequência do sinal registado pelo sistema de eletrónica no detetor de fotoeletrões. O passo de decremento que minimiza o tempo de aquisição e o passo em energia é de 4,0 mV que permite obter um passo em energia de 20 meV.

O programa pode adquirir em mais dois modos distintos, cada um relacionado com uma função. A função *Acumulate* permite efetuar vários varrimentos consecutivos ao mesmo tempo que as contagens são adicionadas. Assim é possível acentuar as intensidades relativas dos picos. A função *Tune* adquire o número de contagens para um determinado potencial elétrico, escolhido pelo utilizador, sendo possível observar em tempo real a influência que um certo parâmetro do espetrómetro tem no número de contagens.

Este programa de aquisição pode operar em dois modos distintos consoante a energia da radiação utilizada. No modo HeI o programa converte a energia cinética em energia de ligação de acordo com o efeito fotoelétrico, usando 21,22 eV como radiação ionizante, e no modo HeII utiliza 40,80 eV para converter a energia cinética em energia de ligação. Como só é possível produzir fotoeletrões com uma energia cinética inferior à energia da radiação, no modo HeI apenas é possível usar tensões inferiores a 4,286 V e no HeII apenas é possível usar tensões inferiores a 8,244 V.

Existem funções que não estão relacionadas com a própria aquisição, mas que têm o objetivo de facilitar o processo de análise de espetros. A função *Load* permite apresentar espetros previamente adquiridos de forma a ser possível compará-los por observação

direta. Com a função FWHM é possível medir a largura a meia altura de qualquer pico.

Embora não esteja relacionada com a aquisição ou com a análise de espetros, a função *Hold Mouse*, fixa o cursor do rato numa posição fixa. Desta forma não é possível mover o cursor do rato e prejudicar a aquisição.

Os testes efetuados através da aquisição de espetros de metanol provaram a fiabilidade de aquisição e as funcionalidades extra demonstraram ser uma boa ferramenta de apoio ao utilizador.

O custo dos três módulos descritos na secção 3.1 e da licença do Labview está descriminado na tabela A.1.

5.2 Perspetivas futuras

As correntes das bobinas de Helmholtz são três parâmetros que têm de ser otimizados sempre que o espetrómetro de fotoeletrões é utilizado. Este processo de otimização, que consiste na variação da corrente em cada bobina de forma a maximizar o número de contagens pode ser substituído por um programa de otimização.

Este programa tem de ser capaz de obter uma maximização do número de contagens igual ou superior e em menos tempo do que um utilizador. Se estes dois objetivos não forem cumpridos o programa não é capaz de substituir o utilizador e a sua utilização não é viável.

Um método de otimização sugerido é através de algoritmos genéticos. Estes algoritmos baseiam-se na teoria de evolução de Darwin em que apenas os indivíduos mais fortes sobrevivem e transmitem os seus genes à geração seguinte. Neste caso particular cada individuo terá três genes, em que cada gene corresponde a uma corrente a ser aplicada numa bobine específica. A característica que classifica um indivíduo como "forte" ou "fraco" é o número de contagens produzidas quando as suas correntes são aplicadas nas bobinas de Helmholtz.

O primeiro passo da implementação de um algoritmo genético é a criação de uma população inicial com, por exemplo, 10 indivíduos. Cada individuo da população inicial terá três correntes aleatórias geradas num intervalo fixo. Após a medição do número de contagens produzidas com cada indivíduo, são selecionados apenas os 5 indivíduos com mais contagens produzidas, enquanto que a população restante é eliminada, este passo tem a denominação de Seleção. Cada par de indivíduos sobreviventes irá produzir 2 ou mais indivíduos através de um processo denominado *Crossover*, criando uma nova geração com genes mais otimizados. A geração antiga que gerou uma nova geração é eliminada, com exceção do indivíduo mais "forte", e um novo ciclo de Seleção e *Crossover* será iniciado. Em intervalos de x gerações seria produzida uma mutação em todos os organismos da geração.

Com a implementação de um algoritmo genético as características do indivíduo mais forte de cada geração serão cada vez mais otimizadas, sendo possível um conjunto de três correntes que maximizam o número de contagens. Este algoritmo seria implementado em parceria com o modo *Tune* do programa de aquisição. Desta forma, seria otimizado o número de contagens do pico mais intenso de árgon.

Infelizmente, com os algoritmos genéticos apenas é possível localizar máximos locais e não máximos absolutos, pelo que seria necessário efetuar um varrimento do espaço de soluções para se obter o intervalo das correntes geradas na primeira geração.

Outra forma de obter um máximo local que se considere razoável seria por decisão do próprio utilizador, que escolhe um valor de contagens para o qual a otimização deve obter, assim que esse valor for alcançado a otimização é terminada.

5.2.1 Montagem proposta

Os três pares de bobinas de Helmholtz são alimentados por uma fonte de alimentação capaz de gerar correntes entre 0,5 A e 1,2 A [1]. Três potenciómetros são responsáveis por alterar a corrente de cada par de bobinas. Como a placa de aquisição NI PCI-6230 tem 4 saídas analógicas e duas estão ocupadas pelo programa de aquisição e controlo a utilização desta placa para o desenvolvimento do programa não é possível.

Figura 5.1: Esquema de montagem para controlo das bobinas por parte do Arduino.

A solução mais barata e simples é com a utilização de um Arduino para controlar as correntes. Um Arduino é capaz de gerar tensões entre 0 V e 5 V e uma corrente máxima de 40 mA pelo que este por si só não é capaz de gerar as correntes necessárias. Três transístores alimentados por um transformador de 12 V podem produzir as correntes necessárias que são controladas por correntes mais pequenas geradas pelo *Arduino*, tal como está exemplificado na figura 5.1. A melhor linguagem de programação para escrever o algoritmo genético seria em *Python*, pois permite configurar, com grande facilidade, uma conexão com o *Arduino* e também por ser uma linguagem simples de se utilizar.

BIBLIOGRAFIA

- R. M. Pinto. "Photoelectron Spectroscopy of Nitrogen Containing Molecules of Biological and Insdustrial Interest". Tese de doutoramento. FCT-UNL, 2011.
- [2] A. A. Dias. "Fotoionização de moléculas e átomos". Tese de doutoramento. Universidade Nova de Lisboa, 2005.
- [4] K. Kimura. *Handbook of HeI photoelectron spectra of fundamental organic molecules*. Japan Scientific Societies Press; Halsted Press, 1981.
- [5] D Ambrose e C. Sprake. "Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols". Em: *The Journal of Chemical Thermodynamics* 2.5 (1970), pp. 631–645.
- [6] D. R. Stull. "Vapor pressure of pure substances. Organic and inorganic compounds". Em: Industrial & Engineering Chemistry 39.4 (1947), pp. 517–540.
- [7] S. Lias. Ionization Energy Evaluation in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. PJ Linstrom and WG Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899. http://webbook.nist.gov/ cgi/cbook.cgi?ID=C67561&Mask=20. Acedido a 2016-08-15.
- [8] J. H. D. Eland. *Photoelectron spectroscopy*. Butterworth, 1974.

Custo do programa de aquisição de dados e controlo

Componente	Custo
NI PCI-6230	€ 1250
DAC	€ 215
Cabo de ligação	€ 34
Licença de LabVIEW	€ 995
Total	€ 2494

Tabela A.1: Custo do desenvolvimento do programa de aquisição

A P È N D I C E

Resumo do poster

PROGRAMA DE AQUISIÇÃO PARA UM ESPECTRÓMETRO DE FOTOELETRÕES DE ULTRAVIOLETA

A espectroscopia de fotoeletrões de ultravioleta é uma das técnicas mais versáteis para estudar a estrutura eletrónica de átomos e moléculas. Um programa de aquisição para um espetrómetro de fotoeletrões realiza 2 tarefas diferentes: aplicar um potencial elétrico, que decrementa linearmente no tempo, entre os elétrodos hemisféricos de um analisador hemisférico e, para cada incremento de potencial processa um sinal TTL proveniente de um canaltrão. São também desenvolvidas outras funcionalidades como, fazer vários varrimentos em energia para acumular o número de contagens e, fixar um potencial para que o sinal no canaltrão seja maximizado com o ajuste de outros parâmetros.

Especificações de NI PCI-6230

ANEXO I. ESPECIFICAÇÕES DE NI PCI-6230

Technical Sales

(866) 531-6285 orders@ni.com

Requirements and Compatibility | Ordering Information | Detailed Specifications | Pinouts/Front Panel Connections

Last Revised: 2014-11-06 07:14:37.0

Industrial M Series Multifunction DAQ - 16-Bit, ±10 V/±20 mA Analog I/O, 5 V/24 V Digital I/O

- Up to sixteen ± 10 V or eight ± 20 mA analog inputs at 16 bits, 250 kS/s
- Up to four ±10 V or two 0 to 20 mA analog outputs at 16 bits, 500 kS/s (6 µs full-scale
 NI-MCal calibration technology for improved measurement accuracy settling time)
- 6 digital input and 4 digital output channels, 24 V (sourcing or sinking) or 5 V TTL/CMOS
- Two 32-bit, 80 MHz counter/timers

- Programmable input range (±10, ±5, ±1, ±0.2 V) per channel
- 60 VDC continuous bank isolation, 1,400 Vrms/1,950 VDC channel-to-bus, isolation withstand for 5 s
- Per-channel selectable debounce filters for digital input lines and programmable power-up states for digital outputs

Overview

NI M Series industrial multifunction data acquisition (DAQ) devices combine the safety of isolation with the high-performance timing, amplification, and calibration methodologies unique to M Series devices to deliver accurate measurements and precise control. You can use industrial M Series devices for measurement, control, and design applications including measuring and controlling voltages and process currents from analog and digital sensors, transducers, relays, motors, valves, pumps, and other actuators.

Driver Information

NI-DAQmx

Back to Top

Requirements and Compatibility

OS Information

- Real-Time OS
- Windows 2000/XP
- Windows 7
- Windows Vista x64/x86

Software Compatibility

- ANSI C
- I abVIEW
- LabWindows/CVI
- Measurement Studio
- SignalExpress
- Visual Basic
- Visual Studio .NET

Back to Top

Comparison Tables

Family	Bus	Analog Input Channels	Max Al Range	Analog Output Channels	Max AO Range	Digital Inputs	Digital Outputs	Digital Voltage	Max DO Current Drive
NI 6230	PCI/PXI	8	±10 V	4	±10V	6	4	5 V TTL/CMOS	10 mA
NI 6232	PCI/PXI	16	±10 V	2	±10 V	6	4	24 V (sourcing DO)	350 mA
NI 6233	PCI/PXI	16	±10 V	2	±10 V	6	4	24 V (sinking DO)	350 mA
NI 6236	PCI/PXI	4	±20 mA	4	±10 V	6	4	5 V TTL/CMOS	10 mA

www.ni.com

Family	Bus	Analog Input Channels	Max Al Range	Analog Output Channels	Max AO Range	Digital Inputs	Digital Outputs	Digital Voltage	Max DO Current Drive
NI 6238	PCI/PXI 8		±20 mA	2	0 to 20 mA	6	4	24 V (sourcing DO)	350 mA
NI 6239	PCI/PXI 8		±20 mA	2	0 to 20 mA	6	4	24 V (sinking DO)	350 mA
									Back to Top

Application and Technology

Industrial Feature Set

Industrial M Series multifunction DAQ devices offer a set of high-reliability features designed to automate even the most demanding applications.

- Isolation prevents ground loops, rejects high common-mode voltages, and protects users and equipment from high-voltage transients
- ±20 mA current inputs provide direct connectivity for 4 to 20 mA process current loops.
- · Programmable digital debounce filters eliminate glitches/spikes and remove noise
- Change detection triggers on a digital event with minimal processor usage
- Sourcing or sinking digital I/O with 24 V logic levels interfaces directly with industry-standard sensors and actuators
- · Programmable power-up states provide safe startup operation when connected to pumps, valves, motors, and relays
- X1, X2, and X4 encoder inputs perform angular and linear position measurements

Isolation

These devices use digital isolation technology based on chip-scale transformers for increased signal bandwidth over slower optical isolators. Groups of channels form three "banks" (analog I/O, digital input, and digital output) that have a separate ground plane from each other and earth ground. Industrial M Series devices feature 60 VDC continuous bank isolation and 1,400 V_{ms}/1,950 VDC of channel-to-earth isolation withstand for up to 5 s. Isolation provides three main benefits:

- 1. Safety from hazardous high voltages and transients
- 2. Rejection of common-mode voltages
- 3. Removal of ground loops

Safety from High-Voltage Transients

Isolation electrically separates the high-voltage front end and the low-voltage back end of industrial M Series devices. Signals are passed between the two sections of the devices using digital isolators. By separating the two sections, any voltages within the isolation specifications are prevented from entering the bus section (see Figure 1). Isolation provides protection for the user, data acquisition system, and measurement data.

Figure 1. Isolation Barrier on Industrial M Series Devices

Common-Mode Voltage Rejection

A voltage common to both sides of a differential circuit pair is called common-mode voltage. The differential voltage across the circuit pair is the desired signal, whereas the common voltage signal is the unwanted signal that may have been integrated into the transmission line. Isolation allows M Series industrial multifunction DAQ devices to measure signals from lines with signal plus common-mode voltage of up to 60 VDC. (Note: The maximum analog input signal voltage between positive and negative terminals for industrial M Series devices is ±10 V.) Isolation also provides greater overall common-mode rejection ratios (CMRRs), rejecting noise up to 10 times better than a low-cost M Series device (see Figure 2).

ANEXO I. ESPECIFICAÇÕES DE NI PCI-6230

Figure 2. Common-Mode Rejection Ratios for NI 623x Devices Relative to Earth Ground

Ground Loop Removal

Ground loops are one of the most common sources of noise in data acquisition applications. They occur when two connected terminals in a circuit are at different ground potentials, causing current to flow between the two points. This additional voltage can cause significant error in the measurement. When a ground loop exists, the measured voltage is the sum of the signal voltage and the potential difference between the signal source ground and the measurement system ground. This potential is generally not a DC level; therefore, the result is a noisy measurement system, often showing power-line frequency (60 Hz) components in the readings. By offering an isolated floating ground on the front end, industrial M Series devices are able to prevent ground loops from forming.

4 to 20 mA Process Current Loops

Long cable lengths and the presence of electrical noise in industrial environments can make accurate voltage measurements difficult. As a result, industrial transducers that sense pressure, flow, proximity, and so on often emit current signals instead of voltage. Each of these current

loops contains a power source, a transducer, and one or more data acquisition devices. The current signal is typically between 4 and 20 mA, with 0 mA indicating an open circuit; power supplies are typically in the range of 24 to 30 VDC. Because all the current that flows from one lead

of the power supply must return to the other, current loops are immune to most sources of electrical noise and voltage (IR) drops along extensive cable lengths. The leads that provide power to the sensor also carry the measurement signal, greatly simplifying field wiring. NI 6236, NI 6238, and NI 6239 industrial M Series devices provide direct connectivity for current loops and loop-powered sensors with ±20 mA inputs. NI 6238 and NI 6239 devices also offer 0 to 20 mA static or waveform outputs.

Programmable Debounce Filters

Programmable debounce filters remove noise, glitches, and spikes from digital switches and relays connected to the digital input lines of industrial M Series devices. This feature is important for applications in noisy industrial environments to prevent false readings. You can configure the programmable input filter for each digital line by setting the filter time in software. Any digital noise, glitch, or spike that is shorter than half of the specified filter time is blocked by the industrial M Series device to prevent invalid readings.

Change-of-State Detection

With change detection, you can automatically trigger your software application to perform a digital read operation upon a digital change of state. A digital change of state is defined as the rising edge (0 to 1 transition) or falling edge (1 to 0 transition) on one or more digital lines. Using change detection, you can monitor for digital events with minimal processor usage. No polling is necessary because the industrial M Series device generates an interrupt to automatically wake up your application. To minimize the effects of noisy input lines, use programmable input filters in combination with change detection to eliminate spurious change-detection events caused by noise or glitches.

Programmable Power-Up States

Using programmable power-up states, you can configure the initial digital output states in software to ensure glitch-free operation when connected to industrial actuators such as pumps, valves, motors, and relays. An industrial M Series device holds these output states after receiving power, so your computer can boot and your software application can begin running. Programmable power-up states are glitch-free, meaning the outputs never go through an incorrect state during power up. You can configure each digital line as high-output or low-output. Each industrial M Series device stores the settings in onboard nonvolatile memory and implements the power-up states instantaneously after power is applied to the device.

Quadrature Encoder Measurements

Industrial M Series devices feature two 32-bit, 80 MHz counter/timers capable of measuring angular position with X1, X2, and X4 angular encoders or linear position with two-pulse encoders. Each encoder can have up to three channels: an A phase, a B phase, and a Z index. When channel A leads channel B in a quadrature cycle, the counter increments, and when channel B leads channel A in a cycle, the counter decrements. A high level on channel Z causes the counter to be reloaded with a specified value. Encoder channels use digital inputs on the industrial M Series devices, which may be 5 V TTL or 24 VDC.

Simultaneous and Intelligent Data Acquisition

When you need to obtain performance beyond the capabilities of a multifunction DAQ device, National Instruments provides simultaneous sampling with the S Series and intelligent DAQ with the R Series. The S Series architecture dedicates an analog-to-digital converter (ADC) per channel to provide higher aggregate sampling rates compared to multiplexed devices. S Series devices are ideal for applications including IF digitization, transient recording, ultrasound and sonar testing, and high-energy physics.

R Series multifunction DAQ devices contain a 1/3M gate FPGA that is reconfigurable using the NI LabVIEW FPGA Module. These devices have up to eight independent 16-bit analog inputs with up to 200 kHz simultaneous sampling, up to eight independent 16-bit analog outputs with up to 1 MHz simultaneous update rates, and up to 96 digital I/O lines configurable at rates up to 40 MHz. You can customize these devices to develop capabilities such as complete control over the synchronization and timing of all signals and operations.

Back to Top

Ordering Information

For a complete list of accessories, visit the product page on ni.com.

Back to Top

Software Recommendations

LabVIEW Professional Development System for Windows

NI LabWindows™/CVI for Windows

- Advanced software tools for large project development
- Automatic code generation using DAQ Assistant and Instrument I/O Assistant
 Tight integration with a wide range of
- hardware Advanced measurement analysis and digital
- Gopen connectivity with DLLs, ActiveX, and .NET objects
- Capability to build DLLs, executables, and MSI installers

- Real-time advanced 2D graphs and charts

· Complete hardware compatibility with IVI,

Analysis tools for array manipulation, signal

Simplified cross-platform communication with

Measurement Studio .NET tools (included in

processing statistics, and curve fitting

The mark LabWindows is used under a

license from Microsoft Corporation

VISA, DAQ, GPIB, and serial

LabWindows/CVI Full only)

network variables

SignalExpress for Windows

NI Measurement Studio Professional Edition

- Quickly configure projects without programming
- Control over 400 PC-based and stand-alone instruments
- Log data from more than 250 data acquisition devices
- Perform basic signal processing, analysis, and file I/O
 Scale your application with automatic
- LabVIEW code generation
- Create custom reports or easily export data to LabVIEW, DIAdem or Microsoft Excel
- Customizable graphs and charts for WPF, Windows Forms, and ASP.NET Web Forms UI design
- Analysis libraries for array operations, signal generation, windowing, filters, signal processing
- Hardware integration support with native .NET data acquisition and instrument control libraries
- Automatic code generation for all NI-DAQmx data acquisition hardware
- Intelligent and efficient data-logging libraries for streaming measurement data to disk
- Support for Microsoft Visual Studio .NET 2012/2010/2008

Back to Top

Support and Services

System Assurance Programs

NI system assurance programs are designed to make it even easier for you to own an NI system. These programs include configuration and deployment services for your NI PXI, CompactRIO, or Compact FieldPoint system. The NI Basic System Assurance Program provides a simple integration test and ensures that your system is delivered completely assembled in one box. When you configure your system with the NI Standard System Assurance Program, you can select from available NI system driver sets and application development environments to create customized, reorderable software configurations. Your system arrives fully assembled and tested in one box with your software preinstalled. When you order your system with the standard program, you also receive system-specific documentation including a bill of materials, an integration test report, a recommended maintenance plan, and frequently asked question documents. Finally, the standard program reduces the total cost of owning an NI system by providing three years of warranty coverage and calibration service. Use the online product advisors at ni.com/advisor to find a system assurance program to meet your needs.

Calibration

NI measurement hardware is calibrated to ensure measurement accuracy and verify that the device meets its published specifications. To ensure the ongoing accuracy of your measurement hardware, NI offers basic or detailed recalibration service that provides ongoing ISO 9001 audit compliance and confidence in your measurements. To learn more about NI calibration services or to locate a qualified service center near you, contact your local sales office or visit ni.com/calibration.

Technical Support

Get answers to your technical questions using the following National Instruments resources.

- Support Visit ni.com/support to access the NI KnowledgeBase, example programs, and tutorials or to contact our applications engineers who are located in NI sales offices around the world and speak the local language.
- Discussion Forums Visit forums.ni.com for a diverse set of discussion boards on topics you care about.
- Online Community Visit community.ni.com to find, contribute, or collaborate on customer-contributed technical content with users like you.

Repair

While you may never need your hardware repaired, NI understands that unexpected events may lead to necessary repairs. NI offers repair services performed by highly trained technicians who quickly return your device with the guarantee that it will perform to factory specifications. For more information, visit ni.com/repair.

Training and Certifications

The NI training and certification program delivers the fastest, most certain route to increased proficiency and productivity using NI software and hardware. Training builds the skills to more efficiently develop robust, maintainable applications, while certification validates your knowledge and ability.

Classroom training in cities worldwide - the most comprehensive hands-on training taught by engineers.

- On-site training at your facility an excellent option to train multiple employees at the same time.
- Online instructor-led training lower-cost, remote training if classroom or on-site courses are not possible.
- Course kits lowest-cost, self-paced training that you can use as reference guides.
- Training memberships and training credits to buy now and schedule training later.

Visit ni.com/training for more information.

Extended Warranty

NI offers options for extending the standard product warranty to meet the life-cycle requirements of your project. In addition, because NI understands that your requirements may change, the extended warranty is flexible in length and easily renewed. For more information, visit ni.com/warranty.

OEM

NI offers design-in consulting and product integration assistance if you need NI products for OEM applications. For information about special pricing and services for OEM customers, visit ni.com/oem.

Alliance

Our Professional Services Team is comprised of NI applications engineers, NI Consulting Services, and a worldwide National Instruments Alliance Partner program of more than 700 independent consultants and integrators. Services range from start-up assistance to turnkey system integration. Visit ni.com/alliance.

Back	to	Top

Detailed Specifications

Specifications listed below are typical at 25 °C unless otherwise noted.

Analog input	
Number of channels	4 differential or 8 single ended
Channel type	Voltage input
ADC resolution	16 bits
DNL	No missing codes guaranteed
INL	Refer to the AI Absolute Accuracy Table
Sampling rate	
Maximum	250 KS/s
Minimum	0 S/s
Timing accuracy	50 ppm of sample rate
Timing resolution	50 ns
Input coupling	DC
Input range	±10 V, ±5 V, ±1 V, ±0.2 V
Maximum working voltage for analog inputs	Refer to the Maximum Working Voltage section
CMRR (DC to 60 Hz)	95 dB (with respect to AI GND)
Input impedance	
Device on	
AI+ to AI GND	>10 G Ω in parallel with 100 pF
AI- to AI GND	>10 G Ω in parallel with 100 pF
Device off	
AI+ to AI GND	820 Ω
AI- to AI GND	820 Ω
Input bias current	±100 pA
Crosstalk (at 100 kHz)	
Adjacent channels	–75 dB
Non-adjacent channels	-90 dB
Small signal bandwidth (-3 dB)	700 kHz
Input FIFO size	4,095 samples
Scan list memory	4,095 entries

www.ni.com
Data transfers	DMA (scatter-gather), interrupts, programmed I/O
Overvoltage protection (AI <07> with respect to AI GND)	
Device on	±25 V for up to two AI pins
Device off	±15 V for up to two AI pins
Input current during overvoltage condition	±20 mA max/Al pin
Settling Time for Multichannel Measurements	
Accuracy, full scale step, all ranges	
±90 ppm of step (±6 LSB)	4 μs convert interval
±30 ppm of step (±2 LSB)	5 µs convert interval

±15 ppm of step (±1 LSB)

Typical Performance Graphs

7 µs convert interval

Frequency (Hz)

Analog Output

7

Number of channels	4
Channel type	Voltage output
DAC resolution	16 bits
DNL	±1 LSB
Monotonicity	16 bit guaranteed
Maximum update rate	
1 channel	500 kS/s
2 channels	450 kS/s per channel
3 channels	425 kS/s per channel
4 channels	400 kS/s per channel
Timing accuracy	50 ppm of sample rate
Timing resolution	50 ns
Output range	±10 V
Output coupling	DC
Output impedance	0.4 Ω
Output current drive	±5 mA
Overdrive protection	±25 V

ANEXO I. ESPECIFICAÇÕES DE NI PCI-6230

Ovordri		nt					11) mA			
Power	Power-on state							+20 mV			
Power	Power-on glitch ¹						±,	±2 V for 2 ms			
Power-on giltch ²							+100 mV for 350 ms				
Power-off glitch ²						±	±100 mV tor 350 ms				
Output FIFO size						8,	8,191 samples shared among channels used				
		odos:					D	WA (Scatter-ga	uner), interrupts	, programmed	1/0
AU way		ioues.									
 Non- Perio 	periodic	eform regenerat	ion mode from onb	pard FIFO							
 Period 	odic wave	eform regenerat	ion mode from hos	buffer including d	ynamic update						
Settling	time, ful	ll scale step, 15	ppm (1 LSB)				6	μs			
Slew ra	ite	• •					1	5 V/μs			
Glitch e	energy							•			
Magn	itude						1(00 mV			
Durat	ion						3	us			
¹ For th	e earlier	version of the F	CI-6230 (192233B	-01), refer to the N	I 6230 Specificat	ions document, 3	- 71672A-01, Janua	ry 2006 revisio	ın.		
² When	outputti	ng 0 V on powe	down from the an	alog output channe	el.			-			
Calib	ration	(AI and AC)								
Recom	mended	warm-up time				15 minutes					
Calibra	tion inter	val				1 year					
AI At	osolute	Accuracy Ta	able								
	Nominal	I Range	Residual	Coin		Residual	Offset		Bondom	Absolute	Soneitivity
Pos	itive	Negative	Error	Tempco	Reference	Error	Tempco	INL Error	Noiso	at	2
					Tompoo	LIIO	(nnm of		NOISE,		
Sc	ale	Scale	(ppm of Reading)	(ppm/°C)	Tempco	(ppm of Range)	(ppm of Range/°C)	Range)	σ (µVrms)	Full Scale ¹ (uV)	(µV)
Sc	ale	-10	(ppm of Reading) 75	(ppm/°C) 25	Tempco 5	(ppm of Range) 20	(ppm of Range/°C) 57	Range)	σ (µVrms)	Full Scale ¹ (μV) 3,100	(μV) 97.6
Sc	ale 0 5	-10 -5	(ppm of Reading) 75 85	(ppm/°C) 25 25	Tempco 5 5	(ppm of Range) 20 20	(ppm of Range/°C) 57 60	76 76	σ (μVrms) 244 122	Full Scale ¹ (μV) 3,100 1,620	(μV) 97.6 48.8
	ale 0 5 1	-10 -5 -0.2	(ppm of Reading) 75 85 95 135	(ppm/°C) 25 25 25 25 25	Tempco 5 5 5 5 5 5	(ppm of Range) 20 20 25 80	(ppm of Range/°C) 57 60 79 175	(ppin of Range) 76 76 76 76	σ (μVrms) 244 122 30 13	Full Scale ¹ (μV) 3,100 1,620 360 112	 (μV) 97.6 48.8 12.0 5.2
Sc 1 4 0 Absolu	ale 0 5 1 .2 teAccura	Scale -10 -5 -1 -0.2	(ppm of Reading) 75 85 95 135 (GainError) + Rang	(ppm/°C) 25 25 25 25 e · (OffsetError) +	Tempco 5 5 5 5 0	(ppm of Range) 20 20 25 80	(ppm of Range/°C) 57 60 79 175	76 76 76 76 76	σ (μVrms) 244 122 30 13	Full Scale ¹ (μV) 3,100 1,620 360 112	 (μV) 97.6 48.8 12.0 5.2
Sc 1 4 0 Absolu GainEr	ale 0 5 1 .2 teAccura rror = Re:	Scale -10 -5 -1 -0.2 acy = Reading - sidualAlGainErr	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco	(ppm/°C) 25 25 25 c · (OffsetError) + (TempChangeFro	Tempco 5 5 5 5 NoiseUncertainty mLastInternalCal	(ppm of Range) 20 25 80 ,	(ppm of Range/°C) 57 60 79 175 175	Range) 76 76 76 76 76 9eFromLastEx	σ (μVrms) 244 122 30 13	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
Sc 1 0 Absolu GainEr OffsetE	ale 0 5 1 .2 teAccura tror = Re: Error = Re:	Scale -10 -5 -1 -0.2 acy = Reading - sidualAlGainErr esidualAlOffsett	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco · Error + OffsetTemp	(ppm/°C) 25 25 25 c · (OffsetError) + (TempChangeFrom co · (TempChange	Tempco 5 5 5 5 NoiseUncertainty mLastInternalCal FromLastInternal	(ppm of Range) 20 20 25 80) + ReferenceTen ICal) + INL_Error	(ppm of Range/°C) 57 60 79 175 175	Range) 76 76 76 76 76 76 76 9eFromLastEx	α (μVrms) 244 122 30 13 .ternalCal)	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
Sc 1 0 Absolu GainEr OffsetE	ale 0 1 .2 teAccura ror = Re Error = Re	Scale -10 -5 -1 -0.2 acy = Reading · · sidualAlGainErr esidualAlGfisett anty = Ran	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco \cdot Error + OffsetTemp domNoise \cdot 3 $\sqrt{100}$	(ppm/°C) 25 25 25 c · (OffsetError) + (TempChangeFro co · (TempChange For a cover	Tempco 5 5 5 5 5 1 5 5 1 5 5 1 5 5 5 1 5 5 1 5 5 1	(ppm of Range) 20 25 80) + ReferenceTen ICal) + INL_Error 3 σ and averag	(ppm of Range/°C) 57 60 79 175 npco · (TempChan	references of the second secon	τ (μVrms) 244 122 30 13	Full Scale ¹ (μV) 3,100 1,620 360 112	(µV) 97.6 48.8 12.0 5.2
Sc 1 0 Absolu GainEr OffsetE Noise	ale 0 5 1 .2 teAccura ror = Re: Error = Re: Uncert	Scale -10 -5 -1 -0.2 acy = Reading + i sidualAlGainErr $esidualAlGfsett ainty = \frac{Ran}{}$	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco \cdot Error + OffsetTemp domNoise $\cdot 3$ $\sqrt{100}$ e on the analog inp	(ppm/°C) 25 25 25 25 e · (OffsetError) + (TempChangeFro co · (TempChange For a cover ut channels is dete	Tempco 5 5 NoiseUncertainty mLastInternalCal FromLastInterna age factor of i semined using the	(ppm of Range) 20 20 25 80) + ReferenceTen ICal) + INL_Error 3 of and average	(ppm of Range/°C) 57 60 79 175 npco · (TempChan ing 100 points.	geFromLastEx	κοιse, σ (μVrms) 244 122 30 13 ternalCal)	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
Sc 1 0 Absolu GainEr OffsetE Noise ¹ Absol TempO	ale 0 5 1 2 teAccura ror = Re: Error = Re: Uncert lute accu ChangeFi	Scale -10 -10 -5 -5 -1 -0.2 acy = Reading · / sidualAlGainErr esidualAlGfisett cainty = Ran uracy at full scale romLastExterna	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco · Error + OffsetTemp domNoise · 3 $\sqrt{100}$ e on the analog inp Cal = 10 °C	(ppm/°C) 25 25 25 25 e · (OffsetError) + (TempChangeFro co · (TempChange For a cover ut channels is dete	Tempco 5 5 5 5 5 1 NoiseUncertainty mLastInternalCal FromLastInternal age factor of factor of factor ermined using the	(ppm of Range) 20 25 80) + ReferenceTen ICal) + INL_Error 3σ and average	(ppm of Range/°C) 57 60 79 175 npco · (TempChan ing 100 points.	geFromLastEx	σ (μVrms) 244 122 30 13 .ternalCal)	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
Sc 1 0 Absolu GainEr OffsetE Noise ¹ Abso TempC TempC	ale 0 5 1 .2 teAccura ror = Re- Error = Re- Error = Re- ChangeFi ChangeFi	Scale -10 -5 -1 -0.2 acy = Reading · J sidualAlGainErr esidualAlOffsett ainty = Ran uracy at full scale romLastExterna romLastInternalt	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco · Error + OffsetTemp domNoise · 3 $\sqrt{100}$ e on the analog inp Cal = 10 °C Cal = 1 °C	(ppm/°C) 25 25 25 e · (OffsetError) + (TempChangeFrou co · (TempChange For a cover ut channels is dete	Tempco 5 5 5 5 5 5 NoiseUncertainty mLastInternalCal FromLastInternal rage factor of factor of factor immined using the	(ppm of Range) 20 25 80) + ReferenceTen (Cal) + INL_Error 3 σ and averag	(ppm of Range/°C) 57 60 79 175 npco · (TempChan ing 100 points.	geFromLastEx	α (μVrms) 244 122 30 13	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
Sc 1 0 Absolu GainEr OffsetE Noise ¹ Abso TempC TempC numbe	ale 0 5 1 .2 teAccura ror = Re- Error = Re- Error = Re- Error = Re- ChangeFi ChangeFi ChangeFi	Scale -10 -5 -1 -0.2 acy = Reading · 1 sidualAlGainErr esidualAlGinErr esidualAlGinErr esidualAlOffsett uracy at full scale romLastExternal romLastInternal@ dings = 100	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco · Error + OffsetTemp domNoise · 3 $\sqrt{100}$ e on the analog inp Cal = 10 °C Cal = 1 °C	(ppm/°C) 25 25 25 e · (OffsetError) + (TempChange For a cover ut channels is dete	Tempco 5 5 5 0 5 0 NoiseUncertainty mLastInternalCal FromLastInternal age factor of factor ermined using the	(ppm of Range) 20 20 25 80) + ReferenceTen ICal) + INL_Error 3 σ and averag	(ppm of Range/°C) 57 60 79 175 npco · (TempChan ing 100 points.	geFromLastEx	c (μVrms) 244 122 30 13	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
1 Absolu GainEr OffsetE Noise 1 Abso TempC TempC Covera	ale 0 5 1 1 2 teAccura ror = Res Fror = Res Uncert Uncert Uncert ChangeFi ChangeFi ChangeFacto	Scale -10 -10 -10 -10 -0.2 acy = Reading · I sidualAlGainErr esidualAlGainErr esidualAlOffsett arary = Ran uracy at full scale romLastExternar romLastInternald dings = 100 or = 3 σ	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco · Error + OffsetTemp domNoise · 3 $\sqrt{100}$ e on the analog inp Cal = 10 °C Cal = 1 °C	(ppm/°C) 25 25 25 e · (OffsetError) + (TempChangeFro co · (TempChange For a cover ut channels is dete	Tempco 5 5 5 1 NoiseUncertainty mLastInternalCal FromLastInternal age factor of 2 rmined using the	(ppm of Range) 20 25 80 7) + ReferenceTen ICal) + INL_Error 3 σ and averag	(ppm of Range/°C) 57 60 79 175 npco · (TempChan ing 100 points.	geFromLastEx	c (μVrms) 244 122 30 13 ternalCal)	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
1 Abso TempC TempC Torvera For exe	ale 0 0 5 1 1 .2 1 teAccura 1 ror = Re: 2 Error = Re: 2 Uncert 2 lute accu 2 ChangeFi 2 changeFi 2 changeFi 3 ageFacto 3 ample, oi 3	Scale -10 -5 -11 -0.2 acy = Reading · · · · · · · · · · · · · · · · · · ·	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco - Error + OffsetTemp domNoise $\cdot 3$ $\sqrt{100}$ e on the analog inp Cal = 10 °C Cal = 1 °C	(ppm/°C) 25 25 25 25 e · (OffsetError) + (TempChangeFro co · (TempChange For a cover ut channels is dete	Tempco	(ppm of Range) 20 25 80) + ReferenceTen (Cal) + INL_Error 3 σ and averag	(ppm of Range/°C) 57 60 79 175 npco · (TempChan ing 100 points.	geFromLastEx	α (μVrms) 244 122 30 13	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
Sc Sc 1 0 Absolu GainEr OffsetE Noise 1 Abso TempC TempC TempC Covera For exa GainEr	ale 0 0 5 1 1 2 1 1 1 2 1 1 1 teAccura ror = Re 2 1 1 1 teAccura Error = Re 2 1	Scale -10 -5 -1 -0.2 acy = Reading · 1 sidualAlGainErr esidualAlGisett aranty = Ran uracy at full scale romLastExterna romLastInternale dings = 100 rr = 3 σ n the 10 V range ppm + 25 ppm ·	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco · Error + OffsetTemp domNoise · 3 $\sqrt{100}$ e on the analog inp Cal = 10 °C Cal = 1 °C e, the absolute accu 1 + 5 ppm · 10	(ppm/°C) 25 25 25 25 e · (OffsetError) + (TempChangeFron co · (TempChange For a cover ut channels is deter ut channels is deter arracy at full scale is GainError = 150 p	Tempco	(ppm of Range) 20 20 25 80 ,) + ReferenceTen ICal) + INL_Error 3 σ and averag	(ppm of Range/°C) 57 60 79 175 npco - (TempChan ing 100 points.	geFromLastEx	α (μVrms) 244 122 30 13	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
1 Absolu GainEr OffsetE Noise 1 Abso TempC TempC Covera For exe GainEr	ale 0 0 5 1 1 .2 1 teAccura ror = Re: error = Re: eUncert eUncert eUncert lute accu changeFr changeFr cof_rea ugeFacto ample, or ror = 75 error = 20	Scale -10 -10 -10 -0.2 -1 -0.2 -0.2 -1 -0.2 -0.2 -1 -0.2 -0.2 -1 -0.2 -0.2 -1 -0.2 -0.2 -1 -0.2 -	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco · Error + OffsetTemp domNoise · 3 $\sqrt{100}$ e on the analog inp Cal = 10 °C Cal = 1 °C c, the absolute accu	(ppm/°C) 25 25 25 25 e · (OffsetError) + (TempChangeFron co · (TempChange For a cover ut channels is deter ut channels is deter aracy at full scale is GainError = 150 p OffsetError = 153 p	Tempco 5 5 5 0 5 0	(ppm of Range) 20 20 25 80 () + ReferenceTen ICal) + INL_Error δ σ and averag	(ppm of Range/°C) 57 60 79 175 npco · (TempChan ing 100 points.	geFromLastEx	c (μVrms) 244 122 30 13 ternalCal)	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
Sc 1 0 Absolu GainEr OffsetE Noise ¹ Abso TempC TempC Torrexc GainEr OffsetE Noise Noise	ale 0 0 5 1 1 2 1 1 1 2 1 1 1 teAccura ror = Re 2 1	Scale -10 -10 -10 -10 -0.2 -1 -0.2 -1 -0.2 -1 -0.2 -0.2 -1 -0.2 -1 -0.2 -0.2 -1 -0.2 -0	$\frac{(\text{ppm of Reading)}}{75}$ $\frac{75}{95}$ $\frac{95}{135}$ $\frac{95}{135}$ $\frac{35}{(\text{GainError)} + \text{Rang}}$ $\frac{35}{(\text{GainError)} + \text{Rang}}$ $\frac{35}{\sqrt{100}}$ $\frac{35}{\sqrt{100}}$ $\frac{35}{\sqrt{100}}$ $\frac{35}{2}$ $\frac{35}{\sqrt{100}}$ $\frac{35}{2}$	(ppm/°C) 25 25 25 25 e · (OffsetError) + (TempChange For a cover ut channels is dete arracy at full scale is GainError = 150 p OffsetError = 153 p seUncertainty	Tempco 5 5 5 5 NoiseUncertainty mLastInternalCal FromLastInternal age factor of f armined using the s as follows: pm ppm = 73 μ V	(ppm of Range) 20 20 25 80 ,) + ReferenceTen ICal) + INL_Error 3 σ and average	(ppm of Range/°C) 57 60 79 175 npco · (TempChan ing 100 points.	(ppn of Range) 76 76 76 76 geFromLastEx	κοιse, σ (µVrms) 244 122 30 13	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
1 Absolu GainEr OffsetE Noise 1 Abso TempC TempC TempC Covera For exa GainEr OffsetE Noise	ale 0 0 5 1 1 .2 1 teAccura ror = Re Error = Re Error = Re Uncert Uncert lute accu ChangeFi ChangeFi ChangeFi r_of_rea ageFacto ample, or ror = 75 Error = 20 Uncert Uncert teAccura	Scale -10 -10 -10 -2 -1 -0.2 acy = Reading · 1 sidualAlGainErr esidualAlGfaett ainty = Ran aracy at full scale romLastExterna romLastInternald dings = 100 rr = 3 σ n the 10 V range ppm + 25 ppm · 0 ppm + 57 ppm tainty = $\frac{244}{}$	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco · Error + OffsetTemp domNoise · 3 $\sqrt{100}$ a on the analog inp Cal = 10 °C Cal = 10 °C Cal = 1 °C b, the absolute accu 1 + 5 ppm · 10 · 1 + 76 ppm $\frac{\mu V \cdot 3}{100}$ Not	(ppm/°C) 25 25 25 25 e · (OffsetError) + (TempChangeFror co · (TempChange For a cover ut channels is dete ut channels is dete gainError = 150 p OffsetError = 153 p SeUncertainty ffsetError) + Noise	Tempco 5 5 5 5 NoiseUncertainty mLastInternalCal FromLastInternal age factor of 2 irmined using the as as follows: pm ppm = 73 μ V Uncertainty A	(ppm of Range) 20 20 25 80 /) + ReferenceTen ICal) + INL_Error 3 σ and averag	(ppm of Range/°C) 57 60 79 175 npco · (TempChan ing 100 points. btions:	geFromLastEx	τ (μVrms) 244 122 30 13 :ternalCal)	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
Sc Sc 1 1 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	ale 0 0 5 1 1 .2 1 teAccura ror = Re error = Re euncert eUncert euncert lute accu changeFir changeFir r_of_rea igeFacto ample, or ror = 75 euncert euncert teAccura itivity is t teAccura	Scale -10 -10 -10 -2 -1 -0.2 acy = Reading · · · sidualAlGainErr esidualAlGainErr esidualAlOffsett ainty = Ran uracy at full scale romLastInternale dings = 100 or = 3 σ n the 10 V range ppm + 25 ppm · · 0 ppm + 57 ppm tainty = $\frac{244}{}$	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco · Error + OffsetTemp domNoise · 3 $\sqrt{100}$ e on the analog inp Cal = 10 °C Cal = 1 °C cal = 1 °C 4, the absolute accu 1 + 5 ppm · 10 · 1 + 76 ppm $\frac{\mu V \cdot 3}{100}$ Noi	(ppm/°C) 25 25 25 25 25 e · (OffsetError) + (TempChangeFro co · (TempChange For a cover ut channels is dete aracy at full scale is GainError = 150 p OffsetError = 153 p seUncertainty fisetError) + Noise n be detected. It is	Tempco 5 5 5 5 NoiseUncertainty mLastInternalCal FromLastInternal age factor of 1 rmined using the s as follows: pm ppm = 73 μ V Uncertainty A a function of noi	(ppm of Range) 20 20 25 80 () + ReferenceTen (Cal) + INL_Error 3 σ and average following assumption following assumption	(ppm of Range/°C) 57 60 79 175 npco · (TempChan ing 100 points. otions:	geFromLastEx	τ(μVrms) 244 122 30 13	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc S	ale 0 0 5 1 1 2 1 1 1 2 1 1 1 teAccura Tor = Re E 1 1 1 1 1 teAccura Error = Re E 1	Scale -10 -5 -1 -0.2 acy = Reading · J sidualAlGainErr esidualAlGainErr esidualAlGfisett ainty = Ran uracy at full scale romLastExterna romLastInternald dings = 100 or = 3 σ n the 10 V range ppm + 25 ppm · 0 ppm + 57 ppm tainty = $\frac{244}{\sqrt{2}}$	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco - Error + OffsetTemp domNoise - 3 $\sqrt{100}$ e on the analog inp Cal = 10 °C Cal = 1 °C Cal = 1 °C c, the absolute accu 1 + 5 ppm · 10 · 1 + 76 ppm $\frac{\mu V \cdot 3}{100}$ Noi nError) + 10 V · (O age change that calco one year from the	(ppm/°C) 25 25 25 25 25 e · (OffsetError) + (TempChange For a cover ut channels is dete aracy at full scale is GainError = 150 p OffsetError = 153 p seUncertainty fisetError) + Noise n be detected. It is device external ca	Tempco 5 5 5 5 NoiseUncertainty mLastInternalCal FromLastInternal age factor of f armined using the s as follows: pm oppm = 73 μ V Uncertainty A a function of noi ulibration.	(ppm of Range) 20 20 25 80 ,) + ReferenceTen ICal) + INL_Error 3 σ and average following assumption following assumption	(ppm of Range/°C) 57 60 79 175 npco · (TempChan ing 100 points. ations:	geFromLastEx	τ (µVrms) 244 122 30 13 :ternalCal)	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
Absolu GainEr OffsetE Noise ¹ Abso TempC TempC TempC Covera For exa GainEr OffsetE Noise ² Sens Accura	ale 0 0 5 1 1 .2 1 teAccura ror = Res error = Res eUncert lute accu changeFit changeFit changeFit changeFit comple, or ror = 75 error = 20 eUncert teAccura titvity is t ciss liste O Abs O	Scale -10 -10 -10 -10 -0.2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco · Error + OffsetTemp domNoise · 3 $\sqrt{100}$ a on the analog inp Cal = 10 °C Cal = 10 °C Cal = 1 °C b, the absolute accu 1 + 5 ppm · 10 · 1 + 76 ppm $\frac{\mu V \cdot 3}{100}$ Not nError) + 10 V · (O age change that call o one year from the cy Table	(ppm/°C) 25 25 25 25 25 e · (OffsetError) + (TempChangeFron co · (TempChange For a cover ut channels is deter ut channels is deter and the set of the set gainError = 150 p OffsetError = 153 p SeUncertainty ffsetError) + Noise n be detected. It is device external ca	Tempco 5 5 5 5 NoiseUncertainty mLastInternalCal FromLastInternal age factor of 2 irmined using the as as follows: pm oppm = 73 μ V Uncertainty A a function of noi libration.	(ppm of Range) 20 20 25 80 () + ReferenceTen ICal) + INL_Error 3 σ and averag following assumptions of the second seco	(ppm of Range/°C) 57 60 79 175 npco · (TempChan ing 100 points. otions:	(ppn of Range) 76 76 76 76 76 geFromLastEx	τ(μVrms) 244 122 30 13 :ternalCal)	Full Scale ¹ (μV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2
Sc Sc 1 Sc 2 1 Absolu GainEr OffsetE Noisee 1 Absol TempC TempC TempC TempC Covera For exa GainEr OffsetE Noisee Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc	ale 0 0 5 1 1 .2 1 teAccura ror = Re cror = Re Change cUncert Uncert lute accu Change change Fir change Fir <td>Scale -10 -5 -1 -0.2 acy = Reading · · sidualAlGainErr esidualAlGainErr esidualAlGrisetf ainty = Ran uracy at full scale romLastExterna romLastInternale dings = 100 or = 3 σ in the 10 V range ppm + 25 ppm · 0 ppm + 57 ppm tainty = $\frac{244}{}$ acy = 10 V · (Gai the smallest volt ad are valid up to Dolute Accurace inal Range</td> <td>(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco · Error + OffsetTemp domNoise · 3 $\sqrt{100}$ e on the analog inp Cal = 10 °C Cal = 1 °C cal = 1 °C cal = 1 °C h + 5 ppm · 10 · 1 + 76 ppm $\frac{\mu V \cdot 3}{100}$ Not nError) + 10 V · (O age change that call o one year from the cy Table Pacification</td> <td>(ppm/°C) 25 25 25 25 25 25 e · (OffsetError) + (TempChangeFro co · (TempChange For a cover ut channels is dete aracy at full scale is GainError = 150 p OffsetError = 153 p seUncertainty ffsetError) + Noise n be detected. It is device external ca</td> <td>Tempco 5 5 5 5 NoiseUncertainty mLastInternalCal FromLastInternal age factor of 1 rmined using the s as follows: pm oppm = 73 μ V Uncertainty A a function of noi libration.</td> <td>(ppm of Range) 20 20 25 80 () + ReferenceTen ICal) + INL_Error 3 σ and average following assumption following following assumption following following following following assumption following following f</td> <td>(ppm of Range/°C) 57 60 79 175 hpco - (TempChan ing 100 points. btions: = 3,100 μV</td> <td>(ppn of Range) 76 76 76 76 geFromLastEx</td> <td>τ(μVrms) 244 122 30 13</td> <td>Full Scale¹ (µV) 3,100 1,620 360 112</td> <td>(μV) 97.6 48.8 12.0 5.2</td>	Scale -10 -5 -1 -0.2 acy = Reading · · sidualAlGainErr esidualAlGainErr esidualAlGrisetf ainty = Ran uracy at full scale romLastExterna romLastInternale dings = 100 or = 3 σ in the 10 V range ppm + 25 ppm · 0 ppm + 57 ppm tainty = $\frac{244}{}$ acy = 10 V · (Gai the smallest volt ad are valid up to Dolute Accurace inal Range	(ppm of Reading) 75 85 95 135 (GainError) + Rang or + GainTempco · Error + OffsetTemp domNoise · 3 $\sqrt{100}$ e on the analog inp Cal = 10 °C Cal = 1 °C cal = 1 °C cal = 1 °C h + 5 ppm · 10 · 1 + 76 ppm $\frac{\mu V \cdot 3}{100}$ Not nError) + 10 V · (O age change that call o one year from the cy Table Pacification	(ppm/°C) 25 25 25 25 25 25 e · (OffsetError) + (TempChangeFro co · (TempChange For a cover ut channels is dete aracy at full scale is GainError = 150 p OffsetError = 153 p seUncertainty ffsetError) + Noise n be detected. It is device external ca	Tempco 5 5 5 5 NoiseUncertainty mLastInternalCal FromLastInternal age factor of 1 rmined using the s as follows: pm oppm = 73 μ V Uncertainty A a function of noi libration.	(ppm of Range) 20 20 25 80 () + ReferenceTen ICal) + INL_Error 3 σ and average following assumption following following assumption following following following following assumption following following f	(ppm of Range/°C) 57 60 79 175 hpco - (TempChan ing 100 points. btions: = 3,100 μV	(ppn of Range) 76 76 76 76 geFromLastEx	τ(μVrms) 244 122 30 13	Full Scale ¹ (µV) 3,100 1,620 360 112	(μV) 97.6 48.8 12.0 5.2

www.ni.com

Positive Full Scale	Negative Full Scale	(ppm of Reading)	Tempco (ppm/°C)	Тетрсо	(ppm of Range)	(ppm of Range/°C)	(ppm of Range)	Full Scale ¹ (μV)
10	-10	90	10	5	40	5	128	3,230
10 -10 90 10 5 40 5 128 3,230 1 Absolute Accuracy at full scale numbers is valid immediately following internal calibration and assumes the device is operating within 10 °C of the last external calibration. Accuracies listed are valid for up to two years from the device external calibration. AbsoluteAccuracy = OutputValue · (GainError) + Range · (OffsetError) GainError = ResidualGainError + GainTempco · (TempChangeFromLastInternalCal) + ReferenceTempco · (TempChangeFromLastExternalCal) OffsetError = ResidualOffsetError + AOOffsetTempco · (TempChangeFromLastInternalCal) + INL_Error								
Digital I/O/PFI	igital I/O/PFI							
Static Characteri	tatic Characteristics							
lumber of channel	s				10 total			
Input					6 (PFI <0	5>/P0.<05>)		

Input	6 (PFI <05>/P0.<05>)	6 (PFI <05>/P0.<05>)		
Output	4 (PFI <69>/P1.<03>)	4 (PFI <69>/P1.<03>)		
Ground reference	D GND	D GND		
Direction control	Fixed, lines are unidirection	nal		
Input voltage protection ¹	±20 V on up to two pins			
PFI/Port 0/Port 1 Functionality				
PFI <05>/P0.<05>	Static digital input, timing i	nput		
PFI <69>/P1.<03>	Static digital output, timing	j output		
Timing output sources	Many AI, AO, counter, tim	ing signals		
Debounce filter settings	125 ns, 6.425 μs, 2.54 ms	, disable; high and low transitions; selectable per input		
Digital Input Characteristics				
Level	Min	Мах		
V _{IL} input low voltage	0 V	0.8 V		
V _{IH} input high voltage	2 V	5.25 V		
I _{IL} input low current (V _{in} = 0 V)	_	-10 µA		
I _{IH} input high current (V _{in} = 5 V)	_	10 µA		
Digital Output Characteristics				
Guaranteed output levels				
Parameter	Voltage Level	Current Level		
Vol	0.4 V	7 mA		
	0.6 V	10 mA		
Vou	2.8 V	-24 mA		
- OH	4.0 V	-6 mA		
Maximum operation conditions				
Level	Minimum	Maximum		
I _{OL} output low current	_	10 mA		
P1.<03>				
I _{OH} output high current	_	-24 mA		
P1.<03>				

¹ Stresses beyond those listed under *Input voltage protection* may cause permanent damage to the device.

General-Purpose Counter/Timers

Number of counter/timers

8/12

ANEXO I. ESPECIFICAÇÕES DE NI PCI-6230

Resolution	32 bits
Counter measurements	Edge counting, pulse, semi-period, period, two-edge separation
Position measurements	X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding
Output applications	Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
Internal base clocks	80 MHz, 20 MHz, 0.1 MHz
External base clock frequency	0 MHz to 20 MHz
Base clock accuracy	50 ppm
Inputs	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down
Routing options for inputs	Any input PFI, RTSI, PXI_TRIG, PXI_STAR, many internal signals
FIFO	2 samples
Data transfers	Dedicated scatter-gather DMA controller for each counter/timer; interrupts; programmed I/O
Isolation Effects	
Maximum propagation delay through isolator	
Digital inputs	35 ns
Digital outputs	45 ns
Propagation delay skew between channels (inputs and outputs)	15 ns
Frequency Generator	
Number of channels	1
Base clocks	10 MHz, 100 kHz
Divisors	1 to 16
Base clock accuracy	50 ppm
Output can be available on any output PFI or RTSI terminal.	
Phase-Locked Loop (PLL)	
Number of PLLs	1
Reference signal	PXI_STAR, PXI_CLK10, RTSI <07>
Output of PLL	80 MHz Timebase; other signals derived from 80 MHz Timebase including 20 MHz and 100 kHz Timebases
External Digital Triggers	
Source	Any input PFI, RTSI, PXI_TRIG, PXI_STAR
Polarity	Software-selectable for most signals
Analog input function	Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Convert Clock, Sample Clock Timebase
Analog output function	Start Ingger, Pause Ingger, Sample Clock, Sample Clock Timebase
Counter/timer functions	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down
Device-to-Device Trigger Bus	
PCI devices	RTSI <07> ¹
PXI devices	PXI_TRIG <07>, PXI_STAR
Output selections	10 MHz Reference Clock; frequency generator output; many internal signals
Debounce filter settings	125 ns, 6.425 $\mu s,$ 2.54 ms, disabled; high and low transitions; selectable per input
¹ In other sections of this document, RTSI refers to RTSI <07> for PCI devices or PXI_T	RIG <07> for PXI devices.
Bus Interface	
PCI or PXI	3.3 V or 5 V signal environment

NI PXI-6230 devices can be installed in PXI slots or PXI Express hybrid slots. DMA channels

3.3 V or 5 V signal environment

4, analog input, analog output, counter/timer 0, counter/timer 1

Power Requirements	
Current draw from bus during no-load condition	
+5 V	0.5 A
+12 V	20 mA
Current draw from bus during AI and AO overvoltage condition	
+5 V	0.75 A
+12 V	20 mA
Physical Requirements	
Printed circuit board dimensions	
NI PCI-6230	9.7 cm × 15.5 cm (3.8 in. × 6.1 in.)
NI PXI-6230	Standard 3U PXI
Weight	
NI PCI-6230	110 g (3.8 oz)
NI PXI-6230	150 g (5.2 oz)
I/O connector	37-pin D-SUB
Maximum Working Voltage ¹	
Channel-to-earth ground ²	
Continuous	≤30 Vrms/60 VDC Measurement Category I ³
Withstand	≤840 Vrms/1200 VDC, verified by a 5 s dielectric withstand test
Channel-to-bus ⁴	
Continuous	≤30 Vrms/60 VDC Measurement Category I ³
Withstand	≤1400 Vrms/1200 VDC, verified by a 5 s dielectric withstand test
Analog channel to AI GND/AO GND (in the <i>NI 6230 Maximum Working Voltage</i> figure, $ V_a - V_c $)	≤11 V, Measurement Category I ³
Digital channel to D GND (in <i>NI 6230 Maximum Working Voltage</i> figure, V _b – V _c)	≤5.25 V, Measurement Category I ³

Caution This device is rated for Measurement Category I and the voltage across the isolation barrier is limited to no greater than 30 Vrms/60 VDC/42.4 V_{pk} continuous. Do *not* use for measurements within Categories II, III, or IV.

The NI 6230 Maximum Working Voltage figure illustrates the maximum working voltage specifications.

¹ Maximum working voltage refers to the signal voltage plus the common-mode voltage.

 2 In the NI 6230 Maximum Working Voltage figure, $|V_a-V_d|,\,|V_b-V_d|,$ and $|V_c-V_d|.$

³ Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

 4 In the NI 6230 Maximum Working Voltage figure, $|V_a-V_e|,\,|V_b-V_e|,$ and $|V_c-V_e|.$

ANEXO I. ESPECIFICAÇÕES DE NI PCI-6230

Environmental	
Maximum altitude	2,000 m (at 25 °C ambient temperature)
Pollution degree	2
Indoor use only.	
Operating Environment	
Ambient temperature range	0 to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)
Storage Environment	
Ambient temperature range	-40 to 70 °C (Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.)
Relative humidity range	5% to 95% noncondensing (Tested in accordance with IEC-60068-2-56.)
Shock and Vibration (PXI Only)	
Operational shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)
Random vibration	
Operating	5 to 500 Hz, 0.3 g _{rms}
	5 to 500 Hz, 2.4 $\mathrm{g}_{\mathrm{rms}}$ (Tested in accordance with IEC
Nonoperating	60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Safety

This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

IEC 61010-1, EN 61010-1

- UL 61010-1, CAN/CSA-C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Electromagnetic Compatibility

This product is designed to meet the requirements of the following standards of EMC for electrical equipment for measurement, control, and laboratory use:

- EN 61326 EMC requirements; Minimum Immunity

EN 55011 Emissions; Group 1, Class A

- CE, C-Tick, ICES, and FCC Part 15 Emissions; Class A

Note For EMC compliance, operate this device according to product documentation.

CE Compliance

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

73/23/EEC; Low-Voltage Directive (safety)

89/336/EEC; Electromagnetic Compatibility Directive (EMC)

Note Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Waste Electrical and Electronic Equipment (WEEE)

N

At the end of their life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.htm.

Pinouts/Front Panel Connections

Back to Top

©2008 National Instruments. All rights reserved. CVI, LabVIEW, Measurement Studio, National Instruments, National Instruments Alliance Partner, NI, ni.com, SCXI, and SignalExpress are trademarks of National Instruments. The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Other product and company names listed are trademarks or trade names of their respective companies. A National Instruments Alliance Partner is a business entity independent from National Instruments and has no agency, partnership, or joint-venture relationship with National Instruments.

My Profile | RSS | Privacy | Legal | Contact NI © 2014 National Instruments Corporation. All rights reserved.

57

Espetros

Figura II.1: Espetro de Metanol obtido por Kimura[4].

Figura II.2: Espetro de cloroetano (*CH*₃*CH*₂*C*l) obtido por Kimura[4].

Figura II.3: Espetro de bromoetano (*CH*₃Br) obtido por Kimura[4].

Figura II.4: Espetro de iodoetano (*CH*₃*CH*₂I) obtido por Kimura[4].